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Abstract

This thesis presents a study of alternative speech feature extraction methods
aimed at increasing robustness of automatic speech recognition (ASR) against
additive background noise.

Spectral peak positions of speech signals remain practically unchanged in
presence of additive background noise. Thus, it was expected that emphasizing
spectral peak positions in speech feature extraction would result in improved
noise robustness of ASR systems. If frequency subbands are properly chosen,
dominant subband frequencies can serve as reasonable estimates of spectral
peak positions. Thus, different methods for incorporating dominant subband
frequencies into speech feature vectors were investigated in this study.

To begin with, two earlier proposed feature extraction methods that uti-
lize dominant subband frequency information were examined. The first one
uses zero-crossing statistics of the subband signals to estimate dominant sub-
band frequencies, while the second one uses subband spectral centroids. The
methods were compared with the standard MFCC feature extraction method
on two different recognition tasks in various background conditions. The first
method was shown to improve ASR performance on both recognition tasks at
sufficiently high noise levels. The improvement was, however, smaller on the
more complex recognition task. The second method, on the other hand, led
to some reduction in ASR performance in all testing conditions.

Next, a new method for incorporating subband spectral centroids into
speech feature vectors was proposed, and was shown to be considerably more
robust than the standard MFCC method on both ASR tasks. The main differ-
ence between the proposed method and the zero-crossing based method is in
the way they utilize dominant subband frequency information. It was shown
that the performance improvement due to the use of dominant subband fre-
quency information was considerably larger for the proposed method than for
the ZCPA method, especially on the more complex recognition task. Finally,
the computational complexity of the proposed method is two orders of magni-
tude lower than that of the zero-crossing based method, and of the same order
of magnitude as the standard MFCC method.
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Chapter 1

Introduction

Automatic speech recognition (ASR) makes it possible to extract the linguistic
message from an acoustic speech signal, and perform a task associated to it.
Thus, it enables a more natural way of human-machine communication. Its
importance is especially large in the situations where other interaction modes
are limited, for example in the emerging pocket-size electronic devices, or for
people with certain disabilities.

A major limitation of state-of-the-art ASR systems is their lacking robust-
ness against different acoustic environments. This problem has to be overcome
before ASR can be widely used in human-machine interfaces. Much research
during the last decade has been concentrated toward finding effective methods
for increasing robustness of ASR systems. This thesis gives a small contribu-
tion in that direction.

1.1 Basic ASR Concepts

This section describes the main concepts of standard statistical approach
to ASR based on hidden Markov modeling of speech, which has been used
throughout this study. A comprehensive introduction to hidden Markov mod-
eling and its use in ASR can be found in [91, 89].

Figure 1.1 illustrates the statistical approach to ASR. It consists of a train-
ing phase and a recognition phase. In the training phase, the system learns
the characteristics of basic speech units from a large speech database with as-
sociated transcriptions. This knowledge is then used in the recognition phase,
where unknown speech utterances are decoded in terms of the basic speech
units.

Feature extraction is the common initial processing stage for both training
and recognition phases. It normally involves converting the speech utterance
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Speech transcription
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Figure 1.1: Statistical approach to ASR based on hidden Markov
modeling

into a sequence of observation vectors O = {o;}, also called feature vectors.
Feature vectors should only contain the relevant information for distinguish-
ing between different speech sounds. All the other information contained in
the speech signal, such as speaker and environmental characteristics, should
ideally be discarded. Speech feature extraction is discussed into more detail
in Chapter 2.

Each basic speech unit is modeled by a hidden Markov model (HMM).
The basic speech units are either whole words or subwords (e.g. phonemes, tri-
phones). Hidden Markov models are stochastic parametric models that consist
of a number of states. Each state corresponds roughly to one stationary part
of the basic speech unit. An HMM can be seen as a finite state machine that
generates speech observation vectors. Each state generates observation vectors
according to the corresponding state probability density function. The under-
lying (hidden) state sequence is governed by the state transition probabilities,
given by the state transition matrix. State probability density functions typi-
cally have the form of a weighted sum of Gaussian mixture components given
by

M
bj(ot) = Z Cm N(Ot; Mo 2'rn), (1'1)
m=1

where b;(0;) denotes the probability of generating observation vector o; in
state 7, N (- ; s, X) is a multivariate Gaussian distribution with mean p and
covariance matrix X, and ¢, is the weight of m-th Gaussian mixture compo-
nent.

In the training phase, the parameters of HMMs for all basic speech units
are estimated. This involves estimating the state transition matrices and the
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parameters associated with state probability density functions. Parameter
estimation is normally performed according to the maximum-likelihood (ML)
principle using a variant of the expectation maximization (EM) algorithm,
referred to as Baum-Welch algorithm. A detailed description of the parameter
estimation procedure can be found in [91, 89].

The goal of the recognition phase is to find the sequence of speech models
W that maximizes the probability of having generated the speech utterance
represented by O = {0;}. Thus, the recognition task can be expressed by

A

W = argmax P(W|0) = argmax P(W)P(O|W) (1.2)
w w

The probability P(O|W') can be computed from the acoustic models obtained
during the training phase, while P(W') can be computed from the language
model for the given ASR task. In the case of sub-word basic speech units,
a pronunciation dictionary is also needed in order to describe all vocabulary
words in terms of basic speech units. The Viterbi algorithm is usually used to
approximate the probability P(O|W) as

P(O|W) %msa.xP(O,s|W), (1.3)

where s is the underlying state sequence.

1.2 Robustness in Automatic Speech Recognition

Standard speech features used in ASR have a good ability to discriminate
between different speech sounds. However, they are not invariant to speaker
and acoustic environment characteristics. Thus, if an ASR system is used
in conditions that differ from those observed in the training, there will be a
mismatch between observed speech data and trained speech models that can
cause a severe degradation of ASR performance.

Hence, increasing robustness in ASR refers to designing techniques that
would make the performance of ASR systems less sensitive to the mismatch
between training and operation conditions.

The particular speech realization depends on a large number of factors,
such as speaker’s voice characteristics, dialect, social class, emotional state
and context. All those factors can cause mismatched conditions in ASR if
they are not adequately represented in the training database.

Acoustic environment refers to all factors that influence the speech signal
after it leaves the speaker’s mouth, e.g. background noise, microphone and
channel characteristics. Figure 1.2 illustrates a commonly used model of the
acoustic environment. Background noise is modeled as additive noise, while
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the influence of the microphone and transmission channel is modeled by a
linear filter.

Background
noise
Clean Mi((fmﬁ)hmlel Noisy
h and channel h
speec characteristics Speec

Figure 1.2: Model of acoustic environment

A number of different methods for increasing the robustness of ASR sys-
tems have been proposed. They operate either in the feature domain or in the
model domain. The main research directions are summarized in the following:

Robust feature extraction aims at finding new speech features that would
be less dependent on the particular speaker and acoustic-environment
characteristics. They are usually motivated by some aspects of human
speech recognition, due to the exceptional ability of humans to deal with
all kinds of variabilities in speech signals.

Robust feature transformations refer to techniques that modify speech
feature vectors in order to reduce the effect of the particular speaker and
acoustic environment, and thus increase the correspondence between the
feature vectors and given speech models. Those algorithms can often be
seen as an integral part of feature extraction algorithms.

Model adaptation and compensation techniques modify the parameters
of speech models, in order to make them more representative of the
speech data in target conditions.

Chapter 3 gives an overview of the commonly used model-based algorithms
and feature transformations for increasing robustness in ASR, while Chapter 4
is devoted to robust feature extraction.

1.3 This Thesis

This thesis deals with the problem of robust speech feature extraction. The
main contributions are summarized in the following:

e Feature extraction techniques based on simulating the processing in the
human auditory system are analyzed. Similarities and differences com-
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pared to conventional feature extraction methods are found. In partic-
ular, use of dominant subband frequency information in the auditory-
based methods is pointed out as a possible explanation for their superior
robustness against additive background noise.

e A new feature extraction algorithm is proposed that incorporates dom-
inant subband frequency information into speech features in a compu-
tationally efficient way. The new algorithm is shown to significantly in-
crease the ASR robustness in different background conditions compared
to conventional methods. The advantage of the proposed algorithm be-
comes larger as we move from a small-vocabulary isolated-word task
to a medium-vocabulary continuous speech recognition task, where it
also greatly outperforms the computationally expensive auditory-based
methods.

The thesis is organized as follows. Chapter 2 summarizes the basic con-
cepts of speech feature extraction in ASR, and describes the commonly used
feature extraction methods in state-of-the-art ASR systems. Chapter 3 gives
an overview of the model-based methods and feature transformations that
are commonly used for increasing the robustness in ASR systems. Chapter 4
describes several auditory-based feature extraction methods that have been
shown to increase ASR robustness compared to the conventional methods.
Furthermore, a new feature extraction method is proposed, that combines the
advantages of auditory-based and conventional methods. Chapter 5 describes
an experimental study that compares the ASR performance of the proposed
method with the performance of the conventional and auditory based methods.
Finally, the main conclusions are summarized in Chapter 6.






Chapter 2

Fundamentals of Speech
Feature Extraction

The role of speech feature extraction in ASR is to extract from the speech
waveform the information relevant for discriminating between different speech
sounds. In order to find speech features with good discriminative properties,
knowledge of human speech production and perception has been used in com-
bination with signal processing techniques.

This chapter starts by summarizing the basic concepts from speech produc-
tion, speech perception and signal processing, that serve as building blocks for
a number of different feature extraction methods. Thereafter, some commonly
used speech representations are described.

Speech representations should, ideally, be invariant to the particular acous-
tic environment, transmission channel and speaker characteristics. Feature ex-
traction methods specially designed to improve ASR performance in adverse
conditions are addressed in Chapter 4.

2.1 Human Speech Production

Characteristics of different speech sounds are directly related to the way they
are produced in human speech production system. This section gives a brief
description of speech production, and presents a simple model of speech pro-
duction that has been used successfully both in speech recognition, synthesis
and coding. Furthermore, it explains the motivation for use of short-term
spectral analysis as basis for feature extraction in ASR. A detailed discussion
of the topics covered by this section can be found in [32, 90, 83, 24].

Speech is produced by forcing the air stream from the lungs through the
human speech production apparatus consisting of trachea, glottis with vocal
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cords, vocal tract and nasal tract. Vocal tract refers to the part of speech
production system between vocal cords and lips, while nasal tract refers to
the part between velum and nostrils. By varying the position of articulators
in the vocal tract (e.g. tongue, jaw, lips), one can control the production of
different speech sounds. Thus, the vocal tract can be considered as a time-
varying filter whose current configuration decides the particular sound to be
produced.

A simple model of speech production is shown in Figure 2.1. The glottal
excitation signal, e(n), at the input of the vocal tract, is modeled as an impulse
train for voiced sounds (V), and as white noise for unvoiced sounds (U). The
vocal tract is modeled as a time-varying filter with impulse response h(n).
Since movements of speech articulators are relatively slow, vocal-tract filter
characteristics can be assumed to be constant during short time intervals.
Thus, speech signal s(n) can be seen as a realization of a quasi-stationary
random process. The quasi-stationary property makes it possible to apply
well developed signal processing tools for stationary signals to short speech
frames.

Impulse train
generator

V/U

Vocal tract

h(n) — s(n)

Random noise
generator Gain

Figure 2.1: A simple model of speech production

According to the model in Figure 2.1, speech sounds can be fully deter-
mined by the underlying vocal-tract filter, and the nature (i.e. voiced or un-
voiced) and gain of glottal excitation signal. The human ear is highly insen-
sitive to the phase in the speech signals. Thus, only the magnitude response
of vocal-tract filter, |[H(f)|, is important for discriminating between differ-
ent speech sounds. According to the model in Figure 2.1, the speech power
spectrum Sgs(f) is given by

Sss(f) = [H(F)” - See(f), (2.1)

where Se.(f) denotes the power spectrum of excitation signal. Since the excita-
tion signal is modeled either as impulse train or as white noise, the magnitude
response of the vocal-tract filter can be estimated as the spectral envelope of
the speech signal. This explains why spectral envelope estimation serves as a
common basis for all widely used feature extraction methods in ASR.
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2.2 Human Speech Perception

Humans’ exceptional ability to recognize speech, even under adverse condi-
tions, has motivated the use of human speech perception knowledge in ASR.
Practically all speech feature extraction methods in use today, incorporate
some properties of human speech perception, ranging from simple psycho-
acoustic concepts to simulating the processes in human auditory system in
great detail. This section summarizes the properties of human speech per-
ception that are commonly used in ASR. It starts with an overview of the
physiology of the human auditory system, followed by a description of the
most important psycho-acoustic results.

Detailed studies of human speech perception started in the early 20th
century by works of Fletcher [33] and von Békésy [108]. Fletcher’s work has
been recently reviewed in [6]. Good overviews of the topic can be found in
[32, 31, 5, 83].

2.2.1 Physiology of Human Auditory System

Human speech perception consists of converting sound pressure waves into the
corresponding linguistic messages. In the context of speech perception, human
auditory system can be divided into two main parts, the pre auditory-nerve
part and the post auditory-nerve part. The first part transforms the sound
pressure waves into auditory-nerve activity, and is relatively well understood.
The second part comprises higher level processing in the human brain, which
transforms the auditory-nerve activity into a linguistic message. Very little is
known about the latter part of the system.

The pre auditory-nerve part of human auditory system consists of the outer
ear, middle ear, and inner ear. The outer ear directs the sound pressure waves
toward the eardrum. The middle ear converts the vibrations of the eardrum
into mechanical vibrations at the oval window on the input of the inner ear.
It performs impedance matching between the air medium in the outer ear and
fluid medium in the inner ear, and protects the inner ear from extensively
intense sounds. Finally, the inner ear converts the mechanical vibrations on
its input into electrical activity of auditory neurons.

The inner ear consists of the cochlea and auditory nerve. Cochlea is a
fluid-filled tube longitudinally partitioned by the basilar membrane. The me-
chanical vibrations at the entrance of the inner ear excite the fluid inside the
cochlea and cause the basilar membrane to vibrate. The displacement at a
specific location along the basilar membrane is dependent on the frequency
and the intensity of the input sound. Uniformly distributed along the basilar
membrane are sensors, the inner hair cells, that transform the displacements
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of the basilar membrane into firings of the auditory neurons. It is said that a
neuron fires when it exhibits an impulse in its electrical potential. The neural
activity is processed further by the post auditory-nerve part of the human
auditory system.

The frequency response of the basilar membrane varies along its length.
The positions closest to the cochlea input are most sensitive to high frequen-
cies, while those close to the apex are most sensitive to the low frequencies. In
addition, frequency resolution of human hearing is largest in the low-frequency
region, and it decreases gradually toward higher frequencies. Thus, the cochlea
can be modeled by a filter bank, where each filter models basilar membrane fre-
quency response at certain position. The logarithm of filter center frequencies
is approximately proportional to the corresponding distance from the apex
of the basilar membrane. Furthermore, filter bandwidths are proportional
to the corresponding center frequencies, causing high frequency resolution at
low frequencies and vice versa. A filter bank specially designed to model the
frequency response along the basilar membrane into great detail is usually
referred to as a cochlear filter bank.

Neural activity generally increases with increased sound intensity due to
the increased amplitude of the basilar membrane vibration. The extent of neu-
ral activity can be modeled as the logarithm of sound intensity. Furthermore,
for frequencies up to 4 kHz, neural firings tend to be time-synchronized with
the displacements of the basilar membrane in one direction. This synchrony
property is utilized in several speech representations described in Chapter 4,
that are based on temporal characteristics of neural firing patterns.

2.2.2 Some Important Results from Psycho-Acoustics

Psycho-acoustics is the study of human auditory perception that relates acous-
tic signals to what the human listeners perceive. Results from psycho-acoustics
help distinguish the properties of speech signals that are important for human
perception from those that are irrelevant. This section summarizes several
psycho-acoustic results that have successfully been used in ASR.

2.2.2.1 Loudness as a Function of Sound Intensity and Frequency

Sound intensity is measured in terms of sound pressure level relative to a well
defined reference level, and is expressed in decibels. Perceived loudness is di-
rectly related to sound intensity, and is usually approximated as the logarithm
of speech signal power. Alternatively, it can be estimated as the cubic root of
signal power [100, 3].



2.2 Human Speech Perception

11

Perceived loudness depends also on frequency. The sensitivity of human
hearing is gradually reduced for frequencies lower than approximately 400 Hz
and greater than 5 kHz [83].

2.2.2.2 Masking, Critical Bands and Bark Scale

Masking is an important phenomenon in hearing that denotes the fact that a
tone (probe) that is clearly perceivable when presented in isolation, becomes
imperceivable when presented together with another tone (masker). Conse-
quently, the intensity of the probe has to be raised above the hearing threshold
by a certain amount, called amount of masking, in order to be heard. The
amount of masking increases with increased masker intensity, and with reduced
difference between probe and masker frequencies.

Many masking phenomena can be explained using the notion of critical
bands [83]. For example, a band of noise kept at constant intensity while its
bandwidth is increased is perceived to have constant loudness until the critical
bandwidth is reached. Thereafter, the loudness increases. Furthermore, when
two sounds have energies inside the same critical band, the sound with higher
energy inside the band dominates the perception and masks the other sound.
Critical bandwidths are commonly approximated by the following expression
[116]

CB=25+75 [1+1.4(F/1000)2]%, (2.2)
where CB is critical bandwidth and F' is frequency, both given in Hertz.

Bark scale is a perceptually-warped frequency scale designed such that
critical bandwidths have a constant value of 1 Bark along the entire scale.
The mapping from the linear frequency scale to Bark scale is commonly ap-
proximated by the following expression [116]

FBar, = 13 arctan (0.76 F/1000) + 3.5 arctan (F/7500)2 (2.3)

where F' is frequency given in Hertz, and Fg,,, is the corresponding perceptual
frequency given in Bark. However, in this study, an older approximation [63]
was used given by

Fpari = 6 In (F/GOO + 1/ (F/600)? + 1) : (2.4)

The difference between the approximations in Equations 2.4 and 2.3 is very
small in the low frequency region (e.g. approximately 0.2 Bark at 500 Hz).
It increases gradually with increased frequency up to approximately 2000 Hz,
and remains approximately constant at 1.5 Bark for higher frequencies.
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Critical bandwidths correspond approximately to 1.5 mm spacing along
the basilar membrane. Since the typical length of the basilar membrane is
35 mm, it is usually modeled by a set of 24 critical-bandwidth filters uniformly
distributed along the Bark scale. Such filter bank is referred to as critical-
band filter bank, and is commonly used in speech feature extraction. Note
that it is similar to the cochlear filter bank introduced in Section 2.2.1, but
the motivation for its use comes from psycho-acoustics rather than physiology
of the auditory system.

2.2.2.3 Frequency Perception and Mel Scale

Probably the most commonly used perceptually-warped frequency scale, the
mel-scale, evolved from a set of experiments on human frequency perception
[101]. The perceived frequency (pitch) of a 1 kHz tone at 40 dB sound pressure
was defined as a reference point and assigned the value of 1000 mel. Listeners
were then asked to adjust the tone frequency until the pitch they perceived
was twice the reference, half the reference and so on. The obtained frequencies
were labeled 2000 mel, 500 mel, etc. In this way, the mapping between linear
and mel frequency scales was found to be approximately linear for frequencies
up to 1000 Hz and logarithmic for frequencies above 1000 Hz. A commonly
used analytic approximation [83] of the mapping is given by

Frnel = 259510g (1 + F/700), (2.5)

where F' is the linear frequency in hertz, and Fj,; is the perceived frequency
in mel. The relationship between mel and Bark scales is approximately lin-
ear. Thus, it is of little importance which of the scales is used in a practical
application.

2.3 Spectral Analysis

Although some attempts have been made to extract relevant features for ASR
directly from the speech waveform, all commonly used speech representations
today are based on some kind of spectral analysis. The motivation for use
of spectral analysis in ASR is found both in human speech production and
perception. We have seen in Section 2.1 that the envelope of speech spectrum
can be used as an estimate of the magnitude response of underlying vocal-tract
filter. Furthermore, Section 2.2 showed that human ear can be viewed as a
spectral analyser.

This section gives a summary of the spectral analysis techniques that are
commonly used in ASR, and describes the most widely used feature extraction
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methods. A nice overview of the spectral analysis techniques used in ASR can
be found in [85], while an in-depth description of spectral estimation in general
can be found in [68, 80].

2.3.1 The Spectral Estimation Problem

The power spectrum of a wide sense stationary random process x(n) is defined

as
00

Szx(f) = ]:{'r:cz(k)} = Z Tww(k)e_ﬂﬂfka (2'6)
k=—o00
where F{-} is Fourier transform operator, and r,,(k) is the autocorrelation
function of the random process. Alternatively, under the assumption that the
autocorrelation function decays sufficiently rapidly, the power spectrum can
be expressed as [68]

M 2

Z :v(n)e*j%f"

n=—M

Szz(f) = lim E .

—_— 2.

where E{-} is the expectation operator.

Since the statistical properties of speech signals change with time, spectral
estimation has to be done on short signal intervals, called frames. Extracting a
signal frame can be regarded as multiplication of the signal by a window func-
tion. Windowing gives raise to spectral smoothing. In order to obtain power
spectrum estimates closest to the actual power spectrum, the window func-
tions having frequency responses with narrow main lobe and large attenuation
in the side lobes are desired. The Hamming window given by

0.54 — 0.46 cos (2”—") 0<n<N-1
w(n) = { N1 == (2.8)

0 otherwise

achieves a good compromise between the two requirements, and has become a
de facto standard in ASR. The width of the main lobe decreases with increased
frame length N. However, too long analysis frames violate the stationarity
assumption. As a compromise, frame lengths of 20-30 ms are typically used.
In order to track spectral changes in the speech signal, spectral analysis
is repeated on successive analysis frames. The distance between successive
analysis frames is referred to as frame shift, and is typically set to 10 ms.
Voiced sections of speech have a negative spectral slope of approximately
20 dB per decade due to the physiological characteristics of the speech produc-
tion system. A preemphasis filter is often applied to the speech signal before
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spectral analysis to offset this natural slope. This can potentially improve the
quality of the spectral estimate in the high-frequency region. A commonly
used preemphasis filter is given by

Hyre(2) =1 — aprez™ ", 0.9 < apre < 1 (2.9)

A detailed discussion of the effects of the preemphasis filter can be found in
[79, 24].

Three main classes of spectral estimation techniques used in ASR are lin-
ear prediction analysis, filter-bank analysis and Fourier transform. They are
described in the following sections.

2.3.2 Linear Prediction Analysis

Linear prediction (LP) analysis was first applied to speech processing in early
1970s [11, 10]. It provides a compact, low-cost representation of speech spec-
tral envelope, which has been used successfully both in speech recognition,
synthesis and coding. However, the use of LP in ASR has decreased during
the last decade, mainly due to its relatively poor ability to model speech under
noisy conditions. Detailed description of the use of LP in speech processing
can be found in [78, 79, 90, 24].

Application of LP analysis to speech signals was motivated by the speech
production model in Figure 2.1, and the assumption that the vocal tract can
be appropriately modeled by an all-pole filter

1 1

0= 40 " TS T

(2.10)

This is equivalent to assuming that speech samples can be approximated by a
linear combination of p previous samples

p
s(n) = Zais(n —1) +e(n), (2.11)
i=1

where p is the prediction order, {a;}}_, are the LP coefficients, and e(n) is
prediction error. The optimal LP coefficients are found by minimizing the
prediction error energy over the given analysis frame. Efficient algorithms
exist for computing the LP coeflicients. For an analysis frame of length N
approximately p? + N(p + 1) operations are required for computation of the
prediction coefficients. Typical values of predictor order used in ASR are
between 8 and 14.

If the prediction order is properly chosen, LP coefficients provide a compact
and precise representation of the speech spectral envelope, particularly for
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vowel-like sounds that are completely characterized by their spectral peaks.
However, the quality of the speech representation is highly dependent on the
proper choice of model order. If the model order is too low, not all of the
prominent spectral peaks will be properly modeled. If it is too high, the LP
model tends to match random variations in the speech spectrum. Furthermore,
the all-pole model is not well suited for modeling nasal sounds, which are
characterized by spectral zeros. Finally, the major problem of LP analysis is
its sensitivity to noise.

Normally, LP coefficients are derived based on the unwarped speech spec-
trum. However, it is possible to obtain an LP representation corresponding
to the perceptually-warped spectrum through the bilinear transform. The
complexity of this method makes it less attractive compared to the simpler
perceptual warping provided by the filter-bank and Fourier analyses.

2.3.3 Filter-Bank Analysis

Filter-bank based spectral analysis is the oldest type of spectral analysis used
in ASR. Tt consists of passing the speech signal through a bank of bandpass
filters covering the speech frequency range. This is usually followed by compu-
tation of a short-term power estimate for each subband. The set of subband
power estimates provides a compact representation of the speech spectral en-
velope.

Filter-bank analysis enables simple incorporation of different perceptually-
motivated processing steps into spectral estimation. For example, perceptually-
based frequency warping is achieved simply by using a critical-band filter bank.
Furthermore, it is possible to obtain frequency-dependent time-frequency res-
olution by choosing different analysis frame lengths for different subband sig-
nals.

Since filter-bank analysis corresponds to the way speech is processed by the
human auditory system, it serves as basis for a number of alternative speech
representations based on detailed modeling of the human auditory system.
Several such representations are described in Chapter 4.

The computational cost of filter-bank analysis is dependent on the par-
ticular implementation of the filter bank. Generally, it is much more com-
putationally expensive than the alternative spectral estimation methods. For
example, for an FIR filter bank consisting of K filters of order L, a total of
K - L operations per speech sample are needed to obtain subband signals, and
additional K operations per speech sample for computation of subband pow-
ers. For a typical choice of the parameters, this results in the order of 103
operations per speech sample, compared to the order of 10 operations for LP
analysis.
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2.3.4 Fourier Transform

The most common way of performing spectral estimation in ASR is based on
short-term Fourier transform of speech signals. From the definition of power
spectrum in Equation 2.7, it follows that a reasonable spectral estimate can
be obtained as

) L |N-1 _ 2 1
Sss(f) = & Y s(n)e | = N [F{s(n)}?, (2.12)
n=0

where F{-} is the Fourier transform operator, and N is the length of the
analysis frame. This is known as periodogram spectral estimate.

The fast Fourier transform (FFT) can be used for efficient computation of
the above spectral estimate at N equally spaced frequencies

Sss(k) = Sss(f)| j=/n k=0,...,N—1 (2.13)

The FFT reduces the number of computations from N? to N log, N. However,
it sets limitations on the evaluation frequencies.

A number of different speech representations can be obtained from the
spectral estimate in Equation 2.12. The most common is to compute a set
of subband power estimates similar to those described in Section 2.3.3. This
is achieved by multiplying the FFT-based spectral estimate by the frequency
response of a subband filter bank. The resulting subband spectral estimates
are then integrated to obtain subband power estimates. Perceptual warping of
the frequency axis can easily be achieved through a proper choice of the filter
bank. However, the time-frequency resolution in the Fourier analysis is fixed.
The computational cost of this method is similar to that of LP analysis.

2.3.5 Cepstrum

Cepstral representation of speech signals is usually computed as the discrete
cosine transform (DCT) of the logarithm of the speech spectral representation.
When the speech spectrum is estimated by a vector of subband power estimates
{pk}}L |, cepstral coefficients are computed as

K
o(m) = %glog(pk) cos (W) Cl<m<M. (214)

where M is the total number of cepstral coefficients. Alternatively, cepstral co-
efficients can be computed directly from the LP coefficients using the following
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recursion [85]

a(m) m=1
c(m) = 1 . (2.15)
{a(m) +30T (1=H)a(l)e(m —1) 2<m< M.

Cepstral transformation was originally used in order to achieve separation
between vocal-tract characteristics and glottal excitation. The two compo-
nents of the speech signal become additive in the cepstral domain, and the
contribution of glottal excitation can be removed by simple windowing in the
cepstral domain. This is referred to as liftering.

However, the original motivation does not hold for cepstral representation
obtained from perceptually warped speech spectrum. Nevertheless, cepstral
transformation plays an important role in speech feature extraction mainly
due to good decorrelation properties of the DCT transform. Decorrelated fea-
ture vectors are desirable in the HMM framework, since they can be modeled
by diagonal covariance matrices. This reduces considerably the computation
complexity in both training and recognition phase.

Cepstrum is a strongly decaying function, and only a small number of
coeflicients is required to represent the spectral content. Typically, 12 cepstral
coeflicients are used to represent a speech frame.

2.3.6 Capturing Spectral Dynamics

All speech representations discussed so far are computed from a single speech
frame. However, it has been shown [34] that ASR performance can be con-
siderably improved by incorporating information about spectral changes into
speech feature vectors. This is achieved by estimating time derivatives of
short-time spectral representations and augmenting them to feature vectors.

Estimates of spectral time derivatives, referred to as delta parameters,
are usually obtained by linear regression over a number of successive speech
frames. If the speech representation at time frame £ is given by cepstral vector
¢, the corresponding vector of delta parameters is given by

L
A, = s l(er —e)
- L
2y, 12
where parameter L determines the number of speech frames used in the linear

regression (typically L=2). Alternatively, delta parameters can be computed
by taking simple differences

, (2.16)

A, = ‘%LZ% (2.17)
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Estimates of the second derivatives, referred to as delta-delta coefficients,
can be obtained by applying Equations 2.16 or 2.17 to the delta coefficients. It
is common to include both delta and delta-delta parameters in speech feature
vectors.

2.4 Conventional Speech Representations

Previous sections of this chapter have summarized common signal processing
steps used in feature extraction for ASR, and explained motivation for their
use based on human speech production and perception. They serve as building
blocks for a number of different feature extraction methods used in ASR. This
section gives a summary of the conventional feature extraction methods, while
Chapter 4 describes several alternative methods, specially designed to improve
ASR performance in the presence of noise.

2.4.1 Representations Based on LP Analysis

Several different representations derived from the LP coefficients have been
used in speech recognition including reflection coefficients, line-spectrum pair
parameters, perceptually warped LP coefficients and LP-based cepstral co-
efficients [24]. Among them, linear prediction cepstral coefficients (LPCC),
given by Equation 2.15, have been most successful, and are the only LP-based
features commonly used today. LPCC are usually augmented by delta and
delta-delta parameters.

2.4.2 Representations Based on Subband Power Estimates

Mel-frequency cepstral coefficients (MFCC) computed from FFT-based sub-
band power estimates [22] are currently the most popular features used in
ASR. This is due to their superior noise robustness compared to LP-based
features, the simplicity with which perceptual warping can be employed, and
the low computational cost. A standard procedure for their computation is
illustrated in Figure 2.2. For each analysis frame s(n), an FFT-based spectral

S
1(f)> Power 1:71 = Cepstrum C(m)

s(n) \PFTP? S(fL Filter

bank E »| comput.| " _| comput.

Sk (f) PK

Figure 2.2: FFT-based MFCC computation
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estimate Sgs(f) is computed first, and then passed through a critical-band
filter bank. The filter bank consists of K overlapping filters having constant
bandwidth on the mel scale and center frequencies uniformly distributed on
the mel scale. Next, a power estimate pj is computed for each subband signal
Sk(f)- Finally, a set of cepstral coefficients ¢(m) is derived from the vector of
subband power estimates. Delta and delta-delta coefficients usually augment
the feature vector. Note that similar representations can be obtained by using
other perceptual warping functions (e.g. Bark scale).

Alternatively, subband filtering and power estimation can be done in the
time domain, resulting in the feature extraction method shown in Figure 2.3.
Note, however, that computational cost is greatly increased in this case due
to time-domain filtering (see Section 2.3.3).

s1(n p
1( )> Power :1 > Cepstrum C(Hl)

s(n) | Filter :
bank " | comput.| " _| comput.
sx(n) Pk

Figure 2.3: Time-domain based MFCC computation






Chapter 3

Common Methods for
Increasing Robustness in ASR

This chapter gives an overview of several well known methods for increasing
robustness in automatic speech recognition that have been shown to be ben-
eficial on a number of different recognition tasks. The methods for increasing
robustness in ASR can be classified into three main classes, namely, model-
based techniques, robust feature transformations and robust feature extraction
methods. Model-based techniques aim to modify the parameters of acoustic
speech models in order to make them more representative with respect to ob-
served speech data. The goal of robust feature transformations, on the other
hand, is to modify the speech feature vectors such that the mismatch between
the speech data and given acoustic models is reduced. Finally, robust fea-
ture extraction refers to a number of methods that utilize different aspects of
knowledge of human speech perception, in order to derive speech features that
would be less dependent on the acoustic background environment.

The chapter starts with an overview of speech endpoint detection in Sec-
tion 3.1, since several methods for increasing robustness in ASR systems
depend on a reliable discrimination between speech and background events.
Then, several model-based techniques are described in Section 3.2, followed by
an overview of commonly used robust feature transformations in Section 3.3.
Robust feature extraction, which is the main interest of this thesis, is discussed
in Chapter 4.

3.1 Robust Speech Endpoint Detection

A reliable method for discriminating between speech and background intervals
in an acoustic signal is an important part of an ASR system. It can consid-

21
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erably reduce the amount of computation, and improve the system accuracy.
Furthermore, classification of signal frames into speech and background noise
is required by several methods for improving ASR robustness described later
in this chapter. An ideal endpoint detector should be reliable, robust, accu-
rate, adaptive, simple, able to perform in real time, and require no a priori
knowledge of noise [95]. The relative importance of the different requirements
depends on the particular recognition task.

A simple and reliable way of speech endpoint detection is the use of the
push-to-talk mode, that requires a button to be pressed in order to start
recognition. However, this simple solution is not convenient for all applica-
tions. Systems that require a continuously listening mode need an automatic
algorithm for separating speech and background events.

Speech endpoint detectors consist of a feature extraction block followed by
a simple two-class classifier. Conventional speech endpoint detectors are based
on short-term energy, possibly combined with zero-crossing rate and different
duration constraints [88, 72, 112, 95]. The classification is based on a set of
fast or adaptive thresholds. These algorithms work well only at high SNRs.

Several alternative approaches have been proposed in order to improve
robustness of speech endpoint detection against changes in the acoustic envi-
ronment. Some of the major directions are summarized in the following:

e One idea is to use alternative features for endpoint detection that are less
dependent on the particular acoustic environment. For example, use of
cepstral difference measure was proposed in [54], and a good separation
between speech and background regions was demonstrated for both clean
and noisy speech.

e Since the detection of speech intervals corresponding to vowels is eas-
ier than the general problem of speech detection, another approach to
endpoint detection is to first locate the vowel intervals in the speech
signal, and then apply some refinement procedure. In [106], the detec-
tion of vowel intervals was based on a signal periodicity measure, while
[64] relied on measuring energy in the frequency region covering the first
three speech formants. Possible low-intensity regions in the beginning
and end of the utterance can be accounted for by incorporating security
margins before the first vowel region and after the last vowel region.
This procedure is appropriate for many applications where the exact
determinations of speech endpoints is not critical.

e In the HMM framework, it is common to train models that represent
the acoustic background. In this case, speech endpoint detection can
be achieved implicitly through the recognition process, by searching for



3.1 Robust Speech Endpoint Detection

23

the best path in the recognition network consisting of both speech and
background models [111]. The disadvantage of this method is its high
computational cost, since the entire signal has to be passed through the
recognizer. Furthermore, the introduction of background models makes
the recognition process more complex. However, the implicit endpoint
detection may lead to greater accuracy in presence of noise than the
energy-based methods.

HMM modeling can also be used to improve the quality of explicit end-
point detection. This can be done by training a simple two-class classifier
based on only two HMMSs, one representing background and the other
one representing speech. Any set of features can be used with this ap-
proach. For example, normalized log-energy and delta log-energy were
used in [1], while cepstrum and delta-cepstrum coefficients were used
in [35, 30]. The parameters of the HMMs can be dynamically updated
using the EM algorithm. This method will be referred to as probability
based speech endpoint detection.

In an earlier study [35], a comparison between the implicit, energy-based, and
probability-based endpoint detection methods was performed on an ASR. task.
The evaluation was done both on clean speech and in presence of additive car
noise. In addition, the ASR performance on hand-labeled data was evaluated.
The ASR task consisted in recognizing strings of four Japanese digits. The
resulting recognition error rates are shown in Table 3.1. It can be seen that the

Table 3.1: Performance comparison of different endpoint detection

methods
Recognition error rate [%]
Method SNR=25 dB | SNR=12 dB
Hand labeling 2.37 12.62
Probability-based 3.10 14.76
Energy-based 5.24 22.65
Implicit 12.40 27.44

probability-based approach performed best both in clean and noisy conditions.
Its performance was in turn very close to that achieved by hand labeling.
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3.2 Model Adaptation and Compensation

This section describes several model-based techniques for increasing robustness
in ASR, which have been shown to be beneficial on a number of different
recognition tasks. They are based on modifying the parameters of speech
acoustic models in order to make them more representative with respect to
the observed speech data. All of the methods rely on a small amount of
adaptation data collected in the target operating conditions.

3.2.1 Maximum a Posteriori Adaptation

Maximum a posteriori (MAP) adaptation [45] represents an efficient method
for adjusting model parameters to new operation conditions if only a small
amount of speech data from the new operating conditions is available.

Let @ denote the parameter vector of an acoustic model A = A(®), and let
O, be the available adaptation data from target operating conditions. Then,
the adapted model parameter vector is estimated by maximizing a posteriori
probability of the parameter vector given the adaptation data

A

P = argglax P(®|0,) = argglax[P(OakI’)P(@)]. (3.1)

It can be seen from Equation 3.1 that MAP adaptation utilizes the prior infor-
mation about the distribution of parameter vectors, P(®). This information
can be estimated using unadapted acoustic models. If no prior information
is available, MAP adaptation reduces to standard maximum-likelihood (ML)
parameter estimation.

MAP adaptation formulas for HMMs with Gaussian mixture state observa-
tion densities were derived in [45]. They show that adapted model parameters
are computed as a weighted sum of the prior parameters and the ML-estimate
computed using the adaptation data. Thus, as the amount of adaptation data
increases, the adapted parameters converge to the ML estimates. On the other
hand, if no adaptation data is available the prior value is adopted.

Two major limitation of the MAP adaptation were stated in [58]. First, it
requires an accurate initial guess for the prior distribution P(®), which is often
difficult to obtain. Second, only model parameters that are observed in the
adaptation data can be modified from their prior values. In order to overcome
these problems, several modifications of the standard MAP algorithm have
been proposed [2, 97].
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3.2.2 Maximum-Likelihood Linear Regression

Maximum-likelihood linear regression (MLLR) [76, 40] is an alternative ap-
proach to adapting model parameters to new operating conditions. The aim
of MLLR is to obtain a set of transformation matrices for the model parame-
ters that maximizes the likelihood of the adaptation data. The adaptation of
model means is given as

p=Apu+b=wWy' (3.2)

where W = [b A] is the transformation matrix and p' = [1 p!]? is extended
mean vector. The transformation matrix W is estimated by maximizing the
likelihood of the adaptation data O,, given the adapted model A, = A,(W)

W = argmax P(Og4|A(W)). (3.3)
w
The maximization is performed using the EM algorithm. The adaptation of
model variances can be obtained in a similar manner [40, 39]. However, most
of the performance gain obtained by MLLR adaptation is due to adaptation
of the means.

As with MAP adaptation, MLLR adaptation also requires a small amount
of adaptation data from target operation conditions. However, the MLLR
method adapts all model parameters irrespective of whether they have been
observed in the adaptation data. This is achieved through transformation
sharing, i.e. the same transformation is used for a number of model parameters.
All model parameters sharing the same transformation constitute a regression
class. The number of different regression classes is dependent on the amount
of the adaptation data available. It can be increased dynamically, as more
adaptation data become available [75]. The performance of MLLR adaptation
can be further improved by incorporating ideas from MAP adaptation into the
MLLR framework [18, 19, 99], using prior distributions of the transformation
matrix parameters.

Both MLLR and MAP require knowledge of the transcriptions of the adap-
tation data in order to align the data to the correct acoustic models. If the
correct transcriptions are not available, they can be estimated through an
initial recognition pass using the original acoustic models.

3.2.3 Parallel Model Combination

Parallel model combination (PMC) [41, 44] is a noise compensation technique
aimed at reducing the mismatch between clean speech models and speech data
observed in a noisy acoustic environment. This is achieved by combining the
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clean speech models and a model of the acoustic environment into a new set
of acoustic models that better represents noisy speech.

PMC assumes that a small amount of background data from the target
environment is available in order to train the background model. The model
can be dynamically updated to compensate for slow changes in the acoustic
environment.

It is assumed that speech and background noise are additive in the linear
spectral domain and uncorrelated. Consequently, the statistics of noisy speech
features in linear spectral domain can be obtained by simple addition of the
corresponding speech and background feature statistics

Be = Mg+ Hy (3.4)
zx = 25+2na

where subscripts =, s and n denote noisy speech, clean speech and additive
background noise, respectively. However, the model parameters are usually
in the cepstral domain. Thus, in order to combine speech and background
model parameters, they have to be converted into linear spectral domain,
then combined, and finally converted back into cepstral domain. Closed form
expressions for those conversions were derived in [41].

The above procedure is repeated for all combinations of speech and back-
ground Gaussian components. Thus, the complexity of the resulting models is
directly dependent on the chosen structure of the background model. Conse-
quently, there is a trade-off between the quality of noise modeling and system
complexity.

It is implicitly assumed in the PMC procedure that the combination of
two Gaussian distributions results in a new Gaussian distribution. However,
this assumption is not always realistic. A modified, data-driven, approach was
suggested in [42], which does not require this assumption. In this approach,
speech and background acoustic models are used to generate a number of
observation vectors, which are combined according to the procedure described
above to produce noisy speech observation vectors. Then, noisy speech models
can be trained using the generated noisy speech observation vectors. Using this
procedure, delta and delta-delta parameters can also be successfully updated
[44].

An advantage of the PMC method compared to the MAP and MLLR
adaptation methods, is the fact that PMC does not require any speech data
for noise compensation. Thus, noise compensation can be done during speech
pauses. A drawback of this method compared with the adaptation procedures
is that it can only be used for compensation of additive noise. Furthermore, the
method is limited to cepstral coefficients. However, PMC has been successfully
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combined with procedures for convolutional noise compensation in order to
simultaneously compensate for both additive and convolutional noise [43, 81].

PMC has been shown to be very successful on several recognition tasks,
where different noise types and levels were artificially added to clean speech
data [41, 44, 113]. Furthermore, the efficiency of PMC combined with ML
cepstral bias estimation for channel compensation, has been demonstrated on
a speech database collected in a real noisy environment where both transducer
and acoustic environment mismatch were present [38].

3.3 Robust Feature Transformations

In this section, several commonly used feature vector transformations are de-
scribed that have been proven successful in increasing robustness of ASR sys-
tems. The first three methods normalize the feature vectors with respect to
some environment or speaker dependent characteristics estimated from the
speech signal, while the last method finds a linear transformation of the fea-
ture space that improves separability between different speech classes.

3.3.1 Cepstral Mean Normalization

Cepstral mean normalization (CMN) [9] is a widely used, simple and effec-
tive method for removing the effect of microphone and transmission channel
characteristics from speech cepstral representation. It can also be useful for
reducing inter-speaker variability in the speech representation.

CMN is based on the fact that any convolutional distortion in the time
domain transforms to additive distortion in cepstral domain, i.e.

cf =c+cl, (3.6)

where cf is cepstral representation of clean speech corrupted by convolutional
noise measured at time ¢, c¢f is cepstral representation of the clean speech,
and cf! is cepstral bias due to the convolutional noise. Under assumption that
the microphone, channel and speaker characteristics remain approximately
constant during entire utterance, the part of the cepstrum corresponding to
the clean speech can be estimated as

1 x
- f Zc‘ﬂ (37)

where T is the number of observations in the utterance.
An improved version of CMN is obtained by computing the cepstral mean
only over the signal frames that contain speech [92]. This modification requires
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the use of a speech detector (see Section 3.1). In order to make the use
of CMN more suitable for real-time applications, the long-term average in
Equation 3.7 can be replaced by a short-term average computed over a given
number of signal frames [92]. A number of more complex methods for cepstral
normalization have been proposed in the literature. They are summarized in
[63].

3.3.2 Vocal-Tract Normalization

Differences in vocal-tract lengths represent one of the major sources of inter-
speaker variability in speech signals. The goal of vocal-tract normalization
(VIN) is to compensate for these differences in the speech analysis stage,
thus reducing the inter-speaker variability of speech feature vectors.

The formant frequencies of speech sounds are inversely proportional to the
speaker’s vocal-tract length. Thus, VTN can be done by simple linear warping
of speech spectra

Ss(f) = Sss(af), (3.8)

where « is a speaker-dependent frequency warping factor. Two main ap-
proaches to warping factor estimation have been proposed. The first one is
based on explicit estimation of formant frequencies [109, 29]. The optimal
warping factor is estimated by comparing average formant positions for the
given speaker with corresponding average formant positions computed across
all training speakers. The second approach estimates the optimal warping fac-
tor by maximizing the probability of warped observation vectors O%, with re-
spect to the corresponding transcriptions W, and a set of speaker-independent
acoustic models A [7, 73, 74]

& = argmax P(O%|W,A). (3.9)
(67

In practice, the optimal warping factor is estimated by evaluating the proba-
bility in Equation 3.9 for a number of different values for o, and choosing the
value that maximizes the probability.

The procedure for implementing VTN in ASR is summarized in the follow-
ing. In the training phase, the optimal warping factor is estimated for each
speaker based on all utterances corresponding to that speaker. Then, each
training utterance is normalized by the corresponding warping factor, and a
set of normalized acoustic models A is trained. In the recognition phase, the
warping factor has to be estimated based on the single input utterance, since
the identity of the speaker is usually unknown. The normalized utterance is
then recognized using the set of normalized acoustic models Ay.
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In the ML-based approach, computation of warping factors is dependent
on an existing set of acoustic models. In the training phase, the acoustic mod-
els trained on unwarped utterances are used for estimation of initial warping
factors. Then, normalized acoustic models and improved warping factors are
estimated by an iterative procedure. In the test phase, the correct speech tran-
scription, needed for estimation of the warping factor, is typically not known.
Thus, a two-pass recognition procedure is used. The unknown transcription
is estimated from the unwarped speech utterance during the first recognition
pass, it is used for estimation of the warping factor, and the final transcription
is estimated in the second recognition pass using the warped utterance.

An alternative procedure for estimating warping factors in the recognition
phase that does not require estimation of the speech transcription, was pro-
posed in [74]. The idea is to divide all speakers into a number of classes based
on their corresponding warping factors. In the training phase, one Gaussian
mixture was trained for each warping factor. Unwarped feature vectors belong-
ing to the utterances that have been assigned to the particular warping factor
were used in the training. Then, during the recognition stage, the Gaussian
mixture that maximizes the probability of the incoming utterance was found
and the speech utterance is warped using the corresponding warping factor.

Considerable improvements of ASR performance due to the use of VTN
have been reported on a number of different recognition tasks [29, 74, 115, 87,
82]. In addition, VTN was shown to outperform CMN and gender dependent
modeling [74, 87]. The ML-based approach has been shown to be superior to
the formant-based approach [115], but it is also more computationally expen-
sive.

3.3.3 Spectral Subtraction

Spectral subtraction is a computationally efficient technique for suppressing
additive noise from noisy speech signals. It is used in ASR to reduce the
mismatch between noisy speech data and clean speech models. It is assumed
that clean speech and noise are uncorrelated, so that the clean speech power
spectrum, Sgs(f), can be computed by subtracting the noise power spectrum,
Snn(f), from the noisy speech power spectrum, Sy, (f), i.e.

Sss(f) = Sww(f) - Snn(f) (310)

This is done on the frame-by-frame basis. An estimate of the noise spectrum
is obtained during non-speech intervals, by averaging short-time spectra over
a number of non-speech frames. Thus, spectral subtraction assumes that the
noise is stationary or slowly varying, and that there exists a reliable method
for speech endpoint detection.
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There are two major problems associated with the spectral subtraction
method. First, the subtraction in Equation 3.10 can result in the appearance
of negative values in the resulting clean speech spectral estimate. This problem
was originally solved by setting the negative values to zero. Second, spectral
subtraction results in the appearance of, so called, musical noise. It is due
to the noise residual, which is characterized by a large number of random
narrow-band spectral peaks. They appear in the signal intervals dominated
by noise, as a result of subtracting a smooth noise spectral estimate from a
highly varying short-term spectral estimate.

A number of algorithms have been proposed to deal with the above prob-
lems [13, 12, 77]. In [13], it was suggested to subtract an overestimate of the
noise power spectrum in order to reduce the magnitude of the spectral peaks
associated with residual noise. At the same time, a spectral floor was intro-
duced to prevent the resulting spectral components from taking values below
a minimum level. This resulted in the following algorithm:

D(f) = S;U;U(f) _aSnn(f) (3.11)

Sss(f) = {D(f) if D(f) > BSnn(f)

BSun(f) otherwise (3.12)

where o > 1 and 0 < 8 <€ 1. A generalization of the above algorithm was
proposed in [77], referred to as nonlinear spectral subtraction. The idea is to
substitute the second term in Equation 3.11 by a nonlinear function of the
noise power spectrum and local SNR at a given frequency. The nonlinear
function is chosen such that more noise is subtracted in low-SNR regions than
in high-SNR regions. In that way, noise subtraction and noise masking are
combined in the same framework.

The ability of spectral subtraction to improve ASR performance in mis-
matched environmental conditions has been demonstrated in several stud-
ies [77, 93, 21]. Furthermore, it has been shown that spectral subtraction
can be efficiently combined with other noise compensation techniques. Fi-
nally, nonlinear spectral subtraction has been shown to outperform linear
spectral subtraction [77]. However, the main contribution compared to the
non-compensated case was achieved by linear spectral subtraction.

3.3.4 Linear Discriminant Analysis

The aim of linear discriminant analysis (LDA) [26, 102] is to find a linear
transformation of feature vectors that results in improved class separability.
This can be written as

y=Alz, (3.13)
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where x is a feature vector of length IV in the original feature space, y is the
transformed feature vector of length M in the new feature space, and A is the
transformation matrix having dimension NxM. Choosing M < N leads to a
dimensionality reduction, in addition to improved class separability.

The improved class separability is achieved by maximizing the following
function

J=tr(W™'B), (3.14)

where W is the within-class scatter matrix, B is between-class scatter matrix,
and ¢r(-) denotes matrix trace. The matrices W and B are defined as

K ng
W= 3 ok — ok — )" (3.15)
=1n=1
1 k:Kl
B = & an(ﬂk — ), — )", (3.16)
k=1

where N denotes the total number of training vectors, K is the number of
classes, ny is the number of training vectors in the k-th class, ok, is the n-th
vector in the k-th class, p; is the mean of the k-th class given by

1 &
= — Ok, 3.17
1292 nk ngl kn ( )

and p is the overall mean given by

1 K
®= Nznkﬂk- (3.18)
k=1

It can be shown that the optimization criterion given by Equation 3.14
leads to a transformation matrix A whose columns are equal to the M eigen-
vectors of matrix W !B that correspond to the M largest eigenvalues. Com-
putation of the eigenvectors and eigenvalues of the matrix W' B can be done
using the procedure described in [8].

The procedure for applying LDA in ASR is summarized in the following.
First, a set of HMMs trained on the original feature vectors is used to seg-
ment the training data into classes. The resulting segmentation is used for
computation of the transformation matrix A, as described above. The trans-
formation is then applied to all feature vectors in the training database, and
a new set of HMMs is trained on the transformed data. Finally, in the recog-
nition stage, each feature vector is multiplied by the transformation matrix A
prior to recognition.
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The use of LDA has resulted in improved recognition performance, in ad-
dition to reduced feature dimensionality on a number of different recognition
tasks, both in clean and noisy conditions [60, 59, 53, 52]. Robustness of fea-
tures obtained using LDA in presence of different types and levels of additive
noise has been investigated in [98]. It has been shown that these features
retain good separability even at very low SNRs in the case of matched condi-
tions between training and test environments. However, the features exhibited
much greater sensitivity to mismatched environmental conditions compared to
the standard MFCC features.



Chapter 4

Robust Feature Extraction

Speech features extracted using the conventional methods described in Chap-
ter 2 are very sensitive to changes in the acoustic environments. Thus, they
can provide a suitable basis for automatic speech recognition only in the sit-
uations where there is a correspondence between environmental conditions in
training and test speech.

Humans have an exceptional ability to recognize speech in adverse environ-
mental conditions. Thus, one approach to increasing the robustness in ASR
has been to employ a more detailed knowledge on human speech processing in
the speech feature extraction. As a result, a number of alternative feature ex-
traction methods have been proposed that model different aspects of human
speech perception. While some methods use certain psycho-acoustical con-
cepts, others simulate physiological processes in the human auditory system
in great detail.

This chapter starts by presenting several feature extraction methods based
on auditory processing that have been shown to increase robustness in ASR.
Several of the methods are based on extracting the dominant frequencies in-
formation from the speech signal. This information has not been used in the
conventional feature extraction methods. Dominant speech frequencies (i.e.
formant frequencies) remain practically unchanged in presence of moderate
levels of additive background noise, and their use in feature extraction is a
possible reason for the greater robustness of auditory-based methods com-
pared to conventional feature extraction methods.

It has recently been shown [84] that subband spectral centroids (SSC)
can serve as reasonable estimates of dominant subband frequencies, both on
clean speech and in presence of additive noise. The initial studies based on
using SSC as additional features in ASR are reviewed in Section 4.7. Finally,
a new feature extraction method is proposed in Section 4.8. It is based on

33
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combining the subband power information used by conventional methods with
the dominant-frequency information provided by SSC. Compared to the earlier
proposed robust feature extraction methods, the new method stands out for
its simplicity and low computational cost.

4.1 Multiband Speech Recognition

Multiband speech recognition was inspired by Fletcher’s study of human speech
perception [33], that has recently been reviewed in [6]. Fletcher studied the ef-
fects of filtering and noise on human speech recognition accuracy for nonsense
syllables, words and sentences. One of the important findings in his work was
the fact that humans process the information from different frequency sub-
bands independently. The recombination of the recognition results from the
different subbands is done at some higher level in such a way that the global
error rate can be approximated with the product of error rates in the different
subbands. This is in contrast to the conventional processing in ASR systems,
where the information from all frequency bands is combined in a single feature
vector before recognition.

Multiband speech recognition was first proposed in [25], and then further
formalized in [15]. The idea is to recognize the information from different
frequency subbands independently, and then recombine the recognition results
in some efficient way to yield the final recognition result. This is illustrated in
Figure 4.1.

Subband
feature vectors
Feature A _
™ extraction {1 14— Classifier -
S
Speech E = | Recognition
signal = Feature 0] . ] . N g result
5 " | extraction 0 > Classifier - e
= o
= &
Feature A _
™ extraction HH H > Classifier -

Figure 4.1: Multiband speech recognition

This approach is of special interest for robust speech recognition in narrow-
band noise. In the conventional, cepstrum-based feature extraction, a noise
degradation in a narrow frequency region affects all the components of the
feature vector. In the multiband approach, only a few subband recognition
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results would be affected. During the recombination, it is possible to assign
lower weights to the subbands with lower confidence level. Fletcher has shown
that signal-to-noise ratio computed over a subband can be used as a mea-
sure of confidence of the recognition result in that subband. Furthermore, it
is possible to optimize the processing in each subband independently, which
opens for use of different features in different subbands. Note, however, that
reliable recognition of subband signals is a more difficult task than the recog-
nition based on the original speech signal, due to less information available for
discrimination between different speech units.

The multiband approach performs considerably better than the conven-
tional methods in presence of narrow-band noise, while there is no significant
difference in the clean speech performance [15, 14, 103]. Furthermore, there
has been no documented improvement in the presence of broad-band noise.
However, this interesting approach is still in its initial stage, and some promis-
ing results might be expected in the future. Many problems still have to be
solved, the major one being to find an efficient recombination procedure. This
problem was addressed in [57, 104, 16, 17, 110]. Unlike the other feature
extraction methods described in this chapter, this approach requires a new
structure of the speech recognizer.

An interesting generalization of the approach is the so called multistream
speech recognition [28]. Instead of processing the information from different
frequency subbands in the different streams, other types of information can be
extracted from the speech signal and processed by separate recognizers. For
example, the speech signal can be processed with different time resolutions
in the different streams [27]. In this way, it is possible to locate rapid spec-
tral changes in one stream, while the information evolving over longer time
intervals would be extracted in another stream.

4.2 Perceptual Linear Predictive Analysis

Perceptual linear predictive (PLP) analysis [56, 62, 65, 63] is a variation of the
FFT-based critical-band analysis, that differs from the MFCC computation in
two main aspects:

1. Psycho-acoustic concepts are more accurately modeled.

2. The perceptually-modified spectrum is fitted by an all-pole model.

The processing steps used in PLP analysis are illustrated in Figure 4.2. As
in MFCC computation, the analysis begins with FFT-based spectral compu-
tation, followed by critical-band filtering and subband power computation.
A minor difference compared to the MFCC method is in the shape of filter
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Figure 4.2: PLP method for speech feature extraction

frequency responses, which are chosen to better match the shape of masking
curves. In addition, the Bark scale is used instead of the mel scale. The next
processing step consists of equal-loudness preemphasis of the resulting spec-
tral estimate. This is done in order to compensate for reduced sensitivity of
the ear at low and high ends of the speech frequency range. Next, cubic-root
power compression is applied to the modified spectrum in order to approximate
intensity-to-loudness conversion. Finally, the perceptually modified spectral
estimate is fitted by an all-pole model. This is done by taking the inverse DF'T
of the spectral estimate in order to obtain a pseudo-autocorrelation function,
followed by AR-modeling. This results in a set of LP-parameters {a(i)}}_;.
Cepstrum coefficients are normally derived from the smoothed spectral esti-
mate using Equation 2.15.

Seventeen critical-band filters with center frequencies linearly spaced on
the Bark scale are typically used in PLP computation. Note that the all-pole
modeling of the perceptually modified spectrum can no longer be justified by
the speech production model in Figure 2.1. Instead, it can be seen as fitting
a smooth parametric curve to the perceptually modified spectrum, such that
more weight is given to the high-energy parts of the spectrum than to the
low-energy parts. The order of the all-pole model is lower than the number of
critical-band filters, and is typically between five and eight.

An advantage of PLP compared to the conventional LP analysis is the use
of critical-band filtering and perceptual warping prior to all-pole modeling.
The filtering provides spectral smoothing, which reduces the influence of the
irrelevant spectral fine structure on the all-pole model. The perceptual warp-
ing reduces the weight given to the model fit at higher frequencies. This is in
accordance with the reduced spectral resolution of human hearing at higher
frequencies.

PLP was shown to outperform the conventional LP analysis in the ASR
context both in clean speech and in presence of additive noise. The computa-
tional complexity of the two methods is approximately the same.
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4.3 Joint Synchrony/Mean-Rate Auditory Model

Auditory models represent a class of speech representations that are based on
simulating physiological processes in human auditory system in great detail.
Since human speech recognition is extremely robust, it is believed that the use
of auditory models in ASR would lead to improved recognition performance in
adverse conditions. However, since very little is known about human speech
feature extraction beyond the auditory nerve level, auditory models include
a considerable amount of heuristics. Description of several different auditory
models can be found in [51].

The joint synchrony/mean-rate auditory model, proposed by Seneff in [96],
consists of three processing stages illustrated in Figure 4.3. In the first stage,

Mean-rate Mean-rate

«(n) an(n) Mechanical < (n) detector ™ spectrum
— ﬁ(llochéeark Bwl to neural A

ter ban transduction Synchrony Synchrony

detector spectrum

Figure 4.3: Joint synchrony/mean-rate auditory model

the input signal is divided into a number of overlapping frequency bands using
a cochlear filter bank. Forty bandpass filters with bandwidths 0.5 Bark were
used, covering the frequency range between 130 Hz and 6400 Hz. This stage
models the processes on the basilar membrane. The second stage consists of
several nonlinearities that model the transformation from the basilar mem-
brane vibrations to the probability of neural firings. The last stage consists
of two branches. The first one computes an overall energy measure for each
channel by finding the average rate of neural firings. The result is referred
to as mean-rate spectrum. The second one measures the extent of dominance
of periodicities at subband center frequencies. It is computed using a set of
generalized synchrony detectors (GSD), one for each channel.

A simplified structure of a GSD is illustrated in Figure 4.4. It has two
inputs, namely, the output signal from the second stage and its delayed version.
The delay is equal to the inverse of the subband center frequency. The output
from the GSD is the ratio between the sum and the difference of the two input
signals. The speech parameterization that consists of the outputs from all
GSDs is referred to as the synchrony spectrum.

An important property of the synchrony spectrum is the fact that it en-
hances spectral peaks, while suppressing the features associated with glottal
excitation. This is explained in the following. If a bandpass signal has a domi-
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Figure 4.4: Simplified structure of generalized synchrony detector

nant periodicity close to the subband center frequency, the difference between
the two input signals to the GSD becomes very small, and the output from
the GSD attains a large value. Thus, the output from the channel with the
center frequency closest to a spectral peak position has a considerably larger
value than the outputs from the neighboring channels.

4.4 Subband-Autocorrelation Analysis

Subband autocorrelation (SBCOR) analysis, proposed by Kajita and Itakura
[66, 67], is a simplification of the synchrony spectrum computation described
in the previous section. The main idea of measuring the dominance of peri-
odicities at subband center frequencies remains the same, but the particular
choice of the dominance measure is different. Furthermore, the computation
is simplified by skipping the intermediate stage that simulates the mechanical-
to-neural transduction in the inner ear.

SBCOR analysis starts by passing the speech signal through a filter bank
of bandpass filters with center frequencies {F, }5 ;. Then, for each subband,
the normalized autocorrelation coefficient is computed at the time equal to
the inverse of the center frequency, i.e.

pr (1) = ikk(gc)), for 7, = 1/F,,, (4.1)
where 74 (-) denotes the autocorrelation function of the k-th subband signal.
The resulting speech representation, {pg (%)} _,, is referred to as SBCOR
spectrum. Alternatively, SBCOR analysis can be done in the spectral do-
main. In this case, an FFT-based spectral estimate is computed first, followed
by subband filtering in the spectral domain. Finally, subband autocorrelation
functions are computed by taking the inverse DFT of the subband spectra.
Note that SBCOR analysis is similar to the conventional subband analysis de-
scribed in Section 2.4.2. The only difference is in the type of subband features
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used. While subband power, r(0), is used in the conventional methods, the
autocorrelation coefficient at time 7, = 1/F,, is used in the SBCOR analysis.

Generally, a spectral peak at frequency F' gives rise to peaks in the autocor-
relation function at times 7 = n/F, where n is an integer value. Consequently,
the value of subband autocorrelation coefficient at time 1/F, indicates the
extent of dominance of the subband center frequency in the subband signal.
Thus, the SBCOR spectrum provides a good indication of the positions of
speech spectral peaks.

Several different filter banks for use with SBCOR analysis were compared
in [66]. It was found that a fixed @ filter bank (i.e. fixed ratio between band-
width and center frequency) with center frequencies uniformly spaced on the
Bark scale gave the best results. Furthermore, it is not crucial whether the
filter shape is similar to the cochlear filter or not. Both 128 and 16 filters were
used in the recognition experiments with SBCOR analysis, but no attempt to
optimize the number of filters has been reported.

SBCOR analysis was shown to outperform conventional speech feature
extraction methods based on subband power estimates [66]. In addition, ro-
bustness of SBCOR spectrum against different types of speech distortion was
proven in [67].

4.5 Ensemble Interval Histograms

Ensemble Interval Histogram (EIH) [47, 49] is probably the best known au-
ditory model used in ASR. It is based on temporal information in simulated
neural firing patterns, similarly as the synchrony spectrum described in Sec-
tion 4.3. However, the two auditory models differ in the way neural firing
patterns are computed, and in the way temporal information is extracted.

The procedure for EIH computation is illustrated in Figure 4.5. The speech
signal, s(n), is passed through a filter bank of K bandpass filters that simu-
lates the frequency response of the basilar membrane. The resulting subband
signals, sx(n), model vibrations at different locations along the basilar mem-
brane. Transduction between basilar membrane vibrations and neural firings
is modeled by an array of L level-crossing detectors, where different levels
correspond to different neural fiber firing thresholds. Neural firings are simu-
lated as positive-going level crossings. Temporal information is extracted from
the neural firing patterns by measuring the inverse interval lengths between
successive positive crossings of the same level, i.e.

fra(i) = .

Cong(i 4 1) — (i) 42)
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Figure 4.5: EIH method for speech feature extraction

where ny; (i) denotes the location of i-th positive-going crossing of the [-th level
in the given frame of k-th subband signal. Next, the frequency axis is divided
into a number of histogram bins, R;, and a histogram of the inverse interval
lengths corresponding to all levels of all subband signals is then constructed.
The count of j-th histogram bin is computed as

count(j) = > )" Z Ui{fr(d)}, (4.3)

where
1 fr(i) € Ry

i (4.4)
0 otherwise,

Ui{fu(i)} = {
and I is the total number of positive crossings of [-th level in k-th subband
signal. The histogram is usually normalized by the sum of all histogram bin
counts, and a DCT is performed for decorrelation purposes.

Note that the inverse level-crossing intervals are closely related to instan-
taneous dominant subband frequencies. Thus, histogram bins having large
counts indicate dominant frequency regions, and EIH can be seen as an alter-
native spectral representation of speech that emphasizes spectral peaks.

ASR performance of EIH features depends on the choice of the analysis
frame lengths, filter bank, number and location of the levels, and particular
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histogram bin allocation. Analysis frame lengths that are inversely propor-
tional to subband center frequencies have been used in order to ensure that
analysis frames for different subband signals incorporate approximately the
same number of signal periods (e.g. 10 or 20). The filter bank typically con-
sists of 85 bandpass filters uniformly distributed on a perceptually based scale
in the range [0,4000 Hz]. Cochlear filters were originally used, but it was later
shown that the particular filter shape was not important for good ASR perfor-
mance [46]. Five level-crossing detectors have been used, with levels uniformly
distributed on the logarithmic scale. However, the optimal choice of the levels
is dependent on the signal intensity, and there is no well defined procedure for
optimal level determination. It was shown in [70] that the performance of EIH
is highly dependent on the choice of number of levels and their particular val-
ues. Two different bin allocation schemes were compared in [49]. In the first
one, 128 bins were uniformly distributed on the linear frequency scale, while
in the second one 32 bins were uniformly distributed on a perceptually-based
frequency scale. They led to approximately the same recognition performance.

In addition to the problem with level determination, a major drawback
of the EIH method is its high computational cost compared to conventional
methods. This is due to the high cost of time-domain filtering, as well as the
need for heavy oversampling of the high-frequency subband signals in order to
increase accuracy of measured level-crossing locations.

The performance of EIH has been compared to that of conventional meth-
ods on several ASR tasks [47, 48, 61, 94]. A general conclusion is that EIH out-
performs conventional methods in noisy conditions, while it performs slightly
worse in clean conditions. However, EIH performance in noisy conditions is
still considerably lower than that of human listeners [49]. EIH has also been
shown to outperform both PLP and SBCOR methods on a small vocabulary
ASR task in presence of different types additive noise [70]. Finally, the perfor-
mance of EIH improves considerably when delta and delta-delta parameters
are included in the feature vector [94, 70]. However, the improvement is much
lower than for conventional methods.

4.6 Zero Crossings with Peak Amplitudes

Kim at. al. [70] derived an analytic expression for the variance of level-crossing
interval lengths of a sinusoidal signal in presence of white Gaussian noise. It
showed that the variance increases with increased level value. Consequently,
lower level values provide more reliable level-crossing interval lengths in pres-
ence of noise. On the other hand, experimental results on an ASR task revealed
the importance of the intensity information provided by properly chosen higher
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level values.

Motivated by these results a modification of the EIH method was pro-
posed [70]. The set of level-crossing detectors was exchanged by a single
zero-crossing detector, while intensity information was preserved by measur-
ing peak amplitudes between successive zero crossings. Thus, the resulting
speech parameterization, referred to as zero crossings with peak amplitudes
(ZCPA), provides more reliable interval lengths in noisy conditions without
sacrificing the intensity information. In addition, it circumvents the problem
of proper level choices of the ETH method, and reduces the computational cost
as well as the number of free parameters compared to the EIH method.

4.6.1 Method Description

The procedure for ZCPA computation is illustrated in Figure 4.6. The input

#s(n)
’ Filter bank ‘
f51(n) s4(n) 15 (n)

Zero-crossing 2(8), | Peak
detector detector

1
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Histogram construction
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DCT feature vector

Figure 4.6: ZCPA method for speech feature extraction

speech signal, s(n), is passed through a filter bank consisting of K bandpass
filters. Each subband signal, sgx(n), is processed by a zero-crossing detector,
in order to determine the positions of all positive-going zero crossing, z(4),
on the given analysis frame. Then, for each pair of successive zero crossings,
zk(1) and 2k (i + 1), the peak signal value, pi (i), and the inverse zero-crossing
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interval length, fi(7), are found by

pr(i) = zk(i)gﬁlgi(iﬂ){%(n)} (4.5)
fuli) = . (4.6)

Zk(Z + 1) — zk(z) '

Next, the frequency axis is divided into a number of histogram bins, R;, and
a histogram of the inverse zero-crossing interval lengths is collected over all
subband signals. However, instead of increasing the bin counts by one, they
are increased by the logarithm of the corresponding signal peak amplitude,
In(pk(7)). Thus, the count of j-th histogram bin is computed as

K Ipy—1

count(5) = > > Ti{ fi(i)}, (4.7)

k=1 =1

where
ln(pk(i)) fk(’L) S Rj

. (4.8)
0 otherwise,

Ui{fe(d)} = {
and I is the total number of positive zero crossings of k-th subband signal.
Finally, DCT is performed on the histogram for decorrelation purposes.

The ZCPA representation depends on the particular choice of the filter
bank, analysis frame lengths and histogram bin allocation. Section 5.2.1
presents the results of an experimental study performed in order to optimize
the parameter values with respect to the ASR performance.

In an experimental study on a small-vocabulary speaker-independent ASR
task [70], ZCPA features were compared to LPCC, MFCC, SBCOR, PLP and
ETH features. ZCPA features were shown to greatly outperform all of the other
feature types in presence of additive background noise.

4.6.2 Computational Complexity

The computational cost of the ZCPA method is considerably lower than that
of the ETH method and other auditory based methods. However, compared
to the standard MFCC method, the computational complexity is still pro-
hibitively high. This is due to the use of time-domain filtering, and a need
for heavy interpolation of high-frequency subband signals in order to reliably
determine zero-crossing positions. The interpolation provides a larger num-
ber of points between subsequent zero crossings, and thus better frequency
resolution. The computational cost depends mainly on the number and order
of subband filters, required interpolation factors, and the order of the inter-
polation filter. With the parameter choices used in the experimental study
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described in Section 5.3, the computational cost of the ZCPA method is two
orders of magnitude higher than that of the standard MFCC method.

4.6.3 Relationship to Spectral Analysis

The ZCPA feature extraction method was derived from the EIH method which
was motivated by physiological processes in the human auditory system. How-
ever, from the signal processing point of view, ZCPA histograms can be seen
as alternative short-term spectral representations of speech. This is explained
in the following.

The dominant frequency principle [69] states that if there is a significantly
dominant frequency in the signal spectrum, then the inverse zero-crossing in-
terval lengths tend to take values in the vicinity of the dominant frequency.
Thus, the inverse zero-crossing interval lengths, fi (), of the k-th subband sig-
nal can be seen as estimates of the dominant subband frequency. Furthermore,
the peak signal value between subsequent zero crossings, pi(i), can be seen
as a measure of signal power in the subband signal. Consequently, the con-
struction of ZCPA histograms consists of assigning subband power estimates
to frequency bins corresponding to dominant subband frequencies. Standard
MFCC method, on the other hand, assigns subband power estimates to entire
subbands, without taking into account the power distribution within sub-
bands. Thus, the ZCPA representation can be seen as an alternative spectral
representation of speech that emphasizes spectral peaks, while deemphasizing
the information in spectral valleys, which is usually corrupted by noise.

The major differences between the ZCPA method and the standard MFCC
method are summarized in the following:

e ZCPA combines subband power information with dominant subband fre-
quency information, while MFCC uses subband power information alone.

e ZCPA uses instantaneous estimates of subband power and dominant
frequency, while MFCC uses power estimates averaged over the entire
analysis frame.

e ZCPA features are derived entirely in the time domain, while MFCC
features are derived in the frequency domain.

e The computational cost of the ZCPA method is two orders of magnitude
higher that that of the MFCC method.
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4.7 Subband Spectral Centroids

The presence of additive background noise results in changes of the speech
power spectrum. The effect is largest on spectral valleys, while the positions
of dominant spectral peaks remain practically unaffected, as long as the noise
is added at moderate levels and does not have strong spectral peaks. The
auditory models and their simplifications presented earlier in this chapter all
utilized the information about dominant frequencies in the speech signal. This
might be a major reason for increased robustness of auditory models compared
to conventional speech features. Recall that the conventional feature extrac-
tion methods do not utilize dominant-frequency information.

Reliable estimation of spectral peak positions is a difficult task, especially
in presence of noise. Thus, rather than estimating spectral peak positions
directly, Paliwal [84] was concerned with deriving features for use in ASR that
would convey the information about spectral peak positions (i.e. dominant
signal frequencies). He studied the properties of subband spectral centroids
(SSC), that are computed as the first moment of the speech power spectrum
over different frequency subbands. If S(f) is the speech power spectrum and
Hi(f) is the frequency response of the k-th subband filter, then the centroid
of the k-th subband is computed as

2 (DS
17 H(DS (s

where 7 is a constant controlling the dynamic range of the power spectrum,
and f is the normalized frequency. Note that SSC depend on the particu-
lar filter bank and power spectrum estimate used for their computation. It
was shown in [84] that SSC are closely related to spectral peak positions, and
their robustness to additive white Gaussian noise was demonstrated. Further-
more, an evaluation on a small-vocabulary isolated-word speaker-dependent
ASR task showed that augmenting three SSC to the standard LPCC features
improved the recognition performance on clean speech. In this experiment,
SSC were computed from the LP-based spectral estimate using filters with
overlapping triangular frequency responses uniformly spaced on the linear fre-
quency scale between 0 and 4 kHz. The dynamic range constant v was set to
0.5. The result indicates that SSC provide useful additional information for
speech recognition.

Tsuge at al. [105] tested the effect of augmenting six SSC and their first
derivatives to the conventional MFCC representation in presence of additive
background noise. The SSC were computed from the FFT-based spectral es-
timate, using disjoint rectangular filters uniformly distributed on the linear

Ck

(4.9)
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frequency scale between 0 and 8 kHz. The dynamic range constant y was
set to 0.5. The test was performed on a large-vocabulary, continuous-speech,
speaker-independent ASR. task. Workstation noise was artificially added to
the clean speech database. The ASR performance in noise was improved as a
result of adding SSC to the feature vector, except at the highest SNR. Further-
more, speaker normalized SSC were introduced, which led to a considerable
further improvement of performance at all SNRs. Speaker normalization was
done using the linear frequency warping technique described in Section 3.3.2.
The warping factor for a given speaker was computed as the ratio between
the second formant frequency averaged over all vowels uttered by the given
speaker, and the second formant frequency averaged over all vowels and all
speakers in the training set.

Another study of the effect of augmenting three SSC to the standard
MFCC representation was reported in [4, 23]. The SSC were computed in two
different ways, namely, from the FFT-based spectrum and from the ZCPA
histograms described in Section 4.6. Overlapping triangular filters were used,
with bandwidths corresponding to the possible ranges of the first three speech
formants (i.e. 0-1175 Hz, 3152860 Hz and 1175-4000 Hz). The new fea-
tures were compared to standard MFCC features on a speaker-independent
ASR task, both on clean telephone speech and in presence of artificially added
background noise. Two different test sets were used, consisting of 475 and
9329 vocabulary words, respectively. SSC computed from ZCPA histograms
improved the ASR performance both in clean and noisy conditions. However,
SSC computed from FFT-based spectra improved the ASR performance in
clean conditions, but deteriorated the performance in presence of noise. The
last result is inconsistent with the results reported by Tsuge [105]. The su-
perior performance of the SSC computed from the ZCPA histograms is not
surprising, since ZCPA histograms enhance the locations of spectral peaks.
However, this method is much more computationally expensive than that of
computing SSC from FFT-based spectra.

4.8 Subband Spectral Centroid Histograms

This section describes a new speech feature extraction method, which com-
bines the subband power information used by conventional methods with the
dominant subband frequency information provided by SSC in a simple and
computationally efficient way. This is achieved through the construction of
subband spectral centroid histograms (SSCH) [36, 37]. There were two main
motivations for designing the new method:

1. The robustness of the ZCPA method in presence of additive noise has
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indicated the positive effect of integrating dominant frequency informa-
tion and intensity information into speech features for ASR. However,
the high computational cost of the ZCPA method makes this method
less attractive in practical applications. Thus, the idea was to develop
a method that would utilize the same conceptual information as the
ZCPA method, but have a low computational cost similar to that of the
conventional feature extraction methods.

2. Subband spectral centroids were shown to provide reasonable estimates
of dominant signal frequencies both on clean speech and in presence of
additive noise. They can be computed efficiently from any frequency-
domain representation of speech. Furthermore, the use of SSC as addi-
tional features was shown to have a positive effect on ASR performance.
All this made them promising candidates for providing dominant fre-
quency information in the new speech parameterization.

4.8.1 Method Description

The procedure for SSCH computation is illustrated in Figure 4.7, and it is
summarized in the following.

| s(n)

Spectrum estimation

,,,,,,,,,,,,,,,,,,,,,,

J fe |
fey Py
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In(pr) £,
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Figure 4.7: SSCH method for speech feature extraction
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Power spectrum estimation: First, a short-term power spectrum estimate,
S(f), is computed for the given speech frame. Both FFT-based and
LP-based spectral estimates can, in principle, be used. However, using
FFT-based spectral estimates is simpler and more computationally ef-
ficient. In addition, LP-estimates are not reliable in noisy conditions.
Thus, SSCH features used in this study were derived from FFT-based
spectral estimates.

Centroid computation: Given a filter bank of K subband filters, with the
frequency response of k-th filter equal to Hy(f), subband spectral cen-
troids are computed according to Equation 4.9. In practice, only a finite
number N of frequency samples is available. Thus, Equation 4.9 is ap-
proximated as

3o iHy(i)S(i)

i Hy(1)S7(0)

where S(7) is the power spectrum estimate of speech signal, and =y is the

dynamic range constant.

Cr = (4.10)

Subband power computation: Subband power estimates are computed by
integrating the power spectrum over each subband, i.e.

N-1
pe =Y Hyli)S(). (4.11)
=0

Instead of integrating over the entire subband, one can alternatively
integrate over a smaller frequency range centered around the subband
spectral centroid. The latter might provide more robust estimates since
the frequency area around the dominant frequency is less influenced by
noise than the other parts of the subband. However, smaller integration
areas lead to less reliable estimates.

Histogram construction: The speech frequency range is divided into a num-
ber of histogram bins, R;, and a histogram of subband spectral centroids
is computed in the following way. For each centroid, Cf, the correspond-
ing histogram bin is found, and its count is increased by the logarithm
of the power estimate, pg, normalized by the subband bandwidth. The
normalization is done in order to avoid biasing of the histograms toward
higher frequencies due to increased filter bandwidths. Thus, the count
of j-th histogram bin is computed as

K
count(j) = Z\Ilj{Ck}, (4.12)
k=1
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where

T,{Ch} = {:)n(pk/Nk) C) € R, (4.13)

otherwise,

where Ny, is the number of frequency samples between lower and upper
cut-off frequencies of the k-th bandpass filter.

Decorrelation: Finally, the DCT of the histogram is computed for decorre-
lation purposes.

4.8.2 Computational Complexity

The SSCH method differs from the MFCC method only in two additional pro-
cessing steps, namely the centroid computation and the histogram construc-
tion. The histogram construction requires only a small number of operations
compared to the other processing steps, while the cost of the centroid com-
putation depends on the particular choice of filter bank. If rectangular filter
frequency responses are used, the number of operations needed for centroid
computation is small compared to the cost of the spectral estimation. In this
case, the computational complexity of the SSCH method is mainly given by
the FFT order, and is only slightly higher than that of the MFCC method
using the same FFT order. However, regardless of the filter bank choice, the
computational complexity of SSCH and MFCC methods is of the same order
of magnitude.

4.8.3 Relationship to ZCPA

Both SSCH and ZCPA methods combine the dominant subband frequency in-
formation and subband power information into speech feature vectors. How-
ever, the way this information is estimated from the speech signal is different.
The main differences between the two methods are summarized in the follow-
ing:

e The SSCH method estimates dominant subband frequency information
by subband spectral centroids, while the inverse zero-crossing interval
lengths are used in the ZCPA method.

e The SSCH method estimates subband power information as signal frame
energy normalized by the frame length, while this information is pro-
vided by peak signal amplitudes between subsequent zero crossings in
the ZCPA method.
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e The ZCPA method is based on instantaneous estimates of the dominant
frequency and power of subband signals, while SSCH uses estimates
averaged over the entire analysis frame.

e The ZCPA method operates entirely in the time domain, while the the
SSCH method operates in the frequency domain.

e Computational complexity of the SSCH method is of the same order
of magnitude as that of the MFCC method, while the computational
complexity of the ZCPA method is two orders of magnitude higher.

4.8.4 Relationship to MFCC

SSCH and MFCC feature extraction methods have several common processing
steps, i.e. spectral estimation, subband filtering and subband energy computa-
tion. However, the SSCH method incorporates two additional steps, namely,
centroid computations and histogram construction.

Similarly as the ZCPA method, the SSCH method can be seen as an alter-
native way of performing spectral analysis, which emphasizes spectral peaks.
While the MFCC method assigns the subband power estimate to the entire
frequency subband, in the SSCH method it is assigned to the histogram bin
that contains the dominant subband frequency. In this way, the locations of
spectral peaks are much better preserved, while the information in spectral
valleys is deemphasized. This is advantageous in presence of additive back-
ground noise, which has the most serious effect on spectral valleys. However,
it is important to remember that SSC are only estimates of spectral peak po-
sitions computed from the speech spectra. Thus, they are affected by noise
even if the true spectral peaks remain unchanged.



Chapter 5

Experimental Study

This chapter presents the results of an experimental study aimed at evaluating
ZCPA and SSCH speech feature extraction methods in the ASR context. The
evaluation was performed on two different recognition tasks in various noisy
conditions. The main objective of this study was to determine the influence of
incorporating dominant-frequency information into speech parameterization
on the robustness of ASR systems.

The chapter starts with a description of the ASR tasks and databases used
in this study in Section 5.1. Section 5.2 presents the results of an experimental
study aimed at optimizing a number of free parameters in ZCPA and SSCH
feature extraction methods. In Section 5.3, the performance of ZCPA features
is evaluated, while Section 5.4 presents an evaluation of SSC-based features.

5.1 Recognition Tasks and System Design

This section describes two speech recognition tasks used for evaluation of the
different speech feature extraction algorithms compared in this study. The
first one is a small-vocabulary isolated-word task, while the second one is
a medium-vocabulary continuous-speech task. Furthermore, it describes the
algorithm for generating noisy speech, together with the different noise sources
used in this study. Some statistical considerations regarding the reliability of
the recognition results obtained on the two recognition tasks are presented in
Appendix A.

5.1.1 Small-Vocabulary Isolated-Word Task

The small-vocabulary isolated-word task used in this study was based on ISO-
LET Spoken Letter Database [20] down-sampled to 8 kHz. The vocabulary
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consists of the 26 letters from English alphabet. Two repetitions of each letter
spoken in isolation were recorded for each speaker in a quiet room using a
noise-canceling microphone. Utterances from 90 speakers (subsets ISOLET-
1, ISOLET-2 and ISOLET-3) were used for model training, while utterances
from 30 additional speakers (subset ISOLET-5) were used for evaluation. This
gives a total of 4680 training utterances and 1560 testing utterances, which
corresponds to approximately 48 minutes of training speech and 16 minutes of
test speech. In spite of a very small vocabulary, this is not a simple recognition
task, since the vocabulary words are very short and highly confusable.

Model training and recognition were performed using hidden Markov model
speech recognition toolkit (HTK 3.0) [114]. One hidden Markov model (HMM)
was trained for each vocabulary word. Each model consisted of five states and
five Gaussian mixture components per state. The models had left-to-right
structure with no skip transitions. A variance floor was set to 0.01 times the
global variance. Single mixture models were trained first, using HTK tools
HInit and HRest. HInit estimates the initial model parameters by iteratively
applying the Viterbi algorithm to find the optimal segmentation of the training
data. HRest performs several iterations of Baum-Welch re-estimation until a
given stop criterion is reached. Next, the number of mixtures was increased by
one and model parameters were re-estimated using HRest. This was repeated
until the final number of mixtures was reached.

Recognition was done using Viterbi algorithm (HTK tool HVite). ASR
performance was measured as a percentage of correctly recognized utterances,
i.e. word accuracy (WAC)

WAC = % - 100%, (5.1)
where N, is the number of correctly recognized utterances, and N is the total
number of utterances.

5.1.2 Medium-Vocabulary Continuous-Speech Task

The medium-vocabulary continuous-speech recognition task used in this study,
was based on the speaker-independent part of DARPA Resource Management
(RM) database [86], down-sampled to 8 kHz. The vocabulary consists of 991
words needed to make queries about ships, ports, etc., along with commands
to control a graphics display system. The data was collected in a quiet room
using a close-talking noise-canceling microphone. The training set consists
of 3990 sentences uttered by 109 speakers. Evaluation was performed on the
February 89 test set, that consists of 300 sentences spoken by 10 speakers
different from the ones used in training. There is a total of 34722 words in the
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training database, and 2561 words in the testing database, which corresponds
to approximately 228 minutes of training speech and 16 minutes of test speech.

Model training and recognition were performed by closely following the RM
Recipe supplied with the HTK distribution. A set of initial three-state single-
mixture monophone models, trained on the phonetically balanced TIMIT
database [71], is supplied with the HTK distribution, as well as a pronun-
ciation dictionary and a word-pair language model for the RM task. The
initial models are based on the standard MFCC parameterization with aug-
mented frame energy, delta and delta-delta parameters. Starting from the
initial models, a set of six-mixture tied-state cross-word triphone models was
trained following the RM Recipe (steps 1, 7 and 9). State tying was performed
using decision tree clustering.

Given the set of the well-trained models, a new set of models based on a
different parameterization was obtained using single-pass retraining (option -r
of HTK tool HERest) [114], followed by three iterations of embedded Baum-
Welch algorithm (HTK tool HERest). This was repeated for each speech
parameterization. It was assumed that the models obtained by single-pass re-
training would give similar ASR performance compared to the models obtained
by repeating the entire training procedure for each speech parameterization.

Testing was performed according to RM Recipe, using Viterbi algorithm
with the word-pair language model supplied with the HTK distribution. Rec-
ognized utterances were aligned with corresponding reference utterances using
a dynamic programming algorithm (HTK tool HResult). The ASR perfor-
mance was measured in terms of word accuracy (WAC) defined as
N.—1T N-S-D-1I

-100% = - 100%, (5.2)

WAC = N

where N is the total number of words in the test database, N, is the number
of correctly recognized words, I is the number of word insertions, D is the
number of word deletions, and S is the number of word substitutions.

Word accuracy, given by Equation 5.2, is dependent on the relationship be-
tween word-internal transition probabilities and between-word transition prob-
abilities. Word-internal transition probabilities are given by the HMM state
transition matrices, while between-word transition probabilities are given by
the language model. Their relationship is adjusted by modifying the between-
word transition probabilities in the following way

log(Byj) = p + s log(Pyj), (5.3)

where P;; = P(W;|W;) is the probability for transition from word W; to word
W, given by the language model, p is the word insertion penalty, and s is the
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language model scale factor. Parameters s and p can be arbitrarily chosen
(options -s and -p in the HTK tool HVite). They regulate the number of
deletion and insertion errors, and have a significant effect on the recognition
performance. In this study, each feature extraction method was evaluated for
several combination of s and p values, and the combination that gave the best
overall performance averaged over all background conditions was chosen for
each feature extraction method.

5.1.3 Creating Noisy Speech

For the purpose of evaluating the robustness of different speech features in
presence of background noise, four different noise types were added to the test
data at several different SNRs, namely, white Gaussian noise, factory noise,
car noise and background speech. White Gaussian noise was generated using
the pseudo-random noise generator provided by the MATLAB program pack-
age, while the other three noise types were taken from the NOISEX database
[107], where they are referred to as factoryl, volvo and babble noise, respec-
tively. The factory noise was recorded near plate-cutting and electrical welding
equipment. The car noise was recorded at 120 km/h on an asphalt road in
rainy conditions. Finally, the source of the babble noise is 100 people speak-
ing in a canteen. The main observations obtained by examining the spectral
characteristics of the different noise types are given in the following:

e White noise has nearly stationary characteristics and essentially flat
spectrum.

e Car noise has a very strong spectral peak in the low-frequency region
up to approximately 50 Hz, and very little power content in the region
above 200 Hz. It has a nearly stationary characteristic.

e Factory noise is highly unstationary. Intervals with relatively flat spec-
tral characteristic alternate with those characterized by strong spectral
peaks at different positions, but mainly in the frequency region up to
1 kHz.

e Characteristics of the babble noise also vary with time. However, spec-
tral differences are not as large as for factory noise. Babble noise is
characterized by existence of speech-like spectral peaks, and the charac-
teristic speech spectral tilt.

Noisy speech was generated in the following way. For each speech file
in the evaluation database, a noise segment of length equal to the length of
the speech file was randomly extracted, multiplied by a gain factor, g, and
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added to the speech file. The gain factor was computed in accordance with
the required SNR defined as

pmaw
SNR[dB] = 101log;, < 5 ) (5.4)
9~ Pn
where p7*** is the maximal frame power of the given speech file, and p,, is the

noise power estimated over the entire noise segment. This way of computation
makes the SNR independent of the phonetical content of the speech utterance
and the length of silence intervals surrounding the speech utterance.

5.2 Optimizing Parameter Values

All feature extraction methods depend on many free parameters. Conven-
tional methods have been evaluated on a large number of different ASR tasks.
This resulted in the establishment of standard parameter values for those
methods. This section discusses the choice of free parameters in ZCPA and
SSCH feature extraction methods. Some of the parameters were set explic-
itly to the standard values used in conventional feature extraction methods.
Other parameters, which were considered to be of particular importance for
the ASR performance, were optimized on the small-vocabulary isolated-word
task described in Section 5.1.1, both on clean speech and in presence of white
Gaussian noise added at various SNRs.

5.2.1 Zero Crossings with Peak Amplitudes

The computation of ZCPA features depends on the choice of the analysis-
frame lengths, subband filter bank, and histogram bin allocation. The choice
of those parameters is discussed in the following.

5.2.1.1 Analysis-Frame Lengths

In the filter bank approach to spectral analysis it is possible to choose dif-
ferent analysis-frame lengths for different subband signals. This can be ad-
vantageous, since shorter frame lengths can be used for rapidly varying high-
frequency signals, while longer frame lengths can be used for slowly varying
low-frequency signals. Thus, better time resolution can be achieved at higher
frequencies, and better frequency resolution at lower frequencies. This is in
agreement with speech processing in the human auditory system.

Three different methods for allocating analysis-frame lengths to subband
signals were compared for use with the ZCPA feature extraction method. They
are described in the following.
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Method 1: Analysis-frame lengths of subband signals were chosen in such
a way that each frame incorporates approximately the same number of
signal periods. Since the number of subband signal periods corresponds
roughly to the number of intervals between positive zero crossings, all
subband signals contribute to approximately the same number of points
in ZCPA histograms. To achieve this, the frame length of k-th subband
signal (given in ms) was computed as C/F,,, where F, is the center
frequency of the corresponding bandpass filter given in kHz, and C is a
constant.

This method was used in the previous studies of EIH and ZCPA methods.
For example, C = 10 was used in [70]. With filter center frequencies
spanning from 200 Hz to 3400 Hz, this choice of parameter C' gives
frame lengths between 50 ms and 3 ms. Note that, this results in analysis
frames at high frequencies being shorter than the average pitch period.
This might lead to unreliable frequency estimates at those frequencies.
The problem can be solved by increasing the value of the parameter C.
However, this gives very long frames at low frequencies, that can cause
too low time resolution and obstruction of the stationarity assumption.

Four different values of parameter C' were tested in this study: 10, 20,
30 and 40. The results are presented in the first part of Table 5.1.

Method 2: The goal of this method was to increase frame lengths at higher
frequencies compared to the previous method without making the frames
at low frequencies unreasonably long. Analysis-frame length (given in
ms) of k-th subband signal was computed as C/./F,, where F, is the
center frequency of the corresponding bandpass filter given in kHz, and
C is a constant. Four different values of constant C' were tested: 20, 40,
60 and 80. The results are presented in the second part of Table 5.1.

Method 3: In this method, equal analysis-frame lengths were used for all
subband signals. Five different choices of frame lengths were tested:
25 ms, 35 ms, 50 ms, 75 ms and 100 ms. The results are presented in
the third part of Table 5.1.

In the first method, frame lengths were chosen such that each subband signal
contributes to approximately the same number of histogram points. However,
in the case of equal frame lengths, high-frequency subband signals contribute
to more histogram points than low-frequency subband signals, since they cross
the zero axis more often. Thus, in order to avoid histogram biasing toward
higher frequencies, histograms were normalized with respect to frequency. The
normalization was achieved by dividing each histogram entry by f (i), where
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Table 5.1: ASR performance of ZCPA features for different choices of
analysis frame lengths. F,, denotes the center frequency of k-th sub-
band given in kHz. The evaluation was done on the ISOLET database,
both on clean speech and in presence of additive white Gaussian noise
at various SNRs.

Frame Word accuracy [%)]

Method | lengths | Clean SNR [dB]

[ms] |speech | 25 | 20 | 15 [ 10
10/F,, | 3-50 | 78.33 | 70.51 | 61.79 | 55.58 | 40.64
20/F, | 6-100 | 81.15 | 73.78 | 67.63 | 61.35 | 48.01
30/F, | 9-150 | 80.51 | 75.51 | 72.56 | 65.00 | 52.24
40/F,, | 12-200 | 79.10 | 75.90 | 72.37 | 65.32 | 51.79

20/\/F,, | 11-45 | 81.09 | 73.78 | 68.21 | 57.82 | 44.68

40/+\/F,, | 22-89 | 82.88 | 77.76 | 72.69 | 65.06 | 51.47

60//Fe, | 33-134 | 82.24 | 78.08 | 74.10 | 68.14 | 54.74

80/\/F,, | 43-179 | 81.22 | 78.21 | 74.49 | 68.08 | 54.29

equal 25 80.83 | 71.92 | 64.87 | 55.83 | 41.22
equal 35 81.22 | 73.78 | 68.46 | 59.23 | 44.74
equal 50 81.35 | 75.38 | 71.15 | 62.12 | 49.10
equal 75 80.45 | 75.90 | 72.37 | 65.13 | 52.82

equal 100 80.45 | 76.86 | 72.88 | 66.79 | 55.58

fx(%) is given by Equation 4.6. Similarly, when frame lengths were chosen
to be inversely proportional to the square root of subband frequencies, the
normalization was achieved by dividing each histogram entry by +/ fx ().

In all of the above experiments, the filter bank consisted of 16 filters with
bandwidth equal to 2 Bark and center frequencies uniformly spaced on the
Bark scale between 200 Hz and 3400 Hz. The histogram consisted of 60 bins
uniformly distributed on the Bark scale. The reason for this choice of param-
eters will become apparent in the next section.

It can be seen from Table 5.1 that the choice of analysis-frame lengths
had a large influence on the ASR performance of ZCPA features, especially in
noisy conditions. Major observations are summarized in the following;:

e Increased analysis-frame lengths, especially in low-frequency subbands,
led to a considerable performance improvement in presence of noise,
while this did not have large influence on the clean speech performance.
The increase in performance is probably due to the fact that larger num-
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ber of histogram points led to greater emphasis of spectral peaks. This
had much larger positive effect on the recognition performance in noisy
conditions compared to the negative effect due to violating the stationar-
ity assumption. Another way of emphasizing spectral peaks in the ZCPA
method is to increase the weight given to each histogram entry. For ex-
ample, instead of increasing histogram bin counts by In(py), they could
be increased by C'In(pg), where C is a constant. This might give simi-
lar performance improvement as increasing the frame lengths C times.
However, this investigation is left for future studies.

e Analysis-frame lengths at high frequencies should be carefully chosen in
order to obtain optimal performance. If they are too long, the time res-
olution at high frequencies will be too low, if they are too short they will
produce unreliable frequency estimates. Using too long frame lengths
at high frequencies had a small negative effect only on the clean speech
performance, while using too short frame lengths had a considerable
negative effect on the performance in presence of additive white noise.

e The use of frequency-dependent analysis-frame lengths might be advan-
tageous in order to obtain a proper balance between frequency lengths
in low-frequency and high-frequency subbands. However, in this study,
the performance obtained using sufficiently large equal analysis-frames
lengths in all subbands was not significantly lower.

Frame lengths equal to 60/,/F,, were used in the comparative study de-
scribed in Section 5.3.

5.2.1.2 Filter-Bank Design and Histogram Construction

In the development of both ZCPA and EIH methods, a lot of attention was
initially paid to the design of filter banks that simulate cochlear filter responses
[46, 70]. However, both studies later concluded that simulating cochlear filter
shapes was not important for good ASR performance. A comparative study
presented in [70] showed that ZCPA features based on FIR filters designed
by the windowing method, consistently outperformed the features based on
carefully designed cochlear filters. Thus, a similar FIR filter bank was used in
this study.

In the windowing method, the impulse response of an FIR filter is designed
by multiplying the impulse response of an ideal prototype filter by a window
function. The order of the FIR filter is determined by the length of the window.
In this study, FIR filters of order 61 were designed using Hamming window.
The filters were uniformly spaced on the Bark scale.
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Filter bandwidths should ideally be chosen such that each subband con-
tains exactly one dominant spectral peak. In this case, the inverse zero-
crossing interval lengths serve as good estimates of spectral peak locations.
Too small filter bandwidths result in a number of subbands that do not con-
tain any dominant spectral peak. Thus, ZCPA histograms enhance spurious
spectral peaks in those subbands, and are sensitive to random variations in
speech spectrum. On the other hand, if filter bandwidths are chosen to be
too large, some subbands incorporate more than one dominant frequency. In
such situations, the inverse zero-crossing interval lengths are not effective in
localizing dominant subband frequencies.

Frequency resolution of the ZCPA parameterization is given by histogram
bin widths. In order to accurately locate dominant subband frequencies, bin
widths should be small compared to subband bandwidths. On the other hand,
if histogram bin widths are too small, ZCPA features can become sensitive
to random variations in spectral peak positions. In this study, histogram
bins having equal lengths on the Bark scale were used. This provides better
frequency resolution at low frequencies than at high frequencies, which is in
agreement with human speech perception.

Several experiments were performed in order to determine suitable values
for filter bandwidths and the number of histogram bins. The results are shown
in Table 5.2. The main observations are listed in the following:

Table 5.2: ASR performance of ZCPA features for different choices of
filter bandwidths and number of histogram bins. The evaluation was
done on ISOLET database both on clean speech and in presence of
additive white Gaussian noise at different SNRs.

Filter Word accuracy [%]
bandwidth | Number | Clean SNR [dB]

[Bark] of bins |speech | 25 [ 20 [ 15 | 10
30 75.51 | 69.81 | 66.99 | 60.32 | 49.36
60 74.74 | 69.49 | 67.69 | 60.38 | 48.08
30 81.15 | 76.15 | 70.96 | 63.85 | 50.45
45 80.71 | 75.13 | 71.28 | 63.40 | 52.18
60 80.51 | 75.51 | 72.56 | 65.00 | 52.24
75 79.81 | 74.68 | 70.77 | 63.65 | 51.28
20 82.63 | 76.79 | 71.28 | 61.92 | 45.00
30 82.50 | 77.37 | 72.69 | 62.63 | 47.37
40 81.99 | 77.18 | 71.35 | 62.50 | 47.88

W W WD NN =]~
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e The choice of filter bandwidths had a significant effect on the ASR per-
formance of the ZCPA method. The use of filter bandwidths equal to
2-3 Bark gave significantly better performance than the use of narrow
filter bandwidths equal to 1 Bark. The best performance at low SNRs
was achieved using filter bandwidths equal to 2 Bark. This value was
used in the rest of this study.

e The particular choice of number of histogram bins did not have a signif-
icant influence on the ASR performance. In the rest of this study, the
number of bins was set to 60.

Note that filter bandwidths in Table 5.2 are given in terms of the bandwidths
of corresponding ideal prototype filters, rather than 3 dB bandwidths. The
corresponding 3 dB bandwidths can be up to 50% larger in the low-frequency
subbands. In the above experiments, the number of filters was 16, while frame
lengths were equal to 30/ F, .

In the initial study of ZCPA [70], the number of filters in FIR filter bank
was set to 16 in order to achieve high computational efficiency. No attempt
to optimize the number of filters has been reported. We have argued in Sec-
tion 2.2.2.2 that the basilar membrane can be modeled by 24 bandpass filters
uniformly distributed on the Bark scale. The entire length of the basilar
membrane corresponds to the whole speech frequency range. When speech
bandwidth is limited to 4 kHz, standard MFCC parameterization [22] usually
uses 20 subband filters. In order to find out if the use of larger number of sub-
band filters could be beneficial for ZCPA parameterization, the performance
of ZCPA features based on 20 subband filters was evaluated. The results are
shown in Table 5.3 for two different choices of analysis-frame lengths. It can

Table 5.3: ASR performance of ZCPA features based on different num-
ber of subband filters. The evaluation was done on ISOLET database,

both on clean speech and in presence of additive white Gaussian noise
at different SNRs.

Word accuracy [%]
Number of | Frame | Clean SNR [dB]
filters lengths | speech | 25 [ 20 | 15 | 10
16 30/F, | 80.51 |75.51 [ 72.56 | 65.00 | 52.24
20 30/F, | 81.35 |75.96 | 72.55 | 64.29 | 51.09
16 60/\/F., | 82.24 | 78.08 | 74.10 | 68.14 | 54.74
20 60/+/F,, | 83.40 | 78.21 | 74.81 | 66.92 | 52.05




5.2 Optimizing Parameter Values

61

be seen that the increased number of filters led to some performance improve-
ment at high SNRs, while it caused some performance reduction at low SNRs.
However, the differences were not statistically significant.

5.2.2 Subband Spectral Centroid Histograms

The computation of SSCH features depends on the particular choice of analysis-
frame lengths, spectral estimate, spectral dynamic range parameter, filter bank
parameters, and histogram bin allocation. The choice of those parameters is
discussed in the following.

5.2.2.1 Analysis-Frame Lengths

The analysis-frame lengths were set to 25 ms, with 10 ms frame shift between
successive frames. For speech sampling frequency equal to 8 kHz, this resulted
in 200 speech samples per frame, and 80 samples frame shift. No attempt has
been made to optimize the analysis-frame lengths.

5.2.2.2 Power Spectrum Estimation

FFT-based power spectrum estimates were used as basis for centroid compu-
tation in this study. The advantage of FFT-based power spectrum estimates
over LP-based estimates is in their superior robustness against noise and the
simplicity with which centroid computation can be implemented.

Each analysis frame was passed through a first-order preemphasis filter
with filter coefficient 0.97, followed by a Hamming window. Next, signal frames
were padded with 312 zeros, and FFT of order 512 was performed. Finally,
the power spectrum estimates were obtained by squaring the magnitudes of
the resulting FFT coefficients.

5.2.2.3 Spectral Dynamic Range

The dynamic range of the power spectrum used in the SSC computation is
controlled by the parameter 7 in Equation 4.10. If «y is too small (near 0), SSC
would approach the centers of their subbands, and thus contain no information.
If it is too large (near o), SSC would correspond to the locations of the
subband peak values of the FFT-based power spectrum, and would thus be
noisy estimates. In the previous studies of SSC, described in Section 4.7, the
dynamic-range parameter was set to 0.5. No attempt to optimize its value has
been reported.

Table 5.4 shows the recognition performance of the SSCH method for dif-
ferent values of parameter -y, evaluated on the ISOLET database both on
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Table 5.4: ASR performance of SSCH features for different values
of the dynamic range parameter . The evaluation was done on the
ISOLET database, both on clean speech and in presence of white Gaus-
sian noise at different SNRs.

Word accuracy [%]

v | clean SNR [dB]

speech | 25 20 15 10

0.5 | 86.54 | 77.88 | 70.83 | 58.08 | 33.97
1 86.15 | 79.74 | 73.40 | 59.87 | 42.24

85.51 | 76.99 | 71.51 | 60.77 | 44.62

4 83.65 | 75.32 | 71.41 | 60.51 | 44.62

clean speech and in presence of white Gaussian noise at various SNRs. At
high SNRs, the best results were achieved using v = 0.5, while the best per-
formance at low SNRs was obtained using larger values of «y. These results are
reasonable, since increased v makes spectral peaks more prominent, and thus
reduces the effect of additive noise. In the rest of this study, v = 1 was used.

The results shown in Table 5.4 were obtained using a subband filter bank
consisting of 48 filters with rectangular frequency response. Filter center fre-
quencies were uniformly distributed on the Bark scale between 100 Hz and
3800 Hz, and filter bandwidths were equal to 3 Bark. The histograms con-
sisted of 38 frequency bins uniformly distributed on the Bark scale between
100 and 3800 Hz. The reason for this choice of parameters will become appar-

ent in the next section. Finally, power estimates were computed over entire
subbands.

5.2.2.4 Filter-Bank Design and Histogram Construction

The discussion regarding the choice of the filter bank and histogram bin allo-
cation is, in many aspects, similar to the one for the ZCPA method given in
Section 5.2.1.2.

The filter bank used for deriving SSCH features in this study consisted of
highly overlapping filters with rectangular frequency responses, and center fre-
quencies uniformly distributed on the Bark scale between 100 Hz and 3800 Hz.
The rectangular frequency responses were chosen since any other shape, such
as triangular, would favor some frequencies within the subband more than the
others, and thus give a biased SSC estimate.

Filter bandwidths should ideally be chosen such that each subband con-
tains exactly one dominant spectral peak. In this case, SSC would serve as
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good estimates of spectral peak positions. Too small filter bandwidths would
result in a number of subbands that do not contain any dominant spectral
peak. Centroids of such subbands would be sensitive to random variabili-
ties in speech. On the other hand, if filter bandwidths stretch over several
dominant spectral peaks, SSC will no longer represent reasonable estimates of
subband peak locations.

If each frequency subband corresponds to a single histogram bin, then SSC
do not provide any useful information, and SSCH features reduce to standard
MFCC features. In order to capture the information about subband power
distribution, the ratio between filter bandwidths and histogram bin widths
should be chosen to be sufficiently large. For given filter bandwidths, this is
achieved by increasing the total number of frequency bins. Histogram bins
should be sufficiently small to provide a good frequency resolution, but not
too small to make the resulting speech parameterization sensitive to small
fluctuations in spectral peak positions (e.g. due to speaker differences). In
this study, histogram bins having equal lengths on the Bark scale were used.
This provides better frequency resolution in low-frequency subbands than in
high-frequency subbands, which is in agreement with the processing in the
human auditory system. Frequencies below 100 Hz and above 3800 Hz were
held outside the histogram range, since they were covered by smaller number
of filters than the remaining speech frequency range. Thus, the histogram
representation in those frequency ranges would be unreliable.

A series of recognition experiments was performed in order to optimize
filter bandwidths, the number of histogram bins, and the number of filters in
the filter bank. The experiments were performed on the ISOLET database,
both on clean speech and in presence of additive white Gaussian noise at
different SNRs. The results are presented in Table 5.5. The main observations
are summarized in the following:

e The choice of filter bandwidths had a significant effect on the recogni-
tion performance, especially at low SNRs. The best results in presence
of noise were achieved using filter bandwidths equal to 3 Bark (302 Hz—
1927 Hz), while the performance on clean speech was best for filter band-
widths equal to 1 Bark (101 Hz—642 Hz).

e The number of histogram bins had to be chosen large enough to provide
good frequency resolution, but the recognition performance was not very
sensitive to the particular choice of the number of bins. The values
between 30 and 60 gave good results in all test conditions.

e The recognition performance was insensitive to the particular choice of
the number of filters.
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Table 5.5: ASR performance of SSCH features for different choices
of filter bank parameters and histogram bin allocation. The evalua-
tion was done on the ISOLET database, both on clean speech and in
presence of additive white Gaussian noise at different SNRs.

Filter Word accuracy [%]
bw % Number of | Clean SNR [dB]
[Bark] filters/bins | speech | 25 | 20 | 15 [ 10
1 4 48/57 88.46 | 78.08 | 69.36 | 55.96 | 30.83
1 4 143/57 87.95 | 78.27 | 70.19 | 55.38 | 28.25
1 6 143/86 88.44 | 77.56 | 67.50 | 53.85 | 27.76
2 2 72/14 84.29 | 73.53 | 67.44 | 54.81 | 35.90
2 4 72/29 86.28 | 77.24 | 70.90 | 59.55 | 38.33
2 6 48/43 87.18 | 78.91 | 71.67 | 59.17 | 38.97
2 6 72/43 86.86 | 79.17 | 72.50 | 58.65 | 38.21
2 8 72/57 86.47 | 78.46 | 71.22 | 58.85 | 37.31
3 4 48/19 83.65 | 76.86 | 69.74 | 58.40 | 40.45
3 6 24/29 85.38 | 78.65 | 73.40 | 60.64 | 43.97
3 6 48/29 86.47 | 78.46 | 72.44 | 59.81 | 41.67
3 6 72/29 85.96 | 78.72 | 72.37 | 59.23 | 41.41
3 8 24/38 86.41 | 79.87 | 72.82 | 59.87 | 43.21
3 8 48/38 86.15 | 79.74 | 73.40 | 59.87 | 42.24
4 6 36/21 84.29 | 75.45 | 66.60 | 54.81 | 33.21
4 8 36/29 86.60 | 78.08 | 69.10 | 56.79 | 36.22
4 10 36/36 85.19 | 77.69 | 68.85 | 56.22 | 36.03

In the rest of this study, SSCH features were computed using 48 subband filters
with bandwidths equal to 3 Bark. The number of histogram bins was set to
38. The relatively large number of filters was used due to the initial belief
that a large number of histogram points would be important for obtaining
reliable histograms. However, later experiments have shown that no reduction
in performance was observed when the number of filters was reduced to 24.

5.2.2.5 Subband Power Computation

Table 5.6 presents the recognition performance of SSCH features obtained us-
ing the two methods of subband power computation described in Section 4.8.1.
The evaluation was done both on clean speech and in presence of white Gaus-
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Table 5.6: ASR performance of SSCH features for two different meth-
ods of subband power computation. The evaluation was done on the
ISOLET database, both on clean speech and in presence of additive
white Gaussian noise at different SNRs.

Power Word accuracy [%]
computation | Clean SNR [dB]

range speech | 25 | 20 [ 15 | 10
whole band | 86.15 | 79.74 | 73.40 | 59.87 | 42.24
1 critical bw | 86.35 | 80.45 | 74.10 | 61.60 | 42.50

sian noise at several SNRs. The first row shows recognition accuracy for
the case when subband power estimates were computed over the entire sub-
band, while the second row is for the case when subband power estimates were
computed over one critical bandwidth (i.e. 1 Bark) centered around the sub-
band centroid. It can be seen that slightly better results were obtained when
subband powers were computed over the narrow bands centered around the
centroids, but the difference is not statistically significant.

In the above experiments, filter bandwidths were equal to 3 Bark, and the
number of filters and histogram bins was 48 and 38, respectively. In the rest
of this study, SSCH features were derived using the subband power estimates
computed over one critical bandwidth centered around the corresponding cen-
troid.

5.2.3 Summary of the Main Results

This section presented the results of an experimental study performed in order
to optimize a number of free parameters involved in ZCPA and SSCH feature
extraction methods. The evaluation was done on the ISOLET database, both
on the clean speech and in presence of additive white Gaussian noise. The
main results are summarized in the following:

e The ASR performance of ZCPA features in presence of noise was largely
increased by using relatively long analysis frames, especially in low-
frequency subbands.

e Increase of dynamic spectral range had a positive effect on the ASR
performance of SSCH features in presence of noise.

e The choice of filter bandwidths had a significant influence on the ASR
performance of both ZCPA and SSCH features.
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e The ASR performance of neither ZCPA nor SSCH features was sensitive
to the particular choice of the number of histogram bins.

e The ASR performance of neither of the two feature types was sensitive
to the particular choice of the number of subband filters.

5.3 Evaluation of the ZCPA Method

This section presents an experimental study performed in order to evaluate
the performance of ZCPA features on the two recognition tasks described in
Section 5.1 in various background conditions. First, the performance of ZCPA
features was compared to that of standard MFCC features in order to ver-
ify earlier results, which showed superior performance of ZCPA features in
presence of additive noise [70]. Then, three main differences between the two
methods were carefully examined in order to determine their relative contri-
bution to the difference in the ASR performance. Finally, the effect of using
subband power information in the ZCPA method was investigated.

ZCPA features used in this study differ from the standard MFCC fea-
tures in three main aspects: they are based on different subband filter banks,
they are derived in the time domain rather than frequency domain, and they
combine dominant subband frequency information with subband power infor-
mation, rather than using subband power information alone.

In order to determine the relative contribution of each of the three as-
pects to the difference in recognition performance between ZCPA and MFCC
features, two intermediate feature extraction methods were evaluated. The
first one differed from the MFCC method only in the subband filter bank,
which was chosen to closely correspond to the filter bank used in the ZCPA
method. The resulting speech features are referred to as frequency-domain de-
rived Bark-frequency cepstral coefficients (BFCCF). The second one consisted
of deriving cepstral coefficients from the subband power estimates computed
in the time domain. The subband filter bank was identical to the one used
in the ZCPA method. The resulting features are referred to as time-domain
derived Bark-frequency cepstral coefficients (BFCCT).

Then, the effect of using different filter banks in ZCPA and MFCC meth-
ods was determined by comparing the performance of BFCCF and MFCC
features. Furthermore, the effect of using time-domain processing instead of
frequency-domain processing was determined by comparing the performance
of BFCCT and BFCCF features. Finally, the effect of incorporating domi-
nant subband frequency information into speech features was determined by
comparing ZCPA and BFCCT features.
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In order to determine the effect of using subband power information in the
ZCPA method, the way of histogram construction was changed. Instead of
increasing histogram bin counts by the logarithm of the corresponding peak
amplitude, they were increased by one. In this way, subband power infor-
mation was not used explicitly in the histogram construction. The resulting
speech features are referred to as zero-crossing (ZC) features.

Section 5.3.1 describes the implementational details for all the compared
feature extraction methods. In Section 5.3.2, the experimental results are
presented, followed by a detailed discussion. Finally, a summary of the main
results is given in Section 5.3.3.

5.3.1 Implementational Details

General description of all the compared feature extraction methods was given
in Chapters 2 and 4. This section summarizes the implementational details
used in the experimental study.

5.3.1.1 Mel-Frequency Cepstral Coefficients

The computation of the MFCC features used in this study was done using the
HTK tool HCopy. Standard values of the free parameters were used. They
are summarized in the following.

The analysis frames were 25 ms long with 10 ms frame shift between suc-
cessive frames. For speech sampling frequency equal to 8 kHz, this results
in 200 speech samples per frame, and 80 samples frame shift. Each frame
was passed through a first-order preemphasis filter with filter coefficient 0.97,
followed by Hamming window. Each frame was then padded with 56 zeros,
followed by a 256-order FFT computation. Note that the magnitudes of the
FFT coefficients were used in the subsequent filtering stage, instead of the
squared magnitudes shown in Figure 2.2 (this is the default setting in the
HCopy tool).

The filter bank consisted of 20 bandpass filters, each having a triangular
frequency response, with 50% overlap between neighbouring filters. Filter
center frequencies were uniformly distributed on the mel scale between 66 Hz
and 3592 Hz (1022044 mel) with 3 dB bandwidths equal to 102 mel. This
corresponds to linear frequency bandwidths between 70 Hz and 389 Hz. The
frequency response of the filter bank is shown in the upper part of Figure 5.1.

Twelve cepstral coefficients were derived from the subband power esti-

mates, together with their first and second derivatives, resulting in 36-dimensional

feature vectors. The word insertion penalty, p, and the language model scale
factor, s, used with the RM recognition task were both equal to 10.
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Figure 5.1: Filter banks used in MFCC and ZCPA feature extraction
methods

5.3.1.2 Zero Crossings with Peak Amplitudes

Parameters involved in ZCPA computation were chosen in accordance with
the results presented in Section 5.2.1, such that the ASR performance at low
SNRs was optimized.

The interpolation factors used for the different subband signals ranged
from one (i.e. no interpolation) for the first four subband signals to sixteen for
the last three subband signals. The average interpolation factor was equal to
six. The interpolation was performed using the MATLAB program package.
Eight original sample values were used to compute the interpolated values.

The analysis-frame lengths were set to 60/,/F,,, where F,, is the center
frequency of the k-th subband. This resulted in frame lengths between 33 ms
at the high-frequency end and 134 ms at the low frequency end. The centers
of all analysis frames were time-aligned. Frame shift was equal to 10 ms for all
subband signals. Analysis frames were extracted using rectangular windows.
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No preemphasis was used.

The filter bank consisted of 16 Hamming FIR filters designed by the win-
dowing method, with center frequencies uniformly distributed on the Bark
scale between 200 Hz and 3400 Hz. The bandwidths of the ideal prototype
filters were equal to 2 Bark, while the 3 dB bandwidths ranged from 2.9 Bark
to 2.1 Bark for the first nine filters, and were equal to 2 Bark for higher fre-
quency bands. The corresponding linear frequency 3 dB bandwidths ranged
from 280 Hz to 1160 Hz. The filter bank is illustrated in the bottom part of
Figure 5.1.

Frequency range between 0 and 4000 Hz was partitioned into 60 histogram
bins uniformly distributed on the Bark scale. Twelve DCT coeflicients were
derived from the histograms, as well as their first and second derivatives,
resulting in 36-dimensional feature vectors. The word insertion penalty, p,
and the language model scale factor, s, used on the RM recognition task were
equal to -10 and 13, respectively.

5.3.1.3 Frequency-Domain Bark-Frequency Cepstral Coeflicients

BFCCEF features were computed in exactly the same manner as MFCC fea-
tures. The only difference was in the particular choice of the filter bank. The
frequency response of the filter bank used in BFCCF computation was identi-
cal to that of the FIR filter bank used in ZCPA computation. It was obtained
by evaluating the magnitude of the z-transform of the FIR filter impulse re-
sponses at required frequency points.

The word insertion penalty, p, and the language model scale factor, s, used
on the RM recognition task were both equal to 10.

5.3.1.4 Time-Domain Bark-Frequency Cepstral Coefficients

BFCCT features were derived from subband power estimates computed in
the time domain, as described in Section 2.4.2. Analysis-frame lengths were
equal to 60/ \/F_C,c , where F,, is the center frequency of the k-th subband. The
filter bank was chosen identical to the one used in ZCPA computation. Twelve
cepstral coefficients were derived from the subband power estimates, as well as
their first and second derivatives, resulting in 36-dimensional feature vectors.
The word insertion penalty, p, and the language model scale factor, s, used on
the RM recognition task were equal to 0 and 10, respectively.

The analysis-frame lengths were chosen to be equal to those used in the
ZCPA method. However, it was observed that the benefit due to the use of
large frame lengths with the BFCCT method was considerably smaller than
for the ZCPA method, especially on the RM task. Detailed recognition results
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obtained by varying frame lengths in BFCCT and ZCPA feature extraction
methods are given in Tables B.1 and B.2 in Appendix B.

5.3.1.5 Zero-Crossing Features

The only difference between computation of ZC features and ZCPA features is
in the way histograms were constructed. Instead of increasing the bin counts
by the logarithm of peak amplitudes, they were increased by one. Note that
this feature extraction method is equivalent to the EIH method described in
Section 4.5 with only one level, which is equal to zero.

All free parameters used in computation of ZC features were chosen equal
to the corresponding ZCPA parameters. The word insertion penalty, p, and
the language model scale factor, s, used on the RM recognition task were equal
to 0 and 10, respectively.

5.3.2 Experimental Results

Figures 5.2 and 5.3 illustrate the recognition performance of MFCC, BFCCF,
BFCCT and ZCPA features in presence of four different types of additive noise,
evaluated on ISOLET and RM databases respectively. Detailed experimental
results are given in Tables B.3 and B.4 in Appendix B.

5.3.2.1 Comparing ZCPA and MFCC Performance

It can be seen from Figures 5.2 and 5.3 that the ZCPA performance decreased
considerably slower than the MFCC performance with reduced SNR. This was
true for all noise types on both databases. This is in agreement with earlier
results [70], which showed greater robustness of ZCPA features compared to
standard MFCC features. On the other hand, MFCC features outperformed
ZCPA features at high SNRs. This indicates superior discriminative properties
of MFCC features in matched training and test conditions.

Figure 5.4 shows the absolute difference in ASR performance between
ZCPA and MFCC features on ISOLET and RM databases in different back-
ground conditions. It can be seen that the advantage of using ZCPA instead
of MFCC generally increased with reduced SNR. Furthermore, the advantage
was much larger on the ISOLET database than on the RM database. This
indicates that the advantage of using ZCPA is reduced with increased task
complexity.

The effect of the three main differences between ZCPA and MFCC feature
extraction methods on the difference in ASR performance is investigated in
the following.
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Figure 5.2: Comparison of MFCC, BFCCF, BFCCT and ZCPA fea-
tures on ISOLET database in presence of different types of additive
noise.

5.3.2.2 Effect of Different Filter Banks

The effect of using different filter banks in MFCC and ZCPA feature extrac-
tion methods was investigated by comparing the performance of BFECCF and
MFCC features in Figures 5.2 and 5.3. The two speech feature types differ
only in the subband filter banks used for their computation.

Figure 5.5 shows the absolute difference in the ASR performance between
the two feature types on ISOLET and RM databases in different background
conditions. The only considerable performance difference between the two
methods can be observed in the presence of car noise, where BFCCF features
largely outperformed MFCC features on both databases. This can be ex-
plained by larger subband bandwidths used in the BFCCF method compared
to the MFCC method, and the special narrow-band shape of the car noise.
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Figure 5.5: Effect of filter bank change: Absolute difference in ASR

performance between BFCCF and MFCC features on ISOLET and RM
databases in presence of four different noise types.

Increased subband bandwidths lead to increased speech subband power, while
the subband power of the narrow-band noise remains approximately the same.
Thus, local subband SNRs increase with increased subband bandwidth, which
might be the reason for the increased ASR performance.

5.3.2.3 Effect of Time-Domain Processing

The effect of using time-domain processing instead of frequency-domain pro-
cessing was investigated by comparing the ASR performance of BFCCT and
BFCCF features in Figures 5.2 and 5.3. In addition, Figure 5.6 illustrates
the absolute difference in ASR performance between the two feature types on
ISOLET and RM databases in different background conditions.

It can be seen that on the ISOLET database time-domain processing led
to a large performance improvement in presence of white noise compared
to frequency-domain processing. The improvement increased with increased
noise level. Smaller improvements were also observed for babble and car noise
at sufficiently low SNRs, while no significant improvement was observed for
factory noise. The improvements due to time-domain processing achieved on
the RM database were much smaller, and a performance degradation was ob-
served in the case of factory noise.

One possible reason for the positive effect of time-domain processing is due
to the difference in the analysis-frame lengths used in BFCCF and BFCCT
methods. The BFCCF method used the frame lengths equal to 25 ms for all
subband signal, while the BFCCT method used frequency-dependent frame
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Figure 5.6: Effect of time-domain processing: Absolute difference in
ASR performance between BFCCT and BFCCF features on ISOLET
and RM databases in presence of four different noise types.

lengths that ranged between 33 ms and 134 ms. Longer frame lengths, espe-
cially at low frequencies, lead to more reliable power estimates. On the other
hand, too long frames lead to violating the stationarity assumption. This
might explain why the use of time-domain processing was least beneficial in
the case of highly unstationary factory noise, and why the improvements were
reduced when tested on continuous speech, which is characterized by shorter
stationary intervals.

5.3.2.4 Effect of Dominant Subband Frequency Information

The effect of using dominant subband frequency information in speech feature
extraction was investigated by comparing the ASR performance of ZCPA and
BFCCT features in Figures 5.2 and 5.3. Both feature types are derived in the
time domain using identical subband filter banks. Thus, the only difference
between the two feature types is in the type of information extracted from
the subband signals. While BFCCT features are based solely on the sub-
band power estimates, ZCPA features combine dominant subband frequency
information with the subband power information.

Figure 5.7 shows the absolute difference in ASR performance between
ZCPA and BFCCT features on ISOLET and RM databases in different back-
ground conditions. Common observation for both databases is that the use of
dominant subband frequency information led to improved ASR performance in
presence of white and factory noise at sufficiently low SNRs, while no improve-
ment was achieved in presence of babble noise. The largest improvements were
achieved in presence of white noise. This indicates that dominant frequency
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Figure 5.7: Effect of dominant subband frequency information: Ab-

solute difference in ASR performance between ZCPA and BFCCT fea-

tures on ISOLET and RM databases in presence of four different noise

types.

information has the largest positive effect when additive noise has relatively
flat spectrum.

At high SNRs, BFCCT features performed better than ZCPA features.
This can be explained by the fact that ZCPA features do not provide reliable
information about spectral valleys. This information becomes unreliable in
presence of additive noise, in which case its exclusion from speech features
can be advantageous. However, at high SNRs, this information contributes to
better discrimination between different speech units.

The results for car noise were inconsistent. While a large improvement was
observed on ISOLET database, some performance reduction was observed on
the RM database. The performance reduction on the RM database in presence
of car noise can be explained by looking at the results in Table B.1, which
show that the choice of long analysis frames in the ZCPA method was not
advantageous in presence of car noise. If two times shorter window lengths
were used, the improvements would be similar to those observed for white
noise. It was argued in Section 5.2.1.1 that longer analysis frames in the
ZCPA method lead to greater emphasis of spectral peaks. Since car noise is
characterized by a strong spectral peak in the low-frequency region, this peak
would also be emphasized when frame lengths are increased. This might be
the reason for the reduced performance of the ZCPA method in presence of
car noise.



76

Experimental Study

5.3.2.5 Effect of Subband Power Information

At the end, the performance of ZCPA and ZC features was compared, in or-
der to determine the effect of using subband power information in the ZCPA
feature extraction method. The two feature types differ only in the way his-
tograms are constructed. While histogram bin counts in the ZCPA method
are increased by the logarithm of peak amplitudes, they are increased by one
in the ZC method. Thus, no power information is explicitly used in the ZC
method.
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Figure 5.8: Effect of subband power information: Absolute difference

in ASR performance between ZCPA and ZC features on ISOLET and
RM databases in presence of four different noise types.

Figure 5.8 shows the absolute difference in ASR performance between
ZCPA and ZC features on ISOLET and RM databases in different background
conditions. On the ISOLET database, the only considerable performance im-
provement obtained due to the explicit use of subband power information is
observed in presence of white noise. In presence of babble noise, on the other
hand, ZC features outperform ZCPA feature at low SNRs. This is probably
due to the fact that the subband power information becomes highly unreliable
when noise subband power becomes relatively large. On the RM database,
the positive effect due to the explicit use of subband power information is
much more pronounced, and relatively large improvements were observed for
all noise types except car noise. The poor ZCPA performance in presence of
car noise can again be explained by the use of too long analysis frames.
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5.3.3 Summary of the Main Results

In this section the ZCPA feature extraction method was evaluated on two
different recognition tasks. The main results are summarized in the following:

e ZCPA features were more robust against additive background noise than
MFCC features. The advantage of using ZCPA features generally in-
creased with reduced SNR. Furthermore, it was considerably larger on
the isolated-word task, than on the more complex continuous-speech
task.

e MFCC features performed somewhat better than ZCPA features at high
SNRs. This is probably due to the loss of information in speech spectral
valleys in the ZCPA method.

e The performance improvement of the ZCPA features compared to the
MFCC features was partly due to the use of dominant subband fre-
quency information, and partly to the use of time-domain processing.
Differences in the filter banks used in the two methods had only an
effect in presence of car noise, due to its narrow-band spectral shape.

e The use of dominant subband frequency information had the largest pos-
itive effect in presence of background noise with a relatively flat spectral
characteristic.

e The importance of using subband power information in the ZCPA method
was increased with increased task complexity.

5.4 Evaluation of SSC-Based Methods

This section presents an experimental study aimed at evaluating the perfor-
mance of SSC-based feature extraction methods on the two recognition tasks
described in Section 5.1, in presence of various background conditions. First,
the effect of augmenting standard MFCC feature vectors by three SSC was
investigated, in order to verify the previous results reported on this feature
set. The new feature set is referred to as MFCC+SSC. Then, the ASR per-
formance of SSCH features and standard MFCC features was compared in
different acoustic background conditions. Finally, the robustness of MFCC,
SSCH and SSC features was compared by measuring the distance between
feature vector distributions of clean and noisy speech for the three feature

types.
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This section starts with a description of implementational details for SSCH
and MFCC+SSC feature extraction methods in Section 5.4.1. Next, the recog-
nition results are presented in Section 5.4.2, together with a detailed discus-
sion. Finally, the most important results are summarized in Section 5.4.3.

5.4.1 Implementational Details

This section summarizes the implementation details for SSCH and MFCC+SSC
feature extraction methods. The general description of the methods was given
in Chapter 4.

5.4.1.1 Subband Spectral Centroid Histograms

Parameters involved in SSCH computation were chosen in accordance with
the results presented in Section 5.2.2. SSC were computed from the FFT-
based spectral estimate, using the dynamic range parameter v = 1. The filter
bank consisted of 48 subband filters with rectangular frequency responses,
and bandwidths equal to 3 Bark. The filter center frequencies were uniformly
distributed on the Bark scale between 100 and 3800 Hz. Note that bandwidths
of some filters at lowest and highest frequencies had to be reduced in order to
fall inside the speech frequency range [0,4000 Hz]. Frequency range between
100 and 3800 Hz was divided into 38 histogram bins uniformly distributed on
Bark scale. At the end, 12 DCT coeflicients were derived from the histogram
representation, as well as their first and second derivatives, resulting in 36-
dimensional feature vectors. The word insertion penalty, p, and the language
model scale factor, s, used on the RM recognition task were equal to -10 and
10, respectively.

5.4.1.2 SSC as Additional Speech Features

SSC used as additional features to standard MFCC feature vectors were com-
puted in a similar way as those used for SSCH computation. The computation
differed only in the choice of filter bank, which in this case consisted of three
disjoint rectangular filters uniformly distributed on the linear frequency scale
between 0 and 4000 Hz. Thus, the bandwidth of each filter was approximately
1333 Hz. The three SSC were augmented to the 36-dimensional MFCC fea-
ture vectors computed as described in Section 5.3.1. This implementation of
MFCC+SSC features is very similar to the one reported in [105]. The word
insertion penalty, p, and the language model scale factor, s, used on the RM
recognition task were equal to 0 and 10, respectively.
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5.4.2 Experimental Results

Figures 5.9 and 5.10 illustrate the recognition performance of the standard
MFCC features used alone and in combination with three SSC, as well as

that of the SSCH features.

The evaluation was done on the ISOLET and

RM databases, both on clean speech and in presence of four different types
of additive noise added at various SNRs.
a speech representation consisting solely of the three SSC is shown for the
ISOLET database. The detailed experimental results are given in Tables B.3

and B.4 in Appendix B.
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Figure 5.9: Comparison of MFCC, MFCC+SSC, SSCH and SSC fea-
tures on the ISOLET database in presence of different types of additive
noise.
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Figure 5.10: Comparison of MFCC, MFCC+SSC and SSCH features
on the RM database in presence of different types of additive noise.

5.4.2.1 SSC as Additional Speech Features

A comparison of the recognition performance of MFCC and MFCC+SSC fea-
tures in Figures 5.9 and 5.10 shows a consistent small performance reduction
caused by augmenting three SSC to the standard MFCC feature vectors. This
result differs from the previous studies described in Section 4.7, which all
reported some positive effect of augmenting SSC to MFCC feature vectors.
However, the previous results were somewhat inconsistent. While some re-
searchers observed a positive effect of adding SSC only in clean speech, others
reported increased positive effect with reduced SNR.

In order to explain the negative effect of augmenting MFCC feature vec-
tors by SSC, the performance of feature vectors consisting solely of the three
SSC was evaluated on the ISOLET database. The results are illustrated in
Figure 5.9. It can be seen that the three SSC used alone provided relatively
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good discrimination on clean speech, but the performance deteriorated rapidly
with increased background noise level. The poor robustness of the SSC fea-
tures can be explained by the fact that SSC serve as reasonable estimates
of speech spectral peak positions only in the subbands that contain a single
speech spectral peak. However, since spectral peak positions vary with the
particular speech sound, it is not possible to design a filter bank that would
produce suitable subband locations for all speech sounds.

In order to examine the effect of using different filter banks in SSC com-
putation, two additional recognition experiments were performed. In the first
one, the passbands of the three subband filters were changed to correspond to
the frequency ranges of the first three speech formants (i.e. 0-1175 Hz, 315-
2860 Hz and 1175-4000 Hz), as suggested in [23]. In the second experiment,
13 disjoint subband filters with bandwidths equal to 300 Hz were used. The
two SSC implementations are referred to as SSC-formant and SSC-300Hz, re-
spectively. The recognition performance on the ISOLET database in presence
of different levels of additive white Gaussian noise is shown in Table 5.7. It

Table 5.7: ASR performance of SSC features for different choices of
the subband filter bank. The evaluation was done on the ISOLET
database, on clean speech and in presence of additive white Gaussian
noise at different SNRs.

Word accuracy [%]

Method Clean SNR [dB]
speech | 25 | 20 | 15 | 10
SSC 62.37 | 42.56 | 28.59 | 15.77 | 8.27

SSC-formant | 69.55 | 43.65 | 30.19 | 18.72 | 12.12
SSC-300Hz 59.10 | 20.83 | 14.10 | 10.83 | 8.97

can be seen that some performance improvement can be achieved by choos-
ing the subbands that comply better with spectral peak positions in speech
signals. On the other hand, a large performance reduction was experienced
after reducing filter bandwidths. This can be explained by the existence of a
number of subbands that do not contain any dominant speech spectral peak.
The centroids of such subbands are seriously affected by noise.

5.4.2.2 Comparing SSCH and MFCC Performance

The performance of SSCH and MFCC features is compared next. It can be
seen from Figures 5.9 and 5.10 that SSCH features outperformed MFCC fea-
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tures in presence of additive noise, while MFCC features performed slightly
better on clean speech. Figure 5.11 shows the absolute difference in ASR
performance between SSCH and MFCC features on the ISOLET and RM
databases in various background conditions. The advantage of using SSCH
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Figure 5.11: Absolute difference in ASR performance between SSCH
and MFCC features on ISOLET and RM databases in presence of four

different noise types.

features in place of MFCC features was largest in car noise, followed by white
and factory noise, while only a small improvement was observed in babble
noise. The large improvement in presence of car noise is partly due to the
exclusion of the frequency range below 100 Hz from the histogram representa-
tion, since most of the noise power is concentrated in that frequency region. A
very limited improvement in presence of babble noise can be explained by the
presence of prominent spectral peaks in this noise type, which makes dominant
subband frequency information less reliable. This problem is less pronounced
in presence of factory noise where intervals characterized by prominent spec-
tral peaks interchange with those characterized by relatively flat spectrum.
Another interesting observation drown from Figure 5.11 is that the maximal
improvement achieved by using SSCH features instead of MFCC features was
considerably larger on the more complex continuous-speech recognition task
than on the isolated-word task. This result was consistent for all noise types.

In order to determine the influence of using different filter banks in the
MFCC and SSCH methods on the difference in their robustness, MFCC fea-
tures derived using a filter bank identical to that used in the SSCH method
were evaluated. The evaluation was done on the ISOLET database, both on
clean speech and in presence of additive white Gaussian noise at different
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SNRs. The performance of the modified MFCC features is presented in Ta-
ble 5.8, together with that of standard MFCC features and SSCH features.
It can be seen that the performance of the modified MFCC features followed

Table 5.8: Performance comparison between standard MFCC fea-
tures, SSCH features, and modified MFCC features derived using the
same filter bank as in the SSCH method. The evaluation was done on
the ISOLET database, both on clean speech and in presence of additive
white Gaussian noise at different SNRs.

Word accuracy [%]

Feature type Clean SNR [dB]

speech 25 | 20 | 15 | 10

MFCC standard | 89.55 | 76.86 | 67.44 | 48.33 | 17.44

MFCC modified | 86.09 | 74.36 | 64.42 | 48.59 | 21.15
SSCH 86.35 | 80.45 | 74.10 | 61.60 | 42.50

closely that of standard MFCC features, with a small degradation at high
SNRs, and a small improvement at low SNRs. This indicates that the su-
perior robustness of the SSCH method compared to the MFCC method was
mainly due to the use of dominant subband frequency information provided
by SSC.

The problem of lacking robustness of SSC features is efficiently circum-
vented in the SSCH method. The subbands containing speech spectral peaks
have considerably larger power than those containing no spectral peaks, and
will thus lead to larger histogram contribution. Furthermore, the centroids
of the subbands that contain a speech spectral peak are much less affected
by additive noise than the centroids of the subbands that contain no speech
spectral peaks. Thus, the SSCH method incorporates an efficient weighting
scheme, which assigns larger weights to reliable SSC. However, this is true
only if the noise does not contain prominent spectral peaks.

5.4.2.3 Noise Effect on MFCC, SSC and SSCH Features

Deterioration of ASR performance in presence of noise is due to the fact that
the distributions of noisy-speech feature vectors differ from those of clean-
speech feature vectors used in model training. By measuring the distance
between corresponding feature vector distributions for clean and noisy speech,
it is possible to get an indication of the noise robustness of a particular feature
type. In this study, the distance was measured for MFCC, SSC and SSCH
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features. The clean-speech feature vectors were obtained from the original,
clean-speech test set of the ISOLET database. Noisy-speech feature vectors
were obtained from the same test set with white Gaussian noise added at
SNR=15 dB. The procedure for measuring the distance between feature vector
distributions for clean and noisy speech is described in the following:

1. The maximume-likelihood state sequence was found for each clean-speech
utterance using a set of acoustic speech models. In this way, each fea-
ture vector was assigned to a particular model state. Furthermore, each
feature vector was assigned to the Gaussian mixture component within
the corresponding state that had the highest probability of having gen-
erated the vector. Thus, a number of feature vectors was assigned to
each Gaussian mixture components in the model set.

2. For each Gaussian mixture component in the model set, the mean vector,
{pa(k)HE |, and variance vector, {o%(k)}X | were computed over the
set of clean-speech feature vectors assigned to the mixture component,

{O’n}lL:p by
L L
pa(k) =7 > ou(k) (5.5)

> louk) = pa(k)?,  for k=1,...,K (5.6)

where L is the total number of feature vectors assigned to the mixture
component, and K is the feature vectors dimension. Similarly, noisy-
speech mean and variance vectors, {un(k)}r_, and {o2(k)}}_,, were
computed by averaging over corresponding noisy-speech feature vectors.

3. The distance between feature vector distributions for clean and noisy
speech corresponding to a Gaussian mixture component was computed
using the following two distance measures:

K
mean __ E : [/’l’n(k) — Me (k)]2
’ - k=1 Ugl(k)l 51

K 2
dUer — Z ;z(k) ) (5.8)

k=1 (k)

Ideally, the two measures should be equal to zero and one, respectively.
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4. Finally, the weighted average of the distance measures given by Equa-
tions 5.7 and 5.8 was computed over all the mixture components in the
model set in the following way

I J; M;;
mean ean
i=1 j=1 m=1

I J;
D" =" "si Y cijm digm.- (5.10)

i=1j=1 m=1

Indexes 4, j and m refer to a particular model, model state, and state
mixture components, respectively. Furthermore, I, J;, and M;; denote
the number of models, model states, and state mixture components,
respectively. Finally, ¢;j,, denote mixture component weights, and s;;
denote model state weights. The mixture component weights were given
by the acoustic speech models, while the model state weights were com-
puted as the ratio between the number of feature vectors associated to a
model state and the total number of feature vectors associated to the cor-
responding model. The particular weighting scheme ensures that larger
weights are given to the more likely mixture components.

Table 5.9 shows the distance measures given by Equations 5.9 and 5.10
computed for MFCC, SSCH and SSC features. In the case of MFCC and
SSCH feature vectors, the distance measures were computed separately for the
static, A and AA features. The first and last model states were excluded from

Table 5.9: Average distance between feature vector distributions for
clean and noisy speech measured for different feature types.

Distance MFCC SSCH SSC
measure | static | A | AA | static | A | AA | static
Dmean 1.19 | 0.16 | 0.13 | 0.90 | 0.11 | 0.11 | 5.07

Dver 0.72 11.00 |1.13 | 096 | 1.17 | 1.29 | 1.97

the averaging process, since they correspond mainly to the background events
that surround speech utterances. Furthermore, in order to obtain a more
reliable segmentation of the speech utterances in the case of SSC features, the
segmentation was done on the MFCC+SSC feature vectors, while the distance
measures were computed over the three SSC only.
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Experimental Study

It can be observed from Table 5.9 that additive noise had the most serious
effect on the SSC features. Furthermore, SSCH features were somewhat less
affected by noise than MFCC features. Those results agree with the ones ob-
tained by evaluating the recognition performance. Furthermore, the dynamic
features exhibited very good robustness against additive noise compared to the
static features. This is due to the fact that the effect of stationary additive
noise is practically eliminated by subtracting the spectral feature vectors that
are closely spaced in time.

5.4.3 Summary of the Main Results

This section presented the results of an experimental study performed in or-
der to evaluate the recognition performance of SSC-based feature extraction
methods in various background conditions. The main results are summarized
in the following:

e Using SSC as additional features to standard MFCC feature vectors
had a small negative effect on the MFCC performance. This can be
explained by poor robustness of the SSC features if subband positions
are not chosen appropriately.

e SSCH features outperformed standard MFCC features in presence of ad-
ditive noise. The advantage of using SSCH features generally increased
with reduced SNR. It was largest in presence of noise types with rela-
tively flat spectral characteristic.

e The advantage of using SSCH features compared to MFCC features was
mainly due to the use of dominant subband frequency information in the
SSCH method.

e The distance between feature vector distributions for clean and noisy
speech was smallest for SSCH features, followed by MFCC features, while
it is by far the largest for SSC features. This result confirms the poor
robustness of the SSC features, as well as the potential advantage of
SSCH features compared to MFCC features in presence of additive noise.

5.5 Comparing ZCPA and SSCH Performance

It has been shown that both ZCPA and SSCH feature extraction methods
were capable of improving the ASR performance in presence of additive noise
compared to the standard MFCC feature extraction method. In the following,
the performance of the two methods is compared.



5.5 Comparing ZCPA and SSCH Performance

87

Figure 5.12 illustrates the absolute difference in ASR performance of SSCH
and ZCPA features on the ISOLET and RM databases in various background
conditions. It can be seen that, on the ISOLET database, SSCH features

ISOLET: SSCH vs. ZCPA RM: SSCH vs. ZCPA
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Figure 5.12: Absolute difference in ASR performance between SSCH
and ZCPA features on ISOLET and RM databases in presence of four
different noise types.

performed slightly better than ZCPA features at high SNRs, while ZCPA
features performed better at low SNRs. On the RM database, on the other
hand, SSCH features performed considerably better than ZCPA features in all
testing conditions. The only exception is in the case of babble noise, where
the difference in performance between the two methods was small.

It has been shown that the robustness of ZCPA features was partly due to
the advantages of time-domain processing, and partly to the use of dominant
subband frequency information. On the other hand, the robustness of SSCH
features was mainly due to the use of dominant subband frequency informa-
tion. In order to compare the effect of using dominant subband frequency
information in the ZCPA and SSCH feature extraction methods, Figures 5.7
and 5.11 are compared. It can be seen that the improvement of ASR per-
formance due to the use of dominant frequency information is considerably
larger for SSCH features, especially on the RM database. Furthermore, the
advantage of using ZCPA features at low SNRs on the ISOLET database is
mainly due to the positive effect of time-domain processing. Finally, the com-
putational complexity of the SSCH method is much lower than that of ZCPA
method. Thus, the SSCH feature extraction method represents a more at-
tractive way of reducing the noise robustness problem in automatic speech
recognition compared to the ZCPA method.






Chapter 6

Conclusions

This thesis presented a study of alternative speech feature extraction meth-
ods aimed at increasing ASR robustness against additive background noise.
The main objective of the study was to investigate the effect of incorporat-
ing dominant subband frequency information into speech feature vectors. If
frequency subbands are properly chosen, dominant subband frequencies corre-
spond closely to spectral peak positions, which remain practically unchanged
in presence of additive noise. Consequently, it was expected that the incor-
poration of dominant subband frequencies into speech feature vectors would
improve ASR robustness in presence of additive noise.

Two earlier proposed feature extraction methods that combine dominant
subband frequency information with subband power information were carefully
studied. The first method, referred to as ZCPA, estimates dominant subband
frequencies from zero-crossing statistics of the subband signals, while peak sig-
nal values between subsequent positive zero crossings serve as subband power
estimates. The two types of information are then combined into a histogram
representation. This method has earlier shown promising results in presence
of additive noise. The second method, referred to as MFCC+SSC, estimates
dominant subband frequencies as subband spectral centroids, and uses them
as additional features to standard MFCC feature vectors. Also this method
was earlier shown to have a positive effect on ASR performance, although the
results were somewhat inconsistent.

In this study, a new method for incorporating dominant subband frequen-
cies into speech feature vectors was proposed. The dominant subband frequen-
cies were estimated as subband spectral centroids, and combined with subband
power estimates into a histogram representation. The method is referred to
as SSCH.

An experimental study was performed in order to optimize the free pa-
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Conclusions

rameters involved in computation of ZCPA and SSCH features. This was
followed by a comparison of ZCPA, SSCH, MFCC+SSC and standard MFCC
features on two different recognition tasks in various background conditions.
The major results are summarized in the following:

¢ It was shown that the use of dominant subband frequencies in speech fea-
ture extraction led to a considerable improvement in ASR performance
in presence of additive noise. Largest improvements were achieved in
presence of noise with relatively flat spectrum. Both ZCPA and SSCH
features exhibited greater robustness compared to standard MFCC fea-
tures in such conditions. However, the improvement due to the use
of dominant subband frequency information was considerably larger for
SSCH features, especially on the more complex continuous-speech recog-
nition task. MFCC+SSC features, on the other hand, led to a small
performance reduction compared to standard MFCC features. This was
explained by poor robustness of subband spectral centroids when they
are used directly as ASR features, which is due to their large dependence
on the particular choice of frequency subbands.

e The computational complexity of the SSCH method is two orders of
magnitude lower than that of the ZCPA method, and of the same order
of magnitude as the MFCC method.

e The results of the optimization of the analysis frame lengths used in the
ZCPA method indicate that the use of relatively long analysis frames
is advantageous in presence of noise, while this does not have a sig-
nificant negative effect on clean speech performance. The increase in
performance is probably due to the fact that larger number of histogram
points led to greater emphasis of spectral peaks in ZCPA feature vectors.

The major limitation of the SSCH method lies in the fact that it is de-
signed to deal with additive noise only. Furthermore, it is implicitly assumed
that spectral peaks belong to speech. Thus, the method is not expected to
be effective in presence of additive background noise characterized by strong
spectral peaks.

An advantage of robust feature extraction methods compared to most other
methods for increasing noise robustness in ASR is the fact that they do not
require any knowledge of the target environment. However, in the situations
where such knowledge is available, or easy to obtain, a better recognition per-
formance might be obtained by utilizing this knowledge. Thus, an important
extension of the work presented in this thesis would be to investigate whether
the use of SSCH features can be effectively combined with some of the meth-
ods for increasing noise robustness described in Chapter 3. Note that such a
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combined approach could also circumvent the limitation of the SSCH method
to additive noise.

All the methods for incorporating dominant-frequency information into
speech feature vectors studied in this work were dependent on the particular
choice of frequency subbands. The problem with such approaches is that it
is not possible to find a single subband allocation that would be optimal for
all speech sounds. This problem was partly circumvented by the special way
of histogram construction used in both ZCPA and SSCH methods. However,
it is expected that the benefit of using dominant-frequency information in
speech feature extraction would be considerably larger if this information could
be estimated in a more reliable way. Furthermore, there might exist more
effective ways of combining the dominant subband frequencies and subband
power estimates. Those issues are left for future studies.

At the end, it should be remembered that all feature extraction methods
depend on a large number of free parameters. Although an attempt was
made in this study to optimize the most important parameters in ZCPA and
SSCH methods, it was not feasible to investigate all parameter combinations
in all the methods. In addition, the parameter optimization was done on
the small-vocabulary isolated-word task, and only in presence of white noise.
Thus, the results reported in this study will not necessarily extend to other
noise types and other databases. Furthermore, although the evaluation of
the different feature extraction methods was done on two different recognition
tasks, and the major results were consistent on both tasks, different behavior
might be observed with different choices of free parameters and evaluation
tasks. Finally, it should be noted that, in spite of the improvements reported
in this study, the obtained recognition performance at low SNRs is still far too
low for most practical applications. Thus, this work represents only a small
contribution to solving the difficult problem of increasing noise robustness in
automatic speech recognition.






Appendix A

Statistical Considerations

ASR systems are usually evaluated by measuring word error rate on a given
test database. Evaluation on different databases gives different estimates of
the word error rate. Thus, it is important to asses some knowledge about
quality of the estimates. This is usually done by finding a confidence interval
(c1,¢2) such that

P(Cl <6<CQ)=1—a, (Al)

where e is the true error rate of the system, and « is a constant that determines
the significance level. Parameter « is typically set to 0.05 or 0.01, giving rise
to 95% and 99% confidence intervals respectively.

A procedure for estimating confidence intervals is described in [55]. Under
the assumptions that recognition of each word is done independently, and
that the probability of erroneous recognition of each word is the same, the
confidence interval is given by

N~ + 97— 0(0) /A" + (Ve = 1)1 — e+ )

T N+ C(a)? (4.2)
o Ne+ 1+ 99 4 0(a) /<92 1 (Ne+ L)1 —e— o) "
2T N + C(a)? (A

where € is the measured word error rate, IV is the total number of words in the
database, and C(«) is a constant dependent on the chosen significant level.
Constant C(«) is computed as

Cla) = @7 1(1 - a/2), (A.4)

where ®(-) is standard normal probability distribution whose values can be
obtained from the statistical tables.
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Statistical Considerations

Figure A.1 illustrates confidence interval lengths, co — ¢1, estimated for
ISOLET and RM databases for different values of measured recognition rate.
The confidence level was equal to 95%. Smaller confidence intervals imply

o

— ISOLET
— RM

A

N

10 20 30 40 50 60 70 80 90
Recognition rate [%]

[uny

Confidence interval width [%)]
w
[N ] N a1 w a1 » [$2] a1 2]

Figure A.1: Confidence interval lengths as a function of recognition
rate on ISOLET and RM databases. The confidence interval was 95%.

greater statistical significant of the recognition results. Confidence intervals
can be reduced by increasing the size of the test set. Indeed, it follows from
Equations A.2 and A.3 that

WO N2 =6 (49
thus reducing the confidence interval to a single point.

Confidence intervals provide information about reliability of a single recog-
nition experiment. Since the objective of this study was to compare the per-
formance of different feature extraction methods, there is a need to determine
whether the difference in word error rates obtained by two different methods
is statistically significant. This is basically a hypothesis testing task, where
the zero and alternative hypotheses are given by

Hy : Word error rates of the two ASR systems are equal e1 =ey (A.6)
H, : Word error rates of the two ASR systems are different e; # ex (A.7)

In order to accept the zero hypothesis with significance level 1—q;, the following
condition must be fulfilled

P(lé1 —é2| <c) >1—a, (A.8)

where €] and €3 are measured word error rates for the two different ASR
systems, and parameter ¢ represents the minimal absolute difference in the
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recognition performance needed to accept the alternative hypothesis. Param-
eter ¢ can be estimated using a simple two-tailed significance test described in
[50]. The resulting estimate is given by

26(1 — &)

c=C(a) N

(A.9)
where C(«) is given by Equation A.4 and é = (é1+¢€2)/2. Figure A.2 illustrates
the minimal significant difference in word error rate between two ASR systems

as a function of the average recognition rate for on ISOLET and RM databases.
The confidence level was 95%.
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Figure A.2: Minimal significant difference in word error rate between
two ASR systems as a function of average recognition rate on ISOLET
and RM databases. The confidence interval was 95%.

The above test assumes that the word error rates of the two compared
ASR systems are independent, in addition to the assumptions used in compu-
tation of the confidence intervals. However, this assumption is erroneous when
the two ASR systems are tested on the same database. Thus, Equation A.9
provides only a rough estimate of the minimum significant difference. Two
better tests are described in [50].






Appendix B

Detailed Experimental
Results

Table B.1: ASR performance of BFCCT and ZCPA features on
the RM database for two different choices of analysis frame lengths,
30/+/F, and 60//F,,, where F,, is the center frequency of k-th band-
pass filter given in kHz.

Word accuracy [%]
Noise |SNR | BFCCT | BFCCT | ZCPA | ZCPA
type | [dB] | 30//Fe, | 60/+/Fey | 30//Fey | 60/\/Fey
|Nomnoise [ - [ 9321 | 90.00 | 8512 | 85.08 |
White | 30 [ 68.72 62.59 63.49 69.27
White | 25 | 43.93 38.66 43.46 57.28
White | 20 18.74 15.07 18.27 34.63
Factory | 25 | 73.33 68.02 62.67 67.63
Factory | 20 | 49.20 41.66 43.42 51.89
Factory | 15 | 20.50 19.48 17.88 27.84
Bobble | 25 | 73.80 71.73 64.94 69.15
Bobble | 20 | 50.57 51.85 47.99 51.74
Bobble | 15 | 29.83 26.04 26.12 27.14
Car 10 | 76.61 78.25 75.52 69.00
Car 5 61.19 61.50 66.85 55.53
Car 0 33.93 32.41 49.98 33.50
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Detailed Experimental Results

Table B.2: ASR performance of BFCCT features on the ISOLET
database for two different choices of analysis frame lengths, 30/ \/F_ck
and 60/./F,,, where F;, is the center frequency of k-th bandpass filter
given in kHz.

Word accuracy [%)]

Noise | SNR | BFCCT | BFCCT

type [dB] | 30/\/F, | 60/\/F,

| Nonoise | - | 8712 | 8635 |

White 25 75.51 79.36
White 20 67.37 72.44
White 15 56.79 57.56
White 10 26.92 33.46
Factory 25 80.77 84.04
Factory 20 74.36 78.65
Factory 15 71.15 71.03
Factory 10 55.13 54.36
Factory 5 32.18 33.27
Bobble 25 78.91 83.46
Bobble 20 72.44 76.79
Bobble 15 61.54 68.14
Bobble 10 49.62 54.10
Bobble 5 26.03 34.42
Car 20 85.90 85.58
Car 10 74.94 79.87
Car 0 65.51 65.38
Car -5 43.85 49.87
Car -10 26.60 27.44




99

Table B.3: Comparison of different speech features on ISOLET

database in various background conditions.

Word accuracy [%]

Noise | SNR MFCC
type | [dB] | MFCC | BFCCF | BFCCT | ZCPA | ZC | SSCH | +SSC
| Nonoise | - | 89.55 | 88.46 | 86.35 | 82.24 | 80.64 [ 86.35 | 88.72 |
White | 25 | 76.86 | 77.37 | 79.36 | 78.08 | 76.03 | 80.45 | 72.56
White | 20 | 6744 | 66.09 | 7244 | 74.10 | 70.58 | 74.10 | 63.59
White | 15 | 48.33 | 4558 | 57.56 | 68.14 | 57.18 | 61.60 | 43.85
White | 10 | 1744 | 1481 | 3346 | 54.75 | 39.29 | 42.50 | 15.06
Factory | 25 | 84.29 | 85.83 | 84.04 | 79.49 [78.01 | 84.23 | 84.04
Factory | 20 | 78.78 | 80.45 | 78.65 | 77.44 |74.87 | 79.87 | 77.88
Factory | 15 | 66.99 | 70.64 | 71.03 | 71.28 [ 69.23 | 73.21 | 64.10
Factory | 10 | 46.35 | 5231 | 54.36 | 64.55 | 58.01 | 58.21 | 44.55
Factory | 5 | 21.09 | 31.28 | 33.27 | 44.10 [ 38.85 | 40.71 | 20.06
Bobble | 25 | 81.65 | 83.53 | 83.46 [ 79.36 | 77.63 [ 82.18 | 80.83
Bobble | 20 | 73.14 | 76.92 | 76.79 | 75.58 | 75.06 | 74.17 | 71.28
Bobble | 15 | 57.56 | 63.46 | 68.14 | 68.97 | 68.91 | 60.32 | 53.21
Bobble | 10 | 39.04 | 4442 | 54.10 [ 53.72 | 58.65 [ 41.79 | 36.79
Bobble | 5 | 2218 | 2635 | 3442 [ 33.44 |40.19 | 25.58 | 21.41
Car 20 | 81.15 | 87.18 | 85.58 [ 82.88 | 80.58 [ 85.83 | 79.55
Car 10 | 69.87 | 77.95 | 79.87 | 82.31 [80.00 | 82.05 | 62.95
Car 0 | 4654 | 59.81 | 6538 | 76.86 | 77.24 | 69.19 | 39.10
Car -5 | 2237 | 4423 | 4987 | 70.13 [ 70.26 | 55.51 | 20.77
Car -10 | 776 | 1885 [ 2744 | 46.47 [48.14 | 3141 | 8.27
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Detailed Experimental Results

Table B.4: Comparison of different speech features on RM database
in various background conditions.

Word accuracy [%)]
Noise | SNR MFCC
type | [dB] | MFCC | BFCCF | BFCCT | ZCPA | ZC | SSCH | +SSC
| Nonoise | - | 95.20 [ 93.17 | 90.00 | 85.08 | 75.91 | 93.95 | 94.18
White | 30 [ 69.19 | 66.15 | 62.59 [ 69.27 | 50.61 [ 83.91 | 57.67
White | 25 | 40.61 | 3549 | 38.66 | 57.28 | 32.80 | 72.75 | 32.10
White | 20 | 12.61 | 12.26 | 15.07 | 34.63 | 13.67 | 4854 | 8.75
Factory | 25 | 7441 | 7458 | 68.02 | 67.63 | 49.82 | 83.05 | 73.84
Factory | 20 | 52.28 | 5225 | 41.66 | 51.89 | 31.53 | 69.15 | 47.52
Factory | 15 | 22.06 | 24.76 | 19.48 | 27.84 [13.32 | 45.02 | 19.06
Bobble | 25 | 69.50 [ 68.92 | 71.73 | 69.15 | 51.50 | 73.92 [ 65.44
Bobble | 20 | 44.83 | 46.74 | 51.85 | 51.74 | 36.94 | 53.85 | 40.84
Bobble | 15 | 20.30 | 23.08 | 26.04 | 27.14 | 17.61 | 22.49 | 18.04
Car 10 | 64.90 | 7368 | 7825 | 69.00 | 65.48 | 86.45 | 55.56
Car 5 | 4365 | 58.73 | 61.50 | 55.53 | 57.71 [ 77.55 | 34.95
Car 0 [ 2062 | 3959 [ 3241 [ 3350 [42.62 ] 59.82 | 20.11
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