Optimal Bit and Power Constrained
Filter Banks

Are Hjgrungnes

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DOCTORAL DEGREE OF

DOKTOR INGENIOR

Department of Telecommunications
Norwegian University of Science and Technology

N-7491 Trondheim
Norway

2000






Abstract

In this dissertation, two filter banks optimization problems are studied. The
first problem is the optimization of filter banks used in a subband coder under
a bit constraint. In the second problem, a multiple input multiple output
communication system is optimized under a power constraint. Three different
cases on the filter lengths are considered: unconstrained length filter banks,
transforms, and finite impulse response filter banks with arbitrary given filter
lengths.

In source coding and multiple input multiple output communication sys-
tems, transforms and filter banks are used to decompose the source in order to
generate samples that are partly decorrelated. Then, they are more suitable for
source coding or transmission over a channel than the original source samples.
Most transforms and filter banks that are studied in the literature have the
perfect reconstruction property. In this dissertation, the perfect reconstruc-
tion condition is relaxed, so that the transforms and filter banks are allowed
to belong to larger sets, which contain perfect reconstruction transforms and
filter banks as subsets.

Jointly optimal analysis and synthesis filter banks and transforms are pro-
posed under the bit and power constraint for all the three filter length cases.
For a given number of bits used in the quantizers or for a given channel with
a maximum allowable input power, the analysis and synthesis transforms and
filter banks are jointly optimized such that the mean square error between
the original and decoded signal is minimized. Analytical expressions are ob-
tained for unconstrained length filter banks and transforms, and an iterative
numerical algorithm is proposed in the finite impulse response filter bank case.

The channel in the communication problem is modeled as a known multiple
input multiple output transfer matrix with signal independent additive vector
noise having known second order statistics. A pre- and postprocessor contain-
ing modulation is introduced in the unconstrained length filter bank system
with a power constraint. It is shown that the performance of this system is
the same as the performance of the power constrained transform coder system
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when the dimensions of the latter system approach infinity.

In the source coding problem, the results are obtained with different quan-
tization models. In the simplest model, the subband quantizers are modeled as
additive white signal independent noise sources. The proposed unconstrained
length filter banks perform better than the optimal unconstrained length uni-
tary and biorthogonal filter banks, and it is shown that the proposed transform
has better performance than the Karhunen-Loéve transform. Also, the pro-
posed transform coder has the same performance as a transform coder using a
reduced rank Karhunen-Loéve analysis transform with jointly optimal bit allo-
cation and Wiener synthesis transform. The proposed finite impulse response
filter banks have at least as good theoretical rate distortion performance as
the perfect reconstruction filter banks and the finite impulse response Wiener
filter banks used in the comparisons.

A practical coding system is introduced where the coding of the subband
signals is performed by uniform threshold quantizers using the centroids as rep-
resentation levels. It is shown that there is a mismatch between the theoretical
and practical results. Three methods for removing this mismatch are intro-
duced. In the two first methods, the filter banks themselves are unchanged,
but the coding method of the subband signals is changed. In the first of these
two methods, quantizers are derived such that the additive coding noise and
subband signals are uncorrelated. Subtractive dithering is the second method
used for coding of the subband signals. In the third method, a signal depen-
dent colored noise model is introduced, and this model is used to redesign
the filter banks. In all three methods, good correspondence is achieved be-
tween the theoretical and practical results, and comparable or better practical
rate distortion performance is achieved by the proposed methods compared to
systems using perfect reconstruction filter banks and finite impulse response
Wiener synthesis filter banks.

Finally, conditions for when finite impulse response filter banks are optimal
are derived.
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\ set difference
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eigenvalue number ¢ of the matrix Sz(f), where i € Zy

diagonal element number i of the matrix Ag(f), where i €
LN

diagonal element number 4 of the matrix Ag(f), where i €
LN

Lagrange multiplier
small non-negative constant

N x N frequency dependent permutation matrix
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e N , where 1 € Zy

M x M diagonal matrix containing the variances of the sub-

band signals

variance of the noise added by the quantizers when all the

quantization noise variances are equal

variance of the noise added by quantizer number ¢ € Z s

variance of the additive input noise

variance of the additive channel noise

variance of the input time series z(n)

variance of subband signal number i € Zj,

part of the subband variance when using the G, ;(f) filters,

Equation (2.45) gives the definition

M x M diagonal matrix which depends on the matrices 3y
and @

(I+1)M x (I4+1) M autocorrelation matrix of the (I+1)M x
1 vector g(n),

(p+1)N x (p+1)N autocorrelation matrix of the (p+1)N x
1 vector u(n),, where p € {m,m + o+ 1}

(I+1)M x (I4+1)M autocorrelation matrix of the (I+1)M x
1 vector v(n),

(p+1)N x (p+1)N autocorrelation matrix of the (p+1)N x
1 vector x(n),, where p € {0,m,m +1,m + o0+ 1}

(m+1+1)N x (I + 1)M cross-correlation matrix between
the input vector &(n), and the additive quantization vec-
tor g(n),

(I4+1)M x (I4+1)M autocorrelation matrix of the (I+1)M x
1 vector g(n),

(I4+1)M x N cross-correlation matrix between the additive
quantization vector g(n), and the input vector x4, (n — dy)
(p+1)N x N covariance matrix, which is a submatrix of the
(p+1)N x (p+1)N autocorrelation matrix 45;(5”]\7), the vector
delay d, and scalar delay ds decide how this submatrix can

be found, and p € {m +I,m + o+ 1}
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N x (I + 1)M covariance matrix between the N x 1 vec-
tor x4(n — d,) and the (I +1)M x 1 vector y(n),

diagonal element number ¢ of the matrix &

characteristic function of the stochastic variable ¢;(n) eval-
uated at the argument a

joint characteristic function of the stochastic variables z;(n)
and gx(m) evaluated at the arguments a and b

N x N DFT matrix with columns permuted according to
the ordering functions lz(N)( f)

modulator number ¢ in the preprocessor

M x (m+1)N matrix containing ones at the positions corre-
sponding to where the analysis filter bank E_ contains free
parameters and zeros where E_ must contain zeros

1th alias function in a filter bank, where 7 € Z
real variable

difference between the centroid and the midpoint in decision
interval number & in the ith uniform threshold quantizer

real variable number 4
frequency response of the filter number ¢ in the preprocessor

1) average number of bits used for coding N source samples
2) real variable

number of bits used in quantizer number %, where ¢ € Zjs
constant used to simplify the bit allocation expressions

F fk is the complementary set of F;, in the frequency inter-

11
val (=3, 3]
scalar channel transfer function
M x M transfer matrix of the MIMO channel
M x (0+1) M row-expansion of the FIR channel matrix C(z)

(I+1)M x (m+o0+1+1)N matrix used to express the total
polyphase matrix in the power constrained FIR problem

M x M impulse response matrix sequence of the MIMO
channel

coding coefficient for coding subband number i € Z s

1th diagonal element of the matrix D, where ¢ € Z ),
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D M x M diagonal matrix used in the Wiener transform when
the analysis transform is a reduced rank KLT matrix

D(f) M x M diagonal matrix

ds scalar delay through the FIR analysis and synthesis filter
bank

dy vector delay through the FIR analysis and synthesis filter
bank

E(f) the integrand in the block MSE &y, at the frequency f,
when using the G;;(f) filters

E(f) the integrand in the block MSE En s at the frequency f,

when using the G;;(f) filters

En M block MSE by coding the vector &(n) using unconstrained
length filter banks or transform matrices

En o (do, ds) block MSE by coding the vector (n) using FIR filter banks
with vector delay d, and scalar delay d;

5](\?7)]\/[ (dy,dy) quantization block MSE by coding the vector x(n) using
FIR filter banks with vector delay d, and scalar delay d;

5](\?3\/[ (dy,ds) signal block MSE by coding the vector &(n) using FIR filter
banks with vector delay d, and scalar delay d

5](\35}3[) (dy,dy) crossterm block MSE contribution by coding the vector @ (n)
using FIR filter banks with vector delay d, and scalar de-

lay ds
E expected value operator
Epmn(2) element in row number m and column number n of the ma-
trix E(z)
E M x N analysis matrix which is used in the transform coder
E(z) M x N analysis polyphase matrix
E_ M x (m+1)N row-expansion of the FIR analysis polyphase

matrix E(z)

E_ M x (m+ o0+ 1)N row-expansion of the combination of the
transmitter FIR polyphase matrix E(z) and the channel FIR
polyphase matrix C(z)
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E- 1) {4+ 1)M x (I +m + 1)N block matrix used to express
the convolution between the FIR analysis and synthesis
polyphase matrices used in bit constrained filter banks

2) (04+1)M x (o +m + 1)N block matrix used to express
the convolution between the FIR analysis and channel
polyphase matrices in power constrained filter banks

e base of natural logarithm
e(n) M x N analysis impulse response matrix of lag n
é(n) M x N impulse response matrix of lag n of the convolution

of the transmitter FIR polyphase matrix E(z) and channel
FIR polyphase matrix C(z)

ED;(+) entropy decoder operating on subband number i, where i €
YA

EE;() entropy encoder operating on subband number i, where i €
YA

Fik set of frequencies in (—%, %] satisfying Equation (2.35),
which depends on the indices j and k&

.7-"](1,2 i € {1,2}, the sets ]:J(lk) and ]:J(Zk) are defined in Equa-
tions (2.39) and (2.40), respectively

Fi(f) synthesis filter number ¢, where 7 € Z

f 1) relative frequency
2) continuous real integration variable

fyn) pdf of subband vector signal y(n)

T (4) pdf of subband signal y;, where i € Z

faeim),qr(m)(+s)  joint two-dimensional pdf of the stochastic variables x;(n)
and gi(m)

Gm,m diagonal element number m of the matrix G

Gmn(f) element in row number m and column number n of the ma-
trix G(f)

Gii(f) diagonal element number i of the matrix G(f)

Gii(f) filters used in connection with Ag(f)

G M x N analysis matrix used in the transform coder

G(f) M x N analysis polyphase matrix in the equivalent system

G(f) M x N analysis polyphase matrix with non-zero elements

only on the main diagonal
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function that is used to express some of the terms that are
part of an integral

AM is the conjugate transpose of the matrix A
analysis filter number ¢, where ¢ € Z s

index set used in the estimation of MSE contributions in the
practical subband coder

identity matrix

the p X p identity matrix

index

1) imaginary unit

2) index

number of channel samples representing L source samples in
the BPAM system

M x M autocorrelation matrix for the quantization noise
vector g(n) at lag m

M x M autocorrelation matrix for the channel noise vec-
tor v(n) at lag m

N x N autocorrelation matrix for the source vector &(n) at
lag m

N x M cross-correlation matrix between the vectors x(n)
and g(n)

M x M autocorrelation matrix for the vector y(n) at lag m
M x M autocorrelation matrix for the vector g(n) at lag m
index

1) number of source samples in a source vector in the BPAM
System
2) number of levels used in a scalar quantizer

Lagrange function

1) order of the FIR synthesis polyphase matrix

2) index

ordering function number %, where 1 € Zx

filter length of synthesis filter F;(f), where i € Zjps

filter length of analysis filter H;(f), where i € Z s
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M 1) number of quantizers receiving a positive number of bits

2) number of inputs and outputs of the channel in a MIMO
system

m 1) time and summation index
2) order of the FIR analysis polyphase matrix E(z)

N number of source samples in the source vector x(n)

N natural numbers {0,1,2,...}

n time and summation index

0 order of the FIR channel polyphase matrix C(z)

P power used by the input vector y(n) to the channel

Pk(i) estimate of the probability for the index k£ to occur in the
ith quantizer

PLBE‘(AM(/L) power used per source symbol in the BPAM system, using
K channel samples for L source samples and Lagrange mul-
tiplier y

P%[,I]\l\fo(u) power used per source symbol in the modulated MIMO sys-
tem, using M channel samples for N source samples and
Lagrange multiplier p

Pr product of the diagonal elements of a matrix

D 1) summation index
2) positive integer
3) number of times the inequality O’;i > UZ holds with equal-

ity

p1 summation index

P2 summation index

Qi) quantizer operating on the samples in subband number i,
where ¢ € Z s

Q; 1() inverse quantizer operating on the quantization indices in
subband number i, where i € Z

qi(n) component number 7 of the vector g(n), where ¢ € Z

q(n) M x 1 vector containing the additive quantization noise of
the M quantizers

q(n), column-expanded quantizer vector of dimension (I+1)M x 1

R;(m) autocorrelation function of the input signal z(n) at lag m

Ry, y (n —m) cross-correlation function between x;(n) and yi(m)
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Ry, 4. (n—m) cross-correlation function between y;(n) and yi(m)

R the set of real numbers

Rt the set (0, 00)

Ry m(2) element in row number n and column number m of the ma-
trix R(z)

R N x M synthesis matrix which is used in the transform coder

R(z) N x M synthesis polyphase matrix

Ryiene:(f) N x M Wiener synthesis polyphase matrix

R, (I + 1)N x M column-expansion of the FIR synthesis

polyphase matrix R(z)

R_ N x (I +1)M row-expanded FIR synthesis matrix

R(z) N x N synthesis polyphase matrix which is part of an FIR
PR filter bank

R N x (I + 1)N row-expanded FIR synthesis matrix, which is
part of an FIR PR filter bank

r(n) N x M synthesis impulse response matrix at lag n

r,gl) representation level number k in uniform threshold quantizer
number 3

70 representation level number k£ in uniform threshold quan-

k

tizer number ¢ which has uncorrelated input and additive
quantization noise

Sz (f) power spectral density function of the input signal z(n)

Su(f) M x M power spectral density matrix of the additive noise
vector v(n)

Sz(f) N x N power spectral density matrix of the source vec-
tor x(n)

Sz9(f) N X M cross power spectral density matrix of the vec-
tors &(n) and g(n)

Sy(f) M x M power spectral density matrix of the vector g(n)

S, (I4+1)N x M matrix containing ones at the positions corre-
sponding to where the synthesis filter bank R, contains free
parameters and zeros where R, must contain zeros

S_ N x (I 4 1)M matrix containing ones at the positions corre-

sponding to where the synthesis filter bank R_ contains free
parameters and zeros where R_ must contain zeros
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T A" is the transpose of the matrix A
T diagonal element number ¢ of the matrix T
Tom(f) element in row number n and column number m of the ma-

trix T

T N x M synthesis transform matrix in the transform coder
T(f) N x M synthesis polyphase matrix in the equivalent system
ii’( f) N x M synthesis polyphase matrix with non-zero elements

only on the main diagonal

operator which produces an (I + 1)N x (m + 1)N block
Toeplitz matrix from an N x (m + [ + 1) N matrix

operator which produces an (I + 1)N x (m + o+ 1)N block
Toeplitz matrix from an N x (m + o+ [ + 1) N matrix

operator which produces an (o + 1)M x (m + 1)N block
Toeplitz matrix from an M x (m + o + 1)N matrix

trace of a matrix

N x N matrix containing the eigenvectors of K (0)

N x M matrix containing the first M eigenvectors of K 4(0)
N x N matrix containing the eigenvectors of Sg(f)

N x 1 eigenvector number i of Sz (f) corresponding to eigen-
(V)
value A;"(f)

N x 1 vector containing noise which is added to the original
signal vector

column-expanded vector containing noise which is added to
the original signal vector of dimension (p + 1)N x 1, where
pe{mm+o+I1}

M x M matrix containing the eigenvectors of the ma-
trix K,

M x M matrix containing the eigenvectors of the ma-
trix C*(f)S,(f)C ()

component number i of the vector v(n), where i € Zys
continuous real integration variable

continuous real integration variable

1) K x 1 vector containing the additive channel noise
2) M x 1 vector containing the additive channel noise
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v(n), column-expanded channel noise vector of dimension (I +
)M x 1
W(f) N x N polyphase matrix through the overall system
W_ 1) N x (m 4+ 1+ 1)N row-expanded FIR overall transfer
matrix
2) M x (m + o+ 1)N row-expanded FIR matrix used to
define the operator 73
w(n) N x N synthesis impulse response matrix sequence through
the overall system
wi(n) uniformly distributed pseudo-random sequence over the in-
terval (—%, %) used in subtractive dithering of subband
number ¢, where ¢ € Z ;s
x continuous real variable
z(n) time series to be compressed or transmitted
Z(n) reconstructed time series
x;i(n) component number 7 of the vector (n), where i € Zy
Z;i(n) component number 7 of the vector &(n), where i € Zy

Zquant (1) part of the reconstructed time series Z(n) generated by the
additive quantization noise

Tsig(n) part of the reconstructed time series #(n) put out by the
synthesis filter bank when the quantizers are removed

x(n) 1) L x 1 vector containing L source samples
2) N x 1 vector containing N source samples

x4, (n) N x 1 vector containing N consecutive source samples, see
Equation (4.5) for the definition

z(n) 1) L x 1 vector containing L reconstructed samples
2) N x 1 vector containing N reconstructed samples

x(n), column-expanded vector of dimension (p 4+ 1)M x 1, where
pe{mm+Ilm+o+I}
yi(n) component number 7 of the vector y(n), where i € Zys

i(n) component number 7 of the vector g(n), where i € Zys

y(n) 1) K x1 vector containing the K subband signal coefficients
2) M x1 vector containing the M subband signal coefficients

y(n), column-expanded vector of dimension (I + 1)M x 1
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xxxii

1) K x 1 vector containing the M reconstructed subband

y(n)
signal coefficients
2) M x 1 vector containing the M reconstructed subband
signal coefficients
y(n), column-expanded vector of dimension (I + 1)M x 1
7 the set of integers
TN the set {0,1,... ,N — 1}

the variable in the z transform
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Chapter 1

Introduction

The number of people with access to the Internet and mobile communication
units is increasing rapidly. Networks and data terminals have become suitable
for multimedia processing, and their processing power is increasing steadily.
In multimedia units, very large amounts of data can be generated, received,
and processed. Thus, the trend is that the amount of data to be stored and
transmitted is increasing, and the necessity of efficient signal compression and
communication is ever more evident.

In communication systems, these large amounts of data are sent over a
channel with limited capacity. Examples of channels are twisted pairs, coaxial
cables, satellite and terrestrial wireless communication links, and optical fibers.
The capacity of a channel is given by the available bandwidth, the noise level,
and the maximum allowed transmitter power. When the signal is sent over a
noisy channel, it is important to design the communication system such that it
optimally utilizes the available power and bandwidth resources. Additionally,
the source and channel characteristics must be taken into consideration when
the system is optimized.

Digital signal processing (DSP) is an important area in the development
of modern technologies, such as: Communication, multimedia, and Internet
systems. Multirate filter banks are one of the tools of DSP. Filter banks will
be studied in this dissertation in order to find efficient algorithms for data
compression and communication.

Applications for filter banks can be found in compression, communications,
filtering, restoration, signal analysis, etc. Filter banks are popular in compres-
sion and communication applications because most signal sources, e.g. audio
signals, still images, and video signals, are highly correlated. Signal decom-
position in terms of filter banks can partly decorrelate and adapt the signal
for subsequent quantization or transmission over a channel. This processing
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of the signal can make the compression or communication of the signal more
efficient.

1.1 Scope of the Dissertation

Filter banks or transform coders are important constituents in source compres-
sion algorithms, and they can also be used in communication problems. Most of
the theory developed in the literature concentrates on optimizing these systems
while imposing the perfect reconstruction (PR) property [Vaidyanathan 1993]
on the filter banks and transforms. In this dissertation, the PR constraint is
relaxed, and the analysis and synthesis filter banks and transforms are jointly
optimized to minimize the mean square error (MSE) between the reconstructed
and original signal for a given bit rate or channel bandwidth, noise, and trans-
mitter power. If the PR condition is dropped, better distortion rate perfor-
mance can be achieved. The reason is that the often employed PR condition
reduces the number of free parameters that can be used in the filter bank opti-
mization. In the proposed filter banks and transforms, where no PR, constraint
is imposed, the set of filter banks and transforms used in the optimization in-
cludes the PR filter banks and transforms as a subset. Thus, the results from
the optimization will be at least as good as all PR filter banks and transforms
for all rates and for all sources when the filter lengths are the same in both
systems. For high rates or very good channels, the optimal solution should be
close to PR, but for low rates or poor channels this is not necessarily the case.
Uniform filter banks are treated in this dissertation and therefore, the analysis
filter bank structure will generate maximally decimated and equal bandwidth
subbands.

1.1.1 Filter Banks for Compression

Filter banks and transforms are parts of a subband coder, and their opera-
tion is as follows. The analysis filter bank or the memoryless analysis trans-
form matrix using decimation factor N decomposes the input signal such that
N source samples produce M subband coefficients or transform coefficients.
The subband signals or transform coefficients are then encoded using source
coding, e.g., bit allocation with scalar quantizers, entropy constrained scalar
quantization, etc. In the decoder, the M approximate subband coefficients or
transform coefficients are derived from the bit representation. For every block
of M approximate subband coefficients that are applied to the synthesis filter
bank or transform matrix, N approximate source samples are reconstructed.
Two classes of filter banks possessing the PR property are the unitary and
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the biorthogonal filter banks. Unitary filter banks are a subset of biorthogonal
filter banks. Hence, biorthogonal filter banks perform at least as well as unitary
filter banks. If the PR constraint is relaxed and no constraints are imposed on
the filter banks and transforms, the most general class is obtained. This class
of filter banks and transforms is used in this dissertation.

The basic assumptions are as follows: The system consists of uniform filter
banks or transforms, the commonly used high rate model for the scalar quan-
tizer [Jayant & Noll 1984] is used for all rates, and the input signal is modeled
as a wide sense stationary (WSS) time series with a known power spectral
density (PSD) function.

The goal is to optimize the distortion rate performance of this system for
three different cases: Unconstrained length filter banks, transform coders, and
finite impulse response (FIR) filter banks.

In the first case, the filters are allowed to be non-causal with unconstrained
filter lengths, implying that the filters might be non-realizable. The results
provide upper bounds for the performance of filter banks working under the
additive white signal independent noise model, which is equal to the high rate
model used for scalar quantizers.

The second case is a transform coder system. The Karhunen-Loéve trans-
form (KLT) is optimal in the distortion rate sense when the synthesis matrix
is restricted to the inverse of the analysis matrix [Gersho & Gray 1992|. If the
PR assumption is relaxed, it is shown that better system performance can be
achieved. The jointly optimal analysis and synthesis transform matrix in the
distortion rate sense is found.

In the third case, FIR filter banks are treated. An iterative numerical
optimization algorithm for jointly optimizing the FIR analysis and synthesis
filter banks is proposed. Causal FIR filters are assumed to be used, but the
same methodology could be used for non-causal and anti-causal FIR filters.
The solutions based on signal-adaptive jointly optimized transforms and un-
constrained length filter banks give a lower and upper bound, respectively,
for the signal to noise ratio (SNR) vs. channel signal to noise ratio (CSNR)
performance of the FIR filter banks that are found.

When using the high rate quantization model, the FIR filter banks are de-
signed under the assumption that the subband signals are uncorrelated with
the additive coding noise. It will be shown that this assumption is not correct
for low rates, causing a mismatch between the theoretical performance and
the performance found by a practical subband coder. Therefore, quantizers
having uncorrelated input and additive quantization noise are proposed, and
subtractive dithering is used as a method of coding the subbands. Filter banks
are also designed under the assumption that the subband signals and the ad-
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ditive coding noise are correlated, and therefore, a signal dependent colored
quantization noise model is introduced.

1.1.2 Filter Banks for Communication

The problem of transmitting a vector time series with continuous amplitude
vectors over a continuous amplitude vector channel is investigated. It is as-
sumed that the channel is of discrete time and corrupted by additive signal
independent noise with zero mean and known second order statistics, but the
probability density function (pdf) of the noise is arbitrary. Furthermore, it is
assumed that the channel input vectors can only have limited power, and that
the vector channel transfer function is known. The input vector time series is
assumed to be of discrete time and to have known second order statistics with
arbitrary pdf.

The dimension N of the vectors in the original time series and the dimen-
sion M of the input time series to the channel may in general be different,
resulting in a discrete time multiple input multiple output (MIMO) system.
The transmitter and receiver are represented by polyphase matrices.

For given values of N and M, the transmitter and receiver will be jointly
optimized with respect to the block MSE between the system input and out-
put vector time series, subject to a channel power constraint. As in the bit
constrained problem, three different cases are treated.

In the first case, the filters are assumed to have infinite lengths, and they
are allowed to be non-causal. The discrete time jointly optimal transmitter and
receiver filter banks are deduced from the corresponding solution for continuous
time. For the unconstrained case, the channel transfer matrix can have un-
constrained order as well. Explicit expressions are found for the unconstrained
case.

Transforms are also considered for the problem of communication of vector
time series. This problem has previously been treated in [Lee & Petersen 1976].
An alternative proof for finding jointly optimal transmitter and receiver based
on the unconstrained length solution is proposed, and explicit expressions are
found. In the transform case, it is assumed that the channel transfer matrix is
given by the identity matrix.

In the third case, FIR transmitter and receiver filter banks are jointly opti-
mized, and an iterative numerical algorithm is proposed based on formulas for
finding the optimal transmitter polyphase matrix for a given receiver matrix,
and vice versa. The channel transfer matrix is assumed to have a finite order
in the FIR case.

The optimized block based MIMO systems can be used to solve a com-
bined source-channel coding problem where a continuous amplitude discrete
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time scalar time series is transmitted over a continuous amplitude discrete
time scalar channel. When working with this problem, compression is de-
fined by sample reduction from the signal to the channel representation, that
is when M < N. Very good results have been obtained for identity channel
matrix and Gaussian white channel noise by using nonlinear methods for the
compression case |Vaishampayan 1989, Fuldseth & Ramstad 1997]. In this dis-
sertation however, only linear systems are examined, and the minimum MSE
linear filter bank solution is found.

1.2 Problems Considered and Basic Assumptions

As mentioned in the two previous subsections, three different cases of the filter
lengths in the linear filter banks are treated in this dissertation. However,
in this introduction chapter no restrictions are imposed on the filters, i.e.,
they are allowed to be non-causal with infinitely long impulse responses. This
means that they might not always be implementable and that the frequency
responses can be equal to zero in certain frequency intervals. Since this is the
most general case, the results obtained in this section can later be specialized
to transform coders. However, a different treatment will be needed for FIR
filter banks. Since causal FIR filters are assumed, the delay through the FIR
filter banks must be taken into consideration.

The infinite length filters assumed in this section will be called uncon-
strained length filters because infinite impulse response (IIR) is usually pre-
served for implementable filters, i.e., filters which can be described by rational
transfer functions.

1.2.1 Bit Constrained Filter Banks

The bit constrained filter bank model considered in this dissertation is shown in
Figure 1.1, where the analysis and synthesis filter banks are given in polyphase
form [Bellanger, Bonnerot & Coudreuse 1976]. The analysis and synthesis
polyphase matrices are denoted E(z) and R(z), respectively. The analysis
filter in subband number m can be expressed as

H,(z) = Z Emn (2V) 277, (1.1)

where E, ,(2) is the element in row number m and column number n of the
analysis polyphase matrix E(z). The numbering of the rows and columns
starts with zero. In the same way, the synthesis filter in subband number m
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Figure 1.1 Subband coder model.

can be expressed as
F(z) = Z Rym (2V) 7~ (N=1=n) (1.2)

where Ry, ,(z) is the element in row number n and column number m of the
synthesis polyphase matrix. M is the number of quantizers receiving a positive
number of bits. Therefore, N — M quantizers do not receive any bits and their
output is zero. In general, the polyphase matrices are rectangular, and it is
assumed that NV > M when unconstrained length filter banks and transforms
with a bit constraint are studied.

The quantizers are modeled as additive noise sources described by the noise
vector

a(n) = [g(n),q(n),... ,qu-1(n)]". (1.3)

In the first quantization noise model studied, it is assumed that the quantizer
noise can be modeled as signal independent zero mean white noise [Jayant &
Noll 1984, and that the noise in one subband channel is uncorrelated with the
noise in all the other subband channels. Therefore, the M x M PSD matrix
of the noise A4 is a diagonal frequency independent matrix, given by

Ay = E [g(n)g" (n)], (1.4)
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where the superscript 7 and the operator E[] represent the Hermitian, i.e.,
transpose conjugate and expectation operators, respectively. The matrix A4
is also equal to the autocovariance matrix of the g(n) vector at lag zero. For
non-zero lags, the quantization noise autocovariance matrix K 4(m) is equal to
zero. Therefore, K 4(m) can be expressed as: K4(m) = 0(m)Aq. In Chapter 7,
a signal dependent colored noise model is introduced.

The output time series #(n) of the subband coder system shown in Fig-
ure 1.1 is cyclostationary [Sathe & Vaidyanathan 1993]. By studying a more
general vector system, a MIMO system, the problem becomes more tractable.
In the MIMO system the inputs are given by vector time series, and these are
stationary vector time series if x(n) is a WSS time series [Sathe & Vaidyanathan
1993].

The input vector signal (n) to the polyphase matrix E(z) and the output
vector signal &(n) of the polyphase matrix R(z) are given by

z(n) = [zo(n),z1(n),... ,zy_1(n)]" and

T

A A A A (1.5)
&(n) = [Zo(n),1(n),... ,n_1(n)]".

Using the decimating and interpolating structure shown in Figure 1.1, the
following relations can be derived:

zi(n) =x(nN —1i) and Z;(n) =Z(nN + N —1—1), (1.6)

where i € {0,1,... ,N — 1}.
The subband signals in Figure 1.1 are represented by the M x 1 vector
y(n) = [yo(n), y1(n), ... ,ynm—1(n)]"

y(n) = e(n) * 2(n), (L.7)

where * is the convolution operator, and e(n) is the M x M impulse response
matrix sequence of the analysis polyphase filter bank. The z-transform of e(n)
is equal to E(z).

The vector time series (n) and g(n) are assumed to represent jointly WSS
vector series [Sathe & Vaidyanathan 1993], which are mutually uncorrelated
and have zero mean.

A partial statistical description of the signal &(n) is given by the following
N x N PSD matrix:

given by

S:z:(f): Z Km(m)e_j%rfmv (1'8)

m=—00

where K5(m) = E [z(n +m)z"(n)] is the N x N autocorrelation matrix
of the vector time series &(n) at lag m. This matrix is also equal to the
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autocovariance matrix at lag m, since the mean of the vector time series x(n)
is assumed to be zero.

The error vector €(n) between the input and output vectors in Figure 1.1
is defined as

e(n) = x(n) — x(n). (1.9)
Then, from Figure 1.1,
€n)= > wn-m)z(m)—z(n)+ Y r(n—mq(m), (1.10)

where w(n) is the impulse response matrix sequence of the overall system given
by

w(n) =r(n) xe(n). (1.11)

The z-transform of r(n) is equal to R(z).
The block MSE, used as the performance measure, is defined as

En v =Tr (E [e(n)e (n)]), (1.12)

where Tr is the trace operator. In the notation £y s, N is the decimation
factor and M is the number of quantizers receiving a positive number of bits.

MSE is a performance criterion which does not follow the human perception
system very closely, but it is a measure which can be treated mathematically.
One feature of MSE is that it can decide when two signals are equal. The
performance measure can be improved by using weighted MSE, as was done
in [Lee & Petersen 1976, Vandendorpe 1991, Gosse, Pothier & Duhamel 1995,
Gosse & Duhamel 1997|. In this dissertation, a weighted MSE is not used,
but all the theory developed should possibly be extended to include weighted
MSE.

If high rates are assumed, the variance of the noise in quantizer number ¢ €
{0,1,... ,M — 1} can be modeled as [Jayant & Noll 1984|

oo = cjog, 27", (1.13)

where ozi is the variance of the corresponding subband signal y;(n), see Fig-
ure 1.1, b; is the number of bits used in quantizer number ¢, and ¢; is the
coding coefficient.! This traditional quantizer model will be used in Chap-

ters 2 through 4 even though this model is not very accurate at low rates.

!The coding coefficient ¢; depends on the pdf of the coded signal and the coding method
used. If pdf optimized scalar quantizers are used, ¢; is equal to the constant €2 defined on
page 121 in [Jayant & Noll 1984]. If entropy coded scalar quantizers are used, ¢; depends on
the relative entropy of the pdf of the coded signal. If the pdf is Gaussian and pdf optimized

em

scalar quantizers are used, ¢; = %, and if entropy coded scalar quantizers are used, ¢c; = <
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Qi(n%
BB Hi(f) U N Dt N >~ F(f)

0[' L
i ai

Figure 1.2 One branch of the subband coder model.

Rearranging Equation (1.13) gives

1 cio?.
bi = 3 log; ( ;(’;y> . (1.14)

q;

The bit constraint can be expressed as

1 M—-1
b=+ > b, (1.15)

1=

where b is the average number of bits used on N source samples by the M quan-
tizers.

If a positive number of bits is spent in quantizer number 7 and the centroids
are used as representation levels, it is impossible that O'gi > Uzi-' Therefore, if
optimized quantizers are used, the following constraints must be satisfied:

oo, > 00, Vi€ {0,1,..., M —1}. (1.16)

The goal is to find the jointly optimal filter banks and bit distribution which
minimize the block MSE for a given total bit rate. With the model chosen for
the quantizers, see Equation (1.14), the quantizers are fully specified by the
relationship between the variances O'Zi and Ugu when the coding coefficients ¢;
are known. In Figure 1.2, the operations in subband number 7 is shown. H;(f)
and Fj(f) are the frequency response of the respective analysis and synthesis
filters in subband ¢. This subsystem has the same performance for all non-zero
scaling factors «;. Therefore, these degrees of freedom can be used to set the
values of Ugi equal to an arbitrary positive value without loss of generality. By
assuming that the quantizer noise variances are known, the optimization of the
filter banks also decides the bit distribution through the resulting values of O’;i.
Another approach would be to scale the subband variances o2

? y; and optimize
the values of Og:
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The degrees of freedom which exist because of the scaling of the subbands,
as explained above, are used to choose all the diagonal elements of the ma-
trix A4 such that Ugo = 021 == UgM_l = Ug. Therefore, the PSD matrix
of the quantization noise vector g(n) can be expressed as

Ag =01 (1.17)

Throughout this dissertation, O'g has been chosen equal to 1 in all the numerical
results.

Although the numbering of the subband signals is arbitrary, in the the-
ory and results presented in this dissertation, the subbands are numbered in
accordance with decreasing values of the subband variances, i.e.,

2 2 2
Oyo 2 Oy 2200 2 Oy

5>, (1.18)

-
1.2.2 Power Constrained Filter Banks

The power constrained filter bank system operating on vectors is shown in
Figure 1.3. By comparing Figures 1.3 and 1.1, it is seen that a vector formula-
tion is used and that a channel transfer matrix C(z) is included in the power
constrained problem. It is assumed that the M x M channel matrix C(z) is
known. This matrix can, for example, model crosstalk between channels and
frequency dependent attenuation. Since the additive channel noise can have
different characteristics from the quantization noise in the bit constrained case,
another symbol is chosen for the noise. The noise vector in power constrained
filter bank systems is denoted v(n), and this vector time series is not necessarily
white.

In this subsection, the transmitter and receiver filter banks consist of linear
unconstrained length non-causal filters. Transforms and FIR filter banks will
be treated in later chapters. The dimensions of the matrices in the figure
show that a block of N source samples is transmitted by a block of M channel
samples. The values of N and M are assumed to be known, and if a scalar
time series is sent over a scalar channel, they indicate the available bandwidth.
In this system, the objective is to design the encoder matrix E(z) and decoder
matrix R(z) such that the block MSE between the signals x(n) and &(n) is
minimized. In addition, there is a constraint on the power used on the channel.

It is assumed that the vector time series x(n) and v(n) represent jointly
WSS vector series [Sathe & Vaidyanathan 1993] which are mutually uncorre-
lated and have zero mean.

The block MSE used as the optimization criterion is defined in the same
way as in the bit constrained case, and it is given by Equation (1.12), where
the error vector €(n) is defined by Equation (1.9). Since the M x M channel
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M x N M x M N x M

Figure 1.3 The power constrained MIMO block system.

impulse response matrix sequence ¢(n) must be taken into consideration, the

N x N impulse response matrix sequence of the overall system w(n) is given
by

w(n) =r(n) x c(n) * e(n), (1.19)

where the z-transform of the channel impulse response matrix sequence ¢(n)
equals C(z), i.e.,

C(z)= > clk)z " (1.20)

k=—00

It is assumed that the matrix C(z) is known.
The statistical descriptions of the vector time series &(n) and v(n) are
given by Equation (1.8) and the following PSD matrix, respectively:

o0

Su(f)= Y Ky(m)e >, (1.21)

m=—0oo

where the matrix K,(m) = E [v(n + m)v (n)] is the autocorrelation matrix
of the vector time series v(n) at lag m. By using the inverse Fourier transform
of the PSD matrices in Equations (1.8) and (1.21), Kz(m) and K,(m) can
be found.
The power constraint is imposed on the input vector y(n) to the channel
transfer matrix, see Figure 1.3. Let Uzi- be the variance of the ith vector
component of the vector y(n). The power used by the vector y(n) can be
M—1

expressed as the following sum: Z 021_. If the average allowed power of the
i=0

vector y(n) is denoted P, the power constraint can be expressed:

- P (1.22)



12

Introduction

The matrix E [y(n)y(n)] has O’Z as the ith diagonal element, and by

i

means of the Tr operator, the power constraint can be rewritten as

Tr {E [y(n)y"(n)]} = P. (1.23)

1.3 Previous Work

In this section, some relevant literature treating the two main problems in
the dissertation is mentioned. Since there has been an enormous amount of
research activity in the area of multirate filter banks, the review is not intended
to be exhaustive?.

1.3.1 Bit Constrained Filter Banks

In the field of unconstrained length filter banks with a bit constraint, most
of the literature treats PR systems. Optimal unitary filter banks with uncon-
strained lengths are proposed in [Vaidyanathan 1998], and these filter banks are
equal to the optimal signal-adaptive, unitary, principal component filter banks
with unconstrained filter lengths derived in [Tsatsanis & Giannakis 1995]. For
a discussion on the connection between principal component filter banks and
optimal unitary filter banks, see [Kirag 1998]. In [Tugan & Vaidyanathan 1997],
a unitary filter bank is combined with optimal pre- and post-filters. Optimal
unconstrained length biorthogonal filter banks have been studied in [Aase &
Ramstad 1995, Aas & Mullis 1996, Vaidyanathan & Kirag 1998, Moulin, An-
itescu & Ramchandran 2000], where the total noise is minimized while main-
taining PR. Some preliminary results on unconstrained length minimum MSE
filter banks are presented in [Moulin, Anitescu & Ramchandran 1998].

A description of many existing transforms can be found in [Jain 1989|. The
KLT is the optimal transform if PR is imposed [Hotelling 1933, Jain 1989].
In [Huang & Schultheiss 1963, Segall 1976, Jain 1989], it is shown that KLT
is optimal if it is assumed that the input time series is Gaussian, scalar Lloyd-
Max quantizers are used, and the analysis transform produces a vector with
uncorrelated components. If Lloyd-Max vector quantizers are used, it is shown
in [Vaidyanathan & Chen 1994] that KLT is the optimal transform. The
discrete cosine transform (DCT) [Ahmed, Natarajan & Rao 1974] is often used
as a transform because it is close to the KLT [Scharf & Tufts 1987] when the
input can be modeled as a Gauss-Markov source with high correlation [Jain
1989].

2Many references on filter banks can be found in [Vaidyanathan 1993, Vetterli & Kovacevi¢
1995, Donoho, Vetterli, DeVore & Daubechies 1998]
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In the field of FIR filter banks, no closed form expressions have been found
for unitary, biorthogonal, or filter banks without any restrictions. Some PR
FIR filter banks that are frequently used can be found in [Le Gall & Tabatabai
1988], |Rodrigues, da Silva & Diniz 1997|, [Balasingham 1998|, [Antonini et al.
1992], and [Tsai, Villasenor & Chen 1996]. In [Malvar 1992|, the Lapped
Orthogonal Transforms (LOT) are proposed, which are low complexity FIR
filter banks having the PR property. For a given analysis FIR filter bank, the
optimal FIR synthesis filter bank has been derived in different ways [Honig
et al. 1992, Gosse & Duhamel 1997, Delopoulos & Kollais 1996|, when the
same filter length are used in all the filters and the delay through the filter
bank is N — 1+ d,N, where d, is a positive integer. In [Aase 1993], near PR
FIR filter banks are found using a weighted error function which includes PR,
coding gain, blocking effects, and scaling of the synthesis filters.

1.3.2 Power Constrained Filter Banks

Jointly optimal transmitter and receiver filters with single input single out-
put (SISO) were derived in [Costas 1952, Berger & Tufts 1967, Tufts & Berger
1967, Berger 1971] for both continuous and discrete time. In this system, the
receiver is the well known SISO Wiener filter. In the continuous time case,
jointly optimal analysis and synthesis filter banks with a power constraint are
presented in [Yang & Roy 1994]. The receiver filter bank is an unconstrained
length Wiener filter bank, which is also treated in [Vaidyanathan & Chen 1994].

In [Lee & Petersen 1976|, a jointly optimal transform coding system was
derived with a constraint on the power used on the channel. This is a non-PR
transform, which is related to the KLT.

In the field of power constrained FIR filter banks, the analysis and synthesis
filter banks are jointly optimized by random search in [Song & Ritcey 1997].
Formulas for finding the optimal synthesis filter bank for a given analysis filter
bank and vice versa are proposed in [Honig et al. 1992]. In [Malvar & Staelin
1988|, an algorithm is given for finding jointly optimized, linear phase, FIR
pre- and post-filters with decimator and expander for communication over a
channel with additive noise. FIR Wiener filter banks references are mentioned
in Subsection 1.3.1. In [Chen, Lin & Chen 1995|, a multirate Kalman synthesis
filtering approach was proposed for solving the FIR problem for a fixed FIR
analysis filter bank.
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1.4 Outline of the Dissertation

There are eight chapters in this dissertation, and the upcoming chapters are
organized as follows:

Chapter 2: Optimal bit and power constrained filter banks with uncon-
strained filter lengths are derived.

Chapter 3: Optimal bit and power constrained transforms are found based
on the results from Chapter 2.

Chapter 4: Numerical algorithms for joint optimization of analysis and syn-
thesis filter banks under bit and power constraints are proposed for FIR
filter banks.

Chapter 5: It is shown that there is a connection between the performance
of the power constrained transform in Chapter 3 and the unconstrained
length filter banks with a power constraint presented in Chapter 2, when
the dimensions of the transform system approach infinity and a modula-
tion/demodulation unit is used in the unconstrained filter banks.

Chapter 6: A practical source coder is introduced, and it is shown that there
exists a mismatch between the theoretical and practical results. The
nature of this mismatch is analyzed.

Chapter 7: Three ways of improving the connection between theoretical and
practical results are presented. In the first two methods, the subband
signals and the additive coding noise are forced to be uncorrelated, and
in the third method, a signal dependent colored noise model is proposed.

Chapter 8: The conclusions of the work presented in this dissertation are
given.

There are four appendices, and these are organized as follows:

Appendix A: The block MSE, bit constraint, and power constraint expres-
sions used in the optimization problems of the dissertation are derived
for the unconstrained length and the FIR cases.

Appendix B: The eigenvalues of the PSD matrix are derived and the so-
called ordering functions are introduced. These functions are used in
connection with unconstrained length filter banks. Some properties of
these functions are derived.
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Appendix C: Formulas for matrix variational calculus and matrix differenti-
ation are derived. These formulas are used in solving some of the opti-
mization problems in the dissertation.

Appendix D: Formulas for finding the correlations of the signal dependent
colored noise model are found.

1.5 Contributions of the Dissertation

The main contributions in this dissertation for the bit constrained problem
are as follows: Jointly optimal analysis and synthesis filter banks with uncon-
strained lengths are derived in Section 2.1, while jointly optimal analysis and
synthesis transforms are found in Section 3.1. An iterative numerical algo-
rithm for finding jointly optimized analysis and synthesis FIR filter banks is
proposed in Section 4.1. This includes the derivation of the FIR Wiener filter
solution for arbitrary given filter lengths and delay through the filter bank is
N —1+d,N +ds, where d, and dgs are appropriate integers. The analysis FIR
filters can also have arbitrary given filter lengths.

The main contributions of this dissertation for the power constrained prob-
lem are as follows: Jointly optimal transmitter and receiver filter banks for
discrete time having unconstrained filter lengths are deduced from a corre-
sponding solution for the continuous time case in Section 2.2. An alternative
derivation of the jointly optimal transmitter and receiver transforms is pre-
sented in Section 3.2. Formulas for finding a jointly optimal transmitter and
receiver in the FIR case are given.

There are also other topics treated in the dissertation, and the main contri-
butions of these parts are as follows: Scalar quantizers with uncorrelated input
and quantization noise are proposed in Subsection 7.1.1, and they are used in
a practical subband coder. Subtractive dithering is used in a practical sub-
band coder in Chapter 7, and it is shown that good correspondence is achieved
between practical and theoretical performance results. A signal dependent
colored quantization noise model is introduced in Section 7.2. Formulas for
finding all the correlations in the subband coder, when using midtread uni-
form threshold quantizers having infinite dynamic range and using centroid
representation levels, are derived in Appendix D. Conditions for optimality of
FIR PR filter banks are derived in Section 7.3.






Chapter 2

Unconstrained Length
Signal-Adaptive Filter Banks

In this chapter, no constraints are set on the filter lengths, so the goal is to
find the polyphase matrices

E(z) = Z e(k)z *,

koo (2.1)
R(z)= > r(k)zF

k=—00

which jointly minimize the block MSE under a bit and power constraint.

This chapter consists of two main parts. The first main part treats the
problem of finding jointly optimal analysis and synthesis filter banks under a
bit constraint, and this is presented in Section 2.1. The second main part,
which is given in Section 2.2, treats jointly optimal transmitter and receiver
filter banks under a power constraint for transmission over a known linear
channel with additive noise. Finally, a short summary is given in Section 2.3.

The first part of this chapter is partly based on [Hjgrungnes & Ramstad
19984, Hjorungnes & Ramstad 19995, Hjorungnes & Ramstad 1999c¢|, while
the second part is partly based on [Hjgrungnes & Ramstad 1997].

2.1 Bit Constrained Filter Banks

This section is organized as follows: The problem is formulated in Subsec-
tion 2.1.1. In Subsection 2.1.2, an equivalent system with diagonal PSD ma-
trix for the input vectors is presented, while in Subsection 2.1.3, the optimal

17
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solution is derived and some properties of the optimal solution are presented.
In Subsection 2.1.4, some results using the proposed filter banks are given.

2.1.1 Problem Formulation

It is shown in Appendix A that the block MSE can be expressed in the fre-
quency domain as

M

Enr =Tk ( /_ AT -ROEW SN - RAES)"

+R()) AR (f)} df) . (22)

E(f) and R(f) are the polyphase analysis and synthesis matrices, respec-
tively, evaluated on the unit circle, z = e/>™f. Strictly speaking, the nota-
tion E (ej 2 f ) should be used, but to simplify, E(f) is used instead.

The integrand in Equation (2.2) is composed of two main terms. The
first term is a signal distortion term. Systems where R(f)E(f) = I have
the PR property. In this case, the signal distortion term is zero. In general,
the signal distortion can be classified as amplitude, phase, and aliasing dis-
tortions |Vaidyanathan 1993]. The second term in Equation (2.2) is due to
quantization noise, and it is independent of the analysis filter bank.

By using the quantizer model of Equation (1.13), it is shown in Appendix A
that the bit constraint of Equation (1.15) can be expressed as

1 M—1
Pr( f E(f)Sm(f)EH(f)df) =22 ] % g, (2.3)

1 ; G
2 =0 ¢

where the operator Pr multiplies the elements of the main diagonal of the
matrix, and the constant S is defined for convenience. The bit constraint is
independent of the synthesis filter bank R(f).

Since all the quantization variances are chosen equal, see Subsection 1.2.1,
the constraint in Equation (1.16) can now be rewritten as:

oy > 00, Vie{0,1,... M —1}. (2.4)

The problem is to find jointly optimal analysis and synthesis filter banks
which minimize Equation (2.2), subject to the bit constraints in Equations (2.3)
and (2.4).

The only term in Equation (2.2) which is dependent on the bit rates in
the quantizers is the last term. For PR filter banks, the total block MSE is
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given by this term only, since the signal distortion is zero for PR filter banks.
Therefore, the condition for optimal rate allocation for the filter banks treated
in this section is the same as the condition for PR filter banks. In [Moulin
et al. 2000], jointly optimal analysis and synthesis biorthogonal filter banks
are treated, and it is shown that optimal rate allocation is achieved when
the product of the quantization noise variance and the squared norm of the
synthesis filter in the same subband is constant for all subbands. Because of
this optimality condition, the scaling of the quantization variances is equivalent
to setting the norm of all the synthesis filters equal, which is the scaling used
in [Aase & Ramstad 1995].

2.1.2 Transformation to an Equivalent Problem

To simplify the analysis and optimization further, the system shown in Fig-
ure 1.1 is transformed into an equivalent system with new matrices G(f)
and T'(f). These transforms are given by

E(f) = G(HU"(f),
R(f) =U(/)T(f).

U(f) is a unitary matrix which diagonalizes the input PSD matrix Sg(f) given
in Equation (1.8), i.e

(2.5)

Sz(HU(f) = U(f)Az(f)- (2.6)

In Equation (2.6), Az(f) is a diagonal matrix containing the eigenvalues of
Sz(f). Since the matrix Sz(f) is Hermitian [Vaidyanathan 1993], its eigen-
values will be real [Young 1990|. In addition, the elements of A, (f) are ordered
as follows:

MV 22N = 22000, v (2.7)

By substituting the results from Equations (2.5) and (2.6) into Equa-
tion (2.2), the block MSE can be expressed as

1

Enr =Tk ( / AI-T(he au) I -T(HG(" +

T(f)A,T"(f)} df) (2.8)

where the trace identity Tr (A; As) = Tr (AgAy), where Ay and Ay are matri-
ces, and the fact that the integral and the trace operators commute have been
used.



20

Unconstrained Length Signal-Adaptive Filter Banks

Aq
Ax(f)
G(f) () —

N

M x N N x M

Figure 2.1 The equivalent block diagram of the subband coder model.

The bit constraint (2.3) is transformed into

1

B

Pr( IG(f)Am(f)GH(f)df> =5 (2.9)
2

The additive noise components remain uncorrelated. The original and new

equivalent system have the same subband variances since

(B(HS(NHE"()),; = (GNHUT (N S(NUNHG (1)),
= (G(HA=(HG" (1)), (2.10)

where the notation (-); ; means element in row and column number ¢. Subband
variance number ¢ of the original system in Figure 1.1 is found by integrat-
ing the left hand side of Equation (2.10), while the ith subband variance of
the equivalent system is found by integrating the right hand side of Equa-
tion (2.10). Since the two integrands are equal for all values of f, the subband
variances of the two systems are equal. The PSD matrices of the vectors con-
taining the subband signals are equal in the two systems, so this vector will be
called y(n) in both systems. The constraints Uzi > UZ have to be satisfied for
all i € {0,1,... ,M — 1} as well. By comparing Equations (2.8) and (2.9) to
Equations (2.2) and (2.3), it is seen that the original system has been trans-
formed into an equivalent system where the PSD matrix of the input vector
time series is diagonal. The equivalent system is shown in Figure 2.1.

Zero bits in a quantizer are obtained by reducing the value of M. For a
given value of N and bit rate, the value used for M must be optimized through
a discrete optimization, where M is chosen from the set {0,1,2,... ,N}.

2.1.3 Optimal System Solution

Having transformed the original problem into an equivalent one, the objective
is to minimize the block MSE given by Equation (2.8), subject to the bit
constraint given by Equation (2.9) and the constraints o2 > 02, where 7 €

Yi

{0,1,... , M — 1}, with respect to the new variables G(f) and T'(f).
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2.1.3.1 Necessary Conditions for Optimality

In order to find necessary conditions for optimality, the Kuhn-Tucker condi-
tions [Luenbereger 1984] can be calculated for the problem, and the differenti-
ation is done by wariational calculus since the unknowns are functions instead
of scalars or vectors. The unconstrained objective function is first written as a
function of the elements of the matrices G(f) and T'(f), and then the Gateaux
variation |Troutman 1996, Magnus & Neudecker 1988] is calculated with re-
spect to these elements. If the resulting equations are written in matrix form,
the necessary conditions are found. In Appendix C, it is shown how this can
be done, and the necessary Kuhn-Tucker conditions can be written as:

T(f) = Az(/)G" () [G())Aa( )G (f) + Aq) ", (2.11)
T (NHT(HG() + (T, - ©) G(f) =T (f), (2.12)

where y € RT = (0,00) is a Kuhn-Tucker parameter for the equality con-
straint (2.9). The matrix Xy is an M x M diagonal matrix with diagonal
element number m given by

7 =Bl = [ X Gni AN, meZa (213)

where the set Zjs is defined as Zjy, = {0,1,... ,M — 1}. The matrix @ is
a diagonal matrix where diagonal element number 7 is the parameter in the
Kuhn-Tucker conditions for the inequality constraint 051_ > 03. This parameter
will be denoted 6; and it must be non-negative, i.e., §; > 0. Furthermore, the
following equations must hold:
(07 = 0p.)0m =0, m € Zny. (2.14)
To simplify the expressions, the following M x M diagonal matrix is intro-
duced:

&= [uz,'-0] ", (2.15)

where diagonal element number 7 of the matrix & is named ¢;.

The diagonal elements in Xy represent the subband powers (and also the
variances since the mean is assumed to be zero). The constraints in Equa-
tion (2.4) assure that M of the subband variances are positive, so the inverse
of the matrix Xy will always exist.
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2.1.3.2 Synthesis Polyphase Matrix

It will now be explained why the synthesis polyphase matrix represents a
polyphase Wiener matrix.

By using the results from Equations (2.5), (2.6), and (2.11), the synthesis
polyphase matrix can be expressed as

R(f) = So(/)E™(f) [E(f)S=(f) B (f) + Ag) ™. (2.16)

Using the vector notation introduced in Figure 1.1, the standard uncon-
strained length polyphase Wiener matrix [Vaidyanathan & Chen 1994]
Ryiene:(f) can be expressed as

RWiener(f) = Sm,@(f)sgl(f)a (2-17)

where Sg 4(f) is the cross PSD matrix between the vectors x(n) and g(n),
and Sy(f) is the PSD matrix of the input vector §(n) to the synthesis matrix.

Since the additive quantization noise is assumed to be uncorrelated with the
input signal, S4(f) = E(f)S«(f)E" (f)+Aq. It can be shown that Sy 4(f) =
Sz(f)E"(f) [Vaidyanathan 1993]. By inserting these two results in Equa-
tion (2.17), it is seen that the optimal synthesis polyphase matrix in Equa-
tion (2.16) is a polyphase Wiener matrix with unconstrained length.

It can also be verified that the optimal receiver matrix T'(f) given in Equa-
tion (3.10), is a polyphase Wiener matrix for the system shown in Figure 2.1.

For unconstrained length non-causal filter banks, the derivation of the
polyphase Wiener matrix has been obtained in [Vaidyanathan & Chen 1994],
using the orthogonality principle [Therrien 1992].

2.1.3.3 Conditions for Optimality of PR in the Unconstrained
Length Filter Bank Case

Now, conditions for when the optimal unconstrained length filter bank pos-
sesses the PR property will be stated for a given invertible analysis filter bank,
and it will be showed that this is never the case for the quantization model
assumed in this chapter.

In [Vaidyanathan & Chen 1994|, it was shown that for a given invertible
analysis filter bank E(z), the optimal unconstrained length filter bank system
has the PR property if, and only if, the following condition is satisfied:

E [Q(m)q(n)H] =0, Vn,m, (2.18)

where the vector g(n) is the M x 1 input vector of the synthesis polyphase
filter bank matrix, that is §(n) = [jo(n), §1(n), ... ,9ar—1(n)]", see Figure 1.1.
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If PR should be possible M = N. The condition in Equation (2.18) is very
strict, and it will almost never occur in a practical coding system.

In this chapter, it is assumed that the quantization noise g(n) is uncorre-
lated with the input signal to the quantizers y(n), and it is also assumed that
the additive quantization noise is white with uncorrelated components in each
quantizer. With this quantization noise model, the cross-correlation matrix in
Equation (2.18) is given by:

E [g(m)q(n)"] = E [(y(n) + q(n)) q(n)"] = 6(n —m)Aq # 0, Vn,m.
(2.19)

Therefore, with the quantization noise model used in this chapter, a PR system
will never be optimal.
2.1.3.4 Zero Elements of the Matrix G(f)

Here, it will be shown that the optimal matrix G(f) has at most one non-zero
element in each row and column.
Post-multiplication of Equation (2.12) by Ag(f)G(f) gives

T ()T (f)G(f)Ae(f)G" (f) + 27 G(f) A(f)G" (f)
=T"(f)Az()G" (f). (2.20)

By rearranging Equation (2.11), one gets
T(f)G(f)A(/)G"(f) = Ax(/)G" (f) = T(f)Aq. (2.21)

Pre-multiplying Equation (2.21) by T (f) and subtracting the resulting ex-
pression from Equation (2.20) renders

G(f)A=(f)G" (f) = 8T (f)T(f)Aq- (2.22)

Because the left hand side of Equation (2.22) is Hermitian, the right hand side
is also Hermitian, i.e., T (f)T(f)Aq = AT (f)T(f)®. Because of the
choice in Equation (1.17), A4 can be dropped from this equation, and it can
be rewritten as T (f)T(f) = T (f)T(f)®.

If it is assumed that

¢m # ¢n whenever n # m, (2.23)

where ¢,, is the mth diagonal element in @, the right hand side of Equa-
tion (2.22) can be Hermitian only if the matrix T (f)T'(f) is diagonal. This is
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shown by considering the off-diagonal elements of the equation ST (f)T'(f) =
T (f)T(f)®.

Since all the matrices on the right hand side of Equation (2.22) are diagonal,
the matrix G(f)Az(f)G (f) must also be diagonal.

If the assumption in Equation (2.23) is not valid, i.e., p of the ¢; components
are equal, one can add a small positive quantity (p — 1)v to the ¢; component
with the smallest index, (p —2)v to the ¢; component with the next increasing
index, and so on until zero is added to the ¢; component with the largest
index among these p equal ¢; components. These ¢; components are now
unequal, and by using the same reasoning as above, it is shown that the matrix
product G(f)Az(f)GH(f) is diagonal. Since the Lagrange function for the
problem considered is continuous in the elements of @, see Equation (C.1),
this reasoning is valid.

Equation (2.11) can be rewritten as

G(f)Ae(f) = [G(F)A(F)GT (f) + Ag] T (f). (2.24)

By substituting T7 (f), given by Equation (2.12), into Equation (2.24), one
obtains the following result:

G(f)Ax(f) = [G(N)A(H)G"(f) + Ag] [T ()T (f) + &' G(f). (2:25)

Post-multiplying Equation (2.25) by A% (f)GH (f), wherel € N = {0,1,2,...},
one gets

G(f) AL (NG (f) = [G(f)Ax(f)GT(f) + Aq]
THAHT(f) + 7] GHALHGY (f). (226

It was already proven that the matrices TH (f)T'(f) and G(f)Ax(f)GH(f) are
diagonal. Then, it follows by induction that the matrices G(f)AL(f)GH(f)
are diagonal for [ € N. This will now be used to show that each column in the
matrix G(f) has at most one non-zero element.

Substitution of Equation (2.11) into Equation (2.12) leads to

1

(G(f)Az,.(f)GH(f) (G A(HGT(f) + Ag] " +
(G(F)Aa(FG" () + Ag] @‘1) LG(f) = G A(f). (2.27)

This equation is of the form D(f)G(f) = G(f)Az(f), where the matrix D(f)
is a diagonal M x M matrix, since it is given by sums and products of diagonal
matrices. Assume that all the elements in Ag(f) are different. Since D(f) is
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diagonal, M of the elements of A,(f) will be found on the diagonal of the
matrix D(f). By studying the equation D(f)G(f) = G(f)Az(f) and using
the assumption that all the elements of Ag(f) are different, it is seen that
every column in the matrix G(f) has at most one non-zero element.

By using the same reasoning as above, it can be seen from the equation
A ()G (f) = GH(f)D(f) that each row of the matrix G(f) has at most

one non-zero element.

If p of the eigenvalues are equal, one can add a small quantity (p — 1)v
to the eigenvalue with the smallest index, (p — 2)v to the eigenvalue with the
next increasing index, and so on until zero is added to the eigenvalue with the
largest index of these p equal eigenvalues. These eigenvalues are now unequal,
and by using the reasoning above it is seen that the matrix G(f) has at most
one non-zero element in each row and column. By letting v approach zero
from the right, the desired result is obtained. The Lagrange function for the
problem is continuous in the elements of Agz(f), see Equation (C.1), so this
reasoning holds. However, for v = 0 the optimal matrix G(f) is not unique.

2.1.3.5 The Matrix G(f)

Now, it will be shown that there is no loss in optimality by letting G(f) be a di-
agonal matrix. Only the case N > M will be treated. From Subsection 2.1.3.4,
it is known that the optimum matrix G(f) can be expressed as

G(f) = G(f)II(f), (2.28)

where the matrix IT(f) is an N x N permutation matrix, and G(f) is an M x N
matrix with non-zero elements on the main diagonal. From Equation (2.11), it
can be seen that the matrix T'(f) can have non-zero elements only where the
matrix G (f) has non-zero elements. The reason is that the matrix T'(f) is
equal to G? (f) pre- and post-multiplied by diagonal matrices. Therefore, the
matrix T'(f) can be expressed as

T(f) = " ())T(f), (2.29)

where T'(f) is an N x M matrix with non-zero elements on the main diago-
nal. The permutation matrix IT(f) is unitary, so the inverse of this matrix
is ITH (f). If G(f) and T(f) given in Equation (2.28) and (2.29) are substi-
tuted into Equation (2.8), one obtains the following expression for the block
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MSE:

1

e =Tr ( [ [1-t0ew] dn [1-Tmew)]” +

=

T(f)AT" (f) df) : (2:30)

where Ag(f) = II(f

)Az(f)IT (f) is a diagonal matrix. The bit constraint
given in Equation (2.9)

can be rewritten as

Pr( ~(f)zim(f)éH(f)df) ~ 5. (2.31)

1
2

Equation (2.11) now becomes

T(f) = Aa(HG" () [G(NANG (N + 4G . (232)

Using the result from (2.32) to rewrite the block MSE in Equation (2.30), one
obtains

1M1 A 2 LN-1
En :/1 P — ~(f)gq df+/l STy (2.33)
—5 im0 |Gia(H| MM (f) + o2 T2i=M

The first sum in Equation (2.33) represents the M subbands that will receive
bits, and the last sum represents the remaining N — M subbands that do not
receive bits. Therefore, if M = N, the last sum of Equation (2.33) is equal to
zZero.

The bit constraint given in Equation (2.31) can be rewritten as

GiaD| AN(F)df = m(p). (2.34)

Through Equations (2.33) and (2.34), the original system has been trans-
formed into an equivalent diagonal system, which is less complex then the
original system. It will be shown below that no optimality is lost by choos-
ing IT(f) = I. Therefore, the optimal G(f) is diagonal.

Assume that Ag(f) is not identical to Ag(f) in the ordering of the first
N diagonal elements. Then, there exists at least one pair of indices j < k such
that for some f

XY <30, (2.35)
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Let the set of frequencies in (—%, %] satisfying Equation (2.35) be denoted Fj .

Now, consider the matrix Ag(f), which is identical to Ag(f) except for
swapping of the jth and the kth diagonal element for the frequencies f € Fj,
ie.,

XMy =3V and XM (1) =XV, VF € F (2.36)

Let the filters used in connection with Az (f) be called G;;(f), and let these
filters be chosen equal to the G;;(f) filters for all ¢ and all f, except for
i € {j,k} and f € Fjy.
For the indices 5 and k there are three possibilities
() j<k<M-1,
(i) M<j<k, (2.37)
(i) j<M-1<Fk
First assume (i). The difference between the integrands of the block MSE
using the G;;(f) and the G;;(f) filters, respectively, is given by

AV (f)o2 AV (f)o
G (DA (D402 T |G DAL () 403
_ et i}
Ef)-EN=3 _(_ AW A ) feFi
G (NN (D+az |G DIAY (403 ) "
0, f € Fh
(2.38)
where the set ch,’k is the complementary set of Fj; in the frequency inter-
11
val (_i’ 5] .

If there exist filters G, x(f) and G;;(f) such that the right hand side of
Equation (2.38) is non-negative, and if they use no more bits than the fil-
ters Gy, (f) and G, ;(f), then it is shown that the performance of the sys-

tem corresponding to Ag(f) is at least as good as the system corresponding

to Ag(f).
Let the following frequency sets be defined:

]:](lk) = {f € Fjk ‘éj,j(f) 25\EN)(f) > ék,k(f) 25\§CN)(f)} and  (2.39)
T = {f e Fuu | G50 AV < |Gratn)] 3 f)}. (2.40)

From the definitions above, it is seen that the sets F J(lk) and F ](2,3 are disjoint

and their union is equal to Fj, i.e., ]:J(lk) N ]:J(Zk) = () and .7-"](1,2 U .7-"](2,2 = Fjk-
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Assume that the filters G;;(f) are chosen equal to the filters Gy;(f) for
all 7 and all frequencies, except for

_ _ ~ 2 .
1GNP AN () = |G (D] AN () and -
Ger(NEXY () = |G| A1), vf € 7L

and except for
GO AN () = |Gra)] AN () and .
GNP ) = |Gaah)| X0, vr e 72,

Since there is a strict inequality in Equation (2.35), it is seen from Equa-
tions (2.36) and (2.41) that the filters G j(f) and G, ;(f) and the filters Gy, 1 (f)

and G 1, (f) are not equal in F. J(lk) The choice in Equation (2.42) can be rewrit-
ten as ‘C_;’j,j(f)‘ = ‘é’k,k(f)‘ and ‘C_;’k,k(f)‘ = ‘CN;’”(f)‘ for all frequencies in

.7-"](2,3, because of Equation (2.36).
The left hand side of the bit constraint given in Equation (2.34) can be

rewritten in the following way when the G;;(f) filters are used,

2 .
G| A+ [,

Gaa | 3 () df) . (243)

When the G;;(f) filters are used, the bit constraint can be rewritten as
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where the fact that G;;(f) is equal to G;;(f) for frequencies not belonging
to Fj is used.

To verify that the expression in Equation (2.43) is greater than or equal to
the expression in Equation (2.44), the strategy is to assume that the number
of bits used with the C:’m(f) filters is greater than or equal to the number of
bits spent by using the G;;(f) filters. Then, it is shown that this inequality is
equivalent to a valid inequality.

Define the following quantity

&Zz = / (1)
C
fj,ku]:j,k

Assume that the expression given in Equation (2.43) is greater than or equal to
the similar expression in Equation (2.44). It is observed that the terms where
i€{0,1,... ,M —1}\ {j,k} in Equations (2.43) and (2.44) are equal. These
terms are then canceled. The assumed inequality in the number of bits used
is equivalent to

1n<5—§j+ / o
Fik

Info7 + /
i@

Jk

G| AV (D ie ik @)

Gialh] A df) +In <6Zk+ [ Gost)

~ 2
o [Gusth)
fj,k

AN () df) >

~ 2
Gj(f) ‘

AN (f) df) ,
(2.46)

@wuﬁxfkﬂ#>+m6iﬁLm

where the results from Equations (2.41) and (2.42) are used. Equation (2.46)
can be rewritten as the following,

~2  ~2

g — 0,

( Yi yk) (/ (2)
Fik

The expression in the second factor is non-negative because from the definition

of the set F ](,2,3, in Equation (2.40), it follows that

/f(z) G (f)

Because of the numbering of the subband signals in Equation (1.18), O';j > ozk,
and this is equivalent to

~9

o,. +

Yi /(z>
Tk

2 .
Grnh] KO- [,

G550| 3 df) > 0.
(2.47)

‘ 2

Gji(f) ‘2 XE-N) (f)df. (2.48)

Wnaz [,

J

G550 Gex(D| NV dr. (249

5 (V) ~
SR A
Kk

J
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By adding Equations (2.48) and (2.49) the following inequality is found:

~2 o =2
Gy 2 Oy (2.50)
Because of the result in Equation (2.50), the first factor in Equation (2.47) is
also non-negative, and the assumed inequality holds.

By inserting the choice made in Equations (2.41) and (2.42) into Equa-
tion (2.38), the difference between the integrands of the block MSE can be

rewritten as

— 2
E(f)=E(f) = ~ %4 _ % c M
=) (kmmnﬁﬁmuwag |@gunﬁ9%n+ﬁ>’f P
2
0, feFGUFR.
(2.51)

The right hand side of Equation (2.51) is non-negative due to Equation (2.35)

(1)
and because when f € fj,k,

% %
>

MO oz (G|

2 (2.52)

N

‘ék,k (f)

Now, case (i) is completely treated.
Next assume case (ii). From Equations (2.33) and (2.34), it is seen that

the systems using S\EN)( f) and XEN)( f) have identical performance. Thus, no
optimality is lost in case (ii).

For case (iii), using related arguments as in case (i), it can be shown that the
(V)
(2

For every pair of indices satisfying Equation (2.35), the process shown
above can be performed, and this can be repeated until the ordering is as
in Equation (2.7), i.e., II(f) = I. Therefore, it is proven that the optimal

solution can be found among diagonal matrices G(f).

performance by using S\EN)( f) instead of A}/ (f) renders no loss in optimality.

2.1.3.6 Block MSE and Bit Constraint Expressions

Considering diagonal G(f) matrices, one can rewrite the block MSE as

1 M1 (N) 9
Al
Enpr= [ l grq #+/
—5 im0 [Gii(H)PN(f) + o2 -

—

SN dr. (2.53)

N

N
=
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When the matrix G(f) is diagonal, the bit constraint can be rewritten as

l

M-1
> [ G OAY ) dr = (), 254
1=0 -

(ST

where (3 is the constant defined in Equation (2.3), while the inequality con-
straints can be expressed as

1

/2 G (NP () df > 02, i€{0,1,... , M —1}. (2.55)

M

2.1.3.7 The Elements of G(f)

The matrix G(f) is an M x N diagonal matrix. The diagonal elements of G(f)
can be found by the Kuhn-Tucker conditions, with objective function given in
Equation (2.53) and constraints in Equations (2.54) and (2.55). By using
variational calculus on this problem, the squared magnitudes of the diagonal
elements of the matrix G(f) are obtained as

|Gi,i(f)|2 = max | 0, 5103 (N) - (1\7)2 )
(n—0:02) XV () NV (2.56)

i€{0,1,... , M —1},

where p is a Kuhn-Tucker parameter for the bit constraint in Equation (2.54),
0; is the Kuhn-Tucker parameter corresponding to constraint number ¢ in Equa-
tion (2.55), and O’;i is the variance in the ith subband, which can be found by
solving the following equation:

df, ie{0,1,..., M —1}.

(2.57)

It can be shown that Equation (2.57) in general has three solutions, but because

of the inequality constraint in Equation (2.55), only solutions greater than 02

are valid. The non-negative parameters 6; have to satisfy Equation (2.14).
The phase of the elements in G(f), see Equation (2.56), can be chosen

arbitrarily.
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If the expression for |G;;(f)|? given in Equation (2.56) is substituted into

the block MSE expression of Equation (2.53), the following result is obtained:

—0:.02) 22
Z/lmln )\ f), (,u b i)2 i ) df +

N-1 %
j : N
/ A
_1
=M 2

For a given target average bit rate b, the objective is to find the parameters
p and 6; > 0, given implicitly through Equations (2.14), (2.56), and (2.57),
that satisfy Equation (2.54). These values of p and 6; are then inserted into
Equation (2.58) to calculate the block MSE.

(2.58)

2.1.3.8 Frequency Response Expressions

From [Vaidyanathan & Mitra 1988|, it can be shown that eigenvector number %
of the PSD matrix Sz (f) in Equation (1.8) can be chosen as

T

1 _ .
Uilf) = <= (LoD (s pl D] i€ 2, (2:59)
(™ N
where p;(f) = e 727 N , and lZ( )(f) is the ith ordering function. The

(V)

ordering functions /;" ’ : R — Zx have been introduced to make sure that the
ordering in Equation (2.7) is maintained for all frequencies. In Appendix B, it

is shown that the ordering functions lZ(N)( f) satisfy the following equation:

(V)
AM(f) = S, (W) , i€ Zn. (2.60)

Some of the properties of the ordering functions are derived in Appendix B,
and from these properties the ordering functions can be calculated. The vector
given in Equation (2.59) is column number i of the unitary matrix U(f) in
Equation (2.5), so the norm of this vector is 1.

If the noble identities |Vaidyanathan 1993| are used, the decimators and the
expanders can be moved after the analysis and before the synthesis polyphase
matrix, respectively, see Figure 1.1. Then, the frequency responses of the anal-
ysis filter H,,,(f) and synthesis filter F},,(f) can be found from Equations (2.5)
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and (2.59). The analysis filter H,,(f) can then be expressed as

N-1 , fN+l£r’[’)(fN))
Hm(f) — Gm:m(fN) €J2wk( N €7j27rk
k=0 N
N—-1 (

1= INIT%)
= VNGpm(fN)< Y e/
k=0
= VNGm (NN (FN)), m € Zas, (2.61)

where §(-) is the Kronecker delta function.

For high rates, it can be seen from Equations (2.56) and (2.60) that the
analysis filters in Equation (2.61) approach half-whitening filters. Half whiten-
ing filters are treated in [Jayant & Noll 1984, Aase & Ramstad 1995].

Using similar arguments, it can be shown that F,(f) can be expressed as

)\%V)(fN)e—j%rf(N—l)

|G (FN)2AR (FN) + 02

Fu(f) = VNG, . (fN)SIN) (fN))

, m € L,

(2.62)

where the superscript * denotes complex conjugation.

In Equation (2.61), the analysis filters have the same phase as the
Gmm(fN) filters, and from Equation (2.62), it is seen that the phase of the
synthesis filters is given by the phase of the G}, ,,(fN) filters plus the extra
linear phase given by the fraction in Equation (2.62). As mentioned before,
the phase of the G, (f) filters in Equation (2.56) can be chosen arbitrar-
ily. From the filter expressions in Equations (2.61) and (2.62), it is concluded
that the group delay through the system is independent of the phase of the
Gmm(f) filters and is always N — 1.

In order to make a comparison to the optimal unitary filter banks, the fre-
quency response of the optimal filter can be derived from [Vaidyanathan 1998].
Using the notation introduced in this dissertation, analysis filter number m is
given by:

Hy(f) = VNS(IGD(FN)), m € Zn (2.63)
and synthesis filter number m by:

Fo(f) = VNI (FN))e 72 N1 e Zy. (2.64)
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If Equations (2.63) and (2.64) are compared to Equations (2.61) and (2.62),
respectively, it is seen that the filters have the same non-zero frequency regions,
but the shaping of the proposed filter banks are very different from the optimal
unitary filter bank. In the passbands, the amplitude response of the optimal
unitary filters are constant, while the proposed filter banks have non-constant
amplitude response in the passband, see Equations (2.61) and (2.62).

The frequency passbands of the optimal biorthogonal filter banks are the
same as the frequency passbands in the optimal unitary filter banks and the
proposed filter banks, but the shaping of the passbands are equal to half-
whitening, see [Aase & Ramstad 1995, Aas & Mullis 1996, Vaidyanathan &
Kira¢ 1998, Moulin et al. 2000] for details.

2.1.3.9 Aliasing Noise

It will now be shown that the proposed filter banks are alias free.

A necessary and sufficient condition for aliasing cancellation is that the
total polyphase matrix W (f) = R(f)E(f) is pseudocirculant [Vaidyanathan
& Mitra 1988|. The results in Equation (2.5) lead to

W (f) = R(NE(f) = U)T(HGHU"(f). (2.65)

From Equation (2.11), it is seen that T'(f) is a diagonal matrix since it is a
product of diagonal matrices. Therefore, the product T'(f)G(f) is also a diag-
onal matrix. If the input signal to the analysis filter bank is a WSS scalar time
series, it is shown in [Sathe & Vaidyanathan 1993] that the PSD matrix Sz (f)
will be pseudocirculant. In [Vaidyanathan & Mitra 1988], it is shown that the
eigenvalue matrix of every pseudocirculant matrix can be chosen as

U(f)=T()¥(f), (2.66)

where I'(f) is a diagonal matrix with [I'(f)];, = e=I27 % and ¥(f) is an
N x N DFT matrix with the columns permuted according to the ordering
(N)
. N . _iopmin “(f)
function [$ )(f), e, [Z(f)lmn = ﬁe J2m Ty
equivalent to Equation (2.59), where the ith column of U(f) is given. There-

fore, the matrix W (f) can be expressed as

W(f) =T (HEHTHGHEHHT () (2.67)

From [Vaidyanathan & Mitra 1988], it can be shown that matrices which can
be factored as the right hand side of Equation (2.67) are pseudocirculant.
This is just a renumbering of the case which is considered in [Vaidyanathan
& Mitra 1988|. This concludes the proof that there is no aliasing error in the
proposed filter banks.

. It can be seen that this is



2.1 Bit Constrained Filter Banks

35

2.1.3.10 High Rate Case

The high rate case is equivalent to 02 — 0T. In the high rate case, synthesis
filter number m € Zjy is given by

(N)
im F(f) = miac(:l:m((?]]\\f/))) eTI2mf(N=1), (2.68)

By comparing Equations (2.61) and (2.68), it is seen that the synthesis filters
are scaled and delayed versions of the pseudo-inverse [Jain 1989] analysis filters.
Since high rates are used, all the quantizers will receive bits, so M = N.

It is already shown that the unconstrained length filter banks have no
alias error. Therefore, the overall transfer function through the system is well
defined. In the high rate case, the overall transfer function can be expressed
as [Vaidyanathan 1993|

N-1 N-1
1 . .
- § : H — = § : N (N) N —j2nf(N-1) — —j2nf(N—-1)

(2.69)

N-1
where it is used that Z §(IN)(fN)) = 1 for all frequencies f. This follows

from the definition ofmfch% ordering functions, see Appendix B. From Equa-
tion (2.69), it is seen that in the high rate case the overall transfer function
represents a PR system with group delay N — 1.

In this dissertation, no PR constraints are set on the filter banks. However,
in the high rate case (02 — 07), it is shown above that the optimal solution
is found among the PR filters. In [Aas & Mullis 1996, Vaidyanathan & Kirag
1998], it was conjectured that the optimal PR analysis filter bank has the
structure of the polyphase matrix U (f) followed by a diagonal polyphase
matrix G(f), and that the optimal PR synthesis filter bank is given by the
inverse filter bank, i.e., the diagonal polyphase matrix G~'(f) followed by
the polyphase matrix U(f). In [Moulin et al. 2000], it is shown that this
is indeed optimal among PR filter banks. The optimal PR filter banks are
rate independent if optimal bit allocation is used because, in this case, the
problem of minimizing the MSE for a given number of bits is equivalent to
maximizing the coding gain, and the coding gain is rate independent for PR
filter banks [Vaidyanathan & Kira¢ 1998|. From Subsections 2.1.3.4, 2.1.3.5,
and the current subsection, it can be concluded that the results found in this
section give an alternative proof of the conjecture.
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Figure 2.2 System example for the unconstrained length filter banks, using N =
2. (a) PSD of the input signal S;(f). (b) Frequency response of the first analysis
filter Ho(f). (c) Frequency response of the second analysis filter H; (f). (d) Overall
frequency response. In the last three plots, the dash-dotted curves give the result
with b = 3.28 bits/sample and SNR = 18.41 dB, while the dotted curves show the
result with b = 1.12 bits/sample and SNR = 7.51 dB.

The analysis and synthesis filter bank defined by the polyphase matri-
ces UH(f) and U(f), respectively, are called principal component filter
banks [Tsatsanis & Giannakis 1995|. These filter banks are also equal to the
optimal unitary filter banks [Vaidyanathan 1998] with unconstrained length.

2.1.4 Bit Constrained Filter Bank Results

In all the results presented in this subsection, the following choice has been
made: 02 =1

To illustrate some of the results derived in this section, consider the two
channel case, N = 2. The input signal is a Gaussian AR(3) process with
the poles located at 0.9, 0.9¢77270-35 and 0.9¢/270-35  whose PSD is shown in
Figure 2.2 (a). Since the source is Gaussian and the filter bank is a linear
operator, the pdf of the inputs to the quantizers are also Gaussian. In all the
results presented in this section, pdf optimized scalar quantizers are used to
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quantize the subband signals, thus the coding coefficient is ¢; = @ [Jayant

& Noll 1984].

The frequency responses of the first and second analysis filters are shown
in Figure 2.2 (b) and (c), respectively. The dash-dotted curves show the filters
when b = 3.28 bits/sample, and the dotted curves represent the responses when
b = 1.12 bits/sample. The phases of the Gy, (f) filters have been chosen to
be zero, so the analysis filters have zero phase and the synthesis filters will
have linear phase, see Subsection 2.1.3.8.

Observe from Figure 2.2 (b) that both filters extract two frequency bands.
From parts (b) and (c) of the figures, it is seen that for a fixed frequency,
only one of the filter responses in the same filter bank is different from zero.
It was shown in Subsection 2.1.3.9 that the proposed unconstrained length
filter banks are free from alias error. Therefore, the overall transfer function
through the system is well defined, and this function is shown in part (d) of
the figure. Figure 2.2 (d) reveals that the optimal filter banks do not have the
PR property. It should also be observed that in frequency intervals where the
input signal has low energy, no signal is transmitted if the average bit rate is
low. It can be proven that the N-fold decimation of the analysis frequency
responses H;(f) does not create aliasing.

Figure 2.3 shows the performance of four systems in terms of SNR per
source sample (in dB) vs. rate (in bits per sample) with N = 3 subbands.
The input signal in this case is a Gaussian AR(1) process with correlation
coefficient 0.9. The distortion rate function is found in [Berger 1971|, while
the performance of the optimal biorthogonal system is found using the the-
ory in [Aas & Mullis 1996, Vaidyanathan & Kira¢ 1998, Moulin et al. 2000].
The performance of the optimal unitary system is obtained from the theory
developed in [Vaidyanathan 1998|. From the figure, it can be observed that
the proposed unconstrained length filter bank system outperforms the optimal
unconstrained length unitary and biorthogonal systems at all rates.

With the white signal independent noise model used for the quantizers,
see Equation (1.13), and the constraint O’Zi > O'g, the smallest number of
bits that can be allocated to one quantizer is %logZ ¢i, see Equation (1.14).
Therefore, the minimum average number of bits having a positive SNR is
% logs ¢;. When coding a Gaussian input signal using pdf optimized scalar
quantizers and N = 3, an SNR = 0 dB is obtained when the average bit rate is
less than ﬁ logs ¢; &= 0.24 bits/sample. This is in accordance with Figure 2.3.
From the figure, it can be seen that the performance curves are not smooth
for all rates. When the average bit rate is decreased, the number of quantizers
that receive a positive number of bits M is reduced, and this gives rise to the
unsmooth characteristic of the performance curves.
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Figure 2.3 Different distortion rate performances when coding a Gaussian AR(1)-
process with correlation factor 0.9 and N = 3 subbands. The solid cure shows the
performance of the proposed unconstrained length filter bank system, the dash-dotted
curve represents the optimal unconstrained length biorthogonal system, while the
dashed curve shows the optimal unconstrained length unitary system performance.
The dotted curve shows the distortion rate function.

At high rates, Figure 2.3 illustrates that the performance of the optimal
biorthogonal system is approximately the same as the proposed unconstrained
length filter bank system. This is because, at high rates, the quantization
noise is small, and therefore, the filter banks should be close to PR, see Sub-
section 2.1.3.10.

2.2 Power Constrained Filter Banks

In this section, the problem of transmitting a vector time series over a power
constrained vector channel with a known transfer matrix and signal indepen-
dent noise is considered. The goal is to find jointly optimal transmitter and
receiver polyphase matrices which minimize the block MSE between the origi-
nal and reconstructed vector time series when only a limited amount of power
is used. The polyphase matrices are allowed to be non-causal with infinite
lengths.
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This section is organized as follows: In Subsection 2.2.1 the problem is for-
mulated. Subsection 2.2.2 contains an explanation of how the optimal solution
can be obtained. A combined source-channel coding problem is introduced in
Subsection 2.2.3, and some results obtained by the proposed filter banks in the
combined source-channel coding problem are presented in Subsection 2.2.4.

2.2.1 Problem Formulation

In order to state the problem, expressions are needed for the block MSE and
the power used by the channel input vector.

By manipulating the formulas as was done in the bit constrained case in
Appendix A for infinite length filters, the following expression for the block
MSE in the frequency domain is obtained

Expr=Tr ( | {z-rnecwr@)s.ni - rncmem)”

+R(/)So(R(f)} df) : (2.70)

where E(f), C(f), and R(f) are the Fourier transform of the transmitter,
channel, and receiver impulse response matrices, respectively, evaluated on the
unit circle. The matrix C(f) is assumed to be known. In the notation En, a,
the numbers N and M refers to the dimensions of the vectors used in Figure 1.3.
The values of N and M are arbitrary in this section.

In Appendix A, the following expression for the power constraint in the
frequency domain is derived:

v ( B E(f)Sm(f)EH(f)df) e (2.71)

1
2

where P is the average power used by the channel input vector y(n).
The objective is to minimize the block MSE given by Equation (2.70) with
respect to E(f) and R(f), subject to the power constraint in Equation (2.71).

2.2.2 Optimal Matrix System

In this section, the joint optimal transmitter matrix E(z) and receiver ma-
trix R(z) are derived.

The problem which is considered here corresponds to the problem solved
in [Yang & Roy 1994|, Section II, B, where a MIMO band-limited continuous
time system is studied. The results below are the discrete time expressions for
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the corresponding discrete problem. The objective function in Equation (2.70)
and the constraint in Equation (2.71) are equivalent to Equations (10) and
(11), respectively, in [Yang & Roy 1994]. This equivalence is obtained if the
parameter T used in [Yang & Roy 1994] is chosen as T' = 1, and the noise
PSD matrix used in [Yang & Roy 1994| must be changed from the continuous
time case to the discrete time PSD matrix in Equation (1.21). The optimal
discrete time solution can therefore be found from [Yang & Roy 1994] with
these modifications. The optimal solution for the discrete time unconstrained
length jointly optimal transmitter and receiver filter banks for communication
over a power constrained linear vector channel with additive noise will now be
given.
The optimal transmitter and receiver matrices can be written as

E(f) =V(HGHU(f),
R(f) =U(NT(HVI(HCH(F) A, (f)-

U(f) and V(f) are unitary matrices which diagonalize the input PSD ma-
trix Sg(f) and the Hermitian matrix C (f)S;'(f)C(f), respectively, i.e.,

Sz(NU(f) = U(f)Az(f),
CH (NS, (NCAHV() = V(N A (F).
In Equation (2.73), Az(f) and A,'(f) are diagonal matrices that contain the

eigenvalues of Sy(f) and CH(f)S,;(f)C(f), respectively. In addition, the
elements of Ay (f) and A,(f) are ordered as follows:

(2.72)

(2.73)

MM > AN () > > AW (f), and
s < kM) << B850,

respectively. The matrix G(f) is an M x N diagonal matrix where the mag-
nitude of the diagonal elements are given by the square root of

(2.74)

e ()) ,i€{0,1,... ,min(M,N) — 1},

(2.75)

where 4 is a Lagrange multiplier for the constraint optimization problem. The
phase of the elements in G(f) can be chosen arbitrarily.
The matrix T'(f) in Equation (2.72) can be expressed as

T(f) =Az(/)G" () [G(N) Au(H)G™ () + Au(f)] ' Au(f).  (2.76)
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Figure 2.4 The combined source-channel coding problem.

The performance of the optimal system measured by block MSE, see Equa-
tion (1.12), is found to be

LN 1 (V) (£, (M)
/ A (Qz (f{M) daf, if M > N,
b (G f)LjVA)Z (f(g\;)rm (f) .
Enpr =13 34 AM (1M (1) 2 (V)
L i d Al df,
/%Z G (DA () + 68 (f) f+/ﬂz;w Cg
if M < N.

(2.77)

The constraint on the power used per channel input vector can be expressed
in the following way:

JAD SR AP (2.78)

For a given target power P in Equation (2.78), the objective is to find the
Lagrange multiplier u, given implicitly through Equation (2.75), which satisfies
Equation (2.78). This value of y is then inserted in Equation (2.77) and the
block MSE is found.

2.2.3 A Combined Source-Channel Coding Problem

Combined source-channel coding is a promising topic in the search for op-
timal communication systems. This in spite of “Shannon’s separation theo-
rem” [Shannon 1948, Shannon 1959, Vembu, Verdu & Steinberg 1995|, which
states that the source and channel coders can be optimized separately. The
reason why there is still hope for improvements in practical systems is that the
separation theorem requires infinite delay and thus infinite complexity. For
finite delays and complexities, the situation is more complex.
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Figure 2.5 The MIMO system used to solve the combined source-channel coding
problem.

In this subsection, the MIMO system developed in Subsection 2.2.2 is used
to solve a combined source-channel coding problem, which is illustrated in Fig-
ure 2.4. The problem is to transmit a scalar time series over a scalar channel
having the scalar transfer function C(z) and additive signal independent Gaus-
sian white noise. N source samples are transmitted using M channel samples.
The optimal solution of the combined source-channel coding problem is nonlin-
ear. However, in this dissertation, only the optimal linear filter bank solutions
are studied. In the current chapter, the delay and complexity complexity of the
unconstrained length filter banks are infinite. The study of these filter banks
is mostly of theoretical interest. Their performance provide an upper bound
on the SNR vs. CSNR performance of the linear transform and FIR solutions
found in Sections 3.2 and 4.2, respectively.

The linear MIMO system developed in Subsection 2.2.2 can be applied
to the combined source-channel coding problem in Figure 2.4, by redrawing
Figure 1.3, as shown in Figure 2.5. The system input signal z(n) is multiplexed
into vectors &(n), according to

z(n) = [z(nN),z(nN —1),... ,z(nN — (N —1))]%. (2.79)
The channel noise vector is given by
v(n) = [vo(n),v1(n),... ,on_1(n)]T, (2.80)

where v;(n) is Gaussian white noise with known variance o2 when considering
the combined source-channel coding problem. In Figure 2.5, the channel trans-
fer matrix C(z) can be found from the scalar transfer function C(z), by letting
the first row in C(z) be the polyphase components of C(z). The matrix C(z)
should be pseudocirculant, therefore, the rest of the rows in C(z) are given by
the first row, see Section 10.1 in [Vaidyanathan 1993] for details.



2.2 Power Constrained Filter Banks

43

25

SNR [dB]

-5 0 5 10 15 20
CSNR [dB]

Figure 2.6 The SNR vs. CSNR performance of the proposed system and OPTA
using N = 3, M = 3, and C(z) = 1 is shown by the solid curves. The upper curve
is OPTA. The dash-dotted curves show the performance of the proposed system and
OPTA using N = 3, M = 2. The upper curve is OPTA. The input source is a
Gaussian AR(3) with PSD shown in Figure 2.2 (a), and the channel noise is white
and Gaussian.

2.2.4 Power Constrained Filter Bank Results

As an example of using the optimized MIMO system found in Subsection 2.2.2
for solving the combined source-channel coding problem in Subsection 2.2.3,
consider the cases N = 3, M = 2 and N = 3, M = 3. The source which
is transmitted is a Gaussian AR(3) process for which the PSD is given in
Figure 2.2 (a), and the channel noise is assumed to be white Gaussian with
unit variance, i.e., 02 = 1. The components of the additive noise vector are
therefore uncorrelated. The channel transfer function is C'(z) = 1.

The system performance is shown in Figure 2.6. In the figure, CSNR is the
channel signal to noise ratio (P/M)/o?2, and SNR is the signal to overall recon-
struction noise ratio 02/(Ex ar/N). Both SNR and CSNR are expressed in dB
in the figure. In Figure 2.6, the results obtained from the theory developed
in Subsection 2.2.2 are compared to the optimal performance theoretically at-
tainable (OPTA) curve for a Gaussian signal. The OPTA curve is found by
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Figure 2.7 System example using N = 2, M = 2, and C(z) = 1. (a) PSD of
the input signal S, (f). (b) Frequency response of the first channel on the trans-
mitter side Ho(f). (c) Frequency response of the second channel on the transmitter
side Hy(f). (d) Total frequency response through the system. In the last three plots,
the dotted curves give the result with CSNR = —0.30 dB and SNR = 4.61 dB, while
the dash-dotted curves show the result with CSNR = 4.80 dB and SNR = 7.79 dB.

evaluating the distortion rate function of a source at the channel capacity
function [Berger 1971]. From Figure 2.6, it can be observed that the MIMO
system performs well for poor channels and not well for CSNR > 10 dB, when
the number of channel symbols are less than the number of source symbols,
i.e, N> M. When N =3, M = 3 the system performs well for all CSNRs.

When the number of channel samples per source sample is reduced, the
least important transfer functions are set to zero and only the most important
ones are used. The reason why the performance of N = 3, M = 3 case is not
equal to the N = 3, M = 2 case for low CSNR, is that CSNR is measured
as power used per channel symbol. When the number of channel samples is
greater than the number of source samples, i.e., N < M, M — N of the filters
are set to zero. This is the best one can achieve using the linear structure
chosen here.

By using the noble identities, the decimators can be moved after the
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polyphase matrix on the transmitter side. The frequency responses of the
filters in the transmitter filter banks can then be found by taking the delay
chain in front of the polyphase matrix into account. This was done for the bit
constrained filter banks in Subsection 2.1.3.8.

Figure 2.7 (a) shows the PSD of the Gaussian AR(3) process having poles
located at 0.9, 0.9¢77279-35 "and 0.9¢7270-35 The channel noise is assumed to be
white Gaussian with uncorrelated noise components with unit variance. The
channel transfer function is C(z) = 1. The frequency responses of the first
and second transmitter filter are shown in Figure 2.7 (b) and (c), respectively,
using N = M = 2. The dash-dotted curves show the transmitter filters when
CSNR = 4.80 dB, and the dotted curves represent the responses when CSNR =
—0.30 dB. It can shown in the same way as in Subsection 2.1.3.9 that the power
constrained proposed unconstrained length filter banks are free from alias error
when using the identity channel matrix. Therefore, the overall transfer function
through the system is well defined, and this function is shown in part (d) of
the figure.

Notice from Figure 2.7 (b) and (c) that both filters extract two frequency
bands. It can be shown that the N-fold decimation of the transmitter frequency
responses H;(f) does not create aliasing. From Figure 2.7 (d), it is seen that
the optimal filter banks do not have the perfect reconstruction property. The
phase of the analysis filters are arbitrary, but can be chosen linear, then the
synthesis filters will also have linear phase. It is also seen from the figure that
in frequency intervals where the input signal has low energy, no signal is sent
through the system if the average transmitted power used is low.

2.3 Summary

In the first part of this chapter, bit constrained jointly optimal analysis and
synthesis filter banks having unconstrained filter lengths were derived. A sub-
band coder structure was optimized with respect to the minimum block MSE
between the output and the input signals under a bit constraint. The filters
were allowed to be non-causal with infinite impulse responses. To simplify the
optimization, an optimal MIMO system was first derived.

The second part of the chapter contains a derivation of the jointly optimal
discrete time power constrained transmitter and receiver filter bank having
unconstrained filter lengths. This is deduced from the corresponding continu-
ous time solution found in [Yang & Roy 1994]. This system was applied to a
combined source-channel coding problem.






Chapter 3

Signal-Adaptive Transforms

A linear transform can be viewed as a special case of a filter bank [Vaidyanathan
1993] since it functions like a filter bank with a memoryless polyphase matrix.
When using transform coding, the input time series 2:(n) is divided into blocks
of length N, and each block is transformed into a block of length M by a
memoryless analysis transform matrix.

The problem of jointly optimizing the analysis and synthesis transforms
under a bit and power constraint is treated in this chapter. No PR conditions
are imposed on the transforms.

The current chapter is organized as follows: In Section 3.1, the problem
of jointly optimal analysis and synthesis transforms under a bit constraint
is treated. An alternative derivation of the optimal solution under a power
constraint is described in Section 3.2. Finally, a brief summary is given in
Section 3.3.

This chapter is partly based on [Hjgrungnes & Ramstad 19980, Hjgrungnes
& Ramstad 1999¢].

3.1 Bit Constrained Transforms

The Karhunen-Loéve transform (KLT) has optimal distortion rate performance
among PR transforms for a given WSS signal, but in this section a transform
that outperforms the KLT is proposed. In the proposed transform, the PR
constraint is relaxed. The resulting transform coding system performs at least
as well as the KLT coding system for all rates and sources.

Transform coders are used in image and video compression standards,
e.g., [CCITT Rec. T.81 1992, ISO/IEC IS 11172 1995, ISO/IEC IS 13818 1998].
It is therefore an important task to evaluate their performance and derive op-
timal solutions.

47
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M x N N x M

Figure 3.1 Transform coder model.

This section is organized as follows: The assumptions and the problem
treated are stated in Subsection 3.1.1, while in Subsection 3.1.2, the optimal
solution is derived. In Subsection 3.1.3, the optimal transform is compared
to the KLT. Conditions for PR being the optimal transform are stated in
Subsection 3.1.4. Analytical expressions for jointly optimal Wiener transform
and bit allocation are derived in Subsection 3.1.5, when the analysis transform
is a reduced rank KLT. Finally, Subsection 3.1.6 contains results using the
proposed transform.

3.1.1 Problem Formulation

In a transform coder model, the analysis and synthesis polyphase matrices are
memoryless, so the system treated in this section is shown in Figure 3.1. The
analysis and synthesis transform matrices are denoted E and R, respectively,
and the dimensions of these matrices are M x N and N x M. These polyphase
matrices are independent of z, contrary to unconstrained length and FIR filter
banks, see Chapters 2 and 4. It is assumed that N > M.

The same quantizer model as introduced in Chapter 1 will be used here.

Since the mean of the input is assumed to be zero, the autocovariance
matrix at lag zero for the vector @(n) is equal to the autocorrelation matrix
at lag zero, and this matrix is given by:

K, (0)=F [m(n):l:H(n)] . (3.1)

If the memoryless matrices E and R are inserted into Equation (2.2), the
block MSE for the transform coder can be expressed as

Evar =T {(I —RE)K,(0)(I - RE)" + RAqRH} : (3.2)
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1
where it has been used that K(0) = ’ Sz(f)df, which follows from the

M

inverse Fourier transformation of Equation (1.8).
Using the same reasoning as above, the bit constraint in Equation (2.3)
can be rewritten as

Pr (EK,(0)E") = 8. (3.3)

The constraints given in Equation (2.4) have to be satisfied as well.

The bit constrained transform problem is to find the bit distribution and
matrices E and R which minimize the block MSE in Equation (3.2), subject
to the bit constraint in Equation (3.3) and the constraints in Equation (2.4).

3.1.2 Optimal Transform Coder

In this subsection, the optimal transform is derived from the results for uncon-
strained length filter banks given in Section 2.1.

Assume that the input signal to the unconstrained length filter bank found
in Section 2.1 can be characterized by the following autocovariance matrix
sequence:

Kg(m)=F [z(n+ m)a:H(n)] = K ;(0)d(m), (3.4)

where 6(m) is the Kronecker delta function. Equation (3.4) indicates that
the input vectors are uncorrelated, but there may be correlation between the
components within a vector. By inserting Equation (3.4) into Equation (1.8)
the PSD matrix of the input is found as

Sz(f) = Kz(0). (3.5)

That is, the PSD matrix is independent of frequency.

To specify the optimal unconstrained length filter bank solution, the eigen-
values and eigenvectors of the PSD matrix are needed. Let U be an N x N
unitary matrix which diagonalizes the input covariance matrix K4(0), i.e.,

K, (0)U =UA,. (3.6)

In Equation (3.6), A, is a diagonal matrix containing the eigenvalues of K (0).
The elements of A, are ordered as follows:

A > A > > a0 (37)

Again, it is observed that since the PSD matrix is frequency independent, so
are the eigenvalues and eigenvectors.
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An important part of the optimal unconstrained length filter bank is the
Gii(f) filters given in Equation (2.56). The eigenvalues of the input PSD ma-
trix are independent of frequency, thus from Equation (2.56), the G;;(f) fil-
ters are also frequency independent. The optimal polyphase matrix G(f) is
an M x N frequency independent diagonal matrix. The diagonal element
number ¢ of this matrix is found by solving the following equation:

A
(n—0iz) MY A ]

)

i€{0,1,..., M —1},

|Gi,i|2 = max 0,
(3.8)

where p is a Lagrange multiplier for the bit constraint and 6; is the Kuhn-
Tucker parameter corresponding to constraint number ¢ in Equation (2.4).

Since both the matrices G(f) and U(f) are frequency independent, it is
realized by inspection of Equations (2.5) and (2.11), that the optimal uncon-
strained length analysis and synthesis filter bank is independent of frequency
when the input PSD matrix is given by Equation (3.5). The optimal uncon-
strained length filter banks can be found from Equation (2.5), and are given
by the following frequency independent matrices:

E=GU"Y,
(3.9)
R=UT.
From Equation (2.11), it is seen that the matrix T is given by
T = A,G" [GA,GT + A" (3.10)

From this equation, it is observed that the matrix T is frequency independent
and diagonal because it is a product and sum of frequency independent diagonal
matrices.

The autocovariance matrix of the subband coefficients at lag zero is given
by

K, (0) = E [y(n)y?(n)] = E [GU z(n)z" (n)UGH]
= GUIK (0 UG! = GA,G. (3.11)
Since the input vectors are uncorrelated, see Equation (3.4), K (0) is also equal
to the PSD matrix of the subband vector y(n). Equation (3.11) shows that

the subband coefficients are uncorrelated since the matrix K, (0) is diagonal.
From Equation (3.11), it is deduced that subband variance number i is given
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by Uzi- = |Gy, E ). If this expression for the subband variance is inserted
into Equation (3.8), the expression for |G;;|*> can be simplified to

|2 =max [ 0 Giil*og - 02 i €10,1 M -1}
’ ’ M—9i|Gi,i|2>\§N) AN ) Y .

Z (3.12)

|Gi

The solution stated above, which is frequency independent, is the optimal
unconstrained length filter bank minimizing the block MSE given in Equa-
tion (2.2) under the constraints given in Equations (2.3) and (2.4), with input
PSD matrix given in Equation (3.5). By comparing Equations (2.2) and (2.3)
using Sz(f) = K(0), with Equations (3.2) and (3.3), respectively, it is seen
that the optimal unconstrained length filter bank solution has to be the op-
timal transform matrices as well. The reason is that the optimization of the
unconstrained length problem is performed over a set that includes the whole
set of transform coders as a proper subset, and when it turns out that the opti-
mal unconstrained length filter bank is indeed a transform, this is the optimal
transform.

It can be shown that the optimal synthesis matrix R given in Equa-
tion (3.9), is a Wiener transform matrix [Vaidyanathan & Chen 1994], i.e.,
it can be written as:

R=K; 0K, (0), (3.13)

where the cross-correlation matrix Kg4(0) = E [2(n)g" (n)], and the auto-
correlation matrix K4(0) = E [g(n)g" (n)]. In [Vaidyanathan & Chen 1994],
the derivation of the Wiener transform was obtained by using the orthogonality
principle [Therrien 1992].

3.1.2.1 Performance Expressions

The performance evaluated by the block MSE when using jointly optimal anal-
ysis and synthesis transforms can be found from Equation (2.53), and it can
be expressed as

M—1 )\(N)UQ N—
Evyr =) N) Z (3.14)
=0 |GZ Z| >‘ =M

The first sum in Equation (3.14) represents the M transform coefficients that
will receive bits, and the last sum represents the remaining N — M transform
coefficients that do not receive bits. Therefore, if M = N, the last sum of
Equation (3.14) is equal to zero.
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The expression for the bit constraint in the optimal transform case can be
derived from Equation (2.54), and it is given by

M-1

> In <|Gi,i|2>\§m) = In(f), (3.15)

1=0

where f3 is the constant defined in Equation (2.3), and |G, ;|? is found by solving
Equation (3.12).

3.1.2.2 Linear Phase

The impulse responses of the ith analysis and synthesis filter are given by the
1th row and the reversed 4th column of the matrices E and R given in Equa-
tion (3.9), respectively. Since the matrices G and T are diagonal matrices,
the phase of the impulse responses will be decided by the phase of the column
vectors of the matrix U, see Equation (3.9). The columns of the matrix U con-
tain the eigenvectors of the autocovariance matrix K(0), see Equation (3.6).
The autocovariance matrix K4 (0) is a double symmetric matrix for real input
signals z(n), and in [Makhoul 1981], it is shown that it is always possible to
choose the eigenvectors of double symmetric matrices either symmetric or skew
symmetric!. Therefore, it is always possible to choose the impulse responses
in the optimal transform to have linear phase.

3.1.3 Comparisons to the KLT

Figure 3.2 shows a block diagram of the KLT and the proposed transform
coder model. From the figure, it is seen that the differences between the two
systems are the diagonal matrices G and T'.

From Equation (3.9), it is seen that the analysis filter H;(z) and the syn-
thesis filter Fj(z) of the transform filters are given by:

N-1
Hi(z) = Giy Y Upiz ",
k=0

= (3.16)
Fi(z) =Ty Y Un—i—piz ",
k=0
where ¢ € {0,1,... ,M — 1}, Uy, is the element in row number k and column

number ¢ of the matrix U, and G;; and T;; are diagonal elements number 4 in
the diagonal matrices G and T, respectively.

LA skew symmetric impulse response corresponds to an odd impulse response, and there-
fore, the phase of the filter is linear.
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Figure 3.2 KLT and proposed transform coder models.

From Equation (3.16), it is observed that for real input signals, the zeros of
analysis filter number ¢ have the exact same positions as the zeros of synthesis
filter number i, since the eigenvectors of the matrix K ,(0) can always be chosen
symmetric or skew symmetric for real input signals, see Subsection 3.1.2.2. By
studying Equation (3.16), it is seen that the zeros have the same positions as
for the KLT filters. The filters in the KLT and the proposed transform coder
are therefore equal except the gain factor in each filter, see Equation (3.16).
These gain factors are chosen in an optimal manner in the proposed transform
coder.

If M quantizers are used to code N source samples, it can be shown that
the bit optimal allocation for the KLT can be expressed as:

1 AN
bi = b, + = 10g2 Gidi T (317)
2 M—p—1 s
gigy
k=0
M-1
where b = MLﬂ)b - m Z logy ¢;, and p < M is the number of times
i=M-—p

the inequality U.Zi > 02 holds with equality. When KLT is used, U.Zi = AZ(-N).
If p = 0, the last sum in the formula of b should be set equal to zero. The
number of quantizers M must be found through a discrete optimization.

It can be shown that in the proposed transform coder, the optimal bit
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allocation is given by

1 A 1 1T
b; = b + = log, G + 7 log, 1Gs,Ts

1 1
2 M—p—1 w2 M—p—-1 e
( 1T ck)\,(cN)> ( 11 |Gk,ka,k|2>

, (3.18)

where b/ and p are defined as above. From Equations (3.17) and (3.18), it
is seen that the difference in bit allocation in the two systems is due to the
last term in Equation (3.18). The KLT coder has the PR property, so if the
matrices G and T were included in the KLT system, |G;;T;;| = 1 for all i.
Therefore, the last term in Equation (3.18) would be equal to zero.

The total transfer matrix RE is Hermitian in the proposed transforms.
This can be proved by considering

(RE)? = UGH [GA,GH + Ay GAL U
q
=UAG" [GA,G" + A)] " GU" = RE, (3.19)

where it is used that the N x N matrices G [GAmGH + Aqu G and A,
commute since they are diagonal.

It can be shown that when the input time series z(n) is real, the total
transfer matrix through the transform coder RE is symmetric around both the
main and the secondary diagonal, so the total transfer matrix is centrosymmet-
ric [Makhoul 1981]. This can be shown by finding expressions for the elements
of the matrix RE and comparing elements from opposite sides of the secondary
diagonal. The fact that the columns of the matrix U can be chosen symmetric
or skew symmetric must be utilized when comparing the expressions.

3.1.4 Conditions for Optimality of PR in the Transform Case

In this subsection, conditions for when PR is optimal will be stated for a given
invertible analysis transform, and it will be shown that this is never the case
for the quantization model assumed in this chapter.

In [Vaidyanathan & Chen 1994], it was shown for a given invertible analysis
transform E, the optimal transform system has the PR property if, and only
if, the following condition is satisfied:

E [g(n)g"(n)] =0 Vn, (3.20)

where the vector g(n) is the input of the synthesis transform matrix, see Fig-
ure 3.1. It can be shown that the condition in Equation (3.20) is satisfied if
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z(n) - y(n) y(n) R z(n)
M x N N x M

Figure 3.3 Reduced rank analysis KLT with Wiener synthesis transform.

vector quantizers are used for coding of the subband vector y(n), and if the
centroid of the pdf fy,) is used as the representation level of the Voronoi
region [Gersho & Gray 1992, Vaidyanathan & Chen 1994].

In this section, it is assumed that the quantization noise g(n) is uncor-
related with the input signal to the quantizers y(n), and it is also assumed
that the additive quantization noise is white with uncorrelated components in
different subbands. With this quantization noise model, the cross-correlation
matrix in Equation (3.20) is given by:

E [§(n)g" (n)] = E [(y(n) + a(n)) " (n)] = Aq # 0. (3.21)

Therefore, with the quantization noise model used in this section a PR trans-
form system will never be optimal for finite bit rates.

In [Huang & Schultheiss 1963], it is assumed that scalar Lloyd-Max quan-
tizers are used to quantize each transform coefficient and that the input time
series is Gaussian. Furthermore, it is assumed that the analysis transform will
transform the Gaussian input vector x(n) to a vector containing uncorrelated
vector components. In the mentioned reference, it is showed that the KLT is
optimal. The KLT has the PR property. This result is in accordance with the
conditions for PR being an optimal transform, given in Equation (3.20). The
reason for this is that when a Gaussian vector is linearly transformed to a vector
with uncorrelated components, the components are statistically independent.
Then, the Lloyd-Max wector quantizer and the Lloyd-Max scalar quantizers
will be equivalent provided that the decision regions of the vector quantizers
are given by the Cartesian product [Truss 1991] of the scalar quantizers’ de-
cision intervals. The condition in Equation (3.20) is therefore satisfied for the
assumptions made in [Huang & Schultheiss 1963]. Extensions of the results
found in [Huang & Schultheiss 1963] can be found in [Segall 1976, Jain 1989,
and these results are also in accordance with Equation (3.20).
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3.1.5 Wiener Transformed KLT

In this subsection, analytical expressions for jointly optimal Wiener transform
and bit allocation is derived when a reduced rank analysis KLT [Scharf &
Tufts 1987] is used. The system studied is shown in Figure 3.3. The analysis
transform is given by the M x N matrix Ugv[)- The matrix U ;) contains
the first M eigenvectors of the matrix K(0), i.e., the M first columns of the
matrix U, which is given in Equation (3.6). The following equation will be
useful:

Ko (0)U () = Uy AGY, (3.22)

where the M x M matrix Ag,,M) is a diagonal matrix containing the M largest
eigenvalues of K.(0).

First, an expression is derived for the Wiener transform given in Equa-
tion (3.13) when using reduced rank analysis KLT. The cross-covariance ma-

trix K4 4(0) is given by

Kas(0) = B [2n)g" ()] = 7 [alo) (at) + U alo)) "
= Km(O)U(M) = U(M)ASUM), (3.23)

where E [z(n)q" (n)] = 0 and the result from Equation (3.22) has been uti-
lized. The other matrix which is specifying the Wiener transform is Ky(0),
and this matrix is given by

K;(0) = F [(q(n) +URyem) (gn) + U{g@m(n))H] = Ag+ AP,
(3.24)

where the diagonal matrix Aq = E [g(n)g"(n)] does not necessarily have
equal values on the main diagonal when using reduced rank analysis KLT with
Wiener synthesis transform. By substituting the results from Equations (3.23)
and (3.24) into Equation (3.13), the Wiener transform matrix R can be ex-
pressed as:

M M -1
R=UuAd" (407 + 4,)  =UuD, (3.25)

—1
where D = ASUM) (ASUM) + Aq> is a M x M diagonal matrix, and the 7th

diagonal element is denoted D;;. Since D is given by a product of diagonal
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matrices, D;; is given by

AN
Di,i:)\(]\f)lﬁ, ’LE{O,I,,M—I} (326)
i +UQi

It follows from Equation (3.25) that the norm of the ith synthesis filter in
the Wiener transform is given by |D;;|. If optimal bit allocation is used, it
follows from [Moulin et al. 2000], that the product of the quantization vari-
ance ogi and the squared norm of the synthesis filters | D; ;|* should be constant
for each subband. If this non-negative constant is named p, this condition can

be expressed mathematically as:

|D; ;

‘o0 =p, i€{0,1,... ,M —p—1}, (3.27)

where p < M indicates the number of times the inequality O’Zi > 02 holds with
equality.
If | D; ;| is eliminated from Equations (3.26) and (3.27) fori € {0,1,... , M —

p — 1}, the following expression for O'gi is obtained:

2
MY — 2 - \/ (AEN)) - My

2

, 1€{0,1,... , M —p—1},
(3.28)

2

where it has been used that o

square-root operator.
Since the Wiener transform can be written as shown in Equation (3.25), it
can be shown that optimal bit allocation in this case can be expressed as

> 0 when choosing the sign in front of the

1 AN 1 D |?
b =b + 3 log, G - + 3 log, D -, (3.29)
M—-p—1 M M—p—1 M

where b’ and p are defined as in Equation (3.17).
The system introduced in this section will be called Wiener transformed
KLT.

3.1.6 Bit Constrained Transform Results

Results for KLT with reduced rank are obtained from [Scharf & Tufts 1987],
and the bit allocation is given in Equation (3.17). The DCT is taken from [Jain
1989].
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Figure 3.4 The distortion rate function [Berger 1971] of the Gaussian AR(3) source
with PSD shown in Figure 2.7 (a) is shown by the solid curve, the performance of the
proposed transform coder is shown by the dash-dotted curve, and the dotted curve
shows the performance of the KLT, using N = 2 and ¢; = @

Figure 3.4 shows the distortion rate performance of the proposed trans-
form coder when coding the Gaussian AR(3) source with PSD shown in Fig-
ure 2.2 (a). It is assumed that pdf optimized scalar quantizers are used, so ¢; =
@. The performance is compared to the KLT with reduced rank [Scharf &
Tufts 1987] and the distortion rate function for the source [Berger 1971]. It is
seen from Figure 3.4 that the proposed transform coder outperforms the KLT
for all rates. However, the performance is far away from the distortion rate
function of the source, which is expected due to the simplicity of these systems.

From Figure 3.4, it is seen that there are sudden changes in the per-
formance of the proposed transform for bit rates at 0.72 bits/sample and
0.36 bits/sample. These bit rates correspond to the minimum positive bit
rates that are possible when using M = 2 and M = 1, respectively, because
the minimum average bit rate b when M quantizers receive a positive number
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Table 3.1 Theoretical distortion rate performances.

N = 8. The input source is Gaussian AR(3) with PSD shown in Figure 2.2 (a),

and ¢; = @
Bit rate [bits per sample]
Type of 0.50 | 1.00 | 2.00 | 3.00
transform SNR. [dB]
DCT [Jain 1989] 237 | 499 | 9.20 | 15.02
KLT [Scharf & Tufts 1987] || 2.86 | 5.99 | 10.39 | 15.84
Wiener transformed KLT || 3.62 | 6.30 | 10.99 | 16.13
Proposed transform 3.62 | 6.30 | 10.99 | 16.13
of bits is
M—1
1 1
=N 0 3 log,(¢;). (3.30)
1=

The minimum average bit rate is obtained when the constraints in Equa-
tion (2.4) are satisfied with equality for all ¢ € {0,1,... ,M — 1}. If the
eigenvalues of the autocovariance matrix K (0) are almost equal, which is the
case in Figure 3.4, this sudden breakdown in performance appears. However, if
the eigenvalues are very different in size, this breakdown phenomenon does not
occur. An example of an input PSD giving eigenvalues that are very different
in size is an AR(1) specter with correlation coefficient 0.95.

The performance of the DCT, the KLT, the Wiener transformed KLT, and
the proposed transform coder is shown in Table 3.1 using N = 8, with the
input source being the same Gaussian AR(3) source coded in Figure 3.4.

From Table 3.1, it is seen that the performance of the proposed transform
coder is better than the DCT and KLT for all rates. The Wiener transformed
KLT has the same performance as the proposed transform. The reason for this
is as follows: Since the matrices G and T in the proposed system are diagonal
matrices with dimensions M x N and N x M, respectively, the last N — M rows
in U in the proposed analysis transform and the last N — M columns in U in
the proposed synthesis transform are multiplied by zeros. Therefore, the first
and last matrices in the proposed system and the Wiener transformed KLT
system are equivalent. The synthesis transform in both systems is a Wiener
transform, and no loss of optimality is caused by the Wiener transform. The
essential difference between the two systems is therefore shown in Figure 3.5: In
the proposed system, the output of the analysis KLT matrix is multiplied by a
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Wiener transformed KLT:
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Figure 3.5 Comparison between the Wiener transformed KLT and the proposed
transform model.

diagonal matrix G, and noise vectors with the same variance in each component
are added. In the Wiener transformed KLT system, noise vectors with not
necessarily equal variance components are added to the output of the analysis
KLT matrix. In the proposed transform, the matrix G is optimized while the
elements of A4 are kept constant, and in the Wiener transformed KLT, the
elements of A4 are optimized while the output of the analysis KLT matrix is
unchanged. Since the matrices A4 and G are diagonal, the optimization of one
of them while keeping the other constant is equivalent to keeping the latter
constant and optimizing the first matrix.

The proposed system covers the whole set of transforms. In the Wiener
transformed KLT, this is not the case since the analysis filters are given by
the KLT filters. In the proposed system, the optimization is performed over
the set of all transforms, since in the optimization, the matrix G can be any
matrix, not only a diagonal matrix. However, the optimization shows that no
optimality is lost by constraining the matrix G to be diagonal, and therefore,
the optimization is performed over the same set of transforms which is covered
by the Wiener transformed KLT system. Since both systems are optimal, they
are equivalent.

The proposed transform does not have PR. As an example, let N = 3, and
let the input signal be the AR(3) source with PSD shown in Figure 2.2 (a).
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M x N N x M

Figure 3.6 Power constrained transform model.

Then, the total transfer matrix through the system can be written as

0.9999531 —0.0000054 0.0000027
RE = | —0.0000054 0.9999527 —0.0000054 | , (3.31)
0.0000027 —0.0000054 0.9999531

at 7.92 bit/sample, and

0.7457125 —0.0432553 0.0181861
RE = | —0.0432553 0.7386143 —0.0432553 |, (3.32)
0.0181861 —0.0432553 0.7457125

at 1.50 bit/sample. From Equations (3.31) and (3.32), it is seen that the opti-
mal transform coder is not alias free. This is because the total transfer matrix
through the system is not pseudocirculant [Vaidyanathan & Mitra 1988|. From
Equations (3.31) and (3.32), it is also seen that the total transfer matrix is not
Toeplitz.

3.2 Power Constrained Transforms

The problem of power constrained transforms is illustrated in Figure 3.6. The
goal is to minimize the block MSE between the output vector &(n) and the
input vector x(n) with respect to the transform matrices E and R, and at the
same time, only a limited amount of power must be used by the channel input
vector y(n). The input vector x(n) and the channel noise vector v(n) are
assumed to represent jointly stationary vector time series with known second
order statistics and zero mean.

This problem was solved in [Lee & Petersen 1976], and the system will be
called the block pulse amplitude modulation (BPAM) system. An alternative
derivation of the BPAM solution will be given, based on the unconstrained
length filter banks introduced in Section 2.2.
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3.2.1 Problem Formulation

If the memoryless matrices E and R are inserted into Equation (2.70), the
block MSE for the BPAM system can be expressed as

Exar=Tr {(I ~RE)K,(0)(I - RE)" + RKv(O)RH} , (3.33)

1 1

where it has been used that K (0) :/2 Sz(f)df and K,(0) :/2 Sy (f)df.
1 1
~3 —3

In the BPAM system, it is assumed that the channel transfer matrix is equal
to the identity matrix, and this is used in the derivation of Equation (3.33).

Using the same reasoning as above, the power constraint in Equation (2.71)
can be rewritten as

Tr (EK,(0)E") = P. (3.34)

The problem is to minimize the block MSE given by Equation (3.33) with
respect to E and R, subject to the power constraint in Equation (3.34).

3.2.2 Alternative Derivation of the BPAM system

The optimal transform coder will be derived by first finding the optimal un-
constrained length power constrained filter banks for special input and noise
PSD matrices. This derivation follows the same procedure as used in Subsec-
tion 3.1.2.

Assume that the PSD matrix of the input vector time series x(n) to the
unconstrained length power constrained filter bank with channel transfer ma-
trix C'(z) = I is given by Equation (3.4). Furthermore, assume that the PSD
matrix of the additive channel noise is given by:

Su(f) = Kv(0), (3.35)

where K, (0) = E [v(n)v (n)] is the autocovariance matrix at lag zero of the
additive channel noise vector v(n).

In order to specify the optimal unconstrained length filter bank solution,
the frequency independent eigenvector and eigenvalue matrices, represented
by U and Ag, respectively, are needed. These matrices can be found from
Equations (3.6) and (3.7).

Let K,EM) be eigenvalue number i of the M x M autocovariance matrix
K,(0), i.e.,

K, (0)V =V Ay, (3.36)
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(M)

where the matrix A, is a diagonal matrix with x;’ as its ith diagonal element,
and the M x M matrix V contains the eigenvectors of the matrix K, (0). The
diagonal elements of the matrix A, are ordered according to

ky  <ky <o < HS\J/}{)I. (3.37)

By studying the optimal power constrained unconstrained length filter
banks given by Equations (2.72) through (2.76), it is realized that the ma-
trix G(f) is frequency independent. Therefore, the optimal polyphase ma-
trix G is an M X N frequency independent diagonal matrix. The diagonal
element number ¢ of this matrix is found by solving the following equation:

i €{0,1,... ,min(M,N) —1}, (3.38)

where p is a Lagrange multiplier for the power constraint.
The jointly optimal transmitter and receiver unconstrained length poly-
phase matrices can be expressed as:

E=VGUY, (3.39)
R=UTVIAL '
and all the matrices in Equation (3.39) are frequency independent.
The matrix T in Equation (3.39) can be expressed by
T =A,G" [GAG" +A,] " A, (3.40)

The unconstrained length jointly optimal power constrained transmitter
and receiver filter bank given in Equation (3.39) is frequency independent. By
comparing Equations (2.70) and (2.71), using S¢(f) = K(0), S»(f) = K4(0)
and C(z) = I, with Equations (3.33) and (3.34), respectively, it is seen that
the optimal unconstrained length filter bank solution has to be the optimal
transform matrices as well. The same reasoning as in the bit constrained case
is used, see Subsection 3.1.2.

3.2.3 Performance Expressions

The performance of the jointly optimal transmitter and receiver transform can
be expressed by the block MSE and power. The block MSE of the optimal
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power constrained transform system is derived from Equation (2.77), using
the modifications stated above

N-1 (N) (M)
AR .
-0 |G“' 2>\(N) + H(M), M2 N,
ENM = M-1 A(]@)H(M) ’ N_1 . (3.41)
L +y MY M <N
i=0 |Gi,i|2>\z(N) +’%(M) z:ZI\/[ Z

From Equation (2.78), the constraint on the power used per channel input
vector can be found:

min(M,N)—1
S G =P (3.42)

1=0

In [Lee & Petersen 1976], the performance expressions are formulated in a
slightly different manner, but it is straightforward to verify that the solution
found above corresponds to the solution found in [Lee & Petersen 1976].

3.3 Summary

In Section 3.1, the problem of finding the jointly optimal analysis and synthesis
transform matrices under a bit constraint was studied, and analytical expres-
sions for the optimal transforms and bit allocation were found. Differences
between the proposed transform and the KLT were pointed out.

In Section 3.2, the optimal power constrained transform matrices were
treated. The optimal solution was derived in [Lee & Petersen 1976], and an
alternative derivation of the optimal transform was given based on the uncon-
strained length power constrained solution found in Section 2.2.

The proposed transforms for both the bit and power constrained problems
are related to the KLT since they are given by the KLT multiplied by a diagonal
matrix. Therefore, the complexity of the proposed transforms is of the same
order as for KLTs. Other well known transforms like DCT and FF'T have lower
complexity.



Chapter 4

Algorithms for Finding
Signal-Adaptive FIR Filter
Banks

For FIR filter banks, the analysis and synthesis polyphase matrices denoted
E(z) and R(z), respectively, are expressed as

E(z) = e(k)z *

o (4.1)
R(z) =) r(k)z ",

k=0

where {e(k),0 < k < m} and {r(k),0 < k < [} are matrix sequences of
unknown M x N and N x M matrices, respectively. The problems considered in
this chapter are to minimize the block MSE with respect to the matrices E(z)
and R(z), subject to a bit or a power constraint.

The known solutions for signal-adaptive jointly optimized transforms, see
Chapter 3, and infinite length filter banks, see Chapter 2, give a lower and
upper bound, respectively, for the SNR vs. rate or CSNR performance of the
FIR filter banks that will be found in this chapter.

Causal FIR filters are assumed, but the same methodology could be used for
non-causal and anti-causal FIR filters. Neither PR nor linear phase is presumed
in this chapter. Since the set of filter banks considered in this chapter includes
PR filter banks, at least as good performance compared to PR filter banks will
be achieved.

The notation introduced in this chapter is closely related to the notation
used in [Honig et al. 1992], but it has been further developed. In [Gosse

65
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& Duhamel 1997], another notation is used, but the matrices containing the
filter bank coefficients in |Gosse & Duhamel 1997| can be obtained by the
matrices E_ and R,, which will be introduced in this chapter, by rearranging
the matrices’ elements.

The current chapter is organized as follows: A numerical algorithm for
finding jointly optimal FIR analysis and synthesis filter banks under a bit con-
straint is proposed in Section 4.1, and under a power constraint in Section 4.2.
Section 4.3 contains a brief summary.

This chapter is partly based on [Hjgrungnes & Ramstad 1999¢, Hjorungnes
& Ramstad 19994, Hjgrungnes, Coward & Ramstad 1999].

4.1 Bit Constrained FIR Filter Banks

Figure 1.3 indicates that the dimensions of the source and channel vectors are
N x 1 and M x 1, respectively. No assumptions on the values of N and M are
made.

This section is organized as follows: The assumptions and the problem
treated are stated in Subsection 4.1.1. In Subsection 4.1.2, equations for op-
timality are derived, and in Subsection 4.1.3, the proposed algorithm is pre-
sented. Optimization for arbitrary given filter lengths is explained in Subsec-
tion 4.1.4. Results using the proposed theory are presented in Subsection 4.1.5,
where comparisons to other filter bank solutions are given.

4.1.1 Problem Formulation

It is impossible to use the expressions for the performance developed in Chap-
ter 1 for FIR filter banks since the delay through the system must be taken
into account. In this section, an alternative method for finding expressions for
the performance of the filter bank system is used.

In the following results, some additional matrices are needed. They are
introduced here. A row-ezpanded matrix E_ is an M x (m + 1) N matrix given
by

E_=[e(0)le(1)]... |e(m)], (4.2)
and the column-erpanded matrix R, is an (I + 1) N x M matrix given by

r(l)
r(l—1)

R,

(4.3)
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Row- and column-expansions are defined for any matrix sequence as shown in
Equations (4.2) and (4.3), respectively.

Row number 7 of the row-expanded matrix E_ in Equation (4.2) contains
the impulse response of analysis filter number 2. The indices of the impulse
response increase while going from the left to the right in the matrix. The first
column of the matrix e(0) contains the first impulse response coefficients of
the analysis filters. Column number 4 of the column-expanded matrix R, in
Equation (4.3) contains the impulse response of synthesis filter number i. The
indices of the impulse response increase while going from the bottom to the
top of the matrix. The last row of the matrix r(0) contains the first impulse
response coefficients of the synthesis filters.

Another matrix that will be useful for expressing the performance of the
filter bank is the matrix E -, which is used to express convolution of two matrix
sequences. For example, if m = 2 and [ = 3, the row-expansion of the convo-
lution of the matrices R(z) and E(z) is given by the matrix-product R_E,
where R_ is an N X (I + 1)M matrix and E- isan (I +1)M x (I+m + 1)N
matrix given by

e(0)e(l)e(2) 0 0 O
0 e0)e(l)e(2) 0 0
0 0 e(0)e(l)e2 0 |’
0 0 0 e(0)e(l)e(2

where 0 is the M x N zero matrix. The matrix E- is a block Sylvester
matrix [Liitkepohl 1996|, and it is related to the transpose of the matrix A
given in Equation (30) used in the method proposed in [Nayebi, Barnwell &
Smith 1992].

The input vector signal &(n) to the analysis polyphase matrix E(z) and
the output vector signal &(n) of the synthesis matrix R(z) are given by Equa-
tions (1.5) and (1.6). Theory will be developed for an arbitrary given positive
integer delay through the total filter bank system. For this, the following vector
is needed:

xy(n) = [z(nN — dy),z(nN —ds —1),... ,z(nN —ds — (N —1))]T, (4.5)

where ds € {0,1,... , N—1} will be called the scalar delay through the system.

This delay is included such that the theory developed is as general as possible,

and it adds an extra parameter d; to the optimization of the filter banks.
The subband signals in Figure 1.1 are represented by the M x 1 vector

y(n) = [yo(n),y1(n), ... ,ysr—1(n)]" given by

y(n) =>_e(k)x(n — k). (4.6)

k=0

(4.4)
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The same quantizer model as introduced in Chapter 1 will be used here.
Let p be a positive integer. The column-expansion of a vector time se-
ries ¢(n) of dimension (p + 1)N x 1 is defined as:

z(n)
xz(n—1
z(n), = ( : ) . (4.7)
z(n —p)

The column-expansion of other vector time series are found in the same manner
as shown by Equation (4.7). A partial statistical description of the p x 1 vector

x(n), and the p x 1 vector g(n), is given by the following covariance matrices:
N

PN = B [w(n), 2" (n),], (4.8)
M

2" = B gn),q" (n),] = 3Ty, (49)

where the superscript »"V) means that it is a (p+ 1)N x (p+ 1) N matrix, and
where I, 1) is the (p +1)M x (p + 1)M identity matrix.

The covariance matrix ¢§f ’N)(dv, ds) of dimension (p+1)N x N is defined
as:

oM (dy, dy) = E [x(n), @ff(n - d,)], (4.10)

where d,, € {0,1,...,p} is a number specifying the vector delay through the
filter banks. If d, = p, d; must be equal to zero in order to ensure that PR
is possible. PR should be structurally possible, because for high rates, PR
is asymptotically optimal. For other values of d,, ds can be chosen from the
set {0,1,... ,N —1}. The total delay from the input z(n) to the output z(n),
see Figure 1.1, is given by N — 1+ d,N + ds;. The term N — 1 comes from
the delay chain before and after the decimators and expanders, respectively,
while the terms d, N and ds are due to the vector and scalar delays through
the combined analysis and synthesis polyphase filter bank, respectively. d,, is
equal to mg and ds is equal to r in Equation (5.6.7) in [Vaidyanathan 1993].

By studying Equations (4.8) and (4.10), it can be seen that the matrix
¢§,,. ) (dy, ds) is given by a submatrix of the matrix slf'g) ’N), consisting of column
number ds; + d, N through column number dg + d,N + N — 1.

The delay through the filter banks can be optimized through a discrete
optimization, where the optimal values of d,, and d; are obtained by comparing
the performances for all allowable delay values.

By rewriting the convolution sum with the notation introduced earlier in
this section, it is possible to express the vector &(n) as follows:

&(n) = R—Erm(n)| + R—Q(n)m (4.11)
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where R_ is an N X (I +1)M matrix, x(n)
g(n), isan (I +1)M x 1 vector.

In this section, it is assumed that there is no cross-correlation between the
quantization noise signal and the input signal. Therefore, the cross-correlation
between the quantization noise and the signal vector is set to zero. By substi-
tution of the covariance matrices introduced in Equations (4.8) through (4.10)
into Equation (A.8) found for the block MSE in Appendix A, the block MSE
for FIR filter banks can be expressed as

isan (m+10+1)N x 1 vector, and

Enar (o ds) = Tr {R_Erdigcm“’N)EfRf{
~R_E ¢ (dy, dy)
_ ( (m+,N) (dv,d3)>HE§R‘_q
+o0NV) 4+ g gl M R } . (4.12)

The last term in Equation (4.12) is the quantization error, and the rest of
the terms are signal distortions. Signal distortions can further be classified as
amplitude, phase, and alias distortions.

By using the quantizer model introduced in Equation (1.14), it is shown in
Appendix A that the bit constraint in the FIR filter bank case can be written
as
92Nb UgM

M-1
Il
i=0

where the operator Pr returns the product of the elements on the main diagonal
of the matrix.

The problem is to minimize the MSE given in Equation (4.12) with respect
to the analysis and synthesis filter banks, under the constraint given in Equa-
tion (4.13), while at the same time the constraints in Equation (2.4) must be
satisfied.

The objective function for the unconstrained optimization problem can be
expressed as

Pr {E_@&,.m’N gH } - : (4.13)

M-1 M—-1
Enar (dyids) + 0 Y oy — > Oroy, (4.14)
k=0 k=0

where 4 is the Lagrange multiplier for the bit constraint, and 6 is the non-
negative Kuhn-Tucker parameter |[Luenbereger 1984| for the inequality con-
straint ng > 02.
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4.1.2 Equations for Optimality with Equal Filter Lengths

By using matrix differentiation, see Appendix C, and setting the derivative of
the objective function given in Equation (4.14) with respect to the synthesis
filter bank R_ to zero, it can be shown that the optimal synthesis filter bank
for a given analysis filter bank, vector, and scalar delay can be expressed as:

H -1
R z( &-m“’N)(du,ds)) El (Erdi&m+l’N)E§+4SSj’M)) L (415)

The result in Equation (4.15) is an FIR Wiener synthesis filter bank. In Sub-
section 7.2.3, the orthogonality principle [Therrien 1992| will be used to derive
the FIR Wiener filter bank.

Using the matrix differentiation formulas found in Appendix C, the ob-
jective function in Equation (4.14) can be differentiated with respect to the
analysis filter bank E_. In this way, it is possible to derive equations for the
optimal analysis filter bank for a given synthesis filter bank, vector, and scalar
delay. These equations are nonlinear, and are given by:

H
RIHT{R_Er@(cmH’N) _ (¢§,;m+l’N)(dv,ds)) }
= (@ - uz,") B85, (4.16)

where the matrix @ is an M x M diagonal matrix, where diagonal element
number ¢ is the Kuhn-Tucker parameter ; for the inequality given in Equa-
tion (2.4). Xy in an M x M diagonal matrix, where diagonal element num-
ber ¢ is given by the variance of subband signal O’;i, which depends on the
input statistics and the analysis filter bank E_. In Equation (4.16), the opera-
tor 7 : RVX(mH+DN _y RUADNX(m+1N 1yr6duces a rectangular block Toeplitz
matrix of dimension (I +1)N x (m + 1)N from an N X (m + [ + 1) N matrix.
Let W_ be an N x (m + [+ 1)N matrix, where the ith N x N block is given
by [W_];, i € {0,1,... ,m +[}. Then, the operator T is defined as follows:

W_li W_]iz1 -+ W]y

T{W_} = (4.17)

[W—]l [W—]Z [W—]mﬂ
W_lo W_]i - [W_]n

The Kuhn-Tucker parameters #; must be non-negative, i.e., §; > 0, and
Equation (2.14) must be satisfied.
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Table 4.1 Pseudo code of the numerical optimization algorithm.

Step 1: Initialization
Choose values for u, 6;, N, M, m, and [
Initialize the analysis filter bank

Step 2: Delay Processing
ford, :=0,1,... ,m+1

ifd,=m+1

ds =0

Perform the optimization procedure in Step 3
else

for ds :=0,1,... ,N —1
Perform the optimization procedure in Step 3
end
end
end
Go to Step 4

Step 3: Filter Bank Optimization Procedure
Step i: Synthesis Filter Optimization
For the current value of the analysis filter bank, find the
corresponding synthesis filter bank from Equation (4.15)
Step ii: Analysis Filter Optimization
For the current value of the synthesis filter bank, find the
corresponding analysis filter bank by solving Equation (4.16)
Step iii: Convergence Check
if the analysis filter bank has converged
Store the current filter bank as the optimized one for the current
values of d, ds, u, and 6;
Procedure finished
else
Go to Step i
end
Step 4: Rate Check
Find the filter banks with the best performance among all the calculated
filter banks. The corresponding values of the vector delay d,, the scalar
delay dg, and the best performing filter banks are the optimized values
for the current values of u and 6;
Calculate the rate of the current optimized filter banks
if the rate is the desired target rate
The current values of the analysis and synthesis filter banks and the
corresponding values of d, and ds contain the optimized values
Stop
else
Adjust p and 6;, and go to Step 2
end
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4.1.3 Numerical Optimization Algorithm

An important task in the numerical optimization algorithm is to find a good
initial condition for the analysis filter bank. For high rates, the jointly op-
timized filter banks should be close to having the PR property since the
quantization noise is very small in this case. Therefore, for high rates, the
signal-adaptive gain optimized linear phase biorthogonal filter banks found
in |Balasingham 1998| and the PR 10_ 18 filter banks found in [Tsai et al. 1996]
were used as the initial filter banks. The optimization was then carried out for
decreasing rates, with the filter bank found for a higher rate used as an initial
filter bank.

There are other possibilities for finding initial values for the optimization
algorithm. The optimal bit constrained transform matrices found in Section 3.1
can be used to find initial values. This can be done by setting e(k) = 0 for all
k € {0,1,2,... ,m} except one, which is set equal to the analysis transform
matrix found in Section 3.1. Another possibility is to truncate the uncon-
strained length filter banks found in Section 2.1 to the appropriate length and
to use this as an initial value. Other promising FIR solutions found in the
literature can also be used as initial values.

The numerical optimization algorithm for finding the jointly optimized
analysis and synthesis FIR filter bank is summarized in Table 4.1.

For m =1 = 0 the iterative numerical algorithm converges to the optimal
transform proposed in Section 3.1.

Equations (4.15) and (4.16) should be solved simultaneously, and in Ta-
ble 4.1 this is achieved by an iterative procedure. Another possibility would
have been to solve these equations simultaneously by using numerical methods.
This has been tried with the Matlab Optimization Toolbox [Coleman, Branch
& Grace 1999, but this leads to convergence difficulties. The results obtained
in this way were not as good as the results obtained by the algorithm shown
in Table 4.1.

If different initial values are used for the analysis filter bank in the opti-
mization algorithm, the resulting filter banks will not necessarily be the same.
This shows that the global optimum is not necessarily found by the iterative
FIR optimization algorithm. However, the results obtained by the algorithm
show that very good performance is achieved.

4.1.4 Arbitrary Filter Length Optimization

Theory for jointly optimized FIR filter banks with analysis filter lengths (m +
1)N and synthesis filter lengths (I + 1) N was developed earlier in this section.
Here, this theory is extended to include the case where the filters can have
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arbitrary given filter lengths, such that unequal filter lengths are also possible.

Row number 4 from left to right in the matrix E_ represents the impulse
response of analysis filter number i, H;(f). Column number i from bottom
to top in the matrix R, represents the impulse response of synthesis filter
number 7, Fj(f). Since the filter lengths in the filter banks are not necessarily
equal, the matrices E_ and R, may contain impulse response coefficients that
are forced to zero.

The length of the impulse response of an FIR filter is defined as the number
of impulse response coefficients between the first non-zero impulse response
coefficient and the last non-zero impulse response coefficient, even though some
of the coefficients in between may be equal to zero. Let £y, and ¢, be the
length of the impulse response of analysis filter H; and synthesis filter Fj,
respectively. Assume that the decimation factor used is N, and let m and [ be
the smallest non-negative integers such that

max {¢g,]i € {0,1,... , N —1}} < N(m+1) and

4.18
max {{p,|i € {0,1,... ,N —1}} < N(l + 1), (4.18)

respectively.

Let A_ be an M X (m + 1)N matrix containing ones at the positions
corresponding to where the analysis filter bank E_ contains free parameters
and zeros where E_ must contain zeros. In the same way, let & be an
(I+1)N x M matrix containing ones at the positions corresponding to where
the synthesis filter bank R, contains free parameters and zeros where R, must
contain zeros. Analogous to the above definition, let S_ be an N x (I +1)M
row-expanded matrix corresponding to the matrix R_.

By using Lagrange multipliers [Luenbereger 1984], it can be shown that the
equations for finding jointly optimized analysis and synthesis filter banks with
arbitrary given filter lengths can be found by picking out the equations from
Equations (4.16) and (4.15), respectively, corresponding to the positions where
A_ and 8§_ are different from zero. In addition, in the positions corresponding
to where A_ and S_ are equal to zero, the old equations in these positions are
replaced with equations stating that the corresponding filter coefficients are
equal to zero. In this method, the fixed filter coefficients could be set to an
arbitrary constant value, not only zero, and this can be done for any coefficients
in the impulse response.

Since the matrices A_ and 8, may contain zeros and ones at arbitrary
positions, the above procedure can be used to find jointly optimized analysis
and synthesis filter banks with arbitrary given filter lengths. This is done by
choosing an appropriate shape of the matrices A_ and &,. While choosing the
shape of these matrices, it is important to remember that the delay through
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each branch of the analysis/synthesis filter bank combination must be the
same if the filter bank is to possess the PR property. At high rates, it is
asymptotically optimal to have PR filter banks, so the structure of the matrices
A_ and 8, must be chosen carefully.

An example of how the matrices A_ and 8, can be selected in the 5 3 case
will be given. The notation 5 3 means that N = 2. The analysis lowpass
filter and the synthesis highpass filter have filter length ¢g, = ¢F, = 5, while
the analysis highpass filter and the synthesis lowpass filter have filter length
g, = fp, = 3. The given values lead to m = [ = 2. If the vector delay is
d, = 1 and the scalar delay is ds = 0, then the following matrices can be used:

(4.19)

A_:[lllllﬂ]’

111000

and

"0 01
01
01
S = 11 (4.20)
11
_11_

To make sure that the delay through each subband branch is the same, the
zeros have been put at the top of the & matrix. This example is designed
such that linear phase should be possible in the optimized filter bank.

4.1.5 Bit Constrained FIR Filter Bank Results

In all the results presented in this subsection, the following choice is made:
02 =1

Figure 4.1 shows the magnitude responses for different 9 7 filter banks
when coding a Gaussian AR(1) source with correlation coefficient 0.95 at
2.67 bits/sample. In the figure, the following choices have been made: N =
M =2 d, =5, and d; = 0. Row number ¢ in the figure represents sub-
band number ¢ in the subband coder. The first column shows the analysis
filters, while the second column shows the synthesis filters. The magnitude
responses in Figure 4.1 show that the proposed 9 7 filter bank has differ-
ent shaping both in the pass- and stopband regions from the 9 7 filter bank
in [Balasingham 1998| and the 9 7 wavelet in [Antonini et al. 1992].

Table 4.2 shows the distortion rate performance of different systems when
coding a Gaussian AR(1) source with correlation coefficient 0.95. Since
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Figure 4.1 Magnitude response for the 9_7 filter banks, where N = M = 2, ¢; = 5,
m=1=4,d, =5, and ds = 0. The proposed filter bank is shown by the solid curves,
the dash-dotted curves show linear phase biorthogonal system [Balasingham 1998]
responses, and the dashed curves show the responses of the 9 7 wavelet in [Antonini
et al. 1992]. A Gaussian AR(1) source with correlation coefficient 0.95 is coded at
2.21 bits/sample in all cases. Row number 4 in the figure is subband number ¢ in the
subband coder. The first column shows the analysis filters, while the second column

shows the synthesis filters.

it is assumed that uniform entopy constrained scalar quantizers are used,
the coding coefficients are given by ¢; = & [Gersho & Gray 1992 for all
i € {0,1,... ,M — 1}. The performances of the four well known wavelets
5 3 [Le Gall & Tabatabai 1988], 6_6 [Rodrigues et al. 1997]', 9 7 [Antonini
et al. 1992], and 10_18 [Tsai et al. 1996|, are included in the table as well
as the distortion rate function [Berger 1971], optimal unconstrained length
filter banks from Section 2.1, and optimal transforms from Section 3.1. Gain
optimized biorthogonal filter banks with linear phase [Balasingham 1998| are
also shown in the table. In the table, results are also included for systems

!The filter coefficients in this case were found at the following URL:
http://www.wavelet.org/wavelet/digest_06/digest_06.05.html.
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Table 4.2 Theoretical distortion rate performances.

N = 2. The source is a Gaussian AR(1) with correlation coefficient 0.95. d, indicates

the vector delay used in the system. ds; = 0 in all cases, and ¢; = .

Bit rate [bits per sample]

Type of 050 | 1.00 | 2.00 | 3.00
coding system SNR [dB]

Dist. rate func. [Berger 1971] 12.70 | 16.13 | 22.15 | 28.17
Infinite order, Section 2.1 9.55 | 13.38 | 19.75 | 24.93
Transform, Section 3.1 5.52 9.80 16.96 | 21.90
5 3 [Le Gall & Tabatabai 1988],d, =1 || 5.43 | 10.68 | 16.79 | 22.81
Biorth. 53 [Balasingham 1998], d, =1 5.46 | 10.72 | 16.82 | 22.84
5 3 Wiener, d, =1 6.48 | 10.94 | 17.71 | 23.12
Proposed 5 3,d, =1 6.50 | 10.94 | 18.21 | 23.16
6_6 [Rodrigues et al. 1997], d, = 2 493 | 10.25 | 16.53 | 22.55
Biorth. 66 [Balasingham 1998|, d,, = 2 9.57 | 10.76 | 16.72 | 22.74
6 6 Wiener, d, = 2 8.10 | 11.83 | 17.79 | 23.06
Proposed 6 6, d, =2 8.17 | 12.11 | 18.31 | 23.51
9 7 [Antonini et al. 1992],d, =5 4.45 9.89 16.45 | 22.45
Biorth. 9_7 [Balasingham 1998], d, =5 || 6.22 | 11.35 | 17.01 | 23.03
9 7 Wiener,d, =5 8.33 | 12.14 | 18.06 | 23.36
Proposed 9 _7,d, =5 8.53 | 12.28 | 18.75 | 23.94
10 18 [Tsai et al. 1996], d, = 6 4.99 | 10.37 | 16.76 | 22.78
10_18 Wiener, d, =6 8.84 | 11.97 | 17.97 | 23.13
Proposed 10 18, d, =6 9.31 | 13.08 | 19.41 | 24.54

using a PR analysis filter bank and FIR Wiener synthesis filter bank with the
same filter lengths as the PR FIR synthesis filter bank. In the 5 3, 6_6, and
9 7 cases, the analysis filter banks are found in [Balasingham 1998|, while in
the 10_ 18 case, the analysis filter bank in [Tsai et al. 1996] is used. The bit
allocation is the same as the bit allocation used if PR filter banks were used,
i.e., the bits are distributed such that the product of the quantization noise

variance and the squared norm of the PR synthesis filter is constant for each
branch of the filter bank.

The proposed filter banks perform better than all the other systems in
Table 4.2. Most of the gain obtained over PR filter banks is achieved by using
a Wiener synthesis filter bank. However, this requires that the analysis filter
bank available is well suited for coding the PSD of the input time series z(n). If
PSDs with bandpass characteristics were used, the situation would be different.
In Table 4.2, the results are obtained by PR filter banks adapted to PSDs with
lowpass characteristics, but the situation would have been different if a PSD
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Figure 4.2 The upper figure shows the alias free transfer function Ag(f) for the
9 7 filter bank shown in Figure 4.1. The lower figure shows the corresponding first
aliasing term A; (f). The same parameters as in Figure 4.1 are used here.

such as the one shown in Figure 2.2 (a) was used.

From the table, it is seen that the proposed system 6 6 system performs
better than the 9 7 PR filter bank in [Antonini et al. 1992| as well as the
9 7 PR filter bank in |[Balasingham 1998|, even though the filter lengths are
shorter in the proposed filter bank.

Figure 4.2 shows the alias free transfer function Agy(f) and the first aliasing
term A;(f) [Vaidyanathan 1993, pp. 225-226| for the filter bank shown in
Figure 4.1. The alias free transfer function of the cascaded analysis/synthesis
system is approximately 0 dB for f = 0, and approximately —4.7 dB for f = %
The maximum value of the alias free transfer function is approximately 0.15 dB,
and it is achieved at a relative frequency of 0.13. The gain for the first aliasing
term is approximately —23 dB at f = 0 and approximately —51 dB at f = %,
where f is a relative frequency. The maximum value of the first aliasing term
is —15.6 dB at f = 0.18. It is seen from the figure that the proposed filter
bank does not have the PR property, because for PR filter banks the alias free
transfer function is equal to 0 dB and the first alias term is equal to —oo dB
for all frequencies.

The corresponding impulse responses of the magnitude responses shown in
Figure 4.1, are shown in Figure 4.3. From the figure, it is seen that the impulse
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Figure 4.3 Impulse responses of the proposed 9 7 FIR filter bank system for the
same parameters as in Figure 4.1. Row number ¢ in the figure is subband number
in the subband coder. The first column shows the analysis filters, while the second
column shows the synthesis filters.

responses have linear phase.

4.1.5.1 Linear Phase

If the optimization is performed for all the different delays, it has been found
that the optimal values of the delays d, and d; are rate dependent, so the
optimal delay for one particular rate need not be optimal for a different rate.

If it is desired that the filter bank have the PR property, which is an
advantage for high rates, the delay through each branch of the filter bank
must be the same. If in addition, all the filters must have linear phase, this
also decides the vector and scalar delay through the filter bank, if the filter
lengths are given. However, the delay through the filter bank can be chosen in
such a manner that linear phase is impossible for the given matrices A_ and
S, . If the initial filter bank does not have linear phase, the resulting optimized
filter bank might not have linear phase.

If the delays are chosen such that linear phase is possible, and the initial
filter bank does have linear phase, the optimized filter bank usually also has
linear phase. However, in some optimizations, the optimized filter bank does
not have linear phase even in this case. In the passbands, the phase is approx-
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Figure 4.4 Comparisons of magnitude responses of the proposed systems. The
input signal is a Gaussian AR(1) signal with correlation coefficient 0.95, N = M = 2,
and ¢; = %. The solid curves show the frequency response of the unconstrained
length filter banks from Section 2.1, the dotted curves show the FIR responses when
using the optimized 9 7 filter banks with d, = 5 and ds; = 0 from this section, and
the dash-dotted curves show the bit constrained transform magnitude responses from
Section 3.1. The bit rate used is 4.21 bits/sample in all cases. Row number i in the
figure is subband number ¢ in the subband coder. The first column shows the analysis

filters, while the second column shows the synthesis filters.

imately linear even if the filters do not have linear phase for all frequencies.
It is not surprising that linear phase might be suboptimal, because if linear
phase is imposed, this approximately halves the number of free optimization
parameters.

4.1.5.2 Magnitude Response Comparisons

Figure 4.4 compares the magnitude responses of the unconstrained length filter
banks found in Section 2.1, the bit constrained transforms found in Section 3.1,
and the FIR filter banks presented in the current section, when coding a Gaus-
sian AR(1) source with correlation coefficient 0.95 at 4.21 bits/sample. The
SNR values of the three systems are as follows: Unconstrained length filter
banks: SNR = 32.0 dB, transforms: SNR = 28.9 dB, and 9 7 FIR filter
banks: SNR = 30.9 dB.
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From Figure 4.4, it is seen that the shaping of the stopband is very different
in the three cases. In the unconstrained length case, there is infinite attenuation
for all frequencies in the stopbands. In the transform and FIR filter bank cases,
the shaping of the stopbands is different, and in the FIR case there are zeros
on the unit circle in the passband on positions different from z = —1. More
attenuation is therefore achieved in the FIR case than the transform case.

In the passbands, the FIR case resembles the unconstrained length filters
more than the transform filters. For the unconstrained length and FIR analysis
filters, it is observed that the shaping of the passbands resembles half-whitening
of the input PSD function. In the transform case, each filter has only one zero
since N = 2, and from the magnitude responses, it is seen that this zero is
either placed at z = —1 or z = 1 for lowpass and highpass filters, respectively.

4.2 Power Constrained FIR Filter Banks

The system considered in this case is shown in Figure 1.3. It is assumed
that the input vector signal to the transmitter &(n) is uncorrelated with the
additive channel noise vector v(p) for all values of n and p. Figure 1.3 indicates
that the dimensions of the source and channel vectors are N x 1 and M x 1,
respectively. There are no assumptions on the values of N and M. Therefore,
this is a generalization of the results found in [Honig et al. 1992], where it was
assumed that N = M. The results presented are also valid for M > N. In this
section, it is assumed that the transmitter E(z) and receiver filter bank R(z)
are FIR, i.e., they are given by Equation (4.1).

This section is organized as follows: The problem treated is stated in Sub-
section 4.2.1. In Subsection 4.2.2, necessary conditions for optimality will be
derived and the optimization algorithm will be explained. Subsection 4.2.3
contains results using the proposed filter banks, and comparisons are made
with results found in the literature.

4.2.1 Problem Formulation

In this subsection, the problem is formulated for the FIR power constrained

case. Let the channel transfer function be described by an FIR matrix polyno-
o

mial of order o, i.e., C(z) = Zc(z)zﬂ This matrix has dimension M x M,
i=0
and the matrix is assumed to be known.
In order to formulate the problem, an expression for the block MSE must be
obtained. By comparing Figures 1.1 and 1.3, it is seen that if the analysis filter
bank E(z) in the bit constrained case is equal to the convolution of the channel
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transfer matrix and the transmitter filter matrix in the power constrained case,
that is C(z)E(z), the two systems are equivalent. Therefore, the block MSE
for the power constrained FIR case, shown in Figure 1.3, can be derived from
the block MSE for the bit constrained FIR case, by substituting the analysis
polyphase filter bank E(z) in the bit constrained case with the convolution
of the channel transfer matrix and the analysis polyphase matrix. The block
MSE in the FIR bit constrained case is given in Equation (4.12).

The row-expansion of the convolution of the channel transfer matrix and
the transmitter polyphase matrix can be expressed as E_ = C_E_, which is
an M x (m+o0+1)N matrix. The matrix C_ is an M x (o+1) M matrix. Notice
that the dimensions of the matrix F - are not the same as in Section 4.1 since
it will be used when finding the convolution of the channel transfer matrix and
the transmitter polyphase matrix. The dimensions of the matrix E- are (o +
1)M x (04+m+1)N in this section. The row-expanded matrix which is used to
express the total transfer function through the system is given by R_(C_E ) _,
and the dimensions of this matrix product are N x (m + o+ 1+ 1)N. The
matrix (C_E)_ has dimensions (I +1)M x (m+o+1+1)N, and it is defined
as:

(C—Er)\ =
e(0) e(1) e(2) é(m +o) 0 0
0 ¢é(0) e(1) é(m+o—1) é(m—+o) 0
0 0 é(0) é(1) é(m—i—.o— 1) é(m + o)

where the matrix E_ = [é(0)|&(1)]. .. |é(m + o)].

From Equation (4.21), it is seen that the operator (-)_
expanded matrices producing a block matrix with shifted versions of the row-
expanded matrix. Using this operator, it can be seen from Equation (4.4)
that E- = (E_)

operates on row-

N

If the matrix R_(C_E-)_ is used to express the row-expansion of the
total transfer matrix in Equation (4.12), if m is replaced with m + o, and if
the symbol of the additive noise vector is changed from q to v, the following
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expression is obtained for the block MSE in the power constrained FIR case:
Exar (doydy) = T {R_(C_E.) """ (C_E.) )" RY
—R_(C’_El-)\ gnm+0+l,N)(dv’ds)
(4 dy.a) " (CB) )" RY

+o"V) 4 g M RH } : (4.22)
where the matrix &™) is the (I+1)M x (I + 1)M autocovariance matrix of
1,M)

the additive noise vector v(n),. @y’ ’ is defined as

&M = B [v(n) v (n),]. (4.23)

|
Note that v(n), is an (I + 1)M x 1 vector.
The value of the block MSE in Equation (4.22) for power constrained FIR
filter banks reduces to the block MSE for bit constrained FIR filter banks in
Equation (4.12), when C(z) = I and v(n) = q(n).
The expression for the power used by the input vector y(n) to the channel
is derived in Appendix A:

Tr {E_ezsg,m’N gH } ~P (4.24)

The problem is to minimize the block MSE given by Equation (4.22) with
respect to the transmitter matrix E(z) and the receiver matrix R(z), subject
to the power constraint given in Equation (4.24). The means of all the signals
are assumed to be zero, and the second order statistics of the vector time
series (n) and v(n) are assumed to be known.

4.2.2 Equations for Optimality

In this subsection, equations for optimality are found, and a comparison is
made for the corresponding equations presented in [Honig et al. 1992].

The constrained optimization problem stated in Subsection 4.2.1 can be
converted to an unconstrained optimization problem by using a Lagrange mul-
tiplier. The unconstrained objective function can be expressed as

Ex g (dy, dy) + p Tr {E_dig,m’N)Efl} , (4.25)

where p is the Lagrange multiplier. Necessary conditions for optimality are
found by matrix differentiation of the objective function in Equation (4.25).
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For a given transmitter filter bank, the equations for the optimal receiver
filter bank are found by matrix differentiation of the objective function in
Equation (4.25) with respect to the matrix R_. By using the formulas given
in Appendix C, it can be shown that the optimized receiver filter bank for a
given analysis filter bank and delay values d, and ds can be found by solving
the following equations:

m-+o+I, 1 H
R = (¢5" """ (dy.dy)) " ((C-Bc).)
-1
((C_Bc) 2L (CLB) )T+ @0) L (a.20)

This is a generalization of the result as found in [Honig et al. 1992], to include
a scalar delay dg, and not only a vector delay d,.

For a given receiver matrix, the equations for finding the optimized trans-
mitter matrix are obtained by matrix differentiation of the unconstrained ob-
jective function in Equation (4.25) with respect to the transmitter matrix E_.
By using the results from Appendix C, it can be shown that these equations
can be expressed as

H
ciT, {Rf’ T {R_(C_Er)\égm“”’m - ( fmtotbN) (g, | ds)) }}

= —uE_™N), (4.27)

where the operator 77 : RVX(mtotl+N _y RUADNx(m+o+1)N nroduces an
(I4+1)N x (m+ o0+ 1)N block Toeplitz matrix from an N X (m+o+1+1)N
matrix, and the operator T3 : RM*(mtotHN _y Rlo+H)Mx(m+DN nroduces an
(0+1)M x (m+1)N block Toeplitz matrix from an M x (m+ o+ 1) N matrix,
see Appendix C, where both 77 and 73 are defined.

Equation (4.27) is not the same equation found in [Honig et al. 1992]. In
Subsection 4.2.3.2, it will be shown by design examples that the formula pre-
sented in [Honig et al. 1992] does not give the same results as the proposed
formula for a correlated source, but the same results are found for an uncorre-
lated source.

The optimization algorithm used for optimizing the power constrained FIR
filter banks can be derived from the algorithm presented in the bit constrained
case in Subsection 4.1.3. It is straightforward to obtain the algorithm from
Table 4.1, and the power constrained algorithm will not be presented here.

Optimization for arbitrary given filter lengths in the FIR power constrained
problem can be done with a similar procedure as shown in Subsection 4.1.4.

The bit and power constrained problems considered in this chapter are
equivalent when M =1 and C(z) = I, since under these conditions the block
MSE is equal in both problems, and the bit and power constraint are equivalent.
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Figure 4.5 SNR vs. CSNR performance of proposed power constrained FIR filter
banks are shown by the x-marks while the system proposed in [Honig et al. 1992] is
shown by the circles. Both the input time series and the additive channel noise are
white and Gaussian, N=M =2, m=101=2,0=0,d, =1,d; =0, and C(z) = I.
6_6 filter banks are used.

4.2.3 Power Constrained FIR Filter Bank Results

In this subsection, results in the FIR power constrained case are included, and
comparisons are made to the methods proposed in [Honig et al. 1992] and
[Malvar 1986]. In order to compare the results found in [Malvar 1986], the
theory will be extended to include additive signal independent noise on the
original signal.

4.2.3.1 Comparison to a Method Proposed by Honig et al.

In [Honig et al. 1992], a formula is given for finding the optimal FIR transmitter
matrix for a given receiver matrix R(z) and Lagrange multiplier p. This is
Equation (4.14) in [Honig et al. 1992|. By two examples, it will be shown that
this formula gives correct results for an uncorrelated source, but it results in
incorrect results when a correlated input source is used.

If the performance of the proposed system is compared to the results found
by the formulas in [Honig et al. 1992], the same results are obtained if the
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Figure 4.6 SNR vs. CSNR performance of proposed power constrained FIR filter
banks are shown by the x-marks while the system proposed in [Honig et al. 1992]
is shown by the circles. The input time series is a Gaussian AR(1) time series with
correlation coefficient 0.95, Gaussian white noise is added on the channel, with: N =
M=2m=1=2,0=0,d,=1,ds =0, and C(z) = I. 5_3 filter banks are used.
The upper curve is OPTA.

input signal is uncorrelated. This is shown in Figure 4.5 where the identity
channel matrix is used, the input is uncorrelated, N = M =2, m =1 = 2, and
o=20. 6_6 filter banks are used in both systems.

From Figure 4.5, it is seen that the same performance is achieved by the
system proposed in this section and the system in [Honig et al. 1992]. If the
OPTA curve is compared to the results obtained in Figure 4.5, it is equal to
the performance of the two systems. It can be shown that this is always the
case if the input signal is white Gaussian, N = M, C(z) = I, and the channel
noise is signal independent, white and Gaussian [Berger 1971].

In Figure 4.6, the performance of the proposed system using 5 3 filter
banks when C(z) = I, and N = M = 2 is shown by the x-marks. The OPTA
curve is the upper curve in the figure. The curve with the circles is obtained
by using the synthesis filters of the proposed system with the analysis filter
bank found by Equation (4.12) in [Honig et al. 1992|. The rightmost circle and
x-mark correspond to the same value of Lagrange multiplier .
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v(n)

y(n) /L y(n) &(n)
C(2) R(z) |

N

Figure 4.7 The power constrained MIMO block model with noise added to the
original signal.

From Figure 4.6, it is seen that the performance obtained by Equa-
tion (4.14) in [Honig et al. 1992| gives negative values of SNR. Therefore,
this formula must be wrong for the correlated input source used in the exam-
ple. The correct formula is given by Equation (4.27). Figure 4.5 can also be
obtained by using the synthesis filter bank from the proposed system in this
section and Equation (4.14) in [Honig et al. 1992]. Equation (4.14) in [Honig
et al. 1992] is therefore correct for the uncorrelated source used in Figure 4.5.

In [Crespo, Honig & Steiglitz 1989], which is an earlier article by the same
authors as [Honig et al. 1992], it was assumed that the input signal was un-
correlated, and it was mentioned that the results were easy to generalize to
correlated sources. This is what has been attempted in [Honig et al. 1992],
but the equation for an optimal transmitter filter bank for a given synthesis
filter bank is wrong for the correlated source used in the example shown in
Figure 4.6.

4.2.3.2 Comparison to a Method Proposed by Malvar

In [Malvar 1986], jointly optimal FIR analysis and synthesis filter banks with
linear phase were proposed for M = 1. Only one filter was used in both the
analysis and synthesis filter bank, and it was assumed that signal independent
noise was added both at the original signal and at the channel. In order to
make a fair comparison to the result in [Malvar 1986], the theory developed in
this section will be extended to include additive noise on the original signal.

Figure 4.7 shows the MIMO block system when noise is added to the orig-
inal signal. The additive noise vector has dimension N x 1, and it will be
denoted w(n). It is assumed that this noise vector has zero mean and that it
is uncorrelated with the original signal vector (n) and the additive channel
noise vector v(n) for all lags.

It is straightforward to extend the theory developed earlier in this section
to include the additive noise on the input signal. Expressions for the block
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MSE and the power used by the system must be found. The block MSE can
be found in a similar manner as was done when deriving Equation (4.22), and
the result is:

oy 1€ () )
~R_(C_E,)_ gnm+o+l,N)(dv’ds)
_ <¢§:m+o+l,N)(dv,ds))H (C.E.) )" Y
+20" + .8y R, (1.28)

where the matrix ") is an (p+1)N x (p+ 1)N autocorrelation matrix for

the (p+1)M x 1 additive noise vector u(n),, and &) is defined in a similar
way as in Equation (4.8).

The power used by the system will now increase due to the additive noise
vector, and it can be shown that the power used by the vector y(n) in Fig-
ure 4.7, is given by

Tr {E_ (qs(mm’N ) gl )) E" } —P (4.29)

To optimize the system with additive input noise, necessary conditions for
the optimal solution are needed. These equations can be found in a similar
manner as used in Subsection 4.2.2. For a given transmitter filter bank, the
optimized receiver filter bank can be found by solving the following equation

R — ( g,erOH’N)(dv,ds))H ((C’_Er)\)H

-1
. ((C_El—)\ (dsgneroJrl,N) +¢£Lm+o+l,N)> ((C_E,—)\)H +45§,Z’M)) ‘
(4.30)

The equations for optimizing the transmitter filter bank for a given receiver
filter bank are given by:

Ccl'T, {R.H Ti {R_(C_Er)\ (@t 4 gttt
H
— (o8N dy)) }} = —pE_ (80" + 2("V) . (a31)

If Equations (4.30) and (4.31) are compared to Equations (4.26) and (4.27),

respectively, it is seen that if the matrices @&mJFOH’N) and @5}”’]") are set to

zero, the corresponding equations are equal.
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Figure 4.8 The solid curve shows the SNR vs. CSNR performance using the pro-
posed theory with the following parameters: N =3, M =1, m =1 =4, d, = 3,
ds = 1, and the input PSD is an AR(1) source with correlation coefficient 0.9. The cir-
cle shows the performance of the system proposed in [Malvar 1986]. ISNR = 30.0 dB
in both systems.

In Section 3.4 in [Malvar 1986], an example is given using the following
parameters: N =3, M =1, m=1=4,d, =3, d; =1, and the input PSD is
an AR(1) source with correlation coefficient 0.9. Furthermore, it was assumed
that the subband samples were uncorrelated with the white additive channel
noise. Linear phase is assumed in [Malvar 1986|, and the filter lengths are 13
in both the analysis and synthesis filter. The same parameters were used in
the proposed theory. Figure 4.8 shows the results achieved with the proposed
method.

Let the input signal to noise ratio (ISNR) be defined as the ratio between
the input signal variance and the input noise variance o2 /02, where o2 is the
variance of the additive input noise. In this definition, it is assumed that all
the vector components of u(n) have zero mean and the same variance o2. In
Figure 4.8, ISNR = 30.0 dB.

From Figure 4.8, it is seen that the performance of the proposed system
reaches a certain limit when the CSNR values are increased. The reason for
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this is that M = 1, and with M < N it is impossible to achieve PR. In the
example in [Malvar 1986], the noise level in both the input signal and on the
channel was 30.0 dB. Then the overall performance of the system was reported
to have an SNR = 11.9 dB in [Malvar 1986]. This is 0.29 dB worse than the
results obtained by the proposed system.

In [Malvar 1986], linear phase impulse responses were imposed in the op-
timization of the system. In the proposed system, no such restriction was
made, and the resulting filter banks do not have linear phase. This shows that
linear phase might lead to suboptimal solutions because the number of free
parameters is reduced.

If M is increased, the performance of the system will improve at the expense
of increasing the bandwidth used on the channel.

4.3 Summary

An optimization algorithm was proposed for finding FIR signal-adaptive jointly
optimized analysis and synthesis filter banks with arbitrary given filter lengths
and delay through the filter banks, under a bit constraint. The results show
that the filter banks have neither linear phase nor PR in general. The pro-
posed filter banks are source and rate dependent, which is not the case for PR
systems. In Table 4.2, it was shown that the results for the proposed method
are better than other well known filter banks found in the literature with the
same filter lengths. For short filter lengths, the improvement is low, but for
longer filters a significant improvement was achieved.

Equations for finding jointly optimal power constrained FIR analysis and
synthesis filter bank were proposed. The equations for the synthesis filter
bank are a generalization of the FIR Wiener filter bank equations found in
the literature, to include arbitrary given filter lengths and arbitrary scalar and
vector delay.

Both the bit and power constrained filter banks proposed in this chapter can
be considered to be a generalization of the method proposed in [Malvar 1986],
where an algorithm for finding jointly optimal analysis and synthesis filter
banks having one analysis and one synthesis filter, i.e., M = 1, was given. It
was assumed that the channel was power constrained. However, since only one
channel was used, the power constraint is equivalent to the bit constraint, see
Equation (4.13). The power constrained case was extended to include additive
noise on the original signal, and this can also be done for the bit constrained
problem.






Chapter 5

Connection between BPAM and
Power Constrained MIMO

In this chapter, a communication system is studied where a continuous ampli-
tude, discrete time, stationary source signal is transmitted over a power con-
strained, discrete time, continuous amplitude channel. The channel is assumed
to have an identity transfer function and is contaminated by additive white
noise. For a given channel quality, which can be measured by the CSNR, the
objective is to design a communication system which minimizes the distortion
between the original and the received signals at a given channel bandwidth.

Different system solutions exist, some of which are considered in [Fuldseth
& Ramstad 1997, Vaishampayan 1989, Lee & Petersen 1976, Hjorungnes &
Ramstad 1997]. Here, only linear solutions are studied. It is shown in this
chapter that there exists a connection between the performances of the BPAM
system considered in Section 3.2 and the power constrained MIMO system
of infinite filter lengths presented in Section 2.2. It is shown that when the
dimensions of the BPAM system approach infinity, the performance of the
BPAM system approaches the performance of the unconstrained length MIMO
system when a pre- and postprocessor containing modulation is used in the
latter system.

The current chapter is organized as follows: In Section 5.1, the problem
is formulated. The two system solutions to be compared, the BPAM and
unconstrained length MIMO systems, are presented in Sections 5.2 and 5.3,
respectively. The actual comparison of the two system solutions is given in Sec-
tion 5.4, and a numerical example illustrating the main results in this chapter
is presented in Section 5.5. Section 5.6 briefly summarizes this chapter.

This chapter is partly based on [Hjgrungnes & Ramstad 1998¢].

91
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v(n)
RE RK RK RE
Encoder Decoder
N .
x(n) y(n) y(n) z(n)

Figure 5.1 Block diagram of the communication system.

5.1 Problem Formulation

The transmission system considered in this chapter is shown in Figure 5.1. It
is a block based system, where one output vector is produced for each input
vector. In this BPAM system, L is used for the number of source samples
in the source vector &(n) and K is used for the number of channel samples
in the channel input vector y(n). The corresponding symbols in the MIMO
system are N and M. The reason for using different symbols is to make the
comparison of the system easier.

The time series x(n), representing the source signal, is characterized by its
PSD S, (f). The encoder is a device which maps L source samples into K chan-
nel samples using only a given amount of transmitter power. The output of
the encoder is transmitted over a memoryless channel with additive white
noise v(n) which has variance o2. Since the BPAM system is developed for
an identity channel transfer matrix, it is assumed that C(z) = I in this chap-
ter. The decoder is designed to reconstruct the L source samples from the
K channel samples with as little distortion as possible. Let the L x 1 source
vector (n) and the K x 1 channel vector y(n) be given as shown by Figure 5.1.
Furthermore, let v(n) be a K x 1 vector containing the additive channel noise.
The received vector is thus g(n) = y(n) + v(n). The receiver is an estimator

of &(n) producing the output &(n). All signals are assumed to have zero mean.

The number of channel samples used per source sample is an arbitrary non-
negative rational number, thus both bandwidth compression and expansion are
possible.

Given L, K, and the statistical descriptions of the source and noise sig-
nals, the problem is to find an encoder-decoder pair that minimizes the ex-
pected value of the block MSE between the source vector x(n) and the de-
coded vector #(n), i.e., min E [||z(n) — &(n)||%], subject to the power con-
straint E [||y(n)||?] = P, where P is a given positive constant.
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5.2 The BPAM System

In [Lee & Petersen 1976], the BPAM system was developed. It is a linear
block based solution for communication of vectors over a memoryless vec-
tor channel. The linear vector system can therefore be used to solve the
problem described in Section 5.1. This system groups the time series into
blocks of L source samples, and the L x 1 source vector is given by x(n) =
[2(nL),z(nL —1),... ,z(nL — (L —1))]". Bach source vector is transformed
into K channel samples by a K x L memoryless matrix. Then, the vector of
K channel samples is transmitted over the channel, and an estimate of the
L samples is recovered by an L x K matrix. BPAM treats each source vec-
tor independently and does not utilize inter-vector correlation. An alternative
derivation of the BPAM system is given in Section 3.2.

Autocovariance matrices are used to describe the statistics of both the
source and noise vectors in the BPAM system. The autocovariance matrix of
the input signal is an L x L matrix and has L eigenvalues, which are not neces-
sarily distinct. The eigenvalues are ordered in descending order, i.e., according
to Equation (3.7). Since the channel is assumed to be a memoryless vector
channel with white noise components all having variance o2, all K eigenvalues
of the K x K mnoise autocovariance matrix K, (0) at lag zero are equal to o2.

Therefore, 5" = 02 for all i € {0,1,... , K — 1}.

i
From Equations (3.38) and (3.42), the power used per source sample by
the BPAM system PEE(AM(M) is given by

1 min(K,L)—1 O'2>\(L)
PEE?M(M):Z > maxg0, “MZ —02 3, (5.1)
=0

(L)

where y is a Lagrange multiplier, and ;" is eigenvalue number 4 of the L x
L autocovariance matrix Ko(0) given in Equation (3.1). Equations (3.1) and
(3.7) must be used with the correct dimensions, which means that L eigenvalues
exist with the notation introduced for the BPAM system.

The MSE per source sample is found from Equations (3.38) and (3.41) and

is given by
K-1 L-1
1
7 (Z min{)\gL), \/ U%;MEL)} + Z )\EL)> , if K<L,
eBPAM () — 1 = i=K
7Y min {,\Z(.L), ag,mg“} : if K> L.
i=0

(5.2)
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If Equations (5.1) and (5.2) are compared to Equations (B.2) and (B.3) on
page 141 in [Vaishampayan 1989, it is observed that the expressions are differ-
ent, and the reason is the incorrect use of the parameter 6 in [Vaishampayan
1989]. The parameter # in [Vaishampayan 1989]| depends on an index, but is in-
correctly treated as a constant. In [Vaishampayan 1989], the expressions given
for the performance of the BPAM system and the corresponding graphs are in-
consistent. The same mistake was made in [Vaishampayan & Farvardin 1992].

5.3 The MIMO System

In Section 2.2, jointly optimal transmitter and receiver filter banks were found
for transmitting a vector time series over a vector channel with memory. The
filters are unconstrained, i.e., they are non-causal and are allowed to have
infinite length impulse responses. The MIMO system can therefore utilize first
and second order correlation between vectors, and each vector is not treated
independently, as it is in the BPAM system. For N source samples, M channel
samples are used. With a suitable pre- and postprocessor, this system can be
used to solve the problem in Section 5.1. In Subsection 5.4.2, a system with
pre- and postprocessor containing modulation and linear filters is proposed.

If the MIMO system is used to solve the problem described in Section 5.1,
the vector channel is assumed to be memoryless with a transfer matrix given
by the identity matrix, and the noise in each sub-channel is modeled as addi-
tive white noise with variance o2. If these assumptions are inserted in Equa-
tions (2.75) and (2.78), the following expression is found for the power used
per source sample

N NI
PN ()= Y / " max {0, ““7(“—03 df, (5.3)

where p is a Lagrange multiplier, and AEN)( f) is eigenvalue number i of the

N x N PSD matrix Sz(f) modeling the source statistics. The PSD matrix is
defined in Equation (1.8) and its eigenvalues are ordered according to Equa-
tion (2.7).
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The MSE per source sample is found from Equations (2.75) and (2.77):

(M —1 LN
>/ mm{ (V) o2 (fN)} df
=0 Y 2N
N—
enare (1) = < Z / RS D, EM<N 50
N
> / 1 min{AiN (FN), /o] (fN)} df,
=0 2N
\ if M > N.

5.4 Comparison of the BPAM and Modulated MIMO
Systems

In this section, alternative expressions are found for the performance of the
MIMO system with a pre- and postprocessor containing linear filters and mod-
ulators. In addition, expressions are derived for the performance of the BPAM
system when the dimensions of the matrices tend to infinity. These expres-
sions are used to determine a connection between the performances of the two
systems in this limiting case.

5.4.1 BPAM with Dimensions Approaching Infinity

Two cases are treated separately: Case 1: K > L and Case 2: K < L.

5.4.1.1 Casel: K > L

Letting L — oo in Equation (5.2), and then using the Toeplitz distribution
theorem |Grenander & Szeg6 1958|, results in

lim 5?%1\4(#) = Llim €L (1)
— 00

L—oco
1 L—-1
= lim T Zmin{)\l@), O'%,U)\Z(L)}
1=

-/ * win (8., VS T} (55)
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The same reasoning can be used for the power used per source sample given
in Equation (5.1). The result is given by

-1 (D)
= lim lz:max 0, Tu; —o?
L—o0 o v
1 2
- /21 max {0, %x(f) - 0—3} df. (5.6)
2

5.4.1.2 Case 2: K <L

When K < L, one cannot directly apply the Toeplitz distribution theorem
because the following limit should be determined:

K—1 L-1
im eBPAM() _ im N NORVEING (L)
Lh_)ngo ek (W) = Lh—)nolof Z min< A\, \/ 02N —i—i_ZK)\i . (5.7)

1=0

The sum in Equation (5.7) consists of L addends, but all the addends are not
of the same mathematical formula, and therefore, the Toeplitz distribution
theorem cannot be directly applied.

It is known that the two sets

()t {s. (50 255 | 59

are equally distributed [Grenander & Szeg6 1958|, where ¢ € {0,1,... ,L — 1}
and L — oo. By using this result in Equation (5.7), it is seen that the two
sums are Riemann sums [Edwards & Penney 1986| with a regular partition.
Furthermore, assume that S, (f) is Riemann integrable.

The fundamental period is defined as the frequency interval (—%, %] De-

fine I" (y) to be the set of frequencies in the fundamental period of total length ~
giving the smallest values of S;(f), and define I" () to be the set of frequencies
of the fundamental period of total length « giving the largest values of S, (f).
If S;(f) is constant in some frequency regions, the sets I’ (y) and I" (y) might
not be uniquely defined, but in this case the final result is independent of the

choice of regions. The expression Llim 6%1;?1\/[(/1,) can then be written as the
—o00
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following integral:

K-1 L-1
1
i 5000 = o 7 (3 min o} S0 )

= [ il VST @ [ sow

r(1-%)

S
|

o

S

(5.9)

Here, the ordering given in Equation (3.7) has been used to determine the
region of integration.
The same derivation can be applied to Llim PBEAM (1)), The result will
—00 ’

simply be stated here as:

23,
lim PR () = /f(fg) max{(), %T(f) - ag} df. (5.10)

5.4.2 Modulated MIMO System

The MIMO system presented in Section 5.3 can be used for any preprocessing
scheme which produces a vector as input to the MIMO system. A delay chain
with decimation, which is usually used before the analysis polyphase filter
bank could be used to produce the vector input. However, such a system will
not perform well when fewer channel samples than source samples are used,
i.e., when K < L with the notation used in Figure 5.1. The reason why the
MIMO system with decimation does not perform very well is, that in order to
have alias cancellation through the whole system, the decimation process puts
severe constraints on the frequency regions of the filters, see Chapter 2 and
Appendix B. However, when the number of channel samples are greater than
or equal to the number of source samples, i.e., when K > L with the symbols
used in Figure 5.1, the performance of the BPAM system will approach the
performance of the MIMO system as the dimensions of the BPAM system tend
to infinity, even if a delay chain with decimators is used as the preprocessing
unit.

In order to get results that are valid for any choice of source and channel
samples, a pre- and postprocessing scheme is introduced. This is based on ideal
linear filters and linear modulation. The preprocessing unit is shown in Fig-
ure 5.2, and the MIMO system using this preprocessor and the corresponding
postprocessor will be called modulated MIMO system.

The following definition is needed: Let Fi(N) be the frequency region of
length % of the fundamental period where S;(f) has the ith largest values,
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Figure 5.2 Preprocessing used in the modulated MIMO system.

where 7 € {0,1,... ,N — 1}. An example of such a region is shown in Fig-
ure 5.3 (b), where the set of frequencies where the PSD is greater than zero

is equal to FO(N), with N = 3. The way these frequency regions are chosen
is related to reverse water-filling [Berger 1971, Jayant & Noll 1984, Cover &

Thomas 1991]. If the PSD function S;(f) is piecewise constant, the sets FZ-(N)
might not be uniquely defined, but this does not affect the final result.

In Figure 5.2, B;(f) is a digital filter, and it is therefore periodic with
period 1. Within the fundamental period, the filter B;(f) is defined as:

- (V)
LMﬂ={¢R wren s

0, iff¢r™. (5.11)

These filters are related to optimal unitary filter banks for source coding, but
the frequency region for each filter is in general different [Vaidyanathan 1998].

After the filters, linear modulation is used. The modulation after fil-
ter B;(f) is performed by the operator ¥;(-). This modulator takes the output
from the filter, which has non-zero frequency components of bandwidth %,
and modulates this signal such that the output of the modulator has non-zero
frequency components in the interval (—%, %] and zero frequency compo-
nents in the rest of the fundamental period. The modulator hence preserves
the bandwidth of the signal, and the output of the modulator is periodic in
the frequency domain with period equal to 1.

After the modulators, decimators with factor N are used to keep the num-
ber of samples into the preprocessor equal to the number out of the preproces-
sor. Since ideal filters are used and the signal into the decimators is non-zero
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Figure 5.3 Illustration of PSDs in branch number 0 in the preprocessor when an
AR(3) input source is used with N = 3. (a) PSD of the input signal S, (f). (b) PSD
of the output of the filter Bo(f). (c) PSD of the output of the modulator %(-).
(d) PSD of the output of the decimator in branch number 0, which is equal to )\(()N) (f)-
(©) X" (/).

only in the frequency interval (—ﬁ, ﬁ] of the fundamental period, there is

no aliasing error introduced by the decimators.

To show how the preprocessor works, an example showing different PSDs
in the preprocessor is shown in Figure 5.3. In part (a) of the figure, the PSD
of the input source is shown. The input signal is an AR(3) signal, with poles
at 0.8, 0.9¢7270-27 and 0.9¢ 727027 The parts of the PSD that are below the
dashed line in part (a) will be removed by By(f). Part (b) shows the PSD of the
output of By(f). This spectrum is calculated according to |Bo(f)|?Sz(f). The
modulator ¥(-) operates on the signal such that the output of the modulator
is non-zero in the interval (—ﬁ, ﬁ] and has zero frequency components in
the rest of the fundamental period. This is shown in part (c) of the figure,
and the arrows show how the spectrum has changed through the modulator.
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In part (d), the PSD of the output of the decimator is given, and this is equal

to A(()N)(f). Finally, part (e) shows A(()N)(fN), which is needed in some of the
upcoming calculations.

On the receiver side, a postprocessor is used, consisting of expansion with
factor N, inverse modulation, and filtering with the filters B;(f).

To be able to compare the performance expressions for the MIMO system
to the BPAM system, the performance expressions for the MIMO system need
to be reformulated. In order to do so, expressions for the PSD of the compo-
nents z;(n) in Figure 5.2 are needed. Since the filters in Equation (5.11) are
non-overlapping, the signals z;(n) are uncorrelated with each other [Ramstad,
Aase & Huspy 1995]. Therefore, the matrix Sg(f) is diagonal, with diagonal
element number ¢ given by the PSD of z;(n). Due to the way the preprocessor
in Figure 5.2 is designed, the PSD of z;(n) is equal to )\Z(N)(f).

Again, two cases are treated separately: Case 1: M > N and Case 2
M < N.

5.4.2.1 Casel: M >N

From Equation (5.4), it is seen that 5MIJ\1\§O(M) = 51\]\/}1}\\{10( ) when M > N.

MIMO(

First, it is shown that ¢ ) is independent of N. Equation (5.4) gives

Z/lmin{/\EN)(fN), o2 (fN)} df. (5.12)

In Equation (5.12), the integrand is periodic with perlod i and the length

of each integration region is +. Figure 5.3 shows how >\ ( fN) is found

from S;(f) when N = 3. From the figure, it is seen that 1ntegral number 0

in Equation (5.12) can be calculated by replacing )\ (fN) with S;(f) and
integrating over the interval of length & where Sy ( f ) is largest i.e., the in-

terval FO( ), By using the same reasoning as in Figure 5.3, >\ (fN) can be
found for all 4 € {0,1,... ,N — 1} and integral number 7 in Equatlon (5.12)

can be obtained by substituting >\ ( fN) with S;(f) and integrating over the
(N)

interval I';" /. Using this information, it is seen that the sum of all the integrals
in Equation (5.12) can be written as one integral:

ANO ) = [ min {S,(1), VoRuS.(1} o (513)

From Equation (5.13), it is seen that 51\N/[,I]¥O(M) is independent of NN, so

RO (1) = 2PO()

M

for all values of N.
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Using these results one obtains

A = NN (w)
- ()
1

= [ min (8.9 /RS } . (5.14)

M

The same derivation can also be applied for PMIMO(M), giving

rPMIMO( ) _ PMIMO (:U‘)
PMIMO(M)
3 2
= /2 maX{O, 755:(f) _ ag} df. (5.15)
-1 1
5.4.2.2 Case 2: M < N
Equation (5.3) gives:
M—-1 .1 N
PMIMO( ) = Z /2N max { 0, M — o2} df. (5.16)
: 1 1
1=0 2N

The integrand in Equation (5.16) is periodic with period , and the integral
is calculated over one period. Figure 5.3 illustrates how >\ ( fN) can be found
from Sy (f).

For ¢ = 0 in Equation (5.16), the integrand is a function of A (fN)
From Figure 5 3, it is seen that an alternative way to calculate this 1ntegral is
to replace >\ ( fN) with S;(f) and integrating over the interval of length +
where S;(f) is largest, i.e., the interval F(N). By setting ¢« = 1 in Equa-
tion (5.16) and using the same argument >\ (fN) can be replaced by S;(f)
with the integral taken over a length of - N where Sz(f) is second largest, i.e.,
the interval F(N). By doing so for all the M addends in Equation (5.16),
the result is obtained by replacing A ( fN) by S;(f) and integrating over
the set of frequencies of the fundamental period of total length % containing

the frequency values where S, (f) is largest. This interval is I’ (%) Thus,
Equation (5.16) can be written

PMIMO( )_/

()

max {0, @ — 0—3} df. (5.17)
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By performing the same calculations for the MSE as for the power, the following
result is obtained

XNOG = [ win {800, VoIS | d + [ ) SN0 (539)

(%) (-5
5.4.3 Comparison

By comparing Equation (5.5) to Equation (5.14) and Equation (5.9) to Equa-
tion (5.18), it is seen that
K M
lim eBEAM (1) = NIMO (1)), when — = —. (5.19)
L—oo ’ L N
The same comparison can be made for the power measure. By comparing
Equation (5.6) to Equation (5.15) and Equation (5.10) to Equation (5.17), it
is seen that
. K M
Jim PEEM () = PNSC (1), when — = —.

=N (5.20)

5.5 Numerical Example

Figure 5.4 shows a numerical example of the performance of decimated MIMO,
the modulated MIMO system, and the BPAM system with different choices of
L and K. The first axis shows the CSNR in dB, and this can be expressed

t
o (1)

as 10log, o The second axis shows the SNR. This can be expressed

2
as 101og; s, where o2 is the power of the input time series.
EN,M

(1)

The equality % = % holds for all the BPAM results in Figure 5.4. The
results for the decimated MIMO are found from the theory developed in Sec-
tion 2.2.

From Figure 5.4, it is seen that as the values of L and K are increased, the
performance of the BPAM system approaches the performance of the modu-
lated MIMO system. The decimated MIMO system has poorer performance
compared to the modulated MIMO system. The reason for this is the different
frequency partitioning of the two MIMO systems. This example illustrates the
main results of this chapter.

5.6 Summary

From Equations (5.19) and (5.20), it was concluded that the performance of the
BPAM system approaches the performance of the modulated MIMO system
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Figure 5.4 SNR vs. CSNR performance for decimated MIMO is shown by the
dashed curves, modulated MIMO by the dash-dotted curves, and BPAM system
by the solid curves. For both the MIMO systems the following parameters have
been used: (N, M) = (2,1) and (L, K) € {(2,1),(4,2),(8,4),(16,8),(32,16) } for the
BPAM system. In the results for the BPAM system (solid) the values for L and K
are increasing when going from bottom to top. An AR(3) source with the spectrum
shown in Figure 5.3 (a) is coded.

when the ratio between K and L is the same as the ratio between M and N
and when the size of K and L approaches infinity. This result is valid when
the channel is memoryless and the noise on the channel is independent and
identically distributed (i.i.d.).

It is also possible to use power per channel sample as a power measure. In
that case, the result found here for the power has to be scaled by a constant.

If the number of channel samples is greater than or equal to the number of
source samples, the same result holds for a MIMO system with only a delay
chain and decimators in front of it, i.e., without ideal bandpass filters and mod-
ulators. However, when fewer channel samples than source samples are used,
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the results in Subsection 5.4.3 do not hold for the decimated MIMO system.
The reason is that in order to have alias cancellation through the MIMO sys-
tem, the decimation process puts severe constraints on the frequency regions
of the filters. This can be deduced from the ordering functions introduced in
Chapter 2 and Appendix B.



Chapter 6

Practical Simulations for Bit
Constrained FIR Filter Banks

Since a high rate model was used for modeling the coding of the subband
signals, it is expected that there exists a mismatch between the results obtained
by a practical coder and the results predicted by the theory at low rates. In
this and the next chapter this mismatch will be examined. For the power
constrained problem there exist practical channels which closely match the
assumptions made for channels in this dissertation [Lee & Messerschmitt 1994,
Bingham 1990], and therefore, this problem will not be treated in more detail.

In this chapter, a practical coding system is introduced. The performance
of the practical coding system is compared to the performance obtained by
the theory developed in Section 4.1, using a high rate model for the subband
coding. The deviation between the theoretical and practical results is analyzed
carefully. Theory for improved modeling for coding of the subband signals is
proposed in the next chapter.

This chapter is organized as follows: In Section 6.1, the practical subband
coder is introduced, and it is explained how the coding of the subband signals
is performed. Section 6.2 contains distortion rate results which show the mis-
match between the theoretical and practical performances. The reasons for the
mismatch are analyzed in Section 6.3, and finally, a short summary is given in
Section 6.4.

6.1 Practical Coding System

In this section, the structure of the practical coding system is explained.
Figure 1.1 shows the theoretical model which has been used to model the
subband coder. In a practical coder, the analysis and synthesis filter banks are

105
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equal to the FIR filters found in Section 4.1, but the coding of the subband
signals have to be performed by a practical coding system. The performance
of the practical coder will be evaluated by calculating average values by Monte
Carlo simulations instead of finding theoretical expected values, as was done
earlier in this dissertation.

In a practical coder, the coding of the subbands, which is represented by
additive noise g;j(n) in Figure 1.1, has to be performed by a practical source
coding system. Midtread uniform threshold quantizers are used, and it is as-
sumed that the quantizers have an infinite number of representation levels. The
decision levels in uniform threshold quantizer number 7 are given by #Ai,
where k is an integer and 4A; is the quantizer step size in quantizer number 3.
The representation levels in a uniform threshold quantizer could be for ex-
ample the midpoints of the decision intervals, the centroids of the pdf in the
decision intervals, or some other function of the decision interval and the pdf
of the subband signal. If the centroids are used as representation levels in the
uniform threshold quantizers, these quantizers are close to the optimal entropy
constrained scalar quantization [Farvardin & Modestino 1984, Sullivan 1996],
for all rates and for a wide variety of memoryless sources. Entropy constrained
scalar quantizers have a good distortion rate performance compared to other
methods [Fischer & Wang 1992], and since uniform threshold quantizers are
simple to implement and analyze, they will be used in this work. In this chap-
ter, centroids will be used as representation levels in the uniform threshold
quantizers.

It is also possible to use pdf optimized scalar quantizers with bit allocation
in the coding of the subband signals. In the theoretical model for the coding
of the subband signals, it is assumed that any number of bits could be used.
However, the practical performance results obtained by pdf optimized scalar
quantizers would not be very close to the theoretical results, because not every
bit rate in each quantizer is possible with pdf optimized scalar quantizers. If
L levels are used in a fix rate scalar quantizer, the number of bits used by the
quantizer are logy L, and for low values of L, this is a small subset of all real
values. Therefore, a mismatch exists between the assumption of using any rate
in each subband and the number of bits used in the practical coder for each
subband. Another reason for not using pdf optimized scalar quantizers with
bit allocation is that the distortion rate performance is worse than for entropy
constrained uniform scalar quantizers [Farvardin & Modestino 1984].

The contribution that is given in this dissertation is mainly the filter bank
part of the coder. Therefore, to simplify the implementation of the practical
subband coder, the entropy coders are assumed to be ideal entropy coders.
This means that the entropy coders are not actually implemented, and the
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Figure 6.1 Subband coding of subband number 4.

performance of the entropy coders is estimated by calculating the entropy of the
quantization indices. Even though the subband signals are not uncorrelated,
the zeroth order entropy is used as an estimate of the rate used when coding
subband number ¢:

bi=— Y P log, P, (6.1)

where Pk(z) is the estimated probability of index number k& to occur in the ith
uniform threshold quantizer in the practical subband coder.

The filter bank tries to remove correlation between different subbands,
but inside one subband the filter bank approximately half-whitens the signal,
see Subsection 2.1.3. Therefore, some correlation is left within the subband
signals. If this correlation were utilized, better coding performance could have
been achieved.

In a practical coder, the entropy coder could for instance be an arithmetic
coder. In [Popat 1990], it is shown that the performance achieved by an arith-
metic coder is very close to the zeroth order entropy of the quantization indices.
Therefore, the practical results found here should be very close to the results
found in a realization of a complete coder. The entropy is a lower bound for
the rate in the quantizer if the source is memoryless [Blahut 1987].

The coding of subband signal number ¢ is shown in Figure 6.1, and this
figure replaces the additive noise in Figure 1.1. Figure 6.1 shows how the
subband signal y;(n) is first quantized by the quantizer @Q;(-), and that the
quantization indices are returned. These indices are sent into the ideal en-
tropy encoder EE;(-). The output of the entropy encoder is the compressed
signal. At the decoder, the compressed signal is first sent to the ideal entropy
decoder ED;(:). The output of the entropy decoder is equal to the quanti-
zation indices, since the total entropy encoding/decoding process is lossless.
The quantization indices are fed into the inverse quantization operator Q; 1(-),
which outputs a representation level depending on the input index.

The midtread uniform threshold quantizer characteristics is shown in Fig-
ure 6.2 for quantizer number ¢. It is assumed that the quantizers have an
infinite dynamic range. For practical purposes, this means that the signal is
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Figure 6.2 Characteristics of midtread uniform threshold quantizer number i. The
quantizer step size is A; and the number of representation levels are infinite.

never clipped by saturation of the quantizer. From Figure 6.2, it is seen that
the distance between the decision levels are constant, and equal to A;. The
decision levels are given by %Ai, where k € Z.

In this chapter, the representation levels of the uniform threshold quantizer
are chosen to be equal to the centroids of the pdf in the decision intervals.
These values of the representation levels give the minimum MSE in each of the
scalar quantizers [Gersho & Gray 1992]. The kth representation level in the
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1th uniform threshold quantizer is given by
pa
s, YFulW)dy
Ty = 22k+1l ’
A
fy:(y)dy

2k—1
5 A

—
.
=

(6.2)

where fy, is the pdf of subband signal number 7, which is assumed to be
Gaussian with variance Uzi and zero mean.

In a coder operating on real world signals, the statistics of the source is
varying, and an adaptive system is preferable. This can be done by estimating
statistical properties for segments of the signal and then designing the filter
banks according to the estimated statistics. The filter coefficients of the synthe-
sis filter bank or the signal statistics can be transmitted as side information.
The coding of the subband signals can also be implemented in an adaptive
fashion, by modeling the subband signals as infinite Gaussian mixture distri-
butions. The subband samples can then be classified into a finite number of
classes according to their estimated variance and coded by a uniform threshold
quantizer with centroid representation levels and an entropy coder optimized
for the class. Details on this method can be found in [Hjgrungnes, Lervik &
Ramstad 1996, Hjorungnes & Lervik 1997|. However, in the practical coder
which is studied, the input signal is assumed to be stationary, and the statistics
of the input signal are assumed to be known exactly. These assumptions are
made in order to simplify the analysis of the differences between the theoretical
and practical subband coder.

6.2 Comparison of Theoretical and Practical Results

Figure 6.3 shows the theoretical performance of the optimized 5 3 filter banks
from Section 4.1. N = 2 channels are used. The input signal to the filter bank is
a Gaussian AR(1) source with correlation coefficient 0.95. The performance of
the practical source coder, using the same optimized filter banks and the coding
system described in Section 6.1, is also shown in the figure. The distortion rate
function is found from [Berger 1971].

In the simulations, time series of 300000 samples are used. The length
of the 95 % confidence interval [Hines & Montgomery 1990] for the MSE per
source sample is less than 0.05 dB.

From Figure 6.3, it is seen that there is a mismatch between the perfor-
mance of the practical coder and the theoretical coder. For high rates, the
two curves are not far from each other, because a high rate model is used to
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Figure 6.3 The distortion rate performance of the optimized 5 3 filter banks from
Section 4.1. The performance of the practical coder is shown by the solid curve, while
the dashed curve shows the theoretical performance found from the theory developed
in Section 4.1. The dotted curve gives the distortion rate function for the input signal,
which is a Gaussian AR(1) signal with correlation factor 0.95. N = 2 subbands are
used.

model the coding of the subband signals. The curves are also close for bit rates
around 1.3 bits per sample. In this region, only one quantizer receives bits,
and the number of bits allocated to this quantizer is relatively high.

Figure 6.4 shows the mismatch between the practical performance and the
performance predicted by the theory in Section 4.1 using the 9 7 PR filter
bank proposed in [Antonini et al. 1992|. From the figure, it is seen that the
theoretical and practical performances match much better for PR filter banks
than for the optimized non-PR filter banks, like the filter banks that was used
in Figure 6.3. For very low rates, there is a mismatch for PR filter banks
as well, because the quantizer model is inaccurate for low bit rates. This is
also the case around 2.0 bits per sample, since very few bits are used for the
subband with the lowest variance.

In the next section, the reasons for the larger mismatch between practical
and theoretical results using non-PR filter banks compared to PR filter banks
are analyzed. In Chapter 7, an improved quantizer model is developed and
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Figure 6.4 The distortion rate performance when using the 9 7 PR filter bank
in [Antonini et al. 1992]. The performance of the practical coder is shown by the solid
curve, while the dashed curve shows the theoretical performance given by the theory
developed in Section 4.1. The dotted curve gives the distortion rate function for the
input signal, which is a Gaussian AR(1) signal with correlation factor 0.95. N = 2
subbands are used.

used in a practical coder.

6.3 Analysis of the Reasons for the Mismatch

The performance is measured in distortion versus rate. Therefore, in this
section, the estimation of both the rate and the distortion is compared in the
practical and theoretical cases.

6.3.1 Bit Rate Estimation

In this subsection, the validity of the quantization model of Equation (1.13) is
checked.

In the theoretical subband coding model in Equation (1.13), the coding
coefficient ¢; has to be specified. Since the entropy coding of Gaussian signals
are used, this coefficient is chosen to ¢; = % [Jayant & Noll 1984, Ramstad
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Figure 6.5 The solid curve shows the distortion rate performance of the theoretical

quantization model when coding one subband signal, and the dotted curve shows the

practical coding performance when coding the same Gaussian subband signal. The
e

coding coefficient is %* in the theoretical model.

et al. 1995].

Figure 6.5 shows the distortion rate performance of the quantization model
in Equation (1.13) and the performance of the practical coder using a scalar
uniform threshold quantizer and an ideal entropy coding of the quantization
indices, see Figure 6.1. It is seen that the match between the quantization
model and the practical coding is very good for high bit rates, but poor for
low bit rates. The main reason for the deviation at low rates is that the coding
coefficient ¢; is the same for all rates. From Equation (1.13), it is seen that for
low rates, the SNR in dB for the theoretical model is negative, but if ¢; had
approached 1 from above as the rate decreases, the SNR would have stayed
positive for all rates. In the next chapter, the rate in the practical subband
coder will be estimated in such a manner that the coding coefficients ¢; are
rate dependent.
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6.3.2 Block MSE Estimation

Let the signal block MSE £®) (dy,ds) be defined as the block MSE that is
achieved in the absence of q{lantization noise. Using the theory introduced
in Section 4.1, it can be seen from Equation (4.12) that the theoretical signal
block MSE is given by:

0 (dv,dg) =T { R_E- & "V EIRT - R_E ¢{"""(d, d)

H
- ( (m+,N) (dv,d3)> EFRT ¢ ¢;°’N>} (6.3)

The quantization block MSE €\, (d,, d,) is the block MSE that is due to
the additive quantization noise. B}; using the quantization model introduced
in Section 4.1, it is seen from Equation (4.12) that the theoretical quantization
block MSE can be expressed as

€9, (dv,dy) = Tr{R_dSEIl’M)Rf{}. (6.4)

The part of the MSE that exists because of cross-correlation between the
input signal and the additive quantization noise will here be denoted the
crossterm block MSE contribution S](\?f}gf) (dy,ds). For the white signal inde-

pendent quantization noise model used in Section 4.1, this is given by
51(\??}3[) (dy,ds) =0, (6.5)

since the input to the filter bank and the additive quantization noise are as-
sumed to be uncorrelated with zero mean.

In the practical system the total, signal, quantization, and crossterm MSE
contributions have to be estimated. Below, it will be shown how the estimation
of these MSE contributions can be obtained in the practical coding system.

The output signal from the filter bank is given by the sum of the contribu-
tions from the signal and the quantization noise. Mathematically this can be
expressed as

ﬁ(n) = i‘sig(n) + ﬁquant (n), (6.6)
where Zgz(n) is the output of the synthesis filter bank in the absence of quan-

tizers, and Zquant(n) is the output of the filter bank that is caused by the
additive quantization noise.
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The total block MSE in the practical coder can be estimated as:

Exnt (dosds) = 037 [(n) — 2(n — (AN +dy + N — 1))]?

+ 77 2oRe {{sigln) = a(n = (dN + do+ N = 1)) &uane ()}
(6.7)

where the index set Z is chosen according to the length of the input sig-
nal and the delay of the practical subband coder. |Z| denotes the cardinal-
ity [Truss 1991] of the index set Z, Re is the real part of the argument, and
the superscript * denotes complex conjugation.

The signal block MSE in the practical system is given by the MSE between
the input and output of the filter banks when the quantization noise is equal
to zero. The signal block MSE can be estimated as

T (dy, dy) -7 Y S li(n) — o — (AN +dy + N 1), (63)
nel

The quantization block MSE can be estimated as
£Dy (dy, dy) 7 Z | quant ()|, (6.9)
| | nel
while the crossterm block MSE contribution can be found by
5( D (d,, d,) III ZRe (Zsig(n) — z(n — (dyN +ds + N = 1))) &5 ans (n) } -

nel
(6.10)

By comparing all the terms in Equations (6.8), (6.9), and (6.10) to Equa-
tion (6.7), it is seen that

Enr (doyds) = EXY (doydi) + Ey (doydy) + EFD (dods) . (6.11)

Figure 6.6 shows the total, signal, quantization, and crossterm MSE contri-
butions for both the practical and the theoretical coding system when coding a
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Figure 6.6 Different MSE contributions per source sample as a function of coding
rate with N = 2 and M = 1. The optimized 5 3 filter banks from Section 4.1 are
used. The dotted curves with diamonds show the MSE contributions for the practical
coding system, and the solid curves with squares show the MSE contributions for the
theoretical coding system. The input signal is unit variance Gaussian AR(1) with
correlation coefficient 0.95.

unit variance Gaussian AR(1) model with correlation coefficient 0.95, using the
5 3 filter bank optimized according to the theory developed in Section 4.1. In
the figure, the Lagrange multipliers p are the same in the theoretical and the
practical results. The results obtained with the same Lagrange multiplier
can be found by counting the squares and diamonds starting from high rates.
The same procedure can be used in all the practical results presented in this
dissertation. From Figure 6.6, it is seen that for high rates, the theoretical and
practical results correspond well in both the MSE contributions and rate, but
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this correspondence becomes worse as the rate decreases.

From the figure, it is seen that the main reason for the difference in the
total MSE in the practical and theoretical case is the non-zero crossterm MSE
contribution in the practical coder. In the theoretical case, this crossterm
MSE contribution is zero, see Equation (6.5). From the size of the crossterm
MSE contribution, it is seen that for low rates, the signal independent noise
assumption does not hold. In Chapter 7, different ways of improving the model
of the subband signal coding are proposed.

For a PR filter bank, Zgjs(n) = x(n—(dyN + ds + N — 1)), so the crossterm
MSE contribution is equal to zero in the practical case, see Equation (6.10),
even though the input time series and the additive quantization noise are cor-
related. Therefore, the white signal independent quantization model is a more
suitable model for PR filter bank coders than for non-PR filter bank coders.

For low rates, it is also observed from the figure that there is a mismatch
in the quantization MSE. The reason is that the matrix 515511 M) is not diagonal
in the practical coding system, because for low rates, very coarse quantization
is used. This means that the quantization noise is approximately equal to
the subband signal with the opposite sign. Since the subband signals are
correlated, the quantization signal will be correlated too, and therefore, the
off-diagonal terms in the matrix @,(Jl M) are non-zero in the practical system.
In Chapter 7, a new model for the quantization noise will be introduced, which
includes this correlation and all other correlations that exist in the subband
coder.

From Figure 6.6, it is observed that there is a mismatch in signal MSE
curves. The size of the signal MSE is the same for the same Lagrage multiplier,
but the rate is different. The reason for this is that the coding coefficients ¢; are
assumed to be constant in the theory. In Chapter 7, this will be treated more
detailed. For a given Lagrange multiplier, both the theoretical and practical
systems give the same signal MSE, it is the rate estimate that differs.

6.4 Summary

In this chapter, a mismatch between the theoretical and practical performance
was found. One reason for the mismatch is that, in the theoretical quantization
model, the coding coefficient is assumed to be the same for all rates. This
can be improved by using a theoretical model in which the entropy of the
quantization indices of a quantized Gaussian subband signal is used as an
estimate of the bit rate used for coding the subband signal, see Chapter 7.

In the theoretical model, the quantization noise is assumed to be white.
This is not correct if very low bit rates are employed. In Chapter 7, a signal
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dependent colored quantization noise model will be introduced.

The most important reason for the mismatch is that the input signal and
the additive quantization noise signal are assumed to be white and signal inde-
pendent. In Chapter 7, improved models for the coding of the subband signals
are proposed.






Chapter 7

Improvements of the
Correspondence between
Theory and Practice

In Chapter 6, it was shown that there exists a crossterm MSE contribution in
a practical coder due to the cross-correlation between the subband signals and
the additive quantization noise. In this chapter, three more accurate models
of the coding of the subbands are proposed to account for this effect and thus
obtain better correspondence between the theoretical model and the simulation
results.

The first way to avoid the crossterm MSE contribution is to design scalar
quantizers such that the input and the quantization noise are uncorrelated.
The second method is to apply a subtractive dithering technique to make the
additive coding noise uncorrelated to the subband signals. Both these methods
match the assumption made in Section 4.1, which stated that the subband
signals should be uncorrelated to the additive quantization noise generated by
the coding of the subband signals. Both methods will be implemented and
tested in a practical coder, where the filter banks optimized by the theory of
Section 4.1 are used.

In the third method, the cross-correlation term between the input time se-
ries and the quantization noise and the correlation that exists within the quan-
tization noise will be included in the theory for optimizing the filter banks. It
will be shown that this more advanced signal dependent colored quantization
noise model gives a good correspondence between performance results in prac-
tical simulations and theory. Furthermore, this improves the practical results.

In this chapter, the rate is theoretically estimated as the entropy obtained
by a uniform threshold quantizer operating on a Gaussian time series. In the

119
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theoretical model, the rate will be found by

-3 |

k=—00

2k+1A 2k+1A

L o)y 1oy ( /kiA_ifyi(wdy), (7.1

where fy,(y) is the Gaussian pdf of the subband samples in the ith subband,
having zero mean and variance O'y By using this estimate of the rate in the
theoretical model, it will be seen later that the theoretical results match the
practical simulation results better than by the white signal independent noise
model estimate used so far, see Equation (1.14). When subtractive dithering
is used, the input pdf to the quantizer will change, and this must be taken into
consideration when estimating the rate by Equation (7.1).

This chapter is organized as follows: In Section 7.1, two systems having
uncorrelated subband signals and additive coding noise will be treated, thus,
the coding method of the subband signals will be changed and the filter bank
optimization theory developed in Section 4.1 is used. In Section 7.2, a signal
dependent colored quantization noise model is introduced, and this model is
used to find new equations for optimizing the filter banks. The equation for
the FIR Wiener polyphase matrix is also derived in Section 7.2. Conditions for
optimality of an FIR PR filter bank are derived in Section 7.3. Section 7.4 con-
tains both practical and theoretical results achieved by the methods proposed
in this chapter. Also, a comparison to results obtained by filter banks found
in the literature will be given. Finally, a summary is given in Section 7.5.

7.1 Uncorrelated Subband Signals and Coding Noise

In this section, two coding systems where the subband signals and the addi-
tive coding noise are uncorrelated, will be studied. In the first system, which
is presented in Subsection 7.1.1, the representation levels of the quantizer will
be found such that the input to the quantizer and the additive quantization
noise are uncorrelated. Subtractive dithering is described in Subsection 7.1.2
as another method where the subband signals and the coding noise are un-
correlated. The filter banks used with these two systems are the filter banks
found with the theory developed in Section 4.1, except that the constraints
in Equation (2.4) do not need to be satisfied with the two systems proposed
in this section. The reason for this is that with the two coding methods in
this section, the variance of the additive coding noise can be larger than the
subband variance.
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7.1.1 Redesigned Scalar Quantizers

In this subsection, scalar quantizers which have uncorrelated input and quan-
tization noise will be designed. These quantizers will be used in the coding of
the subband samples in the subband coder. The decision levels in quantizer
number ¢ is assumed to be given by L;lAi, where k is an integer and 4; is
the quantizer step size in quantizer number .

The main reason why the theoretical and practical results in the previous
chapter have a mismatch is that, in the theory, it is assumed that the addi-
tive quantization noise is uncorrelated with the quantizer input. However, by
using centroids as representation levels in each of the scalar quantizers, the
correlation of the quantizer input and the additive quantization noise is given
by:

E[yi(n)g;(n)] = oy, (7.2)

since E [g;(n)gi(n)] = 0 when centroids are used as representation lev-
els [Gersho & Gray 1992].

In the following, the decision levels will be kept unchanged, that is, a
uniform threshold quantizer is still used. However, the theory presented is
straightforward to generalize for arbitrary decision levels.

It is assumed that the new representation levels f,gl) will be odd functions
of the index k. This is justified by the assumptions that the pdf of the quan-
tizer input signal is an even function, that is, fy,(—y) = fy(y), and that the
decision levels are symmetric about zero. It can be verified that the condi-

tion F [y;(n)g;(n)] = 0 is equivalent to

00 2k+1 A, 2

i 7 S Oy

S Yy (y)dy = 2. (7.3)
2h—1 4 2

k=1 2 4

If the condition in Equation (7.3) is satisfied, it can be shown that minimiz-
ing the MSE through the quantizer is equivalent to minimizing the following
expression:

2k+1 A.
A

12

NGO Lo hwiy (7.4)

k—1
k=1 A

The optimization problem is then to minimize the expression in Equa-
tion (7.4), subject to the constraint in Equation (7.3). By using the Lagrange
multiplier method [Edwards & Penney 1986], the optimal representation levels
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w;(n) w;(n)

yi(n) D Coder;(-) D 9i(n)

Figure 7.1 Subtractive dithering in subband number 1.

can be derived as

-1

( syl ) :
N o2 | > -1y, YTy \Y y) .
=Y i r (7.5)

=1 20 fu(y)dy
2 7

(4)

where 7, is the centroid representation level given by Equation (6.2). Equa-
tion (7.5) shows that the new representation levels are given by scaled versions
of the centroid representation levels. Ideal entropy coding is also used in con-

nection with the redesigned scalar quantizers introduced in this subsection. It
can be shown that f,(cz) = r,(cz) only if infinitely high rates are used. Therefore,
this is not possible in a practical source coder using a finite rate.

By using that ogi > 0 for a quantizer that is using centroids as representa-

tion levels, it is possible to show that the scaling factors in Equation (7.5) are
greater or equal to 1, i.e.,

-1
P

2p+1 A 2
o | (2 wntian)
Yi 2
2 1 Z ]"
2 A,
p=1 f2p—lA fyi(y)dy
2

i

(7.6)

forall i € {0,1,... ,M —1}.

7.1.2 Subtractive Dithering

An excellent survey on quantization and subtractive dithering is published
in |Lipshitz, Wannamaker & Vanderkooy 1992]. When using subtractive dither-
ing, the subbands y;(n) are uncorrelated with the additive coding noise ;(n) —
yi(n) [Jayant & Noll 1984]. In this subsection, subtractive dithering will be
introduced as a coding method of the subband signals.
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Figure 7.1 shows the coding of the ith subband signal when using subtrac-
tive dithering. In the figure, the block denoted Coder;(-) is given by Fig-
ure 6.1, which shows a uniform threshold quantizer with step size 4; fol-
lowed by an ideal entropy encoder/decoder operating on the quantizer in-
dices and an inverse quantizer. In Figure 7.1, the signal w;(n) is a pseudo-
random uniformly distributed sequence within the interval (—%, %) Note
that it is the same pseudo-random sequence that is added and subtracted be-
fore and after the Coder;(-) block in Figure 7.1. The signal w;(n) is called
dither [Goodall 1951, Lipshitz et al. 1992], and it is statistically independent
of the subband signal y;(n).

Since the subband signal y;(n) and the dither signal w;(n) are statistically
independent, the pdf of the input signal to the Coder;(-) block is given by
the convolution of the pdf’s of the signals y;(n) and w;(n) [Papoulis 1991].
The signal y;(n) is Gaussian with zero mean and variance 0’21_, while w;(n) is
uniformly distributed over the interval (—%, %) If the subband signal is to
be uncorrelated with the additive coding noise introduced by the subtractive
dithering, the midpoint must be used as the representation level in the uniform
threshold quantizer |Lipshitz et al. 1992]. This means that r,(cz) = kA; when
using subtractive dithering.

From Figure 7.1, it is seen that the noise generated by subtractive dithering
is equal to the noise generated by the middle block in the figure, because
the same signal w;(n) is subtracted and added before and after the middle
block. Therefore, the performance of the coder for the ¢th subband, shown
in Figure 7.1, is given by Equation (D.10), using the correct values for the
quantizer input pdf and the representation levels in the uniform threshold
quantizer.

7.2 Signal Dependent Colored Quantization Noise
Model

In this section, a signal dependent colored quantization noise model will be
introduced. Until now, it has been assumed that the quantizer noise is white
and uncorrelated with the subband signals. Formulas for finding the corre-
lation that exists between quantization noise samples and between the input
time series and the quantization noise are quite complex, and to improve the
readability of this chapter, these formulas are derived in Appendix D.

If Lloyd-Max quantizers are used, the quantizer model can be improved
by assuming that it not only adds noise to the signal, but also modifies the
strength of the signal [Park & Haddad 1993], such that the output of the
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quantizer is uncorrelated with the additive quantization noise. More accurate
results can be obtained by using the true performance curve of the coding
method.

This section is organized as follows: In Subsection 7.2.1, the problem is
formulated when the cross-correlation between the input time series and the
quantization noise is assumed to be known. Equations for optimality are de-
rived in Subsection 7.2.2. The Wiener filter is formulated for FIR filter banks
in Subsection 7.2.3 since this will be used later to derive the conditions for
optimality of PR in the FIR filter bank case. In Subsection 7.2.4, a numerical
optimization algorithm is proposed, describing the optimization of the FIR
filter banks when using the signal dependent colored quantization noise model.

7.2.1 Problem Formulation

The (m + 1+ 1)N x (I + 1) M matrix
0N — B (2(n), ¢ (n),] (7.7)
and the (I + 1)M x N matrix
oz (dydy) = B [q(n), 2ll(n— d,)], (78)

are used to include the cross-correlation between the input signal and the
additive quantization noise signal. The vector z4(n) is defined in Equa-

tion (4.5). The cross-correlation matrix d),(ll,’iV’M)(dv,ds) can be found from

the matrix @;(gﬁl’l’N’M), because the matrix ¢S};§’M) (dy,ds) is equal to the Her-

mitian of the block matrix of Q&%Z’N’M) consisting of row number d; + d, N
through row number d; + d,N + N — 1. The numbering of the rows and
columns starts at zero. In Appendix D, it is shown how the elements of the
matrices in Equations (7.7) and (7.8) can be found. From the definition in
Equation (7.7), it can be seen that the matrix Q&%Z’N’M) is a block Toeplitz

matrix [Liitkepohl 1996], but the matrix is in general not a Toeplitz matrix.

The block MSE, which includes the cross-correlation between the input
signal and the additive quantization noise, is derived in Appendix A. If the
correlation matrices defined in Equations (4.8) through (4.10) are substituted



7.2 Signal Dependent Colored Quantization Noise Model

125

into Equation (A.8), the following result is obtained:
Exar (ddy) = Tr {R_Erszs(mm“’N)EERf’

H
~R_Eo{""(dy,d,) - (8" (dy,d,)) BERT
+oY + r M RH

H
+R_E. ¢¥r;lNM)RH+R ( (mlNM)) EfR’_q

~R_¢gn " (dy,dy) - (¢J,NM(dv,ds))HRff}, (7.9)

where the cross-correlation matrix 45523“N’M) defined in Equation (7.7) and

(I,N,M

the cross-correlation matrix ¢q o )(dv, ds) given in Equation (7.8) have been

used. In Equation (7.9), the matrix sﬁg’M) has dimensions (I4+1)M x (I4+1)M
and it is a block Toeplitz matrix, which is not necessarily diagonal in this
chapter. The matrix 51551! M) is not a Toeplitz matrix, but it is Hermitian. For
low rates, it has non-zero off-diagonal terms. Formulas for the elements of the
quantization autocovariance matrix @Ell M) are found in Appendix D.

The bit constraint is assumed to be the same as before, that is, it is still
given by Equation (4.13). The right hand side of Equation (4.13) is assumed
to be a constant in the problem formulation, meaning that ¢; is treated as a
constant in the optimization. This is not accurate in practice, but it is done
to simplify the optimization. In the theoretical evaluation of the results, the
estimation of the rate, see Equation (7.1), is not an explicit function of ¢;, and
this is equivalent to letting ¢; be rate dependent. The coding coefficients ¢;
can be calculated for a Gaussian time series as follows: Let 021_ be the variance
of the Gaussian time series, and let A; be the quantizer step size resulting
in o = 1. Then, the values of A; and ozi can be used to find the entropy of
the quantlzatlon indices when quantizing the subband samples using a uniform
threshold quantizer with step size 4;. The entropy is assumed to be equal
to b;, see Equation (7.1). If the values of o , A, O'q, and b; are inserted
into Equation (1.13), the value of ¢; can be found. The coding coefficient
is theoretically calculated this way, and plotted in Figure 7.2. The result in
the figure is independent of any correlation within the Gaussian time series,
because zeroth order entropy is used to estimate the theoretical bit rate in the
quantizers.

From Figure 7.2, it is seen that, for high rates, the coding coefficients are
almost independent of rate, but for rates below approximately 1.4 bits per
sample this assumption does not hold. After optimization, the theoretical

performance of the optimized system can be found. Then, it is assumed that
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Figure 7.2 The coding coefficient ¢;, as a function of rate b;, when coding a Gaussian
time series with a uniform threshold quantizer using centroids as representation levels.

the entropy of the quantization indices is used as an evaluation criterion. This
means that in the theoretical evaluation of the system, the coding coefficients ¢;
are rate dependent.

The simplifying assumption described above might lead to results that
are not optimal if the rate dependent coding coefficients had been taken into
consideration. However, the results obtained by this simplification are very
good, as will be shown later, and the theoretical and practical results match
very well.

With the signal dependent colored quantization noise model, it is possible
to classify the total block MSE in Equation (7.9) into signal, quantization,
and crossterm MSE contributions, as was done in Subsection 6.3.2. The signal
block MSE 51(\?3\/[ (dy,ds) is unchanged, so it is again given by Equation (6.3),
while the quantization block MSE E](\?)M (dy, ds) is given by Equation (6.4), but

now the quantization matrix @,(Jl M) has changed. The elements of this matrix

are given by the autocorrelation function Ry, (,) 4, (m), given in Appendix D.
The diagonal elements are given by Equation (D.10), while the off-diagonal
elements are given by Equation (D.13).

With the signal dependent colored quantization noise model, the crossterm
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block MSE contribution £y (@) W (dy,dy) is in general non-zero, and given by:

H
ENAY (duyds) = Tr {R_Erdig,'iil’N’M 'R + R_(80"") " B R

R )~ (043 d) RE . (00
The elements of the matrices slf'(m’l’NM nd d)qlév M)
Equation (D.6).

It can also be shown theoretically that, in all quantizers using the centroids
as representation levels, the variance of the additive quantization noise is al-
ways less than or equal to the variance of the subband signal. Therefore, when
using the signal dependent colored quantization noise model, the constraints
in Equation (2.4) are not needed any more because they will always be sat-
isfied. The following choice has been made as before: ogi = 02 = 1 for all
i€{0,1,... ,N —1}.

The problem that has to be solved when using the signal dependent col-
ored quantization noise model can now be stated. The total block MSE in
Equation (7.9) should be minimized with respect to the analysis and synthesis
polyphase matrices E(z) and R(z), subject to the bit constraint in Equa-
tion (4.13).

(dv,ds) can be found by

7.2.1.1 PR Expressions when N = M

For a system having PR with scalar delay ds, vector delay d,,, and where N =
M | it can be shown that the following relations hold:

diggmH’N)EfRfl = ¢§:m+l’N)(dvad5) (7'11)
H
(€7 )" RS = 20 (712
- H
RB ) = (4 V)" @

Equations (7.11) and (7.12) can be used to show that for PR filter banks, the
signal block MSE in Equation (6.3) is equal to zero, when N = M. The last
relation above can be used to show that for PR filter banks, the crossterm
block MSE contribution in Equation (7.10) is equal to zero, when N = M.
This means that when using a PR filter bank, the total block MSE is given by

Enx (doyds) = Tr{R_éE}’N)R{f}, (7.14)
which is the same total PR block MSE obtained by the theory developed
(L,N)

in Section 4.1, except that the matrix ®4 is not diagonal any more, see
Appendix D.
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7.2.2 Equations for Optimality

By means of the Lagrange multiplier method, the constrained optimization
problem is converted to an unconstrained optimization problem. The uncon-
strained objective function for the signal dependent colored quantization noise
model is given by:

M-1

Enar (dy,dg) + Y Inoy,, (7.15)
k=0

where p is the Lagrange multiplier for the bit constraint in Equation (4.13).

Matrix differentiation of Equation (7.15) with respect to the matrix E_
gives the following equations for finding the optimal analysis filter bank E_
for a given synthesis filter bank R_

H
RIHT{R_ <Er¢§3m+l’N) N (Q(m%z,N,M)) >
(m+1,N) i 1 (m,N)
- (qa,,. (dv,ds)> — —uz, B (™Y, (1.16)

where the matrix differentiation formulas found in Appendix C have been used.
The operator 7 is defined in Equation (4.17).

Finding the equations for the optimal synthesis filter bank R_, for a given
analysis filter bank E_, can be done by matrix differentiation of Equation (7.15)
with respect to the matrix R_. The formulas found in Appendix C can be used
to obtain the following equations

H
R_ = (B g0 (dy,dy) + ¢ (o, d,) )

11
[ErégcmH,N)Ef LM 4 g @b | (Eréscr’ril,l,N,M)> ] .

(7.17)

In Section 4.1, it was assumed that the additive quantization noise and the
input subband signals were uncorrelated, and that the constraints in Equa-
tion (2.4) were imposed. With the white signal independent noise model, the
correlation matrices in Equations (7.7) and (7.8) are equal to zero matrices,
and the matrix @ contains the Kuhn-Tucker parameter 6; for the inequality
given in Equation (2.4). If these differences are taken into consideration, it is
seen that the results from Equation (7.16) and (7.17) are consistent with those
found in Equations (4.16) and (4.15), respectively.
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7.2.3 FIR Wiener Synthesis Filter Bank

The FIR Wiener synthesis filter bank is used in the derivation of the conditions
for optimality of PR FIR filter banks in Section 7.3, and is derived in this
subsection.

Let the N x (I + 1)M matrix 2" (dy, dy) be defined as
$M (4, d,) = B [wafn — dn)g" (n),] (7.18)

and let the (I +1)M x (I + 1) M matrix QS’M) be defined as

I,M . .
!15% ) =E [9(n), 9" (n),] . (7.19)

By calculating the matrices in Equations (7.18) and (7.19) using the signal
dependent colored noise model, and comparing the result to Equation (7.17),
it is seen that Equation (7.17), which gives the optimal synthesis polyphase
matrix, can be written as

-1
R_= ¢\ (dy,dy) (QS’M)) . (7.20)

By means of the orthogonality principle [Therrien 1992], the FIR Wiener
filter bank will now be derived. The error vector for the FIR filter bank system
is given by &(n) — &4, (n — dy,). According to the orthogonality principle, the
error vector has to be orthogonal to all the available observations at the input
of the FIR synthesis filter bank. This can be expressed mathematically as

E[(&(n) — zq(n —dy)) g (n —p)] =0, Vpe{0,1,...,1}. (7.21)

!
By using that &(n) = Z r(k)y(n — k), Equation (7.21) can be rewritten as

[
E [zq(n—dy)g" (n—p)] = r(k)Ky(p—k), Vpe{0,1,... 1}, (7.22)

where the M x M matrix Ky(n) is defined as Ky(n) = E [g(n +k)g" (k)].
By putting the [ + 1 matrix equations in Equation (7.22) together, it is pos-
sible to rewrite these equations as the matrix equation in Equation (7.20).
Therefore, the equation for the Wiener synthesis polyphase matrix is given by
Equation (7.20). This shows that the FIR Wiener synthesis filter bank can be
derived by both the orthogonality principle and by matrix differentiation.
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Figure 7.3 Illustration of the iterative numerical algorithm for optimizing the FIR
filter banks when the cross-correlation between the input signal and the additive
quantization noise is included.

When the optimal FIR synthesis filter bank is expressed as in Equa-
tion (7.20), it has a form related to the Wiener synthesis filter bank in the
unconstrained case given in Equation (2.17) and the Wiener synthesis trans-
form given in Equation (3.13). If arbitrary given filter lengths are used in the
Wiener FIR synthesis filter bank, the procedure developed in Subsection 4.1.4
can be used.

By using the white signal independent quantization noise model used in
Section 4.1 and calculating the Wiener polyphase matrix in Equation (7.20), it
can be shown that the Wiener synthesis polyphase matrix in Equation (4.15)
is found.

7.2.4 Numerical Optimization Algorithm

In Figure 7.3, the iterative numerical algorithm for optimization of the FIR
filter bank is illustrated. As initial values, the filter banks found for the white
signal independent noise model in Section 4.1 are used. Then the correla-
tion matrices !ﬁg,rfjl’N’M), q&,(ll,’év’M)(dv,ds), and @g’M) are found by using the
formulas in Appendix D. For the given values of the correlation matrices,
Equations (7.16) and (7.17) are iteratively solved until convergence is reached.
Then the correlation matrices are updated, until the whole algorithm stops

when the correlation matrices have converged, see Figure 7.3.
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7.3 Conditions for Optimality of PR in the FIR Case

In this section, the conditions for when PR FIR filter banks are optimal,
for a given invertible FIR analysis polyphase filter bank, are derived by
means of Wiener filter theory. This result is an extension of the result found
in [Vaidyanathan & Chen 1994|, where the same conditions were derived for
unconstrained length filter banks and transforms.

In [Vaidyanathan & Chen 1994], the transform case and the unconstrained
length filter bank case were treated for d, = d; = 0. The FIR case has to be
treated in a slightly different manner, because in [Vaidyanathan & Chen 1994,
it was assumed that the synthesis filter bank consists of the PR synthesis filter
bank followed by a Wiener polyphase filter bank. Conditions for when the
Wiener polyphase matrix is equal to the identity matrix were given for the
transform case and the unconstrained length case. In both these cases, it can
be assumed that the Wiener filter bank has the same order as the first part
of the synthesis filter bank, which is either unconstrained or zero. In the FIR
case, this is not possible because, if the first part of the synthesis filter bank
is the FIR inverse of the analysis filter bank, the following Wiener polyphase
filter bank can only be a memoryless matrix if the order of the total synthesis
filter bank is to be kept constant. By using this method, the optimization does
not include a search over all polyphase matrices of a given order. Therefore, a
different method must be used.

Assume that the analysis FIR filter bank E(z) is FIR invertible, and
let R(z) be the FIR synthesis filter bank for which the filter banks possess
the PR property, that is:

R_E_=[0...0I0...0], (7.23)

where the right hand side of the equation is an N x (m + [+ 1) N matrix, and
where the non-zero element in the first row and column of the N x N identity
matrix I is placed in column number Nd, +d;. The numbering of the columns
starts with 0.

In order to ensure that PR is possible, let M = N. The FIR PR system
is shown in Figure 7.4. Since the system is a PR system, the output of the
system is equal to &(n) = x4(n — dy) + R_q(n),, where zq(n — d,) is the
signal going through the filter bank with vector delay d, and scalar delay d;.
R_q(n)I is the additive quantization noise filtered through the FIR synthesis
PR filter bank R(z).

From Figure 7.4, it can be seen that

x4 (n—dy) = R_g(n), — R_q(n),.

(7.24)
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q(n)
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Figure 7.4 FIR PR filter bank model.

Now, conditions for when FIR PR filter banks are optimal will be de-
rived, given invertible FIR analysis filter bank E(z). The total row-expanded
polyphase matrix W _ through a system which has a row-expanded Wiener
polyphase matrix R_ can be expressed as

W_=R_E,
I,N,N L)) L
= ¢\ (dy,d,) (25) B,

= [(Bgtn), - R_a),) 5" (n),] (20V) " B,
- ko (af") 'E. ~ R_E[q(n),3" (n),] (ég’m)il E,

~R.B -~ R_Egm),5" ()] (2 B, (7.25)
where M = N and the results from Equations (7.18), (7.19), and (7.24) have
been used. The system has the PR property with appropriate delay if, and only
if, the total transfer matrix W_ is equal to R_E given in Equation (7.23).
From Equation (7.25), it is seen that this is the case if, and only if, the last term
in the equation is equal to zero. By using the assumption that the matrix E(z)
has a unique FIR inverse when studying Equation (7.23), it can be shown that:

rank (E-) = (I + 1)N. (7.26)

Using this when studying the dimension of the left nullspace [Strang 1988] of

the matrix E -, it follows that the last term of Equation (7.25) is zero if, and
. -1

only if, the matrix R_FE [q(n)I QH(n)I] (dS(Al’N)) is equal to the zero matrix.

(]
Since the matrix @g’N) is assumed to be invertible, PR is optimal if, and only

if, the following holds:

R_Eq(n),g"(n),] =0, Vn, (7.27)
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where the zero matrix on the right hand side is of dimension N x (I +1)N.

Given the conditions for PR being optimal in the unconstrained length
case, see Equation (2.18), and in the transform case, see Equation (3.20), it
is intuitively surprising that the matrix R_is part of the conditions in the
FIR PR case. It might be more intuitive to guess that the condition in the
FIR PR case would be that the matrix E [g(n),§"(n),] should be the zero
matrix. However, the conditions in the FIR case are not that strict because,
in the following example, it will be shown that the matrix E [g(n), g (n),] is
non-zero, but the conditions in Equation (7.27) are satisfied.

Let N=M=2 m=I1=1,d;=0,d, =1, Hy(z) =1, and Hy(z) = 23,
where H;(z) is the transfer function of analysis filter number ¢. In order to
ensure PR with the appropriate delay, the synthesis filters are given by Fy(z) =
273 and F|(z) = 1. The matrix R_ is now given by

- 0010
a - [0000]. -

With this choice the following non-zero block Toeplitz matrix will satisfy the
condition in Equation (7.27):

0 T I3
000
7.29
o T1 0 0
which is different from the zero matrix, because z; is an arbitrary real number
for all ¢ € {0,1,2,3}.

With the quantization model used in Section 4.1, the additive quantization
noise and the subband signals were assumed to be uncorrelated. In this case,
the cross-correlation matrix in Equation (7.27) is given by E [g(n), g% (n),] =

455} ’M), which is an invertible matrix for finite rates. The condition in Equa-
tion (7.27) cannot be satisfied because the only solution is R_ = 0, which is
certainly not a PR filter bank. Therefore, with the quantization model used in
Section 4.1, it is never optimal to use a PR filter bank for finite rates. However,
for an infinite rate, the quantization noise will approach zero, and the cross-
correlation matrix E [g(n), g (n),] will approach zero as well. For infinitely
high rates, the condition will be satisfied, and the PR filter bank is optimal.
With the quantization model used in Section 7.2, the diagonal elements
of the matrix E [g(n),§" (n),] will be zero, since centroids are used as the
representation level in the quantizers. With this model, PR filter banks are
optimal if N = M =1 and m =1 = 0. In all optimized cases other than
N =M =1 and m = [ = 0, that has been considered, the condition in
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Equation (7.27) is never satisfied. The reason for this, is that for all other
values for N, M, m, and [, the off-diagonal elements of the cross-correlation
matrix E [g(n), g (n),] are non-zero.

If the analysis filter bank is invertible and no quantization noise is present,
it follows from the conditions in Equation (7.27) that PR is optimal. In this
case, PR filter banks achieve zero MSE. Since MSE is always non-negative,
this is optimal.

7.4 Results and Comparisons

To evaluate the proposed methods and make comparisons to existing PR filter
banks, the following two channel FIR filter banks have been optimized: 5 3,
6 6,9 7, and 10_18. The input source is a Gaussian AR(1) source with
correlation coefficient 0.95.

This section is organized as follows: In Subsection 7.4.1, results obtained
with the redesigned scalar quantizers are presented, and in Subsection 7.4.2
performance results with subtractive dithering are presented. Results for the
model with signal dependent colored quantization noise are presented in Sub-
section 7.4.3. Finally, in Subsection 7.4.4, practical coding results obtained
with all the proposed methods are compared to practical results obtained with
filter banks found in the literature.

7.4.1 Redesigned Scalar Quantizer

For the quantizers redesigned as shown in Subsection 7.1.1, the different MSE
contributions for the practical system are shown in Figure 7.5 together with the
MSE contributions for the practical system using centroids as representation
levels in the quantizers. The 9 7 filter banks were found by the optimization
algorithm in Section 4.1, with M = 1.

From Figure 7.5, it is seen that the total MSE is reduced when using
the redesigned quantizers. It is also seen that the crossterm MSE contribution
vanishes with the new quantizers, and that is the main reason for the reduction
of the total MSE.

In Appendix D, a formula for E [z;(n)qx(p)] is given. This theory can be
extended to include a formula for F [y;(n)gr(p)] as well. With the quantizers
introduced in Subsection 7.1.1, E'[y;(n)g;(n)] =0 fori € {0,1,... ,M — 1}, as
this is a design condition for these quantizers. If this result is utilized in the for-
mulas for E [y;(n)qx(p)] and E [z;(n)qx(p)], it can be theoretically shown that
the matrices E [y(n),q"” (n),] and E [z(n),q" (n),] are equal to zero matrices
when using the new quantizers. Therefore, the crossterm MSE contribution is
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Figure 7.5 Different MSE contributions per source sample as a function of coding
rate with N = 2 and M = 1. The dotted curves with x-marks show the MSE
contributions for the practical coding system with the redesigned quantizers, and the
solid curves with circles show the MSE contributions for the practical coding system
with centroids as representation levels in the quantizers. The input signal is unit
variance Gaussian AR(1) with correlation coefficient 0.95. The optimized 9_7 filter
banks from Section 4.1 are used.

equal to zero when using the quantizers introduced in Subsection 7.1.1.

From Figure 7.5, it is seen that for a given Lagrange multiplier, the signal
MSE is the same in the two systems, but the rate is different. The reason for
this is that the output of the synthesis filter bank in the absence of quantiz-
ers Zsig(n) is equal in the two systems, and as will be shown later in Figure 7.8,
for a given value of the additive quantization noise variance 03, more bits are
required with the redesigned quantizers than with the quantizers using cen-

troids as representation levels.

The quantization MSE vs. rate curves for the two systems seem to be
quite close to each other. The reason for this is that for a given Lagrange
multiplier, the rate increases using the redesigned quantizers compared to using
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centroids as representation levels, but at the same time, the quantization noise
using the redesigned quantizers will decrease since the off-diagonal terms in
the matrix 51551! M) are much closer to zero when using the redesigned quantizers

compared to uniform quantizers with centroids as representation levels.

7.4.2 Subtractive Dithering

When using subtractive dithering, the input signal to the uniform threshold

2
quantizer has variance U;. + %, and the pdf of the input signal is given by

the convolution of a rectangular and a Gaussian function. This will change the
way the entropy is estimated since the pdf of the input signal of the uniform
threshold quantizer will change. The way A4; is estimated has to be changed
since the input pdf to the quantizer is changed. Midpoints must be used as
representation levels in the uniform threshold quantizers in order to ensure
that the subband signal and the quantization noise are uncorrelated.

The different MSE contributions when the changes described above are
made in both the theoretical and practical coder, are shown in Figure 7.6. The
9 7 filter banks found by the optimization algorithm in Section 4.1 were used.

From Figure 7.6, it is observed that the the theoretical and practical results
match very well for all the different MSE contributions. Here, the crossterm
MSE contribution vanishes. The theoretical estimate of the MSE contributions
fit very well to the corresponding practical values, because the assumptions
made in the theoretical case are satisfied in the practical case. The theoretical
rate estimate in Equation (7.1) gives a very good estimate of the rate in the
practical subband coder.

7.4.3 Signal Dependent Colored Quantization Noise Model

Figure 7.7 shows different MSE contributions as a function of the coding rate
for N =2 and M = 1. The rate is estimated by calculating the entropy of
the quantization indices from a uniform threshold quantizer having quantizer

step size A; and a Gaussian time series as input, with variance O'Zi and zero
mean. The value of 4; is chosen such that O'gi = 1. From the figure, it

is seen that the crossterm MSE contribution is negative. This means that
the crossterm MSE contribution is not an MSE itself, but just a part of the
total MSE that might be negative. This is also the reason why the word
contribution is used to describe this term. From the figure, it is also seen
that all the theoretical MSE components match very well with the practical
components. This shows that the signal dependent colored quantization noise
model, introduced in Section 7.2, matches very well with the practical coder.
Furthermore, observe from the figure that the quantization MSE is larger than,
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Figure 7.6 Different MSE contributions per source sample as a function of coding
rate using subtractive dithering when N = 2 and M = 1. The dotted curves with
x-marks show the MSE contributions for the practical performance obtained with
subtractive dithering, and the solid curves with circles show the theoretical MSE con-
tributions. The filter banks used are the optimized 9 7 filter banks from Section 4.1.
The input signal is unit variance Gaussian AR(1) with correlation coefficient 0.95.

but almost equal to, the total MSE, while the signal MSE and the crossterm
MSE contribution are small.

In Figure 7.7, the MSE components of the practical coder using the well
known PR 9 7 filter bank from [Antonini et al. 1992] are included. From the
figure, it is seen that the signal MSE and the crossterm MSE contribution are
zero for the PR filter bank, and that the quantization MSE is equal to the
total MSE. It is also observed that the performance of the proposed filter bank
is significantly better than the PR filter bank at all the rates in Figure 7.7.

An interesting observation is that when the PR constraint is removed, as
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Figure 7.7 Different MSE contributions per source sample as a function of coding
rate when V = 2 and M = 1. The dotted curves with x-marks show the MSE
contributions for the practical coding system, and the solid curves with circles show
the MSE contributions for the theoretical coding system with the signal dependent
colored quantization noise model. The dashed curves with squares show the MSE
contributions for the 9_7 PR filter bank in [Antonini et al. 1992]. The input signal is
unit variance Gaussian AR(1) with correlation coefficient 0.95. The filter banks used
are the optimized 9 7 filter banks from Section 7.2.

it is in the proposed filter banks, the resulting optimized filter banks have a
small signal MSE and a small crossterm MSE contribution, but the total MSE
is significantly reduced compared to the PR filter bank used in the comparison,
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Table 7.1 Practical distortion rate performances.

N = 2. The source is Gaussian AR(1) with correlation coefficient 0.95, d,, indicates the
vector delay used in the system, and ds = 0 in all cases. The case where convergence
was not reached is marked by X.

Bit rate [bits per sample]

Type of 0.50 | 1.00 [ 2.00 [ 3.00
coding system SNR. [dB]
Dist. rate func. [Berger 1971] 12.70 | 16.13 | 22.15 | 28.17

5 3 [Le Gall & Tabatabai 1988], d, =1 4.88 | 10.57 | 17.00 | 22.81
Biorth. 53 [Balasingham 1998|, d,, = 1 4.90 10.59 | 17.03 | 22.84
5 3 [Balasingham 1998] Wiener, d, =1 || 4.95 | 10.63 | 17.03 | 22.84

Proposed 5 3 with cent., d, =1 4.43 | 10.26 | 16.63 | 22.54
Proposed 5 3 with new quant., d, =1 4.85 | 10.58 | 16.95 | 22.80
Proposed 5 3 with dith., d, =1 3.58 10.24 | 16.50 | 22.49
Proposed 5 3 with corr., d, =1 4.92 | 10.57 | 17.05 | 22.84
6_6 [Rodrigues et al. 1997], d, = 2 4.68 | 10.18 | 16.77 | 22.57

Biorth. 6_6 [Balasingham 1998], d,, = 2 494 | 10.65 | 16.93 | 22.76
6_6 [Balasingham 1998] Wiener, d, =2 | 5.82 | 11.56 | 17.08 | 22.80

Proposed 6 6 with cent., d, = 2 5.10 | 11.41 | 17.03 | 22.96
Proposed 6 6 with new quant., d, = 2 5.39 | 11.85 | 17.14 | 23.23
Proposed 6 6 with dith., d, = 2 5.22 | 11.57 | 16.76 | 22.93
Proposed 6 6 with corr., d, =2 5.81 | 11.86 | 17.48 | 23.24
9 _7 [Antonini et al. 1992], d, = 5 448 | 9.86 | 16.73 | 22.44

Biorth. 9_7 [Balasingham 1998], d, = 5 5.26 | 11.17 | 17.26 | 23.07
9 7 [Balasingham 1998] Wiener, d, =5 | 6.13 | 11.87 | 17.42 | 23.13

Proposed 9 7 with cent., d, =5 5.35 | 11.56 | 17.35 | 23.40
Proposed 9 7 with new quant., d, =5 5.76 | 12.04 | 17.72 | 23.69
Proposed 9 7 with dith., d, =5 5.56 | 11.90 | 16.95 | 23.37
Proposed 9 7 with corr., d, =5 5.84 | 12.02 | 17.83 | 23.66

10 18 [Tsai et al. 1996], d, = 6 4.72 | 10.30 | 17.03 | 22.80

10 _18 [Tsai et al. 1996] Wiener, d, = 6 6.42 | 11.68 | 17.21 | 22.86
Proposed 10 18 with cent., d, =6 5.92 | 12.28 | 17.90 | 24.06
Proposed 10 18 with new quant., d, =6 || 6.82 | 12.84 | 18.41 | 24.29
Proposed 10 18 with dith., d, =6 6.55 | 12.57 | 17.52 | 24.02
Proposed 10 18 with corr., d, =6 7.47 | 12.87 X 24.32

see Figure 7.7.
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7.4.4 Practical Performance Comparisons

Thed 3,6 6,9 7, and 10 18 filter banks have been optimized, and the prac-
tical results are compared to some of the best performing filter banks with the
same filter lengths found in the literature. The filter banks used in the compar-
isons are the following: 5 3 [Le Gall & Tabatabai 1988], 5 3 [Balasingham
1998], 6 6 [Balasingham 1998], 6 6 [Rodrigues et al. 1997], 9 7 [Antonini
et al. 1992], 9_ 7 [Balasingham 1998|, and 10_ 18 [Tsai et al. 1996]. The cod-
ing system described in Figure 6.1 is used with centroids as representation
levels when coding the subband signals in the PR filter banks. The practical
performance results are shown in Table 7.1. For the 10 18 filter bank with
b = 2.00 bits per sample, simulation results have not been obtained when
using the method proposed in Section 7.2. The reason for this is that the
proposed signal dependent colored noise optimization method is very complex,
and therefore, convergence might be difficult to reach. This happens when one
of the subbands receives very few bits. In some cases using the signal depen-
dent colored noise model, several different initial values of the filter banks had
to be tried before convergence was reached.

In the table, results are also included for systems using a PR analysis filter
bank and FIR Wiener synthesis filter bank with the same filter lengths as the
PR FIR synthesis filter bank. In the 5 3, 6_6, and 9 7 cases, the analysis
filter banks found in |Balasingham 1998| are used, while in the 10_18 case,
the analysis filter bank in [Tsai et al. 1996] is used. The FIR Wiener filter

bank is found from Equation (7.17), and the matrices @,(Jl’M), @%"’N’M), and
q&,(ll,’iv ’M)(dv,ds) are found by the formulas developed in Appendix D, with

centroids as representation levels. The bit allocation used with the Wiener
filter banks is the same as the bit allocation used with PR filter banks, i.e., the
bits are distributed such that the product of the quantization variance and the
squared norm of the PR synthesis filter is constant for each branch of the filter
bank. It is seen from the table that the performance is improved by using the
Wiener synthesis filter bank at low rates. For short filter lengths the gain is
small, but for longer filter lengths and low rates much can be gained by using
Wiener synthesis filter banks. A system using a PR analysis filter bank, Wiener
synthesis filter bank, and bit allocation is proposed in [Gosse & Duhamel 1997].
An iterative algorithm is proposed where the bit allocation is optimized for a
given Wiener synthesis filter bank, and vice versa. The Wiener result presented
in Table 7.1 is therefore the result obtained by the theory proposed in [Gosse
& Duhamel 1997] after one iteration of the synthesis filter bank optimization.
Only one quantizer receives bits when using 0.50 bits/sample or 1.00 bits per
sample in Table 7.1, and for these rates the bit allocation is uniquely given after
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one iteration. Thus, for these rates, the Wiener filter bank results given in the
table are the same as the results obtained by the method proposed in [Gosse
& Duhamel 1997].

If the Wiener synthesis filter bank is estimated based on Equation (4.15),
i.e., assuming that the input signal is uncorrelated to the additive quantization
noise, and the autocovariance matrix @,(Jl M) i diagonal, the practical results
are worse than the results obtained by the PR filter banks in most cases. This

shows that the quantization noise model used in Section 4.1 is accurate enough.

When the practical results obtained using subtractive dithering are com-
pared to the practical results of Chapter 6, where uniform threshold quantizers
with centroid representation levels were used, the best results depend on the
rate and filter length that is used. No definite trend can be found. The rea-
son for this is that when using subtractive dithering, the assumption made in
the signal independent white noise model in Section 4.1 is satisfied, but not
when uniform threshold quantizers with centroid representation levels are used.
However, as will be shown by Figure 7.8, the coding of the subbands is not
as efficient when using subtractive dithering compared to uniform threshold
quantizers with centroids as representation levels.

It is seen from the table that the results obtained with the redesigned scalar
quantizer are better than the results obtained with subtractive dithering. This
can be explained by Figure 7.8, which shows the theoretical distortion rate
performance of three coding systems coding one Gaussian subband signal. The
rate is found from Equation (7.1). From Figure 7.8, it is seen that the dis-
tortion rate performance of the redisigned scalar quantizers is better than the
performance of the subtractive dithering when coding the subband signal. Two
reasons for this are that the coding of the subbands in the subtractive dithering
case is not as efficient because the midpoints are used as representation levels

in the quantizers and the variance of the input to the quantizers is increased
2

by %, even though the variance of the subband signal is not changed. Since
both the redesigned quantizers and subtractive dithering will produce coding
noise which is uncorrelated with the subband samples, the redesigned quantiz-
ers will perform better than subtractive dithering when using the same filter
bank.

The results using the redesigned quantizers are better than the results ob-
tained by the quantizers using centroids as representation levels. This shows
that it is very important to design the coding method in accordance with the
assumptions made when designing the filter banks. Even though the distortion
rate performance of the quantizers using centroid representation levels are bet-
ter than the redesigned scalar quanitzers, see Figure 7.8, the overall subband
coder which uses the redesigned quantizers performs better.
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Figure 7.8 Theoretical distortion rate performance using uniform threshold quantiz-
ers having centroid representation levels (dotted), uniform threshold quantizers with
scaled centroid representation levels (dash-dotted), and subtractive dithering (solid).
A Gaussian time series is coded.

If the results obtained with the signal dependent colored quantization noise
model are compared to the results of the redesigned scalar quantizers, it is seen
that for low rates, better performance is achieved with the signal dependent
colored quantization noise model in most cases. However, for higher rates, the
performance of the two systems are very close. The reason why the signal de-
pendent colored quantization noise is not optimal for all rates is a combination
of the assumption that the coding coefficients ¢; are rate independent and sta-
tistical deviation. In the simulations, time series of 300000 samples are used,
and the same seed is used when generating the input time series. The length
of the 95 % confidence interval [Hines & Montgomery 1990] for the MSE per
source sample is less than 0.05 dB, if the error time series is assumed to be
Gaussian.
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7.5 Summary

In this chapter, the modeling of the coding of the subband signals was im-
proved. Three different techniques were proposed.

The two first methods studied were the redesigned scalar quantizers and
subtractive dithering. In these methods, the subband signals and the addi-
tive coding noise are unorrelated. The practical simulations showed that the
crossterm MSE contribution vanishes when using both these methods. The
performance of the redesigned scalar quantizers is better than the performance
of subtractive dithering. Therefore, if it is desired that the input is uncorrelated
with the coding noise, the proposed new quantizers should be chosen instead of
subtractive dithering if distortion rate performance is an important criterion.
The redesigned quantizers gave better practical results than the quantizers us-
ing centroids as representation levels. When using subtractive dithering, very
good correspondence was achieved between theoretical and practical results.

The third modeling technique was a signal dependent colored quantization
noise model where the output of the quantizers were modeled to discrete values
being equal to the representation levels in the quantizers. The description
of the quantizers is given by the pdfs, providing a statistical quantization
model. Very good correspondence was achieved between the theoretical and
the practical simulations by this model. From Table 7.1, it was seen that the
system using the redesigned quantizers will perform very close to the system
using the signal dependent colored quantization noise model, and in some cases
the performance was better. Since the complexity of the optimization of the
redesigned quantizer system is lower than that using the signal dependent
colored quantization noise model, the redesigned quantizers can be justified in
many applications. However, the signal dependent colored quantization noise
model gave the best results in most cases.

The conditions for when PR FIR filter banks are optimal were derived in
this chapter. This is an extension of the results given in [Vaidyanathan &
Chen 1994] to include FIR filter banks. The conditions are very strict, and
for all the cases that were studied, PR is never optimal, except the case N =
M=1and m=1=0.

It should also be possible to extend the signal dependent colored quan-
tization noise model to include a dead-zone [Sullivan 1996 around zero in
the uniform threshold quantizers. Uniform threshold quantizers are used in
JPEG [ISO 1991], and practical image coding has shown that improved dis-
tortion rate performance may be achieved by using such a quantizer.






Chapter 8

Conclusions

In this dissertation, the problems of optimizing filter banks and transforms
under a bit or a power constraint have been investigated. The optimality
criterion used is the minimization of the MSE between the output and the input
signals. Three different classes of filter banks have been treated: Unconstrained
length filter banks, transforms, and FIR filter banks with arbitrary given filter
lengths. It has been shown that the synthesis filter bank and transform is
equal to the Wiener filter bank or transform in all the cases that have been
considered.

Conclusions from the Theoretical Results

In the three filter length cases treated, a high rate model has been used to
model the quantizers performance, and this model was used for all rates. Bet-
ter theoretical performance than PR filter banks was achieved for all cases
considered. The reason for this is that in the proposed system, no constraint
such as PR was employed. Thus, the set used in the optimizations in this
dissertation includes the unitary and biorthogonal filter bank sets as proper
subsets. This is illustrated in Figure 8.1. For the proposed unconstrained
length filter bank system with a bit constraint, this means that it performs
at least as well as the optimal unconstrained length unitary and biorthogonal
filter banks at all rates and all sources. The results also showed that the pro-
posed transform coder performs at least as well as the KLT for all rates and
sources, and that the proposed FIR filter banks perform better than the FIR
filter banks compared having the same filter lengths. This includes the case
where an FIR Wiener filter bank was used on the synthesis side.

The theoretical results showed that the filter banks and transform matrices
depend on the bit rate or channel quality used and the PSD of the signal which
is compressed or transmitted. Consequently, side information is required in a
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Unitary filter banks

Biorthogonal filter banks

Filter banks without restrictions

Figure 8.1 Venn-diagram of different sets of filter banks.

practical coder if the coding rate or channel quality and the input statistics are
unknown. The traditional way of using bandpass filters with one contiguous
passband in each subband is suboptimal for certain PSDs.

Three different filter length cases have been treated:

In the first case, the filters were allowed to be non-causal with infinite length
impulse responses. The unconstrained length case is of theoretical interest
only, since the filter banks found are not realizable. However, the solutions
are fundamental for a thorough understanding of the problem, and they also
provide an upper bound on the SNR vs. rate or CSNR performance of the
transform and FIR filter banks cases. The unconstrained length filter bank
results showed that the frequency response of one filter can have more than
one passband. The resulting filters in the unconstrained length filter bank have
ideal frequency separation between the subbands, and at high rates or very
good channel qualities, the filters approximate half-whitening filters within
each passband. If signal expansion is considered in the power constrained
problem, i.e., M > N, M — N of the filters will be set to zero. With bandwidth
reduction, i.e., M < N, the performance of the linear system will not be very
good for high quality channels because PR is impossible when not fully ranked
polyphase matrices are used in filter banks.

In the second case, a transform coder was optimized. These results have
immediate practical applications, since transforms are easily implementable.
Analytical expressions have been derived for the jointly optimal analysis and
synthesis transforms. For the bit constrained problem, analytical expressions
for the bit allocation have been found. Differences between the proposed trans-
form and the KLT have been pointed out. Formulas have been found for jointly
optimal Wiener transform and bit allocation when a KLT analysis transform
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with reduced rank was used. It was shown that the performance of this sys-
tem is the same as the proposed bit constrained transform. The solution of
the jointly optimal transmitter and receiver transforms under a power con-
straint was derived in [Lee & Petersen 1976], but an alternative derivation was
presented in this work.

The third case studied was the optimization of an FIR filter bank structure.
Analytical expressions for the optimal solution were not found in this case,
but iterative numerical optimization algorithms were proposed for finding FIR
signal-adaptive jointly optimized analysis and synthesis filter banks under a
bit or a power constraint. These results are practically interesting, since FIR
filters can be used in practical coders. The FIR filter banks should not be
designed by approximating the unconstrained length solution, but the FIR
constraints should be included in the problem formulation, and a procedure
showing how this can be done was given. Global convergence is not guaranteed
in the iterative algorithms proposed, but very good results were achieved.

Conclusions from the Practical Results

A practical source coder has been introduced, and it was shown that there
is a mismatch between the theoretical results obtained by the white signal
independent quantization noise model and the results found with the practical
source coder. The reason for this has been analyzed, and it was concluded
that the assumptions of white and signal independent quantization noise are
the main reasons for the mismatch.

Three methods for improving the mismatch have been proposed. In the first
two, the coding of the subband signals was changed and the filter banks were
kept constant. In the third method, a signal dependent colored quantization
noise model was introduced, and by means of this model the filter banks were
re-optimized. The results show that the filter banks found with the signal
dependent colored quantization noise model perform comparable or better than
PR filter banks and filter banks using Wiener synthesis filter banks. For the
largest filter lengths considered, the gain was highest, i.e., over 1.0 dB for rates
below 3.0 bits/sample for the 10 18 filter bank. For smaller filter lengths,
there were some cases where the filter banks with the synthesis Wiener filter
performed slightly better than the proposed filter banks.

This can be explained by Figure 8.2. The upper left corner shows the real
world problem, which in this case is a practical filter bank that is supposed
to perform optimally. This problem was first modeled by the white signal in-
dependent quantization model, that was the first approximative mathematical
model used for the practical problem. The solution was tried in a practical
coder, and it was shown that this did not give very good correspondence be-
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tween theoretical and practical results. This first attempt corresponds to the
first iteration of Figure 8.2. More advanced quantization noise models were
then introduced as the next mathematical model, and that lead to very good
correspondence between the theoretical and practical results. Therefore, the
next iterations of Figure 8.2 improved the results considerably, but even with
these new models the results of the best performing filter banks were not al-
ways optimal in the practical system. This suggest that the mathematical
model of the real world is still not complex enough to take into account all
the effects in a practical subband coder. However, the results are significantly
better than conventional filter bank results for the longest filters considered.
The proposed theory has hopefully given some new insight into the problems
of designing optimal filter banks. Some of the filter banks obtained may be
applied in practical source coders and in communication systems.

Suggestions for Future Research

e Similar theory should be developed for nonuniform FIR filter banks as
well, because this kind of filter banks is often used in practical systems.

e If the filter banks are to be used on multidimensional signals such as
images, the theory should be adapted for these kind of signals, and non-
separable filter banks should be found.

e The theory developed should be extended to include weighted MSE. If
the filter banks are used in a practical system, the MSE optimization
criterion does not match human perception very closely. This can be
improved by using weighted MSE or other performance criteria.
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e Theory can be found for other source models. In this dissertation, it
has been assumed that the input signal is WSS, with a known PSD.
Other source models, especially non-stationary source models, would be
interesting in many practical applications.

e Formulas for finding the correlations that exist in a subband coder for
other coding methods of the subband signals should be developed. Ex-
amples of other coding methods are trellis coded quantization, vector
quantization, etc. These formulas can be used to optimize the filter
banks when using these coding methods.






Appendix A

Derivation of Block MSE, Bit
Constraint, and Power
Constraint

In this appendix, expressions for the block MSE, bit constraint, and power
constraint are derived for both unconstrained length and FIR filter banks.
These expressions are used to formulate some of the optimization problems
treated in the dissertation.

For simplicity, the summation limits will not be written explicitly in the
unconstrained case, but all sums treating the unconstrained length case in this
appendix go from —oo to oo.

A.1 Block MSE Derivation

The derivation of the block MSE for unconstrained length and FIR filter banks
are presented in this section. The derivation in the FIR case is not a special case
of the unconstrained case since causal FIR filters are assumed, and therefore
there exists a delay through the FIR filter banks which has to be taken into
consideration.
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A.1.1 Block MSE for Unconstrained Length Filter Banks

From Equations (1.9), (1.10), (1.11), and (1.12), the block MSE can be ex-
pressed as

(A1)

where it is assumed that the input vector (n) and the additive noise vec-
tor g(m) have zero mean, and that they are uncorrelated for all lags.

The last expression of Equation (A.1) contains five expressions, each of
them will be further developed separately, below.

The first expression:

mo ok

=Tr (ZZw(n—m) S (f)el2mfm=k) dwa(n—k)>

m k -
1 H
_ Ty (/2 Zw(n m)e j2mf(n—m) (Zw 6 —j2r f(n— k)) df)
. .
— Ty (/21 3 wk)e 2R G, (Zw e ﬂ’f}"“) df)
2 k
~Tr ( WS (HWH(f) df) , (42)
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where the matrix E [z(m)z™ (k)] = K4(m — k) is found by calculating the
inverse Fourier transform of the PSD matrix in Equation (1.8).
The second expression:

The third expression:

Tr (Z > r(n—m)E [q(m)q” (k)] v (n — k))
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where the quantization PSD matrix Aq is given by Equation (1.17).
The fourth expression:
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The fifth expression is given by the Hermitian of the fourth expression:
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where it has been used that the PSD matrix Sy (f) is Hermitian.

Collecting all the expressions in Equations (A.2) to (A.6) and using that
W(f) = R(f)E(f), the expression for the block MSE given in Equation (2.2)
is obtained.

A.1.2 Block MSE for FIR Filter Banks

The block MSE for FIR filter banks for a given vector delay d, and scalar
delay ds is defined by:

Ena (dv, ds) = B [||@(n) — z4,(n — dy)|?]
= Tr{E [(&(n) — za,(n — d)) (&7 (n) — 2 (n —d,))]}, (A7)

where IV is the decimation factor used and M is the number of quantizers re-
ceiving a positive number of bits. The vector &4 (n) is defined in Equation (4.5).
The output vector from the synthesis polyphase matrix is &(n), see Figure 1.1,
and it can be expressed by Equation (4.11). By inserting Equation (4.11) into
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Equation (A.7), the block MSE can be expressed as:

Enp (dyy ds) =Tr {E [(R_Erw(n)l + R_q(n), — zq(n —dy))-
(2" (n), BY R + ¢" (n), R — 2fl(n )] }
—Tr {R_EFE [z(n), =" (n),] EY RY
—-R_E FE [a:(n)la: s( )]
— (B [x(n), @ (n - d,)])" BY R
+F [ins( —dy)T S(n dv)]
+R_E [q(n),q" (n), ] R {{
+R_E E[ n)lq (n)l]
+R_ (E [z(n),q" (n),])" EHRH
~R_E [q(n ) ( dv)]
- (& [qn),2fl(n—d,)])" R} (A.8)

If the correlation matrices defined in Equations (4.8), (4.9), (4.10), (7.7), and
(7.8) are substituted in the equation above, the block MSE in Equation (7.9)
is obtained. If the white signal independent noise model in Section 4.1 is used,
the last four terms of Equation (A.8) vanish, and the result of Equation (4.12)
is obtained.

A.2 Bit Constraint Derivation

The bit constraint is derived for both the unconstrained length and FIR filter
bank cases in this section.

A.2.1 Bit Constraint for Unconstrained Length Filter Banks

The bit constraint is expressed in Equation (1.15). By using the assumed
quantization model in Equation (1.13), the bit constraint can be reformulated
as

M-1 M—-1 92

I1 7% =2 I] O;—q (A.9)

The problem is to find an expression for the product on the left hand side of
this equation. This can be done by defining the operator Pr as the product
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of the diagonal elements on the main diagonal of the matrix to which the
operator is applied. The matrix F [y(n)yH(n)] has O'Zi as the ith diagonal
element. Therefore, by expressing y(n) as the convolution of the input vector
time series and the polyphase analysis filter, the bit constraint can be expressed

as

Pr (E

With some rearrangement, one obtains

M-1 52
> e(n—m)x(m)d  x"(k)e" (n - k)]) =22M T c‘f (A.10)

m k i=0

M1 ;2
Pr (Z Z e(n —m)E [z(m)z" (k)] e (n — k)) = 22Nb. H cif. (A.11)
m  k i=0

By taking the inverse Fourier transform of Equation (1.8) and inserting the
result in Equation (A.11), one gets

3 M-1 2
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(A.12)

Assuming convergence, one may rearrange the order of summation and inte-
gration as
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A change of summation variables and introduction of E(f), the Fourier trans-

form of e(n), renders Equation (2.3), which is the desired result.

A.2.2 Bit Constraint for FIR Filter Banks

The problem of expressing the bit constraint in Equation (A.9) in the FIR
case reduces to finding an expression for the product on the left hand side
of the equation. This can be done by usage of the operator Pr defined in
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Subsection A.2.1 and the matrix E [y(n)y" (n)] in the following way:

M-—1
[T o2 =Pr{E [y(n)y" ()]}
=0

=Pr{E[E_z(n),z" (n), E_]}

— Pr {E_qs(mm’N)E{f} . (A.14)
If this result is inserted in Equation (A.9), the bit constraint in the FIR case can
be expressed as in Equation (4.13), where it has been assumed that the vari-

ances of the additive quantization noise are equal to 03. In Equation (A.14),

the vector (n), is an (m + 1) N x 1 vector.

A.3 Power Constraint Derivation

The power constraint is derived for both the unconstrained length and FIR
filter bank case in this section.

A.3.1 Power Constraint for Unconstrained Length Filter
Banks

In the unconstrained filter bank case, the power constraint in Equation (1.23)
is rewritten by expressing the vector y(n) as the convolution of the input vector
time series &(n) and the matrix impulse sequence e(n) of the transmitter filter

bank:
Tr(E

With some rearrangement, one obtains

> el —m)z(m)> =" (p)e” (I —p)]) =P (A.15)
p

m

Tr (Z Z e(l —m)E [m(m)a)H(p)] el (1 —p)) =P. (A.16)

By taking the inverse Fourier transform of Equation (1.8) and putting the
result in Equation (A.16), one gets
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Another rearrangement in the order of summation and integration, assuming
convergence, gives

1 H
Tr /21 > e(l —m)e 2T g, () (Ze(l —p)eﬂ”f(lm) df | =P.

(A.18)

A change of summation variables and the introduction of E(f), the Fourier
transform of e(n), gives the power constraint in Equation (2.71).

A.3.2 Power Constraint for FIR Filter Banks

The problem of expressing the power constraint in Equation (1.23) in the FIR
case reduces to finding an expression for the vector y(n) by means of the
input vector time series. This can be done by y(n) = E_ax(n),, where the
vector x(n), is an (m + 1)N x 1 vector. If the vector y(n) is substituted in
the left hand side of Equation (1.23) the following result is obtained:

Tr{E [y(n)y"(n)]} = Tr {E [E_z(n), =" (n), E_]}

— Tr {E_dsg”’N’Ef’} : (A.19)

If this result is inserted in Equation (1.23) the power constraint in the FIR
case can be expressed as in Equation (4.24).



Appendix B

Ordering Functions and
Eigenvalues of the PSD Matrix

In this appendix, the eigenvalues of the PSD matrix S (f) are derived and the
ordering functions are introduced. Some properties of the ordering functions
are also derived.

B.1 Eigenvalues of the PSD Matrix

Let )\EN)(f) be the ith largest eigenvalue of the N x N PSD matrix Sz(f), de-
fined in Equation (1.8). In [Sathe & Vaidyanathan 1993|, it is shown that Sz (f)
is a pseudocirculant matrix when the time series z(n) is WSS. Furthermore,
in [Vaidyanathan & Mitra 1988], it is shown that the eigenvalues of a pseudo-
circulant matrix are given by

—_

N— j2rk +1£N)
AN =3 M) e—7<fw m>, (B.1)

k=0

where ¢({")(f) is the kth element in the first row of Sgz(f) and the func-

tion lEN)(f) is the ordering function

MR — zZy, i€Zy, (B.2)
where the set Zy is defined as Zy = {0,1,... ,N — 1}. The ordering func-
tions lEN)( f) were not used in [Vaidyanathan & Mitra 1988, but are introduced

here to ensure that the ordering of the eigenvalues given in Equation (2.7) is
maintained for all frequencies f.
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The goal is to find )\EN)(f) expressed as a function of S;(f). From the
definition of Sz(f), see Equation (1.8), one obtains

&V = Y Ro(mN+k) e 72m g ey, (B.3)

m=—0oQ

where Rg;(n) is the autocorrelation function of the input time series z(n).

Thus, C]gN)( f) is the Fourier transform of a decimated version of the time se-
ries R, (m +k), which in turn has the Fourier transform e/27/¥. S, (f) [Proakis
& Manolakis 1992|. Therefore, the Fourier transform of the decimated se-
quence Ry(mN + k) is

N-1
1 27r f m
0= Do (55)

N 2 Ic -
_ ey27rfN Z — L2k Wm <—Nm> . (B.4)

m

By inserting the result from Equation (B.4) into Equation (B.1), one gets
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M= a7
k=0
N-1 N- _ gork (101 ()
S el Z s, (L) o)
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m=0 k=0
N-1
— Y, (Lo 6 (m+ 1Y
- T T m+i (f)
m=0
i
- (HT(‘”> i€y, (B.5)

where §() is the Kronecker delta function. The values of the ordering func-
tions can be found by Equation (B.5), while making sure that the ordering in
Equation (2.7) is maintained.
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B.2 Properties of the Ordering Functions

In this section, some of the properties of the ordering functions will be stated
and proven.

For a fixed frequency, the N ordering functions will take each of the N num-
bers in the set Zy only once. Therefore, the sum of all the ordering functions
for a fixed frequency is given by:

N-1 N-1
M= 3 iz WDV p B.6
2 ) ; 5 f (B.6)
From Equation (1.8), it is seen that Sz(f + 1) = Sz(f), i.e., the PSD
matrix Sz(f) has a period equal to 1. Since )\EN)(f) is the eigenvalue of the
PSD matrix Sg(f), the eigenvalue functions must also have period 1. S;(f)
represents a discrete time signal, and therefore, S,(f + 1) = S,(f), which
means that the period of S;(f) is also 1. By studying Equation (B.5) and
imposing that both the functions AEN)(f) and S;(f) should have period 1, the

only possibility is

M+ +1=1M() + Nk, kez. (B.7)
This result leads to

M +p) +p =1 () + Nk, kpe. (B8)

Since the function lEN)

that

(f) returns values in Zy, it follows from Equation (B.8)

M+ 8) =1 (), (B.9)

which means that the ordering functions have period N.

Assume that the input time series is real. Then the PSD function Sy(f) is
symmetric, that is Sy(—f) = Sz(f) [Proakis & Manolakis 1992|. It will now
be shown that the following property holds:

M) + 1M (=) =0 (mod N), (B.10)

where (mod N) means that the arithmetic is modulo N [Judson 1994].

By using the definition K4(m) = E [z(n +m)z (n)] and the assumption
that the input is real, it can be shown that K. (—m) = Kg(m). This can
again be used to show that for real input signals:

Sa(=f) = Sz(f)- (B.11)
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Figure B.1 Ordering functions /;(fN) as a function of frequency f for N = 3,
where the input PSD S, (f) is an AR(1) with correlation coefficient 0.95.

Since the transpose of a matrix and the matrix itself have the same eigenval-
ues [Kreyszig 1988], it follows from the result in Equation (B.11) that
MYV =3 v (B.12)

The result in Equation (B.12) combined with S;(—f) = Sz(f) leads to:

(N) (N) (N)
s (LD <, (LD s (20 g

Since the PSD function S;(f) has period 1, the only possibility for Equa-
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tion (B.13) to be valid is that

1M =p) = =1

= , PEZ, B.14

N N +p, p (B.14)

and with some rearrangements, this leads to the desired result in Equa-
tion (B.10).

For real input signals, it is sufficient to decide the values of the ordering

(N

functions [; )( f) in the frequency interval (0, %] The reason can be seen from
Equations (B.7), (B.9), and (B.10).

As an example of how the ordering function may look, the ordering func-
tions lZ(N)(fN), which have period 1, are shown in Figure B.1. Here, N = 3
and the input PSD is an AR(1) source with correlation coefficient equal to 0.95.
From the figure, it can be observed that the properties given in this appendix
are satisfied by the ordering functions for all frequencies except for frequen-
cies where the ordering functions are discontinuous. At these discontinuous
points, the ordering functions are undefined. Since these functions are used
to evaluate the SNR vs. rate or CSNR performance through the calculation of
integrals of these functions, the performance is unaffected by the fact that the
ordering functions are undefined in a countable number of frequencies. From
Equations (2.61) and (2.62), it is seen that the frequency regions where the
unconstrained length filters are different from zero are given by the frequency
regions where the ordering functions lEN)( fN) are equal to zero.

The properties of the ordering functions shown here are in agreement with
the results reported in [Unser 1993, Vaidyanathan 1998| through the way the
passbands for optimal unconstrained length unitary filter banks should be cho-
sen. The passbands of optimal unconstrained length biorthogonal filter banks
should also be chosen according to the ordering function introduced in this ap-
pendix [Aas & Mullis 1996, Vaidyanathan & Kirag 1998, Moulin et al. 2000].
The ordering functions introduced in this appendix are related to the integer
valued functions in [Sathe & Vaidyanathan 1993], which are used to study
pseudocirculant matrices.






Appendix C

Matrix Variational Calculus and
Differentiation

In this appendix, some results of matrix variational calculus and differentiation
will be included, which are used in solving some of the optimization problems
in Chapters 2, 4, and 7.

C.1 Matrix Variational Calculus

In the unconstrained length filter bank case, the unknowns are functions of
frequency. The optimization of these can be found through variational calculus
with respect to the elements in the matrices.

The Gateaux variation [Troutman 1996] is needed in the optimization of the
unconstrained length filter banks. The use of this in the unconstrained length
case for continuous time filters can be seen in [Amitay & Salz 1984, Salz 1985].
In [Yang & Roy 1994], a related result to what will be found in this section
was given, but no derivation of the result was included.

The Lagrange function for the problem of minimizing the block MSE in
Equation (2.8), subject to the equality constraint in Equation (2.9) and the
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inequality constraints in Equation (2.4), can be expressed as:

N-1 .1 N-1 M—1 2
L=Y [ ¥ |60 —m) = Y Tas NG| NV
n=0""2 m=0 k=0
N—-1 1 M-1
+ C S TN 02, df
n=0 /_% m=0 !
M—-1 % N—-1
+py In ( / 1 IGm,n(f)Iz/\%N)(f)df>
m=0 —2 n=0
M—-1 % N—-1
=3 b [ [Gnal DEAN (D (1)
m=0 2 n=0

where T, 1, (f) is the element in row number n and column number m of the
matrix T'(f). Gmn(f) is the element in row number m and column number n

of the matrix G(f) and )\%V)(f) is diagonal element number ¢ of the diago-
nal matrix Az(f). In Equation (C.1), p € R = (0,00) is a Kuhn-Tucker
parameter for the equality constraint (2.9), and 6; > 0 are the Kuhn-Tucker
parameters for the inequality constraints in Equation (2.4).

If the Gateaux variation [Troutman 1996] of £ is calculated with respect
to T; ;(f) in the direction of V(f) and set equal to zero, the following result is
obtained:

50L (T3 ;(F); V (f)) = / zae{

N—-1
> AN(Ginlf)
n=0

M—-1
(—5@ —n)+ Yy T:m(f>G:;,n(f)> +T75(f)oo,

m=0

V(f)} df =0, YV(f),
(C.2)

where d, is the Gateaux variation operator. Operator Re returns the real value
part, and the superscript * means complex conjugation. In order to find the
optimal value, Equation (C.2) must be satisfied for all functions V(f).

Since Equation (C.2) must hold for all values of V(f), the only possibility

is that
N1 M-1
ST AN Gl (—5@' —n)+ Yy T{jm(f)G?‘n,n(f)> +T75(f)ag; =0,
n=0 m=0

(C.3)
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for all f and this equation must be valid for 7 € {0,1,... ,N — 1} and j €
{0,1,... ,M — 1}. If the equations are manipulated and written in matrix
form, the following expression is obtained:

T(f) (G(f) A= (f)GT (f) + Aq) = Ax(f)G" (1), (C.4)

which is equivalent to Equation (2.11). The necessary conditions with respect
to the synthesis polyphase matrix are now found, but the necessary conditions
for the analysis matrix remain to be found. These can be obtained by finding
the Gateaux variation of £ with respect to Gy, »(f) in the direction of V'(f),
and then setting the result equal to zero. If this is done, the following result
is obtained:

% N— M-1
2Re AN ()T () (—wc —n)+ Y T,:,Z(f)G;':nm)
2 k=0 1=0
1 N-1 !
tu{ [ 1GmaDEN DA | Gon DA )| V() =0,
2 j=0

(C.5)

for all V(f). Since the equation must hold for all values of V(f), the only
possibility is that

N—-1 M-1
S AN ()T (f) (—5(k —n)+ Yy T,:,Z-(f>G;‘,n(f)>

k=0 i=
L N-1 -1
N *
sl [ 1GmiDENY (D | Gn DA =0, (C0)
~% j=0

for all f and this equation must be valid for m € {0,1,... ,M — 1} and n €
{0,1,... ;N — 1}. These equations can be rearranged in matrix form, which

gives:
T ()T(f)G(f) +nZ, ' G(f) - OG(f) =T"(f) (C.7)

where the matrix ¥y is an M x M diagonal matrix with diagonal element
number m given by Equation (2.13). The matrix @ is a diagonal matrix
where diagonal element number i is 0;. Equation (C.7) is equivalent to Equa-
tion (2.12).
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C.2 Matrix Differentiation Results

In the FIR filter bank case, the unknown variables are the elements of the
impulse response functions. These independent variables can be found through
optimization in the ordinary way, i.e., through differentiation.

Differentiation of a scalar function v with respect to a matrix A can be
defined [Graham 1981] as another matrix B with the same dimension as the
matrix A. The matrix element in row number ¢ and column number j of the
matrix B is given by the ordinary scalar differentiation of the scalar function v
with respect to the element in row number ¢ and column number j of the
matrix A.

Many matrix differentiation results can be found in [Magnus & Neudecker
1988, Liitkepohl 1996]. However, most of the results given in this section have
not been found in the literature. The detailed derivation of the results will not
be given here, only the final results will be shown.

In order to differentiate the objective function in both the bit and power
constrained FIR cases with respect to the matrices E_ and R_, the results in
this section are needed.

To differentiate the block MSE with respect to E_, the following three
results are needed:

0

= Tr {R_E@&,’”H’N)Efj Rff} = oRHT {R_Ereﬁg,m“’N)} . (C8)

where the operator T is defined in Equation (4.17),

0

a—E_Tr{R_Er Snm“’N)(dv,ds)}:RflT{( Scm“’N)(dv,ds))H}, (C.9)

and

0 (m+1,N) H _ (m~+1,N) 1
ﬁi‘r{(qu (dy,dy)) EfRff} —R.HT{(% (A, dy)) }
(C.10)

These three results are found from the definition of the differentiation of a
scalar with respect to a matrix, stated above.

To include the bit constraint in the optimization, the following result is
needed:

M—-1

a% Y ol =25,'E &) (C.11)
T =0
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The result in Equation (C.11) is used to include the equality constraint given
in Equation (4.13) in the optimization of the FIR analysis filter bank through
a Lagrange multiplier.

To include the inequality constraints given in Equations (2.4) in the opti-
mization of the analysis filter bank, the following result will be useful:

9 M —
o Z —20E_&{""), (C.12)
=0

where the matrix @ is an M x M diagonal matrix with 6; as diagonal element
number 3.

To find equations for an optimal synthesis filter bank for a given analysis
filter bank, the following three results will be needed:

0 (m+L,N) mH pH | _ (m+1,N) |
s T {R B2 VBl R} 2R B 8" VBT, (C.13)
0 {R E-¢{" " (d,,d )} - <¢(m+l’N)(d d ))HEH (C.14)
3R vy S x vy Ws o .
and
0 (m+1,N) H HpH | _ (m+1,N) H H
8R rPr{( (dU’dS)) ErR_ - (¢:1: (dv,ds)) EF' (015)

The results in Equations (C.13), (C.14), and (C.15) can be found in [Magnus
& Neudecker 1988].

To optimize the transmitter polyphase matrix for power constrained FIR
filter banks, the following result is needed:

0

o Tr{R (C_E_)_smtorth) ((C’_Er)\)HRf{}

— 20T, {Rffﬁ{ (C_E.) qs<m+°“N>}}, (C.16)

where the operator 77 : RVX(m+otl+DN _y RUADNx(m+o+1)N nroduces an
(I4+1)N x (m+ o0+ 1)N block Toeplitz matrix from an N x (m +o+1+1)N
matrix in the same way as shown in Equation (4.17), but where m is replaced
by m + o. The operator T : RM*(mtotHN _, Rlo+)Mx(m+)N hroduces an
(0+1)M x (m+1)N block Toeplitz matrix from an M X (m + o+ 1) N matrix
in the following way: Let W_ be an M x (m + o + 1)N matrix where the ith
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M x N block is given by [W_];, i € {0,1,... ,m + o}. Then the operator T
is defined as follows:

(W o W Jor1 -+ [W ]m+o

T {W_} = (C.17)

[W—]l [W—b [W—]m-i-l
W_lo W_.]1 - [W_]n

The following two results are also needed to find the equations for an op-
timal transmitter filter bank in the power constrained FIR case for a given
synthesis filter bank:

0 (m~+o+I,N)
ﬁTr{R_(C_Er)\@c (dvadS)}
— i {RIH'E {( 55“*"”’N’(dv,ds))H}} (C.18)
and
) m+o =
5o 1] (6 a0)” (1080 ) R

— e {RIT{ (o4 ad0) "} can

These two results can be used to derive the result in Equation (C.16).
To include the power constraint in the optimization, the following result is
needed:

8 (m,N) H| _ (mvN)
o {E_dim E' } =2E &N, (C.20)

The last result can be found in [Magnus & Neudecker 1988].



Appendix D

Correlation Matrix Elements

In this appendix, formulas for finding the matrix elements of the block Toeplitz
matrices 51551! M) and é&’ﬁ,’l’N’M) will be given. These formulas are needed to
include the correlation between the input signal and the additive quantization
noise in Section 7.2. In [Korn 1965, Sripad & Snyder 1977, Gosse & Duhamel
1997], midpoints were used as the representation levels in the uniform threshold
quantizers. The results developed are an extension of these results to include
other types of representation levels in the uniform threshold quantizers. In the
theory developed in this appendix, the representation levels can be chosen as

an arbitrary even function.

It is assumed that the input time series is Gaussian. Since the analysis
filter bank is a linear operator, the subband signals are also Gaussian. The
results will be derived by first finding the pdf that can be used to find the
autocorrelation or the cross-correlation terms, then the characteristic function
will be found, and finally, the correlation function will be found by differen-
tiation of the characteristic function. This is the same procedure used in the
derivation of similar formulas in [Korn 1965, Sripad & Snyder 1977].

Let a,(:) be defined as follows
o) =) kA, (D.1)

kA, is the midpoint of the kth decision interval. Therefore, a,(:) is the distance
between the representation level r,(cz) and the midpoint k£4; in decision interval

number k in the 7th uniform threshold quantizer. For midpoints as representa-

(4)

tion levels, r.” = k4;, thus with midpoints as representation levels, a,(;) = 0.
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D.1 Elements of the @(m’,rgl’N’M) Matrix

The matrix @&%Z’N’M) isan (m+14+1)N x (I + 1) M matrix, and to calculate

the element in row number n/N + ¢ and column number pM + k of this matrix,
where i € {0,1,... ,N—1}, k€ {0,1,... , M -1}, n€{0,1,... ,m+1}, and
p € {0,1,... 1}, the joint pdf of the stochastic variables z;(n) and gx(p) is
needed. By generalizing the results in [Korn 1965, Sripad & Snyder 1977, it
can be shown that the joint pdf of the stochastic variables z;(n) and gx(p) is
given by:

(B _
)rect ’ (TplAk plAk) )

(D.2)

frma@h) = Y famain (@l b

p1=—00

where the function rect: R — R is the rectangular function [Haykin 1983]
defined by

(D.3)

N[ = D=

1, if |z| <
rect(z) = .
0, if |z|] >
In Equation (D.2), the symbol f,. (44, (p) represents the joint Gaussian pdf of
the stochastic variables z;(n) and yg(p).
The characteristic function Xy, (n),q¢.(p)(@,b) can be found (except for a sign
in the exponent) as the Fourier transform of the pdf [Papoulis 1991] in Equa-
tion (D.2), and it can be shown that it is given by:

A [ S
Xmi(n),qk(p)(aab) = % /oo Z Ccos (b’f‘gf) — VplAk)
TP pi=—00
VAk.

sin
Xosmyanp) (@, v = b)—z2—dv,  (D.4)
2

where Xz, (n)y.(p) 18 the characteristic function of the joint Gaussian vari-
ables z;(n) and yg(p), which can be found in standard references on statis-
tics [Papoulis 1991].

The element in row number nN + ¢ and column number pM + k in the

matrix @&%Z’N’M) can be found by the moment theorem [Papoulis 1991]:
[zi(n) ()]——1 o (a,b) (D.5)
E [z;(n = : a, . D.
i\) kP 42 Daob Xzi ).k (p) 00—
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By performing the calculations in Equation (D.5), it can be shown that the
following result is obtained

9,2, 2.2
00 TPy o'yk

2

E [zi(n)gr(p)] = 2Ry, 4, (n — p) Z S

A (4p12+1)

2 A7
—i—agf) 5¢€ 8o sinh< k§1> , (D.6)
oy, 20yk

where Ry, . (n —p) = E[z;(n)yr(p)] is the element in row number nN + ¢ and
column number pM + k of the matrix E [z(n),y" (n),| = Q(mmH’N)EiI.

If agc) = 0 and 7 = k in Equation (D.6), the result corresponds to Equa-
tion (23) in |Gosse & Duhamel 1997|. Therefore, Equation (D.6) is a general-
ization of the result in [Gosse & Duhamel 1997| to include arbitrary symmetric
representation levels and cross-correlation between different subbands.

D.2 Elements of the @g’M) Matrix

By assuming that the input to the quantizer shown in Figure 6.2 is Gaussian
with zero mean and input variance O’ , it is possible to calculate the pdf of the
additive quantization noise [Papouhs 1991]

_ (7D _ A,
fai(a Z fyz( g a>rect : <TpAi pAZ) : (D.7)

p=—00

The characteristic function of ¢; is found (except for a sign in the exponent)
by Fourier transform of the pdf in Equation (D.7), and it can be shown that
it is given by

sin
Xq; (@ 27r/ Z cos ar —VpA)Xyl( a) uQ dv, (D.8)
2

p*foo

where x,, is the characteristic function of the Gaussian variable y;, and it is
fully specified by the mean, which is assumed to be zero, and the variance of
the stochastic variable y;(n), which is denoted O';i. The characteristic function
of a Gaussian variable can be found in [Papoulis 1991].

From the characteristic function xg,(a), it is possible to find the variance
of the additive quantization noise by the moment theorem. By performing the
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calculations, it can be shown that it is given by:

) AZ A2 00 (_l)k _2Tr2:2za§i
qu_ﬁ+ﬁz pe
A2 4k2 41
T e2

where erf is the error function [Abramowitz & Stegun 1972|. If ag) =0is
substituted in the equation, only the first two parts of the right hand side
remain, and this is the same result as Equation (20) in [Gosse & Duhamel 1997|,
where midpoints were used as representation levels in the quantizers.

(L,M)

Diagonal element number pM + ¢ in the matrix P4 is equal to the
variance of the additive quantization noise in subband number 7. As an al-
ternative expression, the quantization noise variance of a uniform threshold
quantizer can be found the ordinary way [Gersho & Gray 1992]

(D.9)

00 2kt A

0= /QkiA ( —m) fyi(y)dy, (D.10)

k=—00 2 4

where fy,(+) is the pdf of the subband signal y; and r,gi) is representation level
number £ in uniform threshold quantizer number i. The value of r,gl) giving
the minimum value of the variance O'gi is given by the centroid [Gersho &

Gray 1992] of the function fy,(y) in the kth decision interval (%Ai, @Ai],
see Equation (6.2).

The determination of the off-diagonal elements of the (I + 1)M x (I +1)M

matrix 45,9 M) can be derived by first finding the joint pdf of the variables ¢;(n)

and gg(p), where i € {0,1,... , M -1}, k€ {0,1,... , M—1},n € {0,1,... 1},
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and p € {0,1,...,l}. It can be shown that the joint pdf is given by

fama (@) = 3 D fumae (1) —ari —b)-

P1=—00p2=—00

a— (7‘1(:? —P1Ai) et b— (7“151];) —p2Ak)

D.11

rect

where fy. ),y (p)(+°) is the joint Gaussian pdf of the stochastic variables y;(n)
and yk(p). It is fully specified by the means of these variables, which are
assumed to be zero, their variances, and the cross-correlation Ry, ,, (n — p).

The joint characteristic function of the variables g;(n) and gg(p) can be
found (except for a sign in the exponent) by the Fourier transform of the pdf
in Equation (D.11). By performing the Fourier transformation, it can be shown
that the joint characteristic function is

Al [ [ & Z.
Xai(m)ax(p) (@, 0) = =5 / / >, > cos (afz(:l)—lelﬂz')'
0070 py=—00 py=—00

V1A i AR
sin 5 sin 5

cos (brz()];) B V2p2Ak) Xyi(n)vyk'(p) (Vl —a,V; — b) vi4; VoA dVldV27
2 2

(D.12)

where X, (n),y,(p) 18 the joint characteristic function of the joint Gaussian vari-
ables y;(n) and yx(p).

After finding the joint characteristic function of the stochastic variables
gi(n) and gx(p), it is possible to find E'[g;(n)gr(p)] by using the moment the-
orem. FE[g;i(n)qx(p)] is the off-diagonal element in the matrix 51551[ M)
number nN + ¢ and column number pM + k, and it can be shown that it is

in row
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found by the following expression:

o0 o0 2p%7r205, 2])%7&'20’5
(_1)p1+p2A.Ak - oL — Uk
th‘(n)ﬂk (p) = Elqi(n)qr(p)] = Z Z P R— e a7 Ak
p1=1p2=1
Am?p1paRy, (0 —p)
. Q] h Yi Yk
sin AN,
o0 o0
AAk -
£33 {2 [T s

2_2 2
2170y, 1 5 o 2p1muaRy; .y, (n—p)
i VoA ATt ROy A
- sinc e i dvg
T

7T2P2

+D 2. { Eald) (—1yp ! /OO sin (v1p14;)

dU1

2.2 _2
A\ —Lo2gz ZPET T 2pamor Ry, (nop)
. V144 2V10y; A2 Ay,
-sinc e

k
™
0 0
A A . oo oo .
- Z Z 7 kalgzl)al(’];)/ / sin (v1p1 4;) sin (vopa Ay)
— Q0 —o0 — 00

m4; v9 A _ 1,242 _1,2.2 _ _
-sinc <%> Sinc< 22 k) e 2V10y; 320y, —v1v2 Ry, (0 p)dmdvz}
T T

(D.13)

where Ry, ,, (n —p) = E [yi(n)yr(p)] is the element in row number nN + ¢ and
column number pM + k in the matrix E [y(n) y(n),] = El_diggmH’N)Ef.
The function sinc: R — R is defined [Haykin 1983| as follows:

) 1, ifx=0,
sinc(z) = {sin(mt) o0 (D.14)

T
The first double-sum in Equation (D.13) represents the cross-correlation
that exists when the midpoints are used as representation levels in the quan-
tizers, and this is a generalization of Equation (21) in [Gosse & Duhamel 1997]
to include cross-correlation between quantization noise in different subbands.
Equation (D.13) contains three integrals with infinite integration range,
which might result in an unstable numerical solution. Therefore, these three
integrals have been rewritten as finite integrals. This can be done by us-
ing Parseval’s theorem for aperiodic continuous valued functions [Proakis &
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Manolakis 1992]. The first integral in Equation (D.13) is equal to

2_2

2p L Ry yk(" P)
v (vii— - /4,, 47 / f2+p2—l‘)
e

cos 2mp1pa Ry, (N — p) Ay, g 27TP2Akf
A; 02 o2

Yk
e . —
Sm( "l n 1) )
Ajoy,
2 R, —p)A 27mpa A
_Sin< TP1P? yz,ka(n p) k) Cosh( P24 f>.
Aigyk Y
4m%p1 Ry, -
oS ( T y“yg(n p)f>} df. (D.15)
Aioy,
The second integral in Equation (D.13) is equal to
252 i (n—p) ? ; &
e <_u> O __(f+_a)
e 1 N —e Yi
o Ai UZi
{cos (27rp1p2Ryi,yk£n — p)Ai> sinh (2Wp;Aif> :
Akgyi in
an (R0 21) )
A}
2 R, —p)A4; 2mp1 4A;
_Sin< Wppo yuykgn p) Z) COSh( 7Tp21 Zf) .
Akgyi Yi
4’y Ry, -
oS ( TP y“y';(n p)f>} df, (D.16)
Agoy,

whilst the third integral, which is a double integral, can be written as a one-
dimensional integral

A2
- 4 2 277 pl l 2 A
/4 'IT l ) {51nh< szl Zf) ‘g(Ak,al,GQ,a?,,aél)
V Ty;

2 A

—cosh( 7rp21 Zf)-g(Ak,al,ag,ag,cm)} df (D.17)
Ty;

where a1 = pZAk; ay = plAZRyZ—W, ag = QWRyi,(yT;E(”*P)f, and

in Yi

2

Ry, .y, (n— . :

as = 3 (ozk - Ul’"’ff#‘””) The function g(Ag,a1,as,as3,aq) is defined
Yi
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as

— n Ag a1 +as + as
A fl— (== 4= "= 2
(A, 02, 03, 1) 44 {er ( a4 (47r + 27 >>

™ Ay a1+ ag + as ™ Ay a1 — as — as
+erf{ ——~~|———-—"") ) -erf | —| —+ —1"—

Vaa \ 4m 2w Vg \ 4m 21w

™ Ay a1 — ay — as ™ Ay a1+ as — as
—ef| —|————""— | —ef| —=| —+ ——=

Vag \ 4m 2w Vs \ 4m 21w
e (Bt )) (5 (o)

Vaa \ 4m 2w Vs \ 4m 21

T A a1 —as+ag

fl —|————«+—— . D.18

rar (= (5 - )} (D-1%)
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