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Abstract

This thesis focuses on signal analysis of electrocardiograms (ECG) from out-of-

hospital cardiac arrested patients. The application of such methods may even-

tually contribute in guiding therapy towards improved survival rates which in

general are dismally low, but varies among di�erent ambulance systems de-

pending on time from arrest to �rst electrical de�brillation given to the patient.

One of the possible reasons for this is that a large part of the valuable therapy

time is wasted in futile attempts to restart the heart by electrical de�brilla-

tions. Using this time to provide precordial compressions and ventilations to

establish and keep up an arti�cial supply of oxygenated blood would serve the

patient better. It would improve the heart condition and thus increase the

chance of successful de�brillation outcome.

By predicting de�brillation outcome, the ratio of failured de�brillations can

be decreased. The ability to monitor therapeutic e�cacy can help the rescuer

to optimise performance. A decision support system involving ECG signal

analysis to extract descriptive features has been investigated for these purposes

in earlier work. We propose to use a pattern recognition framework for the

decision support system. In contrast to most earlier work with one-dimensional

features, this allows analysis of multivariate information. In our experiments

we demonstrate that performance both in outcome prediction and monitoring

is better when the analysis is based on combined rather than one-dimensional

features. We also propose and experimentally verify methods �rstly to control

performance and secondly to ensure that performance results are reliable.

Another problem also has to be resolved. The precordial compressions and

ventilations cause artefacts in the ECG so that treatment has to be stopped

during analysis. We propose using adaptive �lters for removing such artefacts.

These �lters use reference signals providing information correlated to compo-

nents in the artefacts. In one of our experiments we mix human ECG with

artefacts from animal ECG and show that the adaptive �lter is successful in

restoring the original human ECG signal.
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Chapter 1

Introduction

The quest to reverse sudden death goes back to biblical times. The �rst

account of arti�cial respiration appeared in 1744, while the �rst documented

report of arti�cial circulation by chest compressions is dated 1891. Various

techniques for resuscitation based on either of these principles were used until

recent times. Supporting ventilation to the lungs (pulmo) and circulation to

the heart (cardio) are thus the key elements of resuscitation, and in the period

between 1958 and 1961 they were recognized as parts of a whole and complete

approach to resuscitation. Cardiopulmonary resuscitation (CPR) as we know

it was thus established.

The use of electricity to terminate fatal rhythm in an arrested animal heart

by de�brillation appeared as a footnote in a paper in 1899. The �rst human

patient was successfully de�brillated in 1947. This was followed by develop-

ments in the technique to make the de�brillators portable. By the early 1970s

de�brillators and CPR were established as key elements in prehospital care.

Programs to train emergency medical technicians (EMTs) in the use of de-

�brillators began to appear in 1980. Since then advances in technology has

allowed for automated external de�brillators (AEDs). The AEDs advises the

EMT to apply a de�brillators shock if it recognizes the rhythm appearant in

the patient's electrocardiogram (ECG) to correspond to cardiac arrest. This

allowed shorter training time for the EMTs as they do not have to interpret the

cardiac rhythm. Since then we have seen a gradual advancement in technology

to make AEDs smaller and easier to use which leads to a more wide-spread

use of AEDs.

In the conclusion of [42] it is remarked that

1



2 Introduction

The last 20 years has not seen a fundamental breakthrough. CPR is

fundamentally unchanged since it was �rst invented. De�brillation

is also unchanged, although there are now sophisticated machines

capable of automatically interpreting the rhythm and guiding the

operator through the resuscitation. The pharmacologic manage-

ment of cardiac arrest has not fundamentally changed in decades,

and emergency medical services are not fundamentally di�erent in

the 1990s compared to the 1970s. The quest to reverse sudden

death has not stopped in the last 2 decades, but it has also not led

to a new scienti�c or historical breakthrough.

In the light of these remarks it is worth noting that the manufacturers of AEDs

focus on de�brillation alone. In the development of the de�brillators a lot of

attention is directed towards the shape of the de�brillation waveform, size of

equipment and new user groups. CPR is provided according to a prede�ned

protocol. \Early de�brillation" is the key element in resuscitation. A recent

study [24] indicates the importance of reestablishing arti�cial circulation and

ventilation as there had been no improvement of overall survival rates in the

community after the introduction of AEDs in the emergency systems. Focus

in parts of cardiac arrest research is shifting towards the possibility to improve

outcomes by individualising therapy for each patient. The characteristics of

the cardiac arrest rhythm, ventricular �brillation (VF)is pointed out as being

an important factor in this respect. The challenge of VF analysis is the core

problem discussed in this thesis.

In the remaining part of this introductory chapter we will discuss the prehospi-

tal scenario, identify the key problems, discuss the salient features of pattern

recognition, give an outline of the contents of this thesis and point out the

major contributions of this work.

1.1 Prehospital scenario

Cardiac arrest is a common cause of sudden death. An incident may be wit-

nessed by a bystander. One of the crucial factors for survival is whether this

bystander, the lay rescuer, knows the procedures of basic life support. Ab-

sence of consciousness and signs of life is veri�ed and chest compressions in

combination with mouth-to-mouth ventilation is provided until an ambulance

arrives with a professional rescue team. They assess the situation and provide

advanced life support by clearing airways and providing de�brillation, chest

compressions, ventilation and drug therapy. Finally, the patient is brought to
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the intensive care unit of a nearby hospital. If the outcome of the incident is

happy the patient is admitted to the hospital and gets out alive with normal

life functioning.

1.2 Key problems and earlier research

The description of this scene is simpli�ed. There are many variable factors:

Previous heart disease, presence of witnesses, bystander basic life support,

response time of the ambulance system etc [5]. Even if the heart is restarted,

the brain might be damaged.

When the professional rescuers provide life support in a cardiac arrest setting,

denoted cardiopulmonary resuscitation (CPR), they follow a standardised pro-

tocol [81], which varies in di�erent countries all over the world. Three succes-

sive electroshocks (de�brillations) are given if the heart rhythm is identi�ed as

VF which is electrically treatable. Further, they provide repeated sequences of

chest compressions. At the end of each sequence they attempt to de�brillate

the heart. This procedure is interrupted if return of spontaneous circulation

(ROSC) is veri�ed.

The probability of survival from cardiac arrest is quite low, commonly between

10 and 20 percent [51]. This work studies cardiac arrest episodes from the

ambulance system in Oslo and data from animal experiments. The objective

is the designing a VF analysis decision support tool as an add-on to the AED in

the prehospital setting. Eventually such a system may contribute in improving

the number of survivals from out-of-hospital cardiac arrests.

In essence:

� Today the protocol decides how to treat the patient.

We want to focus on the potential for increased survival in the alternative

formulation:

� Let knowledge of the physiologic state of the individual patient obtained

through the analysis of ECG measurements determine the treatment.

Thus, the treatment procedure should be decided through a continuous eval-

uation of diagnostic information provided through physical examinations of

the patient, the e�ect of treatment and most important, electrocardiograms
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(ECGs). These recordings of the electric activity in the heart, provides infor-

mation on the myocardial metabolism 1 These physiological parameters con-

stitute the "patient's voice". They provide the rescuers with the information

needed to decide how to proceed with the treatment in order to have the best

chance of a successful outcome.

In this work we will focus on the following questions:

� Is it possible to decide the optimal timing of de�brillation?

� Is it possible to monitor the e�ect and quality of chest compressions and

ventilations?

We attempt to answer these questions through a thorough and comprehen-

sive investigation of the basic constituents of our proposed decision support

system. We base our analysis on some of the methods established through

medical research discussed in the last two paragraphs of this section. The

experiments are performed on our own data which represent a realistic pre-

hospital setting. Through careful design of our decision support system we

show how improvement in performance can be achieved. Based on the �nd-

ings in our study we propose methods for combining ECG measurements for

prediction and monitoring and a scheme for removing CPR artefacts from the

ECG.

VF analysis in medical research on out-of-hospital cardiac arrest goes back

to 1985 and has been evolving since then mostly through animal experiments

and retrospective studies of prehospital cardiac arrest ECGs. The following

paragraph gives a representative, but not exhaustive list of previously reported

research on VF analysis.

In 1985 the amplitude of ventricular �brillation was reported to be indicative

of de�brillation outcome after cardiac arrest [109]. Further on, the median

frequency's potential for guiding therapeutic interventions during CPR was

discussed in [33]. Later work [11, 12, 68, 9, 92, 14, 62, 72, 97, 98, 96, 95, 10,

94, 70, 73] has focused on variations of these two measurements when apply-

ing ECG measurement techniques to study CPR related problems. Promis-

ing results, especially in animal experimental studies, have been reported. It

has been pointed out that further studies need to be done to establish these

or related ECG measurements as diagnostic tools. We give a more detailed

presentation of medical background, main problems and previous research in

chapter 2.

1The myocardial metabolism are the physical and chemical processes, making energy

available to the myocardium (muscular tissue of the heart) [30]. E�cient CPR improves the

myocardial metabolism as it increases the myocardial blood 
ow.
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1.3 A decision support system for CPR guidance

The work referred to in the previous section has been done from a medical

viewpoint. Most of the previous work, with some exceptions [70, 73] have used

univariate measures. We think this is a limitation, and will further investigate

the use of multivariate measures. As we will discuss in chapter 3 the analysis

methods applied to univariate measures have shortcomings as to the analysis

of multivariate measures. We will develop an analysis system that handles

these problems. We introduce a decision support system using a pattern recog-

nition framework for this purpose. In this framework signal analysis methods

are used to structure the data and to extract features carrying diagnostic in-

formation. Methods from classi�cation theory is used to establish decision

regions pertaining to di�erent diagnostic outcomes. The understanding of the

medical aspects is of crucial importance for the success in applying these meth-

ods. Therefore we give a more thorough presentation of the medical aspects of

this work in chapter 2.1 and 2.2 so that we can integrate our decision support

system into the medical research tradition on VF analysis of out-of-hospital

cardiac arrest ECG(chapter 3).

1.4 Thesis outline

A medical discussion of the mechanisms and treatment e�ects of cardiac arrest

are presented along with a medical formulation of the key questions addressed

in this work. Following this, we give a brief presentation of the key tools

in the decision support system framework: signal analysis and classi�cation

methods. The questions are reformulated in engineering terms. After this

follows a presentation and discussion of the data material used before the

novel methods actual to the particular problem addressed here are proposed

and discussed in a pattern recognition and signal analysis theoretic framework.

Following this, experimental results are presented and discussed. Finally we

will summarise and conclude the work.

Major contributions of this work The material in the experimental part

of this work has been or is in the process of being published in international

journals [100, 38, 39, 1, 63] and as abstracts from national and international

conference presentations [99, 101, 40, 102]. Further, articles has been published

in national and international conference proceedings [34, 36, 35, 37, 41].
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� A method is proposed for integrating the decision support system with

classi�cation and signal analytic methods in the medical research �eld

of out-of-hospital cardiac arrest.

� A database of ECGs and demographics of cardiac arrest patients have

been established in cooperation with an acute medical research group in

Oslo [100].

� Data analysis of ECG rhythm annotations and Utstein style demograph-

ics [17] have been applied to study the mechanisms of resuscitation in

practice [100].

� A method for removing CPR artefacts from human ECG by using an

adaptive �ltering technique is proposed [63, 1].

� A method for predicting de�brillation outcome by combining several

ECG derived measurements applying classi�cation methods is proposed.

The classi�er has been adapted to the problem at hand so that the user

can control the ratio of successful outcomes to be correctly predicted.

Furthermore we ensure reliability in the performance results. This is

achieved by tuning the classi�er so that it performs similarly on an inde-

pendent data test set and on the data set used to train the classi�er [38].

� A general, feature independent method, is proposed for monitoring the

Probability of de�brillation success in a human cardiac arrest patient [38].

The following major parts constitute the thesis:

Introductory part

Chapter 1 provided an introduction to the problem of treating cardiac ar-

rest to a successful outcome. Previous work has shown that VF-analysis meth-

ods has a potential for providing useful therapy guidance. In this work, we will

focus on the classi�cation, signal analytic and CPR artefact removal aspects

of VF analysis in the design of a decision support system for guidance of CPR

therapy.

Theoretic backround part
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Chapter 2 gives the background for the medical aspects of CPR, ECG and

VF analysis as was sketched out in section 1.2in this chapter. The problems

focused upon in this thesis are formulated. A review of previous work on VF

analysis is given.

Chapter 3 Formulates a VF analysis decision support system for guiding

therapy. The key elements of this system are described, including the clas-

si�cation and feature extraction techniques and methods for CPR artefact

removal.

Methodological and experimental part

Chapter 4 discusses the data material used in the experimental part of this

work including both human and animal cardiac arrest data.

Chapter 5 illustrates the main aspects of this work. We demonstrate the

use of artefact �ltering methods and further how ECG features can be used

to predict outcome and monitor the e�ect of therapy to animals in cardiac

arrest.

Chapter 6 provides a detailed analysis of important time intervals in the

treatment of out-of-hospital cardiac arrest patients.

Chapter 7 shows how adaptive �ltering techniques can be used to reduce

CPR artefacts in human ECG.

Chapter 8 demonstrates how the techniques described in chapter 3 can

be used to predict the outcome of de�brillation attempts in a retrospective

analysis of human cardiac arrest ECG.

Chapter 9 describes and demonstrates a method for monitoring the prob-

ability of de�brillation success.

Conclusive part

Chapter 10 summarises the major contributions and conclusions from this

work and �nally suggests problems for further research.
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Chapter 2

Background

In this chapter we �rst describe some basic medical and engineering nomencla-

ture regarding the interaction of the cardiovascular system, ECG recordings

and the procedures and mechanisms involved in providing CPR to out-of hos-

pital cardiac arrested patients.

We continue by identifying the main issues of VF analysis. The objectives,

methods and possible bene�ts to CPR therapy are sketched out. VF anal-

ysis is broken down into the problems of predicting de�brillation outcome,

monitoring CPR e�cacy and removal of CPR artefacts.

Finally we review the earlier work on these issues.

2.1 CPR and ECG

ECG recordings play an important role in assessing the patient's status during

CPR. The circulatory, or cardiovascular, system is vital to the upkeeping of life

as it serves the exchange of oxygen and carbondioxide to body cells. The heart

is the most important part of this system, serving as a pump distributing and

collecting the blood throughout the body. During cardiac arrest, the heart

stops pumping. Death will occur in a matter of minutes if no treatment is

provided to reverse this process and make the heart start pumping again.

The rescuer has to make important decision on how to proceed during the

treatment of cardiac arrest. De�brillation of the heart is the ultimative inter-

vention [57], but it is also the most drastic as it is harmful to the heart [115].

Other less dramatic elements in therapy are precordial chest compressions [79]

and ventilations [53] to maintain arti�cial circulation. Such intervention can

9
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slow down the degradation in heart condition [57] which ultimatively results in

death. It is also speculated that the degradation can be reversed [24]. These

techniques, in some cases with medication for added stimulation [75], does

not carry the potential of e�ecting return of spontaneous circulation (ROSC)

without de�brillation. The choice of therapy depends on several factors.

� Cardiac aetiology : Prior heart diseases like infarction or arrhythmias

a�ect the heart's condition unfavorably to resuscitation.

� Duration of cardiac arrest : As time goes, the energy resources of the

heart are gradually emptied making successful resuscitation less proba-

ble.

� Bystander CPR: In some cases a witness plays the role of lay rescuer

by performing basic CPR of precordial compressions and ventilations to

the patient. This may have a positive e�ect depending on the quality of

the treatment.

All these factors a�ect the heart condition, or myocardial metabolism, during

cardiac arrest. If the level of myocardial metabolism is to low, de�brillation is

futile and harmful. It may be improved through establishing a certain amount

of myocardial perfusion1 through adequately performed CPR. If this level is

high enough, resuscitation through de�brillation may be successful. Therefore

the key issues for the rescuer to resolve is whether to de�brillate or provide

CPR. Of course, the rescuer also has to check the patient's pulse. If there is

no pulse, treatment is continued, otherwise stabilising treatment is provided.

It is evident that information of the level of myocardial metabolism would be

an extremely useful guidance for the rescuer in deciding whether de�brillating

or giving CPR will be the optimal treatment for ensuring a successful outcome

for the patient [24].

In this respect we seek some physiological measurements which may provide

valid information on the myocardial metabolism or degree of resuscitability.

Examples of such are measurements of myocardial blood
ow (MBF) 2,coronary

perfusion pressure (CPP)3 and end-tidal CO2 (ETCO2)
4. It has been experi-

enced [60] that CPP correlates well with MBF during CPR and also with the

1Supplying of nutrients and oxygen to the middle layer of the walls of the heart, composed

of cardiac muscle.
2The blood supplying the muscular tissue of the heart with oxygen.
3The di�erence in pressure between the aortic and right atrial chamber necessary to

forward MBF
4The amount of carbon dioxide in the patient's expiratory gas. ETCO2 re
ects the

amount of blood 
ow to the lungs and thus indirectly re
ects cardiac output.
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outcome of resuscitation. CPP has been shown to correlate with ROSC and

survival in both animal [58] and human studies [76], but the measurement

requires placement of arterial and right atrial or central venous catheters,

which are hardly ever practical in the cardiac arrest situation. ETCO2 varies

with cardiac output [112, 48, 54, 19, 61], but it is also in
uenced by the

general metabolic status [112, 48, 54, 19, 61], ventilation [54], the use of

epinephrine [19] and time [61], and should therefore be used with caution

when evaluating myocardial perfusion and resuscitability during CPR. There-

fore, other means of assessing the myocardial metabolism should be sought.

2.1.1 Electrical activity in the myocardium - ECG measure-

ments

Recordings of MBF and CPP involve 
ow and pressure measurements. Record-

ing of ECGs is a means for non-invasive measurement of the cardiac activity.

The pumping activity of the heart is regulated by electrical stimulus of the

cardiac cells. A cell respond to such stimuli by contracting and further stim-

ulating of neighboring cardiac cells. The electrical activity propagates along

conduction pathways in the myocardium. Electrodes placed on the patient's

chest measure changes in body potential due to this electrical activity. The

salient feature of ECG recordings is that each rhythm has its characteristic

waveform.

Heart rhythms deviating from sinus rhythm (SR),the rhythm characteristic of

a normally operating heart, are denoted arrhythmias. There exists a lot of

di�erent arrhythmias. Figure 2.1 shows some examples of the typical rhythms

which are experienced by an out-of-hospital de�brillator. The ECG tracings

in part a) ,b) and c) in the �gure corresponds to pulse rhythms, while the ones

in part d),e) and f) are examples of rhythms without pulse. For the rescuer

operating the de�brillator in an out-of-hospital cardiac arrest situation, the

pulse rhythms of a), b) and c) corresponds to no CPR or de�brillation to be

given (no-treat rhythms).

The rhythms without pulse in part d),e) and f) in the �gure should be treated

with CPR and/or de�brillation. The ventricular tachycardia (VT) in d) should

be de�brillated immediately. VT is driven by an impulse generation originat-

ing from an impulse carousel (reentry). This causes one impulse to stimulate

the heart successively. VT is often the initiating rhythm of cardiac arrest.

The chance of successful resuscitation is very good.

In most out-of-hospital situations, however, the patients are past the initial

phase of VT and well into VF (part e) in the �gure). The activity in the
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Figure 2.1: Example ECG tracings corresponding to rhythms typically

recorded by de�brillators. a) sinus rhythm (SR), b) supraventricular tachycar-

dia (SVT), c) premature ventricular contraction (PVC), d) ventricular tachy-

cardia (VT), e) ventricular �brillation (VF) and f) asystole
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myocardium gradually becomes less organised with no cardiac output. VF is

treated by de�brillation, but the probability of de�brillation success diminishes

as time goes and the rhythm gradually changes [57].

In the �nal stage preceding death, the electrical activity has nearly disap-

peared. This is termed asystole, and is seen as a near 
at line in the ECG

tracing (part f) in the �gure). The rescue team has to provide CPR with med-

ications, heart compressions and ventilations to increase circulation of blood

and oxygen to the ischemic5 myocardium. This might increase the perfusion to

the heart, resulting in a conversion to VF which can be de�brillated [67]. Elec-

tromechanical dissociation (EMD) denotes another pulseless rhythm where

there is electrical activity in the myocardium without any corresponding me-

chanical activity. EMD often appears in the transition from VF to asystole

and is treated with medications, compressions and ventilations to obtain VF.

However, EMD can also have a other causes which can be speci�cally treated.

Both EMD and asystole are no-treat rhythms.

The de�brillators do not give any distinction between the no-treat rhythms

with and without pulse. The rescuer has to check for signs of life (a time-

consuming operation), and determine whether CPR should be given or not.

VF and VT are de�brillated and thus termed as treat rhythms.

In terms of decisions to be made, the de�brillators handle the treat/no-treat

distinction automatically and advice the rescuer to de�brillate or not. In the

case of no-treat, the rescuer has to determine the presence of pulse which is a

time consuming operation. In the case of a treatable rhythm, de�brillation is

recommended.

The current protocol for treatment of cardiac arrest [81] advices three suc-

cessive de�brillations before sequences of arti�cial circulation is resumed by

precordial compressions, ventilation and drug therapy. Each round of arti�cial

circulation is ended by a de�brillation attempt. This procedure is kept going

until ROSC is achieved or the patient is given up. Following each de�brillation,

the pulse is checked to determine further treatment.

The semi-automatic de�brillators analyse the ECG, and a shock is delivered

if VF is detected. No arti�cial circulation is provided in the period from start

of analysis until the de�brillation. The consequence of this is a drop in the

MBF and consequently a decrease in the probability of de�brillation success.

5Blood supply is de�cient.
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2.1.2 Improving therapy of cardiac arrest

As discussed previously, a means for monitoring a parameter correlated to

resuscitability during CPR would be helpful in determining how to proceed

with the treatment to assure a high probability of de�brillation success. It

is important to note that VF is a dynamic rhythm changing with time. The

evolution of VF can be segmented into four phases as follows [105]:

1. The undulatory stage which is characterised by a few large wavefronts

of excitation in the myocardium. This phase lasts for 1{2 seconds.

2. The convulsive stage with a larger number of smaller wavefronts activat-

ing the ventricles more rapidly lasting from 10 to 30 seconds.

3. The tremulous stage with a large number of segments of reentry 6 lasting

for several minutes.

4. The �nal stage characterised by contractions becoming gradually weaker

because of reduced supply of oxygen to the myocardium.

Time is one of the determinant factors for the outcome of cardiac arrest [57],

and the di�erences in the nature of VF listed above are dependent on time and

thus correspond to di�erent outcomes. The number (complexity) and speed

(frequency) of wavefronts exciting the myocardium as well as the strength

of the contractions (energy) a�ect the morphology of the recorded ECG. Fig-

ure 2.2 shows ECG tracings corresponding to di�erent de�brillation outcomes.

We have plotted four second tracings corresponding to VF recordings imme-

diately prior to de�brillations. The tracing in a) corresponds to ROSC con-

version while those in b), c) and d) were converted to the No-ROSC rhythms

EMD, VF and asystole respectively. Note the important di�erences in signal

characteristics showing the great variability in the VF curveform morpholo-

gies. The successful outcome trace demonstrates a higher degree of complexity,

frequency and energy than the tracings corresponding to di�erent types of un-

successful outcomes. VF analysis tries to quantify such characteristics. In the

following we identify the possible bene�ts to CPR by use of VF analysis.

One of the key questions addressed here is whether it is possible to predict

the outcome of de�brillation, the prediction based on analysis the patient's VF

characteristics.

6Reexcitation of a region of cardiac tissue by a single impulse, continuing for one or more

cycles... [30]
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a

b

c

d

Figure 2.2: Example ECG tracings corresponding to four second VF tracings

prior to de�brillations resulting in conversion to a) ROSC, b) EMD, c) VF, d)

asystole.
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A second related question is whether the e�ect of CPR can be monitored using

VF characteristics.

The third question raised in this work is whether rhythm analysis and de-

�brillation can be performed during CPR, thus preventing a decrease in the

myocardial and cerebral blood 
ow levels?

We discuss these questions further in the following section.

2.2 Problem formulations

The main problems we investigate in later chapters are presented in some

detail in this section.

Although de�brillation of ventricular �brillation (VF) is the most important

intervention in the treatment of cardiac arrest patients [64, 93, 50, 6, 47, 100],

the majority of the individual de�brillation shocks do not result in return of

spontaneous circulation (ROSC) [50, 6, 47, 100].

State-of-the-art de�brillators use ECG rhythm analysis to determine the pa-

tient's heart rhythm. The device advices the rescuer whether to shock or not.

VF-analysis as an add-on to rhythm analysis would provide further informa-

tion by which to optimise treatment. The ECG subject to rhythm and/or VF

analysis has to be free of CPR artefacts as the presence of these would interfere

with the analysis [95]. Today, treatment is stopped for analysis and further

preparing for an eventual shock. These pauses for analysis are thus pauses

in treatment. Valuable time has been wasted if the following de�brillation is

unsuccessful.

Two major and closely related problems stand out: Is it possible to predict

the outcome of de�brillation to reduce the number of unsuccessful shocks and

furthermore to monitor the e�ectiveness of CPR? Can signal analysis meth-

ods be applied successfully to these two problems and possibly guide therapy

towards improved survival rates in out-of-hospital cardiac arrested patients?

If the de�brillator can perform the analysis and charging during CPR less time

will pass letting the metabolism change unfavorably. In this context it is nec-

essary to determine the possibility of splitting the ECG during CPR into two

channels, one re
ecting the myocardial metabolism and the other containing

the CPR artefacts. The key elements of CPR are precordial compressions in

combination with ventilation and drug therapy. The removal of CPR artefacts

stands out as the third major problem to be addressed.
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In the experimental part of this thesis we analyse both human and animal

ECG to study these problems.

Removal of CPR artefacts from animal ECG is demonstrated in chapter 5.1.

The e�ect of various drugs during CPR are studied in chapter 5.2 and 5.3 to

illustrate and evaluate methods for both outcome prediction and monitoring

of CPR e�cacy.

In chapter 7 we mix CPR artefacts in animal ECG with human ECG to

simulate CPR artefacts in human VF. This lets us evaluate the quality of the

di�erent CPR artefact removal techniques.

ECG segments prior to de�brillations in human cardiac arrested patients are

grouped according to the following outcome. Furthermore methods for out-

come prediction are evaluated in chapter 8. Monitoring analysis is also done

on these data in chapter 9.

We discuss the three problems in more detail in the following subsections.

2.2.1 Predicting de�brillation outcome

A recent study from Cobb et al [24] indicates that patients with VF may have

a better chance of return of spontaneous circulation (ROSC) after a period

with chest compressions and ventilation before the �rst de�brillation attempt.

The cardiopulmonary resuscitation (CPR) induced myocardial perfusion can

cause changes in the power spectrum of the VF with an attendant increase

in the probability of ROSC [13, 95, 73]. Futile de�brillation attempts are

in themselves detrimental as tissue damage and post-resuscitation myocardial

dysfunction may be caused by the shock itself[115], and by the lack of tissue

perfusion from chest compressions during the shock period (analysis, charging,

de�brillation and outcome evaluation). It would therefore be important if it

could be predicted whether a shock will cause ROSC or not. If the rescuer

can predict the outcome of de�brillation, he can avoid wasting valuable time

and applying useless and harmful energy to the patient's heart. Much time is

spent while the de�brillator analyses the ECG and charges its capacitor.

20-80% of de�brillation attempts in clinical studies are previously reported

to cause discontinuation of VF[50, 6, 47, 100] (the great variability depends

on di�erent time de�nitions of VF reoccurrence and/or di�erent shock wave-

forms).

We illustrate the potential bene�t of outcome prediction in light of some of the

�ndings presented and discussed in chapter 6. Approximately 10% of the 883

shocks given to the patients in the Oslo database succeeded in converting the
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Figure 2.3: ECG tracing illustrating precordial compressions (prec compr),

VF, de�brillation (de�b) and conversion to pulse rhythm (ROSC).

heart to produce a pulse rhythm. This is similar to reports from Milwaukee

and Iowa [50, 6]. The median time spent preparing for each de�brillation was

20 seconds in the Oslo data. A median of six shocks were given to each patient.

Thus, for the average patient this means nearly two minutes passing with no

treatment provided. In addition to the time spent preparing for a shock comes

the time spent after an unsuccessful shock to determine outcome, which in

many cases will be at least 20 seconds.Providing e�cient CPR during these

minutes would unquestionably be of great value to the patient rather than

wasting it preparing for useless shocks.

Figure 2.3 shows 50 seconds of ECG recordings illustrating the typical events

preceding and succeeding a de�brillation. During the �rst ten seconds, pre-

cordial compressions are performed. The ECG is dominated by the CPR arte-

facts. In the following period, preceding the de�brillatory shock, VF is seen.

During the VF period rhythm analysis and capacitor charging is done to pre-

pare for the shock. The window containing the VF analysis block is placed

to show the point of analysis. In the given illustration the shock is followed

by an isoelectric period signifying that the myocardium has been electrically

reset. In the following period the heart reorganises into the outcome rhythm.

In this case a pulse rhythm results. Other conversion rhythms might be EMD,

asystole or VF. A non-reset shock is a special case where the shock is unable to

reset the heart. After such a de�brillation VF reappears within �ve seconds.

All these non-pulse outcomes are considered unsuccessful.

The VF analysis blocks prior to all shocks in the data material are grouped

according to outcome. The following scheme for grouping successful versus

unsuccessful shocks is used:

� Successful : A palpable pulse is present in the post shock period.

� Unsuccessful : A palpable pulse is not present in the post shock period.

This class of data consists of the EMD, Asystole, VF and non-reset

shocks.
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The preshock feature values corresponding to the post shock pulse group

should fall in a region distinguishable from the region corresponding to the

post shock non-pulse group. The prediction outcome analysis will be evalu-

ated in the pattern recognition framework presented in chapter 3.

2.2.2 Monitoring the e�ect of CPR

A certain amount of myocardial perfusion is required for successful resuscita-

tion [58, 76]. Cobb et al have pointed to the usefulness of a variable enabling

monitoring of CPR e�cacy and thus providing a means for the rescuer to

improve treatment and patient outcome [24].

The rescuer has to decide the placement, depth and frequency of the precordial

compressions, ventilation force and drug dosages in addition to when to shock.

If the rescuer can be guided in performing the therapy, this will cause faster

and more successful resuscitation.

Monitoring the e�ect of CPR involves detecting changes in the myocardial

metabolism caused by these therapies. In the human data we will monitor

the e�ect of foregoing CPR in the artefact free preshock ECG tracings. Thus,

as an example the monitoring variable extracted from �rst preshock tracing

gives information on the resuscitability before the �rst de�brillation. The fol-

lowing sequence of extracted monitoring variables should convey information

about the evolution of e�ect of the therapy. The monitoring of patients who

have been successfully resuscitated after a long period of CPR and shocking

should show a positive development (increased resuscitability) in the mon-

itoring parameter(s). In a patient which has not been resuscitated after a

similar treatment period, the parameter(s) should remain unchanged or have

a negative development.

The evaluation of monitoring methods is di�cult because many parameters

vary in the patient database. Some of these parameters are the time duration

of the sequences, the initial myocardial metabolism, the cardiac aetiology, the

frequency at which the precordial compressions are given and the dosage and

timing of drug therapy.

During animal research the treatment is provided according to a well de�ned

protocol so that the ECG may be divided into phases according to treatment

given. This will illustrate the e�ect of monitoring the ECG measurements

during the di�erent treatment phases and to evaluate how well the measure-

ments discriminate between these phases. Our proposed method for moni-

toring (chapter 9) is based on principles from statistical pattern recognition

presented in chapter 3.
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2.2.3 CPR artefact removal

In the current operation of automated external de�brillators, substantial time

is consumed in the \hands o�" interval during which precordial compressions

are discontinued to allow for automated rhythm analysis before delivery of the

electric counter-shock. Current guidelines for cardiopulmonary resuscitation

require that chest compression and ventilation must be interrupted prior to

any shock, to avoid the e�ects of artifacts on the ECG analysis [43, 81]. Dur-

ing this period there is no circulation of the heart muscle or brain with a rapid

deterioration of the metabolic state of the tissues [29, 69]. This detoriation can

be partially reversed by chest compressions and ventilations [72, 59]. In agree-

ment with this, Sato et al found that the interruption of chest compressions

before a de�brillation attempt reduced the de�brillation success rate. 24 hour

survival was signi�cantly reduced with a 20-sec delay [84]. They concluded

that automated de�brillators are likely to be maximally e�ective if they are

programmed to secure minimal \hands-o�" delay before delivery of the electric

counter-shock.

CPR artefacts interfere with the VF part of the ECG signal. Strohmenger

et al showed that this interference could be reduced by frequency selective

�ltering to achieve reliable VF analysis [95].

The successful use of frequency selective �ltering (illustrated in chapter 5.1)

relies on the fact that the frequency components of CPR artefacts and VF

are non-overlapping in pig data. In human ECG, these components are over-

lapping. Strohmenger et al pointed this out as a factor detoriating the pre-

dictive power of VF analysis in human ECG [94]. We will design a method

(chapter 3.4) for removing CPR artefacts from human ECG that handles this

problem (chapter 7.

A good �lter should not e�ect VF analysis, and the performance of the de�b-

rillator algorithm should remain unchanged. The removal of cardiopulmonary

resuscitation (CPR) artefacts in VF would thus make it possible to assess the

CPR e�ect on the myocardium as indicated by VF changes.

2.3 Previous VF analysis research

In the following section we summarise the key elements of previous work in

VF-analysis. The work has mainly been concerned with features describing

amplitude characteristics of the VF tracings and studies of frequency param-

eters derived from the fast Fourier transform of the VF.
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2.3.1 Objectives

The optimal ECG derived feature should re
ect the patient's degree of resus-

citability. In the works referred to in the following several di�erent strategies

has been applied for this purpose. Brown et al discussed the most important

of these in [9]:

� Estimate the duration of VF, i.e. the time passed since the onset of VF.

This is also referred to as VF downtime.

� Monitor the myocardial perfusion during CPR, i.e. the e�ect of CPR

on the metabolism. In this case, the ECG features ability are gauged

through correlation analysis to additional recordings of CPP, MBF, ETCO2

or other established invasive techniques for monitoring the e�ect of CPR.

� Determine the optimal time to de�brillate during VF. The features pre-

dictive ability is determined by calculating the sensitivity and speci�city

(de�nition given in chapter 3.2).

These are the main objectives of VF analysis as it is described in the literature.

VF analysis by ECG features have traditionally been dominated by features

measuring the VF amplitude and features identifying the dominant frequency

components from the fast Fourier transform of the VF signal. From reading

the articles referred to in the following it is clear to us that there are several

examples of contradictory �ndings.

2.3.2 Research �ndings

In [116] it was demonstrated in animals that the probability of successful

de�brillation of VF varies inversely with downtime, i.e. the duration of time

between the onset of VF and the initiation of CPR.

Amplitude parameters Fibrillation amplitude was pointed out as a pow-

erful indicator of outcome after cardiac arrest in [109]. It was reported that a

detailed inspection of the VF curveform reveals variation in both signal am-

plitude and frequency, amplitude di�erences being most appearant. Initial VF

amplitude was measured in 394 human patients, and it was shown that the

group of patients presenting VF with low signal energy had a lower rate of suc-

cessful de�brillations compared to the group presenting VF with high signal
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energy. The group with coarse VF 7 had the higher proportion of witnessed

arrests with initiated bystander CPR and lower downtime before initiation of

CPR and de�brillation.

In [14] it was reported that VF amplitude was predictive of countershock out-

come in a study of 265 human patients. VF amplitude was also shown to

be positively related to bystander CPR, postshock rhythm, electrically stable

conversion, inpatient admission and hospital discharge but unrelated to re-

sponse and de�brillation intervals. The VF amplitude was highly predictive

of hospital outcome.

In [62] a measurement of VF amplitude in animals associated with successful

outcomes of de�brillations was shown to be di�erent from those associated

with unsuccessful outcomes.

The potential of VF amplitude as a monitor of the e�ectiveness of CPR was

studied in [72]. In a rodent model a rise in VF voltage was correlated to a

rise in CPP during CPR. It was also con�rmed that VF amplitude, serves as

a quantitative predictor of de�brillation outcome.

Frequency parameters The median frequency was introduced in [33] as

a measurement for estimating downtime. The study revealed the potential

of the median frequency as a downtime estimator. It also pointed out that

VF amplitude is an unreliable estimator of downtime due to uncontrollable

variations in anatomy, physiology and instrumentation. A further study of

median frequency was presented in [12] and in [68] where the downtime esti-

mated from human ECG was analysed and compared to comparative animal

data from [33, 13]. In [13] the median frequency was reported as being very

well suited for prediction of de�brillation outcome in an animal experiment.

Comparing amplitude and frequency parameters In [92] the domi-

nant frequency and amplitude of VF was compared for ability to distinguish

between primary and secondary VF in 41 human patients . Primary VF had

a higher probability of successful countershock outcome than secondary VF.

The study suggested that low frequency VF indicates a poor chance of success-

ful resuscitation. The peak-to-trough amplitude of VF showed no signi�cant

di�erence.

In [97] the median frequency was studied in 20 human patients undergoing

aortocoronary bypass grafting. It was reported that there was a high degree

7The medical literature denotes VF with low signal energy by "�ne VF" while VF with

high signal energy is denoted "coarse VF".
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of correlation between successful de�brillation and the median frequency, and

that the observations support the hypothesis that measurement of the median

frequency re
ects the overall metabolic state of the myocardium.

The interference by precordial compressions on VF analysis was assessed in [95]

to determine which of several spectral analysis parameters re
ected best my-

ocardial blood 
ow and resuscitation success during CPR. The median fre-

quency extracted from the frequency area corresponding to 4.3-35 Hz di�er-

entiated best between resuscitated and non-resuscitated animals. There was

no signi�cant di�erence between the measurements taken immediately before

CPR compared to the ones taken immediately after start of CPR. It was also

noted that the experiments revealed no correlation between VF amplitude and

myocardial blood 
ow.

A study was performed by Strohmenger et al on 154 de�brillations in ECG

recordings from 26 cardiac arrested out-of-hospital patients [94]. The predic-

tive ability of both spectral and amplitude parameters were evaluated. In this

study, the dominant frequency was identi�ed as the single best predictor of

de�brillation outcome. The predictive power of the amplitude parameter was

comparable to that of the median frequency. In this study, features were not

combined. Strohmenger et al also evaluated the e�ect of CPR artefacts on VF

analysis in this study and found that the predictive power of the parameters

was detoriated even after the artefacts had been eliminated.

Combining amplitude and frequency parameters In a similar study

predating the one by Strohmenger et al [94] 128 de�brillations administered

to 55 human patients were analysed in [10]. Both frequency and amplitude

parameters immediately prior to countershock were analysed. The parameters

were grouped according to countershock outcome and compared. The median

frequency was shown to be the single best predictor of countershock outcome,

while the dominant frequency and amplitude parameters were poor predictors.

Brown et al proposed using the combination of the median and dominant

frequency. Thus, improved predictive power was achieved as compared to

using the median frequency alone.

Momsieurs et al combined manually derived variations of energy and frequency

parameters to distinguish survivors from non-survivors in [70]. The parameters

were extracted from VF tracings at the start of the initial rhythm analysis

period in the ECG record for each of the patients. The combined features

distinguished fairly well between both ROSC and No-ROSC as well as between

survivors and non survivors. Performance was improved by adding age to the

parameter set.
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In [73] the monitoring and predictive capability of both frequency and am-

plitude ECG measurements were investigated in an animal experiment. This

work identi�ed the combination of VF amplitude and dominant frequency as

being superior in this respect.

Other recent methods Recently other methods for characterising ECG

has been introduced to the �eld of VF analysis.

In the recent publications from [117, 90] nonlinear methods were used to char-

acterise the dynamics of the initial phase of VF in animal experimental data.

The usefulness of wavelets giving a time-frequency representation of VF were

indicated in [108]. These methods were not evaluated with regard to any of the

objectives stated in the beginning of this section. It will be interesting to see

if these more complex methods will outperform the frequency and amplitude

parameters.

2.3.3 Comments

In [97] it was remarked in the conclusion that the �ndings are speci�c for

certain clinical settings and that further studies on a broader range of both

animal experimental and human patient settings is necessary to determine the

general utility of the median frequency.

It is our impression that the previous work has focused on either amplitude

or frequency parameters. Both these types of parameters have been found

to re
ect myocardial perfusion, myocardial energy metabolism, de�brillation

success and outcome after cardiac arrest. The main critisism against the

amplitude parameter is that it depends on the direction of the main �brillatory

vector and interindividual variability is considerable.

There are only a few articles describing work were parameters has been com-

bined rather than compared [10, 73]. The results are encouraging. There might

be information re
ecting resuscitability in an amplitude parameter that is not

contained in the frequency parameter. If the frequency parameter outperforms

the amplitude parameter when evaluated independently we expect the com-

bined paramter to outperform both. One of our main objectives is to adapt

methods to VF analysis that allows the combination of several parameters.

The monitoring aspect has been investigated in several di�erently structured

studies. High values in median/dominant frequency has been assosciated with

high resuscitability. In chapter 3 we will have a closer look at the methods

used in some of the articles we have referred to in this section. We will point
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out some weak spots and propose our own methodology designed to handle

these problems. One of the key issues is the methods used for the prediction

of de�brillation outcome. The prognostic criteria are mostly developed and

tested on the same data set (except for Noc et al [73] and Monsieurs et al [70]).

We will use the concept of training and testing in the design of our decision

support system to control performance and ensure more reliable results.

2.4 Summary

This chapter has presented an engineer's perspective on how CPR a�ects the

basic mechanisms of the circulatory system. We have emphasised the relation

to the recorded ECG.

We have provided a careful de�nition of the problems of predicting de�bril-

lation outcome, monitoring the e�ect of CPR and removing CPR artifacts.

These problems are addressed in later chapters.

An overview has been given of earlier work on VF analysis. This work has

demonstrated promising results based on analysis of ECG from animal exper-

iments. Results from research on human data are not as encouraging.
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Chapter 3

Decision Support

In this chapter we identify the modules in a decision support system for guid-

ing therapy using VF-analysis. It is shown how the concepts of prediction

of de�brillation outcome, monitoring of CPR-e�cacy and removal of CPR

artefacts �ts into this system.

In the following sections we motivate for our choice of methods for the di�erent

modules in the decision support system and present the theoretic foundation

necessary to justify our choices.

3.1 A VF analysis based medical decision support

system for guiding therapy during CPR

The system we are discussing is a medical decision support system for guiding

therapy [107]. It is convenient to split the data processing for decision making

into modules as follows:

1. Recording of ECG and related information.

2. ECG is preprocessed and CPR artefacts are removed.

3. Characteristic features are extracted from the data.

4. A decision support module guides therapy learning its decision rules from

annotated data.

In the following we recapitulate how the problems related to modules 2-4 has

been dealt with in the previous work we discussed in section 2.3.

Developing good features and selecting the best ones are the key issues for the

design of the decision support system. The features should contain di�erent

aspects of the sought-after information - resuscitability.

27
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Methods for CPR artefact removal

The second module of the system involves artefact �ltering. In animal ex-

periments, the features have been extracted continuously during the di�erent

therapeutic stages. When these stages have involved precordial compressions

and ventilations, the features has been shown to have a lower correlation to

the measurements associated to resuscitability [95]. This e�ect of CPR on

the features has been identi�ed to be caused by noise on the ECG, the CPR-

artefacts. The importance of being able to do ECG analysis during CPR has

been stated by several investigators [24, 100]. In [95] it was shown that the

interference of the CPR-artefacts on the VF-analysis was reduced by using fre-

quency selective analysis corresponding to removing the three lowest frequency

harmonics of the CPR-artefacts prior to analysis. Similarly, a digital low-pass

�lter was applied by Noc et al in their animal experiment [73]. The e�ect of

this for analysis purposes is mainly the same as achieved by Strohmenger et

al [95]. Strohmenger et al used the frequency selective method in a study of

the e�ect of CPR artefacts on VF-analysis in human ECG [94]. It was shown

that the three lower harmonics of the artefact had to be removed to remove

the artefact interference on the VF-analysis. This was shown to deteriorate

the predictive power of the features in question.

We see weaknesses related to the artefact-�ltering methods used by Strohmenger

et al [95] and Noc et al [73]. The success of the frequency selective methods

depend on the frequency components of the VF and artefact signals being sep-

arable. This criterion is full�lled by animal ECG (pigs), but in human ECG,

the signal components of these two signal sources overlap in the frequency do-

main. This means that the application of the frequency band limiting methods

to human ECG will remove information from VF. To retain the VF informa-

tion, more of the CPR-artefact will be mixed into the �ltered signal. These

problems were identi�ed and discussed by Strohmenger et al in [94]. We

demonstrate this problem in chapter 5.1.

Evaluation of features for monitoring and outcome prediction

Typically, in the previous work of VF-analysis, the features of interest are

extracted and evaluated individually except for for the cases where Monsieurs

et al and Noc et al [70, 73] where regression techniques [107] were applied

to combine two features into a single valued unit. The evaluation methods

applied vary according to the problem addressed.

In the case where the aspect of monitoring of the myocardial perfusion has

been investigated, the evaluation has been done by correlation to established
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measurements like MBF or CPP which relates to the myocardial perfusion [109,

92, 73]. These measurements are only available in animal experimental set-

tings. The parameters monitoring capabilities has been investigated on an

individual basis except for the cases mentioned above.

To determine the features' capability for outcome prediction, the features have

been grouped according to successful and unsuccessful outcomes in resuscita-

tion attempts. The evaluation has been done both by analysis of statistical

distributions and a retrospective predictive analysis. Various aspects of sta-

tistical hypothesis testing techniques were applied to determine which features

are signi�cantly di�erent when compared between groups [62, 95, 10, 73].

For further design of decision support rules, prediction analysis by studying

Receiver Operating Characteristics (ROC) has been applied. In the previous

work this has basically involved the design of decision models by calculating

several linear decision functions. Each of these functions are made so that a

given proportion of the successful outcomes are correctly predicted. This is the

sensitivity. The corresponding proportion of correctly predicted unsuccessful

outcomes, the speci�city, is calculated. In the single-feature cases, the ROC-

analysis is easily performed to produce sensitivities ranging from 0-1 with

corresponding speci�cities. This enables the designer to choose the decision

function satisfying a speci�c performance criterion. For the multiple feature

cases [10, 70, 73] the ROC analysis has been limited to selecting a decision

function corresponding to a sensitivity equal to one [10] except for the cases

where multiple regression techniques were applied [70, 73]. Interestingly, in

both [70, 73] the use of feature combinations resulted in decision functions

incorporating both a frequency and an energy feature.

To evaluate the reliability of the resulting decision model, the prognostic cri-

teria were de�ned from one data set (training) and evaluated on another data

set (testing) in the study of Noc et al [73]. The results from the two data sets

did not match. A more sophisticated variation of this, cross-validation, where

the decision function applied in the prediction of one case is derived from all

other but that case [70]. In other work, the prognostic criteria has been eval-

uated on the training sets alone [10, 94]. Typically, the results obtained from

prediction in animal data outperforms the results obtained from human data.

We believe this to be du to the animal models are simple in the sense that all

animals are healthy prior to the treatment which follow the same timeline for

all animals. Thus, the animal material does not represent the great variabil-

ity in factors like age, health, prior treatment etc as found in human cardiac

arrest patients.

To summarise, we �nd several weaknesses in the methodology applied in the

development of the decision functions in previous work.
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Most important is the limited analysis of higher-dimensional features. In our

opinion a decision function can be improved by adding features with new

information. This means that both feature selection and ROC analysis needs

to be done on higher dimensional data. The regression techniques applied by

Monsieurs et al [70] and by Noc et al [73] handles this. A closer inspection

of their decision functions reveals them to be either a linear or logistic plane

in 3-D with unlimited expansion. This is another crucial point we would like

to point out: The decision function should not map areas of feature space

not inhabited by data in the training set. Such areas should be invalid for

prediction, resulting in rejection of testing features inhabiting these areas.

Introducing a VF-analysis decision support system using pattern

recognition methods

In conclusion, we want to design a decision support system for VF analysis

satisfying the following criteria:

1. Allow multi dimensional feature handling.

2. Allow sensitivity speci�cation (ROC) for multi dimensional feature clas-

si�cation.

3. Allow evaluation concerning reliability of system model.

4. Allow artefact �ltering for human ECG.

As we will show in the following sections the three �rst issues can be handled

by a pattern recognition framework as depicted by Duda and Hart [32]. Our

methods are based on the more recent publications by Schurmann [87] and

Ripley [80]. We approach the fourth issue by using adaptive �ltering tech-

niques [113] with references obtained through measuring signals correlated to

associated artefact components.

The medical decision support system we design will consist of the modules

illustrated in �gure 3.1.

Pattern source The failing heart of the patient generates electrical poten-

tials registered in an ECG. Our working hypothesis is that this signal contains

information correlated to the resuscitability of the patient. This is the infor-

mation we want to �nd using feature extraction methods.
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Pattern

source ECG Features Decision

Training

Artefact

remover

Feature

extractor
Classi�er

Figure 3.1: The modules in a medical decision support system for VF analysis.

CPR artefact remover In this module, the CPR-artefacts and other pos-

sible noisy components are removed from the ECG signal.

Feature extractor A feature vector is extracted from the ECG.

Classi�er The classi�er processes the feature vector and determines the out-

come based on a minimum risk analysis. This decision is based on a training

set of feature vectors where the correct outcomes are known. The training is

done by adjusting the parameters of the classi�er so that its outcome predic-

tions meets a performance criteria for ROC-analysis. To avoid the problem of

overtraining (too good �t to training data) an independent test set is used to

assure generality.

In the remaining parts of this chapter we describe the classi�cation and fea-

ture extraction techniques and the CPR-artefact removal methods used in this

work. As the �rst three of the four criteria mentioned at the beginning of this

section are being satis�ed through proper design of the classi�cation mod-

ule, we present the decision support system starting with this very module.

Presentations of the two other modules shown in �gure 3.1.

3.2 Classi�cation

We present the parts of pattern recognition theory necessary to formulate the

classi�cation module satisfying the criteria given in section 3.1.

In pattern recognition the objective is to identify the belonging of a pattern

to one of several possible classes. The �eld of pattern recognition is generally



32 Decision Support

subdivided into two main groups, according to whether syntactic or statistical

methods are applied.

3.2.1 Statistical pattern recognition

In this work we use the statistical method where a pattern is represented by

a number of numerical features which are combined in a feature vector, v.

We also know the number, K, of distinct classes,!i; i = 1; 2; : : : ;K, and have

access to a number of example objects labelled according to class membership.

We want to design a classi�er that assigns unlabelled objects to one of the

classes.

Statistical functions

The statistical distributions of the class features are de�ned by the the class

speci�c a priori probabilities and the class speci�c probability density functions

(PDF). In the following we discuss these statistical functions and show how

Baye's rule is used to derive the a posteriori probability functions. In this and

the following section we assume the statistical functions to be known unless

otherwise stated.

The probability of occurrence of patterns belonging to class !i is the a priori

probability denoted as.

P (!i); i = 1; 2; : : : ;K: (3.1)

The a priori probability is the only knowledge we have of the occurrences

of the patterns before any observation is done. When a measurement, as

realised by the feature vector v, is observed the situation is changed. Our

knowledge of the class identity is in
uenced by the observation as given by

the a posteriori probability which is the probability of occurrence of class !i
given the knowledge of the observation:

P (!ijv); i = 1; 2; : : : ;K: (3.2)

The distribution of the measurement vectors are statistically described by the

probability density function (PDF) given by equation 3.3.

p(v) (3.3)

This compound PDF is the weighted sum of the class speci�c PDFs as given

in equation 3.4.

p(vj!i); i = 1; 2; : : : ;K (3.4)
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As the compound PDF, p(v) involves the relations shown in Equation 3.5

p(v) =

KX
j=1

P (!j)p(vj!j) (3.5)

we get the following relation between the a posteriori probability, the a priori

probability, the compound PDF and the class speci�c PDF as given by Baye's

rule in equation 3.6

P (!ijv) =
p(vj!i)P (!i)

p(v)
; i = 1; 2; : : : ;K: (3.6)

Decision functions

In the classi�er each feature vector,v, is considered as belonging to one of K

classes, !i; i = 1; 2; : : : ;K. In our setting the classes may correspond to di�er-

ent outcomes of resuscitation attempts, or di�erent therapeutic interventions

corresponding to di�erent degrees of resuscitability.

We want to split the feature space into K decision regions, Ri; i = 1; 2; : : : ;K,

by assigning costs for the possible wrong decisions. Each cost, C(!i; !j),

expresses the risk associated with classifying a pattern of the true class, !i, as

belonging to the decided class, !j. As we show later in this section, the costs

are selected to satisfy a given performance criterion. A reject class, !K+1, is

added to handle out-of-range patterns.

Each Ri is calculated by selecting the minimum component of the risk vec-

tor [87].

r = CTp =

2
6666664

PK
j=1C(!j; !1)P (!j jv)PK
j=1C(!j; !2)P (!j jv)

...PK
j=1C(!j; !K)P (!jjv)PK

j=1C(!j; !K+1)P (!jjv)

3
7777775

(3.7)

where

p =
�
P (!1jv) P (!2jv) � � � P (!K jv)

�T
: (3.8)

and

C =

2
6664

C(!1; !1) C(!1; !2) � � � C(!1; !K) C(!1; !K+1)

C(!2; !1) C(!2; !2) � � � C(!2; !K) C(!2; !K+1)
...

...
. . .

...
...

C(!K ; !1) C(!K ; !2) � � � C(!K; !K) C(!K ; !K+1)

3
7775 (3.9)
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is the loss matrix where !K+1 is the reject class. Thus, the classi�cation, or

decision rule, corresponds to selecting the class number equal to the minimum

component index of r. This represents the optimal decision in the sense that

it minimises the expected overall classi�cation risk [87].

To summarise, we want to estimate the a posteriori probability, P (!ijv); i =

1; 2; : : : ;K, of a given outcome based on the knowledge of the a priori proba-

bility of occurrence of the corresponding class given the measurements of the

features. Using these probability functions and the assigned costs, the risk

vector, r, is formed. The components, ri; i = 1; : : : ;K, are the class speci�c

decision functions. For a given outcome,v the estimated class corresponds to

the minimum ri.

Performance evaluation

We have to determine how discriminable the class patterns are. The classi�er

performance has to be evaluated, and for this purpose, the confusion matrix,

PR, is very useful for deriving several performance measures. It is given as

PR =

2
6664

P (R1j!1) P (R1j!2) � � � P (R1j!K)

P (R2j!1) P (R2j!2) � � � P (R2j!K)
...

...
. . .

...

P (RK+1j!1) P (RK+1j!2) � � � P (RK+1j!K)

3
7775 (3.10)

where P (Rj j!i); i = 1; : : : ;K+1; j = 1; : : : ;K is the probability of classifying

a pattern of the true class !i as belonging to !j. Ri; i = 1; : : : ;K + 1 are the

class speci�c decision regions. These are dependent of the choice of values in

the cost matrix C.

Figure 3.2 shows how the decision regions in a two class problem of discrimi-

nating between 1-D feature vectors are found, given equal costs for all decision

errors. This corresponds to the regular Bayes classi�er [87]. Class !1 is iden-

ti�ed by the solid lines in the plot while dotted lines are used for class !2.

The class speci�c PDFs weighted by their respective a priori probabilities are

shown in part a) of the �gure. The distributions used are gaussian with unity

standard deviation and di�erent means. The a priori probabilities are identi-

cal. The corresponding a posteriori probability functions are shown in part b)

of the �gure. For the Bayes classi�er, the decision rule is to select the class

corresponding to the maximum a posteriori probability. This means that the

decision region, R1, for class !1 corresponds to the range of feature values

where P (!1jv) � P (!2jv) (and vice versa for the decision region, R2, for class

!2).
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Figure 3.2: Two-class statistical functions. Solid line = class !1 and dotted

line = !2. a) Class speci�c PDFs b) a posteriori probability functions with

decision regions R1 and R2 for classes !1 and !2 respectively.

3.2.2 Feature observations

Until now we have assumed the statistical functions to be known. As we will

discuss later this is not the case, so the functions have to be estimated from

observed feature vectors with known class identity. In the following we de�ne

how the class speci�c observed feature vectors are organised into feature sets.

A feature vector v consists of D elements so that

v =
�
v1 v2 : : : vD

�T
: (3.11)

We de�ne the class speci�c feature set of observed feature vectors correspond-

ing to observations associated with pattern class !i according to

Vi = fvj00v�!00i g: (3.12)

The total number of classes being K, we de�ne the total feature set, V to be

V = [
K
i=1Vi: (3.13)
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Figure 3.3: ROC curves for two classi�ers. The predictive power of a classi�er

is de�ned as the area beneath its ROC curve. The dotted and solid lines rep-

resent the classi�ers with the lowest and highest predictive power respectively.

3.2.3 Performance control

As we discussed in section 3.1, we want to design our classi�er to meet speci�c

performance criteria de�ned by the user. For example the clinicians might

demand that the decision support system we design should be expected to

predict 95% of all successful shocks correctly. Thus, we would have to train

our classi�er to meet this demanded sensitivity or true positive rate. A value

closely connected to the sensitivity is the speci�city which in our example

would be the proportion of correctly predicted unsuccessful shocks. Receiver

Operator Characteristics (ROC) analysis studies the e�ect of varying the sen-

sitivity on the speci�city. Figure 3.3 illustrates this. The plot shows the ROC

curve with the sensitivity on the y-axis and 100(1�specificity) ( false positive

rate) on the x-axis. In the following we will show how we can integrate ROC

analysis into the pattern recognition framework presented above by showing

how the loss matrix of equation 3.9 can be used to control the sensitivity.

First we need to de�ne the performance parameters used in ROC analysis.

Second, we will show how these performance parameters can be expressed by

the equations given in section 3.2.1.

In medical diagnostics, sensitivity and speci�city are two important perfor-

mance characteristics and we start o� by de�ning some quantities according
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to the de�nitions of sensitivity and speci�city given in [30].

n total number of observations

n!i number of observations belonging to class !i

nRij!i
number of observations correctly classi�ed as belonging to class !i

nRj j!i number of observations wrongly classi�ed as belonging to class !j,

the correct class being !i

Letting the number of observations approach in�nity we get

P (!i) = limn!1

n!i
n

P (Rj j!i) = limn!1

nRj j!i

n!i

In the following class !i is the state we want to identify, and !j; j = 1; � � � ;K; j 6=

i are the other classes, and

nRij!i
number of true positive resultsX

j 6=i

nRj j!i number of false negative results

X
j;k 6=i

nRj j!k number of true negative results

X
j 6=i

nRij!j number of false positive results

We now show how these performance characteristics can be expressed in the

pattern recognition framework.

Sensitivity The sensitivity is de�ned as the number of true positive results

divided by the number of true positive and false negative results and may be

expressed

Psns(!i) = lim
n!1

nRij!i
n!i

= P (Rij!i) (3.14)
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Speci�city The speci�city is de�ned as the number of true negative results

divided by the number of true negative and false positive results and may be

expressed

Pspc(!i) = lim
n!1

P
j;k 6=i nRj j!kP

j;k 6=i nRj j!k +
P

j 6=i nRij!j
(3.15)

= lim
n!1

1

1� n!i=n

X
j;k 6=i

n!k
n

nRj j!k
n!k

=
1

1� P (!i)

X
j;k 6=i

P (!k)P (Rj j!k)

Controlling sensitivity

Equations 3.7 and 3.10 illustrate two crucial points in the design of the clas-

si�er.

1. Equation 3.7 de�nes the decision rule which relies on the statistics of the

data given by the a posteriori probability functions of the classes and

the cost values which should be set by the designer.

2. All performance parameters are ultimatively derived from the confu-

sion matrix expressed in equation 3.10 as we showed in equations 3.14

and 3.15.

In the following we show how the cost values in equation 3.9 may be calculated

to meet a sensitivity criterion for class !1.
1 It is important to remember the

result of equation 3.14 which tells us that

Psns(!1) = P (R1j!1); (3.16)

so that what we want to do is to control the number of feature vectors in the

class speci�c feature set V1 going into R1.

As we are dealing with resuscitability (!1) versus nonresuscitability (!2), we

are in principle handling a two-class problem. In the cases were we use more

than two classes, these may be considered as subclasses of the two main classes.

The risk vector will thus be

r =

�
0 + C(!2; !1)P (!2jv)

C(!1; !2)P (!1jv) + 0

�
; (3.17)

1In our work we relate class !1 to successful outcome (high resuscitability). The sensitivity

criterion de�nes the proportion of patterns corresponding to successful outcomes we want to

identify.
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where C(!i; !i) = 0 and the confusion matrix will be given by

PR =

�
P (R1j!1) P (R1j!2)

P (R2j!1) P (R2j!2)

�
: (3.18)

Considering the feature set formulation of equations 3.12 and 3.13, the training

feature vectors in V1 and V2 will be distributed between R1 and R2 upon

classi�cation. For the training data this is true, but in testing, outliers will

fall in R3, the reject class. For the feature vectors (training) of V1 classi�ed

to R1, the following is true

C(!2; !1)P (!2jv) � C(!1; !2)P (!1jv); (3.19)

or equivalently

C(!2; !1)

C(!1; !2)
�

P (!1jv)

P (!2jv)
: (3.20)

After the normalisation C(!1; !2) = 1 we �nally get

C(!2; !1) �
P (!1jv)

P (!2jv)
=

P (!1jv)

1� P (!1jv)
: (3.21)

The a posteriori probabilities of the feature vectors in V1 are organised into

the vector CROC in descending order according to

CROC =
h

P (!1jv1)

1�P (!1jv1)

P (!1jv2)

1�P (!1jv2)
: : :

P (!1jvM1
)

1�P (!1jvM1
)

iT
; (3.22)

where M1 is the number of training feature vectors in V1.

We want at least 100Pdesired% of the elements in V1 to be mapped into R1.

CROC(i) corresponds to the element with highest value satisfying Pdesired �

i=M1. Selecting the cost value corresponding to

C(!2; !1) = CROC(i); i = dPdesiredM1e (3.23)

ensures that Psns(!1) � Pdesired.

3.2.4 Reliable function approximation

We do not know the true properties of the statistical functions in equations 3.1

and 3.4 necessary to calculate the a posteriori probability given by equa-

tion 3.2. Thus, �nding approximations for these functions is one of the key

issues when we design the classi�er in our medical decision support system.

As mentioned in section 3.1, we want our system to be reliable which in [107]

is de�ned as follows:



40 Decision Support

Reliable means that the measurement method produces similar

results, irrespective of who measures it or when - assuming that

the quantity being measured is static.

We seek to make our system reliable by instigating the following criteria on

our classi�er:

� Generality : The system performance obtained on our data should be

reproducible in similar data obtained elsewhere.

� Restriction: New data out of the range de�ned by the data used to

design the classi�er should be rejected by the classi�er.

In the remainder of this section, we will present and discuss methods by which

to achieve ful�llment of the above given criteria. We will show how this can be

done by using cross-validation techniques to evaluate the system performance.

In the discussion of the technique for function approximation, we will focus

on identifying the parameters having in
uence on generality and restriction.

Training and testing

We discuss a method by which to evaluate the degree of generality of a clas-

si�er.

The set of feature vectors in V (equation 3.13) is split into a training set,

Vtrain, and an independent test set, Vtest. The functional approximations for

the a posteriori probability functions given by equation 3.6 are derived from

the training set. A reclassi�cation, which is a performance evaluation of the

classi�er based on the training set, gives the training performance of the clas-

si�er. Classi�cation of the test set gives the test performance. Generality is

achieved if the test performance approaches the training performance.

There are parameters in the function approximation scheme that a�ects gen-

erality. Therefore di�erent parameter settings are investigated to identify the

setting which corresponds to the highest performing general classi�er; i.e. se-

lect the highest performing classi�er among those satisfying the criterion that

the test performance meets the training performance to within a given toler-

ance.

One of the problems in the training and testing of classi�ers, is the limited

amount of data. We want our functional approximation to be accurate. The

feature space should be densely populated by the training set. One might
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consider using valuable data for testing as wasteful. On the other hand, we

wish to know the performance to some degree of resolution to be able to

distinguish reliably between di�erent classi�ers. Cross-validation (sometimes

referred to as jack-kni�ng) o�ers a method by which to get the most out of a

scarce data set. And our data are indeed scarce.

Cross-validation

Performance evaluation by cross-validation [87, 80] handles the problem of

scarce data sets by dividing the vector set in V into St subsets by dividing each

of the K class speci�c sets into St equally sized subsets Vi;j; i = 1; : : : ;K; j =

1; : : : ; St and using St�1 of these subsets for training and 1 for testing. This is

done St times, thus getting the performance characteristics for each classi�er.

In the evaluation of the kth classi�er,

Vtest = [
K
i=1Vi;k

Vtrain = [
K
i=1 [

St
j=1;j 6=k Vi;j :

(3.24)

We de�ne the performance matrices of the cross-validated training and testing

results to be

Ptrain =

2
664

Psns(!1)1 Pspc(!1)1
Psns(!1)2 Pspc(!1)2

� � � � � �

Psns(!1)St Pspc(!1)St

3
775 (3.25)

and

Ptest =

2
664

Psns(!1)1 Pspc(!1)1
Psns(!1)2 Pspc(!1)2

� � � � � �

Psns(!1)St Pspc(!1)St

3
775 (3.26)

respectively. These performance matrices contain the performance character-

istics by which we want to evaluate our classi�er performance (the kth row

represents the performance of the kth classi�er in the cross validation. We will

typically represent the performance of a classi�er by estimates of the mean and

standard deviation of its test performance matrix:

Mtest =
1

St

StX
i=1

�
Psns(!1)i Pspc(!1)i

�
=
�
�sns �spc

�
(3.27)
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and

Stest =
h q

1
St�1

PSt
i=1(Psns(!1)i � �sns)2

q
1

St�1

PSt
i=1(Pspc(!1)i � �spc)2

i
:

(3.28)

Mtrain and Strain are similarly de�ned from the training performance matrix.

Classi�er generality

When the di�erence between the average performance of training sets and

corresponding testing sets is signi�cant, this is caused by over-training. The

classi�er has to be generalised. This is done by adjusting the parameters of the

classi�er and choosing the parameter setting so that generality is achieved. If

the parameter set controlling generality and restriction is denoted �, a classi�er

is tested for generality for each possible combination of parameter elements.

If the total number of such combinations are G, the generality train and test

matrix is the concatenation of the mean performance matrices:

Gtrain =

2
664
Mtrain1

Mtrain2

� � �

MtrainG

3
775 : (3.29)

and

Gtest =

2
664
Mtest1

Mtest2

� � �

MtestG

3
775 : (3.30)

A generality test matrix is de�ned as

Tgen = jGtrain �Gtestj: (3.31)

The classi�er we seek corresponds to the ith parameter combination corre-

sponding to the highest overall test performance according to

argmax
i
(
1

2
(Mtesti;1 +Mtesti;2)); (3.32)

satisfying the tolerance criterion

(Tgeni;1 � �) \ (Tgeni;2 � �); (3.33)

� being the generality tolerance. Thus the classi�er chosen sati�es the follow-

ing criteria:
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1. The test and training performances are equal to within the tolerance

limit for both the averaged sensitivity and speci�city.

2. Amongst the classi�ers satisfying the �rst criterion, the one with the

maximum overall test performance is chosen.

Uncertainty in estimates of performance characteristics

The number of observations, M determines the uncertainty in the resolution

of the performance characteristics. In [80] the accuracy of a given error rate

P is given with a resolution of �P (95% con�dence interval) according to

2

r
P
0:95

M
� �P: (3.34)

In our experiments with human out-of-hospital data in chapter 8 we have a

total of 868 observations, 87 in the successful group and 781 in the unsuccessful

group. We want to calculater the sensitivity to around 95% which corresponds

to an error rate of 5% for the successful group. Thus the accuracy for the

sensitivity, �Psns is around 5%. For the unsuccessful group, the speci�cities

varies from around 10 to 45% with the equivalent error rate varying from 55

to 90%. Thus, �Pspec, for this group lies in the 5 to 7% range.

In the following discussion of function approximation techniques we will iden-

tify the parameters in
uencing generality.

3.2.5 Approximation techniques

The statistical functions of equations 3.6 have to be estimated to determine

the decision rules for the classi�ers. Di�erent means for doing this involves

a diversity of methods amongst which are histogram-, neural network- and

radial basis approaches. In our work we have used a histogram approach. As

mentioned in section 3.2.4 we will identify the parameters in
uencing general-

ity and restriction of the classi�er, so that we will have established the means

for designing a reliable decision support system for VF-analysis.
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Smooth histogram

The multidimensional smooth histogram approach discussed here estimates

the class speci�c PDFs of v. Each feature axis is partitioned in nb equidis-

tant segments, thus de�ning nDb equal sized bins in the D-dimensional feature

space. First a local PDF is estimated for each class within each bin. Secondly,

multidimensional gaussian kernel functions are applied to each bin to interpo-

late a continuous estimate from the available training data. A local estimate

for the class speci�c PDF is given as

p̂(vj!j) =
ni!j

n!j
(3.35)

ni!j denotes the number of measurements v belonging to class !j contained

in histogram bin number i. n!j represents the total number of measurements

belonging to class !j.

The a priori probability estimates are calculated according to

P̂ (!j) =
n!j

n
; (3.36)

where n is the total number of measurements. The a posteriori probability

estimate P̂ (!ijv) is derived by using equations 3.35 and 3.36 according to

Baye's rule given in equation 3.2.

Using the estimates described above, the performance characteristics esti-

mates, P̂sns(!i) and P̂spc(!i) are computed according to Equations 3.14 and 3.15.

The gaussian kernel functions controls the interpolation, and in the follow-

ing we will discuss how adjusting the parameters of the kernel functions will

in
uence the smoothness of the estimate. As we will show, we will control

generality through varying the smoothness of the estimate.

The estimate smoothing is performed with a gaussian kernel function. But

�rst, the feature vector values are normalised to integers in the range 1 tp nb.

This is done to let the kernel function operate symmetrically on a multidim-

sional matrix. We start by de�ning some quantities to determine the range to

be used of each of the feature axes: vmini and vmaxi de�ne the midpoints

of the �rst and last bin of feature axis number i. vn is normalised from v

according to calculating each of the elements vi; i = 1 : : : D according to

vni = round(
nb � 1

vmaxi � vmini
vi + 1�

nb � 1

vmaxi � vmini
vmini): (3.37)
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If we consider the local bin PDF as a volume with probability mass P , we

want to distribute this probability mass into its neighborhood bins so that

the probability decreases with increasing distance to the volume in the central

bin. The probability of the distributed mass should be equal P . One way to

achieve this is to apply a gaussian kernel function. We let vn and jdj denote

the neighborhood bin and its distance from the central bin respectively. The

probability distributed to vn from the central bin is computed according to

z(d) = C exp(�
jdj2

2�2vn
); (3.38)

where C is a constant and �vn is the kernel width governing the degree by

which each bin is spread out. If we choose C equal to

1q
2�D�Dvn

; (3.39)

equation 3.38 corresponds to the normal distribution function with probability

mass 1 distributed all over the feature space. The contribution from the central

bin cn with probability mass P = p̂(cnj!) into vn is

p̂(cnj!)z(d): (3.40)

Thus, the PDF estimate in every bin is spread out into feature space. We

de�ne the use of �vn = 0 to correspond to direct use of the histograms without

smoothing. A restriction may be set, so that a bin does not spread further

than a restrition factor �. We have set this value so that the gaussian kernel

function is reduced to 95 % of its total volume. The constant C is accordingly

divided by � so that the restricted kernel function retains probability mass 1.

Thus, we have adopted histogram smoothing so that generality in our decision

support system is governed by the number of bins nb and the kernel width,

�vn , and restriction is a�ected by �.

In our experiments in chapter 8 we will focus on generality, thus making nb and

�vn the key parameters of the classi�er when utilizing histogram smoothing.

As we will see, a small number of bins provides low histogram resolution, while

a large number of small bins provides high histogram resolution. Each feature

axis of the PDF estimate is divided into nb intervals. Thus, if the feature

dimension is D for a speci�c feature combination, the feature space is divided

into nDb bins of equal volume. Smoothness is governed by the kernel function

width. A narrow kernel function provides a high resolution estimate with

high variance, while a wide kernel function provides a smoother low resolution

estimate with low variance.
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Figure 3.4: Data used in design of example classi�ers. The data from classes

!1 and !2 are plotted with stars and circles respectively. a) Training data, b)

Test data.

Example

To illustrate the working principles of our classi�er we have designed a simple

experiment. We have sampled a small number of feature vectors from two 2-D

gaussian distributions and split the data into a training and testing set. The

data in the training and test sets is shown in �gure 3.4 a) and b) respectively.

The data from classes !1 and !2 are plotted with stars and circles respectively.

The �rst step in the smooth histogram technique is to divide the feature space

into equal sized bins and compute the class speci�c PDF estimates within

each of these bins from the training data. The number of bins a�ect the

estimate and thus the performance and generality of the resulting classi�er.

In �gure 3.5 we have tried to illustrate this by using many and few bins in

classi�er designed using the training data shown in �gure 3.4.

In part a) of the �gure we have used n2b = 4 bins. Each bin contains data,

but some of the bins are partly uninhabited. The resulting decision regions

are shown in part b) of the �gure. Performance for this classi�er corresponds

to a sensitivity for class !1 of 100% both in training and testing with corre-

sponding speci�cities of 55and 60%. From these results the classi�er seems to

be general, but as is evident from the plot, the decision border runs parallell

to the feature axes. It would be easy to manually draw a border which would

give better performance. Using as few bins as four provides poor resolution,
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Figure 3.5: Designing histogram classi�ers without smoothing (�vn = 0). The

PDF estimates and decision regions corresponding to classes !1 and !2 are

plotted with light and dark gray respectively, while the test data are shown

with stars and circles as in �gure 3.4. a,c) Class speci�c PDF estimates using

nb = 4 (a) and nb = 25 (c). b,d) Resulting decision regions for using nb = 4

(b) and nb = 25 (d) with testing data superimposed.
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with the borders between the two decision regions being piecewise parallell to

the coordinate axes. This causes an unnecessary drop in the speci�city with

increased sensitivity.

In part c) of the �gure, n2b = 252 = 625 bins. As the data points in feature

space is sparsely populated, the number of vectors within each bin are scarce

(Typically less than two). Therefore the estimate consists of isolated histogram

columns. The e�ect of this on the resulting classi�er is shown in part d) of

the �gure. The decision regions become small isolated regions around each of

the histogram columns. The classi�cation performance corresponding to this

is near ideal in reclassi�cation; 100 % in both sensitivity and speci�city. That

this classi�er is over-trained becomes evident when we consider the testing

sensitivity of 20 %. This is caused by a lot of testing data falling outside

the decision region bins and into the rejection area (white), thus giving poor

generality.

We use smoothing on a larger number of bins to improve on this situation.

Two smoothed class speci�c PDF estimates and corresponding decision re-

gions (trained for 95% sensitivity) are shown in �gure 3.6. The PDFs are

smoothed from the histogram with 625 bins shown in �gure 3.5 c) with vary-

ing kernel widths. Part a) of the �gure shows how smoothing with a narrow

kernel width �vn = 1:5) a�ects the estimate. The most isolated histogram

colums are smeared into restricted surfaces with gaussian bell shapes. In the

areas of feature space were the histogram columns are placed more densely, the

smoothed bells are summed, providing a smoother surface. The corresponding

decision region is shown in part b) of the �gure. Performance for this classi-

�er corresponds to a sensitivity of 100% in training and 60% in testing with

corresponding speci�cities of 87and 90%. If we compare to the corresponding

classi�er without smoothing, generality in sensitivity has improved although

not satisfactorily with a deviation of 40 % between testing and training. The

classi�er is still over-trained, although not as much as without smothing.

Further smoothing by larger �vn a�ects the PDF and decision region as illus-

trated by part c) and d) in the �gure. The isolated training data points are

no longer evident from the smoothed PDF. This is caused by the the larger

kernel width causing contributions from several training data sources on most

places on the function surface. The classi�er corresponding to these param-

eter settings evidences a higher degree of generality and better performance

as is evident from a sensitivity of 96% in training and 90% in testing with

corresponding speci�cities of 80and 85%. It is interesting to note the border

between the decision regions appearing less training data speci�c.

The e�ect of using a restriction factor is illustrated in the PDF plots by the fact

that the columns are spread into a limited area of its neighborhood. Therefore,



3.2 Classi�cation 49

−3

0

3

−4

0

4

0

0.4

v
1

a

v
2

P(
ω

)p
( 

v|
ω

)

−3

0

3

−4

0

4

b

v
1

v
2

−3

0

3

−4

0

4

0

0.4

v
1

c

v
2

P(
ω

)p
( 

v|
ω

)

−3

0

3

−4

0

4

d

v
1

v
2

Figure 3.6: Designing histogram classi�ers (nb = 25) with varying kernel

widths. The PDF estimates and decision regions corresponding to classes

!1 and !2 are plotted with light and dark gray respectively, while the test

data are shown with stars and circles as in �gure 3.4. a,c) Class speci�c PDF

estimates using kernel widths of �vn = 1:25 (a) and �vn = 5 (c). b,d) Result-

ing decision regions using �vn = 1:25 (b) and �vn = 5 (d) with testing data

superimposed.
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the parts of the feature space not inhabited by feature observations are not

extrapolated. In the plots of the decision regions these areas appear as white,

thus de�ning the reject class.

Having de�ned this important part of our system we proceed by discussing

the feature extraction part.

3.3 Feature extraction

As we brie
y discussed in section 3.1, developing good feature extraction meth-

ods is one of the key issues in the design of our VF-analysis decision support

system. To put it bluntly, we seek a set of ECG-derived features expressing

the resuscitability of the subject from whom the ECG was measured. In other

terms, we want our system to be valid which in [107] is de�ned as follows:

Validity assesses how much the measurement result re
ects what

it is intended to measure, for example, diagnostic accuracy. To be

sure that a measurement is valid, it must be compared to a gold

standard,...

For high validity we need features yielding high performance classi�cation

results. In the following we will after a brief discussion of feature extraction

by methods for signal representation, discuss methods by which we will try to

meet this end. At the end of this section we will discuss strategies to select

the best features from a larger feature set.

3.3.1 Feature extraction in general

In the present setting the ECG is the primary measurement. We start o� by

establishing nomenclature:

� record : The entire ECG sequence recorded from a patient.

� block : The record is split into blocks which may be overlapping. For

each block one feature vector is calculated.

� segment The block can be further subdivided into segments which may

be overlapping.

In the case of ECG, a block is typically of very high dimension (several hun-

dred). This makes the formation of a feature vector directly from the ECG

block impractical. Therefore we seek to restructure the signal so that it will

be better suited for feature extraction for classi�cation.
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3.3.2 Spectral feature extraction

Features based on estimates of the PSD are central in some of the earlier

work discussed in section 2.3. We look into some of these methods and also

introduce some new methods or variations of older ones.

Signals with varying properties may be characterised in the frequency domain

by the power spectral density (PSD). Often, the PSD is estimated by averaged

periodograms,

P̂AV (f) =
1

K

K�1X
m=0

1

L
j

L�1X
n=0

w(n)xm(n)e
�j2�fn

j
2; (3.41)

where xm(n) denotes sample n in segment m in a block of ECG. Each block is

divided into K segments, each of length L. Both the segments as well as the

blocks may overlap. Each segment is weighted by a window function w(n).

The properties of the averaged periodogram is discussed in detail in [56].

Studies of the spectra for varying myocardial metabolism indicate changes in

shape and placement in the frequency region. A smeared spectrum indicates

high myocardial perfusion while a peaky spectrum indicates low myocardial

perfusion. This suggests that a parameter that carries information about the

shape of the PSD may be used as a monitor to detect changes in the myocardial

metabolism [12].

In one of the later experimental chapters 5.2, the spectrograms from some

animals give an impression of how this might seem intuitively correct. These

kinds of observations might have inspired the introduction of some of the

spectrally derived features we discuss in the following.

The centroid frequency

The observed shift of the centroid of the area under the PSD curves due to

the therapy can have been the motivation for the introduction of the centroid

frequency (CF) as an indicator for changes in the myocardial metabolism.

The centroid frequency (CF), commonly referred to as the median frequency [12],

indicates placement by using the frequency bisecting the area under the PSD

and is given as

CF =

R fu
fl

fP̂AV (f)dfR fu
fl

P̂AV (f)df
; (3.42)

where fl � f � fu. fl and fu are the lower and higher frequency band limits

respectively. By varying these limits, we can study the e�ect of extracting

features from di�erent frequency bands.
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The peak power frequency

The shift in the placement of frequency components can also be captured by

the frequency corresponding to the maximum power in the PSD as given by

PPF = argmax
f

(P̂AV (f)): (3.43)

Again, the frequency band wherein PPF is to be determined is limited by fl
and fu.

The spectral 
atness measure

Motivated by observations of changes of spectral shape in accordance with

with changes in resuscitability, we introduce of a spectral shape parameter.

The spectral 
atness measure SFM [55] is suitable due to its ability to describe

the 
atness of the spectrum. The SFM is given by

SFM = 2
e
R fu
fl

ln P̂AV (f)dfR fu
fl

P̂AV (f)df
; (3.44)

SFM attains a value in the region between zero and one. A 
at spectrum

renders a spectral 
atness measure of 1, while peakier spectra attains values

closer to 0.

The spectrum energy

Various time domain measurements of signal amplitude characteristics have

been investigated [109, 62, 73], some of these e�orts are described in chap-

ter 2.3. In this work we investigate an alternative frequency band limited

energy measurement (ENRG) as given by

ENRG =

Z fu

fl

P̂AV (f)df: (3.45)

As we will see in the later analysis of animal experimental data, trend curves

of the spectral features depicts how the ECG measurements change along with

alterations in therapy a�ecting the myocardial metabolism.
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3.3.3 Feature selection

The dimension of a feature vector may be larger than necessary because the

individual features are correlated. It is sometimes convenient to reduce the

dimension before presenting the feature vector to the classi�er. The problem

is to determine the subset or combination of features giving the best classi�er

performance. There are many strategies by which to determine this subset, but

in this work we only use the straightforward optimal method. This is a time-

consuming method, but we only handle feature vectors of limited dimensions

in this work.

Optimal feature selection

A lot of methods have been proposed to determine the best subset. The

essence of these methods is that features are evaluated individually and ranked

according to a class separability criteria. The straightforward method is by

comparing all possible combinations and determining the one best suited for

the classi�cation task. Of course, if the dimension is large, this is quite ex-

haustive.

Feature projection

Alternatively by selecting the best subset, projection pursuit, determines the

best dimension reductionN 7!M by combining the features by some criterion.

As discussed in [44], principal component analysis using a criterion of best

representation has advantages as compared to methods based on alternative

criteria. Principal component analysis (or principal axis representation) is

presented in detail in appendix A.

3.4 Filtering of CPR artefacts

The appearance of CPR artefacts in the ECG a�ects the validity of the feature

measurements. If these artefacts are present during VF-analysis, the extracted

information will be infected with noise. Other investigators have demonstrated

that CPR artefacts causes an interference problem during VF-analysis on hu-

man ECG [94]. Therefore it is necessary to handle this problem to perform

reliable VF-analysis during CPR.

In chapter 3.1 we discussed the use of �lters in reducing artefacts caused by

precordial compressions and/or ventilations. In the following we brie
y discuss
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the artefact removal methods used in earlier work. As these methods has

serious limits in the case of human VF-analysis, we end this section proposing

a method for CPR artefact removal using adaptive �lters whereby VF-analysis

is made possible during CPR in humans.

3.4.1 Filtering CPR artefacts in animal ECG

Frequency selective analysis was applied by Strohmenger et al in an animal

experiment [95] to study the interference of CPR-artefacts to VF-analysis.

Noc et al used a frequency selective high pass �lter for artefact removal prior

to VF analysis in an animal study [73].

Frequency-band limiting

The method applied by Strohmenger et al in [95] corresponds to setting the

lower and upper frequencies, fl and fu, of the frequency region to be analysed

. The least interference to VF-analysis was achieved by setting the frequency

band to be analysed according fl set between the third and fourth harmonic

of the CPR artefact and fu set higher than the highest signi�cant frequency

components of the VF signal. This e�ectively removed the dominant artefact

components in the spectrum. As we will show later, some of our experiments

on animal data will be performed according to this method.

Digital �ltering with �xed coe�cients

Noc et al used a digital high pass �lter which similarly to the frequency-

band limiting method of Strohmenger et al removed the three lowest harmonic

components of the artefact prior to VF-analysis. For the digital �ltering we

will be performing on animal experiment ECG to split the ECG we will apply

high pass and low pass digital FIR �lters. The high pass and low pass �lters

will be used for the VF and CPR channels respectively. A general form for a

digital �lter is given by:

H(z) =
b0 + b1z

�1 + : : : + bnb�1z
�(nb�1)

1 + a1z�1 + : : : + ana�1z
�(na�1)

(3.46)

The constellation of the coe�cients de�ne the type of �lter [77] in this work we

will use �nite impulse response FIR �lters given by na = 1 and nb � 0. Thus

the �lter's behavior is governed by the choice of coe�cients bi; i = 0; : : : ; nb�1.
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3.4.2 Adaptive �ltering of CPR artefacts in human ECG

As we discussed in section 3.1, the success of the frequency-selective methods

depends on the frequency components of the VF signal and the CPR artefact

signal being non-overlapping. This criterion is satis�ed in the animal data

analysed by Strohmenger et al [95] and Noc et al [73].

In an attempt to solve this problem, we have put forward the following strategy[63,

1]: The ECG artefact is modeled as a sum of several sources; the main source

being the mechanical stimulation of the heart itself. For each source the idea

is to obtain a reference signal correlated to the associated artefact compo-

nent. In the case of artefacts due to chest compressions one such reference is

the compression depth. The reference signal facilitate removal of the artefact

component using an adaptive, digital �lter. We investigated the potential use-

fulness of this model in [63] and [1]. The fundamentals of the �lter solution

developed by Aase et al [1] is described below.

Filter considerations

In designing the best possible �lter strategy for removing artefacts we make

use of the following observations:

� The reference signals are correlated to the associated artefact compo-

nents.

� The system should combine information inherent in the multiple refer-

ences in an optimal manner.

� It should be expected that the causal relationship between cause (chest

compression/ventilation) and the associated artefact components will

change over time. It follows that the �lters used should be adaptive,

using short-time signal analysis when computing the current �lter coef-

�cients.

Letting P denote the number of artefact-causing sources, the artefact signal

can be modeled as the sum of the e�ect of each source vp:

y(n) =

PX
p=1

Kp�1X
k=0

hp(k)vp(n� k): (3.47)

In this expression the source signals fvp(n)g are identical to the reference

signals, and hp(n) is the unit pulse response of the Finite-Impulse-Response
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(FIR) �lter modeling the impact of vp on y. Kp is the corresponding �lter

length. y(n) is an estimate of the actual artefact a(n).

If we set P = 2, the structure of the proposed multi-channel �lter algorithm

is as shown in Figure 3.7.
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Figure 3.7: Structure of artefact removal system when using 2 reference signals.

x̂(n) is the restored VF/VT signal.

The proposed algorithm also includes a simple low-pass �ltering of the re-

constructed artefact. This is a practical way of removing spurious frequency

components above 10 Hz. Such components may arise due to the sample-to-

sample adaptivity of the channel �lters h1 and h2. The dotted arrows indicate

that x(n) is used for analysis when computing the �lter responses h1 and h2.

Further details on the derivation of this �lter solution is given in appendix B,

while experimental results are presented and discussed in chapter 7.

3.5 Summary

We have discussed and presented methods for CPR artefact removal both in

animal and human ECG. Frequency selective �lters are applicable to animal

ECG because the frequency components of VF and CPR are separable. This

assumption is not valid for human data, and we propose a method for re-

moving CPR artefacts from human ECG using adaptive �lters with references

containing information about the cause of the CPR artefacts.

We have also discussed the feature extraction methods to be used in later

chapters.

Finally, we have shown how a statistical classi�er can be �tted into our decision

support system, with special focus on the ability to perform ROC-analysis.
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We have presented methods for measuring performance by cross-validation

techniques, and we have presented the function approximation technique we

will be using and have identi�ed the parameters governing generality and

restriction.
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Chapter 4

ECGs, demographics and

annotations

The data considered in this work includes ECG and related information. The

EMS database is our primary object for prediction and monitoring analysis,

while the AED rhythm library is used to evaluate CPR artefact removal. To il-

lustrate the basic concepts of CPR artefact removal, shock outcome prediction

and monitoring analysis we study data from animal studies. Two of these, the

short-term and long-term drug studies were originally done to evaluate the

e�ect of drug therapy during CPR. In the third animal study from which

we have data, one of the study objectives were the application of precordial

compressions at di�erent frequencies.

4.1 Human data

The human data includes the EMS database of ECGs, annotations and demo-

graphics from cardiac arrested patients and the AED rhythm library of ECGs

covering a diversity of cardiac arrhythmias usually encountered by AEDs.

4.1.1 The EMS database

The EMS database was collected in Oslo in the two-year period between Febru-

ary 19th 1996 and February 18th 1998. The author of this thesis joined forces

with researchers working closely with the EMS system to facilitate the estab-

lishment of a database of ECG recordings and demographic data from out-

of-hospital cardiac arrested patients. Approval for this study was obtained
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through the Regional Committee for Research Ethics, health region III, and

the Norwegian Data Inspectorate.

The data were collected as part of an observational prospective study of what

actually occurred during de�brillation and advanced life support (ALS) in the

Oslo emergency medical system [100]. This subsection is adapted from the

materials description of [100].

The study was conducted with a target land area of 427 square km and a

population of approximately 500000; 1170 persons per square km. 48% of the

population are men and 16% are aged 65 or more. The death rate was 1096

per 100000 (1997) with 301 of these being of cardiac origin (1995).

A one-tiered centralised community run system responds to all medical emer-

gencies on a designated telephone number. All ambulances are dispatched

from one centre sta�ed with specially trained paramedics and nurses.

There are eight to 11 emergency ambulances between 07:00 and 22:00 h and

six ambulances at night. They are all fully equipped for advanced life sup-

port (ALS) and from 07:30 to 22:00 on weekdays one of the teams includes an

anesthesiologist. The paramedics perform ALS according to the ERC guide-

lines [16, 81] and are certi�ed yearly.

If cardiac arrest is suspected, the dispatch centre will, if available, send the

M.D. manned ambulance. If a regular ambulance is dispatched, the paramedics,

after con�rming cardiac arrest, request the assistance of a second ambulance

team. The ambulances are equipped with Heartstart 3000 de�brillators. Max-

imum emergency cross-town driving time is about 30 min.

For the study, the following was collected from cardiac arrests where ALS was

attempted :

� The log �le in the Medical Control Module (MCM) of the de�brillator

(Heartstart 3000 (Laerdal Medical)).

� Regular Utstein registration of demographics 'Report of con�rmed pre-

hospital cardiac arrest' [17].

The MCM stores up to 20 min of the digitised ECG signals and all the log-

data describing the use of the de�brillator. If a resuscitation attempt exceeds

20 min, new prioritised ECG segments (analysis, de�brillation and monitor-

ing once each min) are recorded overwriting the nonprioritised segments last

recorded. The ECGs were reassembled in its correct time frame from the

information in the MCM.
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Printouts of the ECG tracings along with the MCM log data were generated

for each patient episode for systematic review by the medical team providing

rhythm annotations. The ECG is sampled at 100 samples per second and

8 bit resolution. The EMS database thus consists of ECG, de�brillator log

data, rhythm annotations and demographics from 156 out-of hospital cardiac

arrest treated patients. Figure 4.1 gives an example of a printout of ECG with

corresponding de�brillator log data.

Relevance

This EMS database provides data from the treatment of cardiac arrested

out-of-hospital patients. This database is used in the analysis of how ALS

is performed (chapter 6) and in the evaluation of shock outcome prediction

(chapter 8) and CPR e�cacy monitoring methods (chapter 9).

4.1.2 The AED rhythm library

The AED library (proprietary of Laerdal Medical AS, Stavanger, Norway)

consists of 481 ECG segments each of 15 seconds duration. This material

represents a variety of rhythms, representing what an AED would be expected

to see (table 4.1).

Rhythm Number of segments

Asystole (ASY) 26

Sinus rhythm (SR) 26

Ventricular tachycardia (less than 180 bpm) (NVT) 26

Pacemaker rhythm (PAC) 26

Premature ventricular complex (PVC) 26

Sinus tachycardia (S-T) 26

Supraventricular tachycardia (SVT) 27

Sinus bradycardia (less than 60 bpm) (V60) 27

Ventricular �brillation (VF) 200

Ventricular tachycardia (VT) 71

Table 4.1: Representation of cardiac arrhythmias in the AED rhythm library

The ECG strips were selected from �eld data recorded by various Heartstart

models (Laerdal Medical) and have been further annotated by three cardiolo-

gists. The data format is 100 samples per seconds, 8 bits per sample.
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200 J
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a 

b 

Figure 4.1: Example of MCM printouts of ECG and de�brillator log data

translated from the MCM �le. The minimum and maximum values on the

y-axis correspond to -2.45 and 2.45 mV respectively. On the right side of each

strip the time from initiation of monitoring is registered. a) In the �rst half

of the strip 30 chest compression artefacts can be counted. The compressions

are stopped at the start of the second part of the strip, the patient has VF

and a shock is given 14 sec thereafter. b) In the �rst strip the patient has

VF and a shock is given at 25 sec. Thereafter some electrical activity occurs

before the patient has a long isoelectric period lasting for 37 sec. During

this period the paramedics analyse the rhythm of the patient three times and

do not initiate precordial compressions. Despite this, the patient obtains a

pulsegiving rhythm 46 sec after the shock.
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Relevance

In chapter 7 we use the AED library to evaluate the e�ect of CPR artefact

removal on the recognition rate of VF and VT in the AED algorithm. The

VF and VT segments are mixed with artefacts which we attempt to remove.

We evaluate how well this is done by calculating

� Signal to noise ratio (SNR) improvement

� Sensitivity of the AED algorithm

for both �ltered and uncontaminated segments.

4.2 Animal data

The animal ECG includes data from the short-time and long-term drug e�ect

studies and the chest compression frequency study.

4.2.1 The short-term drug e�ect study

The animal short-term drug e�ect experiment ECGs originate from a porcine

model used in an experiment by Strohmenger et al. The interference by CPR

on VF was studied in [95].

Animal preparation

The animal preparation is described in detail in [95]. In short, the animals

were anesthetised, intubated for ventilation and instrumentated for measure-

ment of ECG and myocardial blood 
ow. Ventilation was performed at 20

breaths/minute. The ECG was monitored with standard lead II. The ECG

sampling rate is 100 Hz with 8 bit resolution.
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Experimental design

VF was induced in the pigs with ventilation stopped at the same time. At four

minutes into VF, closed-chest CPR was started and continued for ten minutes

using an automatic piston device. The compression rate was 80 per minute.

At the same time ventilation was resumed.

After three minutes of CPR, the animals were randomly allocated to receive

either vasopressin or saline without addition of any drug (placebo). Myocardial

blood 
ow was measured at 90 seconds after initiation of CPR (before drug

administration) and at 90 seconds and 5 minutes after drug administration.

After approximately 13 minutes of cardiac arrest, the animals were de�bril-

lated to restore spontaneous circulation.

The time line of the protocol is illustrated in �gure 4.2.

Time (min)

-2 0 4 7 13 14 16

VF DA DEFIB

CPR

Figure 4.2: Protocol timeline showing the timings for activities during animal

experiments. VF, inducing ventricular �brillation; CPR, cardiopulmonary

resuscitation; DA, drug administration; DEFIB, de�brillation.

Results

Resuscitation was 100% successful in the vasopressin group and 0 % successful

in the placebo-treated group.
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The measurements of the myocardial blood 
ow (taken from [95]) are shown

in table 4.2. MBF was signi�cantly higher in the vasopressin group than in

Time of measurement Myocardial blood 
ow (ml/min/100g)

vasopressin placebo

before drug administration (DA) 14:7 � 2:1 17:5 � 0:9

90 s after DA 74:5 � 6:9 15:5 � 0:9

5 min after DA 59:9 � 9:6 13:0 � 1:0

Table 4.2: Myocardial blood 
ow measurements

the control group after drug administration. The MBF was also signi�cantly

higher in the vasopressin group when comparing the measurements before drug

administration to those after drug administration.

Relevance

In chapter 5.2 we analyse the ECG segments corresponding to the speci�c

treatment phases. These segments may contain information re
ecting the state

of the myocardial metabolism. The myocardial blood 
ow (MBF) during CPR

is indicative of the outcome of de�brillation. The higher MBF, the higher

probability of a successful outcome following de�brillation (P (success)) [13,

98].

The relations between the phases of ECG and MBF of the animal experiments

are as follows. In the start phase where ventricular �brillation is induced and

no treatment is given, the MBF stops immediately and prolonged periods of

untreated ventricular �brillation are associated with low de�brillation success

(very low P (success)). With administration of CPR, the MBF increases im-

mediately but hardly reaches the threshold of myocardial perfusion that is

crucial to succeed in de�brillation therapy. This indicates a somewhat higher

P (success) in this phase. With the administration of vasopressin, adequate

myocardial perfusion is achieved for restarting the arrested heart and there-

fore a much higher P (success) can be expected. In [60] the relationship be-

tween MBF and ease of resuscitation is given according to table 4.3. The MBF

measurements in this study and the MBF levels in table 4.2 indicates a link

between the phase of ECG and the P (success) as given in table 4.4. We group

the data into classes according to treatment phases given in table 4.4. The

ECG features are evaluated according to their ability to discriminate between

these classes.
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Ease of resuscitability MBF (ml/min/100g)

Not possible 0{15

Di�cult 15{30

Easy 30{70

Table 4.3: Relationship between MBF and ease of resuscitation

Treatment P (success) MBF (ml/min/100g)

No treatment very low 0

Vent. and compr. with no drugs low to medium 13:0 � 1:0{17:5 � 1:0

Vent. and compr. with drugs medium to high 59:9: � 9:6-74:5 � 6:9

Table 4.4: Class division scheme

4.2.2 The long-term drug e�ect study

The ECGs from the long-term drug e�ect study ECGs originate from a porcine

model. The data were kindly provided by Fritz Sterz 1. The purpose of the

study was to analyse the e�ects of di�erent dosages of endotheline as compared

to those of epinephrine and a placebo.

Experimental design

The animals were cardiac arrested, CPR started at �ve minutes into VF and

continued for 20 minutes until de�brillation was attempted. Drugs were given

during CPR at 10,13,16,19 and 22 minutes into VF. Six animals were given

a placebo, six received epinephrine. Another six animals were treated with a

small dosage of endotheline, and seven with a medium sized dosage, while �ve

animals were given a high dosage. These animals received endotheline at 10

minutes and a placebo later on.

The time line of the protocol is illustrated in �gure 4.3.

1Dr.med. Fritz Sterz, Stellvertreter des Vorstandes, a.o. Univ.Prof. und Facharzt fur In-

nere Medizin (Intensivmedizin), Notarzt, Universitatsklinik fur Notfallmedizin, Allgemeines

Krankenhaus der Stadt Wien, Wahringergurtel 18-20/6/D, 1090 Wien, Austria. The analysis

of these data discussed in this thesis was done in cooperation with M. Holzer, W. Behringer,

F. Sterz, E. Oschatz, J. Ko
er, P. Eisenburger and A. N. Laggner.



4.2 Animal data 67

Time (min)

-3 0 5 10 13 16 19 22 25

VF DA DA DA DA DA DEFIB

CPR

Figure 4.3: Protocol timeline showing the timings for activities during animal

experiments. VF, inducing ventricular �brillation; CPR, cardiopulmonary

resuscitation; DA, drug administration; DEFIB, de�brillation.

Results

In the groups with low and medium dosages of endotheline, 50 % and 71 % of

the animals where converted to ROSC respectively. In the other groups, none

of the animals were successfully converted.

Relevance

In chapter 5.3, we analyse ECGs from this model to illustrate the e�ect of

prolonged VF on ECG features. It is meant to be a supplement to the study

of the short-term drug e�ect data (chapter 5.2). The analysis results show

how the parameters used with good performance in the short-term study fails

to re
ect the myocardial metabolisms in long term VF. We also show how

the introduction of a new parameter into the feature combination amends this

problem to some degree.
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4.2.3 The compression frequency study

The data from the animal compression frequency study was recorded in the

study by Langhelle et al [63]. The purpose was to provide data for use in

experiments with CPR artefact removal. The original intent was to provide

data enabling us to evaluate candidate methods for artefact removal.

Animal preparation

The study was approved by the Norwegian Council for Animal Research. We

give a brief description of the animal preparation. A more detailed description

is given in [63]. Twelve domestic healthy pigs were anesthetised. Ventilations

were given at 16 min�1. The ECG signals were registered at 2000 samples

per second at 32 bits per sample both through regular electrodes attached to

the thorax and through electrodes attached to the limbs. These two channels

are denoted the de�brillation (DEF) channel and the monitor (MON) channel

respectively.

CPR was performed with a mechanical chest compression device with change-

able compression rate. Aside from the ECG channels, signals measuring the

compression displacement and for the last three animals in the study, the

thoraic impedance, were recorded (sampling rate 25 samples per second).

Experimental protocol

Ventricular �brillation (VF) was induced with ventilation discontinued at the

same time. After 3 min of VF, chest compressions were initiated choosing one

of three compression rates; 60, 90 or 120 min�1, picked at random from a list.

After 3 min. of CPR in each method, a 30 seconds pause with VF without

CPR followed. Ventilation was performed after every fourth, every sixth and

every eighth compression with 60, 90 and 120 min�1.

The time line of the protocol is illustrated in �gure 4.4.

After 180 sec the compression rate was changed to one of the other two pat-

terns, and all measurements were repeated with the same time schedule. Af-

ter 360 sec the rate was changed to the last pattern, and all measurements

were repeated again. The randomisation list was written so that the di�er-

ent compression rates were spread uniformly between being performed as the

�rst, second or third method. Thereafter asystole was initiated, and the same

randomised procedure as with VF was repeated. After completion of the ex-

periment CPR and ventilation were stopped.
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7 3 7 7

Time (min)

SR VF A

R1 R2 R3 R1 R2 R3 R1 R2 R3

Figure 4.4: Protocol timeline showing the timings for activities during animal

experiments. SR, sinus rhythm; R1, precordial compressions given at rate R1;

R2, precordial compressions given at rate R2; R3, precordial compressions

given at rate R3; VF, inducing ventricular �brillation; A, inducing asystole.

Relevance

These data are used in our CPR artefact removal experiments. Observations

on these data as well as simple �ltering experiments are described in chap-

ter 5.1. The recordings of asystole with CPR artefacts provide us with realistic

data which we will use to simulate artefacts in human data. As we will see in

chapter 7 the ECG recordings of the asystole sequences with artefacts from

precordial compressions and ventilations provide data to be mixed with hu-

man ECG. In addition to this we have the information in the reference signals

which will be used in the adaptive �ltering technique described in chapter 3.4.
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Chapter 5

Animal studies

In this chapter we report and discuss ECG observations from animal exper-

imental data. Furthermore the basic concepts of CPR artefact removal are

illustrated. We also perform simple experiments with shock outcome pre-

diction and CPR e�cacy monitoring. CPR artefact removal is discussed in

section 5.1, while the potential of some of the ECG features for prediction and

monitoring from chapter 3 are discussed in section 5.2 and 5.3.

5.1 CPR artefacts in animals

As discussed in chapter 3.1, CPR artefacts in ECG interfere with both out-

come prediction and monitoring if left unhandled. In the following we report

some observations regarding the e�ect of CPR on various rhythms. It is also

illustrated how CPR artefacts in animal ECG can be separated from the VF

part of the ECG.

5.1.1 Methods

The observations and experiments described in this section originate from

analysis on compression frequency study data described in chapter 4.2.3. The

human data originates from the AED rhythm library (chapter 4.1.2). Parts of

this section are adapted from [63].
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Observational data

From the animal ECG recordings from the study the following tracings were

extracted:

� Three six second tracings recorded via the MON channel showing the

transition from CPR to no CPR for SR, VF and asystole.

� Two 15 second tracings simultaneously recorded via both MON and

DEF channel showing artefacts not simultaneously present in the two

channels.

� From the VF sequences recorded from two of the animals (8 min dura-

tion), spectrograms were recorded using short time Fourier transforms

computed from 3 second ECG blocks padded to 512 samples.

Filtering example

An attempt at splitting the ECG signal from one of the animals into a CPR

channel and a VF channel was performed. A straightforward frequency selec-

tive �ltering method was applied to split the ECG signal into a VF channel

and a CPR channel. As was noted in [95], CPR interference may be obviated

in spectral analysis if only the frequency band corresponding to 4.5-35 Hz is

submitted to the analysis. This corresponds to the removal of the �rst three

harmonics of the CPR artefact.

A high-pass �lter was designed with the passband in the region above 5.5 Hz

and a stopband attenuation of 20 dB and applied to the ECG to estimate the

VF channel. A lowpass �lter with passband in the region below 4.5 Hz and a

attenuation of 20 dB in the stopband was also applied to estimate the CPR

channel. The output signals were aligned with the original signal.

Comparing animal and human spectra

Frequency spectra were computed from ten 15 second ECG recordings of CPR

artefacts (90 compressions per minute) randomly extracted from our animal

experimental data. Likewise, spectra were computed from ten animal VF

records and from ten human VF records from the AED rhythm library. All

VF spectra were computed from periods when no CPR was performed, thus

the VF spectra are without artefacts. All records were normalised to unity

variance. The estimates were computed as the mean of the individual PSD

estimates of ten 15-second ECG records.
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Figure 5.1: Di�erent degree of disturbance in a) sinus rhythm (SR), b) ven-

tricular �brillation (VF) and c) asystole (A). The �rst and last three second

periods are with and without ongoing CPR respectively.

5.1.2 Results

Observations on artefacts from compression frequency study

The CPR artefacts appear di�erent during SR, VF and asystole (�gure 5.1).

During SR the only observed changes in the ECG with CPR are RR-interval

modi�cations in the QRS-complexes during chest compressions. During VF

and asystole, the magnitude of the artefact increases as the spontaneous elec-

trical activity drops.

The simultaneous MON and DEF channel ECG recordings are shown in �g-

ure 5.2. We observe that there tends to be di�erences in artefact magnitudes

and shapes between the monitoring channel and the de�brillator channel. Dur-

ing the �rst 7.5 seconds there are distinct artefacts present in the de�brillation

channel that do not appear in the monitoring channel.

The spectrograms of the VF sequences are shown in (�gure 5.3). In the two

parts of �gure 5.3, the spectrograms represent the period after onset of VF

until right before asystole starts in two di�erent animals. In �gure 5.3 a), the

frequency components corresponding to the harmonics of the CPR artefacts

given at the three rates appear as distinct horizontal red lines in the 0-5Hz
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Figure 5.2: Example of di�erence in artefacts presented by a) MON channel

and b) DEF channel. The artefact components present in the DEF channel

are not simultaneously present in the MON channel.
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Figure 5.3: Time frequency representations (spectrograms showing the scaled

logarithm of the magnitudes of the time dependent Fourier transform) of the

VF period in two animals with a) low degree of spontaneous activity with

prominent artefact components and b) high degree of spontaneous activity

with less distinct artefact components. The colours identify the magnitudes as

follows: low (dark blue), below middle (light blue), above middle (yellow), high

(red). The frequency components of VF and CPR artefacts (and spontaneous

activity) are identi�ed by high magnitudes (red) in the frequency areas 5-15

Hz and 0-5 Hz respectively.
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Figure 5.4: ECG showing transition from VF to VF with CPR artefacts. a)

Original ECG, b) VF channel being the output high-pass �ltered ECG c) CPR

channel being the output of the low-pass �ltered ECG

frequency band. The frequency components corresponding to VF appear as

a time-varying composition of frequency components in the frequency area

above 5 Hz. In the pauses between the �rst two compression periods the

direct e�ect of CPR disappears as indicated by the yellow to green colouring

without distinct bands.

In some animals spontaneous periodic activity appeared during VF and con-

tinued after the end of CPR. This is illustrated in �gure 5.3 a), where there

is evidence of low frequency activity in the 0-5 Hz areas after the last com-

pression period. In �gure 5.3 b) such spontaneous activity is evident from the

onset of VF. The compression periods are less evident than in the correspond-

ing parts of �gure 5.3 a. The frequency components of the artefacts become

less distinct when spontaneous activity is present.

Filtering example

In �gure 5.4 a) the original ECG signal is shown. CPR by precordial com-

pressions is introduced at seven and a half seconds, and resulting artefacts are

clearly visible.

The VF channel output from the high-pass �lter is shown in �gure 5.4 b) while

the CPR channel output from the low-pass �lter is shown in �gure 5.4 c).
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Figure 5.5: Averaged spectral estimates for (a) CPR-artefact in asystole, (b)

Ventricular �brillation (VF) in animals and (c) VF in humans. The area under

the spectrum curve represents the total power of the signal.

Looking at the part of the plots corresponding to the period before introduc-

tion of CPR, it seems like the VF morphology is unchanged in the VF channel

when comparing to the corresponding waveforms in the original ECG. Some

minor low frequency components have leaked into the corresponding part of

the CPR channel which is near isoelectric as expected.

If we proceed studying the part of the plots illustrating the period from the

start of CPR, the start and proceeding of the precordial compressions is clearly

evident in the CPR channel. It is interesting to note a change in the morphol-

ogy of the VF channel in this period. There is clearly a more distinct amplitude

modulation.

Comparing human and animal VF spectra

The spectra comparing human and animal ECG are shown in �gure 5.5. The

spectral components of the CPR artefacts are in the frequency area below �ve

Hz (�gure 5.5 a), of animal VF in the area above �ve Hz (�gure 5.5 b), and

of the human VF in the area from zero to 10 Hz (�gure 5.5 c).
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5.1.3 Discussion

In this section, observations from the ECG recordings from the animal com-

pression frequency study has been presented. The illustrations showed how

di�erent rhythms are a�ected by precordial compressions and how artefacts

appear in ECG recorded via di�erent lead con�gurations. A simple experiment

was performed to illustrate the principles of CPR artefact removal. Further-

more spectra computed from bot animal and human VF were compared with

reference to animal CPR artefacts.

The use of frequency selective �lters (�gure 5.4) to remove CPR artefacts gave

visually encouraging results, but as we was demonstrated by the spectra com-

paring human and animal data (�gure 5.5), the problem of removing CPR

artefacts from human ECG is not solved as straightforward as compared to

animal ECG. This shows that the separation of CPR artefacts from the my-

ocardial ECG signal during VF in man is more di�cult than the corresponding

problem in pigs where it can be successfully achieved by applying digital �lters

with �xed coe�cients as illustrated in �gure 5.4 and demonstrated in [95, 73].

These �lters work by suppressing �xed frequencies, and their success thus

require that the major frequency components of the CPR artefacts and the

signal re
ecting the cardiac rhythm are separable. This is the case in pigs with

the major artefact components below 5 Hz and the VF band in the area above

5 Hz as demonstrated in this section (�gure 5.3 and 5.5 a and b). It is not the

case in humans where the frequency components of VF are lower with much

more overlap with the frequency components of the artefacts as seen in the

present study (�gure 5.5 c) and reported by Strohmenger et al [94]. Therefore,

other techniques are required to remove CPR artefacts from human ECG. We

apply the adaptive �ltering technique proposed in chapter 3.4 in our attemp at

removing CPR artefacts from arti�cial mixes of human VF and animal CPR

artefacts (chapter 7).

5.2 E�ects of CPR in a short term VF animal model

In this section we study the potential of some of the features described in chap-

ter 3 for monitoring and outcome prediction animal model. As we discussed

in chapter 2, the level of MBF during CPR is indicative of the outcome of de-

�brillation. The higher MBF, the higher probability of a successful outcome

following de�brillation (P (success)) [13, 98].

We chose two very di�erent groups of animals as regards treatment to empha-

sise how well the changes in MBF levels caused by changes in therapy may be
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expressed by ECG derived features. We studied �ve animals having received

an e�ectful drug and compared to �ve animals having received a placebo. We

wanted to show how changes in therapy with documented bene�cial increases

in the MBF level is accompanied by distinct chances in the time-frequency

domain as shown in spectrogram plots of the transformed ECG.

We wanted to demonstrate how the changes evident in the time frequency

representations can be captured by the features CF and SFM thus illustrating

these features' potential for monitoring the e�ect the applied therapy.

Finally we grouped the features according to di�erent levels of resuscitabil-

ity. This was done to demonstrate the use of these two spectral features for

outcome prediction.

5.2.1 Methods

We used the short term drug study pig data described in detail in chapter 4.2.1.

The PSD was estimated according to equation 3.41 using non-overlapping

blocks of 300 samples with K = 3 segments each of length L = 128 with

a segment overlap of 32 samples. Further, the features ,SFM and CF, were

extracted sequentially according to equations 3.44 and 3.42, respectively, with

the frequency range fl � fu set to 4� 20 Hz to reduce the e�ects of the CPR

artefacts in the VF analysis. The sequences of SFM and CF were smoothed

to remove short time variations.

Monitoring

The feature sequences were aligned so that the sequence from each animal

started at the onset of VF (t = 0) minutes and stopped approximately at the

end of CPR (t = 13) minutes. Thus the sequences SFMi;j(n) and CFi;j(n)

where n = 1 : : : 240, i = 1; 2 and j = 1; : : : ; 5 for animal number j in group

number i were obtained. For each of the two animal groups a within group

averaged feature was made by computing the mean feature value for every

third second according to SFMAVi(n) =
1
5

P5
j=1 SFMi; j(n) and following a

similar procedure for the computation of CFAVi(n). i = 1 and i = 2 correspond

to the vasopressin and placebo group respectively.
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Prediction of expected outcome

To consider the ability of the measurements to distinguish between ECG from

di�erent phases of treatment, the measurements were grouped according to the

class division scheme given in table 5.1. The reason for this division scheme is

best explained by referring to tables 4.4 and 4.2 which shows the MBF levels in

the two groups. Further, the discussion in section 4.2.1 shows how the classes

may be associated with varying levels of resuscitability (increasing with class

number).

Expected outcome Class Class criteria Numbers

ROSC !1 CPR+VASO 600

No-ROSC !2 CPR 600

No-ROSC !2 CPR+PLAC 600

No-ROSC !3 VF 800

Table 5.1: Class division scheme analysis of predictive capability of features in

short term drug e�ect study. VF: VF without artefacts or e�ects from drugs;

CPR: ongoing CPR; VASO: vasopressin has been applied; PLAC: placebo has

been applied.

The estimates of the a priori probabilities and class-speci�c PDFs are com-

puted for each of the three classes according to equations 3.36 and 3.35 using

the histogram method of section 3.2 with histogram resolution set according

to nb = 50 and no smoothing used. This is done because of the large number

of features in each class. The performance is measured by the sensitivity and

speci�city of class !1 given by equations 3.14 and 3.15, respectively. Five-fold

cross-validation is used in the evalution of each of three classi�ers using the

following feature vectors: v =
�
vSFM

�
, v =

�
vCF

�
and v =

�
vSFM vCF

�
.

5.2.2 Results

Two time frequency plots, of the PSD sequences computed from two animals,

one from the vasopressin group and the other from the placebo group, are

shown in �gure 5.6 a) and b). It must be noted that the frequency components

(in red) in the low frequency region starting at 4 minutes are artifacts due to

the chest compressions performed on the animals. The ridge of frequency

components (in red) in the frequency area 4 � 18 Hz roughly corresponds to

the electrical activity in the heart. As can be seen from both spectra, the
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Figure 5.6: Time frequency representations of the VF period in two animals

from a) vasopressin group b) placebo group. The colours identify the mag-

nitudes as follows: low (dark blue), below middle (light blue), above middle

(yellow), high (red). The frequency components of VF and CPR artefacts (and

spontaneous activity) are identi�ed by high magnitudes (red) in the frequency

areas 5-15 Hz and 0-5 Hz respectively.

e�ect of treatment is much the same until drug administration. The e�ect

of introducing VF is evident in both spectra by a transient period the �rst

2{3 minutes where the VF rhythm is organised after de�brillation. At the

introduction of CPR the centroid of the area under the PSD curves shift

markably to a higher frequency level. This corresponds to the increase in

MBF (and resuscitability) with the introduction of arti�cial circulation. At

the introduction of drugs at 7 minutes a further shift of centroid is evident

in the spectrogram of the animal receiving vasopressin. In the spectrogram

corresponding to placebo, no such change is evident.

Monitoring

Figure 5.7 show plots of the individual (dotted lines) and averaged feature

sequences (solid lines) illustrating how the ECG measurements change during

the drug study experiments. Note that signi�cant events are indicated on the

time axis. As can be seen from the plots the features attain distinguishable

levels for the di�erent treatment phases.
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Figure 5.7: Time Domain Parameter Plots: individual animals - dotted lines,

averaged within group - solid line.

Prediction

In �gure 5.8 the plots for the estimates of the class speci�c PDFs are shown

for the combined SFM and CF .

The estimated performance characteristics for the classi�ers aiming to distin-

guish between ECG measurements originating from di�erent treatment phases

are shown in table 5.2.

5.2.3 Discussion

We have analysed ECG from 10 pigs having received CPR with e�ectful drug

therapy and compared to similar analysis results from 10 pigs which did not

receive e�ectful drug therapy. Our results demonstrate how structure relevant

to therapy is revealed in time frequency transformation as shown in �gure 5.6.

This is useful for capturing information relevant to the changes in myocardial

metabolism.

The plots of SFM and CF shown in �gure 5.7 clearly shows a distinction

between the vasopressined animals as compared to the placeboed animals after

the drug administration. The way the features change according to each of the
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Figure 5.8: Estimated class-speci�c probability density functions. The sub-

classes are indicated with labels: !i; i = 1; 2; 3.

v P̂sns(!1) P̂spc(!1)

SFM 79% 98%

CF 86% 95%

[SFM;CF ] 93% 99%

Table 5.2: Performance characteristics. The sensitivity and speci�city for pre-

dicting ROSC for classi�er using centroid frequency (CF) and spectral 
atness

measure (SFM) either alone or in combination. The standard deviations for

the performance characteristics were all less than 2.2 %.
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animals' response to treatment indicates that these features have a potential

for being used as monitoring parameters.

The features capture the information relevant to resuscitability(all animals in

the vasopressin group were successfully resuscitated as compared to none in

the other group). This, and the performance of the classi�cation experiments

shown in table 5.2 indicate the capability of the features as shock outcome

predictors. It is worth noting that the highest performance is achieved when

the two features are combined.

These results are indeed encouraging, and seems to be in accordance with other

equally encouraging results from other animal experimental studies using VF

analysis for purposes similar to ours. But, these results are not representative

for what one might expect to achieve in a human study of cardiac arrested

patients as we indeed will demonstrate in chapter 8. This, we assume, is due to

the simple animal model we have studied in this section. All animals had more

or less the same age, weight and were healthy. Treatment followed exactly the

same timeline for all the animals. This may explain the lack of variation in

how the animals responded to the treatment.

5.3 E�ects of CPR in a long term VF animal model

In the previous section we demonstrated the potential usefulness of CF and

SFM for monitoring the e�ect of CPR and further in predicting the outcome

of de�brillation.

Here we will show that the speci�c animal experimental setting is an impor-

tant factor when we want to analyse the discriminatory capability of features

extracted from ECG.

We studied the ECG from an animal experimental setting similar to the one

studied in the previous section. More drugs were studied, but most important,

the time to de�brillation was much longer than in the study referred to in the

previous study. We only considered the features' monitoring capability.

5.3.1 Methods

The data described in chapter 4.2.2 were used in this analysis.

The feature extraction was performed according to the procedures described in

the previous section, except for the fact that ENRG was extracted according

equation 3.45 in addition to SFM and CF. No periodogram averaging was

used, and the features were not smoothed.
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5.3.2 Results

Figure 5.9 show plots of SFM, CF and ENRG depicting how the ECG mea-

surements change during the drug study experiments. The solid black lines are

the averaged within group curves while the within group standard deviations

are plotted with dotted grey lines.
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Figure 5.9: Time Domain Parameter Plots: averaged within group - solid

black line. Within group standard deviations - dotted grey lines.

5.3.3 Discussion

Looking at �gure 5.9, we clearly see the CPR e�ect re
ected in the part of

the plots corresponding to the early phases of treatment. If we look at SFM

and CF their behaviour correspond to that seen in the plots in section 5.2.
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The more e�ectful drugs (endotheline 50 and 100) upholds a positive e�ect

longer than the other drugs (until 16 minutes). After 16 minutes we do not

see any clear distinction in the CF or SFM plots indicating which animals

are successfully converted. These features seem to loose their discriminant

capability relevant to resuscitability in the late stages of VF.

In section 5.2, our results showed an improvement in discriminatory power

when SFM and CF was combined as compared to using the features individu-

ally. If we consider the parameter plots of ENRG for the di�erent drug groups

we see that the average ENRG seems to contain information capable of dis-

criminating the drug groups with higher success from those with zero success

in the late stages of VF, where SFM and CF fails. In the earlier stages of

VF, however, the ENRG plots show less detail than SFM and CF. To us this

indicates that the di�erent features capture di�erent aspects of the metabolic

condition of the heart. The ideal feature should fully re
ect the resuscitabil-

ity and nothing else. We suspect that the features we are investigating only

partly re
ects resuscitability and holds other irrelevant information. Our re-

sults suggest to us that the combination of features containing information

partly relevant to resuscitability will perform better than single feature sys-

tems.
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Chapter 6

Quality of ALS in the Oslo

EMS

The study presented in this chapter investigated what actually occurred during

the two last links in the "Chain of survival": de�brillation and advanced life

support (ALS) in the Oslo EMS system. To save more lifes after cardiac arrest,

the current guidelines [16, 81] recommend that the four links in the "Chain of

survival":early recognition and call, basic life support (BLS), de�brillation and

advanced life support (ALS), be performed as early as possible [28, 64] and

with the best possible quality [114]. The material in this chapter is adapted

from [100].

In analysing the Oslo data described in chapter 4.1.1 we sought to evaluate

important factors concerning de�brillation and ALS procedures. These are

factors like the timing of the shocks, which rhythms occurs after the shocks,

actual chest compression rates and duration of "hands o�" intervals. If this

proved successful, the results could be used for feedback to the EMS system,

both on an individual and EMS system level. This was the primary purpose

in [100]. In this thesis, with prediction of de�brillation outcome, monitoring of

CPR e�cacy and CPR artifact removal in mind, we wanted our discussion to

be relevant to these issues, thus to get an idea of what potential these concepts

could have for strengthening the two last chains in the "Chain of survival".

6.1 Methods

We analysed the data described in chapter 4.1.1.

87
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The annotations of the raw data was logged into a database and read into the

Matlab environment and linked to the MCM information and the demographic

data. The database was organised as a matrix where each row entry described

the timing of a treatment sequence of de�brillation, the following rhythms and

the times of initiation and frequency of precordial compressions. The initia-

tion of precordial compressions following initial asystole or electromechanical

dissociation (EMD) was also logged. The events in row "no i" happened before

row "no i + 1" and so on. The information was arranged in columns so that

all de�brillation timings appears in the same column, isoelectric onsets in an-

other etc. This enabled the computation of time intervals between signi�cant

events in the treatment.

Return of spontaneous circulation (ROSC) included sustained ROSC and

shorter periods of spontaneous circulation (pulsegiving rhythm). Thus, more

than one episode of a pulsegiving rhythm could appear in a patient record.

Whether a rhythm was pulsegiving or not was decided from the Utstein- and

paramedic record.

The end-points of the analysis are described as follows:

� The total number of shocks for each patient

� The number of successful shocks

{ de�ned as a non-VF/VT rhythm for at least the �rst 5 sec after the

shock.

{ or de�ned as return of pulsegiving activity regardless of duration.

{ or de�ned as sustained ROSC (lasting until admittance at the hos-

pital).

� The duration of isoelectric ECG (IE) after a shock

{ all IE periods.

{ IE periods ending in VF/VT.

{ IE periods ending in EMD.

{ IE periods ending in pulsegiving electrical activity regardless of

duration.

� Time intervals:

{ from initiation of monitoring until the �rst shock was given in cases

with VF/VT as initial rhythm.
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{ from the discontinuation of precordial compressions during VF/VT

until the next shock was given.

{ from initiation of monitoring until the precordial compressions were

initiated in cases of asystole and EMD as initial rhythm.

{ from initiation of monitoring until sustained ROSC.

� The precordial compression rate The mean rate is calculated from the

compression artefacts of two randomly picked 15-sec periods for each

patient.

Analysis results are sometimes presented as medians with lower and upper

quartiles in parenthesis (q25,q75). In the time analysis the 95% con�dence

interval is also presented. For testing of hypotheses the Students t-test is used

if the data are normally distributed, and the Mann-Whitney-Rank-Sum Test

if the normality test fails. For comparisons of di�erent proportions we use

the chi-square test with Yates correction. A P-value < 0.05 is regarded as

signi�cant in all tests [31]. Counts are denoted by n.

6.2 Results

In the two-year study period 453 con�rmed cardiac arrests were considered

for resuscitation. 573 cases were con�rmed dead, and ALS was not initiated.

The survival rate with cardiac aetiology was 9%, and 26 (87 %) of these 30

survivors had no or moderate disability.

Of the 328 cases with cardiac aetiology, we have on line computer registration

of 201 cases. 45 of these cases were excluded due to problems with incomplete

registrations, sampling failures and di�culties in visually separating the CPR

artefacts from the electrical activity of the heart. Thus, the �nal data analysis

was performed on 156 cardiac arrests of cardiac aetiology corresponding to the

data material described in section 4.1.1 (table 6.1). 46 of these patients stayed

in a non-shockable rhythm. The survival rate (6%) and the other variables

in the group of 156 patients are not di�erent from the same variables in the

cardiac aetiology group of the overall Utstein results [100].

There are no cases of initial VT, and only a few runs of VT during CPR, thus

VT and VF episodes are grouped together.

Bystander CPR was initiated in 82 patients (53 %). In 48 (59 %) cases the

bystander e�ort was recorded as adequate, in 17 (21 %) as not adequate and

in 17 (21 %) the e�ort was not assessed.
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Total number 156

Witnessed (bystander) 118 (76 %)

Initial VF 78 (50 %)

Bystander CPR 74 (46 %)

Sustained ROSC 40 (26 %)

ICU/Ward 38 (24 %)

Discharged alive 10 (6 %)

Alive 3 months 9 *

Alive 6 months 9 *

Alive 12 months 9 *

Table 6.1: Utstein Style Data of the 156 patients included in the �nal analysis.

* 1 unknown - left country

Endotracheal intubation was performed in 143 patients (92 %) with a median

duration of time of 2 min (1, 3) from after arrival at the scene.

The median time interval from the reception of the call until the ambulance

crew was with the patient is 8 min (5, 11) with a signi�cant di�erence between

survivors (5 min (1, 5)) and non-survivors (7 min (5,11)) (P=0.01)

The median time interval from the estimated collapse time to �rst shock dur-

ing initial VF was 11 min (7, 14), again with the same signi�cant di�erence

between survivors (6 min (6, 8)) and non-survivors (11 min (9, 15)) (P=0.003).

110 of the 156 patients received a total of 883 shocks. Median 6 shocks were

given to each patient (3,12) with a signi�cant di�erence between survivors (1

(1, 1)) and non-survivors (7 (3,12)) (P< 0.001) (�gure 6.1).

In 329 shocks (37 %) the patient was still in VF 5 sec after the shock. 310 (94

%) of these shocks has VF continuing directly after the shock.

554 shocks (63 %) were successful when de�ned as a non-VF/VT rhythm 5

sec after the shock. There is no signi�cant di�erence in the success rate for

the �rst, second, third and fourth shocks when required: 82 out of 110 (75 %),

64 out of 92 (70 %), 69 out of 87 (79 %) and 56 out of 75 (75 %), respectively

(�gure 6.2). The successrate for all later shocks combined is signi�cantly lower,

283 out of 519 (55 %) both compared to the �rst, second, third and fourth or

the four combined (P<0.001).

90 shocks (10 %) in 51 patients were successful when de�ned as a pulsegiving

rhythm after the shock regardless of duration, while 35 shocks (4 %) were suc-

cessful when de�ned as sustained ROSC after the shock. 14 ROSCs occurred
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Figure 6.1: Shocks in survivors and non-survivors. The box illustrates q25,

median and q75. The notch re
ects uncertainty about the mean. The whiskers

and outliers (+) show the data range. * P< 0.001.
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after the �rst, second, third, fourth and later shocks. * P< 0.001 compared
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Figure 6.3: Duration of isoelectric ECG after a shock when the episode

ended in a new VF/VT, rhythm without pulse (electromechanical dissocia-

tion, EMD) or rhythm with pulse.

after the �rst shock, 2 after the second shock (P=0.012 compared to the �rst

shock), 3 after the third (P=0.041 compared to the �rst shock) and fourth

shock (P=0.079 compared to the �rst shock) and 13 after more than four

shocks (P<0.001 compared to the �rst shock). More patients had sustained

ROSCs after four or less shocks than after >4 shocks (P=0.013). Five patients

obtained ROSC with a non-shockable rhythm, but none of them survived.

332 shocks, 38 % of all shocks, were followed by an isoelectric period with a

median duration of 8 sec (3,22). Figure 6.3 presents the di�erent isoelectric

time periods dependent of which rhythm occurs after the shock.

25 (8 %) of the isoelectric episodes lasted between 20 and 30 sec, 64 (19 %)

lasted more than 30 sec. In 5 episodes a pulsegiving electrical activity occurred

after more than 30 sec of IE. 13 patients (2 %) remained in isoelectricity.

Important time intervals are presented in table 6.2 The median time from

initiation of ECG monitoring until the �rst shock was given (19 sec, n=78)

and from discontinuation of precordial compressions until the next shock was

given during VF/VT (20 sec, n=180) are not di�erent (table 6.2.

The median time from initiation of monitoring during asystole (n=49) until

precordial compressions was initiated (29 sec), is signi�cantly shorter than
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n median (q 25, q 75) Con�dence

interval

a) From initiation of monitoring

to �rst shock in primary VF 78 19 (16, 25) 22-34

b) From end of precordial compressions

to next shock (VF) 180 20 (18, 24) 23-28

c) From initiation of monitoring

to start of precordial compressions (asystole) 49 29 (21, 51)* 33-50

d) From initiation of monitoring

to start of precordial compressions (EMD) 29 109 (34, 196)* ** 92-204

e) From initiation of monitoring

to rhythm with pulse 95 627 (283, 998) 576-755

f) From initiation of monitoring

to sustained ROSC 40 559 (278, 978) 503-814

Table 6.2: Time intervals (sec). * P<0.001 compared to a), ** P<0.001

compared to c)

during EMD (n=29,109 sec) (P<0.001). These times are both signi�cantly

longer than the median time from initiation of monitoring until the �rst shock

was given in cases with VF (P<0.001).

The median time from the initiation of monitoring until sustained ROSC is

present is signi�cantly shorter in survivors (163 sec, n=10) than for non-

survivors (796 sec, n=30) (P=0.011) (table 6.2).

The precordial compression rate is 108 min�1 (100,120)

6.3 Discussion

The Utstein data from the 156 patients studied in detail (table 6.1) here are

not di�erent from the same data for the total patient population with out-

of-hospital cardiac arrest in the two-year study period. The demographics of

the study population, and the call-response interval in the survivors and non-

survivors, are also comparable to other reports [86, 91, 110, 27, 111, 26, 6, 46,

88, 89, 25, 50, 2]. In [100], we concluded that the study population represents

a normal group of prehospital cardiac arrested patients. The 9 % survival

rate after arrests of cardiac aetiology in Oslo is in the lower range compared

to those in a recent survey of European cities picked for their potential good

results [51].

The median six shocks (3, 12) per patient is more than in some other reports

with monophasic waveform devices (like in the Heartstarts) [110, 6, 88, 89, 50].
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The median of 11 min from collapse to �rst shock during initial VF in the

present study is longer than in Seattle [110], Iowa [6] and Milwaukee [50],

and will also probably negative in
uence the total shock number [50] as the

survival rate [28, 64, 86, 91, 110, 27, 111, 26, 6, 46, 88, 89, 25, 50, 106, 2].

58 % of the successful shocks (de�ned as a non-VF/VT rhythm 5 sec after

the shock), or 38 % of all shocks, were followed by an isoelectric period with

a median duration of 8 sec before a new VF/VT or an organised rhythm with

or without a pulse. The isoelectricity is usually due to a transient period of

electrical and/or myocardial "stunning" [81]. 19 % of the isoelectric periods

lasted more than 30 sec, and �ve of these episodes ended in pulsegiving elec-

trical activity. The paramedics should initiate precordial compressions during

this time interval according to the guidelines [16].

Only 10 % of the 883 shocks resulted in a pulsegiving rhythm, which is similar

to previous reports. With the same waveform Behr et al found an organised

rhythm after 13 % of all shocks (with self adhesive pads) [6], Hargarten et al

after 10 % of the �rst �ve shocks [50]. From these data we postulate that it

might be important to optimise the myocardial perfusion and resuscitability

before delivery of a countershock. Few shocks indicate a higher survival rate [6,

46, 88, 89, 25, 50, 106, 2] and each unsuccessful shock damages the heart and

can increase the post-shock dysfunction [115].

Only 4 % of the shocks resulted in sustained ROSC, after a relatively long

median time interval of 490 sec, over 8 min, from initiation of monitoring.

Others have also found that ROSC often occurs after several min and several

countershocks [50], and Bonnin et al reported ROSC up to 25 min after the

arrival of the paramedics in a series of 1461 consecutive cardiac arrests [8].

This indicates the importance of well performed CPR to optimise the cerebral

and myocardial perfusion before ROSC to improve the rate of survival and the

chance of a normal neurological status. In the present study the ten survivors

had a signi�cantly shorter time interval, but still 163 sec, almost three min.

The compression rate of 106 min�1 is close to the recommended 80-100 min�1

in the 1992 guidelines [16] or 100 min�1 in the 1998 guidelines [81]. There are

to our knowledge no human data showing the optimal compression rate. In

pigs and dogs the haemodynamics seem to be optimal with a rate of 100-120

min�1, depending also on the compression time of the duty cycle [65].

The ERC 1992 guidelines [16] were followed during the study, and chest com-

pressions were given for periods consisting of 10 sequences of �ve compressions

to one breath. As almost all patients were intubated early during CPR, no

compression pauses were needed to ventilate the patients. With a median
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compression frequency of 106 min�1, the patients thus received chest com-

pressions for less than 30 sec between non-compression "hands o�" intervals

for ECG analysis, de�brillation attempts etc., while the latter lasted 45sec

if three de�brillation attempts were needed. It is questionable if this gives

adequate perfusion to the brain and the heart. Even optimally performed

non-interrupted compressions give only 30 % of normal blood 
ow [48, 18]. It

is important to emphasise that the quality of manual chest compressions are

not optimal when evaluated over time [103, 52], which certainly further reduces

the myocardial and cerebral perfusion. Thus, the myocardial condition might

not have been optimised for return of a pulsegiving rhythm after this short

compression interval. This might partly explain the high shock rate required

in the present study. Sanders et al found an inverse relationship between rate

of successful resuscitation and duration of inadequate coronary perfusion pres-

sure during standard CPR in dogs [83], and Sato et al have recently reported

adverse e�ects of interrupting precordial compression during cardiopulmonary

resuscitation in rats [84]. The rate of spontaneous circulation decreased signif-

icantly when the shock was delayed 30 sec after discontinuation of precordial

compressions, and 24-hour survival was signi�cantly reduced with a 20-sec

delay.

There are some limitations in the present study. Firstly, as in other studies

the time of arrest is unreliable, also when based on a witnessed account, and

times reported by the ALS performers and not automatically reported, could

be incorrect. Secondly, the analysis of the chest compressions was based on

manual evaluation of the MCMs. Thus a subjective in
uence on those results

cannot be excluded. There were on the other hand three persons with con-

tinuous checks on the evaluations, which were performed over an intensive,

short time period. To reduce the chance of errors to a minimum, patients

were excluded if there were di�culties in the evaluations. Thus, 22 % of the

patients were excluded. The evaluation was concentrated around the initial

monitoring period, periods around the shocks and when changes in the ECG

signals occurred.

In conclusion this study demonstrates the importance of quality control of

ALS performance, which can be further improved by optimising the work of

the ambulance personnel and the physicians. In the Oslo EMS system, the

ratio between chest compression periods and the "hands-o�" intervals should

be reduced. Time is a decisive factor in CPR, and, besides the important early

de�brillation, myocardial and cerebral perfusion must be optimised during

CPR. The information stored in the computer chips of the de�brillator can be

very useful in evaluating what occurs during the ALS attempt. Together with

the information recorded on the "Utstein style template", this can be used to
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evaluate the total EMS system performance and for individual feedback to the

personnel after a speci�c CPR attempt.

The results computed from the de�brillator data indicate that the ALS per-

formance probably could be improved by reducing the duration of \hands-o�"

intervals and thereby enabling an increase in the duration of the compres-

sion/ventilation periods. From the analysis of our data, it is evident that

many of these intervals are related to shocks. The median time from discon-

tinuation of precordial compressions for rhythm analysis and charging until

the next shock was given during VF/VT was 20 sec in our material The im-

portance of minimising this "hands o�" interval was clearly demonstrated by

Sato et al [84], as earlier described. As we see it, this highly encourages ap-

plying a reliable method for CPR artefact removal. This would enable rhythm

analysis during CPR, thus reducing these intervals by at least typically 9-12

seconds (chapter 7).

Another issue observed in our analysis is the high number of unnecessary

shocks. As we have pointed out each of these shocks damages the heart and

increases the overall \hands-o�" interval. Thus our data material clearly bears

evidence of the potential bene�t a shock outcome predictor may add to the

ALS performance. This is further explored in chapter 8.

Finally, we have considered the quality of CPR measured by how much pro-

vided and at which frequency. But there is no reference as to what is optimal

performance. Larsen et al found that early and e�ective ALS would increase

the survival when it is added to early de�brillation and early BLS [64]. In

addition to the use of drugs and advanced control of the airways, it is possi-

ble that monitoring of a parameter re
ecting CPR e�cacy, could increase the

quality of CPR and thereby optimise the myocardial (and cerebral) perfusion

and resuscitation probability. We will describe a method for monitoring this

probability in chapter 9.

6.4 Summary

In this chapter we have analysed the data from the Oslo EMS system. This

has allowed us to assess the quality of de�brillation and ALS using data from

the medical control module of the de�brillator.

We have pointed out that the ALS quality can be improved by decreasing

\hands-o�" intervals, reducing the number of unnecessary shocks and by mon-

itoring CPR performance. We claim that these improvements to some degree

can be achieved by CPR artefact removal, prediction of de�brillation outcome

and monitoring of resuscitation probability. These issues will be investigated

in the following chapters.



Chapter 7

CPR artefact removal

In chapters 8 and 9 we demonstrate how VF-analysis techniques are applicable

in a CPR decision support system. In the VF-analysis described in those chap-

ters, we work with ECG free from CPR artefacts. In chapter 3, we emphasised

the importance of being able to remove CPR artefacts from the ECG signal

for valid rhythm and/or VF-analysis. This would allow continuous monitoring

of CPR e�cacy during precordial compressions and thus decrease the \hands-

o�" intervals which as we showed in chapter 6 is one of the important factors

for improving CPR. This chapter is adapted from [1].

In this study we wanted to �nd out if artefact removal by �ltering would allow

the maintenance of precordial compressions during automatic rhythm analysis,

without interrupting the sensitivity of simultaneous rhythm classi�cation.

In an attempt to solve this problem we utilise the adaptive �ltering strategy

put forward in chapter 3.4.

7.1 Methods

The data used in this study originate from the animal experiment described

in section 4.2.3.

The purpose of using an animal model is to provide a controlled environment

where the distinction between artefact and signal is clear. To simulate CPR

artefacts in human ECG, we manually added animal artefacts to human VF

and VT rhythms.

In this study we used signals collected from 2 animals. We decided to use

the worst case artefact as seen in asystole having the highest amplitude and

97
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frequency components over a broader band as compared with the artefacts

which could be isolated from pigs in VF.

We focused on artefacts due to 2 di�erent sources:

1. Chest compressions: These were done using an instrumented mechan-

ical compression device, which had a reference signal output that was

proportional to the compression depth.

2. Ventilation: Manual bag valve ventilation with 100% O2 was performed

without interruption of the compression-relaxation cycle. To provide

a reference for the artefact induced by the bag ventilation the thorax

impedance, as seen between the de�brillator pads, was recorded.

The animal preparation and the experimental protocol was described in chap-

ter 4.2.3. For further details see [63].

Preprocessing and artefact addition

The human ECG data (VF/VT) were �ltered with a 0.5 Hz high-pass �lter for

removal of o�set components. No other �ltering or normalization is done to

the human data in order to simulate a real-life situation. The average signal

amplitude variance is 0.027 and 0.34 for the VF and VT records, respectively.

Similarly to the human ECG data, the animal asystole data are high-pass

�ltered at 0.5 Hz. In addition, they are limited to 10 Hz using a low-pass �lter

{ this is discussed in section 7.3. After �ltering, each of the 15 sec asystole

records are normalized to unit variance. In order to simulate a wide range of

noise conditions, we add the animal data, now considered artefact noise, to

the human VF/VT data using an adjustable scaling factor. Denote by xh(n)

the human VF/VT signal and an(n) the normalized artefact signal. Setting

a(n) = C � an(n); (7.1)

where C is a chosen constant, the noisy signal x(n) is modeled as

x(n) = xh(n) + a(n): (7.2)

Given a target SNR de�ned as

SNR = 10 log10(
�2xh
�2a

); (7.3)
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the constant C is found as

C =

s
�2xh

10
SNR
10

: (7.4)

By individually computing C for the construction of every 15 s noisy signal

record, a �xed SNR is ensured for the whole ensemble.

The signal records used in the experiments are as follows:

� Artefacts: Animal asystole data from 2 animals are used to model arte-

facts in human ECG. The data records are 15 sec each, and the settings

are:

ECG recording: As seen through the monitor (MON) or de�brillation

(DEF) pads.

Compression rate: 60, 90, or 120 min�1.

� Human ECG: The data records are 15 sec each and of type:

VF: 200 records.

VT: 71 records.

� Noise levels: Model artefacts are added to the human data on a �xed

SNR basis using equations 7.2 and 7.4. The SNR range is from -10 dB

to 10 dB.

The �ltering is performed according to the adaptive �ltering methods de-

scribed in chapter 3.4. The derivation of the optimal �lter solution and further

tuning of �lter parameters is described in [1] and given in appendix B.

7.2 Results

In the following experiments described in the following a we use a 1-tap �lter

for both channels, i.e. when using compression depth and thorax impedance

as reference signals, combined with a window size of 301 and 161 samples in

the MON and DEF case, respectively.
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Figure 7.1: VF �ltering example using artefact as seen through the monitor

pads.

Filtering examples

Before presenting an overall evaluation we visualize the e�ect of the proposed

system with a �ltering examples. We have selected a 15 sec human VF record,

to which an animal artefact is added, with the constant C in equation 7.2

chosen to give an SNR of -5 dB. The artefact was originally measured through

the monitor pads. Figure 7.1 shows a selection of the resulting waveforms,

where only the center 9 sec are included in order to avoid �lter edge e�ects.

Comparing the artefact signal with the two reference signals we observe that

in this example both references are negatively correlated to the artefact. Using

the proposed algorithm the reconstructed artefact resembles the original, but

some errors are still present in the reconstructed VF. This is due to the heavy

noise conditions in the example (-5 dB).

SNR evaluation

Using all the data records summarized in section 7.1 we evaluated the proposed

artefact removal system in terms of SNR improvement. The results are shown

in �gure 7.2.

There is little di�erence between the results obtained for VF and VT. Again

we observe that the artefacts, as seen through the de�brillator pads, are more



7.2 Results 101

MON DEF

VF

−10 −5 0 5 10
−5

0

5

10

15

Original SNR (dB)

R
es

to
re

d 
SN

R
 (

dB
)

−10 −5 0 5 10
−5

0

5

10

15

Original SNR (dB)

R
es

to
re

d 
SN

R
 (

dB
)

VT

−10 −5 0 5 10
−5

0

5

10

15

Original SNR (dB)

R
es

to
re

d 
SN

R
 (

dB
)

−10 −5 0 5 10
−5

0

5

10

15

Original SNR (dB)

R
es

to
re

d 
SN

R
 (

dB
)

Figure 7.2: Average SNR performance of the artefact removal system at vary-

ing compression rates: 60 (solid), 90 (dashed), and 120 chest compressions per

minute (dotted).
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di�cult to remove than those seen through the monitor pads. The di�erence

is about 3 dB at a compression rate of 60 min�1 going up to about 5 dB at

120 min�1.

The artefact removal becomes increasingly more di�cult when the compression

rate goes from 60 to 90 and to 120 min�1. This is due to a higher degree of

overlap in the frequency domain. A compression rate of 120 min�1 corresponds

to a fundamental frequency of 2 Hz.

Sensitivity evaluation

Although the SNR increase is a quali�ed measure of the success of the artefact

removal system, the applicability rests on it's ability to facilitate accurate

automatic classi�cation of human ECG rhythms in noisy environments.

The VF and VT rhythms used here are both considered rhythms to treat, i.e.

rhythms for which delivery of electric countershock is considered bene�cial to

cardiac resuscitation. Given a number of classi�cation outcomes, let T and

N denote the number of treat and non-treat classi�cations, respectively. The

sensitivity is then de�ned as

S =
T

T +N
: (7.5)

The sensitivity expresses the ability of the classi�cation system to correctly

identify treat rhythms. In �gure 7.3 we compare the obtained sensitivities

using a computer version of the Laerdal Heartstart classi�cation algorithm on

noisy and restored human ECG signals. When computing the results only the

9 sec center part of each 15 s record is used due to �lter edge e�ects. The

classi�cation algorithm is based on an analysis of 3 sec block, thus giving 3

classi�cation outcomes for each 9 sec block.

The interesting observations related to �gure 7.3 are when the classi�cation

breaks down. As a reference the obtained sensitivities when no artefacts were

added were 0.95 and 0.97 for VF and VT, respectively.

We observe that the classi�cation of VT rhythms fails more often than for

VF rhythms. This applies to monitor as well as de�brillator data. One of the

reasons is the higher variance of the VT records, see section 7.1. In our setting

a high signal variance implies high variance on the added artefact in order to

obtain a desired SNR level. This gives over
ow in the signal representation

used by the Laerdal Heartstart classi�er. Removing a signi�cant part of the

artefact help reducing the extent of the over
ow. As an example, in the

VT/MON case with a compression rate of 120 min�1, 16.5% of the noisy signal

samples where out of range when the SNR was -10 dB. This was reduced to

4.2% when removing the artefact before doing the signal classi�cation.
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Figure 7.3: Sensitivity results using the Laerdal Heartstart classi�cation algo-

rithm. The classi�cation is performed on ECGs having artefacts ('�') and the

corresponding restored ECGs ('�').
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7.3 Discussion

In the presented work all �ltering was performed at a 100 Hz sampling rate. At

this rate the causal relationship between references (compression depth/ventilation)

and resulting artefact was e�ectively instantaneous in the sense that (adaptive)

1-tap �lters provided the best model. The use of a higher sampling frequency

would allow for more detailed modeling of the sought relationship using longer

�lter responses and may possibly lead to better artefact removal.

A limitation of the current work was the low time resolution of the reference

signals. They were originally sampled at 25 Hz, then up-sampled to 100 Hz.

Recognizing the futility of modeling high resolution artefact signals with low

resolution reference signals, a decision was made to band-limit the artefact

signals. Before any experiments were conducted, all artefact signals were low-

pass �ltered with 10 Hz cut-o� frequency. Future work should use the same

sampling frequency on all signals to be used, and possibly higher than 100 Hz.

The sensitivity results in �gure 7.3 clearly shows the bene�t of the proposed

method for artefact removal. Looking at the VF sensitivity results, it is evident

that the un�ltered ECGs with artefacts are problematic for the classi�cation

algorithm at low SNR levels. For VF the performance results indicate that the

ECGs recorded with the monitoring electrodes cause the algorithm to fail in

more cases than the ECG recorded with the de�brillation electrodes. Knowing

that the algorithm searches for organized rhythms in the ECG to satisfy the

criterion for non-treat classi�cation, this makes sense as the ECG recorded

from the monitoring electrodes appears more organized than the correspond-

ing recordings from the de�brillation electrodes. In our results performance

degradation for the un�ltered VF with artefacts only starts at very low SNR

levels { both for the monitor and the de�brillator case. This indicates that the

artefacts themselves do not appear as clearly organized rhythms to the classi-

�cation algorithm, which in consequence appears to be robust to this kind of

artefact noise in VF. The explanation for this can be found by looking at the

\VF+artefact" plot in �gure 7.1, where the e�ect of mixing the organized arte-

fact with the disorganized VF is a random cancellation/ampli�cation of the

periodical components of the artefact. This makes the mixture less organized

than the artefact.

For the un�ltered VT performance, the di�erence in the corresponding VF

cases are striking. The performance drops at a much higher SNR level. We

consider two possible reasons for this. Firstly, the signal energy of VT is

typically higher than for VF. Thus the artefacts are ampli�ed to a higher factor

than for VF to achieve a given SNR level. The classi�cation algorithm operates



7.4 Summary 105

within a restricted dynamic area, and signals exceeding this area are clipped

and classi�ed as non-treat. Secondly, VT is an organized rhythm considered

a treat rhythm for rates exceeding 180 beats per minutes (3 Hz). Otherwise,

VT is considered as non-treat. The appearance of organized artefacts at lower

rates (1, 1.5, and 2 Hz) causes the algorithm to interpret the rhythm as non-

treat.

It is evident from both the SNR- and sensitivity evaluation that artefacts read

from the de�brillation electrodes present a more di�cult problem than arte-

facts read from the monitoring electrodes. In a realistic situation the de�bril-

lation electrodes would be used for reading the ECG submitted to analysis. In

this work we have shown how the artefact problem can be solved satisfactorily

in a situation where the signals representing the main causes of the problem,

i.e. the sources contributing the signi�cant part of the artefact, are known. In

our opinion, a solution to the problem with the de�brillation electrodes will

be through identi�cation of the cause of the part of the artefacts not caused

by the precordial compressions and ventilation and further seek to represent

this by a suitable number of reference signals to be incorporated as additional

channels of our multichannel �lter.

In conclusion the present performance results indicate that our proposed method

for artefact removal might allow for rhythm analysis during CPR.

This would in e�ect allow CPR to continue, reducing the deterioration of the

metabolic state of the tissues. This has the potential of dramatically changing

the outcome of some cardiac arrest patients.

7.4 Summary

In this chapter we demonstrated how the adaptive �ltering technique described

in section 3.4 can be used to reduce the e�ect of CPR artefacts in ECG. By

using the signals measuring compression depth and ventilation as references

both individually we saw how the artefacts components caused by these factors

are reduced. Applying these signals in combination, caused both components

to be reduced. This indicates an optimal solution to the CPR artefact removal

problem with signals representing the causes of the artefact components being

used as references.

In this study, the e�ect of CPR artefact removal was evaluated for rhythm

analysis. We strongly believe that the proposed �ltering method would reduce

interference during VF-analysis equally well.
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Chapter 8

Predicting outcome of

de�brillation

In this chapter we provide a method for predicting the outcome of de�bril-

lation. We apply the principles for designing a decision support system as

sketched out in chapter 3. In chapter 6 we indicated the potential bene�t

for resuscitation performance in the appliance of such a predictor, and in this

chapter a quanti�cation of this gain is given. This chapter is adapted from [38].

Brown et al. reported that they could predict ROSC with a sensitivity of

100 % and a speci�city of 47.1% when applying centroid frequency (CF) and

peak power frequency (PPF) of the VF in combination [10]. We question the

reliability of their results both due to the study design and the small data set

with only nine successful shocks (ROSCs) out of 128 shocks in 55 patients. The

reliability of their results could have been con�rmed if the prognostic criteria

had been de�ned from one data set ("training set"), and the sensitivity and

speci�city derived from a new data set ("testing set") instead of both being

determined from the same dataset.

In the present attempt to predict de�brillation outcome in human cardiac

arrest by combining features of spectral characterization, we therefore split the

data in training and testing sets and used classi�er generalization techniques

(as described in chapter 3.2) in an attempt to increase the degree of expected

reliability. Among others, one of the combinations studied is that reported by

Brown et al [10].

8.1 Methods

As in chapter 6 we used the data from Oslo already discussed in detail in

section 4.1.1.

107
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Characterisation

The ECG segments prior to shock were grouped according to shock outcome.

Outcome was de�ned as ROSC if a palpable pulse was present in the post shock

period (independent on duration). The rest of the shocks corresponded to

No-ROSC and included conversions to electromechanical dissociation (EMD),

asystole, VF (VF starting more than �ve seconds after the shock) or non-reset

shocks (VF starting before �ve seconds after the shock). If the initial post

shock rhythm was present for more than 10% of the duration of the interval,

it was de�ned as the post-shock rhythm. Otherwise, the next rhythm was

considered. This was done by an automated procedure, which handled all but

15 shocks. These failures were caused by illogics in the annotation structure.

The shock outcome prediction analysis was performed in two stages applying

the feature extraction and pattern recognition methods described in chap-

ter 3. Firstly, the ECG was spectrally characterized (feature extraction) and

secondly, decision regions for shock outcome prediction were determined and

evaluated.

Feature Extraction

The characterizing features were computed from the estimated power spectral

density (PSD) of each ECG segment. As in previous studies of spectral char-

acteristics of VF [13, 95, 73, 10, 12, 92, 97] we used the periodogram method

for estimating the PSD as given by equation 3.41.

We attempted to discriminate between preshock ECG segments correspond-

ing to ROSC and No-ROSC outcome. Based on previous VF-analysis with

extraction of features carrying shape and placement information of the PSD

to detect changes in myocardial metabolism [12], we computed the following

features from the ECG segment PSD estimates:

� The centroid or median frequency (CF) (equation 3.42)

� The peak power frequency (PPF) (equation 3.43)

� The spectral 
atness measure (SFM) (equation 3.44)

� The frequency band limited energy measurement (ENRG) (equation 3.45)

An alternative decorrelated feature set was generated by principal compo-

nent analysis (PCA) transformation (chapter 3.3 and appendix A) [87]. The
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Class Subclass Conversion to Numbers Prior ALS

ROSC !1 Pulse rhythm 87 74%

No-ROSC !2 Pulseless rhythm 337 86%

No-ROSC !3 Isoelectric 98 66%

No-ROSC !4 VF 35 77%

No-ROSC !5 No conversion 311 87%

Table 8.1: Class division scheme. 110 of the 156 patients received shock

treatment. The 87 shocks in the ROSC class were given to 46 of the patients.

35 of these shocks converted to sustained pulse rhythm, while 52 converted to

pulse rhythm of limited duration (>20sec). 19 ROSCs were achieved after the

�rst shock (four with prior ALS).

features were projected onto the eigenvectors which best represented the en-

tire data set. Thus, the new decorrelated feature set was represented by the

magnitudes of the projections along the eigenvectors. Before classi�cation, a

combination from either the original or the decorrelated feature set was placed

into a feature vector, v.

Classi�cation

In the classi�er each feature vector, v, was considered as belonging to one of

the K classes, !i; i = 1; : : : ;K, which corresponds to the �ve shock outcome

rhythms (K = 5). As shown in table 8.1, !1 and !2�5 correspond to the ROSC

and No-ROSC group respectively. As described in chapter 3.2, classi�cation

theory provides methods to retrospectively calculate decision regions for these

de�ned classes from annotated data. The class membership of new data is

decided by prospective comparison to these decision regions.

K decision regions, Ri; i = 1; 2; : : : ;K, were computed by assigning costs

for the possible wrong decisions. A reject class, !K+1, was added to handle

ambiguous or out-of-range patterns. Each Ri was calculated by selecting the

minimum component of the risk vector r given in equation 3.7.

The classi�er performance characteristics were expressed by the sensitivity

(probability of positive prediction of ROSC outcome) and speci�city (prob-

ability of negative prediction of No-ROSC outcome) given by equations 3.14

and 3.15 respectively.

We apply the principles given in chapter 3.2 to ensure that the classi�er met

the desired performance criterion, allowing us to specify a sensitivity for recog-

nition of ROSC outcome.
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For estimating the underlying statistics we applied the smooth histogram ap-

proach described in chapter 3.2, where the histogram bin resolution and kernel

width governed by nb and �vn are the two key parameters for controlling the

generality of the classi�er.

Training and testing was done by applying the cross validation technique de-

scribed in section 3.2.

Experimental setup

The ECG was sampled at 100 Hz with 8 bit resolution, and PSD estimated

from segment lengths L = 400 zero padded to 512 samples. A hamming

window was used for w(n), while no averaging was used. Three feature sets

were extracted with frequency ranges (fl � fu Hz) 0-50 Hz, 0-25 Hz and 0-

12.5 Hz. The spectral features produced in each of these experiments were

vSFM , vENRG, vCF and vPPF . The PCA transformation of these features

gave the corresponding decorrelated feature set of vPCA1
, vPCA2

, vPCA3
and

vPCA4
. The ECG immediately prior to de�brillation was analysed and the

measurements grouped according to the post-shock rhythm for classi�er design

(table 8.1).

Classi�ers were designed and tested using all possible combinations of spectral

features and decorrelated features (table 8.2). The statistical functions were

estimated using multidimensional histograms. The training sensitivity was set

to Psns(!1) = 0:95 according to performance control technique described in

chapter 3.2.3. Resolutions were adjusted according to setting nb equal to 4,

8, 16, 32, 64 and 128 bins. For each of these resolutions the smoothness was

varied by setting,�vn equal to 0, 1, 5, 10, 15 and 20. The classi�er parameters

nb and �vn were discussed in chapter 3.2.5. This combination of changing bin

size resolution and smoothness enabled a search for the classi�er meeting the

generality criterion which we de�ned to be that the test sensitivities and speci-

�cities should approach the training sensitivities and speci�cities to within a

5% tolerance range (� = 0:05, equation 3.32). In �gure 8.1 the training and

testing speci�cities and sensitivities are shown as functions of resolution and

kernel width. Training with high bin resolution and narrow kernel width gen-

erates a classi�er with 100% performance in both sensitivity and speci�city

as the result of overtraining as veri�ed by the large deviation in sensitivity in

test performance. Generality in sensitivity is achieved either by increasing the

kernel width or using lower bin resolution, both resulting in lower speci�city.

A full scale evaluation with respect to generality of the classi�ers corresponding

to all possible feature combinations (table 8.2) was performed. Finally, for a
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Figure 8.1: E�ects of generalization. The training performances are shown in:

a) Speci�city increase with number of bins and decrease with increased kernel

width. b) All classi�ers are trained to 95% sensitivity. The corresponding

testing performances are shown in: c) The speci�cities corresponds roughly

with that of training. d) The sensitivities do not correspond at high bin

numbers and low kernel widths. Generality is achieved at low bin numbers

and high kernel widths.
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Combination Spectral PCA

v v

1
�
vSFM

� �
vPCA1

�

2
�
vENRG

� �
vPCA2

�

3
�
vCF

� �
vPCA3

�

4
�
vPPF

� �
vPCA4

�

5
�
vSFM vENRG

� �
vPCA1

vPCA2

�

6
�
vSFM vCF

� �
vPCA1

vPCA3

�

7
�
vSFM vPPF

� �
vPCA1

vPCA4

�

8
�
vENRG vCF

� �
vPCA2

vPCA3

�

9
�
vENRG vPPF

� �
vPCA2

vPCA4

�

10
�
vCF vPPF

� �
vPCA3

vPCA4

�

11
�
vSFM vENRG vCF

� �
vPCA1

vPCA2
vPCA3

�

12
�
vSFM vENRG vPPF

� �
vPCA1

vPCA2
vPCA4

�

13
�
vSFM vCF vPPF

� �
vPCA1

vPCA3
vPCA4

�

14
�
vENRG vCF vPPF

� �
vPCA2

vPCA3
vPCA4

�

15
�
vSFM vENRG vCF vPPF

� �
vPCA1

vPCA2
vPCA3

vPCA4

�

Table 8.2: Tested combinations of candidate features. Vectors for spectral 
at-

ness (SFM), frequency band limited energy (ENRG), centroid frequency (CF)

and peak power frequency (PPF) and their respective decorrelated features

by principal component analysis (PCA) transformation.

given feature combination, the classi�er with the best general performance was

de�ned as the one corresponding to the highest average test performance, low-

est bin resolution and narrowest kernel width requiring that the training and

test performances satis�ed the generality criteria (equations 3.32 and 3.33).

Statistical analysis

The comparisons between ROSC and No-ROSC was tested with the Wilcoxon

Rank Sum test and presented as median (25th and 75th percentiles). A P-

value less than 0.05 was regarded as signi�cant. The classi�er performance

results are presented as the mean � SD of the cross-validated sensitivities

and speci�cities. These values were computed according to equations 3.27

and 3.28.

8.2 Results

The results for the spectral parameters and the corresponding decorrelated

parameters are summarised for the di�erent frequency ranges in table 8.3.
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0-50 Hz 0-25 Hz 0-12.5 Hz

ROSC No-ROSC P ROSC No-ROSC P ROSC No-ROSC P

SFM 0.3 0.32 * 0.43 0.42 NS 0.52 0.52 NS

(0.26,0.35) (0.28,0.36) (0.38,0.46) (0.37,0.46) (0.48,0.55) (0.48,0.56)

ENRG 2 1.2 *** 1.9 1.1 *** 1.7 0.94 ***

x10�4 (1.5,2.5) (0.81,1.7) (1.4,2.3) (0.73,1.6) (1.2,2) (0.64,1.4)

CF 8.8 8.7 NS 6.9 6.3 *** 5.3 4.7 ***

(8.1,9.7) (7.8,9.6) (6.3,7.4) (5.7,6.9) (4.9,5.6) (4.2,5.2)

PPF 3.9 3.1 *** 3.9 3.1 *** 3.9 3.1 ***

(3.2,5.1) (2.4,4.3) (3.2,5.1) (2.4,4.3) (3.2,5.1) (2.4,4.3)

PCA1 5.9 -2.2 *** 5.5 -2.1 *** 5.2 -2.1 ***

x10�3 (0.74,11) (-6.1,2.7) (0.72,10) (-5.8,2.7) (0.24,8.9) (-5.2,2.5)

PCA2 0.99 -0.21 *** 0.7 -0.29 *** 0.62 -0.32 ***

(-0.23,1.8) (-1.4,1) (-0.47,1.9) (-1.3,0.92) (-0.36,1.8) (-1.3,0.94)

PCA3 0.02 -0.13 NS 0.19 -0.04 ** 0.16 -0.02 **

(-0.51, (-0.65, (-0.26, (-0.45, (-0.09, (-0.31,

0.64) 0.45) 0.65) 0.33) 0.45) 0.26)

PCA4 -0.01 0 ** 0 0 * -0.01 0 *

(-0.02, (-0.01, (-0.03, (-0.02, (-0.04, (-0.02,

0.01) 0.01) 0.01) 0.02) 0.02) 0.03)

Table 8.3: Distribution of features. Spectral 
atness measure (SFM), fre-

quency band limited energy (ENRG), centroid frequency (CF) and peak power

frequency (PPF) and their respective decorrelated features by principal com-

ponent analysis (PCA) transformation. P-values NS: P�0.05; *: P<0.05; **:

P<0.01; ***: P<0.0001.

Feature combination Freq. Range P̂sns(!1) P̂spc(!1)�
vCF vPPF

�
0-12.5 Hz 92 � 2% 27� 2%�

vPCA1
vPCA2

�
0-25 Hz 92 � 2% 42� 1%

Table 8.4: Performance characteristics.The sensitivity and speci�city for pre-

dicting ROSC for the reference classi�er [10]: centroid frequency (CF) and

peak power frequency PPF at 0-12.5 Hz and the highest performing classi�er

based on principle component analysis (PCA) decorrelation at 0-25 Hz.

The test performance results of the classi�ers meeting the generality criterion

are shown in �gure 8.2. The highest classi�er performance is achieved with

decorrelated feature combination no 5 with the frequency range set to 0-25 Hz

(table 8.1, 8.3 and 8.4). The highest performance using the original spectral

features corresponded to the combination of all four features in frequency

range 0-12.5 Hz.

The performance of the reference classi�er, v =
�
vCF vPPF

�
, for comparison

with earlier work, and the highest performing classi�er v =
�
vPCA1

vPCA2

�
are listed in table 8.4 and the class speci�c PDFs with corresponding decision

regions for these two classi�ers are shown in �gure 8.3.

The highest performing classi�er v =
�
vPCA1

vPCA2

�
shows a clearer distinc-

tion between ROSC and No-ROSC than the reference classi�er v =
�
vCF vPPF

�
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Figure 8.2: Test performances for generalised classi�ers for all feature combi-

nations (table 8.2) and frequency ranges. Black bars = sensitivities. White

bars = speci�cities. Performance of the di�erent frequency ranges: Combina-

tions of original spectral feature sets, a) 0-50 Hz, c) 0-25 Hz and e) 0-12.5 Hz.

Combinations of decorrelated spectral feature sets, b) 0 -50 Hz, d) 0 -25 Hz

and f) 0 -12.5 Hz
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Figure 8.3: Estimated class-speci�c probability density functions (PDF) and

corresponding decision regions. The feature values have been normalised ac-

cording to equation 3.37. The subclass PDFs are identi�ed by the following

color scheme: yellow=ROSC, blue=EMD, red=asystole, green=VF reappear-

ing >5 sec after the shock, cyan=VF reappearing within �ve seconds after

the shock (non-reset shocks), white=reject. The coloring in the decision re-

gion corresponds to yellow=ROSC, blue=No-ROSC, white=reject. Highest

performing classi�er: a) probability densities, b) decision regions Reference

classi�er: c) probability densities, d) decision regions
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No-Shock Shock Total

No-ROSC 328 453 781

ROSC 7 80 87

Total 335 533 868

Negative predictive factor Positive predictive factor
328

328+7
= 0:98 80

80+453
= 0:15

Table 8.5: Positive and negative predictive values. The positive and negative

predictive values for achieving ROSC using the highest performing classi�er

v = [vPCA1
vPCA2

] based on principal component analysis transformation at

0-25 Hz.

were there is more intermingling of the classes. The highest performing clas-

si�er is based on PCA decorrelation and dimension reduction to two features

and achieves a sensitivity of 92 � 1% and speci�city of 42 � 1% in testing,

or a positive predictive value of 0.15 and a negative predictive value of 0.98

(table 8.5).

The frequency ranges 0-25 Hz and 0-12.5 Hz are best suited for discriminating

ROSC from No-ROSC outcomes (table 8.3),and the spectral 
atness mea-

sure is the least suitable individual feature for all frequency ranges. Although

the three other spectral features seem promising , the results of the decorre-

lated features indicate only two features as being signi�cantly di�erent when

grouped according to ROSC and No-ROSC outcome. This indicates that there

is redundant information in the original feature set. For example, which we

will discuss in the following, PPF does not add much relevant information that

is not already expressed by CF.

The highest performing single feature spectral classi�ers are centroid frequency

(CF) and peak power frequency (PPF) in the low frequency range, but com-

bining these two features does not improve the results. For the single decor-

related feature classi�ers, the two principal ones give the best results for all

frequency ranges. Combining decorrelated features improves the performance

signi�cantly when the two mid frequency range principal features are com-

bined. Including more than two decorrelated features does not improve the

performance further.

8.3 Discussion

In this study of 868 shocks in 156 patients it is possible to partly predict

the outcome of the shock to either ROSC or No ROSC by analyzing four
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spectral features of the preshock ECG with improved results by combining,

decorrelating and reducing the features.

We have further demonstrated how classi�cation methodology allows the com-

bination of features with an increase in classi�er performance compared to

classifying features individually. We also have showed how decorrelation by

principal component analysis allows dimensional reduction of the feature set

with no decrease in performance compared to a combination of the complete

feature set.

Human studies have shown that the percentage of shocks resulting in ROSC

is very low [50, 6, 100]. In the recent study from Oslo described in chapter 6

only 10% of all shocks resulted in a pulsegiving rhythm. Most shocks are

thus individually futile. Based on the present results, 42% of the unsuccessful

shocks (328 of 781) could have been avoided and a period of chest compres-

sions, ventilations and vasoactive drugs could have been administered before

a new de�brillation attempt. Animal studies have shown that this may be

favorable [71, 7], and the recent study from Cobb et al indicated that this

can improve the outcome of patients [24]. It would minimise the detriment of

the "hands-o�" intervals, where the vital organs are without perfusion thus

reducing the possibility to restore spontaneous circulation and/or a recovery

with intact neurologic status. In addition, the number of shocks should be

kept to a minimum as repetitive shocks and total electric power are injurious

to the already ischemic myocardium, and increase the severity of postmyocar-

dial dysfunction [115]. Moreover, as the spectral characteristics of the VF

have been reported to re
ect myocardial perfusion [13, 95, 73], the de�brilla-

tor might also potentially guide the CPR attempt as the myocardial perfusion

depends on compression force, rate and duration [66, 49, 74, 45]. We explore

these monitoring aspects further in chapter 9.

On the other hand, seven shocks that resulted in a pulse giving rhythm would

not have been administered. These shocks presumably would have been given

later, if CPR changed the characteristics of the VF. The e�ects of this could

not be evaluated.

The present study demonstrates how a general classi�er can be designed by

cross-validation which allows training and testing on independent data sets

in combination with di�erent resolutions and kernel widths in the estimation

of the statistics describing the features according to the principles given in

section 3.2. This method gives an indication on how well the classi�er will

perform when challenged with new data in the future.

In a similar study of 128 shocks in 55 patients with only nine successful shocks

(de�ned as a conversion of VF to a supraventricular rhythm with a palpable



118 Predicting outcome of de�brillation

pulse or blood pressure of any duration within 2 min of the shock without

ongoing CPR), Brown et al [10] extracted four parameters from the recorded

ECG (centroid and peak power frequency and average segment and wave am-

plitude). The combination of CF and PPF was reported as having the best

predictive potential with a sensitivity of 100% and a speci�city of 47.1% [10].

We had a poorer predictive potential of combining the same two features with

a sensitivity of 92�2% and speci�city 27�2%. We believe the results achieved

with our generalized classi�er are more realistic due to a much larger database

and the use of independent testing and generalization not done by Brown et

al [10]. They generated the sensitivity and speci�city from the same data that

the threshold values were computed from with no independent evaluation.

Noc et al [73] recently reported in pigs that maximum and mean VF amplitude

and dominant VF frequency were all acceptable shock outcome predictors. Noc

et al did derive the threshold values in one group and tested these in a separate

validation group, but had di�erent results in the two groups, indicating that

the results might not be reliable [73]. Our results indicate that the results

from Brown et al would have experienced the same if their threshold values

had been tested on a new data set [10].

Our method includes both independent testing and generality to avoid these

problems. To ensure reliability of the results the data are randomly split into

two sets of equal size with equal representation of each class. Decision regions

and training performance for ROSC and No-ROSC prediction are computed

from half the data while the other half is used to reevaluate the decision regions

by computing the corresponding test performance.

We further compute a set of decision regions for each feature combination by

varying parameters in the classi�ers and seeking the decision region, corre-

sponding to a match in training and testing performance within a tolerance

of �5%.

There are some limitations in the present study. Firstly, the number of obser-

vations in the ROSC group is low. Secondly, in the cross-validating processing

of the data, the test performances are considered in the design of the classi-

�ers to choose the generalizing parameters. Ideally, a �nal evaluation should

have been performed on yet another data not in
uencing the design process.

Thirdly, we only use one type of classi�er, the histogram method. To get even

more reliable results, the experiments should be repeated with other types of

classi�er.
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8.4 Summary

As we have pointed out in chapter 2.2 and con�rmed in chapter 6, designing

a method whereby to reduce the number of shocks given in the resuscitation

of out-of-hospital cardiac arrest patients, would be of bene�t to the patient.

In this chapter we have quanti�ed this bene�t by designing a de�brillation

outcome predictor and evaluating a variety of possible classi�ers on the Oslo

data. Our results clearly indicates a bene�t.

Spectral characterization of VF can be of clinical importance in the treatment

of cardiac arrested patients if it can be incorporated in the software of de�bril-

lators. We have demonstrated a method for developing an outcome predictor

for de�brillation attempts in patients with out-of-hospital cardiac arrest al-

though the sensitivity of 92 � 1% and speci�city of 42 � 1% in the present

study are not satisfactory for clinical use. Other features should therefore also

be investigated to add discriminative power to the feature set.
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Chapter 9

Monitoring the probability of

de�brillation success

In chapter 2.2 we discussed the need for a parameter monitoring the e�ec-

tiveness of CPR. In this chapter we suggest a method for computing such a

parameter, the probability of de�brillation success PROSC(v). This chapter is

adapted from [39].

In this study, the main objective was to establish a method for devising a

variable for monitoring of CPR e�cacy. The monitoring concept is closely

related to the prediction of de�brillation outcome. A good predictor discrim-

inates between di�erent levels of resuscitability, which also should be salient

in a monitoring variable. In chapter 8 we showed how the power of a classi�er

for predicting de�brillation outcomes can be improved by decorrelating and

combining ECG derived features. These results indicate that more than one

feature may be needed for the prediction. This is a problem because direct

use of multiple prediction features would give a multidimensional monitoring

variable. The use of many features would add complexity to the treatment sit-

uation. Therefore, we suggest a method for expressing this multi-dimensional

information in a single reproducible variable re
ecting the probability of de-

�brillation success.

9.1 Methods

As in chapters 6 and 8 we used the data from Oslo already discussed in detail

in chapter 4.1.1.

We termed the class (table 8.1) corresponding to the 87 shocks which caused

ROSC by !ROSC . The other classes corresponding to the shocks failing to

cause ROSC was commonly termed by !No�ROSC .

121
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Characterization

We applied the methodology described in the chapter 8 for selecting the op-

timal combination from a set of ECG characterising features. We used the

combination of the two most expressive PCA features,v =
�
vPCA1

vPCA2

�
,in the frequency area 0-25 Hz, which in chapter 8 was identi�ed to achieve

the highest classi�er performance.

The Probability of De�brillation success

The methodology we used for prediction and the results reported in chapter 8

suggest that more features should be added to improve the performance. For

the highest predictive power, the information from each and all of these fea-

tures should therefore be presented to the rescuer. One of the drawbacks of

presenting such a combination of features to the rescuer is that each added

feature would represent added complexity in an already complex treatment

situation. We therefore propose a general methodology for expressing the in-

formation in the shock outcome predictor feature vectors of higher dimensions

into one single meaningful variable suitable for monitoring. This variable ex-

presses the probability of de�brillation success as seen through the feature

vectors.

D features are combined into a feature vector characterising the ECG prior

to de�brillation. The observed features are divided into the sets VROSC and

VNo�ROSC which correspond to observations from !ROSC and !No�ROSC , re-

spectively. Thus we have nROSC D-dimensional feature vectors in VROSC and

nNo�ROSC feature vectors in VNo�ROSC . These sets are the training data

representing the knowledge of the relationship between the information inher-

ent in the preshock ECG and shock outcome. We use this knowledge in the

construction of the variable, which is supposed to monitor resuscitability, the

probability of de�brillation success. Each feature axis is split into nb parts

so that the D-dimensional histogram representing the feature space is divided

into nDb bins, fbigi=1;::: ;nD
b
, of equal volume. Let nROSCi and nNo�ROSCi corre-

spond to the number of observations from VROSC and VNo�ROSC respectively,

in bi. We de�ne the local estimate of the probability of de�brillation success

for a D-dimensional feature vector v observed in bin bi as

PROSC(v) =
nROSCi

nROSCi + nNo�ROSCi

: (9.1)

According to [85], this corresponds to estimating the a posteriori probability

function P (!ROSC jv). This signi�es that

PROSC(v) = P̂ (!ROSC jv): (9.2)
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This is very useful as it allows us to use the established techniques for esti-

mating the a posteriori probability functions, given an observation v.

The number of observations available for forming the classi�ers is limited,

and we have to extrapolate the part of the feature space not covered by the

observations to get a continuous estimate. We use the smooth histogram

method of chapter 3.2.

Experimental setup

In chapter 8, v =
�
vPCA1

vPCA2

�
was identi�ed as the feature combination

corresponding to the highest performing classi�er for shock outcome prediction

with generality satis�ed. Using this feature combination and the correspond-

ing classi�er settings, we computed PROSC(v). Instead of using the local

estimate method proposed above, PROSC(v) was calculated from estimates of

the a priori class probabilities and class-speci�c PDFs according to Bayes rule

given by equation 3.6. These were identical to the functions used for outcome

prediction in chapter 8.

For outcome prediction based on one dimensional feature vectors, analysis of

the results in chapter 8 identi�ed the ones corresponding to the most expres-

sive PCA feature in the 0� 25 Hz frequency area and the centroid frequency

in the frequency area 0 � 12:5 Hz features to be the best feature vectors for

decorrelated and original features respectively. In a monitoring device us-

ing one-dimensional outcome predictor feature vectors directly, these features

would be natural candidates, so each of these was recalculated for individual

comparison to PROSC(v).

We also used the preshock derived PROSC(v) function to monitor two complete

patient records to be able to study its behaviour during treatment. ECG

blocks of four seconds duration and one second overlap were extracted from

the ECG so that the monitoring variable was updated every third second.

From these blocks we computed feature vectors, v, and further calculated

PROSC(v). From these recordings of PROSC(v), we selected to study the ones

corresponding to the last 15 seconds of ECG prior to each de�brillation.

Statistical analysis

The comparisons between ROSC and No-ROSC were tested with the Wilcoxon

Rank Sum test. A P-value <0.05 was regarded as signi�cant.
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9.2 Results

The function surface of PROSC(v)

In �gure 9.1, the resulting PROSC(v), as based upon the preshock feature

vectors of the data material in VROSC and VNo�ROSC , is shown. The function

surface attains its highest values in the area where the feature vectors from

VROSC discriminates the best from those in VNo�ROSC . The low function

values of PROSC(v) correspond to the areas dominated by feature vectors

from VNo�ROSC . The surface covers only a limited part of the feature space.

This is the e�ect of interpolating the associated probability density functions

with a restricted gaussian kernel function.

Comparison to single feature representations from outcome predic-

tion

The parameter distributions are illustrated in the box plots of �gure 9.2. The

ROSC distribution is compared to the No-ROSC distribution for each param-

eter. The distributions for vCF , vPCA1
and PROSC(v) are shown in part a),

b) and c) of the �gure, respectively. For each of these three variables the

parameter values corresponding to ROSC was found to be signi�cantly higher

than for the No-ROSC values (P<0.0001 for all three comparisons). The P-

value corresponding to the test of the PROSC(v) values was actually around

10�300 times smaller than either of the two other P-values. This indicates that

PROSC(v) is a signi�cantly better monitor variable than the other two indi-

vidual feature vectors: vCF computed from the 0 � 12:5 Hz frequency range

and vPCA1
computed from the 0� 25 Hz frequency range.

Monitoring patient records using the probability function

The retrospective use of PROSC(v) as a monitor of CPR e�cacy is illustrated

in �gure 9.3 and �gure 9.4. Figure 9.3 shows the last 15 seconds of analysis and

charging periods prior to each of 8 shocks in a patient who �nally converted

to ROSC. The ECG tracings show how the VF is "coarsened" as an e�ect

of the CPR provided between the shocks, and the probability function values

(*100%) re
ect this coarsening by an increase in value towards the points of

successful conversions.

A similar plot shows �ve unsuccessful shocks in another patient (�gure 9.4).

There is no evidence of VF "coarsening" in these tracings. The function values

decrease throughout the episode.
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Figure 9.1: The function "Probability of ROSC", PROSC(v), derived from

883 de�brillation attempts in 156 patients. PROSC(v) is calculated from the

knowledge of de�brillation outcome, ROSC or No-ROSC, and the preshock VF

spectral feature observations of v = [vPCA1
; vPCA2

]. In each bin the amplitude

on the function surface corresponds to the number of ROSC outcomes divided

by the total number of de�brillation attempts in the bin. The amplitude

represents the estimate of the probability of de�brillation success for a feature

vector, v, observed in that bin. The colour scheme for the function values are

approximately as follows: dark blue=0-0.25, light blue=0.25-0.5, yellow=0.5-

0.75, red=0.75-1.
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Figure 9.2: The statistical distributions of the preshock ECG blocks repre-

sented by a) vCF computed from the 0-12.5 Hz frequency range, b) vPCA1
com-

puted from the 0-25 Hz frequency range and c) PROSC(v). All feature sets were

signi�cantly di�erent for ROSC and No-ROSC measurements. *)P < 0:0001.

Boxplot description is presented in �gure 6.1.
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Figure 9.3: 15 second ECG tracings prior to eight shocks in a patient who

was successfully de�brillated with attempts #7 and #8. After shock # 7

the pulsegiving rhythm was not sustained, but sustained after shock # 8.

PROSC(v) was retrospectively calculated and presented here as (100PROSC (v)

%) updated every three seconds. tmon : time in minutes:seconds from the

de�brillator was connected until a de�brillation attempt.
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Figure 9.4: 15 second ECG tracings prior to �ve shocks in a patient who

did not convert to ROSC. PROSC(v) was retrospectively calculated and pre-

sented here as (100PROSC (v) %) updated every three seconds. tmon : time

in minutes:seconds from the de�brillator was connected until a de�brillation

attempt.

9.3 Discussion

In this study we have proposed and demonstrated a method for representing

multivariate information as a single variable - the probability of successful

de�brillation (PROSC(v)) - suited for monitoring the e�ectiveness of CPR.

This indicates a way to guide CPR towards delivery of shock at a time optimal

for successful de�brillation outcome.

As already mentioned, the methodology for calculating PROSC(v) is general.

The feature vector,v, can be of any dimension and content, which means

that there are a multitude of possible PROSC(v) functions. Which features to

incorporate depend on the capability of the feature vector to predict the shock

outcome. The �rst step on the way to constructing a PROSC(v) function is to

�nd a set of feature candidates. The next step is to determine which features

to select for v. A bad choice for v will consequently provide a worthless

PROSC(v).

In chapter 8 we determined the combination within a set of features with the

highest prediction sensitivity and speci�city, and used this as the basis for the

methodology in the present study. To improve the usefulness of PROSC(v)
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further, one should test the addition of new features to the existing set and

search for the combination giving the highest prediction performance. v is, in

a sense, the glasses through which the ECG is seen.

Another aspect to consider is that PROSC(v) is an empirical function based

on actual de�brillation attempts in patients. The reliability and scope of

the function is dependent on the data available. In �gure 9.1 the function

appears to behave strangely in areas with few data points. This emphasises

the importance of a large representative database for computing PROSC(v).

We applied the smooth histogram technique described in chapter 3.2.5 for

computing PROSC(v). Each feature axis was divided into 128 bins so that the

function was represented by a 2-dimensional matrix with 1282 = 16384 ele-

ments. The e�ect of adding features is an increase in the number of elements

needed to represent the function. If D feature axes are divided into nb bins,

the number of elements needed is nDb . This problem, the curse of dimension-

ality, makes the present technique for representing PROSC(v) impractical. To

avoid this problem, one should consider using other techniques for function

estimation like multilayer perception neural networks or radial basis function

networks.

It would have been much simpler if single features such as centroid frequency

or amplitude alone could reliably predict the success rate and thus provide

a good monitoring variable as previously indicated in some studies [12, 109].

Brown et al [13] thus reported that centroid frequency alone predicted ROSC

with 92 % speci�city and 100% sensitivity in pigs. In most of these studies

there is a varying combination of factors that limits their usefulness in patients:

1. The frequency spectra of VF in animals such as pigs [12, 13, 73] di�er

signi�cantly from those in humans, making an extrapolation di�cult.

2. In many studies [13, 95, 10, 14] the speci�city and sensitivity were de-

termined from the same data set that had been used to determine the

predicting feature initially. To increase the validity and reliability the

prognostic criteria should be de�ned from one data set and the speci�city

and sensitivity derived from a new data set.

3. To be an e�ective guide during CPR the predictor must give the clinician

advice before each individual shock.

Point one is illustrated by the results from Brown et al [10] in 56 patients with

out-of-hospital cardiac arrest, where the speci�city of approximately 20 % and

sensitivity of 100 % for centroid frequency as a predictor was much lower than

in pigs.
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From 265 out-of-hospital cardiac arrest patients, Callaham et al [14] reported

that the maximum peak-to-through amplitude (AVF) of VF during the initial

3-7 seconds of pre-de�brillation analysis predicted ROSC with a sensitivity

of 89 % and a speci�city of 33 %. This prediction was based only on the

initially determined VF, and not directly related to each individual shock as

in our prediction analysis described in chapter 8. They also reported that the

patients developing a pulse had an increase in the development of AVF with

re�brillations compared to a decrease for those who did not [14].

When Brown et al tried to predict the outcome of each countershock indepen-

dent of any clinical variable [10], as we did in our prediction study described

in chapter 8, AVF only achieved 10 % speci�city at 90 % sensitivity when

each countershock was considered independently. The predictive value of the

combination of centroid frequency (CF) and peak power frequency (PPF) for

ROSC was higher with a speci�city of 47.1 % and a sensitivity of 100 %.

Noc et al [73] designed a de�brillation predictor in domestic pigs from a step-

wise multiple regression on AVF and PPF to coronary perfusion pressure

(CPP). This correlated better to the CPP than the individual features and

had greater predictive power on shock outcome with 80 % speci�city at 100 %

sensitivity. When the predictive value was validated on another independent

animal group with corresponding threshold values, however, the speci�city fell

to 44 % at 100% sensitivity [73].

In our outcome prediction analysis (chapter 8), ENRG, a somewhat di�erent

energy measurement than AVF indicated a sensitivity of 94% (� 5%) and

a speci�city of 13% (� 19%), while CF alone achieved a sensitivity of 92%

(� 8%) and a speci�city of 25% (� 3%). The combination of CF and the

energy measurement achieved a sensitivity of 91% (� 3%) and a speci�city of

36% (� 4%). All these features were extracted from the 0-12.5 Hz frequency

range. One of our conclusions was that increased predictive accuracy could be

obtained by combining features.

The information re
ected in the ECG features can be clinically useful if the

predictive value is high with high reliability. As time is critical in the car-

diac arrest situation, and an additional monitor represents one extra element

that the rescuer must relate to, the information relayed must be simple. By

selecting feature combinations and evaluating the performance, the reliability

of the classi�er can be improved (chapter 8), and we have here demonstrated

how the number of variables in a monitoring device can be reduced to one

manageable unit. We have also indicated how PROSC(v) could be used as a

CPR monitor by visualising the computed function value retrospectively in a

human patient. The values were updated every third second as illustrated in
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�gure 9.3 and �gure 9.4. We think these �gures illustrate how our monitoring

unit re
ects the positive changes with ongoing CPR in the patient with ROSC,

while there was a decrease in the probability of de�brillation success in the

No-ROSC patient. It is important to emphasise that these examples are used

for illustration, and are not intended as scienti�c "proof".

Based on �ndings from 100 cardiac arrest patients Paradis et al [76] reported

that a certain level of CPP was needed for ROSC. In accordance with this,

animal studies have indicated that chest compressions prior to the �rst de�b-

rillation attempt can improve the myocardial condition and increase the re-

suscitability in prolonged VF [71, 7]. In 639 patients with prehospital cardiac

arrest found in VF [24], Cobb et al recently reported that chest compressions

prior to de�brillation appeared to improve the outcome. This was true for the

whole material and for the subset of patients with more than four minutes of

cardiac arrest before the EMS team arrived, but not for 0- 4 minutes compared

to a historic control group[24]. They speculated that this was due to an im-

provement in the myocardial condition with coronary blood 
ow secondary to

the chest compressions. We further speculate that the outcome might improve

if the timing of a de�brillation attempt in the individual patient is guided by

information on the myocardial condition. This should enable a de�brillation

attempt as soon as the myocardial condition is favourable and at the same

time limit the number of no-
ow periods during unsuccessful de�brillation

attempts.

It has been reported that 80 % of patients who survive are de�brillated by one

of the �rst three shocks [50, 25, 2, 106]. In agreement with others [50, 6] we

have recently reported from Oslo (chapter 6) that only 10 % of 883 individual

shocks resulted in a pulsegiving rhythm, and only 4 % of the shocks resulted in

sustained spontaneous circulation. We therefore speculate that most of these

shocks are administered to a myocardium that is not in an optimal condition

for successful resuscitation. In these situations chest compressions with re-

sulting coronary perfusion should increase the resuscitability [76]. The use of

PROSC(v), incorporated into the de�brillator, could potentially improve the

quality of the chest compressions by direct feedback, and thereby the myocar-

dial perfusion, and indicate the optimal timing of de�brillation. This would

also reduce the number of unsuccessful shocks damaging the myocardium [115],

and the duration of "hands o�" intervals without vital organ perfusion dur-

ing resuscitation attempts. We do not know at present if and for how long

chest compressions should be performed before delivery of a shock in an in-

dividual patient, or between shocks in prolonged VF, but there are probably

large inter- and intraindividual di�erences, which could be demonstrated by

the PROSC(v).
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9.4 Summary

We have demonstrated by analysing the ECG prior to 883 shocks from 156

patients with prehospital cardiac arrests, that the principle of monitoring

PROSC(v) might be useful as guidance during CPR to re
ect the myocar-

dial condition and optimise shock timing for the patient. This could enable

individualised CPR, the avoidance of unnecessary shocks, and increase the

time of vital organ perfusion during cardiac arrest treatment.



Chapter 10

Conclusion

Here follows a summary of the major contributions and conclusions from this

work.

10.1 Major contributions of this work

We have formulated a decisions support system for VF analysis to guide ther-

apy during treatment of cardiac arrest in out-of-hospital patients.

1. In chapter 3.1 a framework for a decision support system is proposed.

We emphasise the importance of reliability and validity. In chapter 3.2

we emphasise the importance of combining features for improved perfor-

mance as compared to using features individually. Further we propose

the use of cross-validation techniques as an instrument to ensure relia-

bility in the performance results in the design of the decision support

system. The applicability of these principles are demonstrated in the

experiments presented in chapter 8 (to be published [38]).

2. We use the principles laid down in classi�cation theory to formulate a

method to control the sensitivity performance (Receiver Operator Char-

acteristics analysis) by using the a posteriori probability function values

of our training data features in section 3.2.

3. A solution for CPR artefact removal using adaptive �lters with signals

representing the cause of artefact components as references to the �lter is

proposed in chapter 3.4. In chapter 7, experiments were we apply refer-

ences corresponding to combining the compression depth and ventilation
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references indicates the potential of this method were �xed coe�cient �l-

ter methods fail in separating CPR artefacts from the VF part of the

recorded ECG (to be published [63, 1]).

4. We propose a method to design a parameter to monitor CPR e�cacy in

chapter 9 by showing that the a posteriori probability function of ECG

extracted features prior to successful de�brillation re
ects the proba-

bility of de�brillation success. In the experiments performed in that

chapter, the applicability of this monitoring parameter is demonstrated

(to be published [39]).

5. We have participated in the establishment of a database of human ECG

and demographics which is described in chapter 4.1.1. In chapter 6 we

demonstrated how the information stored in the medical control module

of the de�brillator can be used to evaluate the events occurring during

ALS (published in [100]).

10.2 Major conclusions of this work

Several conclusions presents themselves from the work presented in this thesis.

To summarise:

1. The design of a decision support system for VF analysis incorporating

classi�cation techniques and feature extraction methods is a powerful

tool with potential for guiding CPR in an out-of-hospital setting. The

crucial elements for the ability of improvement in performance as com-

pared to earlier proposed methods is the use of classi�ers that use feature

combinations and nonlinear decision borders.

2. CPR artefact removal in human ECG may be performed by using adap-

tive �ltering techniques with reference signals re
ecting the cause of the

artefact components.

3. CPR e�cacy can be monitored by a parameter re
ecting the probabil-

ity of de�brillation success. This parameter reduces the complexity of

multi-dimensional features into a one-dimensional parameter which is

intuitively related to resuscitability. This may be extremely useful for

guidance of CPR therapy.

4. This work provides methods to increase the portion of CPR given during

therapy by reducing hands-o� intervals. This is done by applying meth-

ods allowing rhythm analysis during CPR by CPR artefact removal and
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reducing the number of unnecessary shocks by predicting shock outcome

using VF analysis.

10.3 Suggestions for further research

We see several directions for further research.

1. More data should be collected for further development and reliable evalu-

ation of VF-analysis decision support systems. These should be collected

from several ambulance systems. Furthermore additional data (reference

signals for adaptive �ltering of CPR artefacts) should be included in the

databases.

2. New feature extraction techniques should be investigated. We believe

this to have the greatest potential for performance improvement.

The results in chapter 8 showed that performance depends on the fre-

quency range on which the features are calculated. In the experiments

we used a frequency response corresponding to a rectangular window to

select the frequency range with all components given equal weighting.

Another technique might be to use �lters for greater freedom in select-

ing the frequency response prior to extracting the features. One might

consider optimising the response towards classi�er performance. These

principles has been applied in texture segmentation [78].

Other approaches could be to use other representations than the short-

time Fourier transform. Various time-frequency representations for the

onset of in-hospital VF has been studied by Clayton et al [21, 20].

Wavelets were considered for representing VF in pigs in a study CPR in

cardiac arrested pigs by Watson et al in [108]. One might evaluate the

performance of such time-frequency representation for prediction out-

come in a manner similar to what was done for classi�cation using time-

frequency distributions by Engleheart [44]. In chapter 2.1 the stages of

VF were discussed in relation to morphologic characteristics in VF ECG

recordings. We used the terms "energy", "frequency" and "complex" to

describe the traces. In this thesis we have studied features related to the

two �rst terms. It might be worthwhile to add new features relating to

the third term, "complex". VF characteristics has been related to the

number and organisation of wavefronts activating the myocardium by

Casaleggio et al [15], Ideker et al [3, 82, 4] and with the recent work by

Clayton et al [22, 23] pointing towards the use of nonlinear methods for

characterising the complexity of the VF waveform.
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It would also be interesting to evaluate which length of the preshock VF

blocks corresponds to highest performance.

3. Other classi�er techniques could be investigated as alternatives to the

smooth histogram technique. As we discussed in chapter 9, the number

of histogram bins grow exponentially with feature dimension. We expe-

rienced that having feature dimension equal to four caused an increase

in computing time for the classi�er evaluation. One of the conclusions

discussed in chapters 8,5.2 and 5.3 was that more features should be

combined. This motivates the replacement the smooth histogram classi-

�er. The radial basis function approach to classi�cation [87] is a strong

candidate. The smooth histogram approach computes a histogram for

all the training vectors which are represented by histogram columns.

Furthermore the contributions from these columns into the the whole

of the feature space is represented by a multidimensional matrix. The

radial basis function approach, on the other hand, only stores the train-

ing vectors to represent the statistical distribution in feature space. The

contribution from a training vector to a test vector is computed directly

using a gaussian weighting of the distance between the two vectors. Us-

ing this approach allows handling feature vectors of higher dimensions

than what we have investigated in the present work.

4. The e�ect of artefact removal by adaptive �ltering on outcome prediction

should be investigated. In chapter 7 we evaluated the �ltering method by

improvement in SNR and rhythm detection. Strohmenger et al evaluated

their frequency selective approach to artefact reduction on VF analysis

outcome prediction [94]. A similar approach can be used to evaluate

our outcome prediction system. We could use an arti�cial mix of animal

CPR artefacts (as in chapter 7) and mix with preshock data similar to

those used in the outcome prediction analysis in chapter 8. Strohmenger

et al did not evaluate their �ltering method on preshock VF corrupted

with CPR artefacts [94].



Appendix A

Linear Algebra

In this appendix we give some details on how estimates of mean and correlation

and covariance matrices and principal axis (PCA) transforms can be obtained

from a set of observed feature vectors [104].

A.1 Some linear algebra concepts

In the following some basic concepts of linear algebra is described.

As we discussed in chapter 3.2.2 a feature vector v consists of D elements so

that

v =
�
v1 v2 : : : vD

�T
: (A.1)

A.1.1 Orientation and spread

A measure for the mean or expectancy of v is

�v = Efvg: (A.2)

A measure for the orientation and spread of the measurements is given by the

correlation matrix which is given as

Rv = EfvvT g: (A.3)

The spread about the mean is given by the covariance matrix given by

Cv = Ef(v � �)(v � �)T g = Rv � ��T : (A.4)
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A.1.2 Estimating from observed data

De�ning the data matrix

V =
�
v1 v2 : : : vK

�T
(A.5)

as having K rows consisting of measurement vectors and columns of random

variables. Estimates of the mean and correlation matrix may be given as

�̂v =
1

K

KX
i=1

vi (A.6)

and

R̂v =
1

K

KX
i=1

viv
T
i =

1

K
VTV (A.7)

respectively.

A.2 Principal axis transformation

A symmetric matrixA may be diagonalised using its orthonormal eigenvectors

ei and corresponding eigenvalues �i where i = 1 : : : dim(A) = N . Using the

properties

Aei = �iei; (A.8)

and

eTi Aej = �je
T
i ej =

(
�j if i = j

0 if i 6= j
(A.9)

which leads to

ETAE = � (A.10)

where E =
�
e1 e2 : : : eN

�
and � = diag

�
�1 �2 : : : �N

�
, a unitary

transform may be expressed as

w = ETv: (A.11)
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If E is the eigenvector matrix of Rv, w has a diagonal correlation matrix as

can be shown by

Rw = EfwwT
g = EfETvvTEg = ETRvE (A.12)

meaning that the values of w are orthogonal. The covariance matrix may

be similarly diagonalised, thus giving transformed data w with uncorrelated

elements. The transformation in equation A.13 rotates the axis system so that

the axes are aligned with the principal directions of the data set. The axis

system is further translated to the mass center of the data set by subtracting

the mean.

w = ET (v � �) (A.13)
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Appendix B

CPR artefact removal �lter

derivations

This material has been taken from [1]. The mathematical details of the deriva-

tion of the optimal solution for the multi-channel �lter described in chap-

ter 3.4.2 is given in section B.1. The experiments performed to tune the �lter

parameters are described in section B.2.

B.1 Filter derivations

The objective is now to �nd the P FIR �lters that collectively minimize the

object function de�ned as

J =

1X
n=�1

w(n; n0) [x(n)� y(n)]2 : (B.1)

Limited to the model in equation 3.47, the synthesized artefact y(n) should be

tuned to maximum similarity to the noisy part of the ECG signal x(n). The

role of the window function w(n; n0) is to de�ne the analysis region used when

computing the optimal �lters. Letting n0 denote the current signal sample, the

following cases can be emulated by choosing the appropriate window function:

Stationary solution: Setting w(n; n0) = 1;�1 < n <1 the minimization

of equation B.1 yields the best possible �xed �lter solution.
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Causal solution: If w(n; n0) = 0; n > n0 the �lter solution will only use

knowledge about the relationship between x(n) and the reference signals

using past samples.

Non-causal solution: If we are to compute the best possible �lter solution

to use at time n0, the region used for the analysis should be short-term.

The best way of providing this adaptivity is to allow the region of support

of w(�; n0) to extend on both sides of n0. In a real-time setting this will

introduce a time-delay equal to n1 � n0, where n1 is the last nonzero

value of the window function. In our experiments we use a Hamming

window [77] centered around n0. This is illustrated in �gure B.1.
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Figure B.1: A Hamming window de�ning the short-term analysis region. n0
denote the \now" point in time.

Setting @J
@hi(j)

= 0 we obtain:

PX
p=1

Kp�1X
k=0

hp(k)

1X
n=�1

w(n; n0)vp(n� k)vi(n� j)

| {z }
rvpvi (k;j)

=

1X
n=�1

w(n; n0)x(n)vi(n� j)

| {z }
rxvi (j)

;

(B.2)

where i = 1; : : : ; P and j = 0; : : : ;Ki�1. Note that the time window de�ning

the short-term analysis region is included in the auto- and cross-correlation

functions rvpvi(�; �) and rxvi(�).

equation B.2 de�nes a linear set of
PP

p=1Kp equations with the same number

of unknowns. Alternatively, the system of equations can be written as a single
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matrix equation:2
6664
R11 � � � RP1

R12 � � � RP2

...

R1P � � � RPP

3
7775

| {z }
R

2
6664
h1
h2
...

hP

3
7775 =

2
6664
rxv1
rxv2
...

rxvP

3
7775 ; (B.3)

where

Rst =

2
64
rvsvt(0; 0) � � � rvsvt(Ks � 1; 0)

...

rvsvt(0;Kt � 1) � � � rvsvt(Ks � 1;Kt � 1)

3
75 (B.4)

hTi = [hi(0); : : : ; hi(Ki � 1)] (B.5)

rTxvi = [rxvi(0); : : : ; rxvi(Ki � 1)]: (B.6)

It should be noted that since

rvsvt(k; j) = rvtvs(j; k)

rvsvt(k; j) 6= rvsvt(k + 1; j + 1)

it follows thatR is symmetric but not T}oplitz. This can also be seen as a result

of the way the autocorrelation functions are de�ned in equation B.2. This is

commonly referred to as the covariance method in linear prediction [55].

The solution of equation B.2 or, equivalently, equation B.3 gives the optimal

set of P FIR �lters for removing the artefact component in the ECG signal

x(n) at time n = n0. This is commonly referred to as the Wiener solution [77].

The price paid for using the optimal �lter solution is the computational burden.

For each signal sample, the solution of equation B.3 requires the inversion

of a square matrix with dimensions equal to the total number of FIR �lter

coe�cients. However, our experiments will demonstrate that very few �lter

coe�cients are necessary, thus reducing the complexity of the system.

B.2 Filter tuning

The data used in the tuning experiments are the ones described in chapter 7.

In the proposed �lter structure in �gure 3.7 the following parameters have

to be chosen: The �lter lengths K1 and K2 for the chest compression and
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Figure B.2: Artefact removal performance as a function of the window length

and the number of �lter taps (K) in each channel: 1-tap �lters (solid), 2-tap

�lters (dotted), and 3-tap �lters (dashed). The compression rate is 90 min�1

and the input SNR is 0 dB.

the ventilation channels, respectively. The size (the support) of the Hamming

window function w(�; n0) also has to be decided.

The �lter construction is based on the minimization of a quadratic error term.

Accordingly, we tune the parameter settings for maximum SNR improvement.

In order to limit the search for the best parameter setting we adapt the follow-

ing strategy: Experiments are performed using a limited data set. We have

chosen to evaluate the artefact removal system at 90 chest compressions per

minute, at 0 dB SNR. The channel �lter lengths are set to be identical, i.e.

K1 = K2 = K.

Using the scheme outlined above, we average the obtained SNR after restora-

tion over the human ECG ensemble (VT or VF) and over the 2 added animal

artefact records. The obtained results are shown in �gure B.2.

In all 4 cases (VF/MON, VF/DEF, VT/MON, and VT/DEF) we observe the

superior results obtained using only one �lter tap in each channel �lter, the
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exception being the VT/DEF case where the 1-tap �lter is outperformed when

the window size is well above 300 samples. This conclusion may not hold for

window sizes larger than 500 samples { the range used for these plots { but this

hardly matters since the use of larger window sizes would result in a �lter time

delay larger than 2.5 seconds, which is unacceptable. We therefore conclude

that 1-tap �lters are suitable for our purposes. Note that this does not imply

a simple �ltering scheme identical to multiplication by a constant. The �lters

are adaptive on a sample-to-sample basis allowing the \constant" to vary.

The artefact removal is more successful on the MON measurements than on

the DEF measurements, with the former achieving up to 10 dB and the latter

6 dB in the VT case. The VF performance is 1{2 dB lower.

The best choices of window lengths are about 300 samples in the MON case

and about 160 samples in the DEF case, when using 1-tap �lters. A probable

cause for this di�erence is the higher degree of signal stationarity obtained

when measuring the ECG through the monitor pads.
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