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Prefa
eFor the fourth time Gjøvik University College and The Norwegian Color Resear
h Laboratoryorganises an international symposium on 
olour imaging. Gjøvik Color Imaging Symposium 2007takes pla
e June 14&15, 2007, at Gjøvik University College in Gjøvik, Norway.In these pro
eedings you will �nd short abstra
ts of the invited and keynote presentations,as well as extended abstra
t for the submitted 
ontributions. For more information about the
onferen
e, please refer to http://www.
olorlab.no/.Gjøvik, June 2007Prof. Jon Y. Hardeberg, Conferen
e Chair
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Spatial Color VisionA. RizziDip. di Te
nologie dell'Informazione, Università degli Studi di Milano, rizzi�dti.unimi.itJ. J. M
CannM
Cann Imaging, m

anns�tia
.netHuman vision has remarkable image pro
essing power. It 
aptures information over a very widedynami
 range of light intensities and spe
tral distributions. Unlike �lms and ele
troni
 sensors,visual appearan
es are nearly 
onstant, despite widely variable input stimuli. Computer algo-rithms mimi
 vision by responding to the image 
ontent, as well as to the radiometri
 propertiesof individual pixels. The spatial analysis of images is the basis of appearan
e 
onstan
y, withboth 
hanges in spe
tral 
ontent and the level of light.Today, there is a growing family of algorithms that treat/modify/enhan
e 
olor informationin its visual 
ontext, also known as Spatial Color methods (e.g. Retinex [1℄, ACE [2℄, or RSR [3℄).These models are responsive to image 
ontent as well as to pixel statisti
s. They produ
e resultsthat, due to a 
hanging spatial 
on�guration, 
an have a non-unique relationship with thephysi
al input. For this reason, they 
annot be des
ribed using 
onvolution �lters and sin
etheir behavior 
hanges a

ording to the image 
ontent, their impulsive response is not �xed.They all share the idea of re
omputing 
olor of ea
h pixel through the spatial distributionof values in the image, but a lot of di�eren
es arise a

ording to their purpose. From this pointof view, Spatial Color Algorithms (SCA) 
an be led by mainly three di�erent goals:
• A

urately model the human vision system (HVS) predi
ting 
olor appearan
e, [SCA-HVSModel℄
• Aim to enhan
e images in the dire
tion of human visual appearan
e, [SCA-Rendering℄
• Attempt to 
al
ulate the a
tual re�e
tan
e of an obje
t from the radian
e (re�e
tan
e ×illumination). [SCA-Re�e
tan
e℄Sin
e SCAs 
an have three distin
t goals, three di�erent kind of out
omes are expe
ted, andthree di�erent measures of performan
e are required.Judging these models' performan
e is a 
hallenging task and is still an open problem. Twomain variables a�e
t the �nal result of these algorithms: their parameters and the visual 
har-a
teristi
s of the image they pro
ess. The term visual 
hara
teristi
s refers not only to theimage's digital pixel values, (e.g. 
alibration of pixel value, the measured dynami
 range of thes
ene, the measured dynami
 range of the digital image), but also to the spatial distribution ofthese digital pixel values in the image. This paper dis
usses the visual 
on�gurations in whi
ha Spatial Color methods show interesting, or 
riti
al behavior. We survey the more signi�
antSpatial Color 
on�gurations in
luding 
olor 
onstan
y and 
ontrast. The dis
ussion presents thestrengths and weaknesses of di�erent algorithms, hopefully allowing a deeper understanding oftheir behavior and stimulating dis
ussions about the sear
h for a 
ommon judging ground.Referen
es[1℄ J. J. M
Cann, �Bla
k Capturing a bla
k 
at in shade: past and present of Retinex 
olorappearan
e models�, Journal of Ele
troni
 Imaging, 13, 36-47, 2004.[2℄ A. Rizzi, C. Gatta, D. Marini, �A New Algorithm for Unsupervised Global and Lo
al ColorCorre
tion�, Pattern Re
ognition Letters, 24 (11), pp. 1663-1677, July 2003.9



[3℄ E. Provenzi, M. Fierro, A. Rizzi, L. De Carli, D. Gadia, D. Marini, �Random Spray Retinex:a new Retinex implementation to investigate the lo
al properties of the model� IEEE Trans-a
tions on Image Pro
essing, Vol. 16, Issue 1, pp. 162-171, January 2007.BiographyAlessandro Rizzi took the degree in Computer S
ien
e at University of Milano and re
eived aPhD in Information Engineering at University of Bres
ia (Italy). He taught Information Systemsand Computer Graphi
s at University of Bres
ia and at Polite
ni
o di Milano. Now he is assistantprofessor, tea
hing Multimedia and Human-Computer Intera
tion, and senior resear
h fellow atthe Department of Information Te
hnologies at University of Milano. Sin
e 1990 he is resear
hingin the �eld of digital imaging and vision. His main resear
h topi
 is the use of 
olor informationin digital images with parti
ular attention to 
olor per
eption me
hanisms. He is the 
oordinatorof the Italian Color Group.
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Studies on Image Control for Better Reprodu
tion in O�setEmmi EnokssonThe Royal Institute of Te
hnology, KTH, SwedenThis resear
h work has fo
used on studies of image 
ontrol for better reprodu
tion in o�set andhas been applied pra
ti
ally. This resear
h work has resulted in a survey of 
olor managementknowledge, a 
ommuni
ation list 
on
erning ICC pro�les, an edu
ational kit, a proposal for anew terminology and a patent 
on
erning image adaptation. The work is divided into followingthree areas:1) image 
lassi�
ation A better understanding of image pro
essing 
an avoid misunderstand-ings in the print and leading to more satis�ed 
ustomers. To a
hieve optimal print qualityfor di�erent images, it is important to adapt the prepress settings to the image 
ategory.Images 
an be divided into di�erent 
ategories depending on their image 
ontent, key in-formation and tone distribution. Trials have been 
arried out in whi
h the IT.8 test 
harthas been adapted to di�erent image 
ategories. The results of the image adaptation suggestthat an adjustment only to low-key images (dark images) is su�
ient, as even normal-keyimages then show a better similarity to the original image. The low-key image showedmore details in dark areas.2) 
olor separation Two studies have been 
arried out. The purpose has been to investigatethe knowledge level in 
olor separation, the use of ICC-pro�les and the understanding of
olor management in various printing houses in Sweden. This was done to identify andsuggest new appli
ations and suggested a
tions. These studies indi
ate that there is a seri-ous problem in the graphi
 arts industry. The problem is that there is both an insu�
ientknowledge of 
olor management and a la
k of 
ommuni
ation. There is a la
k of 
ompe-ten
e and a la
k of literature and instru
tions whi
h 
an help printers to better understandthe te
hnology, and 
ommuni
ation su�ers through a la
k of a 
ommon language.3) suggested a
tions and the development of tools Terminology simpli�
ation is 
ru
ialfor the users. A new term for separation �Compensation by Bla
k�, CB, has been suggested.A single term should make it easier for the users to understand and use the di�erent settingswhi
h impa
t the image reprodu
tion. A new tool/kit for the evaluation of ICC-pro�les hasbeen 
reated. The goal of this edu
ational kit is to fa
ilitate and exemplify the pra
ti
alunderstanding of pro�les and their use for the users.BiographyEmmi Enoksson works at the University of Dalarna in Sweden as the Head of the Graphi
 ArtsDepartment, whi
h is part of the Fa
ulty of Engineering, with 100 students. The resear
h sheis 
urrently 
ondu
ting is part of her do
torate in image 
lassi�
ation and optimized image re-produ
tion at the Media Te
hnology and Graphi
 Arts, Royal Institute of Te
hnology (KTH),Sto
kholm, Sweden. Proje
ts Emmi is involved in: redesigning and improving the image 
las-si�
ation and optimized image reprodu
tion pro
ess, examining the pro
ess from s
anner toprinter, and also development of pedagogi
 tools for evaluation of ICC-pro�les. Emmi Enokssonhas worked both as a le
turer in image, printing, layout and graphi
 software at various edu
a-tional institutions, and also as an image printing 
onsultant for printing 
ompanies and papermills.
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Appearan
e reprodu
tion for 3D soft proo�ng, skin 
olourreprodu
tion and e-
ommer
eNorimi
hi TsumuraGraduate S
hool of Integration S
ien
e & Department of Information and Image S
ien
es,Chiba University, Japan1. Introdu
tionIn the pro
ess of produ
t development, an appearan
e of the produ
t is usually evaluated bydire
tly observing the trial pie
es. The shape of produ
ts 
an be evaluated by making the mo
kup or showing the 
omputer graphi
s image. However, it is di�
ult to evaluate the appearan
ewithout making a trial pie
e, sin
e they are dependent on the viewing devi
es, environmentalilluminant. It is said that the evaluation of appearan
e be
ome bottle ne
k in the 
y
le of thedevelopment. Therefore, it is required to predi
t the appearan
es for produ
t in various indus-tries. In this review, we will introdu
e our pra
ti
al approa
hes for appearan
e reprodu
tion [1℄in 3D soft proo�ng, skin 
olour reprodu
tion and e-
ommer
e.2. Appearan
e reprodu
tion for 3D 
olour proof system [2℄There are many kinds of 3D prints su
h as beverage 
ans, PET bottles, sna
k pa
kages, and soon in our life. In the �eld of B to B e-
ommer
e system on designing and marketing of produ
ts,it is required to display the measured or simulated images of the 3D prints. Figure 1 show thesoftware to evaluate appearan
e of the beverage 
ans. This system made by DIC Corporation inthe 
ollaboration with our laboratory. However, these images tend to be higher dynami
 rangethan the luminan
e range of usual monitor, be
ause the 3D prints are made of smooth materialssu
h as papers, plasti
s, and metals that have sharp and strong spe
ular re�e
tion. Therefore,the images of 3D prints 
annot be displayed without 
ertain image pro
essing for dynami
 range
ompression.A

urate reprodu
tion of 
ontrast gloss and that of 
olor and shading are trade-o� in tonemapping. For the a

urate reprodu
tion of 
ontrast gloss, it is required to de
rease luminan
ein non-highlight area. The resultant tone mapped images tend to be unsatisfa
torily dark ex-
ept highlight area. On the 
ontrary, it is required to 
lip luminan
e in highlight area into the

Figure 1: Software to evaluate appearan
e of the produ
ts (with DIC Corporation).12



Figure 2: Rendering high dynami
 range image and proposed tone mapping.

Figure 3: Resultant image by 
onventional and proposed range 
ompression methods.maximum monitor luminan
e for the a

urate reprodu
tion of 
olor and shading. The resultanttone mapped images tend to have less 
ontrast gloss than real obje
ts.As is shown in Figure 2, we proposed to map luminan
e of di�use re�e
tion and spe
ularre�e
tion in di�erent ways. In Figure 2, the luminan
e on the virtual CCD on the 
amera is
al
ulated in the 
omputer by using the 
omputer graphi
s te
hniques. The rendered luminan
eimage is shown by pseudo
olor s
ale in the luminan
e range of usual monitor. In the proposedtone mapping [2℄, the luminan
e images for di�use and spe
ular re�e
tion are separately 
al-
ulated. It is easy to separate di�use and spe
ular re�e
tions in rendered Figure 6, sin
e therendered image 
an not be displayed in the 
onventional imaging system. This is be
ause thatthe rendered image is expe
ted to be high dynami
 range, and the luminan
e image has higherdynami
 range than luminan
e images, sin
e the BRDF used in the rendering pro
ess is formu-lated as a sum of both re�e
tions. Rendering using BRDF formula of di�use (spe
ular) re�e
tiongives images of di�use (spe
ular) re�e
tion. In the proposed tone mapping, only the spe
ularre�e
tion is mapped to the target dynami
 range by 
ontrolling the slope of spe
ular re�e
tion
omponent as is shown in Figure 2.Figure 3 shows the e�e
tiveness of the proposed method. The 
onventional results for (1)non-linear 
ompression (3) linear 
ompression show that 
olor of di�use 
omponents 
an not bereprodu
ed in these method. The 
onventional results for (2) 
lipping show the a

urate 
olorreprodu
tion of di�use 
omponents, however, the relative magnitude of glossiness is not pre-served 
ompared to the real obje
t. The result of proposed method shows the a

urate 
olorreprodu
tion of di�use 
omponents and preservation of the relative magnitude of glossiness.13



Figure 4: Image based skin 
olor analysis and synthesis (with Kao Corporation).

Figure 5: Skin 
olor synthesis with the 
hange of pigmentation.3. Appearan
e reprodu
tion for skin 
olour reprodu
tion [3℄The reprodu
tion of human skin 
olor may be 
onsidered as the most important fun
tion of vari-ous imaging systems. With the re
ent progress of various imaging systems, su
h as mobile phoneswith CCD 
ameras, 
osmeti
 advisory systems, and telemedi
ine systems, the reprodu
tion ofskin 
olor has be
ome in
reasingly important for image 
ommuni
ation, 
osmeti
 re
ommen-dations, medi
al diagnosis, and so on. We proposed an E-
osmeti
 fun
tion for digital images,based on physi
s and physiologi
ally-based image pro
essing. In this method, the s
attering inthe skin is modelled in a simple linear form in the opti
al density domain, and inverse opti
als
attering is performed by a simple inverse matrix operation. Figure 4 shows the s
hemati
 of�ow in the proposed image-based skin 
olor and texture analysis/synthesis. The original image isseparated into the images of surfa
e and body re�e
tion based on polarized illumination, and thebody re�e
tion image is analyzed by independent 
omponent analysis with the shading removalto obtain the melanin, hemoglobin, and shading 
omponents.Physiologi
ally based image pro
essing 
ould be applied to the 
omponents to 
ontrol thephysiologi
ally meaningful 
hange of skin. The pro
essed 
omponents are synthesized to obtainthe image using E-
osmeti
. Figure 5 shows the in
rease or de
rease of the 
omponent homo-geneously. Realisti
 
hange 
an be a
hieved by this method. Computer graphi
s te
hnique 
annot be ar
hived to this realisti
 
hange. This result shows the e�e
tiveness of the image-basedapproa
h using 
omputer vision te
hnique.4. Appearan
e reprodu
tion for e-
ommer
e [3℄It is important to reprodu
e equally per
eptible images a
ross di�erent displays in the Internetshopping system. To solve the di�eren
e of 
olor appearan
e between two displays, many studieshave been done on the devi
e independent 
olor reprodu
tion. However, a little has been studiedon a devi
e independent reprodu
tion of glossiness of the obje
t.14



Figure 6: Images used to make the gloss model.In the e-
ommer
e system, the gloss reprodu
tion is also important for 
ustomer. We de-veloped the gloss reprodu
tion system based on a per
eption of the human vision by using thevarious images of glossiness and luminan
e of display. Figure 6 show the images used to model theglossiness whi
h is the fun
tion of luminan
e of display and parameters of BRDF on the obje
tsurfa
e. The approa
h is based on the te
hnique proposed by Ferwerda et. al [4℄ where glossinessis modelled under various di�use re�e
tan
e of the obje
t. Psy
hophysi
al s
aling te
hnique wasintrodu
ed to 
larify the relationship between the attribute of human gloss per
eption and thephysi
al properties of the glossiness of the obje
t in their paper.Our developed model for glossiness is as follows.
G = 54.7

√

As + 4.1 × 102
√

n + 5.4
√

I − 76.3 (R2 = 0.803)where G is the glossiness value obtained by the subje
tive evaluation to the images shown inFigure 10, I is the simulated luminan
e of display in those images. As the parameters for BRDF,
As is the power of spe
ular 
omponents, n is an index that simulate the degree of imperfe
tion ofa surfa
e in the Phong re�e
tion model. It is noted that the simulated luminan
e I is introdu
edinto our glossiness model.The developed glossiness model is used for mat
hing the gloss on di�erent devi
es. As iswritten above, the model is written by parameter for BRDF on the surfa
e and the luminan
e ofthe display. The luminan
e of the display may be pre-de�ned in 
olor management system su
has sRGB or ICC pro�le, or estimated by simple subje
tive evaluation on the display. Figure 7shows an example of the isogloss 
urve, whi
h is obtained based on the gloss model. By usingthis isogloss 
urve, glossiness of the obje
t 
an be preserved in 
hanging the luminan
e of thedisplay.Figure 8(a), (b) shows the images on high luminan
e display and low luminan
e display,respe
tively. The same data is displayed on ea
h devi
e, although the appearan
e of gloss looksdi�erent. Figure 8(
) shows the image 
ompensated along the isogloss 
ontour by keeping theluminan
e in Figure 8(b). By using images along the 
ontour, we 
an produ
e images with sameglossiness on di�erent displays. 15



Figure 7: Iso-gloss 
ontours.

Figure 8: Devi
e independent gloss reprodu
tion based on the iso-gloss 
ontours.
16



4. Con
lusionThe 
ase studies for appearan
e reprodu
tion were introdu
ed based on the our previous resear
hfor 3D 
olor proof system, image-based skin analysis and synthesis system, devi
e independentgloss reprodu
tion system. These 
ase studies showed the e�e
tiveness of appearan
e reprodu
-tion in the produ
t development. It is noted that this paper is written based a part of my reviewin Color Resear
h and Appli
ation [1℄.Referen
es[1℄ Norimi
hi Tsumura, Appearan
e reprodu
tion and multi-spe
tral imaging, Color Resear
hand Appli
ation Vol. 31, No. 4pp. 270-277(2006)[2℄ Ishii T, Tsumura N, Shishikura M., Miyake Y., Reprodu
ing 3D Prints on Monitor byRelative-Glossiness Mat
hing Te
hnique, IS&T/SID's 11th Color Imaging Conferen
e, ColorS
ien
e, Systems and Appl. , 23-29(2003).[3℄ Tsumura N, Ojima N, et al, Image-based skin 
olor and texture analysis/synthesis by ex-tra
ting hemoglobin and melanin information in the skin, a
m Transa
tions on Graphi
s,22:770-779(2003).[4℄ Ikeda T, Tsumura N, and Miyake Y. Devi
e Independent Gloss Reprodu
tion Modelfor E-Commer
e: Estimation of Radian
e on Display, Pro
. IS&T PICS Conferen
e,:425-428(2003).[5℄ James A. Ferwerda et al. : �A psy
hophysi
ally based model of surfa
e gloss per
eption.�,Pro
. SPIE Human Vision and Ele
troni
 Imaging IV, 291-301 (2001).BiographyNorimi
hi Tsumura was born in Wakayama, Japan, on 3 April 1967. He re
eived the B.E., M.E.and Dr. Eng degrees in applied physi
s from Osaka University in 1990, 1992 and 1995, respe
-tively. He moved to the Department of Information and Computer S
ien
es, Chiba University inApril 1995, as an assistant professor. He was a visiting s
ientist in University of Ro
hester fromMar
h 1999 to January 2000. He is 
urrently asso
iate professor in Department of Informationand Image S
ien
es, Chiba University sin
e February 2002, also a resear
her in PRESTO, JapanS
ien
e and Te
hnology Corporation (JST) sin
e De
ember 2001. He got the Opti
s Prize forYoung S
ientists (The Opti
al So
iety of Japan) in 1995, Applied Opti
s Prize for the ex
ellentresear
h and presentation (The Japan So
iety of Applied Opti
s) in 2000, Charles E. Ives Award(Journal Award: IS&T ) in 2002. He is interested in the 
olor image pro
essing, 
omputer vision,
omputer graphi
s and biomedi
al opti
s.
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The response of primate 
one-opponent 
ells to light stimulationThorstein Seim and Arne ValbergNorwegian University of S
ien
e and Te
hnology, Se
tion of Biophysi
s and Medi
alTe
hnology, N-7491 Trondheim, NorwayCone-opponent 
ells are found at several levels of the primate visual system. Of the six mainopponent 
ell types in the retina and lateral geni
ulate nu
leus (LGN), two parvo
ellular 
elltypes (the In
rement and De
rement 
ells; also 
alled ON and OFF 
ells) are devoted to theL-M dimension of 
one spa
e while two other I- and D-
ells deal with the M-L dimension.Two other 
ell types 
ombine S-
ones with a sum of L and M-
ones (the bistrati�ed �Blue ON
ells� and the mu
h rarer �Yellow ON 
ells�). These six 
ell types show a 
hara
teristi
 responsewhen the retina is exposed to stimuli of di�erent wavelengths and intensity (luminan
e), andthis behaviour has, for a �xed stimulus size, been modelled by an opponent 
ombination of
one signals to retinal ganglion 
ells. These signals were 
omputed by a linear 
ombination offamiliar hyperboli
 fun
tions des
ribing the dependen
e of 
one potentials on light intensity.These hyperboli
 fun
tions represented the only non-linear stage of the model. We have earlierdemonstrated how subtra
ting the response to a
hromati
 stimuli separates out a 
hromati

omponent that allows for the s
aling of 
hromati
 
olour di�eren
es (Valberg et al., JOSA, A3,1726-1734, 1985). Here we present additional data on how su
h 
ells respond to stimuli varyingin wavelength, luminan
e, and size. It is shown how a 
ombined a
tivity of `L-M' and `M-L'types of In
rement parvo
ellular 
ells largely 
an
els the 
hromati
 
omponent in the responseand ampli�es the response to bright a
hromati
 stimuli. The same applies to `L-M' and `M-L'De
rement 
ells and dark a
hromati
 stimuli. We also use the experimental data to determinespatial sensitivities of the re
eptive �elds of the opponent 
ells. Combined with area responses,the model is used to predi
t the spatial stru
ture of ex
itation and inhibition within the re
eptive�eld. The result is related to the spatial distribution of 
one types within the ex
itatory andinhibitory areas and a possible overlap of ex
itation and inhibition, like in the �Mexi
an hat�model.
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Re
ent developments in ICC 
olour managementPhil GreenLondon College of Communi
ation, pj.green�l

.arts.a
.ukInitially 
on
eived as a stati
 �le format to en
apsulate 
olour transforms in a form that isinteroperable and produ
es 
onsistent output, the ICC spe
i�
ation has re
ently undergoneamendment that signi�
antly extends its 
apabilities.Version 4 of the spe
i�
ation was published some years ago, and resolves some of the earlierambiguities in the spe
i�
ation. Most 
olour management produ
ts now have the ability to makeor use V4 pro�les. However, the most important feature of V4 is only re
ently beginning to berealised. In the V2 ar
hite
ture, input pro�les map to the Pro�le Conne
tion Spa
e (a more orless unbounded CIELAB en
oding with D50 illuminant), and output pro�les map from this PCSinto the devi
e spa
e. Where the input and output media have di�erent 
olour gamuts, someform of gamut 
ompression must be applied in this work�ow, but neither pro�le knows the gamutof the other. This results in 
ompromises being made whi
h 
an severely restri
t the gamut ofthe �nal reprodu
tion. While this is not an issue for reprodu
tions using the 
olorimetri
 intent,it leads to a loss of potential quality when using the Per
eptual rendering intent. The Per
eptualReferen
e Medium Gamut was adopted to address this problem by having a well-de�ned 
olourgamut for data in the PCS. We 
onsider here how the PRMG is used in a 
olour reprodu
tionwork�ow, and we report the development of a pro�le whi
h maps between the PRMG and thesRGB 
olour spa
efor the purpose of display viewing.The various �avours of PDF/X have be
ome a major element of graphi
 arts work�ows. Inthe most re
ently adopted version, the trend towards the in
lusion of referen
es to well-de�nedexternal resour
es is 
ontinued by providing a me
hanism for referring to resour
es by theirURL. One impli
ation of this is that an ICC pro�le spe
i�ed as the OutputIntent of a do
umentmay be given as a URL for the pro�le rather than in
luding the pro�le in the do
ument. Thisis expe
ted to be parti
ularly important for variable data printing where it is less pra
ti
al toin
lude pro�les for ea
h element of a variable data stream. The ICC has developed a Pro�leRegistry where pro�le providers 
an register pro�les based on standard 
hara
terization datasets, and whi
h 
an then be referen
ed by a permanent URL based on either the pro�le nameor its pro�leID value. The pra
ti
al appli
ation of this in graphi
 arts work�ows is 
onsidered,together with some re�e
tion on the requirements of standard 
hara
terization data.The ICC spe
i�
ation has previously de�ned an en
oding range for CIELAB whi
h limits L*to 100. This is highly approriate to graphi
 arts work�ows where the referen
e white is taken asa di�use white re�e
tor. However, there is in
reasing interest in 
olour management in digitalphotography and the digital motion pi
ture industry, where the s
ene adopted white may havea luminan
e well beyond that of a di�use re�e
tor. In su
h high dynami
 range imaging, therequirement to 
ompress or 
lip to the PCS en
oding range 
an 
ause severe limitations onthe pro
essing possibilities, in
luding re- purposing of data a
ross di�erent media. The re
entlyadopted �oating point proposal provides a signi�
ant extension to ICC 
apabilities by allowingheadroom in the the en
oding. This proposal also in
orporates other important extensions,in
luding the ability to use a �oating point en
oding for look-up tables, and the ability to addadditional pro
essing elements (beyond those already de�ned in the spe
i�
ation) in the pro�le.The use of su
h pro
essing elements by a pro�le and a CMM makes it possible to generatedynami
, programmable transforms whi
h 
an handle a mu
h greater range of 
olour pro
essingtasks than envisaged in the original ICC ar
hite
ture.Mi
rosoft have re
ently released the Vista operating system whi
h in
orporates WindowsColor System. Tis represents a signi�
ant extension to the 
apabilities of ICM 2, and like re
entICC developments, points in the dire
tion of dynami
 and programmable 
olour management.WCS is fully 
ompatible with ICC V4, and is likely to in
reasingly be used by 
onsumers onWindows PCs. We 
onsider the impli
ations for professional work�ows, su
h as the possibility22



of interoperability issues arising with 
ustomers supplying work with WCS pro�les.
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Inkjet in question: adapting 
urrent 
olour and ink te
hnologyfor the requirements of the userCarinna ParramanCentre for Fine Print Resear
h, University of the West of England, Bristol, BS3 2JTCarinna.Parraman�uwe.a
.uk�It is of interest that, regardless of the number of impressions, the inks may be sele
tedsolely on the basis of their 
olor gamut. Their 
olors need not be 
yan, magenta, andyellow; nor is it required that they be transparent. The way is therefore opened forentirely new printing pro
esses.� [Hardy and Wurzburg 1948℄Abstra
tThis paper is an overview on the 
urrent appli
ation of inkjet and it's, as to yet 
onsideredunful�lled potential, whi
h as a te
hnology, is as revolutionary as Caxton's printing press;and a presentation of an approa
h to develop inkjet from the perspe
tive of the user. Thepaper 
onsiders the impa
t of te
hnology on the user, and vi
e versa, responses to howinkjet te
hnology is being adapted. It highlights re
ent developments in pigmented inks andthe introdu
tion of new 
olours by the three major inkjet 
ompanies: Canon, Epson andHP. However the introdu
tion of new 
olours might ful�l obje
tives to expand the printed
olour gamut that is based on a photographi
 
olour reprodu
tion requirement, but doesnot address how the te
hnology 
an be thoroughly developed as an entirely novel 
olourprinting system. Inkjet is in a transitional phase from 
lassi
 image reprodu
tion towards`
reativity'. The presentation dis
usses the impli
ations of the need to 
hange methods inmixing inks that moves away from existing 
olour spa
es, non intuitive 
olour mixing tobespoke inks sets, 
olour mixing approa
hes and 
olour management methods that are notreliant on RGB or CMYK.Ba
kgroundThe 
urrent situation is how 
olour management systems, sin
e the early 90s, have transformedthe print industry in providing 
olour �delity and 
olour 
onsisten
y, whi
h has brought togetherthe wide range of print industries: newspaper, poster, �ne art, photography, interior design, tex-tiles; into working with a ubiquitous 
olour language. For industry, this management of 
olourhas provided the 
ommer
ial printer with a streamlined method of printing from workspa
e toprinter to paper. Furthermore, print hardware and software has also be
ome rationalised. How-ever, industry has now begun to question what has been mispla
ed in ex
hange for 
ommer
ialexpedien
y? The industry has 
ome to realise that although work�ow methods are vital for 
om-mer
ial growth, there is a very large and signi�
ant other market, whi
h belongs to the artists,designers and users. This resear
h is undertaken from the perspe
tive of the artist/designer/user.Over re
ent years inkjet te
hnology has developed at a pa
e, and has evolved as a sophis-ti
ated software and hardware tool for the reprodu
tion of digital photographi
 images. Asimprovements 
ontinue in inkjet head te
hnology, inks and 
olour gamut, thus the gap betweenthe traditional photographi
 print and the inkjet print has narrowed. However, there is a growingrequirement for the user to gain a

ess to an inkjet te
hnology that is not ne
essarily dependenton photographi
 printing, whi
h might 
ontain, for example �elds of 
olour, �ne lines, blendsand text. These requirements 
ould be gained through alternative print and 
olour managementmethods, su
h as the development of novel 
olour sets and modi�
ations to print software andhardware.The UserFrustrated by the hardware, organisations have been driven to desperate measures. As R. Ma
Holbert des
ribed how, at Nash Editions, they invalidated their warranty on their 126,000 dollar24



Iris (3047) printer by sawing o� and raising the print heads to print on thi
ker paper (History ofNash Editions p.29). Or at the Centre for Fine Print Resear
h University of the West of England(UWE) Bristol, we rewired the swit
hes to isolate the paper path me
hanism so that (thi
ker)papers 
ould be a

urately registered and reregistered for overprinting to in
rease the density ofbla
k; and as a matter of 
ourse, the need to lift or remove the lid from the printer in order togain a better understanding of the inner me
hanisms.From the perspe
tive as a printer and printmaker, and working 
ollaboratively with artists, a
ommon response to how a �nal printed image is obtained is through `trial and error'1. A

urategamut mapping from monitor to print is undermined by many unknowns: by non white paper,textured paper, large �elds of printed 
olour that might per
eptibly 
hange a

ording to s
ale,simultaneous 
ontrast and metamerism. The pro
esses and methods to a
hieve a high qualityimage, is more often hard won through progressive steps: the need to a
quire tools and skillsto make a 
ompetent image is one that evolves as the user be
omes more familiar with thete
hnology.Furthermore, as a pra
titioner of �ne printmaking, traditional printmaking is also used asben
hmark for the digital printed image, and therefore the �ne art and design se
tor mighthave di�erent parameters for 
onsidering the quality of the �nished image. An analysis of thework is based on an artist's 
on
eption of the work and a subje
tive assessment of print surfa
e,
olour and image quality, whi
h although may appear to be based on the same 
riteria as areprodu
tion, the impa
t on the viewer is quite di�erent.User requirements for improving inksWith the emergen
e of digital imaging te
hnologies in the 1980s so too was there a desire to printhigh quality 
olour images. Whilst Nash Editions re
ognised that the Iris te
hnology produ
edbeautiful ri
h and dense 
olour, they also qui
kly realised the dye based inks were in
rediblyfugitive. They found that the early inks, if left in daylight for a few hours would noti
eably fade(Holbert, 2007, p.20). Similarly, in 1999, when we began working with an En
ad Novajet, theseinks were so fugitive that when printed on 
ommer
ial 
oated papers, they 
ould fade in a darkroom overnight. As a way of addressing this problem, Lyson Inks responded to requirementsby making �ne art inks that would enable the user to obtain a 
ompromise between 
olourpermanen
e and brightness of 
olours, not as yet a
hievable in pigment inks.The 
on
ern for permanen
e however motivated users, 
onservationists and representativesfrom the paper and pa
kaging group to address these problems, whi
h have resulted in a seriesof ongoing 
onferen
es hosted by the Institute of Physi
s in London, to assess and debate thepreservation and Conservation Issues Related to Digital Printing and Digital Photography (2001onwards).Sin
e 2000, developments in inkjet ink te
hnology has signi�
antly 
hanged from when inkjetsused dye-based 
olour inks and pigment-based bla
k, these are still used in the smaller deskjets,small mole
ule dyes are used to 
apitalise on the wider 
olour gamut. However the trend is tomove towards pigment based inks whi
h are resistant to UV and gas fading, and be
ause theyare more 
omplex, break down slower than dyes. As advan
es are made in inkjet ink te
hnologytheir brightness has improved, resulting in the majority of wideformat printer manufa
turersusing pigment inks. This is evolved as a user demand for ar
hiving and 
olour longevity, interms of intended appli
ation of large print works: exhibition, display and �ne art and postermarket.For the medium and wideformat market, eight-ink sets and twelve-ink sets are be
omingubiquitous. Canon's LUCIA Pigment Ink Te
hnology 
ontains twelve-
olour pigments using red,blue, green, grey, photo grey, 
yan, photo 
yan, magenta, photo magenta, yellow, (regular) bla
k,1In response to a questionnaire given to 20 artists as part of a ba
kground to an exhibition entitled 20:20 Ado
umentation of Artists making prints. http://amd.uwe.a
.uk/
fpr/index.asp?pageid=137825



and matte bla
k. The VIVERA range of 
olours introdu
ed by HP through the new Design Jet Zseries in
ludes light grey, grey, matte bla
k and photo bla
k, magenta, yellow, 
yan, orange/red,blue, green, light magenta, gloss. With the in
lusion of green has resulted in the light 
yan beingredundant.For the bla
k and white reprodu
tion, Epson's UltraChrome K3 eight-
olour set in
ludes twodi�erent bla
k ink modes - photo bla
k and matte bla
k; Canon di�erentiates between mattebla
k, regular bla
k, grey and photo grey, whi
h a

ording to Canon, the 
ombination of grey andphoto grey enables smoother transitions from light to dark. HP have in
luded four grey/bla
ks,with the addition of a gloss, whi
h as part of their media pro�ling management system 
an beswit
hed on or o� to enhan
e density or is an automati
 
omponent of gloss papers. It 
an notbe used for matte papers.Epson UltraChrome K3TM ink in
orporates a High-gloss Mi
ro-
rystal En
apsulation, whi
ha

ording to Epson literature, ea
h pigment is 
oated in a resin, whi
h redu
es the grouping ofpigment parti
les. This is similar to Hewlett Pa
kard's Vivera Ele
trosteri
 En
aplsulation Te
h-nology or EET; negative ele
trostati
 
harges within the resin layer, whi
h 
oats the pigmentsand prevents pigments from grouping together or repels ea
h pigment parti
le.Mixing 
olourFor traditional artists working in 
olour, their ability to layer 
olour onto 
anvas or paper withthe obje
tive to `imitate nature' through 
olour, light and dark, and texture is demonstratedthrough traditional easel painting and printmaking. For the photographer, the pro
ess of 
reatinga 
oloured photograph, is a very di�erent a
tivity and requires the mixing of light wavelengthsto 
reate an image. Furthermore for the digital printer, software appli
ations are based on lessintuitive 
olour methods of mixing: red, blue and green (RGB), mixing 
olours additively or
yan, magenta, yellow and bla
k (CMYK) whi
h are based on printer's pro
ess 
olours. However,explanations on how 
olours are 
onverted, for example, in the digital imaging pipeline are often
onfused.There has seen a shift in the re
ent printer manufa
turers from CMYK printer drivers toRGB, this 
losely mirrors the per
eived drive towards the photographi
 market in maintaininga 
lear relationship between traditional photographi
 red, green and blue �lters, monitor 
olour.However anyone attempting to mix a 
olour will qui
kly realise that, at least working in a CMYKspa
e a better idea 
an be obtained by, for example, mixing 100% Magenta, with 60% 
yan, with30% bla
k will 
reate a purple. However how might the same 
olour be a
hieved using RGB?(Red:72 Green:30 Blue: 86). Both 
olour-mixing methods do not enable a meaningful methodof mixing 
olour.How might inkjet be developed?As a way of illustrating how inkjet might be modi�ed, one 
an draw upon the te
hnologi
alparallels of S
reenprint or Serigraphy and how this pro
ess 
an be used as a ben
hmark forinkjet. Sin
e the advent of s
reenprint, at its most utilised in the 60s and 70s when photosensitive
oatings were introdu
ed, the artist was able to 
ombine text, photome
hani
al image and handmade marks in a highly innovative way. This enabled the artist to over-layer 
olours, employlight over dark, opaque inks and translu
ent inks, gloss and matt varnishes and build up layers.Although the mesh size of the s
reen redu
ed the possibility of high quality or 
ontinuous toneimages, the artist however was able to 
ompensate by employing a variety of means to 
reatehighly saturated 
olour images through sto
hasti
 halftoning, multi 
oloured, blended or �at
oloured, multilayered image making and printing.In both instan
es, s
reenprint and inkjet have good and problemati
 aspe
ts to the te
hnol-ogy. The following list highlights these pros and 
ons:26



Inkjet and s
reenprint - pros and 
onsS
reenprint: Pros:
• Hands on: paint mixing by hand, 
ontrol over 
olours
• Wide range of 
olours, in
luding basi
 CMYK
• Can 
ontrol 
hronology of 
olours and layers
• Surfa
e topology and texture, opti
al qualities � 
an see `through' layers.
• Using translu
ent inks in
rease density.
• Mixing inks from a transparent base and/or mixing 
olour from an opaque baseCons:
• Limited resolution, for photome
hani
al reprodu
tion, 
an see the dots, not wholly photo-graphi
 or 
ontinuous tone.
• Requires an understanding of the pro
ess ie. vis
osity of ink, squeegie pressure and angle.
• One s
reen for every 
olour
• Messy, requires 
leaningInkjet: Pros :
• In
reasingly, a 
losed loop system (Photosmart), non expert 
an print and obtain qualityimages
• Colours are entirely translu
ent, 
an print in any order, 
olours are designed to mix together
• Colours are highly saturated, provide a 
olour gamut suitable for photographi
 reprodu
-tion
• Small and medium sized dots, drop on demand te
hnology, that 
an provide almost 
on-tinuous tone resolution
• In
redibly detailed � produ
e a high detail and �ne 
ontinuous lines � not possible by anyother pro
essCons:
• Limited 
ontrol over printer and work�ow
• Colours limited to photographi
 reprodu
tion � RGB, CMYK, LAB
• One pass, surfa
e uniform, no surfa
e topology
• Cannot (easily) modify 
olours,
• No opaque 
olours, no gloss or matt.
• Cannot separate 
hannels
• Exa
t registration problemati
 � hit and miss27



Developing inkjet for the `Creative'To generate an image, the artist 
ould 
ombine both photographi
 images and �at 
olours, or
hoose just �at or blended rendering. In any situation the user would have a range of 
hoi
es,and that would extend the potential of the inkjet hardware beyond photographi
 reprodu
tion.Basi
 
omponents of the inkjet printer might 
omprise:Re registration with �ne tuning (sideways, ba
kwards and forwards) Paper thi
kness sensor �heads might be raised or lowered to a

ommodate thi
ker papers Built in devi
e for pro�lingPhotosmart 
apability employing existing pigment inks `Out of the Can' printer 
olours andsoftware for mixing, printing �at 
olours and blends, shapes and �ne lines.Developing the idea of a novel RIP:The following method of image produ
tion would apply to the printing of �at, blended areas of
olour, with the intention to over-layer 
olour.Working from software su
h as Illustrator or Photoshop, a series of layers would be generated� ea
h layer representing a 
olour - similar to the way one would work as a printmaker. These
ould be soft-previewed with all the 
oloured layers as a 
omposite, so as to give an indi
ationof how the �nal printed image would appear. This would be done by ICC pro�ling. Experimentshave already been undertaken using alternative 
olour ink system.The development of a 
olour mixing system:Using a 
olour system similar to an `out of the 
an' approa
h � a range of 9 basi
 
olours, ie.blue shade red; yellow shade red; red shade blue; green shade blue; green shade yellow; red shadeyellow; bla
k; opaque white; translu
ent white/gloss extender; that 
an be used at any per
ent(1-100%) to produ
e a range of hues, shades and tints.Con
lusionOver the last ten years the impa
t, the evolution and the relationship with emerging digitalprint te
hnologies has been one of grappling with a hardware and software that, as yet, has nota
hieved its true potential: the inkjet print is still evolving.
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A Generalized Approa
h of Color Morphology by Means ofPareto-set TheoryMario KöppenFa
ulty of Arti�
ial Intelligen
e Kyushu Institute of Te
hnology, Fukuoka, Japanmkoeppen�ieee.orgKatrin FrankeNorwegian Information Se
urity Laboratory (NISlab), Gjøvik, Norway kyfranke�ieee.orgThere is no unique way to extend the 
on
epts of gray-s
ale morphology to 
olor images. Di�erentviewpoints have led so far to the proposal of a number of useful operations for the pro
essingof 
olor images. Among these viewpoints we 
an �nd the linear weighted, or s
alar, approa
hes,where v
 is mapped onto P by a s
alar fun
tion that is monotone in ea
h argument. Then,standard gray-s
ale morphology 
an be applied to su
h transformed images IP. A typi
al 
hoi
ein the RGB 
olor spa
e is the sum of the R, G and B intensities. Then, the 
olor dilation justreads as sele
ting 
riteria the 
olor value with the largest sum from ea
h pixel's neighborhood.More re�ned 
on
epts have been based on the use of fuzzy-fusion measures, in
luding theproposal of a 
olor morphology that 
annot e�e
tively be redu
ed to a linear weighting approa
h.However, most of these approa
hes are 
onsidering the extension to 
olor morphology as anextension of the sele
tion 
riteria, instead of an extension to the handling of multiple intensities.Thus, we were studying an intensity-based 
olor morphology, with its main di�eren
e toother 
olor morphologies being the generation of a gray-s
ale image that 
annot be the result ofa morphologi
al operation on a grays
aled version of the 
olor image itself.The formal te
hniques for a
hieving this goal 
ame from the �eld of multi-obje
tive opti-mization and its related 
on
ept of Pareto dominan
e. A 
onsideration of the various Pareto-set-based means and te
hniques that have been developed in the past for the study of (
ontinuous)multi-obje
tive optimization problems lead to the formulation of a number of image-pro
essingoperators. A simple example is the generation of a gray-s
ale image from a 
olor image, whereea
h pixel's gray-value represents the number of Pareto-dominating points in the neighborhoodof this pixel. Pra
ti
ally this 
omes out to be an edge operator.In this talk the usage of Pareto sets for image-pro
essing operators will be dis
ussed indetail, and some potential appli
ations of this approa
h to 
olor morphology will be shown.amulti-variate 
hannel-intensitiy ve
tor
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Digital Camera RAW pro�lingJa
k Bingham and Derri
k BrownIntegrated Color Corporation � Billeri
a, Massa
husettsJo S. KirkenærJSK Consulting � Carlsbad, CaliforniaIntrodu
tionRaw 
amera �les are 
onsidered by many to be the digital equivalent of the unpro
essed photo-graphi
 negative. It does not o�er the kind of exposure latitude we expe
t from negative �lm,but in many other aspe
ts it holds true.1 To yield a good visual image, the RAW �le has tobe pro
essed and rendered to an RGB 
olor spa
e, generally sRGB or Adobe RGB (1998), andif you've ever experien
ed 
olor mismat
h between the printer and your monitor, or have been
onfused by RAW �le formats and ICC pro�ling and not getting the best results from your dig-ital 
amera and printer, this paper will detail solutions to deal with Raw 
amera �les and howto properly pro�le the digital 
amera. With an understanding of how to manage photographi

olor, you 
an solve these problems. When the 
amera produ
es images using the standard 
oloren
odings it is performing a 
olor rendering and when you then try to generate a pro�le forthis 
ondition by photographing a target, you are a
tually pro�ling the rendering and the re-sults will generally be sub-optimal, be
ause the pro�le now will try to undo the 
olor renderingin the 
amera. This paper addresses the use of ICC pro�les in work�ows that start with Raw
amera images, in
luding 
oordination of 
amera settings, RAW pro
essing, and ICC 
olor man-agement. The new 
apabilities of ICC version 4 pro�les will be dis
ussed, in
luding the use ofthe re-de�ned per
eptual rendering intent with output-referred, s
ene-referred, and raw 
amera�les. Rather than using default 
ustom pro�les to render the RAW data to mat
h the s
eneor 
reate a pleasing reprodu
tion of the s
ene on the printed paper, we will develop a pro
essand generate a single pro�le for the spe
i�
 
amera, putting an end to the myth that you needmultiple pro�les for di�erent imaging 
onditions su
h as daylight, shade, tungsten & �uores
entadopted white.Photographers know that the world we view is di�
ult to re
ord on �lm, and just as di�
ultwith a digital 
amera. What if we 
ould 
apture all the 
olor and tone that we 
an see with oureyes with our digital 
amera? No need for �ll-�ash or additional lighting. This is, of 
ourse, notpossible. A s
ene generally will have a huge dynami
 range the tones from dark shadow to brighthighlight may be as mu
h as 10,000:1. A 
orresponding print will only 
over a dynami
 range ofabout 200:12, while a good display may give us as mu
h as 1,000:1. So the digital 
amera will�see� and re
ord the world quite di�erently from how we see the world. The initial RAW data hasto be rendered in an attempt to mat
h the s
ene as best as it 
an, or it 
an be rendered to 
reatea pleasing reprodu
tion of the s
ene. There is big di�eren
e between the two, and the methodsand te
hnology des
ribed in the paper will try to shed some light on these di�eren
es and theuse of ICC pro�les to a

omplish the desired results. Sin
e we have to view the digital image onsomething, we have to sele
t a rendering for display or print. Films have always in
luded built-in
ontrast and 
olorfulness boosts with highlight 
ompression, to make pi
tures look better.If we refer to the measured s
ene 
olor as the 
amera 
aptured it, we deal with the S
ene-Referred image. But we need to view it either on a display or on a print, hen
e we need to makethe image look pleasing and produ
e the desired 
olor appearan
e the photographer wishes toexpress and reprodu
e and now we have rendered the image as Output-Referred. Most 
ameras,parti
ularly 
onsumer type point-andshoot 
ameras perform this rendering automati
ally to animage en
oding of sRGB or Adobe RGB (1998). Advan
ed 
onsumer 
ameras and professional
ameras usually have a sele
table rendering, but in RAW mode this rendering be
omes the job33



of the image 
reator, usually the photographer, and this is where we 
an get some help from a
ustom ICC pro�le.It should also be noted here that two sRGB en
odings of the same s
ene from di�erent
amera brands should mat
h, but that is rarely the 
ase. The mat
h is no 
loser than two shotsof the same s
ene on two di�erent types of �lm. However, using ICC pro�les di�erent 
ameras
an be made to reprodu
e the same s
ene in almost the same way.Using RAW format gives us the opportunity to 
reate 
ustom pro�les and working with atleast 12 bits per 
hannel. Using a default RAW translator will still render and en
ode a defaultpro�le su
h as sRGB or Adobe RGB (1998), or other pre-set pro�le used as the Working Spa
ein Photoshop, su
h as ProPhoto (ROMM) RGB. It should be noted that sRGB represents asa referen
e medium a standard CRT display, while with ProPhoto the referen
e medium is theICC per
eptual intent referen
e medium re�e
tion print3. The Adobe RGB referen
e mediumis 
urrently not 
learly de�ned, but will most likely referen
e a viewing 
ondition of about 160to 200 lux at Daylight D65 white point, viewed in a dim surround. However, setting a 
ustompro�le will give a mu
h better rendering and keep all the 
olors and 
olor di�eren
es that the
amera a
tually re
orded.Di�erent pro�ling pa
kages uses di�erent targets, from the most photographed target of alltimes, the Ma
Beth ColorChe
ker to the IT8/7-1 and IT8/7-2, mostly for use with s
anners, to
ustom targets tailored to the desired s
ene. It is also important that the target in
ludes 
he
ksfor luminan
e uniformity as in the Digital ColorChe
ker and ColorEyes 20/20 targets. Thedrawba
k with most targets is that they only represent a small portion of all the 
olors availablein the original s
ene, and in some 
ases would be restri
ted to spe
i�
 
olors in photographi
paper, hen
e possibly restri
ting the overall resulting gamut.It has been general pra
ti
e and demonstrated multiple times 4 5 that in a �xed environmentsu
h as a photo studio or a 
opy stand for �ne art reprodu
tion the 
amera and imaging 
onditionlend itself perfe
tly to proper 
hara
terization and ICC pro�ling. It is when the 
amera is takenout into the �Real World� where 
urrent thought is that multiple 
ustom pro�les are needed, orjust using standard 
olor spa
e pro�les.The per
eptual intent of these true 
amera pro�les should in
lude 
olor rendering to the ICCper
eptual intent referen
e medium and should be used for general photography, while 
ustom
amera pro�les will typi
ally be spe
i�
 to parti
ular shooting 
onditions. The 
olorimetri
rendering intent is generally �xed to give the most a

urate, though not ne
essarily most pleasing,rendering of the s
ene, while the per
eptual rendering intent 
an be manipulated and tweakedto give the most pleasing, yet not ne
essarily a

urate rendering of the s
ene. But with a pro�leand the images 
aptured under the same 
ondition, the results will be 
onsistent and good, andvery little further pro
essing will be required, at least as 
olor is 
on
erned.In this paper we will show examples and 
omparisons of various standard pro�les 
omparedto both display and print pro�les, as well as 
ustom pro�le 
omparison to standard RGB pro�lesand 
olor spa
es. This paper will not dis
uss the virtues of the di�erent pro�ling pa
kages andtargets, though this 
ould be a worthy student proje
t.Pro
essBefore we start with the pro�ling pro
ess it is 
riti
al to understand the sensitivity inherentin the digital 
amera. A 
olor variation from one light sour
e to another of 50 points Kelvin isvery apparent. That means the following: Any in�uen
e re�e
ted on the target other than onemain light is more than likely to alter the data. Two softboxes of slightly di�erent ages will havedi�erent 
olor nylon di�users. Two �ashtubes of di�erent ages will dis
olor di�erently, not tomention any �ltration dome over the tubes. On lo
ation any of the surroundings 
ould re�e
t onthe target, degrading the data. Setting the target on a 
olored seamless ba
kground in studio willre�e
t 
olor up into the bottom of the target more than the top. This dis
ussion about having34



Figure 1: Target setupto pro�le s
enes is a dire
t result of trying to pro�le s
enes. By doing this you automati
allyintrodu
e variables in the data that only exist in that s
ene, thereby being trapped into pro�lingevery unique s
ene.The pro
ess that works to 
reate a universal pro�le requires a di�erent approa
h. In order toget the most a

urate data from the target we need to eliminate as many variables as possible.Lighting is the most 
riti
al. Sin
e there are too many variables with two lights, softboxes, strobetubes, power pa
ks all of whi
h 
an not be a

urately tuned into a mat
hed pair we should rulethat approa
h out from the start. Now it is possible using tungsten lights, dimmers and a 
olormeter that one 
ould tune a pair of lights to be extremely 
lose in 
olor temperature. Howeverthe likelihood of the average user not only having the tools to do this, but going to the troubleis highly unlikely. So the only real alternative is one light. It then no longer matters what the
onditions of the di�user, the tube or the 
over are. This is shown in Figure 1.Now of 
ourse we introdu
e a problem that two lights in a 
opy setup is designed to handlewith ease. The target now has more light on one side than the other. By 
arefully following thediagram shown here one 
an gradually �
ut� the light on the bright side of the target until theleft and right sides mat
h. Note that the photographer a

ustomed to shooting 
opywork willpull out the in
ident meter and use it to balan
e the light a
ross the target. Sin
e the digital
amera is sensitive well beyond the 1/10 stop range of a light meter this approa
h 
an not work.However we have a mu
h more a

urate tool in our hands; measurements taken in Photoshop
an provide the ne
essary a

ura
y.On
e the target is even, and using the Coloreyes 20/20 target as an example, shown inFigure 2, it provides four white 
orner pat
hes from whi
h to take measurements, as shown inthe �gure. It is important to mat
h the exposure of the target to the a
tual luminan
e valueswithin the target to avoid adding any exposure 
ompensation into the pro�le. The white pat
heson the ColorEyes target are between an L or 92 and 93, so by using Photoshop to measure the
orners and adjust exposure a

ordingly the data is 
loser to the original.Finally, gray balan
e is 
riti
al. Like linearizing a printer before pro�ling, the 
amera mustbe linearized to the lighting 
ondition. Auto will not work here. On
e the target parameters area
hieved, the pro
ess to build a pro�le is simple. Coloreyes introdu
es one extra variable herethat is 
riti
al. When building the �nal pro�le the user 
an 
hoose between a pro�le that adjustslightness, 
hroma and hue or just 
hroma and hue. On the surfa
e it would seem that we wantthe most a

urate pro�le we 
an build. In reality by allowing the pro�le to adjust lightness weintrodu
e another problem. Cameras do not produ
e data that represents a s
ene a

urately.They are a
tually tuned to adjust the 
ontrast range to something we have 
ome to like ratherthan what would be an a

urate rendering of the tonal range of the s
ene. So by allowing thepro�ler to adjust tonal values we end up with two problems. First the pro�le adjusts tones that35



Figure 2: ColorEyes 20/20 target

Figure 3: Custom Camera pro�le 
omparison.it is inherently not designed to do. And the worst part is that the bulk of the adjustments takepla
e in darker values where noise is present. Raw 
onverters are designed to handle shadowdetail and noise very well. Pro�les are not. The se
ond problem is that we generate a pro�lethat every user will 
omplain about being too �at. The tonal values will indeed be more a

uratebut that is not what the photographer really wants. The photographer wants a rendering of thes
ene 
loser to what the 
amera is tuned to produ
e.So why does this 
reate a universal pro�le? Pro�ling s
enes introdu
es variables in the targetthat exist only in a parti
ular s
ene. A pro�le made under these 
onditions will indeed be s
enespe
i�
. By eliminating as many variables as possible we have mu
h more a

urate data aboutexa
tly what the 
amera 
an see. Now the �nal pie
e of the puzzle is making this pro�le workunder di�erent lighting 
onditions. The big 
on�i
t about this seems to be the suggestion thata 
amera behaves di�erently under di�erent lighting 
onditions. While te
hni
ally this might betrue, from a pra
ti
al standpoint it is 
learly not enough of an issue to prevent a 
amera pro�lefrom working extremely well under varied 
onditions, and working better than Camera RAWpro
essing or default pro�les.Ba
k to the point about printer linearization; when we 
hange ink we 
an run a linearizationto update the pro�le. Gray balan
e is the same approa
h. By linearizing a 
amera to a givenlighting 
ondition the pro�le be
omes valid for that 
ondition.Figure 3 shows the 
ustom 
amera pro�le gamut 
ompared with an sRGB default 
amerapro�le. The 
ustom pro�le is shown as a wireframe. Note the signi�
antly larger 
olor gamutthe 
amera is able to produ
e, that would just be 
lipped if using sRGB.Example 
olor pi
tures showing the di�eren
es between the best Camera RAW pro
essing36



Figure 4: RAW pro
essing, outdoor s
ene.

Figure 5: Custom pro�le, outdoor s
ene.and a 
ustom pro�le are shown in the following �gures. In Figure 4 the yellow �owers aresaturated and blown out, while in Figure 5, ea
h �ower is 
learly visible. Similar di�eren
es
an be seen in Figures 6 and 7, where the 
ustom pro�le gives better �eshtone and a bettermodulation of the overall lighting.Con
lusionsWe have demonstrated that by treating the digital 
amera similarly to a s
anner or printer byperforming a white balan
e linearization, a single 
amera pro�le will render the RAW informationto the most a

urate as well as pleasing RGB data for presentation on a 
alibrated and pro�led
omputer display or a printer in an ICC work�ow.Referen
es[1℄ Bru
e Fraser: �Real World Camera Raw with Adobe Photoshop CS2�, Pea
hpit Press 2005.[2℄ ICC White Paper 20: �Digital Photography 
olor management basi
s�.[3℄ ICC White Paper 17: �Using ICC pro�les with digital 
amera images�.[4℄ U. Lenz et al.: �Digital Camera Color Calibration and Chara
terisation�, The FourthIS&T/SID Color Imaging Conferen
e: Color S
ien
e, Systems and Appli
ations, pp 23�24.37



Figure 6: RAW pro
essing, person.

Figure 7: Custom pro�le, person.38



[5℄ Lindsay Ma
Donald et al.: �Colour Chara
terization of a High-Resolution Digital Camera�,CGIV 2002: The First European Conferen
e on Colour Graphi
s, Imaging and Vision.
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Measurement of 
olour on translu
ent material viewed byre�e
tionA. Sole and P. J. GreenLondon College of Communi
ation, adityasole�gmail.
omKeywords: white sample ba
king, transmissive media1. Introdu
tionIn graphi
s and arts industry, 
olour is printed on transmissive materials like polyethylene, 
el-lophane, et
 whi
h are usually viewed by re�e
tion. It is therefore, more pra
ti
al to measurere�e
tan
e against a ba
king material rather than transmittan
e. A

ording to ISO 5 � 4 andISO 13655, when measuring a 
olour stimulus using re�e
tion geometry the sample should beba
ked by either a white or bla
k ba
king material. For a highly transmissive (virtually trans-parent) material when measured with a bla
k ba
king material, it is di�
ult to obtain usefulmeasurement be
ause of the show-through of the bla
k ba
king. In this 
ase it is 
onvenient touse a white ba
king with a re�e
tion density whi
h 
onform to ISO 13655 and ISO 5 � 4 spe
i�-
ations for a white ba
king material. However, at present there is a la
k of materials whi
h areknown to 
onform to these spe
i�
ations and whi
h are widely available.The obje
tives of this proje
t were as follows:1. To make a re
ommendation of ba
king material to be used when measuring 
olour stimuliprinted on transmissive media with re�e
tion mode geometry.2. To develop a 
olour measurement pro
edure to make measurements relative to perfe
tdi�user.3. To de�ne a pro
edure that supports sharing of measurement data between organisations.4. To test the 
olour measurement pro
edure 
olorimetri
ally and psy
hophysi
ally5. To develop a model to predi
t CIE XYZ tri-stimulus values of a 
olour pat
h to be printedon paper to mat
h with the same 
olour pat
h printed on translu
ent substrate viewed byre�e
tion with a ba
king material.2 Methods and results2.1 Re
ommendation of white ba
king materialThree types of widely available paper materials were 
onsidered, along with PTFE referen
e tilesof 10mm and 6mm thi
kness. All were 
he
ked for the 
onforman
e with the spe
i�
ations fora white ba
king material given in ISO/CD 13655:2006.and CGATS/STF N 045. Table 1 showsthe result.It 
an be seen from Table 1 that none of the materials evaluated 
onform to all the require-ments of ISO/CD 13655:2006. By using a double thi
kness the proo�ng papers meet the CGATSopa
ity requirement, but none of the papers tested met the ISO/CD 13655:2006 requirementregarding �uores
en
e. Hen
e there remains a need to either identify suitable materials for whitesample ba
king, or to develop pro
edures that will allow a wider range of materials to be used.40



Table 1: Comparison of the ba
king materials for the 
onformation to CGATS and ISO 13655spe
i�
ations2.2 Pro
edure that supports sharing of data between di�erent organisationsFor data to be ex
hanged between di�erent organisations, measurements made using di�erentpaper ba
king materials were made relative to referen
e ba
king material. The measurementpro
edure is based on the 
on
ept that the measurement made on the 
andidate ba
king material
an be normalised to the referen
e ba
king material. Figure 1 shows the re�e
tan
e of two
olour pat
hes measured with PTFE as referen
e ba
king material and with 
andidate ba
kingmaterials made relative to PTFE, and it 
an be seen that there is good agreement between thePTFE-ba
ked and normalised re�e
tan
e2.3 Pro
edure to make measurements relative to perfe
t di�userMeasurements made relative to a referen
e ba
king material were also normalised to a perfe
tre�e
ting di�user. The performan
e of this pro
edure was evaluated by 
omparing the re�e
tan
e
urves of the measurement of 
olour pat
hes made on referen
e ba
king material made relativeto perfe
t di�user and that measured on the 
andidate ba
king material made relative to perfe
tdi�user. Figure 2 shows the 
omparison of the re�e
tan
e 
urves of two 
olour pat
hes.2.4 Testing the pro
edure 
olorimetri
ally and development of the model topredi
t CIE XYZ tri-stimulus valuesHalftone 
olour pat
hes from two gravure prints on polyester of di�erent opa
ities were sele
tedand measured using the referen
e and 
andidate ba
king material. The re�e
tan
e measurementsare made relative to a perfe
t di�user by applying the pro
edure. Figure 3 shows the re�e
tan
e
urves of the measurement of the 
olour pat
hes made with 
andidate ba
king material maderelative to a perfe
t di�user and those made with referen
e ba
king material made relative to aperfe
t di�user.The re�e
tan
e 
urves for the 
olour pat
hes 
oin
ide reasonably well.A model was developed to predi
t the CIE XYZ tristimulus values of a 
olour pat
h to beprinted on paper to mat
h with the same 
olour pat
h printed on translu
ent substrates viewedby re�e
tion with the double-thi
kness Proo�ng Paper 2. A mat
hing experiment was performedto determine this relationship.A greys
ale printed on two polyester substrates and a paper substrate was measured usingthe double-thi
kness Proo�ng Paper 2. The re�e
tan
e measurements made on the polyester41



Figure 1: Comparison of re�e
tan
e 
urves measured on PTFE ba
king and measured on otherpaper ba
king made relative to PTFE ba
king.

Figure 2: Comparison of re�e
tan
e 
urves measured on PTFE ba
king made relative to perfe
tdi�user and measured on other paper ba
king made relative to PTFE ba
king made relative toperfe
t di�user.
42



Figure 3: Comparison of re�e
tan
e 
urves measured on PTFE ba
king made relative to perfe
tdi�user and measured on other paper ba
king made relative to PTFE ba
king made relative toperfe
t di�usersubstrates were made relative to perfe
t di�user as des
ribed above, and CIE XYZ values were
al
ulated from these measurements. In the psy
hophysi
al experiment observers were asked tomat
h the greys
ale pat
hes printed on the two white-ba
ked polyester substrates to greys
alepat
hes printed on the paper substrate, and the geometri
 mean of the visual mat
hes was
al
ulated.The data measured on both the translu
ent substrates was 
ombined and a single modelequation was derived for both the substrates. Figure 4 shows the 
ombined CIE Y tristimulusdata with a trend line and the model equation.This model was evaluated psy
hophysi
ally using a halftone print of 10 
olour pat
hes and33 
olour pat
hes imaged on Ekata
hrome transparen
y. A 
ategory judgment te
hnique wasused for the experiment. Both the test prints were measured and 
orre
ted using the pro
eduredes
ribed above to make them relative to perfe
t di�user. The mat
hing CIE XYZ values werepredi
ted and printed on Kodak photo print 190 gsm glossy paper.The reprodu
tions were evaluated psy
hophysi
ally by presenting these printed reprodu
tionstogether with the transmissive samples on a white ba
king in a 
ategory judgement experiment.The results indi
ated that this model performed well for the halftone print and reasonably wellfor the Kodak transparen
y print.3. Con
lusions1. None of the paper materials evaluated met all the requirements of ISO/CD 13655:2006,2. A measurement pro
edure was developed to make white-ba
ked re�e
tan
e measurementsof transmissive media relative to a perfe
t di�user. Proo�ng Paper 2 (used double thi
k-ness) performed best when using this pro
edure. Many similar materials would be a

ept-able for industrial use using this pro
edure.3. A model was developed to mat
h 
olours between prints made on white-ba
ked transmis-sive materials and opaque materials. This model gave a good performan
e.43



Figure 4: CIE Y tri-stimulus data with the �tting 
urve and the model equation.
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Certifying Monitor Proo�ng SystemsJo S. KirkenærJSK Consulting � Carlsbad, CaliforniaIntrodu
tionIn the US, the main printing standard to be met by printers is SWOP (Standard for Web O�setPublishing). Over the last de
ade ink-jet proo�ng systems have proliferated 
laiming to mat
hthe presses at this printing standard through the use of ICC pro�les, and over the last 
oupleof years 
olor a

urate soft proo�ng, also referred to as monitor proo�ng has made inroads intothe proo�ng market.Printers always looked to the SWOP 
ertifying body to help sort out all the proo�ng systems,and through a pro
ess of visually judging prints, and measuring target pat
hes, these proo�ngsystems be
ame 
erti�ed for SWOP printing. With the ability to embed ICC pro�les for otherprinting standards, or referen
e printing 
onditions, these ink-jet proo�ng systems 
ould also beused to simulate and mat
h these 
onditions.The proof is 
onsidered the prototype of the printed image and as su
h, is a predi
tor of themany millions of 
opies that subsequently may be produ
ed [1℄ it is 
riti
al that the proo�ngsystem is a reliable and 
onsistent predi
tor of the a
tual pro
ess. Initially this was very sub-je
tive; a panel of observers 
ompared referen
e press sheets to the proof sheet under 
ontrolledlighting 
onditions, and when monitor proo�ng entered the market, the same 
onditions andparameters applied here, though now the display itself was the 
anvas by the adoption of 
olormanagement system software and by the adoption of devi
e independent 
olor variables [2℄.Integrated Color Solutions (ICS), In
 was the �rst 
ompany to take their Remote Dire
torsoftware and an Apple Cinema display to SWOP and get it 
erti�ed as a valid mat
h betweenthe rendered image on the display and the 
orresponding SWOP referen
e press sheet. Other
ompanies followed suit as well. But the pro
ess was still very subje
tive, and two systems, both
erti�ed and pla
ed side by side, 
ould show more variability and mis-mat
h than what mosthard-
opy proo�ng systems would.At the 3rd Annual IPA Color Proo�ng RoundUP for 2005 [3℄ hard
opy systems proved very
onsistent both visually and numeri
ally and monitor proo�ng systems proved that they 
ould
arry their own weight. Visual s
ores for monitor proo�ng were right in with the 
orrespondingvisual s
ores for the hard 
opy systems, under the same evaluation pro
edures.In 2006 at the Annual IPA Color Proo�ng RoundUP hard 
opy and soft 
opy proo�ng systemswere treated the same way, all parti
ipants were handed a printed 
hara
terization target, andtold to make a pro�le and mat
h the press sheet numeri
ally. Only the judges had a

ess to thevisual part of the press sheet for �nal evaluation.Though possible on some systems, the monitor proo�ng systems were not subje
ted to theDelta-E test [4℄, for reasons I will dis
uss later.However, sin
e the monitor proo�ng systems are able to a

urately display 
olors on s
reen,this triggered a dis
ussion to automate the pro
ess of 
ertifying these systems for SWOP, orother referen
e print 
ondition by removing the subje
tive fa
tor and using metrologi
al data.In theory at least, rendering a 
olor on the display through a 
olor managed work�ow andmeasuring that rendered 
olor on a 
alibrated display should yield the same 
olor within a verysmall DeltaE. This paper will show that this holds true and how this pro
ess 
an be used to
ertify displays to mat
h a given printing 
ondition.In the initial phase of implementation, there will be a visual inspe
tion prior to the metro-logi
al evaluation, primarily to save time by weeding out systems that 
learly don't meet thestandards. 45



Pro
essSin
e the spe
tral power distribution of the display is usually quite di�erent from that of theviewing booth it may be ne
essary to apply a 
olor appearan
e model when displaying theimage on the 
omputer. Even the white points, though both measured out to a 
orrelated 
olortemperature of D50 may appear visually di�erent without it. This is the reason why numeri
aldelta-E measurements were not applied at the 2006 IPA shootout. Di�erent metri
s and CAMsto di�erent viewing environments yielded di�erent measurements o� the display, and absolutedelta-E 
omparisons to the referen
e data were large.In the monitor proo�ng environment, the CMYK data is 
onverted to display RGB as follows:CMYK → PCS → RGBthrough the A2B1 tag in the CMYK pro�le. PCS is the Pro�le Conne
tion Spa
e, generallyL*a*b*. With the proper display 
alibration and pro�ling, this data 
an then be dire
tly 
on-verted through the B2A0 tag of the display pro�le to display RGB, and if measured with areferen
e instrument the a
tual 
olor L*a*b* 
an be re
orded. This re
orded L*a*b* value 
anthen be dire
tly 
ompared to the referen
e �le that 
reated the printing CMYK pro�le in the�rst pla
e and any errors are then 
al
ulated and reported.This is really no di�erent from an ink-jet proo�ng system displaying a simulation of the press
ondition through the same A2B1 tag, but this time 
onne
ting with a CMYK output pro�le. TheSWOP organization has already started a numeri
 
erti�
ation program for hard
opy proo�ngsystems, printing the simulated 
hara
terization target, and measuring the pat
hes on this hard
opy.It should be noted that for the display measurements all the values of L*a*b* are to be
al
ulated using the measured RGB white point of the display that is set by the monitor proo�ngsystem, the 
orrelated D50 rather than an absolute D50. Hen
e the white point of the displayshould always measure L*a*b* = (100, 0, 0).Even under these 
ir
umstan
es the most a

urate reprodu
tion of 
olors 
an only be a
hievedwith the best and most a

urate 
olor 
alibration and pro�ling. Rather than using the standardgamma of 2.2 or 1.8 as 
alibration target, ICS Remote Dire
tor uses a linear L* 
alibrationgamma, mapping the display to a better mat
h with the human visual system. F. Herbert,J. Kirkenaer and J. Ladson pointed out through psy
hophysi
al experiments performed to de-termine settings for a

urate 
olor reprodu
tion on 
omputer displays that by 
alibrating thedisplay to linear L* rather than a gamma of 2.2, a signi�
antly higher 
orrelation was found
omparing 
olor pat
hes in a viewing booth to the same 
olors presented on the 
omputer dis-play [5℄. This experiment also demonstrated how important the viewing environment is, havinga neutral ba
kground both on the display and for the hard
opy [6℄ with the proper amount ofreferen
e white shown in both 
ases.Five (5) numeri
 
riteria must be met in order for a system to be deemed to have passed
erti�
ation and to be labeled as �SWOP Certi�ed.� [7℄:1. The di�eren
e between the 
hara
terization data set and the IT8/7.4 target is an averagedelta E94 ≤ 2.0 for all pat
hes2. The di�eren
e between the 
hara
terization data set and the IT8/7.4 target has a maximumdelta E94 ≤ 6.0 for at least 95% of all pat
hes.3. Solid pat
hes 
yan, magenta, yellow, red green and blue on the IT/7.4 are delta E94 ≤ 6.0from the 
hara
terization data set.4. Di�eren
es between the 
hara
terization data set and pat
hes on the IT8/7.4 target haswhite point of a delta L ± 2.0, a delta a ± 2.0 and a delta b ± 2.0 (ex
luding �ores
en
e).46



Figure 1: Certi�
ation Results.

Figure 2: SWOP Validation Results.5. Di�eren
e between the 50/40/40 gray balan
e target and the 
hara
terization data set hasa delta E94 ≤ 2.0These 
riteria were sele
ted on the basis of measurements of monitor proo�ng systems 
ur-rently 
erti�ed. These 
riteria also draw parallels to hard 
opy spe
i�
ations. It should be notedhere that Cyan and sometimes green are problem 
olors for many displays and may in many
ases be outside the gamut of the display. However, gamut mapping te
hnology 
orre
tly ap-plied brings the out of gamut 
olor to the gamut boundary of the display in su
h a manner asto minimize any visual 
olor di�eren
e.In ICS Remote Dire
tor, for example, the results of 
alibrating the display and runningthrough the 
erti�
ation pro
ess will yield the message shown in Figure 1.Cli
king on �Show Details� will give the display shown in Figure 2, showing ea
h individual
olor of the IT8/7.4 target, and the a
tual delta-E for ea
h 
olor. Note that in this 
ase, Cyanstill passed with an error of 5.56. The other �problem 
olors� 
an be seen to be other solid 
olors,su
h as yellow and green, though well within spe
i�
ation limits.If we were to 
ompare the CMYK pro�le to the display pro�le, and map them in the samethree-dimensional 
olor spa
e, you might get the result shown in Figure 3. Here the gamut forSWOP Coated Paper no. 3 is shown in the gamut of an older Apple Cinema Display, and in this
ase 
erti�
ation did not pass, as shown in Figure 4, though it failed on white point 
alibration,not solid 
olors as would be indi
ated in Figure 3, where the SWOP gamut ex
eeds the displaygamut in the Cyans and Greens.The te
hnology developed for SWOP 
erti�
ation 
an easily be extrapolated to work forother printing standards or referen
e media, su
h as FOGRA or others. FOGRA has proposedthree standard printing 
onditions, FOGRA30L, FOGRA39L and FOGRA40L. Chara
terizationdata for these 
onditions have been published and these 
an easily be used to generate referen
eCMYK pro�les and in
luded in the ICS Remote Dire
tor appli
ation as shown in the Figure 5,for sele
tion and display 
erti�
ation.Comparing the FOGRA30L pro�le to the Coated SWOP no. 3, the FOGRA pro�le gamutis signi�
antly smaller and �ts well within the SWOP gamut, as shown in Figure 6. Hen
e,
erti�
ation using this FOGRA pro�le would pass if the system is already SWOP 
erti�ed.47



Figure 3: SWOP and Apple Cinema Display (Old).
Figure 4: SWOP Certi�
ation on Apple Cinema Display (Old).

Figure 5: RD Pull-Down menu for Display Certi�
ation.

Figure 6: Comparison of SWOP and FOGRA Pro�les48



The pro�le itself is not perfe
t, and CMYK data transformed through the A2B1 table will notalways yield the perfe
t response that a
tually generated the pro�le, that is 
omparing the sameL*a*b* values as in the 
hara
terization data. We 
an run target CMYK values through the A2B1tag, and 
ompare the 
al
ulated L*a*b* value to the measured L*a*b* in the 
hara
terizationset. For the FOGRA30L dataset we get errors ofavg dE = 0.36, max dE = 0.71, stdev dE = 0.09whi
h are a
tually very good results, hen
e display measurements should be very reliable.It should also be noted that for SWOP or for FOGRA there are multiple printing 
onditionssu
h as di�erent paper types that all have to pass the 
erti�
ation pro
ess for the monitorproo�ng system to pass the 
omplete 
erti�
ation pro
ess.Con
lusionsWe have shown that through proper 
alibration and 
hara
terization of the display, and with agood sour
e pro�le for soft proo�ng, a

urate 
olors for the printing 
ondition 
an be presented onthe display. Measurements of these 
olors 
an be used to 
ertify the display, and this 
erti�
ationpro
ess 
an be expanded to other standard or referen
e printing 
onditions.Referen
es[1℄ Gary G. Field: �Color Approval in the Graphi
 Arts�, The Fifth Color Imaging Conferen
e:Color S
ien
e, 1997.[2℄ Ri
ardo J. Motta: �Computer Color Reprodu
tion�, SPIE, Vol 2414 p.2 (1996).[3℄ IPA Color Proo�ng RoundUP Results � 2005, Dr. Abhay Sharma, Ed. (2005).[4℄ IPA Color Proo�ng RoundUP Results � 2006, Dr. Abhay Sharma, Ed (2006).[5℄ F. Herbert, J. Kirkenaer & J. Ladson: �Absolute and relative 
olorimetri
 evaluation forpre
ise 
olor on s
reen�, Color Imaging VIII: Pro
essing, Hard
opy, and Appli
ations, pp294-305.[6℄ ISO/DIS 12646 �Graphi
 te
hnology � Displays for 
olour proo�ng � Chara
teristi
s andviewing 
onditions.� Se
tion 4.7, p4.[7℄ Dr. Chris Edge, Kodak, 
ommuni
ation to the SWOP Committee, November 2006.

49



Additivity Based LC Display Color Chara
terizationJean-Baptiste Thomas and Jon Yngve HardebergColorLab, Gjøvik University College (Norway)Irène Fou
herot and Pierre GoutonLe2i, University of Burgundy (Fran
e)Abstra
tWe introdu
e an additivity based method to perform 
olor 
hara
terization of LC displaydevi
es. We fo
us here on the forward transform from the devi
e RGB 
olor spa
e to XYZtristimulus values. Chromati
ity 
onstan
y is an assumption in all 
hromati
ity matrix based
hara
terization models, but in pra
ti
e this assumption does not hold perfe
tly. The main
ontribution of this work is to de�ne a model where the 
hromati
ity non-
onstan
y is nota sour
e of error. Our method outperforms traditional approa
hes su
h as the PLCC andGOG models without needed more measurements than those. The proposed approa
h 
ouldbe parti
ularly useful for multi-display systems 
hara
terization as it is not time 
onsumingand gives pre
ise enough results.Keywords: LCD, Color 
hara
terization, Proje
tion displays.Introdu
tionChara
terization of 
olor display devi
es is an important part of a 
olor management system.The 
hara
terization of su
h a devi
e de�nes the relationship between the devi
e-dependent
olor spa
e, typi
ally RGB, and a devi
e-independent 
olor spa
e des
ribing the per
eived 
olor,typi
ally XYZ whi
h des
ribes the 
olor per
eption of the CIE standard observer. The forwardtransform make us able to predi
t the 
olor whi
h will be displayed (XYZ) for a given set ofdigital values input to the devi
e (RGB) and the inverse (ba
kward) transform will give us thedigital values to input in order to display the desired 
olor. Our work fo
uses on �nding a forwardmodel whi
h is not subje
t to 
hromati
ity non-
onstan
y.There exist a lot of methods to 
hara
terize 
olor in a display devi
e. Most part of them
an be found in the following arti
les [1, 2, 3℄. We 
ould make the distin
tion between two maingroups. The one whi
h are performing 3D interpolation needs a lot of measurement and are
omputationally 
omplex. However, they don't suppose any spe
ial devi
e properties, i.e. thedevi
e 
an be 
onsider as a bla
k box, and no physi
al rules are assumed. It 
ould be useful forexample when you don't have any/enough information about the te
hnology used. The modelsin the other group are trying to establish a mathemati
al model of the response of the devi
e.For example, linearizing the intensity response 
urve of the display, by a global fun
tion orby interpolation, before applying a 3x3 
hromati
ity matrix to get the XYZ 
oordinates. Thisgroup of models do not need a lot of measurements but are making the assumption that the
hannels are independent and that the 
hromati
ity of the primaries are 
onstant. For instan
e,the response 
urve 
ould either be a gamma shaped 
urve (de�ned by an o�set and a gain) ora S shaped 
urve whi
h 
ould be de�ned by 4 parameters as in the S-Curve model [2℄.In the 
ase of a multi-display system or in the 
ase of a proje
tion devi
e, we need an a

urate
hara
terization model whi
h doesn't need a lot of measurement, as we 
ould have to perform iton several displays or at several positions of the same display to 
orre
t for spatial non-uniformity[4℄. Therefore the 3D LUT methods would be too heavy to be used in su
h a 
ase, in spite ofa good pre
ision [1℄. As desktop proje
tors are seldom belonging to CRT te
hnology, the GOGmodel would not give good enough results. We would expe
t the 
lassi
 PLCC [3℄ to give a good
ompromise between number of measurements, 
elerity and pre
ision. A sour
e of error in su
ha model is the non-
hromati
ity 
onstan
y of primaries (see �g.1.b and 2.b). One 
ause of this50



Figure 1: Proje
tor 1. a : response 
urve for ea
h 
hannel and gray. b : 
hromati
ity shift in xy diagram withoutbla
k 
orre
tion. 
 : Bla
k 
orre
ted 
hromati
ities.is the in�uen
e of the '
hromati
ity' of the bla
k o�set whi
h is mixed with the 
olor, and havemore and more in�uen
e as the intensity de
rease, i.e. the smaller the input value is, the morethe 
hromati
ity is attra
ted by the bla
k. One way to over
ome this problem is to remove thisbla
k o�set before to perform the linearization and apply the matrix. It's working well in the 
aseillustrated in �g.2.b and 2.
 where the 
hromati
ity shift keep almost on a line in the dire
tionof the bla
k, i.e. the bla
k level is almost the only 
ause of 
hromati
ity shift. The PLCC modelthen give 
orre
t results (see table 1). In other 
ases we 
an observe that this 
hromati
ity shiftis taking the shape of a 
oma, i.e. the main part of the 
hromati
ity non-
onstan
y is not onlydue to the bla
k level, the te
hnology itself play an important role (see �g.3.b and 3.
). Anexplanation is given by Mar
u in [5℄, the LC 
omponent properties 
hange with the intensity,so the spe
tra is modi�ed with the intensity. Typi
ally, in Mar
u's experiment, for the (0, 0, 0)RGB input, the bla
k is bluish be
ause of the poor �ltering power in the low wavelength. In su
ha situation, the bla
k 
orre
tion is not at all e�
ient and the model give poor results (table 1).The main idea of our work is to make this shift not a problem, supposing a perfe
t additivityand 
hannel independan
y. Doing that, the error of the model will 
ome only from the 
hannel'snon-independan
y, and from the time and spatial non-uniformities. Obviously the interpolationmethod used will have some in�uen
e as long as we want to limit the number of measurements.In the following se
tions we present our approa
h and some results. Our 
on
lusion gives a wayto perform the inverse model.ModelThe method itself is quiet simple as long as the additive mixture of 
olor is the base of so-
alledadditive displays (as LC panels and proje
tion devi
es). From the measurement of the XYZ
oordinates of a sampling of the digital ramp of ea
h 
hannel (i.e. N values regularly spa
ed onthe 256 possibilities for an 8 bits devi
e), we will suppose the perfe
t additivity of the devi
e.Moreover, we keep on 
onsidering 
hannels as independants. Note also that we perform the bla
k
orre
tion in the manner of PLCC. 51



Figure 2: Proje
tor 2. a : response 
urve for ea
h 
hannel and gray. b : 
hromati
ity shift in xy diagram withoutbla
k 
orre
tion. 
 : Bla
k 
orre
ted 
hromati
ities.Then a 
olor XY Zo output from a RGBi input to the devi
e would be expressed as
Xo = Xri + Xgi + Xbi

Yo = Y ri + Y gi + Y bi

Zo = Zri + Zgi + ZbiWhere Nni is the value of the 
olor from the 
hannel n along the dimension of N for an input i.To generalize from the measurements to all the 
olor spa
e, we perform a 1D interpolationalong ea
h 
hannel R, G, B for ea
h 
olor 
omponent X, Y, Z (i.e. 3 × 3 1D interpolations).Linear interpolation gives good results (see next se
tion), and is already well implemented on a
lassi
al 
olor management system. Therefore it would be easy to use this model with existingsystem and shift from a 
hromati
ities matrix based model as PLCC to our approa
h withoutloosing any time as the matrix 
omputation is repla
ed by linear interpolation.ResultsWe have tested this forward model on 2 LCD proje
tors, the Panasoni
 PT-AX100E referedas proje
tor 1, the 3M-X50, refered as proje
tor 2. And on one LCD desktop panel, refered asmonitor. We have 
ompared the results with 
lassi
 PLCC, and GOG 
hara
terization models.The interpolation method used were linear, 
ubi
 or spline performed with matLab. These resultsare based on a 18 pat
hes by ramp measurements, for ea
h devi
e (see �g.1-3.a). We have
al
ulated the ∆E∗

ab for the forward model from a set of 100 random RGB pat
hes, the mean,the max and the standard deviation of these errors for ea
h method are given in table 1.We 
an obviously see that the PLCC without 
orre
tion for bla
k level gives so bad results.Corre
ting for bla
k level, results are better. As we have said in the introdu
tion, if the bla
k
orre
tion is the main part of 
hannel non-
onstan
y, results are good. It is the 
ase for proje
tor2 with a mean error of 1.78. In the other 
ase, result are not e�
ient at all with 3.93. It's quietstrange to note that the PLCC with or without bla
k 
orre
tion give almost the same a

ura
yfor the monitor. 52



Figure 3: Monitor. a : response 
urve for ea
h 
hannel and gray. b : 
hromati
ity shift in xy diagram withoutbla
k 
orre
tion. 
 : Bla
k 
orre
ted 
hromati
ities.

Table 1: Results
53



Table 2: Additive properties of tested displays.As expe
ted, the GOG model doesn't give so good results for these devi
es with a meanerror of 3.96 and 2.86 respe
tively for proje
tor 1 and 2, and with a mean error of 6.89 for thepanel. Note that the settings of the monitor 
ould be better adjusted to avoid the fa
t that thegreen 
hannel saturate, doing that the GOG would give quiet better results. But seeing that ourmethod give good result in su
h a 
ase prove the robustness of the model.With a linear interpolation, our additive model gives respe
tively 1.41, 0.54 and 2.04. Wehave redu
ed the mean error of the PLCC almost by 3 in the worst 
ase. With other interpolationte
hniques results are quiet similar. The best results were obtained with Spline interpolation forproje
tion devi
e whi
h gives mean error of 1.32 and 1.53, and with linear interpolation formonitor.Maximum errors are quiet small too, around 1.6 for the proje
tor 2, 3.2 for proje
tor 1 and5 for monitor.Seeing at these results, we 
an see that our model over
ome the 
lassi
 PLCC and the GOGmodel for the forward transform. We 
an noti
e as well that the in�uen
e of the interpolationmethod is limited by the number of measurements on the ramp. With a smaller number ofmeasurements, the interpolation would have more in�uen
e on the results.We 
an noti
e as well that the additivity properties of tested displays is, as expe
ted, stilla sour
e of errors. In Table 2 you 
an see the di�eren
e of additive quality of both proje
tiondisplays. We have presented these results as in [2℄. We 
an see, 
oupling information from table1 and 2 that our results are poor as the devi
e's quality for additivity de
rease. However, theadditivity quality of the monitor (table 2) is shown really good, but results are not as good aswith proje
tion devi
es. That mean that the 
hannel intera
tion is big in this devi
e.Con
lusionWe have de�ned a forward model for display 
hara
terization whi
h is easy to implement as thePLCC, with noti
eable better results. This model would be usefull to 
hara
terize multi-displaysystems and proje
tors, as it is easy to perform and doesn't need a lot of measurements.The inverse model would be a bit more 
omplex as there is no analyti
al solution. It 
ouldbe performed by an optimization method to design a regular grid in XYZ, using the forwardmodel. Then it's pretty easy to �nd an e�
ient algorithm to interpolate from this 3D LUT. Notethat no more measurements would be needed to develop the inverse model, so it's possible toover
ome one drawba
k of 3D LUT model.Moreover, this model would be of great interest for multi-primaries displays or spe
tralapproa
hes. This 
ould be a part of our future works.Referen
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Color Mixing and Color Separation of Pigmentswith Con
entration Predi
tionPesal Koirala, Markku Hauta-Kasari, Birgitta Martinkauppi, and Jouni HiltunenDepartment of Computer S
ien
e and Statisti
s, University of Joensuu, Finland.{pkoirala,mhk,jbm,jouni.hiltunen}�
s.joensuu.�Abstra
tIn this study, we propose a 
olor mixing and 
olor separation method for the pigmentspainted on plasti
 surfa
e based on Kubelka-Munk (KM) model. Eleven di�erent pigmentswith seven di�erent 
on
entrations have been used as training set.The amount of 
on
en-tration of ea
h pigment in the mixture is estimated from the training set by using theleast-square pseudo-inverse 
al
ulation. The result depends on the number and type of pig-ments sele
ted for 
al
ulation. At most we 
an sele
t all pigments. The 
ombinations resultedwith negative 
on
entrations or unusual high 
on
entrations are dis
arded from the list of
andidate 
ombination. The optimal pigment's set and its 
on
entrations are estimated byminimizing the re�e
tan
e di�eren
e of given re�e
tan
e and predi
ted re�e
tan
e.Keywords: Color predi
tion, Kubelka-Munk method, Saunderson 
orre
tion, Re�e
tan
e,Least-square pseudo-inverse 
al
ulation.1. Introdu
tionOriginally KM theory is a model of the light travelling in two dire
tions in the materials [9℄.The basi
 KM theory is admissible to the di�use illumination of parti
ular 
oating. The KMtheory is of great importan
e in many areas of applied resear
h and has been used for theopti
al properties of de
orative and prote
tive 
oatings, paints, paper, pigmented polymers,�bers and wool, thermal insulation, biologi
al systems, and in medi
al physi
s [12℄. KM methodassumes a linear relationship between s
attering 
oe�
ient S and the absorption 
oe�
ientK, and this makes the 
omputation pro
ess faster. Further improvement in this method wasa
hieved by Saunderson 
orre
tion [7℄. Saunderson 
orre
tion 
onverts the total re�e
tion to thebody re�e
tion on whi
h the KM theory works. The revised KM theory [8℄ has been used forink, paper and dyed paper. Monte Carlo simulations, Expert systems or Neural networks andMie theory have been immerged as the alternative as well as 
ollaborative method of KM model.Independent 
omponent analysis (ICA) [2℄ may be used as the re�e
tan
e separation but furtherresear
h is required.In this study, we have implemented single 
onstant KM theory for the pigments lo
ated onthe plasti
. Our method predi
ts the re�e
tan
e of mixture from the given set of pigmentswith di�erent 
on
entration. In additions our method is 
apable of predi
ting the a

urate
on
entrations and re�e
tan
e of mixed pigments from the given re�e
tan
e of mixture. This
olor separation method also uses the 
olor mixing method as a sub-problem sin
e the givenmixture is 
ompared with predi
ted re�e
tan
e of mixture to minimize the re�e
tan
e di�eren
e.There are di�erent methods for evaluating these di�eren
es. CIE 
olor di�eren
e equations (CIELab, CIE LUV CIE94 et
), Spe
tral 
urve di�eren
e metri
s (Root mean square error (RMS),Goodness of Fit Coe�
ient (GFC)), Metamerism indi
es and Weighted rms metri
s [5℄ 
an beused to 
al
ulate 
olor di�eren
es during minimizing re�e
tan
e pro
ess. In proposed methodCIE LAB error, Goodness of Fit Coe�
ient (GFC) and Mean square error (MSE) were 
omputedto 
al
ulate quantitative value of re�e
tan
e mat
hing.The re�e
tan
e of training sets and test sets were measured by spe
trometer 
alled AvaMouse[1℄ with 45o/0o geometry under 
ir
ular illumination. In total eleven di�erent samples were usedas training sets. Seven di�erent 
on
entrations of ea
h sample were prepared.56



Figure 1: Re�e
tan
e and K/S ratio of a sample pigment at di�erent 
on
entrations [0.2 0.5 1 24 6 10℄ gram in one litre of �lling material.2. Kubelka-Munk TheoryThe key assumption in applying the KM theory is that the light within the pigment layer is 
om-pletely di�use and there 
an not be 
hanged in refra
tive index in the samples boundaries [11℄.The spe
ular 
omponent is ex
luded by geometry measurement. Many modern spe
trometersare 
apable to measure re�e
tan
e fa
tor without 
hanging the refra
tive index in the samplesboundaries [4℄. However if the available spe
trometer 
an measure only total re�e
tan
e, themeasured re�e
tan
e should be 
orre
ted before applying to KM model by Saunderson 
orre
-tion [7℄ as shown in Eq.(1).
Rλ =

rλ − K1

1 − K1 − K2(1 − rλ)
(1)Where, rλ is the total re�e
tan
e whi
h should be normalized between [0, 1℄ in ea
h wavelength

λ, K1 is the Fresnel re�e
tion 
oe�
ient for the 
ollimated light and K2 is the Fresenel re�e
tion
oe�
ient for di�use light striking the surfa
e from inside. The value of K1 is 0.04 for plasti
material sin
e plasti
 has the refra
tive index of 1.5 [11℄. The value of K2 usually lies between0.4 and 0.6 [7℄. The optimized value of K2 should be 
al
ulated pra
ti
ally.On
e the internal re�e
tan
e is 
al
ulated by the KM mixing law, the total re�e
tan
e is 
om-puted by reversing Eq.(1) as:
rλ = K1 +

(1 − K1)(1 − K2)Rλ

1 − K2Rλ
(2)For 
omplete hiding [3℄, opaque materials [11℄; the internal re�e
tan
e was estimated by KMmodel using the ratio of absorption 
oe�
ient Kλ and s
attering 
oe�
ient Sλ.

Rλ = 1 +

(
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S

)

λ

−

√

(
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S

)2
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+ 2

(

K

S

)

λ

(3)The widely used K over S ratio is obtained reversing Eq.(3):
(

K

S

)

λ

=
(1 − Rλ)2

2Rλ
(4)Figure 1 illustrates the measured internal re�e
tan
e fa
tor and its 
onversion to K over S valuefrom Eq.(4) for the known 
on
entration of [0.2 0.5 1 2 4 6 10℄ gram in one liter �lling material.The s
attering and absorption 
oe�
ients of mixture are des
ribed as the linear 
ombinationof s
attering and absorption 
oe�
ients of mixed pigment s
aled by the 
on
entration of the57



pigments as shown in Eq.(5). This method is well known as two 
onstant KM model.
(

K

S

)

λ,mix

=

n
∑

i=1

CiKλ,i

n
∑

i=1

CiSλ,i

(5)The individual absorption and s
attering 
oe�
ients required for Eq.(5) are 
al
ulated by usingthe white set (setting s
attering 1 in every wavelengths), masstone (100 % relative per
entagepigment) and tint (pigment mixed with white) [6℄. In the 
ase, the substrate has more s
atteringproperties than the 
oated pigment the Eq.(5) is redu
ed to more simple form 
alled the single
onstant KM model see Eq.(6). The ratio of K/S is used instead of 
al
ulating individual K andS. In this paper we have used single 
onstant KM model.
(

K

S

)

λ,mix

=

n
∑

i=1

Ci

(

k

s

)

λ,i

(6)Where,
(

K
S

)

λ,mix
ratio of absorption and s
attering of pigment mixture.

n number of pigments in mixture.
Ci 
on
entration of ith pigment in mixture by weight of dry pigment.
(

k
s

)

λ,i
ratio of absorption and s
attering of ith pigment for unit 
on
entration.3. Color MixingGiven a set of pigments with re�e
tan
e 
urve, we 
an get the re�e
tan
e 
urve for any spe
i�edmixture of pigments by using Eqs.(3), (4) and (6). If the available spe
trometer 
an measure onlythe total re�e
tan
e, then Saunderson 
orre
tion is also 
onsidered (see Eqs.(1) and (2)). In ourexperiment we have measured the re�e
tan
e by AvaMouse handheld re�e
tion spe
trometerwith annular measuring geometry with in range of 380 to 750 nm. The AvaMouse measurestou
hing 
oated surfa
e and distan
e between 
amera and surfa
e are shorter in 
omparison tospe
trophotometer measurement. So the measured re�e
tan
e is equal to body re�e
tan
e, as aresult Saunderson 
orre
tion is not applied to the measurement by AvaMouse.The unit k/s of ea
h pigment is required to predi
t the spe
i�ed mixture of pigments from theset of pigments in training set with spe
i�ed 
on
entration. The Eq.(7) gives the method to
al
ulate unit k/s value of single 
olorant sin
e the 
olorant is mixed with white pigments.

(

k

s

)

λ,1

=

(

K
S

)

λ,mix
− CW

(

k
s

)

λ,w

C1

(7)Where,
C1 
on
entration of pigments.
CW 
on
entration of white pigments used as substrate.Ea
h 
olorant in the training set has seven di�erent 
on
entrations (see Figure 1). From theseseven di�erent 
on
entrations one representative unit k/s is 
al
ulated by using least-squarepseudo-inverse 
al
ulation. Figure 2 illustrates the unit k/s ratio and its normalized spe
trum inwavelength 650 nm. The normalized spe
trums of unit k/s ratio of same pigment from di�erent
on
entrations should be almost the same for proper sele
tion of a sample set. Figure 3 illustratesthe re�e
tan
e 
urves obtained by mixing three samples with the 
on
entration of [0.5 0.7 3.0℄gram. The 
olor of re�e
tan
e of samples and mixture is visualized in monitors by 
al
ulatingthe tristimulus values X, Y and Z from re�e
tan
e and then 
onverting them to devi
e RGB
oordinate system by using linear transformation [11℄ [10℄.58



Figure 2: The unit k/s and normalized unit k/s at 650 nm wavelength 
al
ulated from thesamples at di�erent 
on
entrations.

Figure 3: Three di�erent 
olorants re
onstru
ted with 0.5, 0.7 and 3.0 gram pigment 
on
entra-tion. The right image is the resultant re�e
tan
e 
omputed mixing these three pigments.4. Color Separation and Con
entration Predi
tionThe 
on
entration of the pigments 
an be estimated from Eq.(10) if the K/S value of mixtureand the unit k/s value of mixed pigments are known. The number of 
on
entrations in mixtureis equal to number of pigments (n) mixed and that should be less than the number of wave-lengths sampled to present the re�e
tan
e 
urve. So only the n number of wavelengths 
an besele
ted to solve the n number of 
on
entrations [11℄. However 
hoosing n number of di�erentwavelengths results the di�erent 
on
entrations, so for more stable result least-square pseudo-inverse 
al
ulation is used to 
al
ulate 
on
entration 
onsidering all visible range wavelengths(see Eqs.(8)-(10)). Similarly the unit k/s value of ea
h pigments used in the mixture 
an be 
al
u-lated by least-square pseudo-inverse methods if K/S value of the mixture and the 
on
entrationof pigments used in mixture are known (see Eq.(12)). After knowing the 
on
entration and unitk/s value, the re�e
tan
e of the pigments is predi
ted by using Eqs.(6) and (3) 
onse
utively.The Eq.(6) is represented in matrix form in Eq.(8) extending for all wavelengths.
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Where,
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
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Eq.(8) is represented as:
Y = XC (9)The least-square pseudo-inverse 
al
ulation (see Eq.(10)) is used to �nd the 
on
entration ofpigment. The number of pigments mixed (n ) should be less than number of wavelengths. Soalternatively by 
hoosing the n number of di�erent wavelengths, the problem 
an be solved.Nevertheless the entire wavelength 
al
ulation gives more robust result.

C =
(

X̄X
)

−1
X̄Y (10)Deriving X̄ from Eq.(9)

X̄ =
(

CC̄
)1

CȲ (11)Considering a more 
omplex 
ase where we have only been given the re�e
tan
e of mixtureand our task is to estimate the 
on
entration and the re�e
tan
e of the pigments used in themixture. The problem is solved by using the unit k/s values of ea
h pigment of the training set.The predi
ted 
on
entrations and used unit k/s of ea
h iteration are employed to estimate there�e
tan
e (see Eq.(6) and (3)). This pro
ess is repeated for all possible 
ombinations. Eq.(12)shows the total number of 
ombinations to be 
omputed.
(

N
n

)

=
N !

(N − n)!n!
(12)Where,

N number of pigments in training sets.
n number of pigments used in mixture.The unit k/s and predi
ted 
on
entrations are 
hosen so that estimated re�e
tan
e using this
on
entration and unit k/s has minimum di�eren
es with given re�e
tan
e of mixture. Thedi�eren
es of the re�e
tan
e are 
al
ulated by using 
olor di�eren
e of Lab 
olor spa
es [11℄ [10℄,Goodness of �t 
oe�
ients and Mean square error [5℄. The Computation step predi
ting optimal
on
entrations used in the mixture is shown below.������������������������������1. Compute unit k/s ratio of ea
h training set.2. Convert re�e
tan
e of test set Rmix to K/S ratio using Eq.(4).3. Choose n number of pigments in mixture.Repeat step 4 to 8 for all 
ombination (

N
n

).4. Predi
t 
on
entrations using Eq.(10) and store row wise in matrix 
on
entration.5. The negative 
on
entrations and unexpe
ted high 
on
entrations are negle
ted.60



Figure 4: Real 
on
entration verses predi
ted 
on
entration. Con
entration is represented ingram. The dotted line shows for the pigments and solid line is the average of all dotted lines.6. Predi
t (K/S)P ratio of mixture using predi
ted 
on
entrations and unit k/s ratio fromtraining set, see Eq.(6) or Eq.(8).7. Determine re�e
tan
e RP using (K/S)P , see Eq.(3).8. Cal
ulate di�eren
e ∆E between Rmix , and RP and store ∆E in array error.9. Order the matrix 
on
entration a

ording to array error sorted in as
ending order for Labdi�eren
e and MSE, and des
ending order for GFC.������������������������������The real 
on
entration of pigments used in mixture and 
orresponding predi
ted 
on
entrationsby our method is illustrated in Figure 4. The predi
ted 
on
entrations of 
olorants 
an be
orre
ted by �tting the predi
ted 
on
entration with real 
on
entration by using interpolationmethods. However, in advan
e we should have the relation between real 
on
entration andpredi
ted 
on
entrations of ea
h pigments of the training set.5. Con
lusionThe basi
 theory of KM method was dis
ussed. The method to predi
t the re�e
tan
e of mixturemade from the pigments with arbitrary 
on
entration was des
ribed. Computation pro
ess forthe 
on
entration predi
tion and separated 
olor predi
tion was des
ribed. Our future work will
onsider more a

urate 
olor separation and 
on
entration predi
tion from the given transparentand translu
ent obje
t by KM methods and revised KM methods [8℄ and independent 
omponentanalysis [2℄.Referen
es[1℄ http://www.avantes.
om/news/avamouse.pdf 3-3-2007.[2℄ Hyvärinen A., Karhunen J., and Oja E. Independent Component Analysis. John Wiley andSons, 2001.[3℄ Haase C.S. and Meyer G.W. Modelling pigmented materials for realisti
 image synthesis.ACM Transa
tions on Graphi
s, 11(4):305�335, O
tober 1992.[4℄ Bondioli F., Manfredini T., and Romagnoli M. Color mat
hing algorithms in 
erami
 tileprodu
tion. Journal of the European Cerami
 So
iety, 26:311�316, 2006.61
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iety of Ameri
a, 21(10):1933�1940, O
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s of intensity ligh s
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iety of Ameri
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Video-based analysis for fa
ial skin appearan
ewith automati
 fa
e tra
kingTakao Makino, Koi
hi Takase, Norimi
hi Tsumura, Toshiya Nakagu
hi, and Yoi
hi MiyakeGraduate S
hool of S
ien
e and Te
hnologyChiba University, Yayoi-
ho, Inage-ku, Chiba,263-8522, JapanIntrodu
tionThe analysis and synthesis for fa
ial skin appearan
e play an important role in the �led of
osmetology and entertainment. Figure 1 shows a skin analysis and synthesis system used in the�led of 
osmetology. The 
urrent 
ondition of skin texture is measured as a high resolution imagein the lighting box. The measured image is analyzed by our skin 
olor separation te
hnique [1℄into melanin, hemoglobin and shading 
omponents. The skin melanin texture is 
ontrolled toshow the 
hange of texture by aging. This system is used for the 
ustomer to show the ne
essityof applying the 
osmeti
s. However, the appearan
e of skin also 
hanges drasti
ally by 
hangingthe distribution of illumination. The information from single image is not enough in analyzingthe 
hange of skin appearan
e under various illuminations.In this paper, we propose a video-based analysis for the fa
ial skin appearan
e under var-ious illuminations with an automati
 fa
e tra
king te
hnique. To analyze the 
hange of skinappearan
e under various illuminations, the fa
e is illuminated from various positions of thelight sour
es, and the 
hanges of fa
ial appearan
e are re
orded as video stream during thismeasurement. The re
orded video stream is analyzed to obtain BRDF at the point on the fa
ialskin. However, sin
e the subje
t is not still during the measurement, measurement errors are
aused by the fa
ial movement. The automati
 fa
ial tra
king is ne
essary to 
ompensate thefa
ial movement to perform the a

urate BRDF measurement on the arbitrary fa
ial point. Sin
ethe 
onventional fa
e tra
king te
hniques [2, 3℄ 
an not be used for the fa
e illuminated fromvarious positions of the light sour
es, we build a new fa
e tra
king te
hnique whi
h is robust tothe various shading on the fa
e. The proposed tra
king is the te
hnique to tra
k the fa
ial move-ment and arbitrary points on the fa
ial skin by using two fa
ial features that are less in�uen
edby the shading. Arbitrary points on the fa
ial skin are tra
ked with their 3D 
oordinates andthe estimated fa
ial movement. By using this te
hnique, BRDF of the arbitrary fa
ial point 
anbe measured from the video stream.Video-based analysis for fa
ial skin appearan
eFigure 2 shows an overview of our video-based analysis for fa
ial skin. The system 
onsists of avideo 
amera and a movable light sour
e. The subje
t sits in front of the video 
amera withoutkeeping his or her head still. Sin
e the head of the subje
t is not kept still, the subje
t 
an feelrelaxed during the measurement. The fa
e is illuminated from various positions by rotating thelight sour
e around the subje
t. The 
hanges of fa
ial appearan
e are re
orded as video stream. Inthe re
oded video stream, the in�uen
e of the fa
ial movement is 
ompensated with the tra
kingfor the fa
ial movement and target fa
ial points. The tra
king result of the fa
ial movement isused to estimate the dire
tions of in
ident light and the video 
amera after the fa
ial movement.The tra
king results of target fa
ial points are used to estimate the position of target fa
ialpoints after the fa
ial movement. The 
ompensated video stream is analyzed to obtain dis
retepixel values on measurement points under various illuminations. Continuous BRDF is 
al
ulatedby �tting the BRDF model[4℄ to dis
rete pixel values, the dire
tion of in
ident light and thedire
tion to the video 
amera. The 
al
ulated BRDFs are used to reprodu
e the appearan
e ofthe skin under various illuminations. 63



Figure 1: The 
onventional skin melanin texture 
ontrol system.

Figure 2: The overview of the proposed video-based analysis.
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Figure 3: The �ow of the proposed tra
king te
hnique.Robust fa
e tra
king te
hnique under various illuminationsWe propose a robust te
hnique for the shading to tra
k the fa
ial movement and arbitrary targetpoints on the fa
ial skin. This te
hnique 
an tra
k the parallel shift to x and y dire
tions andthe rotation around the x axis and y axis. Figure 3 shows the �ow of the proposed tra
kingte
hnique. In this �ow, arbitrary target points are set at 
heeks for the example in explanation.The te
hnique 
onsists of four 
omponents: 1) lip and head tra
king, 2) the estimation of thefa
ial movement, 3) the manually assignment of 3D 
oordinates, and 4) the tra
king of targetfa
ial points.1) Lip and head tra
kingCoordinates of the lip (xl, yl) and the head 
enter (xh, yh) are tra
ked on every frame of the videostream. Figure 4 shows the example of the tra
king of the lip and the head 
enter. A 
ombiningmean shift and Kalman �lter [5℄ is used to tra
k (xl, yl) and (xh, yh). This is the te
hnique totra
k the arbitrary 
olored obje
t in real-time. The 
oordinate of the lip (xl, yl) is tra
ked bythe red 
olor obje
t. The head is tra
ked by the skin 
olor and the hair 
olor obje
t, and its
enter (xh, yh) is used to the fa
ial movement estimation. This head tra
king is not a�e
ted bythe shading. Therefore, this estimation 
an be used under any illuminations if the lip is 
apturedin the image.2) Estimation of the fa
ial movementIn this pro
essing, the parallel shift ve
tor t and the rotation angles θ� and φ are estimated byusing (xl, yl), (xh, yh), and the radius of the fa
ial rotation. Figure 5 shows the overview of fa
erotation angles estimation. θ is the angle of the rotation around the y axis(azimuthal rotation),65



Figure 4: The example of the tra
king of the lip and the head 
enter.

Figure 5: The overview of fa
e rotation angles estimation.and φ is the angle of the rotation around the x axis(elevation rotation). The radius of the fa
ialrotation angle θ and φ is rθ and rφ respe
tively. We will des
ribe how rθ and rφ are obtainedlater. In the proposed te
hnique, the head 
enter is assumed as an origin of the fa
ial rotation.Therefore, θ and φ are estimated as
θ = sin−1

(

xl − xh

rθ

)

φ = sin−1

(

yl − yh

rφ

) (1)The parallel shift ve
tor t is estimated as
t = [xh − xy,1, yh,1]

T (2)where (xh,1, yh,1) is the 
oordinate of the head 
enter in the �rst frame of the video stream3) Manually assignment of 3D 
oordinatesThe 3D 
oordinates of arbitrary target points and the radius of the fa
ial rotation are obtainedmanually by using 66



Figure 6: The assignment of 3D 
oordinate and the radius of the fa
ial rotation.front and side view fa
ial images. Figure 6 shows the overview of obtaining the 3D 
oordinate
(X,Y,Z) and the radius of the fa
ial rotation rθ and rφ . (X,Y,Z) is obtained to assign thetarget position by the mouse 
li
k. It is obtained as

(X,Y,Z) = (xa,f − xh,f , ya,f − yh,f , xa,s − xh,s), (3)where (xh,f , yh,f ), (xh,s, yh,s) is the 
oordinate of the tra
ked head 
enter in the front and sideview fa
ial image respe
tively, and (xa,f , ya,f ) , (xa,s, ya,s) is the 
oordinate of the assigned pointin the front and side view fa
ial image respe
tively. Z is obtained to assign the target positionin the side view fa
ial image sin
e x 
oordinate 
an be 
onsidered as z 
oordinate in the sideview fa
ial image. The matrix of 3D 
oordinates F is obtained by iterating this assignment forarbitrary times. It is shown as
F =











X1 Y1 Z1

X2 Y2 Z2...
Xn Yn Zn











T

, (4)where (Xk, Yk, Zk), (k = 1, 2, . . . , n) is the k-th assigned 3D 
oordinate and n is the number ofiteration. rθ and rphi are obtained as
rθ = xl,s − xa,s, rφ =

√

r2

θ + (yl,s − ya,s)2, (5)where (xl,s, yl,s) is the 
oordinate of the tra
ked lip in the side view fa
ial image. These are usedin Eq. (1).4) Tra
king of target fa
ial pointsTarget points assigned in pre-pro
essing are tra
ked by using F , θ, and φ. Figure 7 shows theoverview of the tra
king of target fa
ial points. Ea
h 
oordinate of F is represented as a 3D67



Figure 7: The model of the fa
ial movement and target points tra
king.
Figure 8: The result of eyes and eyebrows tra
king.point in the fa
e 
oordinate system. The head 
enter is the origin of this 
oordinate system.This 
oordinate system 
an rotate around the x axis and y axis. The target point tra
king isperformed to rotate 3D points by using θ and φ, and proje
t to the image plane. The rotationmatrix R whi
h is used for the rotation is

R =





cos θ 0 sinφ
0 cos φ − sin θ
0 0 1



 . (6)The matrix of tra
ked 3D 
oordinates F ′ is obtained as
F ′ =

(

R h
0T
3

1

)

F (7)
0T
3 = (0 0 0)T

h =





xh

yh

0



 .The x and y 
oordinates of F ′ are the 
oordinates of the tra
ked point in the image plane.Figure 8 shows the result of eyes and eyebrows tra
king. The green and blue re
tangles showthe lip and the head position respe
tively. Cyan 
ir
les show the results of eyes and eyebrowstra
king. These points 
an be tra
ked in spite of various fa
e movements.68



Figure 9: Geometry of the experiment.Experimental evaluation for the proposed tra
king te
hniqueIn this se
tion, the e�e
t of the proposed tra
king te
hnique is evaluated by the experiment.The geometry of this experiment is shown in Figure 9. A model of human fa
e is used as thesubje
t of this experiment sin
e it is easy and a

urate to obtain the a
tual movement. The fa
eis illuminated by the light sour
e with an azimuthal angle of 20◦�80◦ and an elevation angle of
−15◦�15◦. In ea
h illumination angle, the fa
e is moved ±5
m to horizontally(along the x axis)and verti
ally(along the y axis) and rotated with an azimuthal angle of −80◦�80◦ around the
enter of the fa
e model. These movements of the fa
e under various illuminations are tra
kedand estimated with the proposed tra
king te
hnique.Table 1 shows the estimation error of the parallel shift by the proposed tra
king te
hniqueat three angles of the light sour
e, and the average and maximum of the estimation error at allangles of the light sour
e. These results show that the estimation error of the parallel shift iswithin 1
m under various illuminations.Table 2 shows the estimation error of the rotation by the proposed tra
king te
hnique at fourangles of the light sour
e, and the average and maximum of the estimation error at all angles ofthe light sour
e. The 
ell with dash indi
ates that the tra
king failed in Table 2. The average ofthe estimation error is within 6◦. The proposed te
hnique fails to tra
k the rotation of the fa
eunder illuminations that the lip is 
overed with the shading. However, the proposed te
hnique
an tra
k the rotation angle of 0◦�20◦ under the light sour
e with an azimuthal angle of 80◦. Itis thought that the proposed te
hnique has enough a

ura
y for the subje
t tra
king in BRDFmeasurement system.Experiment: Video-based BRDF measurementIn this se
tion, we performed the experiment of the proposed video-based analysis te
hnique.This experiment measures BRDF of four fa
ial points on the moving subje
t.Figure 10 shows the geometry of this experiment. The subje
t of this experiment is themodel of human fa
e. The fa
e is illuminated by the light with an azimuthal angle of 0◦�65◦and an elevation angle of 15◦. BRDF is measured at four fa
ial points, forehead, 
heek, lip andnose. In this experiment, BRDF is measured in three di�erent 
onditions of the fa
e movement.One is the 
ondition that the fa
e is kept still. Measured BRDF in this 
ondition is the ground69



Table 1: The estimation error of the parallel shift [
m℄.

Table 2: The estimation error of the rotating [degree℄.
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Figure 10: Geometry of BRDF measurement experiment.truth of this experiment. Another one is the 
ondition that the fa
e is not kept still and itsmovement is not tra
ked. The last one is the 
ondition that the fa
e is not kept still and itsmovement is tra
ked by the proposed fa
ial tra
king. The fa
e is moved randomly from sideto side when the fa
e is not kept still. The distan
e of the movement is up to 3
m. Figure 11shows measured BRDFs. In the results of forehead, 
heek and lip, BRDF with the fa
e tra
kingis highly 
onsistent with the ground truth. However, in the result of nose, BRDF with the fa
etra
king is very di�erent from the ground truth. It is thought that this di�eren
e is 
aused bythe shading on the nose.Appli
ation: moles and a
nes removal simulationAs the appli
ation of our video-based analysis system, we performed moles and a
nes removalsimulation. The removal simulation 
an be performed by 
ontrolling skin 
olor of moles anda
nes. Positions of moles and a
nes on the fa
ial skin are tra
ked by the proposed tra
kingmethod. The skin 
olor 
ontrol[1℄ is performed to pixels in the small region around the targetpoint. Figure 12(a) shows the removal simulation of moles, and (b) shows the removal simulationof a
nes. Moles and a
nes look like skin-like 
olor parts.Con
lusion and Dis
ussionThis paper proposed a video-based analysis for the appearan
e on the fa
ial skin with an auto-mati
 fa
e tra
king te
hnique. The fa
ial movement 
an be tra
ked robustly against the shadingby using the lip and the head 
enter that are less in�uen
ed by the shading. The videobasedanalysis system 
ould measure the BRDF of the moving fa
e. In addition to the BRDF measure-ment, we performed moles and a
nes removal simulation as the appli
ation of our video-basedanalysis system.For further study, we must improve the tra
king te
hnique to tra
k parallel shift along the zaxis and roll rotation. It is thought that every movements of the fa
e 
an be tra
ked a

uratelyby using a

urate 3D fa
e model. Therefore, we are planning to re
onstru
t 3D fa
e model anduse to tra
k. 71



Figure 11: Results of BRDF measurement, (a)forehead, (b)
heek, (
)lip, (d)nose BRDFs.
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Figure 12: Removal simulation of moles and a
nes.
73



Referen
es[1℄ N. Tsumura, T. Nakagu
hi, N. Ojima, K. Takase, S. Okagu
hi, R. Usuba, M. Shiraishi, N.Okiyama, K. Hori and Y. Miyake: �Real-time image-based 
ontrol of skin melanin texture�,ACM SIGGRAPH2005 sket
hes (2005.8.3, LA, USA)[2℄ I. Craw, H. Ellis, and J. Lishman: �Automati
 Extra
tion of Fa
e Features�, Pattern Re
og-nition Letters, vol. 5, pp. 183-187, 1987.[3℄ S. Bir
h�eld: �Ellipti
 al head tra
king using intensity gradients and 
olour histograms�,Pro
. IEEE ICCVPR, pp232-237, 1998.[4℄ Ward G. J: �Measuring and modeling anisotropi
 re�e
tion�, Computer Graphi
s Pro
eed-ings(ACM SIGGRAPH92) Vol.26 No.2 pp. 265-272. 1992.[5℄ Y. Kuroda, K. Morioka, J. Lee, H. Yashima, H. Hashimoto: �Modi�ed Hybrid Tra
kingAlgorithm Using Mean Shift and Kalman Filter�, In 2004 RISP International Workshop onNonlinear Cir
uit and Signal Pro
essing (NCSP'04), pp.177-180, 2004.03, Hawaii, USA.

74



New de
omposition basis for re�e
tan
e re
overyfrom multispe
tral imaging systemsAlamin Mansouri, Tadeusz SliwaLe2i, UMR-CNRS 5158, University of Burgundy, Fran
eJon Yngve HardebergGjøvik University College, Gjøvik, NorwayYvon VoisinLe2i, UMR-CNRS 5158, University of Burgundy, Fran
eAbstra
tIn this paper, we deal with the problem of spe
tral re�e
tan
e fun
tions estimation inthe 
ontext of multispe
tral imaging systems. We work out in the linear model and wepropose a novel method based on the use of spline wavelets as basis fun
tions. We 
omparethis method to Fourier and PCA basis. The results are evaluated with the 
ommonly usedgoodness-of-�t 
oe�
ient (GFC) and prove the reliability of the use of wavelets.Introdu
tionConventional 
olor imaging de�nes ea
h pixel with 3 variables su
h as red, green and blue, whi
hare ne
essary and su�
ient to 
hara
terize any 
olor. This prin
iple has several limitations. First,in a 
olor image a
quisition pro
ess, the s
ene is a
quired using a given illuminant. Thus, it isimpossible to estimate the s
ene 
olor a

urately under another illuminant. Moreover, two 
olorsamples 
an mat
h under one illuminant and appear 
ompletely di�erent under another one.This phenomenon is 
alled metamerism. Multispe
tral imaging systems remedy these problemsby in
reasing the number of a
quisition 
hannels. In doing so, multispe
tral imaging providesthe advantage of high spe
tral resolution over 
lassi
al 
olor imaging systems and the advantageof high spatial resolution over spe
trophotometers. Furthermore, with su
h systems, s
ene sur-fa
e re�e
tan
e re
overy from the 
amera output be
omes easier but not trivial. Thus, �ndingappropriate mathemati
al methods to estimate the spe
tral re�e
tan
e from the 
amera outputis a 
ru
ial task and of great importan
e.Problem formulationThe generally used spe
tral model of the a
quisition 
hain in a multispe
tral system is illustratedin Figure 1, where I(λ) is the spe
tral radian
e of the illuminant, r(λ) is the spe
tral re�e
tan
eof the surfa
e, o(λ) is the spe
tral transmittan
e of the opti
al system, tk(λ) is the spe
traltransmittan
e related to the kth �lter, c(λ) is the spe
tral sensitivity of the 
amera, and ηkrepresents the spe
tral noise for the k-th 
hannel, k = 1 . . . K.The 
amera output dk, related to the 
hannel k for a single pixel of the image, is given by
Figure 1: Synopsis of the spe
tral model of the a
quisition pro
ess in a multispe
tral system.75



dk =

∫ λmax
λmin I(λ)r(λ)o(λ)c(λ)tk(λ) dλ + ηk. (1)If the noise is assumed removed by prepro
essing [1℄, and assuming a linear opto-ele
troni
transfer fun
tion, we 
an repla
e I(λ), c(λ), o(λ) and tk(λ) by the spe
tral sensitivity Sk(λ) ofthe kth 
hannel. Then, the Equation (1) be
omes:
dk =

∫ λmax
λmin Sk(λ)r(λ) dλ + ηk. (2)By regularly sampling the spe
tral range to N wavelengths, Equation (2) 
an be written inmatrix notations as follows:
dk = ST

k (λ)r(λ), (3)where Sk(λ) = [sk(λ1)sk(λ2) . . . sk(λN )]T is the ve
tor 
ontaining the spe
tral sensitivity of thea
quisition system related to the k-th 
hannel, r(λ) = [r(λ1)r(λ2) . . . r(λN )]T is the ve
tor ofthe sampled spe
tral re�e
tan
es of the s
ene, and T is the transpose operator. Considering thesystem with all 
hannels, Equation (3 
an be written as:
d = ST r (4)where d is the ve
tor 
ontaining all dk 
amera outputs and S = [s1s2 . . . sK ]T is the matrix
ontaining the 
hannels spe
tral sensitivities Sk. The �nal goal is to re
over r(λ) from the
amera output a

ording to Equation (4). This is obtained by �nding an operator Q that solvesfor the following equation:
r = Qd. (5)Depending on how the operator S is determined, two paradigms of spe
tral re�e
tan
e esti-mation exist [2℄.

• If S is obtained by a dire
t physi
al system 
hara
terization, Q is the pseudo-inverse of S.
• If S is obtained indire
tly by mat
hing a set of M 
olor pat
hes (for whi
h we know thetheoreti
al re�e
tan
es) and we 
apture an image of these pat
hes with the multispe
tral
amera, we have then a set of 
orresponding pairs (dm, rm), for m = 1, . . . ,M , where dm isa ve
tor of dimension K 
ontaining the 
amera responses and rm is a ve
tor of dimension

N representing the spe
tral re�e
tan
e of the m-th pat
h. The re�e
tan
es rm are gatheredin the matrix R and the 
amera outputs for the M pat
hes are gathered in the matrix
D. The operator Q is straightforwardly obtained by 
al
ulation of this mat
hing. Anyoptimization method 
an ful�ll this aim (neural networks, Least squares. . . ). Thus, theoperator Q is obtained like:

R = QD (6)involving then the inversion
Q = RD−1. (7)A third paradigm for spe
tral re�e
tan
e estimation 
onsists of dire
t interpolation of the 
ameraoutputs dk. Then, no knowledge about operator S is required. Nevertheless, rigorous 
onditionsabout �lters' shape, as well as well 
alibrated and normalized data is required for this kind ofre
onstru
tion. The re
onstru
tion is performed by any interpolation operator (spline, et
.)The �nal goal is to estimate spe
tral re�e
tan
e fun
tions r from 
amera outputs d. Todo so, several methods belonging to the two �rst paradigms exist in literature. Some 
lassi
alapproa
hes use the pseudo-inverse 
al
ulus and the least squares. The main drawba
k of thesemethods is instability of solutions due to the noise ampli�
ation. That is why some other methodsadd some 
onstraints on the re�e
tan
e fun
tions to be in the range [01] or seek to maximizethe smoothness of the estimated result. 76



Re�e
tan
e estimation in the linear modelUtilization of a linear model to estimate re�e
tan
e from 
amera response seems to be trivialsin
e we supposed a linear opto-ele
troni
 transfer fun
tion enabling us the matrix notation inEquations (4, 5). Moreover, the linear model o�ers an alternative to imposing smoothness onre�e
tan
e fun
tions [3℄. This is expressed by assuming that r(λ) 
an be approximated by alinear 
ombination of a small number of basis fun
tions [4℄. Thus, a set of basis fun
tions Bj

(j = 1 . . . M)) are de�ned su
h that ea
h re�e
tan
e ri 
ould be written as:
ri = Bjai,j, (8)where ai,j is the weight of the jth basis fun
tion related to the ith sample. The basis fun
tions arethemselves fun
tions of wavelength but free of 
onstraints su
h as being positive or 
onstrainedto be limited to the range [01]. Their number M is 
hosen to 
onserve maximum of energy.Equation (4) 
an be written as:
d = ST Ba, (9)where the 
olumns of the N × M matrix B 
ontain the M basis fun
tions of a linear model ofre�e
tan
e spe
tra and the M ×1 matrix a holds the weights that de�ne the parti
ular spe
trumthat we are trying to re
onstru
t. When gathering ST and B in a unique operator, the latter isa square matrix that 
ould be easily inverted. We 
an rewrite Equation (9 as:

a = (ST B)−1d, (10)whi
h allows us to 
ompute a. Afterwards we 
an easily estimate r by simple multipli
ation:
r = Ba. (11)In this 
ontext, methods belonging to the se
ond paradigm use te
hniques of de
omposition,although impli
itly. We 
an 
ite the method proposed [5℄ whi
h takes advantage of the a pri-ori knowledge about the spe
tral re�e
tan
es that are to be imaged (pigments re�e
tan
e forpaintings re�e
tan
e re
onstru
tion). Methods based on linear neural networks are also methodstaking bene�ts from basis de
omposition [6℄. In our paper we will a
hieve the de
ompositiontask by experimenting with three basis fun
tions: PCA, Fourier and Wavelets analysis.Experiments and resultsIn this se
tion, we des
ribe three experiments to evaluate the spe
tral re�e
tan
e estimationperforman
e for the three methods: PCA, Fourier and wavelets analysis. The data we used aresampled at 10 nm intervals in the range [400, 700] yielding for ea
h spe
trum r(λ) to a ve
tor of31 values.The aim of this experiment is to derive a small number of basis fun
tions from a set ofspe
tra using the three methods. Then, we try to re
onstru
t all the set using only the basis we
omputed. To do this we used a set of 404 natural spe
tra. We performed de
omposition usingthe three methods. We found that 95% of energy is hold by the six greatest ve
tors. Furthermore,for pra
ti
al reasons that involve the number of Fourier and wavelets basis to be multiple of two,we 
hose to keep the eight �rst basis fun
tions. The wavelets we used in this paper are based onthe spline family.Re
onstru
tion of training setAfter deriving the basis fun
tions for the �training� set, we try to re
onstru
t all the spe
tra inthis set using these basis fun
tions and the 
oe�
ients matrix a (Equation (10). The Figure 2shows the results for the three methods in terms of visual 
omparison of re
onstru
ted 
urves:77



a b 
Figure 2: Samples of re
onstru
ted spe
tra from the training set using: a. PCA eight basisfun
tions, b. Fourier eight basis fun
tions, 
. Wavelets eight basis fun
tions.Table 1: Results, in terms of GFC, of the re
onstru
tion of the training set for the three methods.Method GFCMean median STD MinPCA 0.9997 0.9999 5.1903·104 0.9953Fourier 0.9841 0.9905 0.0170 0.8799Wavelets 0.9952 0.9978 0.0053 0.9655We also evaluate the re�e
tan
e estimation in terms of an obje
tive metri
. For this purpose,we used the non 
entered 
orrelation 
oe�
ient, largely used and known in the 
ommunity asGoodness of Fit Coe�
ient (GFC) expressed by the formula:
GFC =
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∣

∣
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)1/2where Rm(λj) is the value measured by the spe
trophotometer in the wavelength λj , and Rr(λj)represents the re
onstru
ted value related to the same wavelength. Table 1 gives the full resultsfor the 404 spe
tra in terms of mean, median, standard deviation and the minimal value of GFC.Generalization performan
eFrom the previous results, we retain PCA and Wavelets to test them in the task of generalization.That means we extra
t a PCA and wavelets basis fun
tions from a set that we 
all training setand try to estimate re�e
tan
e from another set. In our 
ase, we used Ma
beth DC as a trainingset and Ma
beth Color 
he
ker as re
onstru
tion target. Figure 3 depi
ts some samples of theperformed re
onstru
tion allowing for visual 
omparison of the re
onstru
ted 
urves. We alsoevaluate the generalization 
apabilities of these two methods in terms of GFC. Table 2 gives theresults. 78



Table 2: Results, in terms of GFC, of the generalization 
apabilities for the methods using PCAand wavelets basis fun
tionsMethod GFCMean median STD MinPCA 0.9971 0.9990 0.0048 0.9820Wavelets 0.9980 0.9986 0.0021 0.9922

a bFigure 3: Results of generalization test for: a. PCA basis fun
tions and b. Wavelets basis fun
tion.Estimation from multispe
tral imageThe main obje
tive in multispe
tral imaging is to be able to re
onstru
t full spe
tral re�e
tan
e
urves r(λ) from a small number of 
hannels K 
ontained in the ve
tor dk. That is why weperform this third experiment. We used two multispe
tral images of the Ma
beth DC 
omposedof eight 
hannels representing 
aptured ea
h 40 nm in the range [400, 700]. The di�eren
e betweenthe two images is the shape of the �lters. The �rst image is issued from narrow-band �lters,while the se
ond image is issued from large-band �lters (FWHM of 40 nm). Then, in order tore
over the full spe
trum for ea
h pat
h, we used the previously 
omputed basis in the 
ase ofthe wavelets but we 
omputed a new basis for the PCA method. Figure 4 shows results for thisexperiment in terms of visual 
omparison of 
urves.Table 3 gives the results for this experiment in terms of GFC when using a multispe
tralimage issued from narrow band �lters.The Table 4 gives the results for this experiment in terms of GFC when using a multispe
tralimage issued from large band �lters.Table 3: Results, in terms of GFC, for the re�e
tan
e estimation from 
amera outputs in the
ase of multispe
tral image from narrow-band �lters.Method GFCMean median STD MinPCA 0.8841 0.9605 0.1898 0.2847Wavelets 0.9948 0.9972 0.0064 0.971079



a
b


dFigure 4: Results of re�e
tan
e estimation from: a. narrow-band multispe
tral image using PCA,b. narrow-band multispe
tral image using wavelets, 
. large-band multispe
tral image using PCA,and d. large-band multispe
tral image using wavelets

Table 4: Results for the re�e
tan
e estimation from 
amera outputs in the 
ase of multispe
tralimage from large-band �lters.Method GFCMean median STD MinPCA 0.9970 0.9993 0.0081 0.9604Wavelets 0.9948 0.9971 0.0071 0.9665
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Dis
ussionLooking to the results of the �rst experiment, one 
an remark that Fourier basis presents theworst performan
es and presents some artifa
ts on the boundaries as depi
ted in Figure 2b (en-
ir
led area); this even we repli
ate periodi
ally the re�e
tan
e samples. The wavelets remedyto this problem thanks to multiresolution analysis and presents therefore good results in termsof GFC and visual 
omparison. But, the PCA presents the greatest s
ores for the task of re
on-stru
ting samples from the training set. It is natural sin
e PCA derive Smooth basis for smoothdata set. For the generalization task, the wavelets basis fun
tions performs better and get thebest s
ores in term of GFC and 
urves visual 
omparison even the training set and test set arestatisti
ally similar (Ma
beth DC and Ma
beth CC). We noti
e that we 
ould use the basisfun
tions derived from the �rst experiments in the 
ase of wavelets. Wavelets basis are indepen-dent from training. The only hypothesis is that the 
urves are smooth. The third experimentshows again the best performan
e of the wavelets in the task of estimating re�e
tan
es frommultispe
tral output system. In the 
ase of multispe
tral image issued from narrow-band �lters,s
ores for the wavelets are largely superior. That means that PCA is not adapted to re
onstru
-tion for this kind of images. In the 
ase of multispe
tral image issued from large-band �lters,the two methods presents quite similar results. The mean and median are superior for PCA butthe standard deviation and the min are superior for Wavelets. That expresses the stability inthe results of wavelets.Con
lusionIn this paper, we introdu
ed a new method for spe
tral re�e
tan
e re
onstru
tion using waveletsbasis fun
tions. We tested this method in three 
ases: re
onstru
tion of the training set, gener-alization and the re
onstru
tion of re�e
tan
e from multispe
tral imaging system. We 
omparethis method to two other methods belonging to the same paradigm: Fourier and PCA. We eval-uate the results in terms of GFC and re�e
tan
e 
urves 
omparison. The proposed method showgood and stable performan
e in all experiments. The future work will 
on
ern designing andtesting other types of wavelength more adapted to smooth re�e
tan
es.Referen
es[1℄ Mansouri, F. S. Marzani, P. Gouton, Development of a proto
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trale detableaux de maître, PhD thesis, ENST Paris, de
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tral imaging, IEEE-International Conferen
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tan
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Spe
tral Color Reprodu
tion versus Color Reprodu
tionJérémie Gerhardt and Jon Y. HardebergThe Norwegian Color Resear
h LaboratoryDepartment of Computer S
ien
e and Media Te
hnologyGjøvik University College, Gjøvik, NorwayAbstra
tIn this paper we are 
omparing spe
tral 
olor reprodu
tion versus 
olor reprodu
tion.We perform three 
olorant separations based on the inversion of the spe
tral Neugebauermodel: one minimizing a spe
tral di�eren
e for the spe
tral print, a se
ond minimizing a
olorimetri
 di�eren
e for the 
olorimetri
 print and a third one minimizing a weightedsummation of both 
olorimetri
 and spe
tral di�eren
e. A multi-
olorant printer is used forour experiments and the prints simulated with the spe
tral Neugebauer model.Keywords: spe
tral 
olor reprodu
tion, spe
tral printer model, multi-
olorant printing,spe
tral 
olorant separation.1. Introdu
tionWith a 
olor reprodu
tion system it is possible to make a 
olor a
quisition of a s
ene or obje
tunder a given illuminant and to print a 
olor reprodu
tion of it. With proper 
alibration and
hara
terization of the devi
es involved, and disregarding the problems related to 
olor gamutlimitations, it is theoreti
ally possible to produ
e a 
olor reprodu
tion whi
h will appear iden-ti
ally to the original. For example a painting and its 
olor reprodu
tion put side by side willappear identi
al under the illuminant used for its 
olor a
quisition even if the spe
tral prop-erties of the painting pigments are di�erent from the print inks. This phenomenon is 
alledmetamerism. On the other hand, if the illumination 
hanges, the reprodu
tion will generallyno longer be per
eived as equal to the original. This problem 
an be solved in a spe
tral 
olorreprodu
tion system.Multispe
tral 
olor imaging o�ers the great advantage to provide the full spe
tral 
olorinformation of a surfa
e. While a 
olor a
quisition system re
ords the 
olor of a surfa
e undera given illuminant, a multispe
tral a
quisition system 
an re
ord the spe
tral re�e
tan
e of asurfa
e and allows us to simulate the 
olor of under any illuminant. In an ideal 
ase, after saving aspe
tral image we would like to display or to print it, from that point we have two options: eitherto 
al
ulate the 
olor rendering of our spe
tral image for a given illuminant and to display/printit, or to reprodu
e the spe
tral image. This is a 
hallenging task when for example we have madethe spe
tral a
quisition of a 2 
entury old painting and the 
olorants used at that time are notavailable anymore or we have lost the te
hni
al knowledge to produ
e them.The introdu
tion of multi-
olorant printer in 
olor printing, for a primary goal of in
reas-ing printer 
olor gamut has o�ered new possibilities in spe
tral 
olor reprodu
tion. The �rstworks with a spe
tral use of multi-
olorant printer were fo
used on 
olorant sele
tion [1, 2, 3℄and spe
tral printer modeling [4, 5℄. Then spe
tral 
olor reprodu
tion of spe
tral image wasintrodu
ed [6, 7, 8℄. A 
omplete work�ow for spe
tral 
olor reprodu
tion is existing and resear
hworks are 
onverging toward linking a
quisition and reprodu
tion of spe
tral image [9, 10℄ basedon the model of a 
olor reprodu
tion work�ow.Multi-
olorant printer o�ers the possibility to print the same 
olor by various 
olorant 
om-binations, i.e. metameri
 print is possible. This is an advantage for 
olorant separation [11, 12℄,it allows for example to sele
t 
olorant 
ombination minimizing 
olorant 
overage or to optimizethe separation for a given illuminant. In spe
tral 
olorant separation we are aiming to redu
ethe spe
tral di�eren
e between a spe
tral target and its reprodu
tion, i.e. we want to redu
e themetamerism. This task is performed by inverting the spe
tral printer model.83



The spe
tral Neugebauer model and the Yules-Nilsen spe
tral modi�ed Neugebauer model(YNSN) are 
ommonly use for spe
tral printer 
hara
terization [13℄. As in 
olor reprodu
tionsu
h system needs to be 
hara
terized and spe
tral printer 
hara
terization has been used alreadyfor 
olor reprodu
tion sin
e it provided more a

urate information [5℄.2. Spe
tral versus 
olorimetri
 printingIn this paper we want to asses the di�eren
e between a multi-spe
tral print and a 
olorimetri
print. The 
hoi
e of 
olorimetri
 versus spe
tral printing is made during the 
olorant separationpro
ess. Colorant separation (i.e. inversion of the spe
tral printer model) is performed by opti-mization te
hnique ending by minimizing a 
ost fun
tion. When a spe
tral print is desired the
olorant separation is performed su
h that the di�eren
e between the spe
tral target and theestimated print is minimized for the spe
tral root mean square (sRMS) di�eren
e. For a 
olori-metri
 print we will 
al
ulate a ∆E∗

ab di�eren
e between the spe
tral target and the estimatedprint.Gamut mapping plays an important role in 
olor reprodu
tion: printer gamut and imagegamut may be partially di�erent. Gamut mapping transformation will map image data to theprinter gamut in order to keep most of the information [14℄. Gamut mapping be
omes more
ompli
ated for spe
tral data [15℄, due to the dimension of the problem it is likely impossibleto apply dire
tly 
olor gamut mapping te
hniques to spe
tral data. But with the use of aninverse printer model and optimization it is possible to map spe
tral re�e
tan
e to the spe
tralprinter gamut. The spe
tral printer gamut is de�ned by the spe
tral re�e
tan
e of the available
olorants and all the 
ombination between them, i.e. the Neugebauer primaries (NP) of theprinter. A

ording to the Neugebauer printer model the spe
tral re�e
tan
e of a printed 
olorant
ombination is the weighted summation of the NP where the weights are the area 
overed by theNP. It is a 
onvex optimization problem to solve sin
e the summation of the weights is equal to1. So by inverting the spe
tral Neugebauer model for the weights we obtain an estimation of the
losest printable spe
tral re�e
tan
e a

ording to the desired spe
tral target and 
olorants [16℄.3. Experiment and resultsWe use in our experiment the Esser test
hart made of 283 spe
tral pat
hes. Colorimetri
 andspe
tral prints are simulated for the original test
hart and its gamut mapped version withthe te
hnique des
ribed above, see in Fig. 1 (a) the gamut mapped Esser test
hart spe
tral re-�e
tan
es. The 
olorant separations are run for a simulated seven 
olorants printer, see Fig. 1 (b)for the NP spe
tral re�e
tan
es of the printer.Performan
e of the 
olorant separation pro
esses are shown in Table 1 for the originaltest
hart and Table 2 for the gamut mapped test
hart. In both experiment the 
olorimetri
print is performed for ∆E∗

ab under illuminant D50. Di�eren
es between target and print are
al
ulated in CIEL∗a∗b∗ spa
e for illuminant A, D50, D65, F11 and sRMS.A third method is experimented to perform the 
olorant separation involving both sRMSand ∆E∗

ab in the 
ost fun
tion. Our metri
 is then a weighted summation of these two metri
sand the di�eren
e to be minimized is de�ned by:
d = (1 − α) × ∆E∗

ab + α × sRMS (1)where α = 0 is equivalent to 
olorimetri
 print and α = 1 equivalent to spe
tral print. sRMS hasbeen s
aled for this method su
h that both metri
 vary in the same range of value. In Fig. 2 (a)are displayed 
olorimetri
 di�eren
es and in Fig. 2 (b) spe
tral di�eren
es versus α. Extremevalues in the graphs are 
orresponding to those displayed in Tab. 2.We observe an interesting result, from α = 0 to α = 0.25 the sRMS metri
 is de
reasingfaster than the in
reasement of the 
olorimetri
 metri
 ∆E∗

ab. Small α values 
orresponds to84



bigger weigth put on the 
olorimetri
 di�eren
e in the 
olorant separation. This method seemsto rea
h an area where the ∆E∗

ab is stable and sRMS is de
reasing. It des
ribes 
olorant valueswhi
h both minimizes 
olorimetri
 and spe
tral di�eren
e.4. Con
lusionBoth method end up with large error when 
olorant separation is performed on the originaldata. But the spe
tral print produ
e smaller error in term of spe
tral di�eren
e than for the
olorimetri
 print and 
olorimetri
 print produ
e smaller 
olorimetri
 di�eren
e with a minimumpeak for the illuminant D50 
hosen during the 
olorant separation, see Tab. 1 and Tab. 2.After spe
tral gamut mapping both method provide 
loser prints with the new gamut mappedtest
hart. We 
an see that the spe
tral print is still better than the 
olorimetri
 print in termof spe
tral di�eren
e. But all 
olorimetri
 di�eren
es are redu
ed for the 
olorimetri
 print andare minimum again for the illuminant used in the 
olorant separation. The 
olorant separationin
luding a minimization of a metri
 based on both 
olorimetri
 and spe
tral 
on�rms that moreweight put on the 
olorimetri
 di�eren
e or on the spe
tral di�eren
e improves one or the otherdi�eren
e respe
tively and still a better spe
tral di�eren
e does not provide better 
olorimetri
di�eren
es. But it also reveals an area 
orresponding to small α value where both 
olorimetri
and spe
tral metri
s are de
reased.A spe
tral print tends to redu
e metamerism (smaller variations between the 
olorimetri
di�eren
es 
omparing to those obtain for 
olorimetri
 print) but other targets and set of 
olorantshould be tested for the 
olorant separation pro
ess. Also the use of the inverse YNSN shouldprovide better results sin
e it improves the spe
tral Neugebauer model.Referen
es[1℄ Timothy Kohler and Roy S. Berns. Redu
ing metamerism and in
reasing gamut using�ve or more 
olored inks. IS&T's Third Te
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ien
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Table 1: Di�eren
es between the 
olorimetri
 and spe
tral print for the original Esser test
hart.
∆E∗

abmethod A D65 D50 F11 sRMSAv. 13.32 15.57 14.99 15.73 0.047spe
tral Std 11.92 13.34 12.74 12.44 0.035Max 65.37 70.16 68.86 69.90 0.180Av. 9.43 9.03 8.72 10.09 0.073D50 Std 9.89 9.75 9.96 9.35 0.048Max 52.39 45.85 44.45 42.39 0.255

Table 2: Di�eren
es between the 
olorimetri
 and spe
tral print for the gamut mapped Essertest
hart. The �rst three line show the di�eren
es between the original test
hart and the gamutmapped test
hart.
∆E∗

abmethod A D65 D50 F11 sRMSspe
tral Av. 12.01 13.87 13.40 14.13 0.044gamut Std 11.33 12.36 11.87 11.86 0.035mapping Max 59.98 63.98 60.33 61.23 0.180Av. 1.66 1.83 1.78 1.90 0.005spe
tral Std 2.73 2.62 2.65 2.95 0.005Max 14.38 13.40 13.77 16.42 0.026Av. 1.48 1.12 0.99 1.40 0.013D50 Std 2.36 1.91 2.12 2.30 0.012Max 14.84 11.87 12.81 13.01 0.089
86



[9℄ Mit
hell R. Rosen, Edward F. Hattenberger, and Nobotu Ohta. Spe
tral redundan
y in a6-ink ink-jet printer. IS&T 2003 PICS Conferen
e, pages 236�243, 2003.[10℄ Maxim W. Derhak and Mit
hell R. Rosen. Spe
tral 
olorimetry using LabPQR: an interim
onne
tion spa
e. Journal of Imaging S
ien
e and Te
hnology, 50(1):53�63, 2006.[11℄ Vi
tor Ostromoukhov. Chromati
ity gamut enhan
ement by heptatone multi-
olor printing.In IS&T SPIE, volume 1990, pages 139�151, 1993.[12℄ A. Ufuk Agar. Model based 
olor separation for 
myk
m printing. In The 9th Color ImagingConferen
e: Color S
ien
e and Engineering: Systems, Te
hnologies, Appli
ations, 2001.[13℄ Jon Y. Hardeberg and Jérémie Gerhardt. Chara
terization of an eight 
olorant inkjet systemfor spe
tral 
olor reprodu
tion. pages 263�267, 2004.[14℄ Ján Morovi£ and M. Ronnier Luo. The fundamentals of gamut mapping: A survey. Journalof Imaging S
ien
e and Te
hnology, 45(3):283�290, 2001.[15℄ Arne M. Bakke, Ivar Farup, and Jon Y. Hardeberg. Multispe
tral gamut mapping andvisualization � a �rst attempt. In Color Imaging: Pro
essing, Hard
opy, and Appli
ationsX, Ele
troni
 Imaging Symposium, volume 5667 of SPIE Pro
eedings, pages 193�200, SanJose, California, January 2005.[16℄ Ali Alsam, Jérémie Gerhardt, and Jon Y. Hardeberg. Inversion of the Spe
tral NeugebauerPrinter Model. In AIC Colour 05, pages 44�62, 2005.

87



400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wavelength λ nm

R
ef

le
ct

an
ce

s

Spectral gamut mapped Esser testchart

(a) 400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wavelength λ nm

R
ef

le
ct

an
ce

s

NG spectral reflectances

(b)Figure 1: Spe
tral re�e
tan
e of the Esser tes
hart after spe
tral gamut mapping in (a). The 128Neugebauer primaries spe
tral re�e
tan
es used for gamut mapping and simulating the spe
traland 
olorimetri
 prints in (b).
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(b)Figure 2: Evolution of the di�eren
e between the original target (here the gamut mapped Essertest
hart) and the its estimation after 
olorant separation fun
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tor. ∆E∗

ab in (a) andsRMS in (b).
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