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Preface

For the fourth time Gjgvik University College and The Norwegian Color Research Laboratory
organises an international symposium on colour imaging. Gjgvik Color Imaging Symposium 2007
takes place June 14&15, 2007, at Gjgvik University College in Gjgvik, Norway.

In these proceedings you will find short abstracts of the invited and keynote presentations,
as well as extended abstract for the submitted contributions. For more information about the
conference, please refer to http://www.colorlab.no/.

Gjgvik, June 2007

Prof. Jon Y. Hardeberg, Conference Chair
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Spatial Color Vision

A. Rizzi
Dip. di Tecnologie dell’Informazione, Universita degli Studi di Milano, rizzi@dti.unimi.it

J. J. McCann
McCann Imaging, mccanns@tiac.net

Human vision has remarkable image processing power. It captures information over a very wide
dynamic range of light intensities and spectral distributions. Unlike films and electronic sensors,
visual appearances are nearly constant, despite widely variable input stimuli. Computer algo-
rithms mimic vision by responding to the image content, as well as to the radiometric properties
of individual pixels. The spatial analysis of images is the basis of appearance constancy, with
both changes in spectral content and the level of light.

Today, there is a growing family of algorithms that treat/modify/enhance color information
in its visual context, also known as Spatial Color methods (e.g. Retinex [1], ACE [2], or RSR [3]).
These models are responsive to image content as well as to pixel statistics. They produce results
that, due to a changing spatial configuration, can have a non-unique relationship with the
physical input. For this reason, they cannot be described using convolution filters and since
their behavior changes according to the image content, their impulsive response is not fixed.

They all share the idea of recomputing color of each pixel through the spatial distribution
of values in the image, but a lot of differences arise according to their purpose. From this point
of view, Spatial Color Algorithms (SCA) can be led by mainly three different goals:

e Accurately model the human vision system (HVS) predicting color appearance, [SCA-HVS
Model|

e Aim to enhance images in the direction of human visual appearance, [SCA-Rendering]

e Attempt to calculate the actual reflectance of an object from the radiance (reflectance x
illumination). [SCA-Reflectance]

Since SCAs can have three distinct goals, three different kind of outcomes are expected, and
three different measures of performance are required.

Judging these models’ performance is a challenging task and is still an open problem. Two
main variables affect the final result of these algorithms: their parameters and the visual char-
acteristics of the image they process. The term visual characteristics refers not only to the
image’s digital pixel values, (e.g. calibration of pixel value, the measured dynamic range of the
scene, the measured dynamic range of the digital image), but also to the spatial distribution of
these digital pixel values in the image. This paper discusses the visual configurations in which
a Spatial Color methods show interesting, or critical behavior. We survey the more significant
Spatial Color configurations including color constancy and contrast. The discussion presents the
strengths and weaknesses of different algorithms, hopefully allowing a deeper understanding of
their behavior and stimulating discussions about the search for a common judging ground.

References

[1] J. J. McCann, “Black Capturing a black cat in shade: past and present of Retinex color
appearance models”, Journal of Electronic Imaging, 13, 36-47, 2004.

[2] A. Rizzi, C. Gatta, D. Marini, “A New Algorithm for Unsupervised Global and Local Color
Correction”, Pattern Recognition Letters, 24 (11), pp. 1663-1677, July 2003.



[3] E.Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, D. Marini, “Random Spray Retinex:
a new Retinex implementation to investigate the local properties of the model” IEEE Trans-
actions on Image Processing, Vol. 16, Issue 1, pp. 162-171, January 2007.
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Alessandro Rizzi took the degree in Computer Science at University of Milano and received a
PhD in Information Engineering at University of Brescia (Italy). He taught Information Systems
and Computer Graphics at University of Brescia and at Politecnico di Milano. Now he is assistant
professor, teaching Multimedia and Human-Computer Interaction, and senior research fellow at
the Department of Information Technologies at University of Milano. Since 1990 he is researching
in the field of digital imaging and vision. His main research topic is the use of color information
in digital images with particular attention to color perception mechanisms. He is the coordinator
of the Italian Color Group.
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Studies on Image Control for Better Reproduction in Offset

Emmi Enoksson
The Royal Institute of Technology, KTH, Sweden

This research work has focused on studies of image control for better reproduction in offset and
has been applied practically. This research work has resulted in a survey of color management
knowledge, a communication list concerning ICC profiles, an educational kit, a proposal for a
new terminology and a patent concerning image adaptation. The work is divided into following
three areas:

1) image classification A better understanding of image processing can avoid misunderstand-
ings in the print and leading to more satisfied customers. To achieve optimal print quality
for different images, it is important to adapt the prepress settings to the image category.
Images can be divided into different categories depending on their image content, key in-
formation and tone distribution. Trials have been carried out in which the IT.8 test chart
has been adapted to different image categories. The results of the image adaptation suggest
that an adjustment only to low-key images (dark images) is sufficient, as even normal-key
images then show a better similarity to the original image. The low-key image showed
more details in dark areas.

2) color separation Two studies have been carried out. The purpose has been to investigate
the knowledge level in color separation, the use of ICC-profiles and the understanding of
color management in various printing houses in Sweden. This was done to identify and
suggest new applications and suggested actions. These studies indicate that there is a seri-
ous problem in the graphic arts industry. The problem is that there is both an insufficient
knowledge of color management and a lack of communication. There is a lack of compe-
tence and a lack of literature and instructions which can help printers to better understand
the technology, and communication suffers through a lack of a common language.

3) suggested actions and the development of tools Terminology simplification is crucial
for the users. A new term for separation “Compensation by Black”, CB, has been suggested.
A single term should make it easier for the users to understand and use the different settings
which impact the image reproduction. A new tool/kit for the evaluation of ICC-profiles has
been created. The goal of this educational kit is to facilitate and exemplify the practical
understanding of profiles and their use for the users.

Biography

Emmi Enoksson works at the University of Dalarna in Sweden as the Head of the Graphic Arts
Department, which is part of the Faculty of Engineering, with 100 students. The research she
is currently conducting is part of her doctorate in image classification and optimized image re-
production at the Media Technology and Graphic Arts, Royal Institute of Technology (KTH),
Stockholm, Sweden. Projects Emmi is involved in: redesigning and improving the image clas-
sification and optimized image reproduction process, examining the process from scanner to
printer, and also development of pedagogic tools for evaluation of ICC-profiles. Emmi Enoksson
has worked both as a lecturer in image, printing, layout and graphic software at various educa-
tional institutions, and also as an image printing consultant for printing companies and paper
mills.
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Appearance reproduction for 3D soft proofing, skin colour
reproduction and e-commerce

Norimichi Tsumura
Graduate School of Integration Science & Department of Information and Image Sciences,
Chiba University, Japan

1. Introduction

In the process of product development, an appearance of the product is usually evaluated by
directly observing the trial pieces. The shape of products can be evaluated by making the mock
up or showing the computer graphics image. However, it is difficult to evaluate the appearance
without making a trial piece, since they are dependent on the viewing devices, environmental
illuminant. It is said that the evaluation of appearance become bottle neck in the cycle of the
development. Therefore, it is required to predict the appearances for product in various indus-
tries. In this review, we will introduce our practical approaches for appearance reproduction [1]
in 3D soft proofing, skin colour reproduction and e-commerce.

2. Appearance reproduction for 3D colour proof system |[2]

There are many kinds of 3D prints such as beverage cans, PET bottles, snack packages, and so
on in our life. In the field of B to B e-commerce system on designing and marketing of products,
it is required to display the measured or simulated images of the 3D prints. Figure 1 show the
software to evaluate appearance of the beverage cans. This system made by DIC Corporation in
the collaboration with our laboratory. However, these images tend to be higher dynamic range
than the luminance range of usual monitor, because the 3D prints are made of smooth materials
such as papers, plastics, and metals that have sharp and strong specular reflection. Therefore,
the images of 3D prints cannot be displayed without certain image processing for dynamic range
compression.

Accurate reproduction of contrast gloss and that of color and shading are trade-off in tone
mapping. For the accurate reproduction of contrast gloss, it is required to decrease luminance
in non-highlight area. The resultant tone mapped images tend to be unsatisfactorily dark ex-
cept highlight area. On the contrary, it is required to clip luminance in highlight area into the

Figure 1: Software to evaluate appearance of the products (with DIC Corporation).
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maximum monitor luminance for the accurate reproduction of color and shading. The resultant
tone mapped images tend to have less contrast gloss than real objects.

As is shown in Figure 2, we proposed to map luminance of diffuse reflection and specular
reflection in different ways. In Figure 2, the luminance on the virtual CCD on the camera is
calculated in the computer by using the computer graphics techniques. The rendered luminance
image is shown by pseudocolor scale in the luminance range of usual monitor. In the proposed
tone mapping [2], the luminance images for diffuse and specular reflection are separately cal-
culated. It is easy to separate diffuse and specular reflections in rendered Figure 6, since the
rendered image can not be displayed in the conventional imaging system. This is because that
the rendered image is expected to be high dynamic range, and the luminance image has higher
dynamic range than luminance images, since the BRDF used in the rendering process is formu-
lated as a sum of both reflections. Rendering using BRDF formula of diffuse (specular) reflection
gives images of diffuse (specular) reflection. In the proposed tone mapping, only the specular
reflection is mapped to the target dynamic range by controlling the slope of specular reflection
component as is shown in Figure 2.

Figure 3 shows the effectiveness of the proposed method. The conventional results for (1)non-
linear compression (3) linear compression show that color of diffuse components can not be
reproduced in these method. The conventional results for (2) clipping show the accurate color
reproduction of diffuse components, however, the relative magnitude of glossiness is not pre-
served compared to the real object. The result of proposed method shows the accurate color
reproduction of diffuse components and preservation of the relative magnitude of glossiness.
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3. Appearance reproduction for skin colour reproduction [3]

The reproduction of human skin color may be considered as the most important function of vari-
ous imaging systems. With the recent progress of various imaging systems, such as mobile phones
with CCD cameras, cosmetic advisory systems, and telemedicine systems, the reproduction of
skin color has become increasingly important for image communication, cosmetic recommen-
dations, medical diagnosis, and so on. We proposed an E-cosmetic function for digital images,
based on physics and physiologically-based image processing. In this method, the scattering in
the skin is modelled in a simple linear form in the optical density domain, and inverse optical
scattering is performed by a simple inverse matrix operation. Figure 4 shows the schematic of
flow in the proposed image-based skin color and texture analysis/synthesis. The original image is
separated into the images of surface and body reflection based on polarized illumination, and the
body reflection image is analyzed by independent component analysis with the shading removal
to obtain the melanin, hemoglobin, and shading components.

Physiologically based image processing could be applied to the components to control the
physiologically meaningful change of skin. The processed components are synthesized to obtain
the image using E-cosmetic. Figure 5 shows the increase or decrease of the component homo-
geneously. Realistic change can be achieved by this method. Computer graphics technique can
not be archived to this realistic change. This result shows the effectiveness of the image-based
approach using computer vision technique.

4. Appearance reproduction for e-commerce [3]
It is important to reproduce equally perceptible images across different displays in the Internet
shopping system. To solve the difference of color appearance between two displays, many studies

have been done on the device independent color reproduction. However, a little has been studied
on a device independent reproduction of glossiness of the object.
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In the e-commerce system, the gloss reproduction is also important for customer. We de-
veloped the gloss reproduction system based on a perception of the human vision by using the
various images of glossiness and luminance of display. Figure 6 show the images used to model the
glossiness which is the function of luminance of display and parameters of BRDF on the object
surface. The approach is based on the technique proposed by Ferwerda et. al [4] where glossiness
is modelled under various diffuse reflectance of the object. Psychophysical scaling technique was
introduced to clarify the relationship between the attribute of human gloss perception and the
physical properties of the glossiness of the object in their paper.

Our developed model for glossiness is as follows.
G =54.7\/As + 4.1 x 10>\/n +54VT —76.3 (R* = 0.803)

where G is the glossiness value obtained by the subjective evaluation to the images shown in
Figure 10, I is the simulated luminance of display in those images. As the parameters for BRDF,
Ay is the power of specular components, n is an index that simulate the degree of imperfection of
a surface in the Phong reflection model. It is noted that the simulated luminance [ is introduced
into our glossiness model.

The developed glossiness model is used for matching the gloss on different devices. As is
written above, the model is written by parameter for BRDF on the surface and the luminance of
the display. The luminance of the display may be pre-defined in color management system such
as sSRGB or ICC profile, or estimated by simple subjective evaluation on the display. Figure 7
shows an example of the isogloss curve, which is obtained based on the gloss model. By using
this isogloss curve, glossiness of the object can be preserved in changing the luminance of the
display.

Figure 8(a), (b) shows the images on high luminance display and low luminance display,
respectively. The same data is displayed on each device, although the appearance of gloss looks
different. Figure 8(c) shows the image compensated along the isogloss contour by keeping the
luminance in Figure 8(b). By using images along the contour, we can produce images with same
glossiness on different displays.
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Figure 8: Device independent gloss reproduction based on the iso-gloss contours.
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4. Conclusion

The case studies for appearance reproduction were introduced based on the our previous research
for 3D color proof system, image-based skin analysis and synthesis system, device independent
gloss reproduction system. These case studies showed the effectiveness of appearance reproduc-
tion in the product development. It is noted that this paper is written based a part of my review
in Color Research and Application [1].
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The response of primate cone-opponent cells to light stimulation

Thorstein Seim and Arne Valberg
Norwegian University of Science and Technology, Section of Biophysics and Medical
Technology, N-7491 Trondheim, Norway

Cone-opponent cells are found at several levels of the primate visual system. Of the six main
opponent cell types in the retina and lateral geniculate nucleus (LGN), two parvocellular cell
types (the Increment and Decrement cells; also called ON and OFF cells) are devoted to the
L-M dimension of cone space while two other I- and D-cells deal with the M-L dimension.
Two other cell types combine S-cones with a sum of L and M-cones (the bistratified “Blue ON
cells” and the much rarer “Yellow ON cells”). These six cell types show a characteristic response
when the retina is exposed to stimuli of different wavelengths and intensity (luminance), and
this behaviour has, for a fixed stimulus size, been modelled by an opponent combination of
cone signals to retinal ganglion cells. These signals were computed by a linear combination of
familiar hyperbolic functions describing the dependence of cone potentials on light intensity.
These hyperbolic functions represented the only non-linear stage of the model. We have earlier
demonstrated how subtracting the response to achromatic stimuli separates out a chromatic
component that allows for the scaling of chromatic colour differences (Valberg et al., JOSA, A3,
1726-1734, 1985). Here we present additional data on how such cells respond to stimuli varying
in wavelength, luminance, and size. It is shown how a combined activity of ‘L-M’ and ‘M-L’
types of Increment parvocellular cells largely cancels the chromatic component in the response
and amplifies the response to bright achromatic stimuli. The same applies to ‘L-M’ and ‘M-L.’
Decrement cells and dark achromatic stimuli. We also use the experimental data to determine
spatial sensitivities of the receptive fields of the opponent cells. Combined with area responses,
the model is used to predict the spatial structure of excitation and inhibition within the receptive
field. The result is related to the spatial distribution of cone types within the excitatory and
inhibitory areas and a possible overlap of excitation and inhibition, like in the “Mexican hat”
model.
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Recent developments in ICC colour management

Phil Green
London College of Communication, pj.green@lcc.arts.ac.uk

Initially conceived as a static file format to encapsulate colour transforms in a form that is
interoperable and produces consistent output, the ICC specification has recently undergone
amendment that significantly extends its capabilities.

Version 4 of the specification was published some years ago, and resolves some of the earlier
ambiguities in the specification. Most colour management products now have the ability to make
or use V4 profiles. However, the most important feature of V4 is only recently beginning to be
realised. In the V2 architecture, input profiles map to the Profile Connection Space (a more or
less unbounded CIELAB encoding with D50 illuminant), and output profiles map from this PCS
into the device space. Where the input and output media have different colour gamuts, some
form of gamut compression must be applied in this workflow, but neither profile knows the gamut
of the other. This results in compromises being made which can severely restrict the gamut of
the final reproduction. While this is not an issue for reproductions using the colorimetric intent,
it leads to a loss of potential quality when using the Perceptual rendering intent. The Perceptual
Reference Medium Gamut was adopted to address this problem by having a well-defined colour
gamut for data in the PCS. We consider here how the PRMG is used in a colour reproduction
workflow, and we report the development of a profile which maps between the PRMG and the
sRGB colour spacefor the purpose of display viewing.

The various flavours of PDF /X have become a major element of graphic arts workflows. In
the most recently adopted version, the trend towards the inclusion of references to well-defined
external resources is continued by providing a mechanism for referring to resources by their
URL. One implication of this is that an ICC profile specified as the OutputIntent of a document
may be given as a URL for the profile rather than including the profile in the document. This
is expected to be particularly important for variable data printing where it is less practical to
include profiles for each element of a variable data stream. The ICC has developed a Profile
Registry where profile providers can register profiles based on standard characterization data
sets, and which can then be referenced by a permanent URL based on either the profile name
or its profileID value. The practical application of this in graphic arts workflows is considered,
together with some reflection on the requirements of standard characterization data.

The ICC specification has previously defined an encoding range for CIELAB which limits L*
to 100. This is highly approriate to graphic arts workflows where the reference white is taken as
a diffuse white reflector. However, there is increasing interest in colour management in digital
photography and the digital motion picture industry, where the scene adopted white may have
a luminance well beyond that of a diffuse reflector. In such high dynamic range imaging, the
requirement to compress or clip to the PCS encoding range can cause severe limitations on
the processing possibilities, including re- purposing of data across different media. The recently
adopted floating point proposal provides a significant extension to ICC capabilities by allowing
headroom in the the encoding. This proposal also incorporates other important extensions,
including the ability to use a floating point encoding for look-up tables, and the ability to add
additional processing elements (beyond those already defined in the specification) in the profile.
The use of such processing elements by a profile and a CMM makes it possible to generate
dynamic, programmable transforms which can handle a much greater range of colour processing
tasks than envisaged in the original ICC architecture.

Microsoft have recently released the Vista operating system which incorporates Windows
Color System. Tis represents a significant extension to the capabilities of ICM 2, and like recent
ICC developments, points in the direction of dynamic and programmable colour management.
WCS is fully compatible with ICC V4, and is likely to increasingly be used by consumers on
Windows PCs. We consider the implications for professional workflows, such as the possibility
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of interoperability issues arising with customers supplying work with WCS profiles.
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Inkjet in question: adapting current colour and ink technology
for the requirements of the user

Carinna Parraman
Centre for Fine Print Research, University of the West of England, Bristol, BS3 2JT
Carinna.Parraman@Quwe.ac.uk

“It 1s of interest that, regardless of the number of impressions, the inks may be selected
solely on the basis of their color gamut. Their colors need not be cyan, magenta, and
yellow; nor is it required that they be transparent. The way is therefore opened for
entirely new printing processes.” [Hardy and Wurzburg 1948]

Abstract

This paper is an overview on the current application of inkjet and it’s, as to yet considered
unfulfilled potential, which as a technology, is as revolutionary as Caxton’s printing press;
and a presentation of an approach to develop inkjet from the perspective of the user. The
paper considers the impact of technology on the user, and vice versa, responses to how
inkjet technology is being adapted. It highlights recent developments in pigmented inks and
the introduction of new colours by the three major inkjet companies: Canon, Epson and
HP. However the introduction of new colours might fulfil objectives to expand the printed
colour gamut that is based on a photographic colour reproduction requirement, but does
not address how the technology can be thoroughly developed as an entirely novel colour
printing system. Inkjet is in a transitional phase from classic image reproduction towards
‘creativity’. The presentation discusses the implications of the need to change methods in
mixing inks that moves away from existing colour spaces, non intuitive colour mixing to
bespoke inks sets, colour mixing approaches and colour management methods that are not
reliant on RGB or CMYK.

Background

The current situation is how colour management systems, since the early 90s, have transformed
the print industry in providing colour fidelity and colour consistency, which has brought together
the wide range of print industries: newspaper, poster, fine art, photography, interior design, tex-
tiles; into working with a ubiquitous colour language. For industry, this management of colour
has provided the commercial printer with a streamlined method of printing from workspace to
printer to paper. Furthermore, print hardware and software has also become rationalised. How-
ever, industry has now begun to question what has been misplaced in exchange for commercial
expediency? The industry has come to realise that although workflow methods are vital for com-
mercial growth, there is a very large and significant other market, which belongs to the artists,
designers and users. This research is undertaken from the perspective of the artist/designer/user.

Over recent years inkjet technology has developed at a pace, and has evolved as a sophis-
ticated software and hardware tool for the reproduction of digital photographic images. As
improvements continue in inkjet head technology, inks and colour gamut, thus the gap between
the traditional photographic print and the inkjet print has narrowed. However, there is a growing
requirement for the user to gain access to an inkjet technology that is not necessarily dependent
on photographic printing, which might contain, for example fields of colour, fine lines, blends
and text. These requirements could be gained through alternative print and colour management
methods, such as the development of novel colour sets and modifications to print software and
hardware.

The User

Frustrated by the hardware, organisations have been driven to desperate measures. As R. Mac
Holbert described how, at Nash Editions, they invalidated their warranty on their 126,000 dollar
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Iris (3047) printer by sawing off and raising the print heads to print on thicker paper (History of
Nash Editions p.29). Or at the Centre for Fine Print Research University of the West of England
(UWE) Bristol, we rewired the switches to isolate the paper path mechanism so that (thicker)
papers could be accurately registered and reregistered for overprinting to increase the density of
black; and as a matter of course, the need to lift or remove the lid from the printer in order to
gain a better understanding of the inner mechanisms.

From the perspective as a printer and printmaker, and working collaboratively with artists, a
common response to how a final printed image is obtained is through ‘trial and error’'. Accurate
gamut mapping from monitor to print is undermined by many unknowns: by non white paper,
textured paper, large fields of printed colour that might perceptibly change according to scale,
simultaneous contrast and metamerism. The processes and methods to achieve a high quality
image, is more often hard won through progressive steps: the need to acquire tools and skills
to make a competent image is one that evolves as the user becomes more familiar with the
technology.

Furthermore, as a practitioner of fine printmaking, traditional printmaking is also used as
benchmark for the digital printed image, and therefore the fine art and design sector might
have different parameters for considering the quality of the finished image. An analysis of the
work is based on an artist’s conception of the work and a subjective assessment of print surface,
colour and image quality, which although may appear to be based on the same criteria as a
reproduction, the impact on the viewer is quite different.

User requirements for improving inks

With the emergence of digital imaging technologies in the 1980s so too was there a desire to print
high quality colour images. Whilst Nash Editions recognised that the Iris technology produced
beautiful rich and dense colour, they also quickly realised the dye based inks were incredibly
fugitive. They found that the early inks, if left in daylight for a few hours would noticeably fade
(Holbert, 2007, p.20). Similarly, in 1999, when we began working with an Encad Novajet, these
inks were so fugitive that when printed on commercial coated papers, they could fade in a dark
room overnight. As a way of addressing this problem, Lyson Inks responded to requirements
by making fine art inks that would enable the user to obtain a compromise between colour
permanence and brightness of colours, not as yet achievable in pigment inks.

The concern for permanence however motivated users, conservationists and representatives
from the paper and packaging group to address these problems, which have resulted in a series
of ongoing conferences hosted by the Institute of Physics in London, to assess and debate the
preservation and Conservation Issues Related to Digital Printing and Digital Photography (2001
onwards).

Since 2000, developments in inkjet ink technology has significantly changed from when inkjets
used dye-based colour inks and pigment-based black, these are still used in the smaller deskjets,
small molecule dyes are used to capitalise on the wider colour gamut. However the trend is to
move towards pigment based inks which are resistant to UV and gas fading, and because they
are more complex, break down slower than dyes. As advances are made in inkjet ink technology
their brightness has improved, resulting in the majority of wideformat printer manufacturers
using pigment inks. This is evolved as a user demand for archiving and colour longevity, in
terms of intended application of large print works: exhibition, display and fine art and poster
market.

For the medium and wideformat market, eight-ink sets and twelve-ink sets are becoming
ubiquitous. Canon’s LUCIA Pigment Ink Technology contains twelve-colour pigments using red,
blue, green, grey, photo grey, cyan, photo cyan, magenta, photo magenta, yellow, (regular) black,

n response to a questionnaire given to 20 artists as part of a background to an exhibition entitled 20:20 A
documentation of Artists making prints. http://amd.uwe.ac.uk/cfpr/index.asp?pageid—1378
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and matte black. The VIVERA range of colours introduced by HP through the new Design Jet Z
series includes light grey, grey, matte black and photo black, magenta, yellow, cyan, orange/red,
blue, green, light magenta, gloss. With the inclusion of green has resulted in the light cyan being
redundant.

For the black and white reproduction, Epson’s UltraChrome K3 eight-colour set includes two
different black ink modes - photo black and matte black; Canon differentiates between matte
black, regular black, grey and photo grey, which according to Canon, the combination of grey and
photo grey enables smoother transitions from light to dark. HP have included four grey/blacks,
with the addition of a gloss, which as part of their media profiling management system can be
switched on or off to enhance density or is an automatic component of gloss papers. It can not
be used for matte papers.

Epson UltraChrome K3™ ink incorporates a High-gloss Micro-crystal Encapsulation, which
according to Epson literature, each pigment is coated in a resin, which reduces the grouping of
pigment particles. This is similar to Hewlett Packard’s Vivera Electrosteric Encaplsulation Tech-
nology or EET; negative electrostatic charges within the resin layer, which coats the pigments
and prevents pigments from grouping together or repels each pigment particle.

Mixing colour

For traditional artists working in colour, their ability to layer colour onto canvas or paper with
the objective to ‘imitate nature’ through colour, light and dark, and texture is demonstrated
through traditional easel painting and printmaking. For the photographer, the process of creating
a coloured photograph, is a very different activity and requires the mixing of light wavelengths
to create an image. Furthermore for the digital printer, software applications are based on less
intuitive colour methods of mixing: red, blue and green (RGB), mixing colours additively or
cyan, magenta, yellow and black (CMYK) which are based on printer’s process colours. However,
explanations on how colours are converted, for example, in the digital imaging pipeline are often
confused.

There has seen a shift in the recent printer manufacturers from CMYK printer drivers to
RGB, this closely mirrors the perceived drive towards the photographic market in maintaining
a clear relationship between traditional photographic red, green and blue filters, monitor colour.
However anyone attempting to mix a colour will quickly realise that, at least working in a CMYK
space a better idea can be obtained by, for example, mixing 100% Magenta, with 60% cyan, with
30% black will create a purple. However how might the same colour be achieved using RGB?
(Red:72 Green:30 Blue: 86). Both colour-mixing methods do not enable a meaningful method
of mixing colour.

How might inkjet be developed?

As a way of illustrating how inkjet might be modified, one can draw upon the technological
parallels of Screenprint or Serigraphy and how this process can be used as a benchmark for
inkjet. Since the advent of screenprint, at its most utilised in the 60s and 70s when photosensitive
coatings were introduced, the artist was able to combine text, photomechanical image and hand
made marks in a highly innovative way. This enabled the artist to over-layer colours, employ
light over dark, opaque inks and translucent inks, gloss and matt varnishes and build up layers.
Although the mesh size of the screen reduced the possibility of high quality or continuous tone
images, the artist however was able to compensate by employing a variety of means to create
highly saturated colour images through stochastic halftoning, multi coloured, blended or flat
coloured, multilayered image making and printing.

In both instances, screenprint and inkjet have good and problematic aspects to the technol-
ogy. The following list highlights these pros and cons:
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Inkjet and screenprint - pros and cons

Screenprint: Pros:

Cons:

Hands on: paint mixing by hand, control over colours

Wide range of colours, including basic CMYK

Can control chronology of colours and layers

Surface topology and texture, optical qualities — can see ‘through’ layers.
Using translucent inks increase density.

Mixing inks from a transparent base and/or mixing colour from an opaque base

Limited resolution, for photomechanical reproduction, can see the dots, not wholly photo-
graphic or continuous tone.

Requires an understanding of the process ie. viscosity of ink, squeegie pressure and angle.
One screen for every colour

Messy, requires cleaning

Inkjet: Pros :

Cons:

Increasingly, a closed loop system (Photosmart), non expert can print and obtain quality
images

Colours are entirely translucent, can print in any order, colours are designed to mix together

Colours are highly saturated, provide a colour gamut suitable for photographic reproduc-
tion

Small and medium sized dots, drop on demand technology, that can provide almost con-
tinuous tone resolution

Incredibly detailed — produce a high detail and fine continuous lines — not possible by any
other process

Limited control over printer and workflow

Colours limited to photographic reproduction — RGB, CMYK, LAB
One pass, surface uniform, no surface topology

Cannot (easily) modify colours,

No opaque colours, no gloss or matt.

Cannot separate channels

Exact registration problematic — hit and miss
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Developing inkjet for the ‘Creative’

To generate an image, the artist could combine both photographic images and flat colours, or
choose just flat or blended rendering. In any situation the user would have a range of choices,
and that would extend the potential of the inkjet hardware beyond photographic reproduction.

Basic components of the inkjet printer might comprise:

Re registration with fine tuning (sideways, backwards and forwards) Paper thickness sensor —
heads might be raised or lowered to accommodate thicker papers Built in device for profiling
Photosmart capability employing existing pigment inks ‘Out of the Can’ printer colours and
software for mixing, printing flat colours and blends, shapes and fine lines.

Developing the idea of a novel RIP:

The following method of image production would apply to the printing of flat, blended areas of
colour, with the intention to over-layer colour.

Working from software such as Illustrator or Photoshop, a series of layers would be generated
— each layer representing a colour - similar to the way one would work as a printmaker. These
could be soft-previewed with all the coloured layers as a composite, so as to give an indication
of how the final printed image would appear. This would be done by ICC profiling. Experiments
have already been undertaken using alternative colour ink system.

The development of a colour mixing system:

Using a colour system similar to an ‘out of the can’ approach — a range of 9 basic colours, ie.
blue shade red; yellow shade red; red shade blue; green shade blue; green shade yellow; red shade
yellow; black; opaque white; translucent white/gloss extender; that can be used at any percent
(1-100%) to produce a range of hues, shades and tints.

Conclusion

Over the last ten years the impact, the evolution and the relationship with emerging digital
print technologies has been one of grappling with a hardware and software that, as yet, has not
achieved its true potential: the inkjet print is still evolving.
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A Generalized Approach of Color Morphology by Means of
Pareto-set Theory

Mario Képpen
Faculty of Artificial Intelligence Kyushu Institute of Technology, Fukuoka, Japan
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Katrin Franke
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There is no unique way to extend the concepts of gray-scale morphology to color images. Different
viewpoints have led so far to the proposal of a number of useful operations for the processing
of color images. Among these viewpoints we can find the linear weighted, or scalar, approaches,
where vc is mapped onto P by a scalar function that is monotone in each argument. Then,
standard gray-scale morphology can be applied to such transformed images IP. A typical choice
in the RGB color space is the sum of the R, G and B intensities. Then, the color dilation just
reads as selecting criteria the color value with the largest sum from each pixel’s neighborhood.

More refined concepts have been based on the use of fuzzy-fusion measures, including the
proposal of a color morphology that cannot effectively be reduced to a linear weighting approach.
However, most of these approaches are considering the extension to color morphology as an
extension of the selection criteria, instead of an extension to the handling of multiple intensities.

Thus, we were studying an intensity-based color morphology, with its main difference to
other color morphologies being the generation of a gray-scale image that cannot be the result of
a morphological operation on a grayscaled version of the color image itself.

The formal techniques for achieving this goal came from the field of multi-objective opti-
mization and its related concept of Pareto dominance. A consideration of the various Pareto-set-
based means and techniques that have been developed in the past for the study of (continuous)
multi-objective optimization problems lead to the formulation of a number of image-processing
operators. A simple example is the generation of a gray-scale image from a color image, where
each pixel’s gray-value represents the number of Pareto-dominating points in the neighborhood
of this pixel. Practically this comes out to be an edge operator.

In this talk the usage of Pareto sets for image-processing operators will be discussed in
detail, and some potential applications of this approach to color morphology will be shown.a
multi-variate channel-intensitiy vector
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Digital Camera RAW profiling

Jack Bingham and Derrick Brown
Integrated Color Corporation — Billerica, Massachusetts

Jo S. Kirkenger
JSK Consulting — Carlsbad, California

Introduction

Raw camera files are considered by many to be the digital equivalent of the unprocessed photo-
graphic negative. It does not offer the kind of exposure latitude we expect from negative film,
but in many other aspects it holds true.1 To yield a good visual image, the RAW file has to
be processed and rendered to an RGB color space, generally sRGB or Adobe RGB (1998), and
if you’ve ever experienced color mismatch between the printer and your monitor, or have been
confused by RAW file formats and ICC profiling and not getting the best results from your dig-
ital camera and printer, this paper will detail solutions to deal with Raw camera files and how
to properly profile the digital camera. With an understanding of how to manage photographic
color, you can solve these problems. When the camera produces images using the standard color
encodings it is performing a color rendering and when you then try to generate a profile for
this condition by photographing a target, you are actually profiling the rendering and the re-
sults will generally be sub-optimal, because the profile now will try to undo the color rendering
in the camera. This paper addresses the use of ICC profiles in workflows that start with Raw
camera images, including coordination of camera settings, RAW processing, and ICC color man-
agement. The new capabilities of ICC version 4 profiles will be discussed, including the use of
the re-defined perceptual rendering intent with output-referred, scene-referred, and raw camera
files. Rather than using default custom profiles to render the RAW data to match the scene
or create a pleasing reproduction of the scene on the printed paper, we will develop a process
and generate a single profile for the specific camera, putting an end to the myth that you need
multiple profiles for different imaging conditions such as daylight, shade, tungsten & fluorescent
adopted white.

Photographers know that the world we view is difficult to record on film, and just as difficult
with a digital camera. What if we could capture all the color and tone that we can see with our
eyes with our digital camera? No need for fill-flash or additional lighting. This is, of course, not
possible. A scene generally will have a huge dynamic range the tones from dark shadow to bright
highlight may be as much as 10,000:1. A corresponding print will only cover a dynamic range of
about 200:12, while a good display may give us as much as 1,000:1. So the digital camera will
“see” and record the world quite differently from how we see the world. The initial RAW data has
to be rendered in an attempt to match the scene as best as it can, or it can be rendered to create
a pleasing reproduction of the scene. There is big difference between the two, and the methods
and technology described in the paper will try to shed some light on these differences and the
use of ICC profiles to accomplish the desired results. Since we have to view the digital image on
something, we have to select a rendering for display or print. Films have always included built-in
contrast and colorfulness boosts with highlight compression, to make pictures look better.

If we refer to the measured scene color as the camera captured it, we deal with the Scene-
Referred image. But we need to view it either on a display or on a print, hence we need to make
the image look pleasing and produce the desired color appearance the photographer wishes to
express and reproduce and now we have rendered the image as Output-Referred. Most cameras,
particularly consumer type point-andshoot cameras perform this rendering automatically to an
image encoding of SRGB or Adobe RGB (1998). Advanced consumer cameras and professional
cameras usually have a selectable rendering, but in RAW mode this rendering becomes the job
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of the image creator, usually the photographer, and this is where we can get some help from a
custom ICC profile.

It should also be noted here that two sRGB encodings of the same scene from different
camera brands should match, but that is rarely the case. The match is no closer than two shots
of the same scene on two different types of film. However, using ICC profiles different cameras
can be made to reproduce the same scene in almost the same way.

Using RAW format gives us the opportunity to create custom profiles and working with at
least 12 bits per channel. Using a default RAW translator will still render and encode a default
profile such as sSRGB or Adobe RGB (1998), or other pre-set profile used as the Working Space
in Photoshop, such as ProPhoto (ROMM) RGB. It should be noted that sSRGB represents as
a reference medium a standard CRT display, while with ProPhoto the reference medium is the
ICC perceptual intent reference medium reflection print3. The Adobe RGB reference medium
is currently not clearly defined, but will most likely reference a viewing condition of about 160
to 200 lux at Daylight D65 white point, viewed in a dim surround. However, setting a custom
profile will give a much better rendering and keep all the colors and color differences that the
camera actually recorded.

Different profiling packages uses different targets, from the most photographed target of all
times, the MacBeth ColorChecker to the IT8/7-1 and IT8/7-2, mostly for use with scanners, to
custom targets tailored to the desired scene. It is also important that the target includes checks
for luminance uniformity as in the Digital ColorChecker and ColorEyes 20/20 targets. The
drawback with most targets is that they only represent a small portion of all the colors available
in the original scene, and in some cases would be restricted to specific colors in photographic
paper, hence possibly restricting the overall resulting gamut.

It has been general practice and demonstrated multiple times 4 5 that in a fixed environment
such as a photo studio or a copy stand for fine art reproduction the camera and imaging condition
lend itself perfectly to proper characterization and ICC profiling. It is when the camera is taken
out into the “Real World” where current thought is that multiple custom profiles are needed, or
just using standard color space profiles.

The perceptual intent of these true camera profiles should include color rendering to the ICC
perceptual intent reference medium and should be used for general photography, while custom
camera profiles will typically be specific to particular shooting conditions. The colorimetric
rendering intent is generally fixed to give the most accurate, though not necessarily most pleasing,
rendering of the scene, while the perceptual rendering intent can be manipulated and tweaked
to give the most pleasing, yet not necessarily accurate rendering of the scene. But with a profile
and the images captured under the same condition, the results will be consistent and good, and
very little further processing will be required, at least as color is concerned.

In this paper we will show examples and comparisons of various standard profiles compared
to both display and print profiles, as well as custom profile comparison to standard RGB profiles
and color spaces. This paper will not discuss the virtues of the different profiling packages and
targets, though this could be a worthy student project.

Process

Before we start with the profiling process it is critical to understand the sensitivity inherent
in the digital camera. A color variation from one light source to another of 50 points Kelvin is
very apparent. That means the following: Any influence reflected on the target other than one
main light is more than likely to alter the data. Two softboxes of slightly different ages will have
different color nylon diffusers. Two flashtubes of different ages will discolor differently, not to
mention any filtration dome over the tubes. On location any of the surroundings could reflect on
the target, degrading the data. Setting the target on a colored seamless background in studio will
reflect color up into the bottom of the target more than the top. This discussion about having
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to profile scenes is a direct result of trying to profile scenes. By doing this you automatically
introduce variables in the data that only exist in that scene, thereby being trapped into profiling
every unique scene.

The process that works to create a universal profile requires a different approach. In order to
get the most accurate data from the target we need to eliminate as many variables as possible.
Lighting is the most critical. Since there are too many variables with two lights, softboxes, strobe
tubes, power packs all of which can not be accurately tuned into a matched pair we should rule
that approach out from the start. Now it is possible using tungsten lights, dimmers and a color
meter that one could tune a pair of lights to be extremely close in color temperature. However
the likelihood of the average user not only having the tools to do this, but going to the trouble
is highly unlikely. So the only real alternative is one light. It then no longer matters what the
conditions of the diffuser, the tube or the cover are. This is shown in Figure 1.

Now of course we introduce a problem that two lights in a copy setup is designed to handle
with ease. The target now has more light on one side than the other. By carefully following the
diagram shown here one can gradually “cut” the light on the bright side of the target until the
left and right sides match. Note that the photographer accustomed to shooting copywork will
pull out the incident meter and use it to balance the light across the target. Since the digital
camera is sensitive well beyond the 1/10 stop range of a light meter this approach can not work.
However we have a much more accurate tool in our hands; measurements taken in Photoshop
can provide the necessary accuracy.

Once the target is even, and using the Coloreyes 20/20 target as an example, shown in
Figure 2, it provides four white corner patches from which to take measurements, as shown in
the figure. It is important to match the exposure of the target to the actual luminance values
within the target to avoid adding any exposure compensation into the profile. The white patches
on the ColorEyes target are between an L or 92 and 93, so by using Photoshop to measure the
corners and adjust exposure accordingly the data is closer to the original.

Finally, gray balance is critical. Like linearizing a printer before profiling, the camera must
be linearized to the lighting condition. Auto will not work here. Once the target parameters are
achieved, the process to build a profile is simple. Coloreyes introduces one extra variable here
that is critical. When building the final profile the user can choose between a profile that adjusts
lightness, chroma and hue or just chroma and hue. On the surface it would seem that we want
the most accurate profile we can build. In reality by allowing the profile to adjust lightness we
introduce another problem. Cameras do not produce data that represents a scene accurately.
They are actually tuned to adjust the contrast range to something we have come to like rather
than what would be an accurate rendering of the tonal range of the scene. So by allowing the
profiler to adjust tonal values we end up with two problems. First the profile adjusts tones that
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Figure 3: Custom Camera profile comparison.

it is inherently not designed to do. And the worst part is that the bulk of the adjustments take
place in darker values where noise is present. Raw converters are designed to handle shadow
detail and noise very well. Profiles are not. The second problem is that we generate a profile
that every user will complain about being too flat. The tonal values will indeed be more accurate
but that is not what the photographer really wants. The photographer wants a rendering of the
scene closer to what the camera is tuned to produce.

So why does this create a universal profile? Profiling scenes introduces variables in the target
that exist only in a particular scene. A profile made under these conditions will indeed be scene
specific. By eliminating as many variables as possible we have much more accurate data about
exactly what the camera can see. Now the final piece of the puzzle is making this profile work
under different lighting conditions. The big conflict about this seems to be the suggestion that
a camera behaves differently under different lighting conditions. While technically this might be
true, from a practical standpoint it is clearly not enough of an issue to prevent a camera profile
from working extremely well under varied conditions, and working better than Camera RAW
processing or default profiles.

Back to the point about printer linearization; when we change ink we can run a linearization
to update the profile. Gray balance is the same approach. By linearizing a camera to a given
lighting condition the profile becomes valid for that condition.

Figure 3 shows the custom camera profile gamut compared with an sRGB default camera
profile. The custom profile is shown as a wireframe. Note the significantly larger color gamut
the camera is able to produce, that would just be clipped if using sSRGB.

Example color pictures showing the differences between the best Camera RAW processing
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Figure 5: Custom profile, outdoor scene.

and a custom profile are shown in the following figures. In Figure 4 the yellow flowers are
saturated and blown out, while in Figure 5, each flower is clearly visible. Similar differences
can be seen in Figures 6 and 7, where the custom profile gives better fleshtone and a better
modulation of the overall lighting.

Conclusions

We have demonstrated that by treating the digital camera similarly to a scanner or printer by
performing a white balance linearization, a single camera profile will render the RAW information
to the most accurate as well as pleasing RGB data for presentation on a calibrated and profiled
computer display or a printer in an [CC workflow.
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Figure 6: RAW processing, person.

Figure 7: Custom profile, person.
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1. Introduction

In graphics and arts industry, colour is printed on transmissive materials like polyethylene, cel-
lophane, etc which are usually viewed by reflection. It is therefore, more practical to measure
reflectance against a backing material rather than transmittance. According to ISO 5 — 4 and
ISO 13655, when measuring a colour stimulus using reflection geometry the sample should be
backed by either a white or black backing material. For a highly transmissive (virtually trans-
parent) material when measured with a black backing material, it is difficult to obtain useful
measurement because of the show-through of the black backing. In this case it is convenient to
use a white backing with a reflection density which conform to ISO 13655 and ISO 5 — 4 specifi-
cations for a white backing material. However, at present there is a lack of materials which are
known to conform to these specifications and which are widely available.

The objectives of this project were as follows:

1. To make a recommendation of backing material to be used when measuring colour stimuli
printed on transmissive media with reflection mode geometry.

2. To develop a colour measurement procedure to make measurements relative to perfect
diffuser.

3. To define a procedure that supports sharing of measurement data between organisations.
4. To test the colour measurement procedure colorimetrically and psychophysically

5. To develop a model to predict CIE XYZ tri-stimulus values of a colour patch to be printed
on paper to match with the same colour patch printed on translucent substrate viewed by
reflection with a backing material.

2 Methods and results

2.1 Recommendation of white backing material

Three types of widely available paper materials were considered, along with PTFE reference tiles
of 10mm and 6mm thickness. All were checked for the conformance with the specifications for
a white backing material given in ISO/CD 13655:2006.and CGATS/STF N 045. Table 1 shows
the result.

It can be seen from Table 1 that none of the materials evaluated conform to all the require-
ments of ISO/CD 13655:2006. By using a double thickness the proofing papers meet the CGATS
opacity requirement, but none of the papers tested met the ISO/CD 13655:2006 requirement
regarding fluorescence. Hence there remains a need to either identify suitable materials for white
sample backing, or to develop procedures that will allow a wider range of materials to be used.
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Backing material CGATS | ISO 13655 | ISO Fluorescence | Diffuse
opacity | reflectance | 13655 reflectance
L* | C*

PTFE 10mm v v x v | v v
PTFE 6mm v v x v | v v
Proofing paper 1 x v v | x x v
(220gsm)

Proofing paper 2 x v v x x v
(240sgm)

Office paper (280gsm) v v v x x v
Proofing paper 1 double v v v x x v
thickness

Proofing paper 2 double v v v x x v
thickness

Table 1: Comparison of the backing materials for the conformation to CGATS and ISO 13655
specifications

2.2 Procedure that supports sharing of data between different organisations

For data to be exchanged between different organisations, measurements made using different
paper backing materials were made relative to reference backing material. The measurement
procedure is based on the concept that the measurement made on the candidate backing material
can be normalised to the reference backing material. Figure 1 shows the reflectance of two
colour patches measured with PTFE as reference backing material and with candidate backing
materials made relative to PTFE, and it can be seen that there is good agreement between the
PTFE-backed and normalised reflectance

2.3 Procedure to make measurements relative to perfect diffuser

Measurements made relative to a reference backing material were also normalised to a perfect
reflecting diffuser. The performance of this procedure was evaluated by comparing the reflectance
curves of the measurement of colour patches made on reference backing material made relative
to perfect diffuser and that measured on the candidate backing material made relative to perfect
diffuser. Figure 2 shows the comparison of the reflectance curves of two colour patches.

2.4 Testing the procedure colorimetrically and development of the model to
predict CIE XYZ tri-stimulus values

Halftone colour patches from two gravure prints on polyester of different opacities were selected
and measured using the reference and candidate backing material. The reflectance measurements
are made relative to a perfect diffuser by applying the procedure. Figure 3 shows the reflectance
curves of the measurement of the colour patches made with candidate backing material made
relative to a perfect diffuser and those made with reference backing material made relative to a
perfect diffuser.

The reflectance curves for the colour patches coincide reasonably well.

A model was developed to predict the CIE XYZ tristimulus values of a colour patch to be
printed on paper to match with the same colour patch printed on translucent substrates viewed
by reflection with the double-thickness Proofing Paper 2. A matching experiment was performed
to determine this relationship.

A greyscale printed on two polyester substrates and a paper substrate was measured using
the double-thickness Proofing Paper 2. The reflectance measurements made on the polyester
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Figure 3: Comparison of reflectance curves measured on PTFE backing made relative to perfect
diffuser and measured on other paper backing made relative to PTFE backing made relative to
perfect diffuser

substrates were made relative to perfect diffuser as described above, and CIE XYZ values were
calculated from these measurements. In the psychophysical experiment observers were asked to
match the greyscale patches printed on the two white-backed polyester substrates to greyscale
patches printed on the paper substrate, and the geometric mean of the visual matches was
calculated.

The data measured on both the translucent substrates was combined and a single model
equation was derived for both the substrates. Figure 4 shows the combined CIE Y tristimulus
data with a trend line and the model equation.

This model was evaluated psychophysically using a halftone print of 10 colour patches and
33 colour patches imaged on Ekatachrome transparency. A category judgment technique was
used for the experiment. Both the test prints were measured and corrected using the procedure
described above to make them relative to perfect diffuser. The matching CIE XYZ values were
predicted and printed on Kodak photo print 190 gsm glossy paper.

The reproductions were evaluated psychophysically by presenting these printed reproductions
together with the transmissive samples on a white backing in a category judgement experiment.
The results indicated that this model performed well for the halftone print and reasonably well
for the Kodak transparency print.

3. Conclusions

1. None of the paper materials evaluated met all the requirements of ISO/CD 13655:2006,

2. A measurement procedure was developed to make white-backed reflectance measurements
of transmissive media relative to a perfect diffuser. Proofing Paper 2 (used double thick-
ness) performed best when using this procedure. Many similar materials would be accept-
able for industrial use using this procedure.

3. A model was developed to match colours between prints made on white-backed transmis-
sive materials and opaque materials. This model gave a good performance.
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Certifying Monitor Proofing Systems
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Introduction

In the US, the main printing standard to be met by printers is SWOP (Standard for Web Offset
Publishing). Over the last decade ink-jet proofing systems have proliferated claiming to match
the presses at this printing standard through the use of ICC profiles, and over the last couple
of years color accurate soft proofing, also referred to as monitor proofing has made inroads into
the proofing market.

Printers always looked to the SWOP certifying body to help sort out all the proofing systems,
and through a process of visually judging prints, and measuring target patches, these proofing
systems became certified for SWOP printing. With the ability to embed ICC profiles for other
printing standards, or reference printing conditions, these ink-jet proofing systems could also be
used to simulate and match these conditions.

The proof is considered the prototype of the printed image and as such, is a predictor of the
many millions of copies that subsequently may be produced [1] it is critical that the proofing
system is a reliable and consistent predictor of the actual process. Initially this was very sub-
jective; a panel of observers compared reference press sheets to the proof sheet under controlled
lighting conditions, and when monitor proofing entered the market, the same conditions and
parameters applied here, though now the display itself was the canvas by the adoption of color
management system software and by the adoption of device independent color variables [2].

Integrated Color Solutions (ICS), Inc was the first company to take their Remote Director
software and an Apple Cinema display to SWOP and get it certified as a valid match between
the rendered image on the display and the corresponding SWOP reference press sheet. Other
companies followed suit as well. But the process was still very subjective, and two systems, both
certified and placed side by side, could show more variability and mis-match than what most
hard-copy proofing systems would.

At the 3rd Annual IPA Color Proofing RoundUP for 2005 [3] hardcopy systems proved very
consistent both visually and numerically and monitor proofing systems proved that they could
carry their own weight. Visual scores for monitor proofing were right in with the corresponding
visual scores for the hard copy systems, under the same evaluation procedures.

In 2006 at the Annual IPA Color Proofing RoundUP hard copy and soft copy proofing systems
were treated the same way, all participants were handed a printed characterization target, and
told to make a profile and match the press sheet numerically. Only the judges had access to the
visual part of the press sheet for final evaluation.

Though possible on some systems, the monitor proofing systems were not subjected to the
Delta-E test [4], for reasons I will discuss later.

However, since the monitor proofing systems are able to accurately display colors on screen,
this triggered a discussion to automate the process of certifying these systems for SWOP, or
other reference print condition by removing the subjective factor and using metrological data.

In theory at least, rendering a color on the display through a color managed workflow and
measuring that rendered color on a calibrated display should yield the same color within a very
small DeltaE. This paper will show that this holds true and how this process can be used to
certify displays to match a given printing condition.

In the initial phase of implementation, there will be a visual inspection prior to the metro-
logical evaluation, primarily to save time by weeding out systems that clearly don’t meet the
standards.
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Process

Since the spectral power distribution of the display is usually quite different from that of the
viewing booth it may be necessary to apply a color appearance model when displaying the
image on the computer. Even the white points, though both measured out to a correlated color
temperature of D50 may appear visually different without it. This is the reason why numerical
delta-E measurements were not applied at the 2006 IPA shootout. Different metrics and CAMs
to different viewing environments yielded different measurements off the display, and absolute
delta-E comparisons to the reference data were large.

In the monitor proofing environment, the CMYK data is converted to display RGB as follows:

CMYK — PCS — RGB

through the A2B1 tag in the CMYK profile. PCS is the Profile Connection Space, generally
L*a*b*. With the proper display calibration and profiling, this data can then be directly con-
verted through the B2A0 tag of the display profile to display RGB, and if measured with a
reference instrument the actual color L*a*b* can be recorded. This recorded L*a*b* value can
then be directly compared to the reference file that created the printing CMYK profile in the
first place and any errors are then calculated and reported.

This is really no different from an ink-jet proofing system displaying a simulation of the press
condition through the same A2B1 tag, but this time connecting with a CMYK output profile. The
SWOP organization has already started a numeric certification program for hardcopy proofing
systems, printing the simulated characterization target, and measuring the patches on this hard
copy.

It should be noted that for the display measurements all the values of L*a*b* are to be
calculated using the measured RGB white point of the display that is set by the monitor proofing
system, the correlated D50 rather than an absolute D50. Hence the white point of the display
should always measure L*a*b* = (100, 0, 0).

Even under these circumstances the most accurate reproduction of colors can only be achieved
with the best and most accurate color calibration and profiling. Rather than using the standard
gamma of 2.2 or 1.8 as calibration target, ICS Remote Director uses a linear L* calibration
gamma, mapping the display to a better match with the human visual system. F. Herbert,
J. Kirkenaer and J. Ladson pointed out through psychophysical experiments performed to de-
termine settings for accurate color reproduction on computer displays that by calibrating the
display to linear L* rather than a gamma of 2.2, a significantly higher correlation was found
comparing color patches in a viewing booth to the same colors presented on the computer dis-
play [5]. This experiment also demonstrated how important the viewing environment is, having
a neutral background both on the display and for the hardcopy [6] with the proper amount of
reference white shown in both cases.

Five (5) numeric criteria must be met in order for a system to be deemed to have passed
certification and to be labeled as “SWOP Certified.” [7]:

1. The difference between the characterization data set and the I'T8/7.4 target is an average
delta E94 < 2.0 for all patches

2. The difference between the characterization data set and the I'T8/7.4 target has a maximum
delta E94 < 6.0 for at least 95% of all patches.

3. Solid patches cyan, magenta, yellow, red green and blue on the IT/7.4 are delta E94 < 6.0
from the characterization data set.

4. Differences between the characterization data set and patches on the IT8/7.4 target has
white point of a delta L + 2.0, a delta a £+ 2.0 and a delta b & 2.0 (excluding florescence).
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Figure 2: SWOP Validation Results.

5. Difference between the 50/40/40 gray balance target and the characterization data set has
a delta E94 < 2.0

These criteria were selected on the basis of measurements of monitor proofing systems cur-
rently certified. These criteria also draw parallels to hard copy specifications. It should be noted
here that Cyan and sometimes green are problem colors for many displays and may in many
cases be outside the gamut of the display. However, gamut mapping technology correctly ap-
plied brings the out of gamut color to the gamut boundary of the display in such a manner as
to minimize any visual color difference.

In ICS Remote Director, for example, the results of calibrating the display and running
through the certification process will yield the message shown in Figure 1.

Clicking on “Show Details” will give the display shown in Figure 2, showing each individual
color of the IT8/7.4 target, and the actual delta-E for each color. Note that in this case, Cyan
still passed with an error of 5.56. The other “problem colors” can be seen to be other solid colors,
such as yellow and green, though well within specification limits.

If we were to compare the CMYK profile to the display profile, and map them in the same
three-dimensional color space, you might get the result shown in Figure 3. Here the gamut for
SWOP Coated Paper no. 3 is shown in the gamut of an older Apple Cinema Display, and in this
case certification did not pass, as shown in Figure 4, though it failed on white point calibration,
not solid colors as would be indicated in Figure 3, where the SWOP gamut exceeds the display
gamut in the Cyans and Greens.

The technology developed for SWOP certification can easily be extrapolated to work for
other printing standards or reference media, such as FOGRA or others. FOGRA has proposed
three standard printing conditions, FOGRA30L, FOGRA39L and FOGRA40L. Characterization
data for these conditions have been published and these can easily be used to generate reference
CMYK profiles and included in the ICS Remote Director application as shown in the Figure 5,
for selection and display certification.

Comparing the FOGRA30L profile to the Coated SWOP no. 3, the FOGRA profile gamut
is significantly smaller and fits well within the SWOP gamut, as shown in Figure 6. Hence,
certification using this FOGRA profile would pass if the system is already SWOP certified.
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Figure 3: SWOP and Apple Cinema Display (Ol1d).
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The profile itself is not perfect, and CMYK data transformed through the A2B1 table will not
always yield the perfect response that actually generated the profile, that is comparing the same
L*a*b* values as in the characterization data. We can run target CMYK values through the A2B1
tag, and compare the calculated L*a*b* value to the measured L*a*b* in the characterization
set. For the FOGRA30L dataset we get errors of

avg dE = 0.36, max dE = 0.71, stdev dE = 0.09

which are actually very good results, hence display measurements should be very reliable.

It should also be noted that for SWOP or for FOGRA there are multiple printing conditions
such as different paper types that all have to pass the certification process for the monitor
proofing system to pass the complete certification process.

Conclusions

We have shown that through proper calibration and characterization of the display, and with a
good source profile for soft proofing, accurate colors for the printing condition can be presented on
the display. Measurements of these colors can be used to certify the display, and this certification
process can be expanded to other standard or reference printing conditions.
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Abstract

We introduce an additivity based method to perform color characterization of LC display
devices. We focus here on the forward transform from the device RGB color space to XYZ
tristimulus values. Chromaticity constancy is an assumption in all chromaticity matrix based
characterization models, but in practice this assumption does not hold perfectly. The main
contribution of this work is to define a model where the chromaticity non-constancy is not
a source of error. Our method outperforms traditional approaches such as the PLCC and
GOG models without needed more measurements than those. The proposed approach could
be particularly useful for multi-display systems characterization as it is not time consuming
and gives precise enough results.

Keywords: LCD, Color characterization, Projection displays.

Introduction

Characterization of color display devices is an important part of a color management system.
The characterization of such a device defines the relationship between the device-dependent
color space, typically RGB, and a device-independent color space describing the perceived color,
typically XYZ which describes the color perception of the CIE standard observer. The forward
transform make us able to predict the color which will be displayed (XYZ) for a given set of
digital values input to the device (RGB) and the inverse (backward) transform will give us the
digital values to input in order to display the desired color. Our work focuses on finding a forward
model which is not subject to chromaticity non-constancy.

There exist a lot of methods to characterize color in a display device. Most part of them
can be found in the following articles [1, 2, 3]. We could make the distinction between two main
groups. The one which are performing 3D interpolation needs a lot of measurement and are
computationally complex. However, they don’t suppose any special device properties, i.e. the
device can be consider as a black box, and no physical rules are assumed. It could be useful for
example when you don’t have any/enough information about the technology used. The models
in the other group are trying to establish a mathematical model of the response of the device.
For example, linearizing the intensity response curve of the display, by a global function or
by interpolation, before applying a 3x3 chromaticity matrix to get the XYZ coordinates. This
group of models do not need a lot of measurements but are making the assumption that the
channels are independent and that the chromaticity of the primaries are constant. For instance,
the response curve could either be a gamma shaped curve (defined by an offset and a gain) or
a S shaped curve which could be defined by 4 parameters as in the S-Curve model [2].

In the case of a multi-display system or in the case of a projection device, we need an accurate
characterization model which doesn’t need a lot of measurement, as we could have to perform it
on several displays or at several positions of the same display to correct for spatial non-uniformity
[4]. Therefore the 3D LUT methods would be too heavy to be used in such a case, in spite of
a good precision [1]. As desktop projectors are seldom belonging to CRT technology, the GOG
model would not give good enough results. We would expect the classic PLCC [3] to give a good
compromise between number of measurements, celerity and precision. A source of error in such
a model is the non-chromaticity constancy of primaries (see fig.1.b and 2.b). One cause of this
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Figure 1: Projector 1. a : response curve for each channel and gray. b : chromaticity shift in xy diagram without
black correction. ¢ : Black corrected chromaticities.

is the influence of the chromaticity’ of the black offset which is mixed with the color, and have
more and more influence as the intensity decrease, i.e. the smaller the input value is, the more
the chromaticity is attracted by the black. One way to overcome this problem is to remove this
black offset before to perform the linearization and apply the matrix. It’s working well in the case
illustrated in fig.2.b and 2.c where the chromaticity shift keep almost on a line in the direction
of the black, i.e. the black level is almost the only cause of chromaticity shift. The PLCC model
then give correct results (see table 1). In other cases we can observe that this chromaticity shift
is taking the shape of a coma, i.e. the main part of the chromaticity non-constancy is not only
due to the black level, the technology itself play an important role (see fig.3.b and 3.c). An
explanation is given by Marcu in [5], the LC component properties change with the intensity,
so the spectra is modified with the intensity. Typically, in Marcu’s experiment, for the (0, 0, 0)
RGB input, the black is bluish because of the poor filtering power in the low wavelength. In such
a situation, the black correction is not at all efficient and the model give poor results (table 1).

The main idea of our work is to make this shift not a problem, supposing a perfect additivity
and channel independancy. Doing that, the error of the model will come only from the channel’s
non-independancy, and from the time and spatial non-uniformities. Obviously the interpolation
method used will have some influence as long as we want to limit the number of measurements.
In the following sections we present our approach and some results. Our conclusion gives a way
to perform the inverse model.

Model

The method itself is quiet simple as long as the additive mixture of color is the base of so-called
additive displays (as LC panels and projection devices). From the measurement of the XYZ
coordinates of a sampling of the digital ramp of each channel (i.e. N values regularly spaced on
the 256 possibilities for an 8 bits device), we will suppose the perfect additivity of the device.
Moreover, we keep on considering channels as independants. Note also that we perform the black
correction in the manner of PLCC.
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Figure 2: Projector 2. a : response curve for each channel and gray. b : chromaticity shift in xy diagram without
black correction. ¢ : Black corrected chromaticities.

Then a color XY Z, output from a RGB; input to the device would be expressed as
X, = Xr; + Xg; + Xb,
Yo=Yri+Yg+Y)
Zo=2ri+ Zg; + Zb;

Where Nn; is the value of the color from the channel n along the dimension of N for an input ;.

To generalize from the measurements to all the color space, we perform a 1D interpolation
along each channel R, G, B for each color component X, Y, Z (i.e. 3 x 3 1D interpolations).
Linear interpolation gives good results (see next section), and is already well implemented on a
classical color management system. Therefore it would be easy to use this model with existing
system and shift from a chromaticities matrix based model as PLCC to our approach without
loosing any time as the matrix computation is replaced by linear interpolation.

Results

We have tested this forward model on 2 LCD projectors, the Panasonic PT-AX100E refered
as projector 1, the 3M-X50, refered as projector 2. And on one LCD desktop panel, refered as
monitor. We have compared the results with classic PLCC, and GOG characterization models.
The interpolation method used were linear, cubic or spline performed with matLab. These results
are based on a 18 patches by ramp measurements, for each device (see fig.1-3.a). We have
calculated the AEY, for the forward model from a set of 100 random RGB patches, the mean,
the max and the standard deviation of these errors for each method are given in table 1.

We can obviously see that the PLCC without correction for black level gives so bad results.
Correcting for black level, results are better. As we have said in the introduction, if the black
correction is the main part of channel non-constancy, results are good. It is the case for projector
2 with a mean error of 1.78. In the other case, result are not efficient at all with 3.93. It’s quiet
strange to note that the PLCC with or without black correction give almost the same accuracy
for the monitor.

92



200 -

B = + -
150 - G e
T = .
w A00F| e Grey .
EJ
o
50+ et U SEEL
&.--0"". P S P
s 0 PUUPIPTET TIIT L SEET T TEE SE0r WRT EE UL LR i ! |
0 a0 1a0 150 200 2680 300
input RGE
1 1
= 04
- ]
]
1 % o 0.5 1
¥ ¥

Figure 3: Monitor. a : response curve for each channel and gray. b : chromaticity shift in xy diagram without
black correction. ¢ : Black corrected chromaticities.

Mean, Max | PLCOC PLCC GOG A dditive A dditive Additive model
and standard (black model (Linear | model (Hpline
deviation] of cotrected) initerpolatiod) [Cubic ititerpolatiogm)
HEa*h*  for interpolation)
100 random
patches
Projection 1 Ilean 6 .42 393 3.06 1.41 1.35 1.32

Ilax : 1906 828 1461 3.56 32 2.94

Stddev: 4.28 215 262 0.63 0.53 0.5
Projection 2 | Mean: 1519 1.78 2.36 0.54 0.53 0.3

Ilax : 5562 .96 11.41 1.64 1.54 1.61

Stddev: 1494 | 0.51 23 0.28 0.27 0.27
Ionitor Ilean : 4 66 4.88 6.89 .04 22 2.18

Ilax : 1208 9.36 45.54 4.55 520 538

Stddev 2.3 2.16 6.09 0.91 0.95 0.93

Table 1: Results

23




Projection 1 X T 2 Projection 2 X T 2 MMonitor X ¥ Z
White 115 128.6 155.4 Whits 9397 05 1335 White 188.1 1911 nee
(fall intensity) (hall intensity) (fall intensity)

R+G+B 11193 | 12312 | 13411 F+G+B 5481 10596 | 136.9 RHG+B 18759 | 19053 | 210.91
(full intensity) (full intensity) (full intenisity)

Difference 2.67 271 0.83 Lifference uEy IEH 1.41 Difference 0.27 0.0 .48
(3] ) (%)

Table 2: Additive properties of tested displays.

As expected, the GOG model doesn’t give so good results for these devices with a mean
error of 3.96 and 2.86 respectively for projector 1 and 2, and with a mean error of 6.89 for the
panel. Note that the settings of the monitor could be better adjusted to avoid the fact that the
green channel saturate, doing that the GOG would give quiet better results. But seeing that our
method give good result in such a case prove the robustness of the model.

With a linear interpolation, our additive model gives respectively 1.41, 0.54 and 2.04. We
have reduced the mean error of the PLCC almost by 3 in the worst case. With other interpolation
techniques results are quiet similar. The best results were obtained with Spline interpolation for
projection device which gives mean error of 1.32 and 1.53, and with linear interpolation for
monitor.

Maximum errors are quiet small too, around 1.6 for the projector 2, 3.2 for projector 1 and
5 for monitor.

Seeing at these results, we can see that our model overcome the classic PLCC and the GOG
model for the forward transform. We can notice as well that the influence of the interpolation
method is limited by the number of measurements on the ramp. With a smaller number of
measurements, the interpolation would have more influence on the results.

We can notice as well that the additivity properties of tested displays is, as expected, still
a source of errors. In Table 2 you can see the difference of additive quality of both projection
displays. We have presented these results as in [2]. We can see, coupling information from table
1 and 2 that our results are poor as the device’s quality for additivity decrease. However, the
additivity quality of the monitor (table 2) is shown really good, but results are not as good as
with projection devices. That mean that the channel interaction is big in this device.

Conclusion

We have defined a forward model for display characterization which is easy to implement as the
PLCC, with noticeable better results. This model would be usefull to characterize multi-display
systems and projectors, as it is easy to perform and doesn’t need a lot of measurements.

The inverse model would be a bit more complex as there is no analytical solution. It could
be performed by an optimization method to design a regular grid in XYZ, using the forward
model. Then it’s pretty easy to find an efficient algorithm to interpolate from this 3D LUT. Note
that no more measurements would be needed to develop the inverse model, so it’s possible to
overcome one drawback of 3D LUT model.

Moreover, this model would be of great interest for multi-primaries displays or spectral
approaches. This could be a part of our future works.
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Abstract

In this study, we propose a color mixing and color separation method for the pigments
painted on plastic surface based on Kubelka-Munk (KM) model. Eleven different pigments
with seven different concentrations have been used as training set.The amount of concen-
tration of each pigment in the mixture is estimated from the training set by using the
least-square pseudo-inverse calculation. The result depends on the number and type of pig-
ments selected for calculation. At most we can select all pigments. The combinations resulted
with negative concentrations or unusual high concentrations are discarded from the list of
candidate combination. The optimal pigment’s set and its concentrations are estimated by
minimizing the reflectance difference of given reflectance and predicted reflectance.

Keywords: Color prediction, Kubelka-Munk method, Saunderson correction, Reflectance,
Least-square pseudo-inverse calculation.

1. Introduction

Originally KM theory is a model of the light travelling in two directions in the materials [9].
The basic KM theory is admissible to the diffuse illumination of particular coating. The KM
theory is of great importance in many areas of applied research and has been used for the
optical properties of decorative and protective coatings, paints, paper, pigmented polymers,
fibers and wool, thermal insulation, biological systems, and in medical physics [12]. KM method
assumes a linear relationship between scattering coefficient S and the absorption coefficient
K, and this makes the computation process faster. Further improvement in this method was
achieved by Saunderson correction [7]. Saunderson correction converts the total reflection to the
body reflection on which the KM theory works. The revised KM theory [8] has been used for
ink, paper and dyed paper. Monte Carlo simulations, Expert systems or Neural networks and
Mie theory have been immerged as the alternative as well as collaborative method of KM model.
Independent component analysis (ICA) [2] may be used as the reflectance separation but further
research is required.

In this study, we have implemented single constant KM theory for the pigments located on
the plastic. Our method predicts the reflectance of mixture from the given set of pigments
with different concentration. In additions our method is capable of predicting the accurate
concentrations and reflectance of mixed pigments from the given reflectance of mixture. This
color separation method also uses the color mixing method as a sub-problem since the given
mixture is compared with predicted reflectance of mixture to minimize the reflectance difference.
There are different methods for evaluating these differences. CIE color difference equations (CIE
Lab, CIE LUV CIE9% etc), Spectral curve difference metrics (Root mean square error (RMS),
Goodness of Fit Coefficient (GFC)), Metamerism indices and Weighted rms metrics [5] can be
used to calculate color differences during minimizing reflectance process. In proposed method
CIE LAB error, Goodness of Fit Coefficient (GFC) and Mean square error (MSE) were computed
to calculate quantitative value of reflectance matching.

The reflectance of training sets and test sets were measured by spectrometer called AvaMouse
[1] with 45°/0° geometry under circular illumination. In total eleven different samples were used
as training sets. Seven different concentrations of each sample were prepared.
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Figure 1: Reflectance and K/S ratio of a sample pigment at different concentrations [0.2 0.5 1 2
4 6 10] gram in one litre of filling material.

2. Kubelka-Munk Theory

The key assumption in applying the KM theory is that the light within the pigment layer is com-
pletely diffuse and there can not be changed in refractive index in the samples boundaries [11].
The specular component is excluded by geometry measurement. Many modern spectrometers
are capable to measure reflectance factor without changing the refractive index in the samples
boundaries [4]. However if the available spectrometer can measure only total reflectance, the
measured reflectance should be corrected before applying to KM model by Saunderson correc-
tion [7] as shown in Eq.(1).

™ — K1

R =
A 1—K1—K2(1—’I“)\)

(1)

Where, 7 is the total reflectance which should be normalized between [0, 1] in each wavelength
A, K7 is the Fresnel reflection coefficient for the collimated light and K5 is the Fresenel reflection
coefficient for diffuse light striking the surface from inside. The value of K; is 0.04 for plastic
material since plastic has the refractive index of 1.5 [11]. The value of K, usually lies between
0.4 and 0.6 |7]. The optimized value of K5 should be calculated practically.

Once the internal reflectance is calculated by the KM mixing law, the total reflectance is com-
puted by reversing Eq.(1) as:

(1 - K1)(1 — K9)R)y

ES 1— KoR
— L)

(2)

For complete hiding [3], opaque materials [11]; the internal reflectance was estimated by KM
model using the ratio of absorption coefficient K, and scattering coefficient Sj.

mee(5), (3, 2(5),

The widely used K over S ratio is obtained reversing Eq.(3):

(5,258

Figure 1 illustrates the measured internal reflectance factor and its conversion to K over S value
from Eq.(4) for the known concentration of [0.2 0.5 1 2 4 6 10| gram in one liter filling material.
The scattering and absorption coefficients of mixture are described as the linear combination
of scattering and absorption coefficients of mixed pigment scaled by the concentration of the
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pigments as shown in Eq.(5). This method is well known as two constant KM model.
n
Z CiKy ;i
_ =l
< > A,miz

Zn: CiSxi
i1

The individual absorption and scattering coefficients required for Eq.(5) are calculated by using
the white set (setting scattering 1 in every wavelengths), masstone (100 % relative percentage
pigment) and tint (pigment mixed with white) [6]. In the case, the substrate has more scattering
properties than the coated pigment the Eq.(5) is reduced to more simple form called the single
constant KM model see Eq.(6). The ratio of K/S is used instead of calculating individual K and
S. In this paper we have used single constant KM model.

<§>Am - ;C <§>A (6)

(5)

| =

Where,
(%)Amm ratio of absorption and scattering of pigment mixture.
n number of pigments in mixture.
C; concentration of i pigment in mixture by weight of dry pigment.
(%)M ratio of absorption and scattering of i** pigment for unit concentration.

)

3. Color Mixing

Given a set of pigments with reflectance curve, we can get the reflectance curve for any specified
mixture of pigments by using Eqs.(3), (4) and (6). If the available spectrometer can measure only
the total reflectance, then Saunderson correction is also considered (see Eqgs.(1) and (2)). In our
experiment we have measured the reflectance by AvaMouse handheld reflection spectrometer
with annular measuring geometry with in range of 380 to 750 nm. The AvaMouse measures
touching coated surface and distance between camera and surface are shorter in comparison to
spectrophotometer measurement. So the measured reflectance is equal to body reflectance, as a
result Saunderson correction is not applied to the measurement by AvaMouse.

The unit k/s of each pigment is required to predict the specified mixture of pigments from the
set of pigments in training set with specified concentration. The Eq.(7) gives the method to
calculate unit k/s value of single colorant since the colorant is mixed with white pigments.

K

<ﬁ> _ (F),\,mz‘x - Cw (%))\,w

s Cy

(7)

Where,

C1  concentration of pigments.
Cw concentration of white pigments used as substrate.

Each colorant in the training set has seven different concentrations (see Figure 1). From these
seven different concentrations one representative unit k/s is calculated by using least-square
pseudo-inverse calculation. Figure 2 illustrates the unit k/s ratio and its normalized spectrum in
wavelength 650 nm. The normalized spectrums of unit k/s ratio of same pigment from different
concentrations should be almost the same for proper selection of a sample set. Figure 3 illustrates
the reflectance curves obtained by mixing three samples with the concentration of [0.5 0.7 3.0]
gram. The color of reflectance of samples and mixture is visualized in monitors by calculating
the tristimulus values X, Y and Z from reflectance and then converting them to device RGB
coordinate system by using linear transformation [11] [10].
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Figure 3: Three different colorants reconstructed with 0.5, 0.7 and 3.0 gram pigment concentra-

tion. The right image is the resultant reflectance computed mixing these three pigments.

4. Color Separation and Concentration Prediction

The concentration of the pigments can be estimated from Eq.(10) if the K/S value of mixture
and the unit k/s value of mixed pigments are known. The number of concentrations in mixture
is equal to number of pigments (n) mixed and that should be less than the number of wave-
lengths sampled to present the reflectance curve. So only the n number of wavelengths can be
selected to solve the n number of concentrations [11]. However choosing n number of different
wavelengths results the different concentrations, so for more stable result least-square pseudo-
inverse calculation is used to calculate concentration considering all visible range wavelengths
(see Egs.(8)-(10)). Similarly the unit k/s value of each pigments used in the mixture can be calcu-
lated by least-square pseudo-inverse methods if K/S value of the mixture and the concentration
of pigments used in mixture are known (see Eq.(12)). After knowing the concentration and unit
k/s value, the reflectance of the pigments is predicted by using Eqgs.(6) and (3) consecutively.
The Eq.(6) is represented in matrix form in Eq.(8) extending for all wavelengths.

(%)380,1%2‘3: o (%)380,W c
] 1

(%)380,1 o (f)sso,n

wl=

| (

C
)750,miz o (%)750,{/{/ i L (%)750,1 o (%)750,71 i "
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Where,

el [ (%)380,1 o (%)380,71 ] [ (%)380,77%'9@ B (%)380,W ]
c :
" (%)750,1 oo (5)750,n ] L (%)750,17”‘9; o (%)750,14/ i

Eq.(8) is represented as:
Y =XC (9)

The least-square pseudo-inverse calculation (see Eq.(10)) is used to find the concentration of
pigment. The number of pigments mixed (n ) should be less than number of wavelengths. So
alternatively by choosing the n number of different wavelengths, the problem can be solved.
Nevertheless the entire wavelength calculation gives more robust result.

C=(XX)"' XY (10)
Deriving X from Eq.(9)

X =(cc)'cy (11)
Considering a more complex case where we have only been given the reflectance of mixture
and our task is to estimate the concentration and the reflectance of the pigments used in the
mixture. The problem is solved by using the unit k/s values of each pigment of the training set.
The predicted concentrations and used unit k/s of each iteration are employed to estimate the

reflectance (see Eq.(6) and (3)). This process is repeated for all possible combinations. Eq.(12)
shows the total number of combinations to be computed.

(%) =o=am &

Where,

N number of pigments in training sets.
n  number of pigments used in mixture.

The unit k/s and predicted concentrations are chosen so that estimated reflectance using this
concentration and unit k/s has minimum differences with given reflectance of mixture. The
differences of the reflectance are calculated by using color difference of Lab color spaces [11] [10],
Goodness of fit coefficients and Mean square error [5]. The Computation step predicting optimal
concentrations used in the mixture is shown below.

1. Compute unit k/s ratio of each training set.
2. Convert reflectance of test set Ry, to K/S ratio using Eq.(4).

3. Choose n number of pigments in mixture.
.. N
Repeat step 4 to 8 for all combination n

4. Predict concentrations using Eq.(10) and store row wise in matrix concentration.

5. The negative concentrations and unexpected high concentrations are neglected.

60



Predicted Concentration

0 2

4 6
Real Concentration

Figure 4: Real concentration verses predicted concentration. Concentration is represented in
gram. The dotted line shows for the pigments and solid line is the average of all dotted lines.

6. Predict (K/S)p ratio of mixture using predicted concentrations and unit k/s ratio from
training set, see Eq.(6) or Eq.(8).

7. Determine reflectance Rp using (K/S)p, see Eq.(3).
8. Calculate difference AE between R, , and Rp and store AE in array error.

9. Order the matrix concentration according to array error sorted in ascending order for Lab
difference and MSE, and descending order for GFC.

The real concentration of pigments used in mixture and corresponding predicted concentrations
by our method is illustrated in Figure 4. The predicted concentrations of colorants can be
corrected by fitting the predicted concentration with real concentration by using interpolation
methods. However, in advance we should have the relation between real concentration and
predicted concentrations of each pigments of the training set.

5. Conclusion

The basic theory of KM method was discussed. The method to predict the reflectance of mixture
made from the pigments with arbitrary concentration was described. Computation process for
the concentration prediction and separated color prediction was described. Our future work will
consider more accurate color separation and concentration prediction from the given transparent
and translucent object by KM methods and revised KM methods [8] and independent component
analysis [2].
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with automatic face tracking
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Introduction

The analysis and synthesis for facial skin appearance play an important role in the filed of
cosmetology and entertainment. Figure 1 shows a skin analysis and synthesis system used in the
filed of cosmetology. The current condition of skin texture is measured as a high resolution image
in the lighting box. The measured image is analyzed by our skin color separation technique [1]
into melanin, hemoglobin and shading components. The skin melanin texture is controlled to
show the change of texture by aging. This system is used for the customer to show the necessity
of applying the cosmetics. However, the appearance of skin also changes drastically by changing
the distribution of illumination. The information from single image is not enough in analyzing
the change of skin appearance under various illuminations.

In this paper, we propose a video-based analysis for the facial skin appearance under var-
ious illuminations with an automatic face tracking technique. To analyze the change of skin
appearance under various illuminations, the face is illuminated from various positions of the
light sources, and the changes of facial appearance are recorded as video stream during this
measurement. The recorded video stream is analyzed to obtain BRDF at the point on the facial
skin. However, since the subject is not still during the measurement, measurement errors are
caused by the facial movement. The automatic facial tracking is necessary to compensate the
facial movement to perform the accurate BRDF measurement on the arbitrary facial point. Since
the conventional face tracking techniques [2, 3] can not be used for the face illuminated from
various positions of the light sources, we build a new face tracking technique which is robust to
the various shading on the face. The proposed tracking is the technique to track the facial move-
ment and arbitrary points on the facial skin by using two facial features that are less influenced
by the shading. Arbitrary points on the facial skin are tracked with their 3D coordinates and
the estimated facial movement. By using this technique, BRDF of the arbitrary facial point can
be measured from the video stream.

Video-based analysis for facial skin appearance

Figure 2 shows an overview of our video-based analysis for facial skin. The system consists of a
video camera and a movable light source. The subject sits in front of the video camera without
keeping his or her head still. Since the head of the subject is not kept still, the subject can feel
relaxed during the measurement. The face is illuminated from various positions by rotating the
light source around the subject. The changes of facial appearance are recorded as video stream. In
the recoded video stream, the influence of the facial movement is compensated with the tracking
for the facial movement and target facial points. The tracking result of the facial movement is
used to estimate the directions of incident light and the video camera after the facial movement.
The tracking results of target facial points are used to estimate the position of target facial
points after the facial movement. The compensated video stream is analyzed to obtain discrete
pixel values on measurement points under various illuminations. Continuous BRDF is calculated
by fitting the BRDF model[4] to discrete pixel values, the direction of incident light and the
direction to the video camera. The calculated BRDFs are used to reproduce the appearance of
the skin under various illuminations.
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Figure 2: The overview of the proposed video-based analysis.
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Robust face tracking technique under various illuminations

We propose a robust technique for the shading to track the facial movement and arbitrary target
points on the facial skin. This technique can track the parallel shift to x and y directions and
the rotation around the x axis and y axis. Figure 3 shows the flow of the proposed tracking
technique. In this flow, arbitrary target points are set at cheeks for the example in explanation.
The technique consists of four components: 1) lip and head tracking, 2) the estimation of the
facial movement, 3) the manually assignment of 3D coordinates, and 4) the tracking of target
facial points.

1) Lip and head tracking

Coordinates of the lip (z,y;) and the head center (z,,yp,) are tracked on every frame of the video
stream. Figure 4 shows the example of the tracking of the lip and the head center. A combining
mean shift and Kalman filter [5] is used to track (z;,v;) and (xp,yp). This is the technique to
track the arbitrary colored object in real-time. The coordinate of the lip (x;,y;) is tracked by
the red color object. The head is tracked by the skin color and the hair color object, and its
center (xp,yp) is used to the facial movement estimation. This head tracking is not affected by
the shading. Therefore, this estimation can be used under any illuminations if the lip is captured
in the image.

2) Estimation of the facial movement

In this processing, the parallel shift vector ¢ and the rotation angles 6, and ¢ are estimated by
using (z7,v;), (xn,yn), and the radius of the facial rotation. Figure 5 shows the overview of face
rotation angles estimation. 6 is the angle of the rotation around the y axis(azimuthal rotation),
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and ¢ is the angle of the rotation around the x axis(elevation rotation). The radius of the facial
rotation angle ¢ and ¢ is ry and 74 respectively. We will describe how 79 and r, are obtained
later. In the proposed technique, the head center is assumed as an origin of the facial rotation.
Therefore, # and ¢ are estimated as

o—sint (T gt (22 1)
To T¢

The parallel shift vector t is estimated as
t=[an —xy1,yna]" (2)
where (5,1, yn,1) is the coordinate of the head center in the first frame of the video stream

3) Manually assignment of 3D coordinates

The 3D coordinates of arbitrary target points and the radius of the facial rotation are obtained
manually by using
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front and side view facial images. Figure 6 shows the overview of obtaining the 3D coordinate
(X,Y,Z) and the radius of the facial rotation 79 and 74 . (X,Y, Z) is obtained to assign the
target position by the mouse click. It is obtained as

(X,Y,Z) = (g, — Th,f+Ya,f — Yh.f>Ta,s — Ths)s (3)

where (wh,f,yhj), (%h,s,Yn,s) is the coordinate of the tracked head center in the front and side
view facial image respectively, and (24 ¢, Ya,f) » (Za,s, Ya,s) is the coordinate of the assigned point
in the front and side view facial image respectively. Z is obtained to assign the target position
in the side view facial image since x coordinate can be considered as z coordinate in the side
view facial image. The matrix of 3D coordinates F' is obtained by iterating this assignment for
arbitrary times. It is shown as

X, i 2\
Xo Yo Zy
X, Y, Z,

where (X, Y, Zx), (k = 1,2,...,n) is the k-th assigned 3D coordinate and n is the number of
iteration. rg and r,hi are obtained as

g = T|,s — La,sy Ty = \/7“(3 + (yl,s - ya,s)Q’ (5)

where (2;,,%.5) is the coordinate of the tracked lip in the side view facial image. These are used
in Eq. (1).

4) Tracking of target facial points

Target points assigned in pre-processing are tracked by using F', 8, and ¢. Figure 7 shows the
overview of the tracking of target facial points. Each coordinate of F' is represented as a 3D
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Figure 8: The result of eyes and eyebrows tracking.

point in the face coordinate system. The head center is the origin of this coordinate system.
This coordinate system can rotate around the x axis and y axis. The target point tracking is
performed to rotate 3D points by using 6 and ¢, and project to the image plane. The rotation
matrix R which is used for the rotation is

cosf 0 sin ¢
R=1| 0 cos¢ —sinf]. (6)
0 0 1

The matrix of tracked 3D coordinates F’ is obtained as

, (R h
= (i 1) o
0f =007
Th
h={yn
0

The x and y coordinates of F’ are the coordinates of the tracked point in the image plane.
Figure 8 shows the result of eyes and eyebrows tracking. The green and blue rectangles show
the lip and the head position respectively. Cyan circles show the results of eyes and eyebrows
tracking. These points can be tracked in spite of various face movements.
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Experimental evaluation for the proposed tracking technique

In this section, the effect of the proposed tracking technique is evaluated by the experiment.
The geometry of this experiment is shown in Figure 9. A model of human face is used as the
subject of this experiment since it is easy and accurate to obtain the actual movement. The face
is illuminated by the light source with an azimuthal angle of 20°-80° and an elevation angle of
—15°-15°. In each illumination angle, the face is moved +5cm to horizontally(along the z axis)
and vertically(along the y axis) and rotated with an azimuthal angle of —80°-80° around the
center of the face model. These movements of the face under various illuminations are tracked
and estimated with the proposed tracking technique.

Table 1 shows the estimation error of the parallel shift by the proposed tracking technique
at three angles of the light source, and the average and maximum of the estimation error at all
angles of the light source. These results show that the estimation error of the parallel shift is
within lcm under various illuminations.

Table 2 shows the estimation error of the rotation by the proposed tracking technique at four
angles of the light source, and the average and maximum of the estimation error at all angles of
the light source. The cell with dash indicates that the tracking failed in Table 2. The average of
the estimation error is within 6°. The proposed technique fails to track the rotation of the face
under illuminations that the lip is covered with the shading. However, the proposed technique
can track the rotation angle of 0°-20° under the light source with an azimuthal angle of 80°. It
is thought that the proposed technique has enough accuracy for the subject tracking in BRDF
measurement system.

Experiment: Video-based BRDF measurement

In this section, we performed the experiment of the proposed video-based analysis technique.
This experiment measures BRDF of four facial points on the moving subject.

Figure 10 shows the geometry of this experiment. The subject of this experiment is the
model of human face. The face is illuminated by the light with an azimuthal angle of 0°-65°
and an elevation angle of 15°. BRDF is measured at four facial points, forehead, cheek, lip and
nose. In this experiment, BRDF is measured in three different conditions of the face movement.
One is the condition that the face is kept still. Measured BRDF in this condition is the ground
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Table 1: The estimation error of the parallel shift [cm].

Direction and distance of the parallel shift

Angle of the light source | Horizontally | Horizontally | Vertically | Vertically

{azimuth, elevation) 5cm -5em 5cm -5em
(20° 15" ) 1.00 0.50 1.00 0.25
(60" ,15" ) 0.10 0.73 0.30 0.70
(40" ,-15" ) 0.30 0.60 0.30 0.10

Average error at all
] L 0.40 0.46 0.47 0.23
illuminations

Maximum error at all 1.00 0.73 1.00 0.70

illuminations

Table 2: The estimation error of the rotating [degree].

Angle of the rotation
pr | v [ @ [ [
(20" 15 ) 0.5 1.60 6.30 5.30

(40" 15" ) 1.50 220 2.00 -
(80" ,15° ) 3.00 .00 - -

(80" ,15° ) 2.30 - - -
Avernge armar at al 1.43 290 5.10 530
""i'ﬁ:"::‘n;.’::" 3.00 6.00 7.00 5.30

70




o 15° X
Parallel shift : +3cm 80°
z
20°

o

] > B <
Y Face BRDF

™ tracking measurement

Video

camera ,
i VideG stream

Figure 10: Geometry of BRDF measurement experiment.

truth of this experiment. Another one is the condition that the face is not kept still and its
movement is not tracked. The last one is the condition that the face is not kept still and its
movement is tracked by the proposed facial tracking. The face is moved randomly from side
to side when the face is not kept still. The distance of the movement is up to 3cm. Figure 11
shows measured BRDFs. In the results of forehead, cheek and lip, BRDF with the face tracking
is highly consistent with the ground truth. However, in the result of nose, BRDF with the face
tracking is very different from the ground truth. It is thought that this difference is caused by
the shading on the nose.

Application: moles and acnes removal simulation

As the application of our video-based analysis system, we performed moles and acnes removal
simulation. The removal simulation can be performed by controlling skin color of moles and
acnes. Positions of moles and acnes on the facial skin are tracked by the proposed tracking
method. The skin color control[1] is performed to pixels in the small region around the target
point. Figure 12(a) shows the removal simulation of moles, and (b) shows the removal simulation
of acnes. Moles and acnes look like skin-like color parts.

Conclusion and Discussion

This paper proposed a video-based analysis for the appearance on the facial skin with an auto-
matic face tracking technique. The facial movement can be tracked robustly against the shading
by using the lip and the head center that are less influenced by the shading. The videobased
analysis system could measure the BRDF of the moving face. In addition to the BRDF measure-
ment, we performed moles and acnes removal simulation as the application of our video-based
analysis system.

For further study, we must improve the tracking technique to track parallel shift along the z
axis and roll rotation. It is thought that every movements of the face can be tracked accurately
by using accurate 3D face model. Therefore, we are planning to reconstruct 3D face model and
use to track.
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(b) Acnes removal

Figure 12: Removal simulation of moles and acnes.
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Abstract

In this paper, we deal with the problem of spectral reflectance functions estimation in
the context of multispectral imaging systems. We work out in the linear model and we
propose a novel method based on the use of spline wavelets as basis functions. We compare
this method to Fourier and PCA basis. The results are evaluated with the commonly used
goodness-of-fit, coefficient (GFC) and prove the reliability of the use of wavelets.

Introduction

Conventional color imaging defines each pixel with 3 variables such as red, green and blue, which
are necessary and sufficient to characterize any color. This principle has several limitations. First,
in a color image acquisition process, the scene is acquired using a given illuminant. Thus, it is
impossible to estimate the scene color accurately under another illuminant. Moreover, two color
samples can match under one illuminant and appear completely different under another one.
This phenomenon is called metamerism. Multispectral imaging systems remedy these problems
by increasing the number of acquisition channels. In doing so, multispectral imaging provides
the advantage of high spectral resolution over classical color imaging systems and the advantage
of high spatial resolution over spectrophotometers. Furthermore, with such systems, scene sur-
face reflectance recovery from the camera output becomes easier but not trivial. Thus, finding
appropriate mathematical methods to estimate the spectral reflectance from the camera output
is a crucial task and of great importance.

Problem formulation

The generally used spectral model of the acquisition chain in a multispectral system is illustrated
in Figure 1, where I()\) is the spectral radiance of the illuminant, r(\) is the spectral reflectance
of the surface, o(\) is the spectral transmittance of the optical system, ¢;(\) is the spectral
transmittance related to the kth filter, ¢(\) is the spectral sensitivity of the camera, and 7
represents the spectral noise for the k-th channel, kK =1... K.

The camera output dg, related to the channel k£ for a single pixel of the image, is given by

Q
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Figure 1: Synopsis of the spectral model of the acquisition process in a multispectral system.
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If the noise is assumed removed by preprocessing [1], and assuming a linear opto-electronic
transfer function, we can replace I(\), ¢()), o(A) and ¢x(X) by the spectral sensitivity Si(\) of
the kth channel. Then, the Equation (1) becomes:
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Amin
By regularly sampling the spectral range to N wavelengths, Equation (2) can be written in
matrix notations as follows:

di = ST(\)r(N), (3)

where Sp()\) = [sk(A1)sk(A2) ... sp(An)]T is the vector containing the spectral sensitivity of the
acquisition system related to the k-th channel, r(A) = [r(A1)r(A2)...r(Ay)]T is the vector of
the sampled spectral reflectances of the scene, and T is the transpose operator. Considering the
system with all channels, Equation (3 can be written as:

d=STr (4)

where d is the vector containing all dj camera outputs and S = [s1s3. ..sK]T is the matrix
containing the channels spectral sensitivities Si. The final goal is to recover r(\) from the
camera output according to Equation (4). This is obtained by finding an operator @ that solves
for the following equation:

r=Qd. (5)
Depending on how the operator S is determined, two paradigms of spectral reflectance esti-
mation exist [2].

e If S is obtained by a direct physical system characterization, @) is the pseudo-inverse of S.

e If S is obtained indirectly by matching a set of M color patches (for which we know the
theoretical reflectances) and we capture an image of these patches with the multispectral
camera, we have then a set of corresponding pairs (d,, ), for m = 1,..., M, where d,, is
a vector of dimension K containing the camera responses and r,, is a vector of dimension
N representing the spectral reflectance of the m-th patch. The reflectances r,, are gathered
in the matrix R and the camera outputs for the M patches are gathered in the matrix
D. The operator @ is straightforwardly obtained by calculation of this matching. Any
optimization method can fulfill this aim (neural networks, Least squares...). Thus, the
operator () is obtained like:

R=Q@D (6)

involving then the inversion

Q=RD. (7)

A third paradigm for spectral reflectance estimation consists of direct interpolation of the camera
outputs di. Then, no knowledge about operator S is required. Nevertheless, rigorous conditions
about filters’ shape, as well as well calibrated and normalized data is required for this kind of
reconstruction. The reconstruction is performed by any interpolation operator (spline, etc.)

The final goal is to estimate spectral reflectance functions r from camera outputs d. To
do so, several methods belonging to the two first paradigms exist in literature. Some classical
approaches use the pseudo-inverse calculus and the least squares. The main drawback of these
methods is instability of solutions due to the noise amplification. That is why some other methods
add some constraints on the reflectance functions to be in the range [01] or seek to maximize
the smoothness of the estimated result.
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Reflectance estimation in the linear model

Utilization of a linear model to estimate reflectance from camera response seems to be trivial
since we supposed a linear opto-electronic transfer function enabling us the matrix notation in
Equations (4, 5). Moreover, the linear model offers an alternative to imposing smoothness on
reflectance functions [3]. This is expressed by assuming that r(\) can be approximated by a
linear combination of a small number of basis functions [4]. Thus, a set of basis functions B;
(j=1...M)) are defined such that each reflectance r; could be written as:

ri = Bjai,j, (8)

where a; ; is the weight of the jth basis function related to the ith sample. The basis functions are
themselves functions of wavelength but free of constraints such as being positive or constrained
to be limited to the range [01]. Their number M is chosen to conserve maximum of energy.
Equation (4) can be written as:

d = ST Ba, (9)

where the columns of the N x M matrix B contain the M basis functions of a linear model of
reflectance spectra and the M x 1 matrix a holds the weights that define the particular spectrum
that we are trying to reconstruct. When gathering S and B in a unique operator, the latter is
a square matrix that could be easily inverted. We can rewrite Equation (9 as:

a=(STB) 4, (10)
which allows us to compute a. Afterwards we can easily estimate r by simple multiplication:
r = Ba. (11)

In this context, methods belonging to the second paradigm use techniques of decomposition,
although implicitly. We can cite the method proposed [5] which takes advantage of the a pri-
ori knowledge about the spectral reflectances that are to be imaged (pigments reflectance for
paintings reflectance reconstruction). Methods based on linear neural networks are also methods
taking benefits from basis decomposition [6]. In our paper we will achieve the decomposition
task by experimenting with three basis functions: PCA, Fourier and Wavelets analysis.

Experiments and results

In this section, we describe three experiments to evaluate the spectral reflectance estimation
performance for the three methods: PCA, Fourier and wavelets analysis. The data we used are
sampled at 10 nm intervals in the range [400, 700] yielding for each spectrum r(\) to a vector of
31 values.

The aim of this experiment is to derive a small number of basis functions from a set of
spectra using the three methods. Then, we try to reconstruct all the set using only the basis we
computed. To do this we used a set of 404 natural spectra. We performed decomposition using
the three methods. We found that 95% of energy is hold by the six greatest vectors. Furthermore,
for practical reasons that involve the number of Fourier and wavelets basis to be multiple of two,
we chose to keep the eight first basis functions. The wavelets we used in this paper are based on
the spline family.

Reconstruction of training set

After deriving the basis functions for the “training” set, we try to reconstruct all the spectra in
this set using these basis functions and the coefficients matrix a (Equation (10). The Figure 2
shows the results for the three methods in terms of visual comparison of reconstructed curves:
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Figure 2: Samples of reconstructed spectra from the training set using: a. PCA eight basis
functions, b. Fourier eight basis functions, ¢. Wavelets eight basis functions.

Table 1: Results, in terms of GFC, of the reconstruction of the training set for the three methods.

Method GFC
Mean | median STD Min
PCA 0.9997 | 0.9999 | 5.1903-10* | 0.9953
Fourier | 0.9841 | 0.9905 0.0170 0.8799
Wavelets | 0.9952 | 0.9978 0.0053 0.9655

We also evaluate the reflectance estimation in terms of an objective metric. For this purpose,
we used the non centered correlation coefficient, largely used and known in the community as
Goodness of Fit Coefficient (GFC) expressed by the formula:

|52, B ) B (V)]

(1 Ru02]) ™ (|2 B02))

where R, ();) is the value measured by the spectrophotometer in the wavelength A;, and R, (}\;)
represents the reconstructed value related to the same wavelength. Table 1 gives the full results
for the 404 spectra in terms of mean, median, standard deviation and the minimal value of GFC.

Generalization performance

From the previous results, we retain PCA and Wavelets to test them in the task of generalization.
That means we extract a PCA and wavelets basis functions from a set that we call training set
and try to estimate reflectance from another set. In our case, we used Macbeth DC as a training
set and Macbeth Color checker as reconstruction target. Figure 3 depicts some samples of the
performed reconstruction allowing for visual comparison of the reconstructed curves. We also
evaluate the generalization capabilities of these two methods in terms of GFC. Table 2 gives the
results.
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Table 2: Results, in terms of GFC, of the generalization capabilities for the methods using PCA
and wavelets basis functions

Method GFC

Mean | median | STD Min
PCA 0.9971 | 0.9990 | 0.0048 | 0.9820

Wavelets | 0.9980 | 0.9986 | 0.0021 | 0.9922
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Figure 3: Results of generalization test for: a. PCA basis functions and b. Wavelets basis function.

Estimation from multispectral image

The main objective in multispectral imaging is to be able to reconstruct full spectral reflectance
curves r(\) from a small number of channels K contained in the vector di. That is why we
perform this third experiment. We used two multispectral images of the Macbeth DC composed
of eight channels representing captured each 40 nm in the range [400, 700]. The difference between
the two images is the shape of the filters. The first image is issued from narrow-band filters,
while the second image is issued from large-band filters (FWHM of 40nm). Then, in order to
recover the full spectrum for each patch, we used the previously computed basis in the case of
the wavelets but we computed a new basis for the PCA method. Figure 4 shows results for this
experiment in terms of visual comparison of curves.

Table 3 gives the results for this experiment in terms of GFC when using a multispectral
image issued from narrow band filters.

The Table 4 gives the results for this experiment in terms of GFC when using a multispectral
image issued from large band filters.

Table 3: Results, in terms of GFC, for the reflectance estimation from camera outputs in the

case of multispectral image from narrow-band filters.
Method GFC

Mean | median | STD Min
PCA 0.8841 | 0.9605 | 0.1898 | 0.2847
Wavelets | 0.9948 | 0.9972 | 0.0064 | 0.9710
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Figure 4: Results of reflectance estimation from: a. narrow-band multispectral image using PCA,
b. narrow-band multispectral image using wavelets, c. large-band multispectral image using PCA,
and d. large-band multispectral image using wavelets

Table 4: Results for the reflectance estimation from camera outputs in the case of multispectral

image from large-band filters.

Method GFC

Mean | median | STD Min
PCA 0.9970 | 0.9993 | 0.0081 | 0.9604

Wavelets | 0.9948 | 0.9971 | 0.0071 | 0.9665
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Discussion

Looking to the results of the first experiment, one can remark that Fourier basis presents the
worst performances and presents some artifacts on the boundaries as depicted in Figure 2b (en-
circled area); this even we replicate periodically the reflectance samples. The wavelets remedy
to this problem thanks to multiresolution analysis and presents therefore good results in terms
of GFC and visual comparison. But, the PCA presents the greatest scores for the task of recon-
structing samples from the training set. It is natural since PCA derive Smooth basis for smooth
data set. For the generalization task, the wavelets basis functions performs better and get the
best scores in term of GFC and curves visual comparison even the training set and test set are
statistically similar (Macbeth DC and Macbeth CC). We notice that we could use the basis
functions derived from the first experiments in the case of wavelets. Wavelets basis are indepen-
dent from training. The only hypothesis is that the curves are smooth. The third experiment
shows again the best performance of the wavelets in the task of estimating reflectances from
multispectral output system. In the case of multispectral image issued from narrow-band filters,
scores for the wavelets are largely superior. That means that PCA is not adapted to reconstruc-
tion for this kind of images. In the case of multispectral image issued from large-band filters,
the two methods presents quite similar results. The mean and median are superior for PCA but
the standard deviation and the min are superior for Wavelets. That expresses the stability in
the results of wavelets.

Conclusion

In this paper, we introduced a new method for spectral reflectance reconstruction using wavelets
basis functions. We tested this method in three cases: reconstruction of the training set, gener-
alization and the reconstruction of reflectance from multispectral imaging system. We compare
this method to two other methods belonging to the same paradigm: Fourier and PCA. We eval-
uate the results in terms of GFC and reflectance curves comparison. The proposed method show
good and stable performance in all experiments. The future work will concern designing and
testing other types of wavelength more adapted to smooth reflectances.
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Abstract

In this paper we are comparing spectral color reproduction versus color reproduction.
We perform three colorant separations based on the inversion of the spectral Neugebauer
model: one minimizing a spectral difference for the spectral print, a second minimizing a
colorimetric difference for the colorimetric print and a third one minimizing a weighted
summation of both colorimetric and spectral difference. A multi-colorant printer is used for
our experiments and the prints simulated with the spectral Neugebauer model.

Keywords: spectral color reproduction, spectral printer model, multi-colorant printing,
spectral colorant separation.

1. Introduction

With a color reproduction system it is possible to make a color acquisition of a scene or object
under a given illuminant and to print a color reproduction of it. With proper calibration and
characterization of the devices involved, and disregarding the problems related to color gamut
limitations, it is theoretically possible to produce a color reproduction which will appear iden-
tically to the original. For example a painting and its color reproduction put side by side will
appear identical under the illuminant used for its color acquisition even if the spectral prop-
erties of the painting pigments are different from the print inks. This phenomenon is called
metamerism. On the other hand, if the illumination changes, the reproduction will generally
no longer be perceived as equal to the original. This problem can be solved in a spectral color
reproduction system.

Multispectral color imaging offers the great advantage to provide the full spectral color
information of a surface. While a color acquisition system records the color of a surface under
a given illuminant, a multispectral acquisition system can record the spectral reflectance of a
surface and allows us to simulate the color of under any illuminant. In an ideal case, after saving a
spectral image we would like to display or to print it, from that point we have two options: either
to calculate the color rendering of our spectral image for a given illuminant and to display /print
it, or to reproduce the spectral image. This is a challenging task when for example we have made
the spectral acquisition of a 2 century old painting and the colorants used at that time are not
available anymore or we have lost the technical knowledge to produce them.

The introduction of multi-colorant printer in color printing, for a primary goal of increas-
ing printer color gamut has offered new possibilities in spectral color reproduction. The first
works with a spectral use of multi-colorant printer were focused on colorant selection [1, 2, 3|
and spectral printer modeling [4, 5]. Then spectral color reproduction of spectral image was
introduced [6, 7, 8]. A complete workflow for spectral color reproduction is existing and research
works are converging toward linking acquisition and reproduction of spectral image [9, 10] based
on the model of a color reproduction workflow.

Multi-colorant printer offers the possibility to print the same color by various colorant com-
binations, i.e. metameric print is possible. This is an advantage for colorant separation [11, 12],
it allows for example to select colorant combination minimizing colorant coverage or to optimize
the separation for a given illuminant. In spectral colorant separation we are aiming to reduce
the spectral difference between a spectral target and its reproduction, i.e. we want to reduce the
metamerism. This task is performed by inverting the spectral printer model.
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The spectral Neugebauer model and the Yules-Nilsen spectral modified Neugebauer model
(YNSN) are commonly use for spectral printer characterization [13]. As in color reproduction
such system needs to be characterized and spectral printer characterization has been used already
for color reproduction since it provided more accurate information [5].

2. Spectral versus colorimetric printing

In this paper we want to asses the difference between a multi-spectral print and a colorimetric
print. The choice of colorimetric versus spectral printing is made during the colorant separation
process. Colorant separation (i.e. inversion of the spectral printer model) is performed by opti-
mization technique ending by minimizing a cost function. When a spectral print is desired the
colorant separation is performed such that the difference between the spectral target and the
estimated print is minimized for the spectral root mean square (SRMS) difference. For a colori-
metric print we will calculate a AEY, difference between the spectral target and the estimated
print.

Gamut mapping plays an important role in color reproduction: printer gamut and image
gamut may be partially different. Gamut mapping transformation will map image data to the
printer gamut in order to keep most of the information [14]. Gamut mapping becomes more
complicated for spectral data [15], due to the dimension of the problem it is likely impossible
to apply directly color gamut mapping techniques to spectral data. But with the use of an
inverse printer model and optimization it is possible to map spectral reflectance to the spectral
printer gamut. The spectral printer gamut is defined by the spectral reflectance of the available
colorants and all the combination between them, i.e. the Neugebauer primaries (NP) of the
printer. According to the Neugebauer printer model the spectral reflectance of a printed colorant
combination is the weighted summation of the NP where the weights are the area covered by the
NP. It is a convex optimization problem to solve since the summation of the weights is equal to
1. So by inverting the spectral Neugebauer model for the weights we obtain an estimation of the
closest printable spectral reflectance according to the desired spectral target and colorants [16].

3. Experiment and results

We use in our experiment the Esser testchart made of 283 spectral patches. Colorimetric and
spectral prints are simulated for the original testchart and its gamut mapped version with
the technique described above, see in Fig. 1 (a) the gamut mapped Esser testchart spectral re-
flectances. The colorant separations are run for a simulated seven colorants printer, see Fig. 1 (b)
for the NP spectral reflectances of the printer.

Performance of the colorant separation processes are shown in Table 1 for the original
testchart and Table 2 for the gamut mapped testchart. In both experiment the colorimetric
print is performed for AE”, under illuminant D50. Differences between target and print are
calculated in CIEL*a*b* space for illuminant A, D50, D65, F11 and sRMS.

A third method is experimented to perform the colorant separation involving both sRMS
and AE”, in the cost function. Our metric is then a weighted summation of these two metrics
and the difference to be minimized is defined by:

d=(1-a)xAE; + a x sRMS (1)

where o« = 0 is equivalent to colorimetric print and a = 1 equivalent to spectral print. SRMS has
been scaled for this method such that both metric vary in the same range of value. In Fig. 2 (a)
are displayed colorimetric differences and in Fig. 2 (b) spectral differences versus «. Extreme
values in the graphs are corresponding to those displayed in Tab. 2.

We observe an interesting result, from o = 0 to a = 0.25 the sSRMS metric is decreasing
faster than the increasement of the colorimetric metric AEY,. Small o values corresponds to
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bigger weigth put on the colorimetric difference in the colorant separation. This method seems
to reach an area where the AE”, is stable and sSRMS is decreasing. It describes colorant values
which both minimizes colorimetric and spectral difference.

4. Conclusion

Both method end up with large error when colorant separation is performed on the original
data. But the spectral print produce smaller error in term of spectral difference than for the
colorimetric print and colorimetric print produce smaller colorimetric difference with a minimum
peak for the illuminant D50 chosen during the colorant separation, see Tab. 1 and Tab. 2.

After spectral gamut mapping both method provide closer prints with the new gamut mapped
testchart. We can see that the spectral print is still better than the colorimetric print in term
of spectral difference. But all colorimetric differences are reduced for the colorimetric print and
are minimum again for the illuminant used in the colorant separation. The colorant separation
including a minimization of a metric based on both colorimetric and spectral confirms that more
weight put on the colorimetric difference or on the spectral difference improves one or the other
difference respectively and still a better spectral difference does not provide better colorimetric
differences. But it also reveals an area corresponding to small « value where both colorimetric
and spectral metrics are decreased.

A spectral print tends to reduce metamerism (smaller variations between the colorimetric
differences comparing to those obtain for colorimetric print) but other targets and set of colorant
should be tested for the colorant separation process. Also the use of the inverse YNSN should
provide better results since it improves the spectral Neugebauer model.
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Table 1: Differences between the colorimetric and spectral print for the original Esser testchart.

AL,
method A D65 D50 F11 | sRMS
Av. | 13.32 15.57 14.99 15.73 | 0.047
spectral  Std | 11.92 13.34 12.74 12.44 | 0.035
Max | 65.37 70.16 68.86 69.90 | 0.180
Av. | 943 9.03 872 10.09 | 0.073
D50 Std | 9.89 9.75 9.96 9.35 | 0.048
Max | 52.39 45.85 44.45 42.39 | 0.255

Table 2: Differences between the colorimetric and spectral print for the gamut mapped Esser
testchart. The first three line show the differences between the original testchart and the gamut
mapped testchart.

AT,
method A D65 D50  F11 | sRMS
spectral  Av. | 12.01 13.87 13.40 14.13 | 0.044
gamut Std | 11.33 1236 11.87 11.86 | 0.035
mapping Max | 59.98 63.98 60.33 61.23 | 0.180
Av. | 166 183 1.78 1.90 | 0.005
spectral ~ Std | 2.73 262 2.65 2.95 | 0.005
Max | 14.38 13.40 13.77 16.42 | 0.026
Av. | 148 112 099 1.40 | 0.013
D50 Std | 236 191 212 230 | 0.012
Max | 14.84 11.87 12.81 13.01 | 0.089
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Spectral gamut mapped Esser testchart NG spectral reflectances
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Figure 1: Spectral reflectance of the Esser teschart after spectral gamut mapping in (a). The 128
Neugebauer primaries spectral reflectances used for gamut mapping and simulating the spectral
and colorimetric prints in (b).
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Figure 2: Evolution of the difference between the original target (here the gamut mapped Esser
testchart) and the its estimation after colorant separation function of « factor. AEY, in (a) and
sRMS in (b).
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