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Summary

The main contributions in this thesis are advances in parametric programming. The
thesis is divided into three parts; theoretical advances, application areas and con-
strained control allocation. The first part deals with continuity properties and the
structure of solutions to convex parametric quadratic and linear programs. The sec-
ond part focuses on applications of parametric quadratic and linear programming
in control theory. The third part deals with control allocation. This thesis is mainly
a collection of articles where each article has been slightly modified. Note that
several definitions differ from paper to paper (chapter to chapter).

Chapter 2 presents a novel method for obtaining a unique polyhedral represen-
tation of a continuous selection for convex parametric quadratic programs (which
includes parametric linear programs). The main contribution is to utilize a two-
level optimization method to obtain the minimum norm solution.

Chapter 3 introduces the so-called facet-to-facet property for parametric pro-
grams. It is pointed out that the correctness of several existing algorithms depend
upon this property being satisfied. It is relatively simple to set up examples for
convex parametric quadratic programs where the facet-to-facet property fails, how-
ever, for strictly convex quadratic programs it is rarely seen. It is exemplified that
the facet-to-facet property does not hold for strictly convex parametric quadratic
programs. A new exploration strategy is proposed to remedy this problem.

In Chapter 4 a method for obtaining explicit solutions to inf – sup control of
constrained discrete–time discontinuous piecewise affine system subject to state-
and input-dependent disturbances is presented. For this problem a solution is not
guaranteed to exist. When a solution does not exist, a sub-optimal solution is
obtained and a bound on the sub-optimality is given. The method allows for the
degree of sub-optimality to be specified a priori.

Chapter 5 presents a method that utilizes the dynamics of a discrete-time sys-
tem to reduce the computational effort needed to evaluate the piecewise affine con-
trol law. The explicit control law and structure of the dynamic system makes it
possible to map a polyhedral set one step forward in time. We demonstrate how
this one-step forward reach set can be utilized to speed up the evaluation of the
control law at the next sample instant.

Chapter 6 presents a case study and experimental results for constrained control
allocation for a scale model of a thruster-controlled floating platform. An explicit
solution to a convexified problem is computed and experimental results document
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the performance.
In Chapter 7 a decomposition strategy for constrained linear control allocation

problems is presented. The problem is divided into a master and a set of sub-
problems for the purpose of obtaining a feasible, but possibly sub-optimal, solu-
tion. The decomposition strategy provides flexibility for the designer, for instance
a mix of online optimization and explicit solutions can be employed. We also il-
lustrate how the decomposition strategy can be utilized on the allocation problem
for the thruster-controlled floating platform from Chapter 6.

Appendices A-D provide relevant background knowledge and minor results
that may be useful for implementation of procedures and reproduction of results in
the main part of the thesis.

Please note that this thesis is a paper collection and that emphasis have been
put on keeping each chapter self-contained. Some restating of results are therefore
necessary.
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Notation and Nomenclature

Mathematical terms used in this thesis are defined in the beginning of each chap-
ter, however, for convenience we will define some terms that are frequently used.
Unless otherwise is explicitly stated, these are the definitions used.

Definition 0.1 (Affine Hull) The affine hull of a set S is the intersection of all
affine sets containing S, and is denoted aff(S).

Definition 0.2 (Dimension of a Set) The dimension of a set S ⊆ Rn is the di-
mension of aff(S), and is denoted dim(S); if dim(S) = n, then S is said to be
full-dimensional.

Definition 0.3 (Relative Interior) The relative interior of a set S is the interior
relative to aff(S), i.e.

relint(S) := {x ∈ S |B(x, r) ∩ aff(S) ⊆ S for some r > 0} ,

where the ball B(x, r) := {y | ‖y − x‖ ≤ r} and ‖ · ‖ is any norm.

Definition 0.4 (Polyhedron) A polyhedron is the intersection of a finite set of
closed halfspaces.

Definition 0.5 (Polygon) A polygon is a union of finite number of polyhedra.

Definition 0.6 (Partition of a Set) A partition of a set S is a collection of subsets
of S such that the union of the subsets equal to S and the subsets are mutually
disjoint.

Definition 0.7 (Polyhedral Cover of a Set) A polyhedral cover of a polyhedron
S is a collection of subsets of S such that the union of the subsets equal to S, the
subsets have non-intersecting interiors and each subset is a polyhedron.

Definition 0.8 (Piecewise Affine (PWA) Function ) A function f : Rn → Rm

is piecewise affine (PWA) on its domain if the domain is the union of finitely
many open, closed and/or neither open nor closed polyhedra, relative to each of
which f(·) is affine.
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Definition 0.9 (Power Set) If X ⊆ Rn and Y ⊆ Rm, then 2Y is the power set (set
of all subsets) of Y .

Definition 0.10 (Set-Valued Map) If X ⊆ Rn and Y ⊆ Rm, then a set-valued
map is defined as F : X → 2Y .

Several places throughout this thesis double arrows are used to specify that a
mapping is set-valued, i.e. set-valued maps are specified as F : X ⇒ Y .

Definition 0.11 (Selection of a Set-Valued Map) A function f : Rn → Rm is a
selection of the set-valued map F : Rn ⇒ Rm if f(x) ∈ F (x) for all x belonging
to the domain of F .
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Chapter 1

Introduction

Receding Horizon Control (RHC) or Model Predictive Control (MPC) has been
applied with great success in the process industry over the last decades. The suc-
cess of MPC within this industry is mainly due to the method’s ability to handle
constraints for complex multi-variable systems. The so-called control allocation
approach to controller synthesis is an optimization based method for distributing
control actions within a redundant set of actuators and effectors. Common for
methods in control that are based on constrained optimization is that they have
until recently been limited to slow systems due to the high online computational
load. Recently it has been shown that some constrained MPC and control allo-
cation problems can be cast as parametric programs and solved explicitly, and
hence, making the methods applicable to faster systems. Consequently, parametric
programming (see e.g. (Bank, Guddat, Klatte, Kummer, and Tammer 1983; Gal
1995; Gal and Nedoma 1972; van der Panne 1975; Schechter 1987; Yu and Ze-
leny 1976; Zhang and Liu 1990; Fiacco 1983; Gal and Greenberg 1997; Berkelaar,
Roos, and Terlaky 1997; Best and Ding 1972; Gal 1997; Gal 1980; Geoffrion and
Graves 1977; Luc and Dien 1997) and references therein) has been subject to a
resurgence of interest (Bemporad, Morari, Dua, and Pistikopoulos 2002; Acevedo
and Pistikopoulos 1997; Spjøtvold, Kerrigan, Jones, Tøndel, and Johansen 2006b;
Baotić 2002; Borrelli, Bemporad, and Morari 2003; Dua, Bozinis, and Pistikopou-
los 2002; Dua and Pistikopoulos 2000; Tøndel, Johansen, and Bemporad 2003c;
Spjøtvold, Kerrigan, Jones, Johansen, and Tøndel 2004; Spjøtvold, Tøndel, and Jo-
hansen 2005b; Spjøtvold, Tøndel, and Johansen 2005a; Spjøtvold 2005; Spjøtvold,
Kerrigan, Jones, Tøndel, and Johansen 2006a; Jones, Kerrigan, and Maciejowski
2007; Spjøtvold, Tøndel, and Johansen 2007; Jones and Maciejowski 2006; Bem-
porad and Filippi 2006; Jones and Morari 2006) in recent years.

The goal in parametric programming is to solve a parameter dependent opti-
mization problem for all possible values of the parameter. A solution to a paramet-
ric optimization problem is typically a piecewise function defined on a partition
of the parameter space. In particular, the observation that the Constrained Linear
Quadratic Regulator Problem could be solved via parametric programming (Be-
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mporad, Morari, Dua, and Pistikopoulos 2002) by viewing the initial state as a
vector of parameters and thereby moving the online optimization off-line, trig-
gered research on several topics. Before we give a short introduction to some of
these topics, we will in the next two sections recall the fundamentals in parametric
programming and explicit model predictive control.

1.1 Parametric Programming Fundamentals

Consider the parametric optimization problem:

J∗(θ) := inf
x
{f(x, θ) | (x, θ) ∈ P } , (1.1)

where x ∈ Rnx , θ ∈ Rnθ and P ⊆ Rnx × Rnθ . The goal in parametric program-
ming is to solve (1.1) for all values of θ ∈ Θ, where the set Θ is usually defined
as the domain (or a subset) of J∗. At first glance solving (1.1) may seem like an
impossible task since Θ is an uncountable set. However, it turns out that when f(·)
and P have certain structures, a finite set of functions that are optimal for (1.1)
when restricted to a subset of Θ, can be identified.

Definition 1.1 (Solutions to parametric optimization problems) A solution to the
problem (1.1) is defined as a function x∗ : Θ → Rnx such that

x∗(θ) ∈ arg min
x
{f(x, θ) | (x, θ) ∈ P }

for all θ ∈ Θ. Moreover, we say that an exact representation of the solution to (1.1)
exists if and only if there exists a finite set of functions {x∗1(·), x∗2(·), . . . , x∗K(·)}
and a finite collection of sets {R1, R2, . . . , RK} such that x∗(θ) = x∗i (θ) if θ ∈ Ri

and {R1, R2, . . . , RK} forms a partition of Θ.

An algorithm used to obtain the functions {x∗1(·), x∗2(·), . . . , x∗K(·)} and the
associated collection of sets {R1, R2, . . . , RK} is referred to as parametric pro-
gramming. The solution properties for the most common parametric optimization
problems for which an exact representation of the solution can be obtained are sum-
marized below. The results for pLPs are taken from (Bank, Guddat, Klatte, Kum-
mer, and Tammer 1983; Gal and Nedoma 1972; Borrelli, Bemporad, and Morari
2003), for pQPs (Bemporad, Morari, Dua, and Pistikopoulos 2002; Bank, Gud-
dat, Klatte, Kummer, and Tammer 1983) and for pMILPs (Bank, Guddat, Klatte,
Kummer, and Tammer 1983).

Theorem 1.1 (Parametric linear program (pLP)) Consider (1.1) and let

f(x, θ) := cT x,

P := {(x, θ) |Ax + Sθ ≤ b} ,

where c, A, S and b are matrices with suitable dimensions. We have:
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(i) There exists a function x∗ : Θ → Rnx that is continuous, piecewise affine
(PWA) and satisfies

x∗(θ) ∈ arg min
x
{f(x, θ) | (x, θ) ∈ P } , ∀θ ∈ Θ.

(ii) The function J∗ : Θ → R is continuous, convex and PWA.

(iii) The domain of J∗ is convex, closed and polyhedral.

Theorem 1.2 (Parametric quadratic program (pQP)) Consider (1.1) and let

f(x, θ) :=
1
2
xT Hx + θT F T x + cT x,

P := {(x, θ) |Ax + Sθ ≤ b} ,

where c, A, S, b, F and H = HT ≥ 0 are matrices with suitable dimensions. We
have:

(i) There exists a function x∗ : Θ → Rnx that is PWA and satisfies

x∗(θ) ∈ arg min
x
{f(x, θ) | (x, θ) ∈ P } , ∀θ ∈ Θ.

(ii) The function J∗ : Θ → R is continuous, convex and piecewise quadratic.

(iii) The domain of J∗ is convex and polyhedral.

(iv) If H > 0, then x∗(·) is unique and continuous on Θ and the domain of J∗ is
closed.

Theorem 1.3 (Parametric mixed-integer linear program) Consider (1.1) and let
x ∈ Rnr × {0, 1}nb where nx = nr + nb and

f(x, θ) := cT x + dT θ,

P := {(x, θ) |Ax + Sθ ≤ b} ,

where c, A, S, b, d are matrices with suitable dimensions. We have:

(i) There exists a function x∗ : Θ → Rnx that is PWA and satisfies

x∗(θ) ∈ arg min
x
{f(x, θ) | (x, θ) ∈ P } , ∀θ ∈ Θ.

(ii) The function J∗ : Θ → R is PWA.

1.2 Explicit Model Predictive Control

We recall the traditional approach utilizing online optimization in Section 1.2.1 and
the explicit version is presented in Section 1.2.2.
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1.2.1 Model predictive Control

Consider the discrete-time system on the form:

x+ = f(x, u),

where x is the (measured) state, x+ is the successor state, u is the input, f(·) is
the system update function. The state and input are subject to constraints (x, u) ∈
Y . Let π := {u0, u1, . . . , uN−1} denote a control sequence over the horizon N .
Moreover, let φ(i; x, π) denote the solution to x+ = f(x, u) at iteration i for the
initial state x and control sequence π. The cost is defined as

VN (x, π) := Vf (xN ) +
N−1∑

i=0

l(xi, ui),

where xi := φ(i; x, π). The optimal control problem considered is given by

P(x) : V ∗(x) := min
π∈ΠN (x)

VN (x, π), (1.2)

where the set of admissible control sequences is

ΠN (x) :=
{

π

∣∣∣∣
(xi, ui) ∈ Y, i = 0, 1, . . . , N − 1,
xN ∈ Xf

}
.

and Xf is some terminal constraint. The prediction horizon N , terminal weight
function Vf (·) and terminal set Xf are often chosen such that one can find an
optimal feedback controller u0 = γ(x) that renders Xf forward invariant un-
der x+ = f(x, γ(x)). Model predictive control is a form of optimal control where
the following procedure is utilized:

1. Measure the current state x of the system.

2. Solve PN (x) to obtain an optimal π(x).

3. Apply the control u0(x) to the plant.

4. Return to step 1.

Model predictive control was first introduced for linear discrete-time systems
on the form

x+ = Ax + Bu,

where A and B are matrices with suitable dimensions. For linear systems the
the stage cost l(·) and terminal cost Vf (·) are assumed to be linear or quadratic
(p ∈ {1, 2,∞}):

l(x, u) : = ‖Qx‖p + ‖Ru‖p,

Vf (x) : = ‖Px‖p,
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where P , Q, and R are suitably defined weight matrices. Moreover, Y and Xf

are assumed to be closed polyhedra. If p ∈ {1,∞}, then the optimal control
problem PN (·) is a linear program. On the other hand, if p = 2 (or to be accurate,
the quadratic norm is used), then PN (·) is a quadratic program. For more details
on MPC and how to choose N , Xf and Vf (·) the reader is referred to (Mayne,
Rawlings, Rao, and Scokaert 2000) and references therein.

1.2.2 Model predictive Control via Parametric Programming

Under some assumptions on the weight matrices, the optimal control problem
PN (·) can be cast as either a parametric linear program (if one or infinity norms
are used) or as a parametric quadratic program (if the quadratic norm is used). The
linear version can be formulated as:

J∗(x) := min
z∈P (x)

cT z, (1.3a)

P (x) = {z |Cz + Dx ≤ e} , (1.3b)

where z := [uT
0 uT

1 . . . uT
N−1 εT ]T , ε is a vector of slack variables and c, C, D

and e are suitably defined matrices.
If quadratic norms are used and P = P T ≥ 0, R = RT > 0 and Q = QT ≥ 0,

then PN (·) can be recast a strictly convex parametric program:

J∗(x) := min
π∈Π(x)

πT Hπ, (1.4)

where H = HT > 0 is a suitably defined matrix.
Recalling the solution properties for (1.3) and (1.4) from Section 1.1 it easy to

see that optimal control feedback law is PWA and can be represented as:

π∗(x) = Kix + ki if x ∈ Pi,

where P := ∪I
i=1Pi forms a polyhedral cover of the part of the state space that

renders PN (·) feasible and bounded, and each Ki and ki are matrices. The online
optimization in receding horizon control can be moved off-line and the approach is
modified to

1. Measure the current state x of the system.

2. Identify the the region Pi of the state space cover P that contains the current
state (this will be referred to as the point location problem).

3. Apply the first element u∗0(x) of the optimal control sequence π(x) associ-
ated with the region identified in step 2 to the plant.

4. Return to step 1.
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1.2.3 Pros and cons with explicit MPC

The main advantages of the explicit approach are: i) removing the need for sophis-
ticated optimization software on the processor, ii) the correctness of the solution
can be verified off-line, which is a key issue in safety critical applications, iii) the
worst case number of arithmetic operations needed to find the solution can eas-
ily be computed, iv) the average and worst case number of arithmetic operations
needed to find the solution is usually greatly reduced, and v) evaluation of the PWA
function can be implemented using fixed point arithmetic. The main drawbacks, on
the other hand, are that i) the problem class for which this solution strategy is ap-
plicable is limited, and in cases where an exact solution can be found ii) obtaining
an explicit solution may be computationally intractable and iii) the storage space
required to represent the solution may exceed the available memory.

1.3 Recent research on parametric programming and its
applications

As mentioned earlier, the observation that explicit solutions to MPC problems
could be computed explicitly by utilizing parametric programming triggered re-
search on several related topics. We briefly summarize some of the research in the
next subsections.

1.3.1 Efficient evaluation of piecewise affine functions

Both parametric linear programs (pLP) and convex parametric quadratic programs
(pQP) yield piecewise affine optimizer functions. As model predictive control
problems can be formulated as both pLPs and pQPs, the need to evaluate a piece-
wise affine function at a high frequency arose. More specifically, given a point
in the parameter space, which piece of the piecewise function is optimal. This
problem is in many cases equivalent to the point location problem in geometry;
given a collection of sets and a point contained in the union of these sets, which set
contains the point? Efficient methods are presented in (Christophersen, Kvasnica,
Jones, and Morari 2007; Tøndel, Johansen, and Bemporad 2003b; Jones, Grieder,
and Raković 2006).

1.3.2 Improved parametric programming algorithms

Several problems in control theory can be formulated as parametric programs with
a certain structure. Some of the resulting parametric programs include parametric
linear programs (pLP), parametric quadratic programs (pQP), parametric mixed in-
teger programs (pMILP), parametric non-linear programs (pNLP) and parametric
linear complementarity problems (pLCP). However, for some problems algorithms
did not exist, were too slow or too numerically sensitive to be applied to problems
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of moderate size, and consequently new algorithms were developed. Recent al-
gorithms for pLPs can be found in (Jones, Kerrigan, and Maciejowski 2007; Bor-
relli, Bemporad, and Morari 2003; Spjøtvold, Tøndel, and Johansen 2005a; Jones
and Maciejowski 2006)), for pQPs in (Bemporad, Morari, Dua, and Pistikopoulos
2002; Tøndel, Johansen, and Bemporad 2003a; Seron, Goodwin, and Doná 2003;
Baotić 2002; Spjøtvold, Tøndel, and Johansen 2007), for pMILPs in (Acevedo
and Pistikopoulos 1997; Dua, Bozinis, and Pistikopoulos 2002), for pNLP in (Jo-
hansen 2002; Bemporad and Filippi 2006) and for pLCPs in (Jones and Morari
2006). Some problem classes are inherently difficult and it is therefore reason to
believe that new and improved algorithms still can be developed.

1.3.3 Algorithms for obtaining approximate and fixed complexity so-
lutions to parametric programs

Researchers quickly realized that the solution complexity of the MPC problems
at hand were sometimes so high that it was computationally intractable to obtain
the solution. Moreover, often the pieces of the function where almost identical
for ”neighboring” pieces. This motivated research into how one could obtain low
complexity approximate solutions (Johansen 2004a; Bemporad and Filippi 2006;
Bemporad and Filippi 2003; Johansen and Grancharova 2002; Filippi 2004), or
even fixed complexity approximate solutions (Jones, Barić, and Morari 2007).

1.3.4 Obtaining explicit solutions to constrained control allocation prob-
lems

Clearly, model predictive control problems are not the only problems in control
theory that can be formulated as parametric programs. In constrained control al-
location (see e.g. (Bodson 2002) and references therein) the task is to generate a
specified generalized force/virtual control from a redundant set of actuators while
fulfilling the constraints on the actuators and control effectors. When the problem
has a solution there is often an uncountable number of combinations of control
inputs that achieve the desired generalized force/vitual control. This redundancy
leaves room for optimizing the performance, for instance minimizing energy con-
sumption and/or mechanical tear and wear. Since constrained control allocation
is a special form of inner loop controller synthesis, where the inner loop is of-
ten regarded as instantaneous, the need for reliable and quick optimization was
acknowledged. Explicit solutions to control allocation problems are utilized in
e.g. (Johansen, Fuglseth, Tøndel, and Fossen 2007; Spjøtvold and Johansen 2007;
Johansen, Fossen, and Tøndel 2005).

1.3.5 Link between parametric programming and geometry

Projection of sets from higher to lower dimensions is a difficult problem that has
been the subject of substantial research. There are similarities between projecting
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a polyhedron to a lower dimension and solving a parametric linear program. The
similarity is apparent from the fact that both the epigraph of the cost function for
a parametric linear program and the set of parameters for which the the minimum
is bounded, are polyhedra. These facts motivated utilizing ideas from projection
in parametric programming and vice versa, see (Jones, Kerrigan, and Maciejowski
2008; Jones 2005). Authors have also pointed out that parametric programming
can be used to compute Voronoi diagrams and Delauny triangulations, which are
fundamental structures in geometry, see (Raković, Grieder, and Jones 2004).

1.3.6 Obtaining explicit solutions to advanced formulations of model
predictive control problems

There exists formulations for model predictive control for non-linear systems and
piecewise affine systems. Consequently, algorithms for solving the resulting para-
metric programs have been developed, see e.g. (Johansen 2002; Dua and Pis-
tikopoulos 2000; Mayne and Raković 2002). In addition, parametric programming
is used as a tool in dynamic programming approaches to optimal control (de la
Peña, Alamo, Bemporad, and Camacho 2002; Raković, Kerrigan, Mayne, and
Lygeros 2006; Grieder, Kvasnica, Baotić, and Morari 2005; Spjøtvold, Kerrigan,
Raković, Johansen, and Mayne 2007a; Grancharova and Johansen 2005). Dy-
namic programming is often used for robust optimal control, commonly referred
to as min-max control. In this case optimization is performed over control policies
instead of control sequences and parametric programming is a tool in these algo-
rithms. Explicit solutions to minimum-time optimal control can also be obtained by
means of parametric programming (Grieder, Kvasnica, Baotić, and Morari 2005).

1.3.7 Explicit solutions to constrained estimation

Moving horizon constrained estimation (see (Rao, Rawlings, and Lee 2001) for
details) is a problem that is closely related to receding horizon control. Not surpris-
ingly one can also obtain explicit solutions to this problem by utilizing parametric
programming (Zhuo, Doná, and Seron 2005).

1.4 Motivation, contribution and thesis structure

The aim of this thesis is not to give a complete overview of parametric program-
ming or all its applications in control theory, but discuss in more detail some se-
lected topics and application areas. As this thesis is organized as paper collection,
the detailed introductions to the different topics are deferred to the respective chap-
ters.

The first part of the thesis deals with two theoretical topics within paramet-
ric programming. Chapter 2 is based on (Spjøtvold, Tøndel, and Johansen 2005a;
Spjøtvold, Tøndel, and Johansen 2005b; Spjøtvold, Tøndel, and Johansen 2007)
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and focus on unique polyhedral representations and continuous selections to con-
vex parametric quadratic programs (pQP). The motivation for this chapter was first
and foremost to obtain continuous control laws for model predictive control prob-
lems based on linear programming. However, in addition to our theoretical interest
in the topic, it turns out that convex pQPs arise in several areas of control theory.
Some of these topics are i) Control Allocation: there is no correct choice for cost
function in control allocation and the author has experienced that some natural for-
mulations lead to a convex, as opposed a strictly convex, QP. For instance, using
the quadratic norm to penalize the difference between the actual and desired gen-
eralized force results in a convex pQP. ii) If slack variables are added to the QP
problem and an exact penalty function is desired, which is the case for the soft
constrained linear-quadratic regulator and for some constrained control allocation
problems, the QP becomes convex. iii) Sub-problems in parametric nonlinear pro-
gramming algorithms are convex pQPs (Johansen 2002).

Chapter 3 is based on (Spjøtvold, Kerrigan, Jones, Johansen, and Tøndel 2004;
Spjøtvold 2005; Spjøtvold, Kerrigan, Jones, Tøndel, and Johansen 2006b; Spjøtvold,
Kerrigan, Jones, Tøndel, and Johansen 2006a). We consider strictly convex pQPs
and focus on a particular property of the solution that is referred to as the facet-to-
facet property. It is relatively simple to set up examples for which the facet-to-facet
property fails if the pQP is convex as opposed to strictly convex (Spjøtvold 2005).
For strictly convex pQPs it does not fail that often, but we show by example that
it does not hold in general. The motivation behind this chapter is twofold, the first
being to point out a fundamental difference between the geometry of the solution to
pQPs and pLPs. Secondly, some previously developed algorithms for strictly con-
vex pQPs, although seemingly working well in practice, rely on the facet-to-facet
property to be theoretically just.

The second part of the thesis treats some selected applications of parametric
programming in control theory. In Chapter 4 we consider inf – sup (commonly re-
ferred to as min – max) control of constrained discontinuous discrete–time piece-
wise affine systems subject to state- and input-dependent disturbances. The main
motivation behind this article was that for the mentioned problem class, a solution
might not exist. Consequently, a procedure that finds an optimal solution when one
exists and a sub-optimal when one does not, was needed. Chapter 4 is based on
(Spjøtvold, Kerrigan, Raković, Johansen, and Mayne 2007b; Spjøtvold, Kerrigan,
Raković, Johansen, and Mayne 2007a)

Chapter 5 is based on (Spjøtvold, Raković, Tøndel, and Johansen 2006). Here
we propose a method for evaluating piecewise affine control laws. Recently results
in reachability analysis for discrete-time dynamical systems allow for the polyhe-
dral sets on which each affine control law is defined to be mapped one step forward
in time, yielding the so-called one-step forward reach set. The reach set is then
utilized to reduce the set of polyhedral regions that can contain the system state at
the next sample instant. The main motivation for this paper was to improve the av-
erage time the microchip spends on evaluating the feedback law and thereby saving
energy or freeing the processor for other tasks.
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The third part of the thesis focus on constrained control allocation. Chapter
6 presents results for control allocation for a scale model of a thruster-controlled
floating platform. Chapter 6 considers a convexification of the allocation problem
and an explicit solution is found. In addition, an explicit solution for any single
point failure (single thruster, machine room or switchboard) are computed. We
present experimental results form The Marine Cybernetics Laboratory at NTNU
in Trondheim. The main motivation behind the Chapter 6 is to illustrate the use-
fulness of explicit solutions to control allocation problems. Moreover, the control
allocation for the thruster-controlled problem is a challenging problem, for which
no satisfactory method have been presented in the literature. Chapter 6 is based on
(Spjøtvold and Johansen 2007).

In Chapiter 7 a decomposition strategy for constrained linear control allocation
problems is presented. This chapter is based on (Spjøtvold, Tøndel, and Johansen
2006). In the decomposition strategy we divide the control allocation problem into
a master and a set of sub-problems, where the solution of the master problem is
input to the sub-problems. The main motivation behind the decomposition strategy
is to provide a flexible framework for control allocation synthesis that allows for a
mix of online optimization and explicit solutions to the problem. Moreover, fea-
tures, such as taking into account actuator/effector dynamics, can be incorporated
in sub-problems, yielding a modular design. Finally, we briefly discuss how the
decomposition strategy can be utilized to obtain a solution to a non-convex version
of the allocation problem in Chapter 6.

In Chapter 8 a brief conclusion on the various topics presented in the thesis is
given. We also give some comments on future research directions.

1.5 Publications

Most of the material presented in this thesis has either been published, accepted or
recently been submitted for publication. Below we give the connections between
the papers and the chapters of the thesis:

• Chapter 2: (Spjøtvold, Tøndel, and Johansen 2005a; Spjøtvold, Tøndel, and
Johansen 2005b; Spjøtvold, Tøndel, and Johansen 2007)

• Chapter 3: (Spjøtvold, Kerrigan, Jones, Johansen, and Tøndel 2004; Spjøtvold
2005; Spjøtvold, Kerrigan, Jones, Tøndel, and Johansen 2006b; Spjøtvold,
Kerrigan, Jones, Tøndel, and Johansen 2006a)

• Chapter 4: (Spjøtvold, Kerrigan, Raković, Johansen, and Mayne 2007b;
Spjøtvold, Kerrigan, Raković, Johansen, and Mayne 2007a)

• Chapter 5: (Spjøtvold, Raković, Tøndel, and Johansen 2006)

• Chapter 6: (Spjøtvold and Johansen 2007)

• Chapter 7: (Spjøtvold, Tøndel, and Johansen 2006)



Part I

Selected Topics in Parametric
Programming





Chapter 2

A Continuous Selection and
Unique Polyhedral
Representation of Solutions to
Convex Parametric Quadratic
Programs

2.1 Introduction

Substantial work has been done on the continuity properties of the value function
and optimal solution set for parametric programs (Fiacco 1983; Zhao 1997; Bank,
Guddat, Klatte, Kummer, and Tammer 1983; Best and Ding 1972; Hogan 1973a;
Hogan 1973b). Continuity of the optimal set mapping is closely related to the
stability of the optimization problem and the stability of quadratic programs is
studied in (Best and Chakravarti 1990) and (Phu and Yen 2001). Continuity and
stability results for parametric programs are often derived from set theory presented
in (Berge 1963), (Dantzig, Folkman, and Shapiro 1967) and (Hausdorff 1957).

The algorithm presented by Bemporad et al. (Bemporad, Morari, Dua, and
Pistikopoulos 2002) obtains solutions to strictly convex parametric quadratic pro-
grams (pQPs). With some modifications, it can also be used for convex prob-
lems (Tøndel, Johansen, and Bemporad 2003c). Borrelli et al. (Borrelli, Bempo-
rad, and Morari 2003) proposed a geometric algorithm for parametric linear pro-
grams (pLPs), which is fundamentally different from the algorithm by Gal and Ne-
doma (Gal and Nedoma 1972). The algorithm explores the parameter space in the
same manner as in (Bemporad, Morari, Dua, and Pistikopoulos 2002). Common to
the algorithms for convex pQPs, including the geometric algorithm for pLPs, is that
the optimizer function may be discontinuous even if the optimal solution set is a
continuous point-to-set map and therefore admits a continuous selection (Michaels
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1956). Moreover, the set of polyhedra associated with the piecewise affine opti-
mizer function is generally non-unique.

Our main motivation for obtaining continuous solutions to convex pQPs, be-
sides the theoretical aspects, is that this problem arises in explicit model predictive
control with a linear cost function (Bemporad, Borrelli, and Morari 2002). It is
illustrated in (Bemporad, Borrelli, and Morari 2002) that the solution to an MPC
problem with a linear cost function may be discontinuous if the algorithm in (Bor-
relli, Bemporad, and Morari 2003) is used. Discontinuities of the optimizer func-
tion may lead to chattering in an optimal control approach, and hence, a method
which yields a continuous optimizer function is desirable. A unique representa-
tion also gives benefits in terms of i) Repeatability: The same solution is always
obtained. ii) Parallelization: The parameter space can be divided into subsets that
are explored individually without increasing the solution complexity when the re-
sults are merged. iii) Exploration strategy: We have some freedom in the choice
of algorithm used to explore the parameter space.

This chapther is based on (Spjøtvold, Tøndel, and Johansen 2005a; Spjøtvold,
Tøndel, and Johansen 2005b; Spjøtvold, Tøndel, and Johansen 2007) and is orga-
nized as follows: We first point out that using the normal cone optimality condition
to construct parametric regions of optimality for strictly convex pQPs (Mayne and
Raković 2003) results in a unique collection of polyhedral sets. For convex pQPs
a unique set of non-intersecting polyhedra is obtained by always choosing the op-
timizer with the least Euclidian norm and using the normal cone optimality con-
dition. If the pQP has non-unique solutions, a strictly convex pQP is formulated
such that the norm of the solution vector is minimized subject to the optimality
conditions of the original problem. We prove that if the optimal set mapping for
the convex pQP is continuous, the minimum norm selection will be a continuous
mapping from the feasible subset of the parameter space to the solution space.

2.2 Preliminaries

2.2.1 Notation and basic definitions

If I is an index set, then |I| denotes the cardinality of I and Ii refers to the ith

element in I. When referring to a set of indices I, we assume that the set is
ordered, i.e. for the ith element in I we have Ii < Ij , ∀j ∈ {i + 1, . . . , |I|}.
If A ∈ Rn×m is a matrix or column vector, then Ai ∈ R1×m denotes the ith row

of A and AI ∈ R|I|×m denotes the matrix
[
AT
I1

, . . . , AT
I|I|

]T
. If f : X → Y is a

function, then the restriction of f to the domain D ⊆ X is written f |D : D → Y .
The closure, interior, and boundary of a set S is denoted cl(S), int(S), and bd(S),
respectively. The abbreviation s.t. will denote subject to.

Recall that the set of affine combinations of points in a set S ⊂ Rn is called
the affine hull of S, and is denoted aff(S). The dimension of a set S ⊂ Rn is the
dimension of aff(S), and is denoted dim(S); if dim(S) = n, then S is said to
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be full-dimensional. A polyhedron is the intersection of a finite number of closed
halfspaces. A non-empty set F is a face of the polyhedron P ⊂ Rn if there exists
a hyperplane {z ∈ Rn | aT z = b}, where a ∈ Rn, b ∈ R, such that F =
P ∩ {z ∈ Rn | aT z = b} and aT z ≤ b for all z ∈ P . Given an s-dimensional
polyhedron P ⊂ Rn, where s ≤ n, the facets of P are the (s − 1)-dimensional
faces of P .

2.2.2 Problem setup

The problem that will be considered is given by

J∗(θ) := min
x∈Rn

f(x, θ) s.t. Ax ≤ b + Sθ, (2.1)

where f(x, θ) := 1
2xT Hx + θT F T x + cT x, θ ∈ Rs is the parameter of the

optimization problem, and the vector x ∈ Rn is to be optimized for all values
of θ ∈ Θ, where Θ ⊆ Rs is a polyhedral set such that the minimum in (2.1) exists.
Moreover, H = HT ∈ Rn×n, F ∈ Rn×s, A ∈ Rq×n, b ∈ Rq×1 and S ∈ Rq×s. If
in addition, H ≥ 0 or H > 0, the pQP is convex or strictly convex, respectively.
If H = 0, then (2.1) is a special form of parametric linear programs (pLP), which
is a subclass of the problem addressed in this chapter. The point-to-set maps X :
Θ → 2R

n
and X∗ : Θ → 2R

n
are defined as X(θ) := {x ∈ Rn |Ax ≤ b + Sθ}

and X∗(θ) := {x ∈ Rn |Ax ≤ b + Sθ, f(x, θ) = J∗(θ)}, respectively. The sets
X(θ) and X∗(θ) are referred to as the feasible- and optimal set, respectively.

Without loss of generality, the following standing assumption is made (Bempo-
rad, Morari, Dua, and Pistikopoulos 2002; Borrelli, Bemporad, and Morari 2003):

Assumption 2.1 The set of admissible parameters Θ is full-dimensional.

Definition 2.1 (Active set) Let x be a feasible point of (2.1) for a given θ. The
active constraints are the constraints that fulfill Aix − bi − Siθ = 0, and the
inactive constraints are the constraints that fulfill Aix − bi − Siθ < 0. The active
set A(x, θ) is the set of indices of the active constraints, that is,

A(x, θ) := {i ∈ {1, 2, . . . , q}|Aix− bi − Siθ = 0} .

Definition 2.2 (Optimal active set) Let θ be given. The optimal active set A∗(θ)
is the set of indices of the constraints that are active for all x ∈ X∗(θ), that is,

A∗(θ) := {i|i ∈ A(x, θ), ∀x ∈ X∗(θ)} =
⋂

x∈X∗(θ)

A(x, θ).

Definition 2.3 (Critical region) Given an index setA ⊆ {1, 2, . . . , q}, the critical
region ΘA associated with A is the set of parameters for which the optimal active
set is equal to A, i.e.

ΘA := {θ ∈ Θ | A∗(θ) = A}.
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In the above definition, note that if A is not the optimal active set for some
parameter, then ΘA is the empty set. Hence, when referring to a critical region
ΘA, we will assume that A is the optimal active set for some θ ∈ Θ.

Definition 2.4 (LICQ) For a non-empty index set A ⊆ {1, 2, . . . , q}, we say that
the linear independence constraint qualification (LICQ) holds for A if the gradi-
ents of the set of constraints indexed by A are linearly independent, i.e. AA has
full row rank.

The following was established in (Bemporad, Morari, Dua, and Pistikopoulos
2002; Tøndel, Johansen, and Bemporad 2003c):

Theorem 2.1 (Solution properties) Consider the pQP in (2.1).

i) There exists a minimizer function x∗ : Θ → Rn, θ 7→ x∗(θ) ∈ X∗(θ), that
is piecewise affine (PWA) in the sense that there exists a finite set of full-
dimensional polyhedraR := {R1, . . . , RK} such that Θ = ∪K

k=1R
k, int(Ri)∩

int(Rj) = ∅ for all i 6= j and the restriction x∗|Rk(·) is affine for all k ∈
{1, . . . ,K}.

ii) The value function J∗ : Θ → R is continuous and piecewise quadratic (PWQ)
in the sense that the restriction J∗|Rk(·) is quadratic for all Rk ∈ R.

In the sequel we let x∗ ∈ X∗(θ) denote a minimizer to (2.1) for a given θ, x∗(·)
denotes a piecewise affine selection function, and x∗(θ) denotes x∗(·) evaluated
at θ.

Our main objective is to obtain a unique set of full-dimensional polyhedra R
and simultaneously ensure that the function x∗(·) is continuous. Thus, given θ ∈
Θ, we will first consider how to select the affine restriction x∗|Rk(·) and find its
polyhedral domain Rk. A polyhedral domain Rk ∈ R will be referred to as a
sub-region since in subsequent sections it will become apparent that each Rk must
be contained in the closure of a critical region. For the purpose of computing the
domain Rk, the next section summarizes the normal cone optimality condition.

2.2.3 Normal cone optimality condition

Recall that a set C is called a cone if for every x ∈ C and scalar ξ ≥ 0, we
have ξx ∈ C. Moreover, a cone represented by the intersection of a finite number
of closed half-spaces is called an H-cone, and the set of all nonnegative com-
binations of a set of vectors {v1, . . . , vn} is called a V-cone. If A is a matrix,
then cone(A) denotes the set of all nonnegative combinations (V-cone) of the
column-vectors of A.

Consider the following problem:

z∗ := min
x∈Rn

f(x) s.t. x ∈ Ω,

Ω := {x ∈ Rn | gj(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J } ,
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where f(·), gi(·) and hj(·) are smooth, real-valued, functions defined on a sub-
set of Rn and the index sets I and J contain a finite number of elements. The
following definitions are taken from (Nocedal and Wright 1999):

Definition 2.5 (Tangent and Normal cones) i) A vector w ∈ Rn is tangent to Ω
at x ∈ Ω if for all vector sequences {xi} with xi → x and xi ∈ Ω, and all pos-
itive scalar sequences ti ↓ 0, there is a sequence wi → w such that xi+tiwi ∈
Ω for all i.

ii) The tangent cone TΩ(x) is the collection of all tangent vectors to Ω at x.

iii) The normal cone to Ω at x, NΩ(x), is the orthogonal complement of the tan-
gent cone, that is

NΩ(x) :=
{
v|vT w ≤ 0, ∀w ∈ TΩ(x)

}
.

Theorem 2.2 (First order necessary optimality condition) If x̄ is a local mini-
mizer of f in Ω, then

−∇xf(x̄) ∈ NΩ(x̄). (2.2)

PROOF: See (Nocedal and Wright 1999).

If f(·) and Ω are convex, then x̄ is a global minimum and (2.2) is also sufficient.
Given the polyhedron P := {x|Ax ≤ b}, let x̄ be a point on the boundary

of P . Let A be the non-empty set of indices of the inequalities that are active at x̄,
hence Aix̄ = bi for i ∈ A, and Aix̄ < bi for i /∈ A. Note that for a polyhedron the
tangent cone TP (x̄) at x̄, is equal to the set of feasible directions at x̄ (Bertsekas,
Nedic, and Ozdaglar 2003), i.e. TP (x̄) := {d|AAd ≤ 0}. The normal cone at x̄ is
the V-cone NP (x̄) = cone(AT

A). The H-cone representing NP (x̄) can always be
written as

NP (x̄) = {y |LIy ≤ 0, LEy = 0} ,

where LI (LE) is a matrix representing the inequality (equality) part of the cone.
Note that an active set A at x̄ uniquely defines a normal cone, thus, we introduce
the notation CP (A) :=

{
y

∣∣LAI y ≤ 0, LAEy = 0
}

= NP (x̄). The optimality con-
dition (2.2) becomes

LI∇xf(x̄) ≥ 0,

LE∇xf(x̄) = 0.

2.2.4 Continuity properties of solutions to pQPs

Before we introduce the minimum norm selection method, we consider the con-
tinuity properties of the optimal set mapping for a convex pQP. For convenience
we recall Berge’s definitions of a continuous, upper semicontinuous, and lower
semicontinuous point-to-set map (Berge 1963):
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Definition 2.6 (Upper and lower semicontinuous point-to-set map) The point-to-
set map P : X → Y is lower semicontinuous at x0, if for each open set Ω satisfy-
ing Ω ∩ P (x0) 6= ∅ there is a neighborhood U(x0) such that

x ∈ U(x0) ⇒ P (x) ∩ Ω 6= ∅.

Moreover, P is lower semicontinuous on X if it is lower semicontinuous at each x ∈
X .

The point-to-set map P : X → Y is upper semicontinuous at x0, if for each
open set Ω containing P (x0) there exists a neighborhood U(x0) such that

x ∈ U(x0) ⇒ P (x) ⊂ Ω.

Moreover, P is upper semicontinuous on X if it is upper semicontinuous at each x ∈
X .

Definition 2.7 (Continuous point-to-set map) The point-to-set map P : X → Y
is continuous at x0 if it is both upper semicontinuous and lower semicontinuous
at x0. It is continuous on X if and only if it is continuous at every x ∈ X .

Theorem 2.3 Consider problem (2.1) and let the point-to-set map X∗(·) be con-
tinuous on Θ. The PWA selection function x∗(·) with the least Euclidean norm is
continuous on Θ.

PROOF: It is obvious that the problem of finding the minimum norm solution
can be stated as:

min
x∈Rn

1
2
xT x s.t. x ∈ X∗(θ).

The minimizer of a strictly convex function over a continuous point-to-set map is a
continuous function (Berge 1963, Theorem VI.3.3), (Aubin and Frankowska 1990,
Corollary 9.3.3).

¤

Since the existence of a continuous selection for problem (2.1) is ensured by
the continuity of X∗(·) on Θ we state the following corollary based on (Bank,
Guddat, Klatte, Kummer, and Tammer 1983, Theorem 3.2.2, Theorem 3.2.3, and
Theorem 5.3.2), which shows that X∗(·) is in fact continuous in some cases.

Corollary 2.1 Consider problem (2.1). The point-to-set map X∗(·) is continuous
on Θ if

i)
∀θ ∈ Θ @d ∈ Rn\{0} : Hd = 0 ∧ (c + Fθ)T d = 0,

or

ii) F = 0.
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PROOF: Note first that X∗(·) is upper semicontinuous on Θ (Bank, Guddat,
Klatte, Kummer, and Tammer 1983, Theorem 5.3.2).

i) By (Bank, Guddat, Klatte, Kummer, and Tammer 1983, Theorem 3.2.3) X∗(·)
is lower semicontinuous on Θ if the lineality space

M(θ) := {d ∈ Rn|Hd = 0, (c + Fθ)T d = 0, AA∗(θ)d = 0}

has the same dimension ∀θ ∈ Θ. If i) holds, then dim(M(θ)) = 0, ∀θ ∈ Θ.

ii) It follows from (Bank, Guddat, Klatte, Kummer, and Tammer 1983, Theorem
3.2.2 and page 47) that if X∗(θ) can be written as

{x ∈ Rn | gi(x, θ) := hi(x) + ti(θ) ≤ 0, i ∈ I }

where for all i ∈ I the functions hi(·) are convex on Rn, ti(·) are continuous
on Θ, and gi(·, ·) are continuous on Rn ×Θ, then X∗(·) is lower semicontin-
uous on Θ. This is clearly the case for

X∗(θ) :=
{

x ∈ Rn

∣∣∣∣ Ax ≤ b + Sθ,
1
2
xT Hx + cT x ≤ J∗(θ)

}
.

¤

Remark 2.1 One (informal) way of interpreting condition i) of Corollary 2.1 is
that there does not exist a value for x (apart from x = 0) for which the objective
function vanishes and at the same time some perturbation of θ will yield a positive
objective function, while some other perturbation renders it negative. Looking at
condition i) in conjunction with the proof we see that the condition is sufficient and
not necessary. A less restrictive condition is listed in the proof, however, it is much
harder to check in practice as it must be checked for all optimal active sets.

2.3 Strictly Convex pQP

In this section we emphasize that for strictly convex pQPs a unique set of poly-
hedra R can be found simply by identifying the closures of the full-dimensional
critical regions. If H > 0 in (2.1), the problem can be recast such that only a
quadratic term remains in the objective function (Bemporad, Morari, Dua, and Pis-
tikopoulos 2002). Without loss of generality, we use the following formulation for
strictly convex pQP

J∗(θ) := min
x∈Rn

1
2
xT Hx s.t. Ax ≤ b + Sθ. (2.3)

The following corollary was established in (Bemporad, Morari, Dua, and Pis-
tikopoulos 2002):
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Corollary 2.2 (Corollary to Theorem 2.1) The PWA minimizer function x∗ : Θ →
Rn to (2.3) is continuous.

A method for computing the expression for the restriction x∗|Rk(·) and its polyhe-
dral domain Rk is summarized below. The KKT conditions for (2.3) are:

Hx + AT λ = 0, λ ∈ Rq,

λi (Aix− bi − Siθ) = 0, ∀i ∈ {1, . . . , q},
Ax− b− Sθ ≤ 0,

λi ≥ 0, ∀i ∈ {1, . . . , q},

where λ are the Lagrange multipliers. Assume that an index setA is given such that
it is an optimal active set for some parameter θ ∈ Θ and letN := {1, 2, . . . , q}\A.
If LICQ holds for A, then the KKT conditions can be manipulated (Bemporad,
Morari, Dua, and Pistikopoulos 2002) to obtain the following two affine functions:

xA(θ) := −H−1AT
AλA(θ),

λA(θ) := −(AAH−1AT
A)−1(bA + SAθ).

If Rk is the closure of the critical region associated with A, i.e.

Rk := cl(ΘA) =
{

θ ∈ Θ
∣∣∣∣

ANxA(θ) ≤ bN + SN θ
λA(θ) ≥ 0

}
,

then the restriction of the minimizer function x∗(·) to the polyhedron Rk is given
by x∗|Rk(θ) = xA(θ). However, if LICQ is violated for A, the normal cone
optimality condition can be used as proposed in (Mayne and Raković 2003); the
affine function xA(·) is defined as the (unique) solution to

[
LAEH
AA

]
x =

[
0
bA

]
+

[
0

SA

]
θ. (2.4)

In (Mayne and Raković 2003) the following was established:

Theorem 2.4 (Closure of a critical region) The minimizer function xA(·), asso-
ciated with the optimal active set A, which is defined as the solution to (2.4), is
optimal in the polyhedron defined by

RA := cl
(
ΘA)

=
{

θ ∈ Θ
∣∣∣∣

ANxA(θ) ≤ bN + SN θ
LAI HxA(θ) ≥ 0

}
, (2.5)

where LAI is the inequality part of a representation of the normal cone defined by
the optimal active set A and N := {1, . . . , q}\A.

PROOF: See (Mayne and Raković 2003).

¤



2.4 Convex pQP 21

Thus, where it is clear from the context, Rk will refer to the kth set in R and RA

will refer to the set in R associated with the optimal active set A.

Remark 2.2 Note that since the set RA is constructed using optimality conditions,
we do not treat the cases where A∗(θ) = ∅ or A∗(θ) = {1, . . . , q} explicitly. It
should be apparent that we do not need to demand the solution feasible ifA∗(θ) =
{1, . . . , q}, and there is no equation AA = bA + SAθ that needs to be satisfied
if A = A∗(θ) = ∅.

For a strictly convex pQP the function x∗(·) is then defined as

x∗(θ) := xA(θ) if θ ∈ RA, (2.6)

and the collection R in Theorem 2.1 becomes

R =
{
RA ∣∣ dim

(
RA ∩Θ

)
= s and A = A∗(θ) for some θ ∈ Θ

}
.

Corollary 2.3 (Uniqueness of the solution) For a strictly convex pQP, the collec-
tion R obtained by defining sub-regions as in (2.5), is unique and satisfies the
properties in Theorem 2.1.

PROOF: Uniqueness of RA follows directly from uniqueness of the optimal
active set A, xA(θ), and the normal cone NX(θ)(x∗(θ)) for all θ ∈ Θ. All RA ∈
R are closures of critical regions, and since critical regions do not intersect,
int

(
Ri

) ∩ int
(
Rj

)
= ∅, i 6= j. Since the number of optimal active sets is fi-

nite, ∪K
k=1R

k = Θ trivially holds.

¤

2.4 Convex pQP

Consider problem (2.1). In the rest of the chapter H is only restricted to be posi-
tive semi-definite and symmetric (this includes H = 0). Compared to the strictly
convex case, a number of difficulties arise with regards to obtaining a unique setR
and a continuous selection function x∗(·). We will illustrate this with a simple
example.

Example 2.1 Consider the pLP:

min
x∈R

0x s.t. x ∈ X∗(θ),

X∗(θ) :=





x ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣

−x ≤ √
2 + θ2

x ≤ 12−√2θ1 + θ2

x ≤ 2 +
√

2θ1 + θ2

−x ≤ 2−√2θ1 − θ2

−x ≤ −8 +
√

2θ1 − θ2

x ≤ √
2− θ2





, θ ∈ R2.
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The only optimal active set yielding a full dimensional critical region is A = ∅,
and hence, X(θ) = X∗(θ) for all θ ∈ Θ. Moreover, we can redefine Θ ← Θ∅.
Figure 2.1(a) shows the solution set X∗(θ) and the critical region Θ∅. If we try
to define one affine function over Θ∅, then the plane is specified by the 6 vertices
of X∗(θ) corresponding to the vertices of Θ∅, see Figure 2.1(a). This gives an
inconsistent system of 6 equations with 3 unknowns. In Figure 2.1(b) four affine
functions have been arbitrarily chosen, namely the basic solutions corresponding
to the active sets A = {1},A = {3},A = {4} and A = {6}. The associ-
ated polyhedral domains RA have intersecting interiors, see Figure 2.1(b). If one
arbitrarily cuts the sub-regions (Borrelli, Bemporad, and Morari 2003; Tøndel,
Johansen, and Bemporad 2003c) in order to ensure that they do not intersect, then
the resulting piecewise affine minimizer may become discontinuous, and the set R
is non-unique.

¥

The example above has a zero cost function, however, the example is included
to illustrate what happens when there are multiple optima, and a higher dimen-
sional problem may degenerate to cases similar to that of Example 1. The example
illustrates some of the following difficulties:

i) The minimizer may be non-unique, so an arbitrary selection may be discon-
tinuous. Moreover, a continuous solution might not exist. Arbitrary selection
is used in (Borrelli, Bemporad, and Morari 2003) and (Tøndel, Johansen, and
Bemporad 2003c).

ii) If the domain RA of the restriction x∗|RA(·) is defined as the closure of a
critical region, i.e. RA := cl

(
ΘA)

, then x∗|RA(·) may have to be piecewise
affine in order to ensure that x∗|RA(θ) is optimal for all θ ∈ RA. In (Borrelli,
Bemporad, and Morari 2003; Gal and Nedoma 1972; Tøndel, Johansen, and
Bemporad 2003c) a piecewise affine function is defined over cl

(
ΘA)

.

iii) When the solution to (2.1) is non-unique and an active set A ⊇ A∗(θ) is
chosen to define the restriction x∗|RA(·) and its polyhedral domain RA ⊆
cl

(
ΘA∗(θ)), the domain RA may intersect with the domains of other selections

for θ ∈ cl
(
ΘA∗(θ)). The method of choosing an active setA ⊇ A∗(θ) is used

in (Borrelli, Bemporad, and Morari 2003; Tøndel, Johansen, and Bemporad
2003c), but the polyhedral domains are cut in order to ensure that the sub-
regions do not intersect.

The rest of this chapter is devoted to overcoming the problems described above.
We will first propose a method that selects the minimizer function with the least
Euclidian norm and guarantees that the set R is unique and satisfies the properties
in Theorem 2.1. The norm of the solution vector will be minimized subject to
optimality conditions of the original problem.
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(a) Illustration of X∗(θ) and the critical region Θ∅. Θ∅ is equal to the
projection of X∗(θ) onto Θ. The figure illustrates that it is impossible
to define an affine function that is optimal and covers Θ∅.

(b) Illustration of an arbitrary selection of minimizer functions, where
the superscript denotes the active set used to compute the function.
Clearly, the selections have intersecting domains.

Figure 2.1: Illustration for Example 2.1

2.4.1 Normal cone optimality condition for convex pQP

The normal cone optimality condition was defined for a general class of opti-
mization problems in Section 2.2.3. We state the optimality condition explicitly
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for (2.1):

LAI (Hx + Fθ + c) ≥ 0, (2.7a)

LAE (Hx + Fθ + c) = 0, (2.7b)

where the pair (LAI , LAE) is a representation of the normal cone matrix associated
with the active setA. Since the minimizer x∗ ∈ X∗(θ) is generally non-unique for
a given θ, the optimality condition (2.7) is also non-unique. The following lemma
establishes that given a parameter θ ∈ Θ, the negative gradient of the cost function
evaluated at any x∗ ∈ X∗(θ) is contained in the normal cone associated with the
optimal active set.

Lemma 2.1 Consider problem (2.1). Let θ be given and A∗(θ) be the optimal
active set. For any optimal solution x∗ ∈ X∗(θ) we have

− (Hx∗ + Fθ + c) ∈ CX(θ)(A∗(θ)). (2.8)

PROOF: ForA(x∗, θ) = A∗(θ) this is the normal cone condition for optimal-
ity. We must show that (2.8) holds when A(x∗, θ) ⊃ A∗(θ). Consider an optimal
solution x∗ ∈ X∗(θ) for which A(x∗, θ) = A∗(θ). Let y∗ ∈ X∗(θ) be such
that A(y∗, θ) ⊃ A∗(θ) is the active set. If Hy∗ = Hx∗, then the statement holds
since

− (Hy∗ + Fθ + c) = − (Hx∗ + Fθ + c) ∈ CX(θ)(A∗(θ)).
Moreover, if y and z, y 6= z, are optimal solutions to the convex quadratic program

min
x∈Rn

1
2
xT Hx + cT x s.t. Ax ≤ b,

we can express y in terms of z, that is, y = z + αd, where α is a positive scalar
and d is a direction in which the objective value remains unchanged. Since the
objective function evaluated at z and y are equal and the minimizer is restricted to
an affine subspace, the directional derivative of the objective function at z must be
zero: (Hz + c)T d = 0. Using the cost function yields

1
2
(z + αd)T H(z + αd) + cT (z + αd) =

1
2
zT Hz + cT z ⇒

1
2
αdT Hd + (Hz + c)T d = 0 ⇒ dT Hd = 0.

Since H = HT ≥ 0 we can write H = KT K and conclude that Kd = 0 ⇒
Hd = 0. We get Hy = H(z + αd) = Hz + αHd = Hz.

¤

Remark 2.3 Note that it is proven in (Berkelaar, Roos, and Terlaky 1997) that
Hy∗ = Hx∗ for a slightly different formulation of the QP. To be sure that the
result was also valid for our formulation, the result was proved here even though
the formulations might be equivalent.
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Recall that the normal cone optimality condition for the convex pQP for a given
θ is:

− (Hx + Fθ + c) ∈ CX(θ)(A(x, θ)),

for some x. By using the above lemma, it is easy to see that the optimality condition
can be substituted with

− (Hx + Fθ + c) ∈ CX(θ)(A∗(θ)),

which yields a unique set of optimality conditions for a given θ. Henceforth we
therefore only use the normal cone associated with the optimal active set.

2.4.2 Minimum norm selection for convex pQP

In this section we point out that selecting the minimum norm solution can be done
by solving a strictly convex pQP over the closure of each of the critical regions
for (2.1) in which the minimizer is non-unique.

Lemma 2.2 Consider problem (2.1). For every optimal active set A there exists
an associated optimal set mapping X̄A : ΘA → 2R

n
, which can be represented as

X̄A(θ) :=





x ∈ Rn

∣∣∣∣∣∣∣∣

LAE (Hx + Fθ + c) = 0
LAI (Hx + Fθ + c) ≥ 0
AAx = bA + SAθ
ANx ≤ bN + SN θ





, (2.9)

where the pair (LAE , LAI ) defines a normal cone matrix associated with the optimal
active set A, and N := {1, . . . , q}\A.

PROOF: Since we have A = A∗(θ) for all θ ∈ ΘA, both optimality and
feasibility is ensured ∀x ∈ X̄A(θ) for all θ ∈ ΘA.

¤

Since the critical region ΘA may be an open set, we let XA : cl
(
ΘA) → 2R

n

denote the extension of the mapping in (2.9) that is defined on the closure of ΘA.

Lemma 2.3 (Uniqueness of the solution) The minimizer function y∗ : cl
(
ΘA) →

Rn of the following pQP

min
y∈Rn

1
2
yT y s.t. y ∈ XA(θ), (2.10)

where θ ∈ cl
(
ΘA)

, is unique, continuous and piecewise affine.
PROOF: Eliminating the equality constraints allows the problem to be written

on the form (2.3), which is a strictly convex pQP and Corollary 2.3 applies.
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¤

Note that (2.10) can be written as

min
y∈Rn

1
2
yT y s.t. Ãy ≤ b̃ + S̃θ, θ ∈ cl

(
ΘA)

(2.11)

where the equalities have been removed with the standard procedure given in (No-
cedal and Wright 1999), and Ã ∈ Rt×n, b̃ ∈ Rt×1, and S̃ ∈ Rt×s. The pQP
(2.11) is a function of the optimal active setA for (2.1), consequently, both the op-
timizer y∗(θ) and the optimal active set for (2.11) are also functions ofA, however,
for notational simplicity, we let B∗(θ) denote the optimal active set for (2.11).

Lemma 2.4 Given two optimal active sets,A for (2.1) and B for (2.11), and let L̃BE
(L̃BI ) be the equality (inequality) part of the normal cone to

{
y

∣∣∣ Ãy ≤ b̃ + S̃θ
}

defined by B. If X∗(·) is continuous on Θ, then the function yA,B(·) that is the
unique solution to

[
L̃BE
ÃB

]
y =

[
0
b̃B

]
+

[
0

S̃B

]
θ, (2.12)

is optimal for (2.1) and (2.11) when restricted to

RA,B := cl ({θ ∈ Θ | A = A∗(θ),B = B∗(θ)}) (2.13)

=
{

θ ∈ Θ
∣∣∣∣

ÃN yA,B(θ) ≤ b̃N + S̃N θ

L̃BI yA,B(θ) ≥ 0

}
,

where N := {1, . . . , t}\B.
PROOF: This is fulfilled by construction ∀θ ∈ RA,B ∩ ΘA even if X∗(·) is

not continuous. Since the optimal set mapping X∗(·) and the function y∗(·) are
continuous, y∗(θ) ∈ X∗(θ) for all θ ∈ bd

(
RA,B ∩ cl

(
ΘA))

and the statement of
the lemma follows.

¤

To be able to use the proposed procedure when the continuity of X∗(·) is not
guaranteed, we must show that y∗(θ) ∈ X∗(θ) for all θ ∈ cl

(
ΘA)

, but that y∗(·)
is not necessarily the solution to (2.1) with least Euclidean norm when evaluated
on the boundary of cl

(
ΘA)

.

Lemma 2.5 The following holds: y∗(θ) ∈ X∗(θ) for all θ ∈ cl
(
ΘA)

, where A is
an optimal active set.

PROOF: The lemma obviously holds for ∀θ ∈ ΘA. If N = {1, . . . , q}\A, we
have

{θ ∈ Θ | ∃x : AAx = bA + SAθ, ANx ≤ bN + SN θ} ⊃ cl
(
ΘA)

,

and hence, y∗(θ) is feasible for ∀θ ∈ bd
(
cl

(
ΘA))

. Optimality of y∗(θ) for all θ ∈
bd

(
cl

(
ΘA))

follows directly from the continuity of y∗(·) and value function J∗(·)
for (2.1).
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¤

We can now define the mapping x∗ : Θ → Rn in Theorem 2.1 as:

x∗(θ) = yA,B(θ) if θ ∈ RA,B (2.14)

and the set of polyhedra on which x∗ is defined is given by

R =
{
RA,B ∣∣dim

(
Θ ∩RA,B)

= s
}

. (2.15)

In the following theorem the statements are fulfilled by construction and is there-
fore presented without proof:

Theorem 2.5 (Solution properties) Consider (2.1).

i) The set R defined in (2.15) is unique and satisfies the properties in Theo-
rem 2.1.

ii) The function x∗ : Θ → R defined by (2.14) is continuous and the solution
to (2.1) with the least Euclidean norm if the optimal set mapping X∗(·) is
continuous on Θ.

Remark 2.4 Note that if X∗(·) is not continuous on Θ, the existence of a continu-
ous solution is not guaranteed and x∗(·) may not be the minimum norm selection
for all θ ∈ Θ since (2.11) is not solved for optimal active sets A whose corre-
sponding critical regions ΘA are lower-dimensional. Only if no continuous solu-
tions exists when passing from one sub-region to another, and only on the boundary
between these regions, may x∗(·) in (2.14) be different from the minimum norm so-
lution and/or set-valued. Thus, an ordering of the sets in R is necessary for x∗(θ)
to be uniquely defined when θ lies on the boundary of a sub-region.

We revisit our example to illustrate the proposed method.

Example 2.2 (Example 2.1 continued) Consider Example 1. The minimum norm
problem is

min
x

1
2
x2 s.t. x ∈ X∗(θ), θ ∈ cl

(
Θ∅

)
(2.16)

The solution consist of 3 restrictions and their polyhedral domains, see Figure 2.2.

¥
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Figure 2.2: Minimum norm selection

Example 2.3 The following example illustrates the proposed minimum norm method.
Consider the following convex pQP:

J∗(θ) := min
{x∈X(θ) | θ∈Θ}

{
1
2
x2

4 − x1 − x2 − x3 + 0.5x5

}
,

X(θ) :=





x ∈ R5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 + x2 + x3 ≤ 10− θ1 − θ2

x1 − 2x2 ≤ 4− θ1 − 2θ2

−x1 − 2x3 ≤ 3− θ1 − 2θ2

−x3 + x5 ≤ 2 + θ2

−x5 ≤ 2 + θ1

x4 − x5 ≤ −θ1

−3 ≤ x1 ≤ 3
−3 ≤ x2 ≤ 3
−3 ≤ x3 ≤ 3





,

Θ :=
{

θ ∈ R2

∣∣∣∣
−1 ≤ θ1 ≤ 2.5
0 ≤ θ2 ≤ 3

}
.

Since F = 0, X∗(·) is continuous on Θ. The unique R obtained by the pro-
posed method is depicted in Figure 2.3(a), where the superscripts denote which
constraints in (2.1) that are active at the optimum in (2.11). The constraints are
indexed in the order in which they are listed, e.g. −3 ≤ x1 is constraint number
7 and x1 ≤ 3 is number 8. The optimizer is non-unique in several of the regions
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in Figure 2.3(a), and by following the procedure in (Tøndel, Johansen, and Be-
mporad 2003c) there are several possible solutions, one of which is depicted in
Figure 2.3(b), where the superscripts denote which constraints have been arbitrar-
ily selected to construct the regions. Not only is the solution non-unique, but the
optimizer is also discontinuous for some selections, see Figure 2.3(d).

¥

Example 2.4 By adding θ1x5 to the objective function in Example 2.3, neither
point i) nor ii) in Corollary 2.1 hold, and consequently X∗(·) may not be continu-
ous. By following the proposed method, a unique solution is obtained, however, a
continuous solution does not exist, see Figures 2.4(a)-2.4(b).

¥

It should be noted that even though a continuous solution may not exist for (2.1),
condition ii) in Corollary 2.1 shows that the minimum norm method always finds
a continuous solution for LP-based model predictive control problems.

A natural question with regards to the proposed minimum norm method is
whether one can simply add 1

2εxT x, where ε is a sufficiently small scalar, to the
objective function in (2.1) and obtain the same solution? Clearly, this approach is
not exact and the quadratic term will dominate the linear parts sufficiently far from
the origin. Choosing the value of ε is not trivial; too small a value will result in a
poorly conditioned Hessian and too large a value will result in a solution that is too
far from optimal. The proposed minimum norm method can therefore be argued to
be more numerically robust compared to adding a quadratic term.

2.4.3 Parametric linear programs

Although the results from the preceding sections are valid for pLPs, some of the re-
sults follow easier in the linear case. In particular, if f(x, θ) := cT x, then selecting
the optimizer with the least Euclidian norm can be done by solving the following
strictly convex pQP

V ∗(θ) := min
x∈Rn

{
1
2
xT x

∣∣∣∣ Ax ≤ b + Sθ, cT x = J∗|cl(ΘA)(θ)
}

, θ ∈ cl
(
ΘA)

,

(2.17)

since J∗ is piecewise affine in the linear case. One can avoid computing the nor-
mal cone by using the KKT-conditions to characterize the sub-regions (Bemporad,
Morari, Dua, and Pistikopoulos 2002). However, since the analytical expressions
for xA and RA obtained by manipulating the KKT-conditions rely on the LICQ
assumption, we replace (2.17) with another pQP for which LICQ is not always
violated.
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Figure 2.3: Illustration of the proposed method and arbitrary selection .
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Figure 2.4: Illustration of discontinuous solutions.

Lemma 2.6 LICQ is violated for all optimal active sets for (2.17). Moreover, the
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following pQP is equivalent to (2.17):

V ∗(θ) := min
x∈Rn

{
1
2
xT x

∣∣∣∣ AAx = bA + SAθ, ANx ≤ bN + SN θ

}
, θ ∈ cl

(
ΘA)

,

(2.18)

where A is an optimal active set and N := {1, . . . , q}\A.
PROOF: First it is shown that the constraints in (2.17) and (2.18) define

the same set. This holds trivially if c = 0. Let c 6= 0. It is clear that F :=
X(θ)∩{

x
∣∣ cT x = J∗(θ)

}
is a face of X(θ). The constraints fulfilled with equal-

ity ∀x ∈ F are exactly the constraints whose indices are in the optimal active setA.
From (Jones, Kerrigan, and Maciejowski 2004, Definition 8 and Theorem 2.12) we
have that it is a one to one mapping from these constraints to the faces of X(θ), and
thatF = {x |AAx = bA + SAθ}∩X(θ). Since the sets defined by the constraints
in (2.17) and (2.18) are equal, the LICQ assertion holds trivially.

¤

Note that LICQ can be violated for the optimal active set in (2.18), but one
can choose a subset of the active constraints to characterize a sub-region, as ex-
plained in (Bemporad, Morari, Dua, and Pistikopoulos 2002). Following the ap-
proach in section 4.1.1 in (Bemporad, Morari, Dua, and Pistikopoulos 2002), the
resulting collection of polyhedra R in Theorem 2.1 does not generally satisfy the
property int

(
Ri

) ∩ int
(
Rj

) 6= ∅, i 6= j, however, the following holds; for every
pair (Ri, Rj) ∈ R×R

dim
(
Rj ∩Ri

)
= s ⇒ x∗|Rj (θ) = x∗|Ri(θ).

Thus, even if the set R in Theorem 2.1 is non-unique, x∗ is single-valued and
continuous, and each sub-region Rk ∈ R can be found without constructing the
normal cone.

2.5 Remarks on exploration strategies and related work

2.5.1 Exploration strategies

With small modifications the exploration strategies presented in (Bemporad, Morari,
Dua, and Pistikopoulos 2002; Borrelli, Bemporad, and Morari 2003; Tøndel, Jo-
hansen, and Bemporad 2003a; Tøndel, Johansen, and Bemporad 2003c; Baotić
2002; Grieder, Borrelli, Torrisi, and Morari 2004) can be used to explore the pa-
rameter space. The simplest approach is to modify the algorithms to only iden-
tify critical regions, and then solve the minimum norm problem over the critical
regions in which the optimizer is non-unique. A more efficient approach would
be to use utilize the uniqueness of the sub-regions to avoid explicitly comput-
ing the critical regions. Another important issue that has recently been pointed
out (Spjøtvold, Kerrigan, Jones, Tøndel, and Johansen 2006a), is that for pQPs,
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even those with H > 0, a critical region may have more than one adjacent critical
region along a given facet, and hence rendering some of the mentioned algorithms
without guarantees that the entire parameter space will be explored. Thus, we rec-
ommend that the exploration strategy in (Spjøtvold, Kerrigan, Jones, Tøndel, and
Johansen 2006a) is utilized.

2.5.2 Related work

An algorithm that obtains a continuous minimizer function for single-parametric
LPs is presented in (Zhang and Liu 1990), while (Böhm 1975) indicates how to
construct a continuous solution for pLPs on the form

min
{
cT x |Ax = b + Sθ, x ≥ 0

}
.

The latter, however, is not a complete algorithm for obtaining solutions to pLPs.
No region of optimality is constructed for the associated element of the continuous
selection and difficulties that arise when both the primal and dual solutions of the
pLP are non-unique, are not discussed.

Only recently a new approach has been proposed (Jones, Kerrigan, and Ma-
ciejowski 2007) for the purpose of obtaining unique and continuous solutions to
pLPs on the form min

{
cT x |Ax ≤ b + Sθ

}
. The algorithm theoretically per-

turbs the problem in order to ensure that the primal and dual solutions are unique
for all parameters. The main advantages of this approach is that a pQP solver is not
needed and that the solution satisfies the facet-to-facet (only one adjacent critical
region for each facet) property (Spjøtvold, Kerrigan, Jones, Tøndel, and Johansen
2006a), which allows for the point location problem to be solved in logarithmic
time (Jones, Grieder, and Raković 2006). The main drawback is that the epigraph
of the value function must be a polyhedron, and hence, the algorithm cannot handle
pLPs with parameters in the cost and the constraints.

2.6 Concluding Remarks

We have showed that using the normal cone optimality condition to construct criti-
cal regions (Mayne and Raković 2003) yields a PWA function defined on a unique
set of polyhedra for strictly convex pQPs. For convex pQPs uniqueness of the so-
lution is ensured by choosing the minimum norm optimizer and using the normal
cone to characterize the parametric region in which the restriction remains optimal.
Continuity of the piecewise affine minimizer function is guaranteed if the optimal
set mapping is continuous on the set of admissible parameters.





Chapter 3

The Facet-to-Facet Property of
Solutions to Convex Parametric
Quadratic Programs

The algorithms proposed in (Bemporad, Morari, Dua, and Pistikopoulos 2002)
and (Borrelli, Bemporad, and Morari 2003) introduce artificial cuts in the parame-
ter space in the search for the solution, while in (Seron, Goodwin, and Doná 2003)
an algorithm based on considering all combinations of constraints is presented.
In (Baotić 2002) and (Grieder, Borrelli, Torrisi, and Morari 2004) the authors
propose a method for exploring the parameter space, which is conceptually and
computationally more efficient than in (Bemporad, Morari, Dua, and Pistikopoulos
2002), (Borrelli, Bemporad, and Morari 2003) and (Seron, Goodwin, and Doná
2003); by stepping a sufficiently small distance over the boundary of a so-called
critical region2 and solving an LP or QP for the resulting parameter, a new critical
region is defined. This procedure looks promising, but implicitly relies on the as-
sumption that the facets of the closures of adjacent critical regions satisfy a certain
property, namely that their intersection is a facet of both regions. We will refer
to this as the facet-to-facet property. This property is not satisfied for pQPs that
are convex (as opposed to strictly convex), see (Spjøtvold 2005) for an example.
It is considerably more difficult to conclude whether or not the property holds for
strictly convex pQPs.

In (Tøndel, Johansen, and Bemporad 2003a) and (Tøndel, Johansen, and Bem-
porad 2003c) the authors propose a method in which each facet of the critical region
is examined and, depending on whether the facet ensures feasibility or optimality,
the active set in the neighboring critical region is found by adding or removing a
constraint from the current active set. The examination of each facet relies on a
number of non-degeneracy assumptions and in cases where they are not satisfied,
the algorithm assumes that the facet-to-facet property holds when stepping a small

2A critical region is defined as the set of parameters for which some fixed set of constraints are
fulfilled with equality at all solutions of an optimization problem.
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distance over a facet to determine the active set in the adjacent region. The al-
gorithms presented in (Baotić 2002), (Bemporad, Morari, Dua, and Pistikopoulos
2002), (Grieder, Borrelli, Torrisi, and Morari 2004), (Seron, Goodwin, and Doná
2003) and (Tøndel, Johansen, and Bemporad 2003a) are applied to strictly convex
pQPs and utilized to obtain explicit solutions to model predictive control prob-
lems. We show by an example that for the class of convex pQPs a critical region
may have more than one adjacent critical region for each facet. Consequently, the
facet-to-facet property does not generally hold. A simple modification of the algo-
rithm in (Tøndel, Johansen, and Bemporad 2003a), based on results from (Bempo-
rad, Morari, Dua, and Pistikopoulos 2002), that does not rely on the facet-to-facet
property, is presented. Finally, numerical results indicate that the proposed method
has a lower computational complexity than the algorithm in (Bemporad, Morari,
Dua, and Pistikopoulos 2002) for pQPs whose solution contains a large number of
critical regions.

3.1 Preliminaries

If A is a matrix or column vector, then Ai denotes the ith row of A and AI de-
notes the sub-matrix of the rows of A corresponding to the index set I. Re-
call that the set of affine combinations of points in a set S ⊂ Rn is called the
affine hull of S, and is denoted aff(S). The dimension of a set S ⊂ Rn is
the dimension of aff(S), and is denoted dim(S); if dim(S) = n, then S is
said to be full-dimensional. The closure and interior of a set S is denoted cl(S)
and int(S), respectively. The relative interior of a set S is the interior rela-
tive to aff(S), i.e. relint(S) := {x ∈ S |B(x, r) ∩ aff(S) ⊆ S for some r > 0},
where the ball B(x, r) := {y | ‖y − x‖ ≤ r} and ‖ · ‖ is any norm. A polyhedron
is the intersection of a finite number of closed halfspaces. A non-empty set F is a
face of the polyhedron P ⊂ Rn if there exists a hyperplane {z ∈ Rn | aT z = b},
where a ∈ Rn, b ∈ R, such that F = P ∩ {z ∈ Rn | aT z = b} and aT z ≤ b for
all z ∈ P . Given an s-dimensional polyhedron P ⊂ Rn, where s ≤ n, the facets
of P are the (s− 1)-dimensional faces of P .

Consider the following strictly convex parametric quadratic program:

V ∗(θ) := min
x∈Rn

{
1
2
xT Hx

∣∣∣∣ Ax ≤ b + Sθ

}
, (3.1)

where θ ∈ Rs is the parameter of the optimization problem, and the vector x ∈ Rn

is to be optimized for all values of θ ∈ Θ, where Θ ⊆ Rs is some polyhedral set.
Moreover, H = HT ∈ Rn×n, H > 0, A ∈ Rq×n, b ∈ Rq×1, and S ∈ Rq×s.
For a given parameter θ, the minimizer to (3.1) is denoted by x∗(θ). Without loss
of generality, the following standing assumption is made (Bemporad, Morari, Dua,
and Pistikopoulos 2002; Borrelli, Bemporad, and Morari 2003):

Assumption 3.1 The set of admissible parameters Θ is full-dimensional, and for
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all θ ∈ Θ, the set of feasible points X(θ) := {x ∈ Rn | Ax ≤ b + Sθ} is non-
empty.

For convenience we restate some of the definitions and results from the previ-
ous chapter.

Definition 3.1 (Optimal active set) Let x be a feasible point of (3.1) for a given θ.
The active constraints are the constraints that fulfill Aix−bi−Siθ = 0. The indices
of the constraints that are active at the solution x∗(θ) is referred to as the optimal
active set and it is denoted by A∗(θ), i.e.

A∗(θ) := {i ∈ {1, 2, . . . , q} |Aix
∗(θ)− bi − Siθ = 0} .

Definition 3.2 (Critical region) Given an index setA ⊆ {1, 2, . . . , q}, the critical
region ΘA associated with A is the non-empty set of parameters for which the
optimal active set is equal to A, i.e.

ΘA := {θ ∈ Θ | A∗(θ) = A}.
Definition 3.3 (LICQ) For a non-empty index set A ⊆ {1, 2, . . . , q}, we say that
the linear independence constraint qualification (LICQ) holds for A if the gradi-
ents of the set of constraints indexed by A are linearly independent, i.e. AA has
full row rank.

Theorem 3.1 ((Bemporad, Morari, Dua, and Pistikopoulos 2002)) Consider the
pQP in (3.1). The value function V ∗ : Θ → R is convex and continuous. The min-
imizer function x∗ : Θ → Rn is continuous and piecewise affine in the sense
that there exists a finite set of full-dimensional polyhedra R := {R1, . . . , RK}
such that Θ = ∪K

k=1Rk, int(Ri) ∩ int(Rj) = ∅ for all i 6= j and the restriction
x∗|Rk

: Rk → Rn is affine for all k ∈ {1, . . . , K}.

A method for computing the expression for the restriction (affine function) x∗|Rk

and its polyhedral domain Rk is summarized below. The KKT conditions for (3.1)
are:

Hx + AT λ = 0, λ ∈ Rq,

λi (Aix− bi − Siθ) = 0, ∀i ∈ {1, . . . , q},
Ax− b− Sθ ≤ 0,

λi ≥ 0, ∀i ∈ {1, . . . , q},
where λ are the Lagrange multipliers. Assume that an index setA is given such that
it is an optimal active set for some parameter θ ∈ Θ and letN := {1, 2, . . . , q}\A.
If LICQ holds for A, then the KKT conditions can be manipulated (Bemporad,
Morari, Dua, and Pistikopoulos 2002) to obtain the following two affine functions:

x∗A(θ) := −H−1AT
Aλ∗A(θ),

λ∗A(θ) := −(AAH−1AT
A)−1(bA + SAθ).
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If Rk is the closure of the critical region associated with A:

Rk := cl(ΘA) =
{

θ ∈ Θ
∣∣∣∣

ANx∗A(θ) ≤ bN + SN θ
λ∗A(θ) ≥ 0

}
(3.2)

then the restriction of the minimizer function x∗ to the polyhedron Rk is given
by x∗|Rk

(θ) = x∗A(θ). If LICQ does not hold, then closure of a critical region
associated with an optimal active set can be found by projecting a polyhedron in the
(x, λ)-space onto the parameter space (Bemporad, Morari, Dua, and Pistikopoulos
2002; Tøndel, Johansen, and Bemporad 2003c) or by utilizing the normal cone
optimality condition as described in (Mayne and Raković 2002) and in Chapter 2.

In the sequel, the closure of a critical region will be written in the more compact
form

cl(ΘA) =: {θ ∈ Θ |Ciθ ≤ di, i = 1, . . . , J } ,

which is obtained from (3.2), by projection or from utilizing the normal cone op-
timality condition. An inequality Ciθ ≤ di in the description of cl(ΘA) is said
to be facet-defining if {θ |Ciθ = di } equals the affine hull of one of the facets
of cl(ΘA). If there exists more than one facet-defining inequality for a given
facet, these inequalities are referred to as coinciding inequalities. A representa-
tion of cl(ΘA) where every redundant inequality has been removed is referred to
as an irredundant representation (note that an irredundant representation does not
have any coinciding inequalities).

3.2 Algorithms for exploring the parameter space

The goal of most algorithms for solving pQPs is to identify only the closures of the
full-dimensional critical regions (Baotić 2002; Bemporad, Morari, Dua, and Pis-
tikopoulos 2002; Borrelli, Bemporad, and Morari 2003; Grieder, Borrelli, Torrisi,
and Morari 2004; Tøndel, Johansen, and Bemporad 2003a; Tøndel, Johansen, and
Bemporad 2003c). For this purpose we introduce the notion of adjacent critical
regions.

Definition 3.4 (Adjacent critical regions) Two full-dimensional critical regions
ΘA ⊂ Rs and ΘB ⊂ Rs are said to be adjacent if dim (cl(ΘA) ∩ cl(ΘB)) = s−1.

The framework for studying the various algorithms is given in Algorithm 3.1,
where the auxiliary set U is defined as the set of closures of identified regions
whose adjacent regions have not been found. The output of Algorithm 3.1 is a
collection R of closures of full-dimensional critical regions for (3.1). From this
point on, we will let K denote the number of sets in R. Where it is clear from the
context, Rk will refer to the kth set inR and RA will refer to the set inR associated
with the optimal active set A.
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Algorithm 3.1 Exploring the parameter space.
Input: Data to problem (3.1).
Output: Set of closures of full-dimensional critical regions R.

1: Find a θ ∈ Θ such that dim
(
cl

(
ΘA∗(θ)

))
= s.

2: R← {cl (ΘA∗(θ)
)} and U ← {cl (ΘA∗(θ)

)}.
3: while U 6= ∅ do
4: Choose any element U ∈ U .
5: U ← U\{U}.
6: for all facets f of U do
7: Find the set S of full-dimensional critical regions adjacent to U along the

facet f .
8: U ← U ∪ (S\R).
9: R ← R∪ S.

10: end for
11: end while

We will consider the algorithms in (Tøndel, Johansen, and Bemporad 2003a),
(Baotić 2002), (Grieder, Borrelli, Torrisi, and Morari 2004) and (Tøndel, Johansen,
and Bemporad 2003c). It should be noted that, on a conceptual level, these algo-
rithms differ only in step 7 in Algorithm 3.1 and that the different strategies may
not always yield a satisfactory result. This will be addressed in the rest of this
section.

3.2.1 Identifying adjacent regions from a QP

The procedure used in (Baotić 2002) and (Grieder, Borrelli, Torrisi, and Morari
2004) as step 7 of Algorithm 3.1 is given in Procedure 3.1. This method is also one
of the methods used in The Multi Parametric Toolbox (MPT) (Kvasnica, Grieder,
and Baotić 2005). Note that at most one adjacent critical region is identified for
each facet of the region under consideration. The implementation of the procedure
will not be discussed.

3.2.2 Identifying adjacent regions from inequalities

Let A be a given optimal active set for some θ ∈ Θ. The objective is to identify
a critical region adjacent to ΘA along a given facet f of its closure. Consider the
following conditions (Tøndel, Johansen, and Bemporad 2003a):

1. LICQ holds for A.

2. There are no coinciding inequalities for facet f in (3.2), where redundant
constraints have not yet been removed.

3. There are no weakly active constraints at x∗(θ) for all θ ∈ cl (ΘA), that is,
@ i ∈ A ⇒ λ∗i (θ) = 0, ∀θ ∈ cl (ΘA).
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Procedure 3.1 Finding an adjacent full-dimensional critical region along a given
facet.
Input: Irredundant representation of the closure of a full-dimensional critical re-

gion U =: {θ |Ciθ ≤ di, i = 1, . . . , J } and the index j whose corresponding
inequality defines facet f .

Output: Closure of a full-dimensional critical region S adjacent to U along the
facet f .

1: S ← ∅.
2: Choose any θ̂ ∈ relint(f).
3: if the facet f is not on the boundary of Θ then
4: Choose any scalar ε > 0 such that θ := θ̂ + εCT

j ∈ Θ and θ is in a full-
dimensional critical region adjacent to U .

5: Compute A∗(θ) by solving the QP (3.1).
6: S ← {

cl
(
ΘA∗(θ)

)}
.

7: end if

If these conditions hold, then (Tøndel, Johansen, and Bemporad 2003a) proves that
there is only one critical region adjacent to ΘA along facet f and that the corre-
sponding optimal active set can be found by determining what type of inequality
defines f . If the inequality that defines f is of the type λi ≥ 0, then i is removed
from A, hence S =

{
cl

(
ΘA\{i}

)}
. On the other hand, if the inequality is of the

type Aix
∗ (θ) ≤ bi + Siθ, then i is added to A, hence S =

{
cl

(
ΘA∪{i}

)}
. If the

conditions do not hold, then Procedure 3.1 is used. Clearly, as in Section 3.2.1,
only one adjacent critical region is identified for each facet with this strategy.

3.2.3 Required solution properties

Consider now the question: What conditions must the solution to (3.1) satisfy in or-
der to ensure that the strategies in Section 3.2.1 or 3.2.2 guarantee that

⋃K
k=1 Rk =

Θ? For this purpose, we introduce the following definition:

Definition 3.5 (Facet-to-facet) Let P := {Pi | i ∈ I} be a finite collection of
full-dimensional polyhedra in Rs, where int(Pi)∩ int(Pj) = ∅ for all (i, j), i 6= j.
We say that the facet-to-facet property holds for P if F(i,j) := Pi ∩ Pj is a facet of
both Pi and Pj for all (s− 1)-dimensional intersections F(i,j).

It is clear that the facet-to-facet property is important when referring to the set
of full-dimensional critical regions of (3.1). If the set of closures of the full-
dimensional critical regions do not satisfy the facet-to-facet property, then it may
be insufficient to only identify one adjacent region for each facet, as illustrated
in Figure 3.1. The following example illustrates that the facet-to-facet property
does not generally hold for strictly convex pQPs. Hence, the algorithms in (Baotić
2002), (Grieder, Borrelli, Torrisi, and Morari 2004), (Tøndel, Johansen, and Bem-
porad 2003a) and (Tøndel, Johansen, and Bemporad 2003c) cannot guarantee that
the entire parameter space will be explored.
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Figure 3.1: Illustration that Algorithm 3.1 may fail to identify all the critical regions
if the facet-to-facet property does not hold, the strategies in Section 3.2.1 or 3.2.2
are employed at step 7 of Algorithm 3.1 and no additional assumptions on the
problem are given. The shaded region is unexplored.

Example 3.1 Consider the problem:

V ∗(θ) := min
x∈R3

{
1
2
xT x

∣∣∣∣ x ∈ P(θ)
}

, θ ∈ Θ,

P(θ) :=





x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣

x1 − x3 ≤ −1 + θ1

−x1 − x3 ≤ −1− θ1

x2 − x3 ≤ −1− θ2

−x2 − x3 ≤ −1 + θ2
3
4x1 + 16

25x2 − x3 ≤ −1 + θ1

−3
4x1 − 16

25x2 − x3 ≤ −1− θ1





,

Θ :=
{
θ ∈ R2

∣∣ −3
2 ≤ θi ≤ 3

2 , i = 1, 2
}

.

The unique set of full-dimensional critical regions is depicted in Figure 3.2, where
we have indexed the critical regions with the optimal active sets. The critical re-
gions R{1,4,5}, R{1,3,6}, R{2,4,5}, and R{2,3,6} have more than one adjacent critical
region along one of their facets, hence the facet-to-facet property is violated for the
set of closures of full-dimensional critical regions.

In (Spjøtvold 2005) it is verified analytically that LICQ holds for all optimal
active sets, that the KKT conditions hold for (x∗(θ), λ∗(θ)) for a parameter in the
interior of each full-dimensional critical region, and numerically verified that every
other combination of active constraints yield empty or lower-dimensional critical
regions. Thus, the violation of the facet-to-facet property is not a consequence of
numerical inaccuracies. However, there is a lower-dimensional critical region of
particular interest, namely the critical region defined by A = {1, . . . , 6}, which is
analytically computed in (Spjøtvold 2005) as
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Figure 3.2: Facet-to-facet property violated.

cl(Θ{1,...,6}) =
{

θ

∣∣∣∣ θ1 = −64
25

θ2,−1600
4721

≤ θ2 ≤ 1600
4721

}
.

The representations of R{1,4,5}, R{1,3,6}, R{2,4,5}, R{2,3,6}, R{1,3,5}, and R{2,4,6}
obtained from (3.2) all have three coinciding inequalities along the line θ1 =
−64

25θ2. This suggests that, due to the statements in Section 3.2.2, coinciding
inequalities in the description of the critical regions may be the reason for the
violation of the facet-to-facet property. Empirical examination also shows that
the presented example is not an isolated incident of the facet-to-facet property
being violated. By letting the constant values on the right hand side be written
as −[1, 1, 1, 1 + α, 1 + α, 1 + α]T , the facet-to-facet property is violated for any
α ∈ [− 1

10 , 2
5 ].

¥

3.3 A new exploration strategy

The algorithm in (Bemporad, Morari, Dua, and Pistikopoulos 2002) does not rely
on the facet-to-facet property but, as mentioned in the introduction, introduces a
number of artificial cuts in the parameter space as it searches for the solution. As
a consequence the performance degrades as the number of critical regions become
large. In (Tøndel, Johansen, and Bemporad 2003a) the authors propose a more
efficient way of exploring the parameter space, but it relies on the facet-to-facet
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property. We aim at modifying the algorithm in (Tøndel, Johansen, and Bemporad
2003a) in order to ensure its correctness.

The proposed method finds all critical regions adjacent to a critical region along
a given facet and in order to preserve the computational advantages of the algorithm
in (Tøndel, Johansen, and Bemporad 2003a) compared to the one in (Bemporad,
Morari, Dua, and Pistikopoulos 2002), the modification is to be utilized only when
the conditions in Section 3.2.2 do not hold. We use the algorithm in (Bemporad,
Morari, Dua, and Pistikopoulos 2002) to explore the parameter space in a small
polyhedral subset M ⊂ Θ and discard the artificial cuts once the solution has been
found. For a given optimal active setA, if the goal is to identify the critical regions
adjacent to ΘA along a given facet f of its closure, then the polyhedron M must
be full-dimensional and satisfy the property:

cl(ΘA) ∩M = f.

For use in the proposed method, the set of optimal active sets associated with the
polyhedron M is defined as:

C(M) := {A ⊆ {1, 2, . . . , q} | dim (M ∩ cl (ΘA)) = s} .

A method for obtaining all adjacent regions is given in Procedure 3.2. Note that the
number of critical regions that intersect M is expected to be small, hence the algo-
rithm in (Bemporad, Morari, Dua, and Pistikopoulos 2002) is well suited. More-
over, the artificial cuts made inside M are discarded once the exploration termi-
nates, thus the artificial cuts do not cause the performance to degrade to the same
extent as in (Bemporad, Morari, Dua, and Pistikopoulos 2002). The choice of ε in
step 6 is arbitrary from a theoretical point of view, but it is important to note that
too small a value will cause numerical problems and too large a value may result
in an unnecessary increase in the computational effort. This issue will be further
discussed in Section 3.4. Note that C(Mj) may define additional critical regions
that are not adjacent to the critical region considered and/or critical regions that
have already been discovered. However, this is not a problem since one can either
choose to keep them as identified regions or discard them. In Procedure 3.2 we
have chosen to return all those critical regions which are not adjacent to U and
those that have already been discovered; step 8 of Algorithm 3.1 can be replaced
by U ← U ∪ (S\R) ∪ (T \R) and step 9 by R← R∪ S ∪ T .

We illustrate the difference between the exploration strategy in (Bemporad,
Morari, Dua, and Pistikopoulos 2002) and the proposed method with an example.

Example 3.2 Assume that the set of closures of full-dimensional critical regions
for a pQP is as depicted in Figure 3.3(a). The first step of the algorithm in (Be-
mporad, Morari, Dua, and Pistikopoulos 2002) is to find an initial critical region
R1 and then partition the rest of the parameter space into a set of unexplored poly-
hedra U , see Figure 3.3(b). It then continues by exploring one of these polyhedra,
for instance U1, finds a new region R2 and partitions the space again, see Fig-
ure 3.3(c). A possible third iteration is depicted in Figure 3.3(d). In Figure 3.3(e)
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Procedure 3.2 Identifying all adjacent full-dimensional critical regions along a
given facet.
Input: Irredundant representation of the closure of a full-dimensional critical re-

gion U =: {θ |Ciθ ≤ di, i = 1, . . . , J } and the index j whose corresponding
inequality defines facet f .

Output: Set S of closures of full-dimensional critical regions adjacent to U along
the facet f , and set T which is a subset of the full-dimensional critical regions
not adjacent to U .

1: S ← ∅ and T ← ∅.
2: if the facet f is not on the boundary of Θ then
3: if the conditions in Section 3.2.2 hold then
4: Find the critical region ΘA that is adjacent to U along f as described in

Section 3.2.2 and let S ← {cl (ΘA)}.
5: else
6: Choose any scalar ε > 0 and construct the polyhedron

Mj :=



θ ∈ Θ

∣∣∣∣∣∣

Ciθ ≤ di, ∀i ∈ {1, . . . , J}\{j}
Cjθ ≥ dj

Cjθ ≤ dj + ε





7: Compute the set C(Mj) by solving the pQP (3.1) inside Mj using the
algorithm in (Bemporad, Morari, Dua, and Pistikopoulos 2002).

8: for each A ∈ C(Mj) do
9: if dim (cl (ΘA) ∩ U) = s− 1 then

10: S ← S ∪ {cl (ΘA)}. {Adjacent critical region}
11: else
12: T ← T ∪ {cl (ΘA)}.
13: end if
14: end for
15: end if
16: end if

we have shown a possible first iteration of the proposed method. Note that for two
facets of R1 the conditions in Section 3.2.2 do not hold, and hence, the sets M1

and M2 are constructed. After identifying the optimal active sets in Mj , the set of
critical regions is as illustrated in Figure 3.3(f).

¥

The two key issues we want to illustrate with the above example is that i)
for the algorithm in (Bemporad, Morari, Dua, and Pistikopoulos 2002) the artifi-
cial cuts affect the exploration strategy in parts of the parameter space where the
cuts are unnecessary, causing the performance to degrade for large K, and ii) the
proposed method discards the artificial partitioning once a set Mj has been fully
explored. Since the number of regions intersecting M is expected to be small, the
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Figure 3.3: Illustration of different exploration strategies

algorithm in (Bemporad, Morari, Dua, and Pistikopoulos 2002) is well suited to
explore inside Mj .

The computational advantages of the algorithm in (Tøndel, Johansen, and Be-
mporad 2003a) compared to the one in (Bemporad, Morari, Dua, and Pistikopoulos
2002) is well documented, so the performance of the proposed procedure relies on
how often the conditions in Section 3.2.2 do not hold. Numerical results will be
given in the next section. Before we prove the correctness of the algorithm, we
need a technical lemma, which is proven in (Spjøtvold 2005) and included in Ap-
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pendix B.

Lemma 3.1 Given two s-dimensional closed sets, P and S, in Rs, such that

int(P ) ∩ int(S) = ∅.

A necessary condition for the set P ∪ S to be convex, is that

dim(P ∩ S) = s− 1.

Theorem 3.2 (Correctness of the Algorithm) Algorithm 3.1 combined with Pro-
cedure 3.2 for Step 7 ensures that ∪K

k=1Rk = Θ.

PROOF: Assume thatR is the output of the algorithm and that ∪R∈RR ⊂ Θ.
Let

P := {cl (ΘA) | dim (ΘA) = s for (3.1)} \R,

and let MR
j denote the set in Procedure 3.2 associated with the jth facet of R ∈

R. By the correctness of the algorithm in (Bemporad, Morari, Dua, and Pis-
tikopoulos 2002) and the fact that dim

(
cl (ΘA) ∩MR

j

)
= s if R and ΘA are

adjacent along the jth facet of R, all full-dimensional critical regions adjacent
to R have been identified. Hence, for any pair (R, P ) ∈ R × P we must have
dim (R ∩ P ) < s − 1, otherwise P would be a member of R, and consequently,
dim ((∪R∈RR) ∩ (∪P∈PP )) < s − 1. Moreover, we have Θ = (∪R∈RR) ∪
(∪P∈PP ). Hence, by Lemma B.1 a contradiction is reached, since Θ is convex.

¤

3.4 Numerical example

In this section we make a quantitative comparison of the following exploration
strategies: (i) the algorithm in (Bemporad, Morari, Dua, and Pistikopoulos 2002),
and (ii) the proposed algorithm of combining Algorithm 3.1 with Procedure 3.2 for
Step 7. The algorithms are tested on an MPC problem for a linear time invariant
system

z(k + 1) = Φz(k) + Γu(k), z(0) = z0, (3.3)

where z(k) ∈ R4 and u(k) ∈ R2 are the state and input at time k, respectively, and
Φ and Γ are matrices with suitable dimensions. The objective is to minimize the
following cost function

J(z0) :=
N∑

k=1

(
z(k)T Qz(k) + u(k − 1)T Ru(k − 1)

)
,
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where Q = QT ≥ 0 and R = RT > 0, subject to the system equation (3.3),
state constraints z ∈ Z := {z | z ≤ z ≤ z }, and input constraints u ∈ U :=
{u |u ≤ u ≤ u}. This problem is recast as a pQP as described in (Bemporad,
Morari, Dua, and Pistikopoulos 2002) and the algorithms are tested on 80 ran-
dom instances of (Φ, Γ, Q,R,Z,U) with a prediction horizon N ∈ {3, 4, 5}. For
simplicity, all systems are stable, controllable and observable. The solutions have
an average of 317 critical regions and Figure 3.4 compares the total number of
optimization problems solved by the algorithms. As expected, the computational
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Figure 3.4: Comparison of the number of optimization problems solved by the
algorithm.

effort used to find an explicit solution is on average lowest for alternative (ii). This
shows that alternative (ii) is preferable also in practice. Note that although the
performance of the proposed method relies on the choice of ε, it is not difficult to
choose a value such that the proposed method is more efficient than the algorithm
in (Bemporad, Morari, Dua, and Pistikopoulos 2002). Also, from Figure 3.4 it is
apparent that the difference in the computational effort is expected to grow as the
number of critical regions K increases.

3.5 Conclusion

It has been shown by an example that, for strictly convex parametric quadratic
programs (and for programs that are convex, but not strictly convex), a critical
region may have more than one adjacent critical region for each facet, hence the
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facet-to-facet property does not hold, in general. This renders some of the recently
developed algorithms for this problem class without guarantees that the entire pa-
rameter space will be explored. A simple method based on the algorithms in (Be-
mporad, Morari, Dua, and Pistikopoulos 2002) and (Tøndel, Johansen, and Bem-
porad 2003a) was proposed such that the completeness of the exploration strategy
is guaranteed. Numerical results also indicate that the proposed method is com-
putationally more efficient than the algorithm in (Bemporad, Morari, Dua, and
Pistikopoulos 2002) in practice.



Part II

Applications of Parametric
Programming In Control Theory





Chapter 4

Inf-Sup Control of Discontinuous
Piecewise Affine Systems

4.1 Introduction

Gal and Nedoma proposed complete algorithm for solving parametric linear pro-
grams (pLP) as early as (Gal and Nedoma 1972) and in the following years the
topic was subject of substantial research, see e.g. (Bank, Guddat, Klatte, Kum-
mer, and Tammer 1983; Schechter 1987) and references therein. Parametric pro-
gramming has had a resurgence of interest recently due to the observation that ex-
plicit control laws for some model predictive control problems (Mayne, Rawlings,
Rao, and Scokaert 2000) can be obtained by viewing the initial state as a vector
of parameters (Bemporad, Morari, Dua, and Pistikopoulos 2002; Bemporad, Bor-
relli, and Morari 2002; Seron, Goodwin, and Doná 2003). As researchers tried
to characterize the solution to more difficult optimal control problems (piecewise
affine systems, uncertain systems, non-linear systems etc.), several variations of the
dynamic programming approach originally proposed by Bellman (Bellman 1957)
has been employed (Witsenhausen 1968; Bertsekas and Rhodes 1973; de la Peña,
Alamo, Bemporad, and Camacho 2002; Diehl and Björnberg 2004; Raković, Kerri-
gan, and Mayne 2004; Borrelli, Baotić, Bemporad, and Morari 2005; Kerrigan and
Mayne 2002; Mayne, Rakovć, Vinter, and Kerrigan 2006; Lincoln and Rantzer
2006; Rantzer 2006). The dynamic programming approach for inf–sup (or more
commonly min–max) control was introduced for linear systems as early as (Wit-
senhausen 1968) and in a more general framework in (Bertsekas and Rhodes 1973).
The methods (Witsenhausen 1968; Bertsekas and Rhodes 1973) have served as the
foundation for a large number of publications (see e.g. (de la Peña, Alamo, Bempo-
rad, and Camacho 2002; Diehl and Björnberg 2004; Raković, Kerrigan, and Mayne
2004; Borrelli, Baotić, Bemporad, and Morari 2005; Kerrigan and Mayne 2002;
Mayne, Rakovć, Vinter, and Kerrigan 2006; Lincoln and Rantzer 2006; Rantzer
2006)) and will also be utilized in this chapter.

Recently, methods for computing explicit control laws for discrete-time piece-
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wise affine (PWA) systems with constraints have been reported in the control litera-
ture (Borrelli, Baotić, Bemporad, and Morari 2005; Raković, Kerrigan, and Mayne
2004; Mayne and Raković 2002; Bemporad, Borrelli, and Morari 2000b; Bempo-
rad, Borrelli, and Morari 2000a; Borrelli 2002; Kerrigan and Mayne 2002). There
are several reasons why obtaining explicit solutions to this problem class has been
of interest; i) Piecewise affine systems arise both naturally (e.g. backlash (Rostal-
ski, Besselmann, Barić, and Morari 2007) and hysteresis) and as approximations
to non-linear systems. Piecewise affine models are also equivalent to a large class
of hybrid systems (Heemels, Shutter, and Bemporad 2001). ii) An explicit so-
lution to an optimal control problem offers several advantages compared to the
on-line counterpart. The required on-line computation time is reduced, rendering
optimal control applicable also for fast systems. In addition, the explicit solution
makes it possible to off-line verify the correctness of the control law, which is a key
point in safety critical applications. iii) Although several authors have addressed
the topic of obtaining explicit solutions to optimal control problems for non-linear
systems (Johansen 2002; Johansen 2004a; Grancharova and Johansen 2005; Bem-
porad and Filippi 2006), these methods are often computationally demanding, sub-
optimal and may lack stability guarantees. Even for linear systems with quadratic
cost functions it is difficult to incorporate disturbances/uncertainties as the min–
max formulation results in a non-convex problem that is not easily divided into
sub-problems. iv) Recent results on parametric linear programming (Jones, Ker-
rigan, and Maciejowski 2007; Spjøtvold, Tøndel, and Johansen 2005a; Jones and
Maciejowski 2006; Borrelli, Bemporad, and Morari 2003) and the evaluation of
piecewise affine control laws (Christophersen, Kvasnica, Jones, and Morari 2007;
Jones, Grieder, and Raković 2006; Tøndel, Johansen, and Bemporad 2003b) are
directly applicable to optimal control of discrete-time PWA systems with linear
cost functions as these problems can be solved explicitly with a series of pLPs.

In (Lincoln and Rantzer 2006; Rantzer 2006) a relaxed dynamic programming
procedure is proposed. The procedure reduces the computational complexity by re-
laxing the demands for optimality. The existence of a solution is assumed in (Lin-
coln and Rantzer 2006; Rantzer 2006), which is different from the objective in
this chapter; to obtain a sub-optimal solution only when the infimum cannot be
attained.

In (Borrelli, Baotić, Bemporad, and Morari 2005) a dynamic programming ap-
proach for obtaining explicit control laws to continuous PWA systems not affected
by disturbances is presented. Discontinuous PWA systems are briefly mentioned,
but the topic is not treated in detail; for instance that an optimizer exists1 cannot
be guaranteed. In addition, the authors represent the domain of the PWA state up-
date equation by closed polyhedra, as described in (Bemporad and Morari 1999),
and therefore small gaps are introduced in the domain of the state update equation.
Consequently, from a theoretical point of view, the state trajectory may vanish. On

1Given an optimization problem, e.g. J∗ := infx∈X f(x), we say that an optimizer exists if the
infimum is attained, i.e. ∃x∗ ∈ X such that J∗ = f(x∗).
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the other hand, one can argue that the control scheme is to be implemented on a
microchip or computer and therefore is subject to a finite arithmetic precision. In
this chapter we will look at the problem from a theoretical viewpoint and remove
the need to introduce small gaps.

An alternative way of describing a discontinuous PWA system is to transform
the state update equation into a difference inclusion by performing a regularization,
see e.g. (Goebel and Teel 2006). With this system description, the successor state
may be set-valued for a given initial state, control input and disturbance. We seek
to avoid this situation by still treating the system as a difference equation.

In (Raković, Kerrigan, and Mayne 2004) continuous PWA systems with piece-
wise affine cost functions subject to state- and input-dependent disturbances are
considered. This chapter presents a non-trivial extension of this approach to dis-
continuous PWA systems. Methods for computing explicit control laws for this
problem class have not yet been reported in the literature, hence, in this chapter we
outline the foundation for a complete computational procedure.

In this chapter we represent the domain of PWA systems by a union of a finite
number of open, closed and/or neither open nor closed polyhedra. A solution to
the optimal control problem may not exist in this case. However, solutions for
which the cost is arbitrarily close to the infimum/supremum are guaranteed to exist.
We propose a procedure that obtains a sub-optimal solution to the optimal control
problem when the solution does not exist, and the exact solution when it does.
This approach does not introduce gaps in the domain of the state update equation,
we do not assume that a solution to the optimal control problem exists, and the
state update equation is not transformed into a difference inclusion, and thus, the
dynamic programming approach is relatively simple from the theoretical point of
view. In addition, the proposed procedure allows the degree of sub-optimality to
be specified a priori.

CHAPTER STRUCTURE: Section 4.2 introduces basic notation and presents an
illustrative and motivating example. In Section 4.3 we introduce the basic building
block in the chapter, namely how one can obtain sub-optimal solutions to paramet-
ric linear programs with strict and non-strict inequality constraints. This building
block is then used to obtain sub-optimal solutions to minimization of PWA func-
tions in Section 4.4, to min-max problems in Section 4.5, and finally it is demon-
strated in Section 4.6 how these procedures can be used in the dynamic program-
ming approach for the purpose of obtaining explicit sub-optimal solutions to robust
optimal control problems for discontinuous PWA systems.

4.2 Preliminaries

4.2.1 Basic Notation and Fundamental Results

For completeness we recall some standard notation and definitions. The affine hull
of a set S is the intersection of all affine sets containing S, and is denoted aff(S).
The dimension of a set S ⊆ Rn is the dimension of aff(S), and is denoted dim(S);
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if dim(S) = n, then S is said to be full-dimensional. The closure of a set S is
denoted cl(S). The relative interior of a set S is the interior relative to aff(S), i.e.

relint(S) := {x ∈ S |B(x, r) ∩ aff(S) ⊆ S for some r > 0} ,

where the ball B(x, r) := {y | ‖y − x‖ ≤ r} and ‖ · ‖ is any norm. We de-
note the orthogonal projection of a set S ⊆ Rn × Rm to Rn by Projx S :=
{x ∈ Rn | ∃u ∈ Rm such that (x, u) ∈ S }.

A polyhedron is the intersection of a finite set of open and/or closed halfs-
paces. Note that our definition of a polyhedron differs from the most common
definition in the sense that we do not require the halfspaces to be closed. The
reason for this variation is to be able to represent discontinuous piecewise affine
functions. A polygon is a union of finite number of polyhedra. We will adopt
a similar notation to that presented in (Rockafellar and Wets 1998) with regards
to the concept of extended real valued functions. Thus, a function f is allowed
to take values in R = [−∞,∞]. Recall also that the infimum is the greatest
lower bound of a set S ⊆ R, defined as a quantity m such that no member of
the set is less than m, but if ε is any positive quantity, however small, there is al-
ways one member s that is less than m + ε. The infimum of a set S ⊆ R exists
in R if and only if S is non-empty and bounded from below. Moreover, we intro-
duce the notation infC f := infx∈C f(x) := inf {f(x) |x ∈ C } and supC f :=
supx∈C f(x) := sup {f(x) |x ∈ C }. By convention we have inf∅ f = ∞
and sup∅ f = −∞, and hence,

arg min
x∈C

f(x) :=
{ {x ∈ C | f(x) = infC f } if infC f 6= ∞,
∅ if infC f = ∞,

and

arg max
x∈C

f(x) :=
{ {x ∈ C | f(x) = supC f } if supC f 6= −∞,
∅ if supC f = −∞.

We say that the infimum (supremum) of f over C is attained if arg minx∈C f(x) 6=
∅ (arg maxx∈C f(x) 6= ∅). For a function f : Rn → R, the domain of f is defined
as the set

dom (f) := {x ∈ Rn | −∞ < f(x) < ∞} .

Whenever we refer to a function f or mapping F having a certain property, we
implicitly mean that the property holds only on the domain of f or F , e.g. if we
say that f is continuous, it is continuous at every x ∈ dom (f).

A function f : Rn → Rm is piecewise affine (PWA) on its domain if dom (f)
is the union of finitely many polyhedra, relative to each of which f(·) is affine.
If X ⊆ Rn and Y ⊆ Rm, then 2Y is the power set (set of all subsets) of Y and a
set-valued map is defined as F : X → 2Y . For notational simplicity, we use double
arrows to specify that a mapping is set-valued, i.e. set-valued maps are specified
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as F : X ⇒ Y . We say that the set-valued map F : Rn ⇒ Rm is piecewise
polyhedral if the graph of F , defined as gph (F ) := {(x, u) |u ∈ F (x)}, is a
polygon. A function f : Rn → Rm is a selection of the set-valued map F : Rn ⇒
Rm if f(x) ∈ F (x) for all x ∈ dom (F ). If F : X ⇒ Y is a mapping, then the
restriction of F to the domain D is written F |D : D ⇒ Y .

Throughout we will use the superscript ∗ to distinguish between optimizers
and decision variables, e.g. for the problem minx f(x), x is the decision variable
and x∗ denotes an optimizer. We also let such that be abbreviated s.t.

Given the optimization problem

J∗ := inf
u∈U

f(u),

we denote by ε- arg minu∈U f(u) the set of values of u ∈ U for which f(u) ≤
J∗ + ε, that is,

ε- arg min
u∈U

f(u) := {u ∈ U | f(u) ≤ J∗ + ε} .

The following observation follows directly from the definition of the infimum of a
set, but for completeness we include a proof.

Lemma 4.1 Assume that J∗ > −∞, that U ⊆ Rn is a non-empty set and f :
Rn → R, then ε- arg minu∈U f(u) 6= ∅ for all ε > 0.

PROOF: That the set U is non-empty implies that F := {f(u) |u ∈ U } is non-
empty. The infimum of F exists in R if and only F is non-empty and bounded
from below, which is true by assumption (J∗ > −∞). Since J∗ is the infimum
of the set F , then from the definition of the infimum of a set we have that there
exists f̄ ∈ F such that f̄ < J∗ + ε, ∀ε > 0. Since f̄ is a member of F there
exists u ∈ U such that f(u) = f̄ .

¤

In the sequel we will, for the problem of minimizing (maximizing) a function f
over a set C, assume that infC f (supC f ) is bounded, and that the set C over which
the optimization is performed, is non-empty.

4.2.2 Example

In this section we present a motivating example where we show that for a simple
PWA function the infimum cannot be attained. The reader may interpret x as the
initial state and u as the control input in the following example to see that there
may be a problem to compute a control law that attains the infimum. It should also
be noted that minimization of PWA functions are sub-problems in the dynamic pro-
gramming recursion that may be utilized to compute explicit solutions to optimal
control problems.
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Example 4.1

Consider the following function:

f(x, u) :=





f1(x, u) := 2 if (x, u) ∈ P1

f2(x, u) := −u + x if (x, u) ∈ P2

f3(x, u) := −2 if (x, u) ∈ P3

(4.1a)

P1 := {(x, u) ∈ R× R |u ≥ 0,−5 ≤ x ≤ 5} , (4.1b)

P2 := {(x, u) ∈ R× R |u < 0,−5 ≤ x ≤ 5} , (4.1c)

P3 := {(x, u) ∈ R× R | 5 < x ≤ 7} , (4.1d)

which is to be minimized with respect to u for all values of x ∈ X := [−5, 7], that
is,

J∗(x) := inf
u

f(x, u), ∀x ∈ X .

Figure 4.1(a) illustrates f(0, u) for u ∈ [−7, 7]; clearly the infimum J∗(0) = 0
cannot be attained, that is, @u∗ such that f(0, u∗) = J∗(0) = 0. In fact, the infi-
mum cannot be attained for any x ∈ [−5, 2). The value function J∗(·) is depicted
in Figure 4.1(b) and it is indicated where a solution does not exist. Two strategies
that might be natural to consider in order to overcome this problem is to either
treat f(·) as set-valued, or to introduce small gaps in the domain of f(·), such
that each affine function is defined over a closed polyhedron. If we treat f(·) as a
set-valued map by removing the strict inequalities:

f̄(x, u) := {fi(x, u) | (x, u) ∈ cl (Pi)} , (4.2)

then the naive approach of choosing the minimum of f̄(·) will change the value
function compared to original the problem, see Figure 4.2(a). In addition, we
see that even though f̄(x, ·) attains its minimum for all x ∈ X , this is not case
for f(x, ·).

Introducing small gaps in the domain of the function, that is,

f̃(x, u) : =





2 if (x, u) ∈ P̃1

−u + x if (x, u) ∈ P̃2

−2 if (x, u) ∈ P̃3

(4.3a)

P̃1 := {(x, u) ∈ R× R |u ≥ 0,−5 ≤ x ≤ 5} , (4.3b)

P̃2 := {(x, u) ∈ R× R |u ≤ −δ,−5 ≤ x ≤ 5} , (4.3c)

P̃3 := {(x, u) ∈ R× R | 5 + δ ≤ x ≤ 7} , (4.3d)

where δ > 0, will result in that f̃(x, ·) is undefined for some x ∈ X , see Fig-
ure 4.2(b).

¥
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(a) Illustration of f(0, ·). At the discontinuity the filled circle indicates the value
of f(0, ·), i.e. f(0, 0) = 2.
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arg minu f (x, u) = ∅

(b) Illustration of J∗(·). At the discontinuity the filled circle indicates the value
of J∗(·), i.e. J∗(5) = 2. For x ∈ [−5, 2) we have arg minu f(x, u) = ∅.

Figure 4.1: Exact solutions for minimization of (4.1a).

We see from the above example that, even for a very simple PWA function,
the infimum cannot be attained. In the sequel, we will propose a procedure that
guarantees that for all x for which the infimum is bounded, we obtain a u∗ such
that f(x, u∗) ≤ J∗(x) + ε, where the scalar ε > 0 can be specified a priori.



58 Inf-Sup Control of Discontinuous Piecewise Affine Systems
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x

J̄∗(x)

arg minu f̄(x, u) 6= ∅

(a) Illustration of J̄∗(x) := infu f̄(x, u). It is concluded that ∃u∗ s.t J̄∗(x) =
f̄(x, u∗) for all x ∈ [−5, 2), however, @u∗ s.t J∗(x) = f(x, u∗), cf. Fig-
ure 4.1(b). Moreover, J̄∗(5) = −2 6= J∗(5) = 2.
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J̃∗(x)

arg minu f̃(x, u) 6= ∅

δJ∗(x)

δ

(b) Illustration of J̃∗(x) := infu f̃(x, u). The dotted line depicts J∗(·). The
solid line depicts J̃∗(·). We see that in the interval 5 < x < 5 + δ the value
function is undefined. In the interval 5+δ ≤ x ≤ 7, J̃∗(·) coincides with J∗(·).

Figure 4.2: Alternative approaches for the solution of (4.1a).

4.3 ε-Optimal Solutions to Parametric Linear Programs
with Strict and Non-strict Inequality Constraints

In this section we consider the problem of finding ε-optimal solutions to parametric
linear programs with strict and non-strict inequalities. We propose a procedure
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that will be repeatedly used in subsequent sections for the purpose of obtaining
sub-optimal solutions to optimal control problems with piecewise affine cost and
polygonic constraints.

Consider the problem

P(x) : J∗(x) := inf
u

{
cT u | (x, u) ∈ Z }

, (4.4a)

Z :=
{

(x, u) ∈ Rn × Rm

∣∣∣∣
Au + Bx ≤ d
Eu + Fx < g

}
, (4.4b)

which is to be solved for all x ∈ X , where X is defined as:

X := {x ∈ Rn | ∃u s.t. (x, u) ∈ Z } ∩ {x ∈ Rn | J∗(x) > −∞} = dom (J∗) ,
(4.5)

and c, A, B, d, E, F and g are matrices with suitable dimensions.
The constraint set Z defines the set-valued map U : X ⇒ Rm given by

U(x) := {u | (x, u) ∈ Z } (4.6)

and hence (4.4) can be written as

J∗(x) = inf
u

{
cT u |u ∈ U(x)

}
.

We make the following standing assumption:

Assumption 4.1 For any parametric optimization problem that can be expressed
as z∗(θ) := infy {f(θ, y) | (θ, y) ∈ Y }, ∀θ ∈ Θ, the sets Y and

{θ | ∃y s.t. (θ, y) ∈ Y } ∩ {θ ∈ Θ | z∗(θ) > −∞}
are non-empty.

Returning to our original problem P(·), the above assumption implies thatZ 6=
∅, X 6= ∅ and that X is polyhedral.

For pLPs with only non-strict inequalities the following is well-known (Gal
and Nedoma 1972; Bank, Guddat, Klatte, Kummer, and Tammer 1983; Dantzig,
Folkman, and Shapiro 1967; Borrelli, Bemporad, and Morari 2003):

Theorem 4.1 (Solution properties for pLPs) Consider the pLP

Ĵ∗(x) : = min
u

{
cT u | (x, u) ∈ cl (Z)

}
, (4.7)

which is to be solved for all values of x ∈ X̂ , where

X̂ := {x ∈ Rn | ∃u s.t. (x, u) ∈ cl (Z)} ∩
{

x ∈ Rn
∣∣∣ Ĵ∗(x) > −∞

}

=dom(Ĵ∗),

and Z is defined in (4.4b).
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i) There exists a continuous and PWA function u∗ : X̂ → Rm that satisfies

u∗(x) ∈ arg min
u

{
cT u | (x, u) ∈ cl (Z)

}
, ∀x ∈ X̂ .

ii) The value function Ĵ∗ : X̂ → R is continuous, convex and piecewise affine.

Remark 4.1 Note that according to the most common definitions of a continuous
point to set map (Berge 1963; Hausdorff 1957; Aubin and Frankowska 1990),
the mapping x 7→ arg minu

{
cT u | (x, u) ∈ cl (Z)

}
is continuous, and several

continuous selections are available; for instance minimum norm, Steiner point, or
any extremal selector. For computational approaches, see (Spjøtvold, Tøndel, and
Johansen 2007; Jones, Kerrigan, and Maciejowski 2007; Jones 2005)

Before we present a theorem that provides a procedure for obtaining ε-optimal
solutions for parametric linear programs with strict and non-strict inequalities, we
recall a fundamental result for support functions to convex sets, formulated as a
lemma for clarity of presentation (Rockafellar 1972, page 112):

Lemma 4.2 If S ⊆ Rm is a convex set and c ∈ Rm is given, then

inf
u

{
cT u |u ∈ S

}
= inf

u

{
cT u |u ∈ cl (S)

}
= inf

u

{
cT u |u ∈ relint (S)

}
.

We cannot immediately use the above lemma in a parametric setting, so we
provide the following corollary:

Corollary 4.1 Consider (4.4) and (4.7). Since Z is polyhedral we have that

J∗(x) = Ĵ∗(x) for all x ∈ X = dom (J∗) .

PROOF:
Using Lemma 4.2 we have

inf
u

{
cT u |u ∈ U(x)

}
= inf

u

{
cT u |u ∈ cl (U(x))

}
, ∀x ∈ dom (J∗) .

We now need to show that

inf
u

{
cT u |u ∈ cl (U(x))

}
= inf

u

{
cT u | (x, u) ∈ cl (Z)

}
, ∀x ∈ dom (J∗) .

Defining Ū(x) := {u | (x, u) ∈ cl (Z)} we can write (4.7) as

inf
u

{
cT u

∣∣u ∈ Ū(x)
}

,

and since Z is polyhedral it trivially follows that

cl (U(x)) =
{

u

∣∣∣∣
Au ≤ d−Bx
Eu ≤ g − Fx

}
= Ū(x). ¤
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A parametric optimization is said to be a parametric piecewise LP if the set
of parameters for which the infimum is bounded is the union of a finite number of
polyhedra, relative to each of which the problem reduces to a pLP. Consider P(·)
and define the parametric piecewise LP (Ĵ∗(·) is PWA and equal to J∗(·) on X ):

Pε(x) : V ∗
ε (x) := min

(u,t)
{t | (x, u, t) ∈ Zε } , (4.8a)

Zε :=



(x, u, t) ∈ Rn × Rm × R

∣∣∣∣∣∣

Au + Bx ≤ d
Eu + Fx ≤ g + 1t

cT u ≤ Ĵ∗(x) + ε



 ,

(4.8b)

where 1 is a vector of ones and ε is a positive scalar, which is to be solved for all
values of x ∈ Xε, where

Xε := X̂ ∩ ProjxZε. (4.9)

The following theorem provides a means for obtaining ε-optimal solutions to
pLPs with strict and non-strict inequality constraints:

Theorem 4.2 Consider the optimization problems given in (4.4), (4.7) and (4.8)
and let ε be an arbitrary positive scalar. The following holds:

i) Xε = X̂ = dom(Ĵ∗) ⊇ X = dom (J∗).

ii) We have that (4.8) attains its minimum ∀x ∈ Xε, and that given any x ∈ X

(u∗(x), t∗(x)) ∈ arg min
(u,t)

{t | (x, u, t) ∈ Zε } ⇒ u∗(x) ∈ ε- arg min
u∈U(x)

cT u

iii) The function V ∗
ε (·) is continuous and piecewise affine on Xε.

iv) There exists a minimizer function u∗ : Xε → Rm that is continuous and PWA.

PROOF:

i) That X̂ ⊇ X follows from Projx (cl (Z)) ⊇ ProjxZ and
{

x | Ĵ∗(x) > −∞
}

= {x | J∗(x) > −∞}

(recall that J∗(x) = ∞ if x /∈ X ), hence,

X̂ = Projx (cl (Z)) ∩
{

x | Ĵ∗(x) > −∞
}

⊇ ProjxZ ∩ {x |J∗(x) > −∞} = X .

That Xε = X̂ holds trivially by noting that fixing t = 0 and ε = 0 for all
x ∈ X̂ renders any minimizer u∗(·) of (4.7) feasible also for (4.8).
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ii) Given any x ∈ Xε, (4.8) is an LP and consequently attains its minimum if
the infimum is bounded, which is true on Xε by construction. Lemma 4.1 and
Assumption 4.1 ensures that there always exists ε-optimal solutions, i.e.

∀x ∈ X ∃ũ ∈ ε- arg min
u∈U(x)

cT u.

Thus, for any x ∈ X and for all ũ ∈ ε- arg minu∈U(x) cT u there exists some
γ(ũ) < 0 such that

∅ 6=


u

∣∣∣∣∣∣

Au + Bx ≤ d
Eu + Fx ≤ g + 1γ(ũ)

cT u ≤ Ĵ∗(x) + ε



 ⊆ U(x),

which immediately implies t∗(x) < 0 for all x ∈ X , and consequently u∗(x) ∈
ε- arg minu∈U(x) cT u for all x ∈ X , for all

(u∗(x), t∗(x)) ∈ arg min
(u,t)

{t | (x, u, t) ∈ Zε }.

iii) Define a new parameter y and write (4.8) as

V̄ ∗
ε (x, y) := min

(ū,t̄)

{
t̄

∣∣ (x, y, ū, t̄) ∈ Z̄ε

}
, (4.10a)

Z̄ε :=



(x, y, ū, t̄)

∣∣∣∣∣∣

Aū + Bx ≤ d
Eū + Fx ≤ g + 1t̄

cT ū ≤ y + ε



 . (4.10b)

Clearly, the above problem is a pLP, and consequently, V̄ ∗
ε (·, ·) is continu-

ous and piecewise affine. Defining y = Ĵ∗(x) we see that V̄ ∗
ε (·, Ĵ∗(·)) is a

composition of continuous functions and therefore also a continuous function.
Moreover, composition of PWA functions is a PWA function. We clearly also
have V ∗

ε (x) = V̄ ∗
ε (x, Ĵ∗(x)) for all x ∈ Xε.

iv) Following the same argument as in iii) we have that there exists a solution
(ū∗(·, ·), t̄∗(·, ·)) to (4.10) such that ū∗(·, ·) is continuous and PWA on its
domain, and hence the same holds for u∗(·) = ū∗(·, Ĵ∗(·)).

¤

The pLP is first solved over the closure of Z to obtain the function Ĵ∗(·). Then
solving (4.8) ensures that we obtain a function u∗(·) such that cT u∗(x) ≤ J∗(x)+ε
for all x ∈ X .

One important detail that should be emphasized is that we can restrict any
solution (selection) u∗(·) to (4.8) to X , which is possible since Xε ⊇ X . Thus, we
let u∗ : Xε → Rm be redefined to u∗ : X → Rm. The restriction of the domain
is a key point in the procedure because in subsequent sections we want to apply
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this procedure to the minimization of discontinuous piecewise affine functions,
thus slightly enlarging the domain may introduce arbitrarily large errors if we try
to select the minimum of several affine functions (this can be seen by comparing
Figure 4.1(b) and 4.2(a) and noting that at x = 5 the value functions are different).
In the sequel, (u∗ε(·), t∗ε(·)) will denote a continuous and optimal selection for (4.8),
whose domain is restricted to X .

4.4 ε-Optimal solutions for PWA functions

In the previous section we proposed a procedure for obtaining ε-optimal solutions
to pLPs with strict and non-strict inequalities. In this section the procedure is
repeatedly applied for the purpose of finding ε-optimal solutions to minimization
of PWA functions over polygonic sets.

Consider the problem of minimizing f(x, ·), where f is piecewise affine. We
will represent f in the following manner:

f(x, u) = fi(x, u) if (x, u) ∈ Pi ⊆ Rn × Rm,

where i ∈ {1, 2, . . . , I}, each fi is affine and each Pi is a polyhedron, thus the
domain of f is the polygon P := dom (f) = ∪I

i=1Pi. Note that this implies that
for each pair (i, j) ∈ {1, 2, . . . , I} × {1, 2, . . . , I} for which Pi ∩ Pj 6= ∅ we
have fi(x, u) = fj(x, u), ∀(x, u) ∈ Pi ∩ Pj .

Consider the following optimization problem:

J∗(x) := inf
u
{f(x, u) | (x, u) ∈ P } . (4.11)

We can clearly represent (4.11) as

J∗(x) := min
i∈{1,2...,I}

inf
u
{fi(x, u) | (x, u) ∈ Pi } . (4.12)

Observing that J i∗(x) := infu {fi(x, u) | (x, u) ∈ Pi } is a pLP with strict and
non-strict inequalities for each [i ∈ {1, 2, . . . , I} we let

{
(u∗i,ε(·), t∗i,ε(·)) | i ∈ {1, 2, . . . , I}}

denote a set of continuous selections where each pair (u∗i,ε(·), t∗i,ε(·)) optimizes
the corresponding piecewise pLP defined by (4.8). Recall also from the previous
section that the domain of each u∗i,ε(·) is restricted to the domain of J i∗(·), and

hence, dom
(
fi(·, u∗i,ε(·))

)
= dom

(
J i∗).

Theorem 4.3 Consider the optimization problem given in (4.11).

i) For any ε > 0, x ∈ dom (J∗) and the problem

J∗ε (x) := min
i∈{1,...,I}

fi(x, u∗i,ε(x)), (4.13)
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we have that

j ∈ arg min
i∈{1,...,I}

fi(x, u∗i,ε(x))

⇒ u∗j,ε(x) ∈ ε- arg min
u
{f(x, u) | (x, u) ∈ P } .

ii) dom (J∗ε ) = dom (J∗).

PROOF:

i) Since ∀x ∈ dom
(
J i∗) and ∀i ∈ {1, 2, . . . , I} we have

u∗i,ε(x) ∈ ε- arg min
u
{fi(x, u) | (x, u) ∈ Pi } ,

the assertion trivially holds.

ii) This follows by construction; the domain for each u∗i,ε(·) is restricted to the
domain of J i∗, hence the domain of J∗ε is equal to ∪I

i=1 dom
(
J i∗), which is

precisely the domain of J∗.

¤

We revisit Example 4.1 to illustrate the proposed procedure.

Example 4.2 (Example 4.1 cont.) Consider again the problem of minimizing (4.1a).
Although this problem is simple, we formulate the individual pLPs for the purpose
of illustrating the procedure. The three pLPs are (where the sets Pi, i = 1, 2, 3, are
defined in Example 4.1):

J1∗(x) = inf
u
{2 | (x, u) ∈ P1 } ,

J2∗(x) = inf
u
{−u + x | (x, u) ∈ P2 } ,

J3∗(x) = inf
u
{−2 | (x, u) ∈ P3 } .

Clearly, we only need to use the proposed procedure on the second problem. We
solve the pLP over the closure of P2:

J̄2∗(x) := min
u
{−u + x | (x, u) ∈ cl (P2)} . (4.14)

Hence, a solution to (4.14) is u∗2(x) = 0 for all x ∈ [−5, 5], and J̄2∗(x) = x. We
then continue by finding the ε-optimal solution:

V ∗
ε (x) = min

(u,t)
{t | (x, u, t) ∈ Zε } , (4.15a)

Zε =



(x, u, t)

∣∣∣∣∣∣

−5 ≤ x ≤ 5
u ≤ t

−u + x ≤ x + ε



 =



(x, u, t)

∣∣∣∣∣∣

−5 ≤ x ≤ 5
u ≤ t

−u ≤ ε



 ,

(4.15b)
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and a solution to (4.15) is u∗(x) = −ε and hence f2(x, u∗(x)) = x + ε with
dom (u∗) = {x | −5 ≤ x ≤ 5}. The final step is to construct J∗ε (·), which clearly
becomes

J∗ε (x) =
{

min{2, x + ε} if −5 ≤ x ≤ 5
−2 if 5 < x ≤ 7

and one selection u∗ε(·) that fulfills f(x, u∗ε(x)) = J∗ε (x) is

u∗ε(x) =
{ −ε if −5 ≤ x < 2− ε

0 if 2− ε ≤ x ≤ 7

The value function J∗ε (·) is depicted in Figure 4.3. It is clear that we have ob-
tained a feasible u∗ε(·) such that f(x, u∗ε(x)) ≤ J∗(x) + ε for all x ∈ dom (J∗).
In addition, it is worth pointing out that by utilizing the procedure of introducing
small gaps in the domain of f , as described in Example 4.1, it is not straightfor-
ward to compute an error bound, especially if the procedure is repeatedly used in a
dynamic programming recursion, as will be done in Section 4.6.2.

−4 −2 0 2 4 6

−6

−4

−2

0

2

x

J∗

ε
(x)

ε- arg minu f (x, u) 6= ∅

J∗(x)

ε

Figure 4.3: The solid line depicts J∗ε (·). and the dotted line depicts J∗(·). Clearly
the error is less than ε everywhere and no gaps are introduced in the domain of the
function, cf. Figures 4.2(a) and 4.2(b).

¥
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4.5 ε-optimal solutions to inf-sup of PWA functions

It is apparent from the two preceding sections that a pLP with strict and non-strict
inequalities can be viewed as a sub-problem of minimizing a PWA function over
polygonic constraints. In this section we extend the approach to inf - sup problems
and now minimization of PWA functions become our sub-problems.

Consider the problem

J∗(x) := inf
u∈U(x)

sup
w∈W(x,u)

f(x, u, w) (4.16)

where again we consider the system where f is PWA and defined on the polygon

P := ∪I
i=1Pi, Pi ⊆ Rn × Rm × Rp, ∀i ∈ {1, 2 . . . , I}.

The set U(·) is defined by

Z := {(x, u) | (x, u) ∈ Y, (x, u, w) ∈ Π ∀w ∈ W(x, u)} ,

U(x) := {u | (x, u) ∈ Z } ,

where Y , Π, and gph (W) are non-empty polygons, and W(x, u) 6= ∅ for all
(x, u) ∈ Y . The reader is referred to (Raković, Kerrigan, Mayne, and Lygeros
2006) for details on how to compute Z . Define also the sets

X := ProjxZ = {x | ∃u s.t. (x, u) ∈ Z } ,

Γ := {(x, u, w) |w ∈ W(x, u)} = gph (W) =: ∪M
j=1Γj .

The problem (4.16) can be divided into a supremum and an infimum problem
as

V ∗(x, u) := sup
w
{f(x, u, w) | (x, u, w) ∈ Γ} , ∀(x, u) ∈ Z, (4.17a)

J∗(x) = inf
u
{V ∗(x, u) | (x, u) ∈ Z } , ∀x ∈ X . (4.17b)

In this section we view problem (4.16) from a game theoretic point in the sense
that we choose u and our adversary chooses w. We are therefore not concerned
with attaining a maximizing w, but only a minimizing u. Define the polygon

F := ∪H
h=1Fh

where the polyhedra {F1, F2, . . . , FH} covers the set Γ ∩ P , and each polyhe-
dron Fh is a member of the set

{Γj ∩ Pi | (i, j) ∈ {1, 2, . . . , I} × {1, 2, . . . , M}, Γj ∩ Pi 6= ∅} .

Hence, we can restrict our PWA function f to the domain for which Assumption 4.1
is valid by defining:

f(x, u.w) = zh(x, u, w) if (x, u, w) ∈ Fh,
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where zh(x, u, w) := fi(x, u, w) if (x, u, w) ∈ Pi.
For each h ∈ {1, 2, . . . , H} define the pLPs:

V̂ ∗
h (x, u) := max

w
{zh(x, u, w) | (x, u, w) ∈ cl (Fh)} , (4.18a)

V ∗
h (x, u) := sup

w
{zh(x, u, w) | (x, u, w) ∈ Fh } . (4.18b)

Theorem 4.4 The following holds for all h ∈ {1, 2 . . . , H}:

V ∗
h (x, u) = V̂ ∗

h (x, u), ∀(x, u) ∈ dom (V ∗
h ) .

Moreover,

V ∗(x, u) = max
h∈{1,2,...,H}

V̂ ∗
h |dom(V ∗h )(x, u).

PROOF: The first assertion holds trivially from the fact that (4.18a) is a pLP and
from the equality of the supremum and maximum over respectively Fh and cl (Fh),
cf. Lemma 4.2 and Corollary 4.1. Having the first statement established automati-
cally ensures that the second assertion is correct, since, for each h ∈ {1, 2, . . . , H},
we restrict V̂ ∗

h (·) to the domain of V ∗
h (·).

¤
Since we now have an exact expression for V ∗(·), we can now apply the proce-

dure from the previous section for the purpose of obtaining an ε-optimal solution to
our problem. Recalling that V ∗(·) is PWA and defined on a polygonR = ∪K

k=1Rk,
that is,

V ∗(x, u) = V ∗
k (x, u) if (x, u) ∈ Rk,

then J∗ε (·) is defined as

J∗ε (x) := min
k∈{1,2,...,K}

V ∗
k (x, u∗k,ε(x)). (4.19)

Theorem 4.5 J∗ε (x) ≤ J∗(x) + ε, ∀x ∈ dom (J∗), and

ε- arg min
u
{V ∗(x, u) | (x, u) ∈ Z } 6= ∅, ∀x ∈ dom (J∗) .

PROOF: Both statements are confirmed by construction and consequences of
Theorems 4.2, 4.3 and 4.4.

¤

4.6 ε-optimal solutions to inf-sup optimal control of PWA
systems

In this section we use the results of the previous sections to obtain ε-optimal solu-
tions to robust optimal control problems for discontinuous PWA systems subject to
state- and input-dependent disturbances. We recall the problem setup from (Ker-
rigan and Mayne 2002), which was extended in (Raković, Kerrigan, and Mayne
2004) to handle state- and input-dependent disturbances.
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4.6.1 Problem setup

Consider the discrete-time system of the form:

x+ = g(x, u, w),

where x is the state, x+ is the successor state, u is the input, g(·) is assumed piece-
wise affine on the polygon P , and w ∈ W(x, u) ⊆ Rp is a time-varying distur-
bance. The state and input are subject to constraints (x, u) ∈ Y ⊆ Rn×Rm, where
we assume that Y is a polygon. The constraints define the set-valued map

U(x) := {u | (x, u) ∈ Y } . (4.20)

Let π := {µ0(·), µ1(·), . . . , µN−1(·)} denote a control policy (i.e. µi : Rn →
Rm) over the horizon N and let w := {w0, w1, . . . , wN−1} denote a sequence of
disturbances. Moreover, let φ(i; x, π, w) denote the solution to x+ = g(x, u, w) at
time-step i for the initial state x, control policy π and disturbance sequence w.

The cost is defined as

JN (x, π,w) := Jf (xN ) +
N−1∑

i=0

`(xi, ui)

where xi := φ(i; x, π,w) and ui := µi(xi), ∀i. The stage cost `(·) and terminal
cost Jf (·) are assumed to be PWA (p ∈ {1,∞}):

`(x, u) : = ‖Qx‖p + ‖Ru‖p,

Jf (x) : = ‖Px‖p,

where P , Q, and R are suitably defined weighting matrices.
The optimal control problem considered is given by

PN (x) : J∗N (x) := inf
π∈ΠN (x)

sup
w∈W(x,π)

JN (x, π,w), (4.21)

where the set of admissible disturbance sequences is given by

W(x, π) := {w |wi ∈ W (xi, ui) , i = 0, 1, . . . , N − 1} ,

and the set of admissible control polices is

ΠN (x) := {π | (xi, ui) ∈ Y, i = 0, 1, . . . , N − 1, xN ∈ Xf , ∀w ∈ W(x, π)} ,

where Xf is some non-empty polygonic target set. In the sequel, we denote by XN

the set of initial states for which there exists an admissible control policy, i.e.

XN := {x |ΠN (x) 6= ∅} .

In addition we make the following assumptions in order to ensure that PN (x) is
well defined for all x ∈ XN :
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A1: The function g : P → Rn is PWA on the polygon P .

A2: The sets Y and Xf are non-empty polygons.

A3: For all (x, u) ∈ Y , the set W(x, u) is non-empty.

A4: The graph of W is a non-empty polygon.

A5: The value function J∗N (·) is bounded below on XN .

Thus, in comparison to (Raković, Kerrigan, and Mayne 2004) several assump-
tions are relaxed (note that we use the definition in (Rockafellar and Wets 1998)
for continuity of a set-valued map):

i) We do not assume that g(·) is continuous.

ii) Y and Xf are not required to have the origin in the interior.

iii) The set-valued map x 7→ U(x) is not required to be continuous and bounded
on bounded sets.

iv) The set-valued map (x, u) 7→ W(x, u) is not required to be continuous.

v) The solution to PN (x) is not assumed to exist ∀x ∈ XN .

It should be noted that in (Raković, Kerrigan, and Mayne 2004) the majority of
the assumptions above are made for the purpose of being able to directly apply the
topological results in (Raković, Kerrigan, Mayne, and Lygeros 2006).

4.6.2 Sub-optimal solution via dynamic programming.

The procedure for obtaining approximate solutions to (5.1), under assumption A1-
A5, will be presented in this section. The results in (Raković, Kerrigan, Mayne,
and Lygeros 2006) reveal geometric structure that lead to the possibility to apply
a dynamic programming approach to the above mentioned problem. We recall the
dynamic programming method from (Raković, Kerrigan, and Mayne 2004).

Dynamic programming provides a recursive procedure for computing sequen-
tially the partial return functions J∗j (·) (defined in (5.1) with N = j), the associated
set-valued control laws κj(·) as well as their domains (here j denotes ‘time-to-go’
so that κj(·) = µ∗N−j(·) if j ∈ {1, . . . , N}where µj(·) is as defined in the previous
section). The domain of J∗j (·) and κj(·) is Xj , the set of states that can be robustly
steered to the terminal set Xf in j steps or less. Define also

g(x, u,W(x, u)) := {g(x, u, w) |w ∈ W(x, u)} .

The solution to PN (x) may be obtained as follows. For all j ∈ {1, 2, . . .}, j
denotes “time-to-go”, and the partial return function J∗j (·), the set-valued control
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law κj(·), and the controllability set Xj are given by:

J∗j (x) = inf
u∈U(x)

sup
w∈W(x,u)

{
J̃j−1(x, u, w)

∣∣∣ g(x, u,W(x, u)) ⊆ Xj−1

}
, ∀x ∈ Xj ,

(4.22a)

J̃j−1 := `(x, u) + J∗j−1(g(x, u, w)), (4.22b)

κj(x) = arg min
u∈U(x)

{
`(x, u) + J∗j−1(x

+)
∣∣ g(x, u,W(x, u)) ⊆ Xj−1

}
, (4.22c)

Xj = {x | ∃u ∈ U(x) s.t. g(x, u,W(x, u)) ⊆ Xj−1}, (4.22d)

with boundary conditions

J∗0 (x) = Jf (x), X0 = Xf . (4.22e)

The conditions g(x, u,W(x, u)) ⊆ Xj−1 and u ∈ U(x) in (4.22) may be
expressed as

(x, u) ∈ Σj := {(x, u) ∈ Y | g(x, u, w) ∈ Xj−1 ∀w ∈ W(x, u)} ,

in which case Xj can be interpreted as the projection of the set Σj , i.e.

Xj = {x | ∃u s.t. (x, u) ∈ Σj } .

The reader is referred to (Raković, Kerrigan, Mayne, and Lygeros 2006) for details
on how to compute Σj . In order to analyze PN (x), it is convenient to introduce the
functions V ∗

j (·), j = 1, 2, . . . , N − 1, defined by

V ∗
j (x, u) := sup

w∈W(x,u)
J∗j (g(x, u, w)).

Note that we are interested in values of the functions {V ∗
j (·)}N−1

j=1 and the
sets {Σj}N−1

j=1 . The recursion (4.22a)-(4.22d) may therefore be rewritten as

V ∗
j−1(x, u) = sup

w

{
J∗j−1(g(x, u, w)) |w ∈ W(x, u)

} ∀(x, u) ∈ Σj , (4.23a)

J∗j (x) = inf
u

{
`(x, u) + V ∗

j−1(x, u) | (x, u) ∈ Σj

} ∀x ∈ Xj , (4.23b)

κj(x) = arg min
u

{
`(x, u) + V ∗

j−1(x, u) | (x, u) ∈ Σj

} ∀x ∈ Xj , (4.23c)

Σj = {(x, u) ∈ Y | g(x, u,W(x, u)) ⊆ Xj−1 } , (4.23d)

Xj = {x | ∃u s.t. (x, u) ∈ Σj } . (4.23e)

For each j we propose to use the approximate procedure presented in the previ-
ous sections (Theorems 4.2–4.4) when solving (4.23b) when the set κj(·) (4.23c)
is empty. Thus, for each j for which κj(x) = ∅ for some x ∈ Xj , we com-
pute the approximation κj,ε(·), that is, κj,ε(·) is a selection from the set-valued

map x 7→ ε- arg minu

{
`(x, u) + V ∗

j−1(x, u) | (x, u) ∈ Σj

}
.
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Two approaches are natural when considering the dynamic programming re-
cursion; the first is the one outlined above, namely using the exact expressions for
the functions {V ∗

j (·)}N−1
j=0 and {J∗j (·)}N

j=0 and use Theorems 4.2–4.4 to compute
{κj,ε(·)}N

j=1. The second approach is to use the approximate value function in the
dynamic programming recursion:

V ∗
j−1,ε(x, u) = sup

w

{
J∗j−1,ε(g(x, u, w)) |w ∈ W(x, u)

}
, ∀(x, u) ∈ Σj ,

κj,ε(x) ∈ ε- arg min
u

{
`(x, u) + V ∗

j−1,ε(x, u) | (x, u) ∈ Σj

}
, ∀x ∈ Xj ,

J∗j,ε(x) = `(x, κj,ε(x)) + V ∗
j−1,ε(x, κj,ε(x)), ∀x ∈ Xj .

With this approach an error bound is easily derived, as demonstrated by the
following theorem:

Theorem 4.6 J∗N,ε(x) ≤ J∗N (x) + Nε.

PROOF:
We verify the induction base by carrying out the first iteration of the dynamic

programming recursion:

V ∗
0 (x, u) = sup

w
{J∗0 (g(x, u, w)) |w ∈ W(x, u)} , ∀(x, u) ∈ Σ1,

κ1,ε(x) ∈ ε- arg min
u
{`(x, u) + V ∗

0 (x, u) | (x, u) ∈ Σ1 }, ∀x ∈ X1,

J∗1,ε(x) = `(x, κ1,ε(x)) + V ∗
0 (x, κ1,ε(x)) ≤ J∗1 (x) + ε.

Assuming that the bound holds for N = j, i.e.

J∗j,ε(x) ≤ J∗j (x) + jε,

we must verify that the bound also holds for N = j + 1. We get:

V ∗
j,ε(x, u) = sup

w

{
J∗j,ε(g(x, u, w)) |w ∈ W(x, u)

}

≤ sup
w

{
J∗j (g(x, u, w)) |w ∈ W(x, u)

}
+ jε

= V ∗
j (x, u) + jε, ∀(x, u) ∈ Σj+1,

and

κj+1,ε(x) ∈ ε- arg min
u

{
`(x, u) + V ∗

j,ε(x, u) | (x, u) ∈ Σj+1

}
,

and since

inf
u

{
`(x, u) + J∗j,ε(x, u) | (x, u) ∈ Σj+1

}

≤
J∗j+1(x)︷ ︸︸ ︷

inf
u

{
`(x, u) + V ∗

j (x, u) | (x, u) ∈ Σj+1

}
+ jε
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we get

J∗j+1,ε(x) = `(x, κj+1,ε(x)) + V ∗
j,ε(x, κj+1,ε(x)) ≤ J∗j+1(x) + (j + 1)ε. ¤

With this approach it is clear that the degree of sub-optimality can be specified a
priori by choosing ε.

4.7 Conclusion

A method for obtaining approximate solutions to robust optimal control of dis-
continuous PWA systems has been presented. This was achieved by repeatedly
applying a procedure, which obtained ε-optimal solutions to pLPs with strict and
non-strict inequality constraints, in a dynamic programming approach. It has been
demonstrated that ε-optimal solutions exists under mild assumptions, a bound on
the total error for the approximate dynamic programming has been given and the
degree of sub-optimality can be specified a priori.

This chapter considered the problem of computing the solution to a given finite
horizon optimal control problem. Though this is an interesting and practically use-
ful problem in itself, an interesting research question is how to modify the problem
so that stability may be guaranteed if the solution were to be implemented in a re-
ceding horizon fashion, as common in MPC (Mayne, Rawlings, Rao, and Scokaert
2000).



Chapter 5

Utilizing Reachability in Point
Location Problems

5.1 Introduction

Recently it has been shown that an optimal control law can be obtained in explicit
form as a function of the initial state for several classes of model predictive con-
trol problems, see e.g. (Bemporad, Borrelli, and Morari 2002; Bemporad, Morari,
Dua, and Pistikopoulos 2002; Seron, Goodwin, and Doná 2003; Johansen 2002;
Grieder, Borrelli, Torrisi, and Morari 2004; Grieder, Kvasnica, Baotić, and Morari
2005; Raković, Kerrigan, and Mayne 2004). Once an explicit solution to a model
predictive control problem is obtained, the online computation reduces to evaluat-
ing the control law. In this chapter we consider MPC problems where an optimal
explicit control law is piecewise affine, that is, the state space is partitioned into
a set of non-intersecting polyhedra, each associated with an affine function. The
explicit version of MPC can be summarized as follows:

1. Measure the current state of the system.

2. Identify the the region of the state space partition that contains the current
state (this will be referred to as the point location problem).

3. Apply the control associated with the region identified in step 2) to the plant.

4. Return to step 1).

In this chapter we are concerned with step 2) above. The existing approaches for
performing step 2. (Tøndel, Johansen, and Bemporad 2003b; Jones, Grieder, and
Raković 2006; Borrelli, Baotić, Bemporad, and Morari 2001) does a search over
the entire state space partition at every time instant. We show that under certain
assumptions on the MPC problem, this is unnecessary. By utilizing reachability
analysis we are able to map an element of the state space partition one step forward
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in time, and hence, identifying a subset of the state space partition in which our next
state is guaranteed to be contained in.

In the context of explicit MPC, we like to highlight three important factors; i)
the worst case number of arithmetic operations needed to solve the point location
problem determines the smallest possible sampling rate for the system, ii) the av-
erage number of arithmetic operations needed to solve the point location problem
for a sequence of states gives an estimate of the energy usage of the device on
which the algorithm for the point location problem is implemented, and iii) the
number of elements in the state space partition gives an estimate of the storage
space required to implement the control scheme. Naturally one cannot, without
some a priori knowledge of the state at the initialization of the control scheme,
reduce the worst case number of arithmetic operations without completely altering
the algorithm used to solve the point location problem. The average number, how-
ever, can be reduced at the expense of increased off-line processing and required
storage space, which is the topic of this chapter.

5.2 Notation, Basic Definitions and Problem Setup

A polyhedron is the intersection of a finite number of closed halfspaces. A non-
empty set F is a face of the polyhedron P ⊂ Rn if there exists a hyperplane {z ∈
Rn | aT z = b}, where a ∈ Rn, b ∈ R, such that F = P ∩ {z ∈ Rn | aT z =
b} and aT z ≤ b for all z ∈ P . We say that a set of finitely many polyhedra
P := {P 1, P 2, . . . , P I} forms a polyhedral cover of a polyhedron P if ∪I

i P
i =

P . With some abuse of mathematical rigor, we say that a set of polyhedra P :=
{P 1, P 2, . . . , P I} is a polyhedral partition of a polyhedron P if and only if P is
a polyhedral cover of P and the intersection of the relative interiors of any two
members of P is equal to the empty set. If f : X → Y is a function, then the
restriction of f to the domain D ⊆ X is written f |D : D → Y . The convex
hull operator is denoted by conv(·). Given two sets X ⊂ Rn and Y ⊂ Rn, the
Minkowski set addition is defined as X ⊕ Y := {x + y | x ∈ X, y ∈ Y }.

Consider the discrete-time system on the form:

x+ = f(x, u, w),

where x is the (measured) state, x+ is the successor state, u is the input, f(·) can
take the form Ax + Bu, Ax + Bu + w, or Ax + Bu + w with [AB] ∈ M :=
conv

(
[A1 B1], [A2 B2], . . . , [AJ BJ ]}), and w ∈ W is a persistent disturbance

whereW is a polyhedron. The state and input are subject to constraints (x, u) ∈ Y
where we assume that Y is a polyhedron. The constraints define the set-valued map
U(x) := {u | (x, u) ∈ Y } . Let π := {µ0(·), µ1(·), . . . , µN−1(·)} denote a control
policy over the horizon N and let w := {w0, w1, . . . , wN−1} denote a sequence of
disturbances. Moreover, let φ(i; x, π, w) denote the solution to x+ = f(x, u, w) at
iteration i for the initial state x, control policy π and disturbance sequence w. The
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cost is defined as

VN (x, π,w) := Vf (xN ) +
N−1∑

i=0

l(xi, ui)

where xi := φ(i; x, π,w) and ui := µi(xi), ∀i. The stage cost l(·) and terminal
cost Vf (·) are assumed to be linear or quadratic. The optimal control problem
considered is given by

P(x) : V ∗(x) := min
π∈ΠN (x)

max
w∈W

VN (x, π,w) (5.1)

where the set of admissible disturbance sequences is given by

W := {w |wi ∈ W, i = 0, 1, . . . , N − 1} ,

and the set of admissible control polices is

ΠN (x) :=
{

π

∣∣∣∣
(xi, ui) ∈ Y, i = 0, 1, . . . , N − 1,
xN ∈ Xf , ∀w ∈ W

}
.

and Xf is some polyhedral terminal constraint. Note that if wi = 0 ∀i, P(x)
reduces to a minimization problem. In the sequel, we denote by X the set of ini-
tial states for which a solution to P(x) exists. We assume throughout this chap-
ter that there exists a solution to P(·) such that the function u∗ : X → Rm

defined by u∗(x) = u0(x) is piecewise affine on a polyhedral partition R :=
{R1, R2, . . . , RI} of X , which is the case under some additional assumptions on
the combination of f(·) and the norm used in the cost function, see e.g. (Bempo-
rad, Morari, Dua, and Pistikopoulos 2002; Bemporad, Borrelli, and Morari 2002;
Raković, Kerrigan, and Mayne 2004; Seron, Goodwin, and Doná 2003; Johansen
2002; Grieder, Borrelli, Torrisi, and Morari 2004; Grieder, Kvasnica, Baotić, and
Morari 2005).

5.3 Point Location Problem

The point location problem can be stated as: Given a polyhedral partition R :=
{R1, R2, . . . , RI} of the polyhedron R and a point x ∈ R, find k ∈ {1, 2, . . . , I}
such that x ∈ Rk.

There exist several approaches for the purpose of solving the point location
problem, the next four subsections briefly summarize the most common strategies
(the reader is referred to the respective paper for details).

5.3.1 Linear search

Linear search is the most inefficient of the methods we consider, but also the most
general approach for solving the point location problem:
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1. let i ← 1.

2. if x ∈ Ri, terminate (point location problem solved).

3. let i ← i + 1 and return to 2).

5.3.2 Comparison of value functions

Comparison of value functions improves upon the linear search in that it is not
explicitly checked if x ∈ Ri. This approach relies on that V ∗(·) is convex, con-
tinuous, PWA and defined on a polyhedral partitionR := {R1, R2, . . . , RI} of X .
The function V ∗(·) is given by

V ∗(x) := V ∗|Ri(x) if x ∈ Ri.

Thus, given x, an index k such that x ∈ Rk is determined from

k = arg max
i∈{1,...,I}

V ∗|Ri(x).

Clearly, the complexity of this approach is linear in the cardinality ofR. The main
advantages with this approach is its simplicity; that one only needs to store the
value functions and optimizers, and that it requires no additional off-line computa-
tional effort.

5.3.3 Binary search tree

In (Tøndel, Johansen, and Bemporad 2003b) the authors propose a binary search
tree approach for solving the point location problem. It is only assumed that u∗(·)
is piecewise affine on a polyhedral partition R of X . It is beyond the scope of
this chapter to describe in detail how the tree is constructed, but the structure is as
follows (see also Appendix C):

1. Each leaf node represents one polyhedral set R ∈ R and the associated
control law u∗|R(·).

2. Each node that is not a leaf node represents a hyperplane, h(x) = aT x + b,
and points to two children, c+ and c−. The leaf nodes in the c+ (c−) branch
are the leaf nodes whose corresponding polyhedral set intersect

{x |h(x) > 0} ({x |h(x) ≤ 0}).

Thus, for a given x we start at the root node, and continue with:

1. If current node is a leaf node, terminate (point location solved).

2. If h(x) > 0 branch to c+, otherwise branch to c−. Return to 1).
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Compared to linear search and comparison of value functions the main advan-
tages with the binary search tree is the low search time (the depth of the search tree
is estimated to be 1.7 log2 I , where I is the cardinality ofR). In addition, no other
assumption than that u∗(·) is piecewise affine on a polyhedral partitionR is placed
on the problem, making the method very accessible. The main drawback is that
the required storage space may become large and that a large number of polyhedra
in R may render the construction of the search tree computationally intractable.

5.3.4 Logarithmic time approach

Recall that a collection of polyhedra P := {P 1, P 2 . . . , P I} is called complex if i)
every face of a member of P is itself a member of P and ii) the intersection of any
two members of P is a face of each of them.

In (Jones, Grieder, and Raković 2006) it is shown that under the assumptions
that V ∗(·) is convex, continuous, and PWA on a complex R := {R1, R2, . . . , RI}
that forms a polyhedral partition of X , the point location problem can be solved in
logarithmic time using a nearest neighbor search (Arya, Mount, Netanyahu, Silver-
man, and Wu 1998). The procedure works by intersecting a power-diagram (Au-
renhammer 1991), which is a weighted Voronoi diagram, with the complex R and
implementing a nearest neighbor search.

The main advantages of this approach compared to the methods mentioned in
Sections 5.3.1-5.3.3 is the low worst case number of arithmetic operations needed
to find the solution. Compared to the binary search tree the computational effort
needed for preprocessing is greatly reduced, however, the requirement that state
space partition must form a complex and the restrictions on the value function
V ∗(·) reduces the applicability of the method compared to the binary search tree.

5.4 Utilizing Reachability Analysis in Point location Prob-
lems

Instead of searching through the entire partition R at each sample one can utilize
reachability analysis to reduce the number of polyhedral sets that are candidates to
contain the state at the next time instant. Under the assumptions on f(·) and u∗(·),
it is possible to compute a convex outer approximation of the one-step forward
reach set associated with a set R ∈ R, that is, a convex outer approximation of the
set

R+ := {f(x, u∗|R(x), w) |x ∈ R, w ∈ W} ,

where the control law u∗(·) is defined as

u∗(x) = u∗|R(x) := KRx + kR if x ∈ R, R ∈ R.

Given a set R ∈ R we can map the set R one-step forward in time yielding
the set R+. We associate with this reach set the subset M(R+) of R defined
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by
{
Ri ∈ R ∣∣R+ ∩Ri 6= ∅}

and define a polyhedral partition

N (R+) :=
{
Ri ∩R+

∣∣ Ri ∈M(R+)
}

of R+. Thus, if our previous state was contained in R, then the point location
problem reduces to a search through setN (R+). The off-line computation required
and the online algorithm are stated in Algorithm 5.1 and 5.2, respectively.

Procedure 5.1 Offline computation.
Input: The system x+ = f(x, u, w), the constraints set (Y,W), and the PWA

control law u∗(·).
Output: A collection C of pairs (R,N (R+)).

1: C ← ∅.
2: for all R ∈ R do
3: Compute R+ := {f(x, u∗|R(x), w) |x ∈ R, w ∈ W}.
4: Compute N (R+) :=

{
Ri ∩R+

∣∣Ri ∈M(R+)
}

.
5: C ← C ∪ {(R,N (R+))}.
6: end for

Procedure 5.2 Explicit MPC utilizing reachability.
Input: An explicit control law u∗(·) defined on R, and the output C of Algo-

rithm 5.1.
1: Initialization: Given the measured state x, solve the point location problem

for R, i.e. determine R such that x ∈ R. Apply u∗|R(x) to the plant.
2: while MPC algorithm is running do
3: Measure the state x.
4: Given R, recall N (R+) from C and find R̄ ∈ N (R+) such that x ∈ R̄.
5: Apply the control u∗|R̄(x) to the plant.
6: R ← R̄.
7: end while

5.4.1 Evaluation of piecewise affine control laws for the regulation
problem of deterministic systems

Consider the class of systems where

x+ = f(x, u, 0) = Ax + Bu.

The reach set R+ associated with R is easily found from

R+ := {Ax + Bu∗|R(x) |x ∈ R} = (A + BKR)R⊕ {BkR}.

We see that if we use the Algorithms 5.1 and 5.2 on this problem, it resembles
open loop control in the sense that we have assumed that our system is completely
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deterministic. To remedy this we consider the case where measurement noise and
input corruption are represented by the model (model uncertainty is treated in the
next subsection):

x+ = Ax + Bu + w, w ∈ W.

In this case the reach set becomes:

R+ : = {Ax + Bu∗|R(x) + w |x ∈ R, w ∈ W}
= (A + BKR)R⊕W ⊕ {BkR}.

5.4.2 Evaluation of piecewise affine control laws for the regulation
problem of uncertain systems

Consider the class of systems where

x+ = f(x, u, w) = Ax + Bu + w,[
A B

] ∈M := conv
([

A1 B1
]
, . . . ,

[
AJ BJ

])
.

The reach set associated with R ∈ R is given by

R+ : =
{

Ax + Bu∗|R(x) + w

∣∣∣∣
x ∈ R, w ∈ W[
A B

] ∈M
}

=
⋃

x∈R

{
Ax + Bu∗|R(x) + w

∣∣∣∣
[
A B

] ∈M
w ∈ W

}
.

Noting that this set is generally non-convex, we use the convexification of R+,
i.e. R̂+ := conv (R+) or any other suitable convex outer approximation. For
each fixed pair [A B] ∈ M we have that {Ax + Bu∗|R(x) + w |x ∈ R, w ∈ W}
is a polyhedron, hence R̂+ is also a polyhedron. It is straightforward to use Al-
gorithm 5.1 and 5.2 in the parameter uncertain case if step 3 of Algorithm 5.1 is
replaced by: Compute R̂+.

5.4.3 Evaluation of piecewise affine control laws for set-point tracking
for deterministic systems

The tracking problem is slightly different than the regulation, and for brevity we
only consider the deterministic system on the form

x+ = f(x, u, 0) = Ax + Bu.

The objective is to minimize deviation from some desired reference signal s. In
this case we assume that s ∈ S, where S is a polyhedron, but that s can change
arbitrarily from one sample to the next. The optimal control law is then a function
of the set-point and initial state:

u∗(x, s) = u∗|R(x, s) := K1
Rx + K2

Rs + kR if (x, s) ∈ R,
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which is defined on a polyhedral partition R of the set X × S.
The reach set is, in this case, given by:

R+ : = R+
X × S, where

R+
X : = {Ax + Bu∗|R(x, s) | (x, s) ∈ R} .

5.5 Numerical Example

Consider a discrete-time double integrator

x+ = Ax + Bu + w =
[
1 Ts

0 1

]
x +

[
T 2

s

Ts

]
u + w,

where the sampling interval is Ts = 0.3. Further, let the constraints be−1 ≤ x2 ≤
1 and |u| ≤ 1. An explicit control law is defined by solving an optimal control
problem for the nominal case, i.e. for wi = 0, ∀i. Figure 5.1(a) depicts the de-
terministic case, i.e. w = 0 and Figures 5.1(b)-5.1(c) for non-zero disturbances.
Note that the solution complex R contains 183 polyhedra, and that in the deter-
ministic case no search is necessary. When disturbance is included, a search over
11 and 29 regions are required for ‖w‖∞ ≤ 0.1 and ‖w‖∞ ≤ 0.3, respectively, for
a randomly chosen element ofR. Note also that for the case where the disturbance
is limited to ‖w‖∞ ≤ 0.3, the reduction is substantial even though, as can be seen
from Figure 5.1(c), the disturbance can completely cancel the control action and
therefore is unreasonably large.

5.6 Incorporating reachability in algorithms for point lo-
cation problems

The worst case time to solve the point location problem is not improved by us-
ing the reachability approach unless some a priori knowledge about the initial
state is available. It is, however, obvious that for linear search (Section 5.3.1)
and comparison of value functions (Borrelli, Baotić, Bemporad, and Morari 2001)
(Section 5.3.2) the average time the microprocessor use to solve the point location
problem is reduced when utilizing the reachability approach, and hence, reducing
energy consumption or making the processor available for other tasks. This natu-
rally comes at the expense of increased storage and off-line computational effort.
For the binary search (Tøndel, Johansen, and Bemporad 2003b) (Section 5.3.3) and
logarithmic time (Jones, Grieder, and Raković 2006) (Section 5.3.4) approaches
the reduction is not immediate, the algorithms either have to be modified or the
extra information available must be encoded into existing data structures. Here we
consider only the binary search tree approach (Tøndel, Johansen, and Bemporad
2003b) and we outline three different approaches for utilizing the extra informa-
tion; mini-trees, lowest start node, and embedded trees.
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5.6.1 Mini-trees

By mini-trees we mean building a small search tree for each of the sets in
{N (R+) |R ∈ R}

.

This is the most efficient approach of the three we are considering, however, both
storage and off-line computational effort is greatly increased.

5.6.2 Identifying lowest start node

Given a one step forward reach set R+, one can traverse the original binary search
tree with respect to R+. That is, in each node that is not a leaf node, we check
if R+ is entirely contained on either side of the hyperplane h(·), i.e. if R+ ∩
{x |h(x) > 0} = ∅ or R+ ∩ {x |h(x) ≤ 0} = ∅. We start at the root node and
traverse the tree until we reach a node nl where the associated hyperplane intersects
R+. The node nl is clearly the node lowest in the tree our search can start from.
Thus, with each reach set we associate a node in the binary search tree that acts
as the root (or initial) node. This approach requires negligible extra preprocessing
and storage, but the average time to solve point location problem is not reduced as
much as the with mini-trees or embedded trees.

5.6.3 Embedded trees

This method is a mix of the two previous approaches. At each node in the search
tree a list of all the reach sets is included. Given a reach set and a node, the
list indicates whether the node should be evaluated or not. If the node should
be evaluated, it is performed like in Section 5.3.3. On the other hand, if there is no
need to evaluate the node, the list points to the next node that should be evaluated.
This approach requires negligible extra preprocessing, the average time is reduced
almost as much as for the mini-trees, but the scheme requires more storage space
than the approach of identifying the lowest start node.

5.7 Conclusion

The reachability approach, under certain mild assumptions on the problem data,
reduces the online computational effort needed to solve the point location problem.
This reduction naturally comes at the expense of increased off-line computational
effort and required storage space. Compared to the logarithmic time approach, the
proposed method requires more preprocessing and storage, but is less restrictive
on the assumptions on the problem data. Thus, the proposed method provides a
tradeoff between evaluation speed and storage/preprocessing that can be used for
problems for which the logarithmic time approach is not applicable.
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(a) Set R and its reach set R+ in deterministic case.
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(b) Set R and its reach set R+ with W =
{w | ‖w‖∞ ≤ 0.1}.
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(c) Set R and its reach set R+ with W =
{w | ‖w‖∞ ≤ 0.3}.

Figure 5.1: Illustration of reach sets. Notice that even with large disturbances
only a small part of the partition needs to be searched to solve the point location
problem.
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Chapter 6

Control Allocation via
Parametric Programming;
Thruster-Controlled Floating
Platform

6.1 Introduction

The task in control allocation is to determine how to generate a specified general-
ized force from a redundant set of actuators and control effectors1 where the as-
sociated controls are constrained, see e.g. (Bodson 2002; Luo, Serrani, Yurkovich,
Oppenheimer, and Doman 2007; Durham 1993; Durham 1994b; Durham 1994a;
Page and Steinberg 2000; Bordignon and Durham 1995b; Bordignon and Durham
1995a; Bodson and Pohlchuck 1998; Buffington, Enns, and Teel 1998; Luo and
Doman 2004; Virnig and Bodden 1994; Eberhardt and Ward 1999; Johansen, Fos-
sen, and Tøndel 2005; Johansen, Fuglseth, Tøndel, and Fossen 2007; Lindfors
1993; Johansen 2004b; Lindegaard and Fossen 2003; Johansen, Fossen, and Berge
2003; Sørdalen 1997). The main objective is to obtain the desired generalized
force, however, it is also common to incorporate secondary objectives, such as
minimizing power consumption, power transients and mechanical tear and wear.
Several other factors, such as actuator- and control effector-dynamics (Luo and
Doman 2004), can also be incorporated. One way of achieving these secondary
goals is to solve a constrained optimization problem online at every sampling in-
stant. A control allocation approach to control synthesis often has the advantage
that a high level control law that is independent of actuator and effector config-
uration can be designed. The approach also utilizes redundancy of the effectors
to obtain a fault tolerant scheme. Constrained control allocation can therefore be

1We distinguish between control effectors and actuators. An effector is a device that generate
generalized forces (e.g. thruster) and an actuator is a device that influences the direction or size of
the force (e.g. a motor). Consequently, there can be several actuators associated with one effector.
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viewed as a special form of inner loop controller design, where it is common to
assume that the inner loop is instantaneous.

Only recently, it has been proposed to solve the constrained optimization prob-
lem off-line (Johansen, Fossen, and Tøndel 2005; Johansen, Fuglseth, Tøndel, and
Fossen 2007) by utilizing parametric programming techniques (Gal and Nedoma
1972; Bemporad, Morari, Dua, and Pistikopoulos 2002; Tøndel, Johansen, and
Bemporad 2003a; Bank, Guddat, Klatte, Kummer, and Tammer 1983). For cer-
tain classes of allocation problems the online computational effort then reduces
to an evaluation of a piecewise affine function, which can be formulated as a
point location problem (Tøndel, Johansen, and Bemporad 2003b; Jones, Grieder,
and Raković 2006; Christophersen, Kvasnica, Jones, and Morari 2007; Spjøtvold,
Raković, Tøndel, and Johansen 2006). The main advantages of this approach
are: i) removing the need for sophisticated optimization software on the proces-
sor, ii) the correctness of the solution can be verified off-line, which is a key issue
in safety critical applications, iii) the worst case number of arithmetic operations
needed to find the solution can easily be computed, iv) the average and worst case
number of arithmetic operations needed to find the solution is usually greatly re-
duced, and v) evaluation of the PWA function can be implemented using fixed
point arithmetic. The main drawbacks, on the other hand, are that i) the problem
class for which this solution strategy is applicable is limited, and in cases where
an exact solution can be found ii) obtaining an explicit solution may be compu-
tationally intractable and iii) the storage space required to represent the solution
may exceed the available memory. The drawbacks may in particular be apparent
when the system has to accommodate reconfiguration due failure situations and/or
operation in several modes. However, if we are able to obtain and represent an
explicit solution, it is clearly more desirable than utilizing online optimization.

In this chapter we focus on optimal thrust allocation for a scale model of a
thruster-controlled floating platform that is commonly used for offshore oil drilling
and production. In particular, we seek to obtain an explicit solution to the control
allocation problem. The platform has eight rotatable fixed pitch azimuth thrusters
and the high level controller specifies surge, sway and yaw forces. The task is to
determine the thrust magnitude and azimuth angle for each thruster such that the
desired surge, sway and yaw forces are generated. Each thruster can rotate 360
degrees, but the thrust magnitude is limited. In addition, it is necessary to enforce
artificial constraints on the azimuth angles to avoid non-linear interaction between
the thrusters.

Current non-optimization based approaches to this problem are either conser-
vative in terms of utilizing only a limited fraction of the attainable force set2 or
not optimal in terms of power consumption. One approach is to fix the azimuth
thrusters angles and use a pseudo inverse to compute the thrust magnitudes (Fos-
sen 2002; Tyssø and Aga 2006); a method that only utilizes a limited volume of the

2The attainable force set is the set of generalized forces that can be generated by the control
effectors (azimuth thrusters) while fulfilling the constraints.
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attainable force set and may yield singular thruster configurations if thruster failure
occurs. Another approach is to use a generalized inverse to compute both azimuth
angles and thrust magnitudes (Sørdalen 1997). This approach is also conservative
with respect to the attainable force set and not optimal with regards to power con-
sumption. Neither of the approaches efficiently takes into account the constraints
on the control inputs other than saturating the controls, and consequently an op-
timization based approach should be beneficial both with regards to minimizing
power consumption and utilizing a larger volume of the attainable force set.

Optimization based approaches, both explicit solutions and online optimiza-
tion, have been successfully tested on ships and other control allocation prob-
lems (Bodson 2002; Luo, Serrani, Yurkovich, Oppenheimer, and Doman 2007;
Durham 1993; Durham 1994b; Durham 1994a; Page and Steinberg 2000; Bor-
dignon and Durham 1995b; Bordignon and Durham 1995a; Bodson and Pohlchuck
1998; Buffington, Enns, and Teel 1998; Luo and Doman 2004; Virnig and Bodden
1994; Eberhardt and Ward 1999; Johansen, Fossen, and Tøndel 2005; Johansen,
Fuglseth, Tøndel, and Fossen 2007; Lindfors 1993; Johansen 2004b; Lindegaard
and Fossen 2003; Johansen, Fossen, and Berge 2003; Sørdalen 1997). However,
the platform has 8 control effectors and 16 controls inputs and needs to handle
thruster failure conditions, making it questionable whether obtaining an explicit
solution is computationally tractable. We seek to illustrate that obtaining an ex-
plicit solution to an approximation of the control allocation problem for the plat-
form is computationally tractable, that the explicit solution can evaluated at a high
frequency, and that the performance is satisfactory even if rate constraints for the
effectors are neglected.

Chapter Structure: Section 6.2 introduces basic notation and nomenclature
and in Section 6.3 we recall the fundamentals of constrained control allocation.
Explicit solutions to parametric linear and convex quadratic programs are treated
in Section 6.4. In Section 6.5 we present the control allocation problem for the
platform and experimental results.

6.2 Basic definitions and nomenclature.

For completeness we recall some standard notation and definitions. A polyhedron
is the intersection of a finite set of open and/or closed halfspaces. For an extended
real valued (i.e. allowed to take values in R := [−∞,∞]) function f : Rn → R,
the domain of f is defined as the set

dom (f) := {x ∈ Rn | −∞ < f(x) < ∞} .

Whenever we refer to a function f or mapping F having a certain property, we
implicitly mean that the property holds only on the domain of f or F , e.g. if we
say that f is continuous, it is continuous at every x ∈ dom (f). A function f :
Rn → Rm is piecewise affine (PWA) on its domain if dom (f) is the union of
finitely many polyhedra, relative to each of which f(·) is affine. If X ⊆ Rn and
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Y ⊆ Rm, then 2Y is the power set (set of all subsets) of Y and a set-valued map is
defined as F : X → 2Y . For notational simplicity, we use double arrows to specify
that a mapping is set-valued, i.e. set-valued maps are specified as F : X ⇒ Y .
A function f : Rn → Rm is a selection of the set-valued map F : Rn ⇒ Rm

if f(x) ∈ F (x) for all x ∈ dom (F ).
Given two sets X ⊂ Rn and Y ⊂ Rn, the Minkowski set addition is defined as

X ⊕ Y := {x + y | x ∈ X, y ∈ Y } .

Given the a sequence of sets {Xi}b
i=a, we define

⊕b
i=a Xi := Xa ⊕ · · · ⊕Xb.

Throughout we will use the superscript ∗ to distinguish between optimizers
and decision variables, e.g. for the problem minx f(x), x is the decision variable
and x∗ denotes an optimizer.

6.3 Static Constrained Control Allocation.

Consider the equation

τ̄ = g(x, u, t), (6.1)

where x ∈ Rnx is the state, τ̄ ∈ Rnτ is the generalized force, t is time and u ∈ Rnu

is the control. Assume further that there exists a virtual time-varying feedback
controller

τ := k(t, x), (6.2)

that is, our desired generalized force is τ while the actual generalized force is τ̄ .
The task in control allocation is to determine controls u, satisfying some con-
straints u ∈ U ⊆ Rnu , that generate the generalized force τ̄ that is in some sense
closest to the desired τ . When it is possible to obtain τ̄ = τ , it is often an un-
countable number of combinations of controls that achieve the desired generalized
force. Hence, in this case, secondary objectives such as minimization of power
consumption and actuator tear and wear are considered.

It is common to assume a linear (possibly time-varying and state-dependent)
relationship between the controls and the generalized forces (Bodson 2002; Jo-
hansen, Fossen, and Tøndel 2005; Luo, Serrani, Yurkovich, Oppenheimer, and
Doman 2007; Durham 1993; Durham 1994b; Durham 1994a; Page and Steinberg
2000; Bordignon and Durham 1995b; Bordignon and Durham 1995a)

τ̄ = B(x, t)u,

where B(·, ·) ∈ Rnτ×nu . We will consider an even simpler relationship and in the
sequel we write (6.1) as

τ̄ = Bu.
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In this formulation it is sometimes possible to accommodate for actuator and con-
trol effector nonlinearities through a nonlinear mapping, as will be done in our
application through a quadratic relation between the thruster force and propeller
speed.

The simplest version of the constrained control allocation problem is to find a
solution (u, s) (s ∈ Rnτ are slack variables) to the system

τ + s = Bu and u ∈ U , (6.3)

such that s = 0 if there exists u ∈ U for which τ = τ̄ = Bu.
Several methods exist for the purpose of solving this problem. The most com-

mon approaches are briefly summarized in the following five subsections, but the
reader is referred to (Bodson 2002) and references therein for details.

6.3.1 Generalized and cascaded generalized inverses

In the simplest approach to the linear control allocation problem the controls are
constrained to U := {u |u ≤ u ≤ u}, where the inequalities are to be interpreted
componentwise. The solution procedure called the generalized inverse simply as-
sumes that the controls are unconstrained, i.e. the solution becomes:

u∗ = B#τ

where B# is a weighted pseudo-inverse of B given by

B# = H−1BT (BH−1BT )−1.

u∗ solves the problem

min
u

uT Hu s.t. Bu = τ,

where H > 0 and B has full rank. If u∗ /∈ U , then u = saturate(u∗) is used as the
control input. The reader is referred to (Virnig and Bodden 1994; Eberhardt and
Ward 1999) for details.

A simple improvement of the generalized inverse is the cascaded generalized
inverse. The elements û of u∗ that saturate for the generalized inverse are removed
from the equation by letting

Bu =
[
B̃ B̂

] [
ũ
û

]
= τ ⇒ ũ = B̃+(τ − B̂û),

where B̃+ = B̃T (B̃B̃T )−1. This process is repeated until either all remaining
controls saturate, none saturate or the system is inconsistent. In the latter case the
undetermined controls are given by the left pseudo inverse; ũ = (B̃B̃T )−1B̃T (τ −
B̂û).
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6.3.2 Direct allocation.

Direct allocation (Durham 1993; Durham 1994b; Durham 1994a) finds the scalar K
such that K is maximized subject to Kτ = Bû and u ≤ û ≤ u. If K ≤ 1, we
implement u = û, otherwise u = û/K. This problem can be written as an LP or
solved using geometric arguments when the dimension of τ is small, typically two
or three.

6.3.3 Two stage optimization

Two stage optimization (Enns 1998) is divided into a control deficiency and a con-
trol sufficiency stage. In the control deficiency stage the error between the desired
and implemented generalized force is minimized, that is,

J = min
u
‖τ −Bu‖ s.t. u ∈ U := {u |u ≤ u ≤ u} .

If J = 0 in the above problem, then the control sufficiency stage is also imple-
mented. Here the objective is to minimize a secondary objective, such as energy
minimization. If we let u∗ denote the solution obtained from the control deficiency
stage, the control sufficiency stage may be to solve the problem

min
u
‖u− û‖ s.t. Bu = Bu∗, u ∈ U ,

where U := {u |u ≤ u ≤ u} and û is some desired control vector.

6.3.4 Mixed optimization.

Mixed optimization is an attempt to solve both the control deficiency and suffi-
ciency stage in one go. The problem is given by

J = min
u
‖τ −Bu‖+ ε‖u− û‖ s.t. u ∈ U ,

where U := {u |u ≤ u ≤ u} and ε is a scalar defining the relative weighting
between the two objectives.

6.3.5 Linear and/or Quadratic Optimization

The formulation that we will utilize in our application is given by:

P(τ) : J∗(τ) := inf
u,s
{J(u, s, τ) | (u, s, τ) ∈ Z } , (6.4a)

J(u, s, τ) := ‖Qs‖l + ‖Ru‖l, (6.4b)

Z :=
{

(u, s, τ)
∣∣∣∣

Bu + s = τ,
u ∈ U

}
, (6.4c)
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where (u, s, τ) ∈ Rnu×Rnτ ×Rnτ , Q ≥ 0 and R ≥ 0 are weight matrices, respec-
tively penalizing use of controls and deviation from desired generalized force, U is
the constraint set on the control inputs, and l ∈ {1, 2,∞}3 denotes the weighting
norm.

Remark 6.1 Please note that it is possible to obtain an exact penalty function (No-
cedal and Wright 1999; Kerrigan and Mayne 2002) (in the sense that if there exists
u∗ ∈ U such that Bu∗ = τ , then s∗ = 0) by utilizing mixed norms in the objec-
tive function, e.g. J(u, s, τ) = ‖Qs‖1 + ‖Ru‖2. This, however often yields a
convex (as opposed to strictly convex) problem, which is slightly more complicated
to solve explicitly (Spjøtvold, Tøndel, and Johansen 2007; Tøndel, Johansen, and
Bemporad 2003c; Jones and Morari 2006).

6.4 Explicit Solutions to Linear Constrained Control Al-
location via Parametric Programming.

6.4.1 Problem Setup

Under certain assumptions on the control allocation problem (6.4), recent progress
in parametric programming allows it to be solved explicitly, typically yielding a
piecewise affine solution function (Johansen, Fossen, and Tøndel 2005). In the
parametric programming setup we have that P(τ) is to be solved for all values
of τ ∈ T , where

T := {τ | ∃(u, s) s.t. (u, s, τ) ∈ Z, J∗(τ) > −∞} = dom (J∗) .

Define the set-valued maps Y : T ⇒ Rnu × Rnτ

Y(τ) := {(u, s) | (u, s, τ) ∈ Z }

and Y∗ : T ⇒ Rnu × Rnτ

Y∗(τ) := arg min
(u,s)

{J(u, s, τ) | (u, s, τ) ∈ Z }.

In the sequel we let y := [uT sT ]T and let y∗(·) denote a selection of Y∗(·), that
is, y∗(τ) ∈ Y∗(τ) for all τ ∈ T .

6.4.2 Solution via Parametric Programming

One might distinguish between two types of linear allocation problems; i) where
the set U is convex, and ii) when U is non-convex. However, in this chapter, we
consider only the case where U is convex, closed and polyhedral. This immedi-
ately implies that (6.4) is a convex problem and that it attains its minimum for all

3l = 2 denotes, with some abuse of mathematical rigor, the quadratic norm, that is, ‖Qx‖2 :=
xT Qx.
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τ ∈ T . By using linear or quadratic norms in the cost function it is evident that
P(·) is either a parametric linear program (pLP) or parametric quadratic program
(pQP). These problems have been subject to a vast amount of research in recent
years (Gal and Nedoma 1972; Jones, Kerrigan, and Maciejowski 2007; Borrelli,
Bemporad, and Morari 2003; Bemporad, Morari, Dua, and Pistikopoulos 2002;
Spjøtvold, Tøndel, and Johansen 2007; Spjøtvold, Tøndel, and Johansen 2005a;
Bank, Guddat, Klatte, Kummer, and Tammer 1983; Tøndel, Johansen, and Bem-
porad 2003a; Tøndel, Johansen, and Bemporad 2003c; Jones and Morari 2006). In
parametric programming the goal is to divide the set of parameters of interest into
a set of smaller regions such that each region is associated with a function that is
optimal for the optimization problem when restricted to its region. For convenience
we summarize the solution properties specialized to our problem formulation (Be-
mporad, Morari, Dua, and Pistikopoulos 2002; Bank, Guddat, Klatte, Kummer,
and Tammer 1983; Gal and Nedoma 1972):

Theorem 6.1 (pLPs and pQPs) Consider problem (6.4) and let U be a closed
polyhedron.

(i) If l ∈ {1, 2,∞}, then J∗(·) is continuous and convex on T .

(ii) If l ∈ {1, 2,∞}, then there exists a continuous selection y∗(·) of Y∗(·) that
is piecewise affine on T . Moreover, if R > 0, Q > 0 and l = 2, then y∗(·) is
unique.

(iii) If l ∈ {1,∞}, then J∗(·) is piecewise affine on T .

(iv) If l = 2, then J∗(·) is piecewise quadratic on T .

Both for pLPs and pQPs the optimizer is PWA and consequently the most
common approach for solving the allocation problem where online-optimization
is utilized can be substituted with an evaluation of a PWA function (Johansen, Fos-
sen, and Tøndel 2005). There exists several methods for efficient evaluation of a
PWA function (Jones, Grieder, and Raković 2006; Tøndel, Johansen, and Bempo-
rad 2003b; Christophersen, Kvasnica, Jones, and Morari 2007), see Appendix C
for a brief description of the method in (Tøndel, Johansen, and Bemporad 2003b)
that is used in the present chapter.

The importance of the existence of a continuous selection should be empha-
sized when parametric programming is utilized to obtain explicit solutions to con-
trol allocations problems. The most important reason for desiring a continuous
mapping from generalized forces to control inputs is to avoid unnecessary tear and
wear of the actuators and variations in power consumption. There is also an issue of
actually obtaining the desired generalized force; although the mapping is viewed as
static this is often an approximation since the actuators are usually affected by rate
constraints. See (Spjøtvold, Tøndel, and Johansen 2007; Tøndel, Johansen, and
Bemporad 2003c; Jones and Morari 2006) for algorithms that obtain continuous
selections to the relevant parametric programs.
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6.4.3 Reconfigurable control allocation.

In many applications it is desirable to be able to switch on and off effectors or to
change the constraints imposed on the control inputs to an effector. Reasons for this
might be handling of actuator/effector failure and different operational modes. The
most straightforward way of achieving this is to define additional parameters φ,
and rewrite (6.4) as

J∗(τ, φ) := min
(u,s)

{‖Qs‖l + ‖Ru‖l | (u, s, τ, φ) ∈ Zφ } ,

Zφ := {(u, s, τ, φ) |Bu + s = τ, u ∈ U(φ)} .

This approach does not complicate the online optimization problem. In addition, if
the parametrization U(·) is linear, it is possible to solve the problem explicitly (Jo-
hansen, Fossen, and Tøndel 2005). However, with parametric programming the
complexity of the optimal control u∗(·, ·) is often too high for the available mem-
ory as solution complexity scales quickly in the number of parameters. It may be
also computationally expensive to obtain the explicit solution.

6.5 Case study: Control Allocation for a Thruster Con-
trolled Floating Platform

In this section we present the problem formulation and experimental results for
static control allocation for a scale model of a thruster-controlled floating plat-
form, see Figures 6.1 and 6.2. Such platforms are used for offshore oil production,
drilling, storage and offloading. The high level controller sending commands to the
thrust allocation may be dynamic positioning, joystick control or thruster assisted
position mooring control.

Hardware- and software-configuration and relevant physical properties for the
experimental setup are given in Appendix D.

We first illustrate how to obtain an explicit solution to the control allocation
problem when the high level controller specifies surge, sway and yaw forces and
the optimization problem is convex. Secondly, we show how a selected set of
thruster or power failure situations can be handled. National and international reg-
ulations (IMO 1994) require that the control system is operable after any single
point failure, such as loss of a single thruster, single diesel generator or electric
switchboard.

6.5.1 System Description

The model takes into account surge-, sway-, and yaw-motions, with the corre-
sponding vessel fixed generalized forces τ := [X, Y, N ]T . Assume that the vessel
has a set P := {p1, p2, . . . , pI} of rotatable thrusters such that each device has
two controls; direction and thrust magnitude. The thruster indexed by i is located
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at ri := [li,x li,y li,z]T relative to the center of rotation in the vessel fixed coor-
dinate system. Assume further that the force Ti from the ith thruster is limited to
the x-y plane in the vessel fixed coordinate system. Thruster pi then produces a
force Ti in the direction defined by the angle αi. The contribution of the ith thruster
to the generalized forces acting on the vessel is given by:

Xi := Ti cosαi, (6.5a)

Yi := Ti sinαi, (6.5b)

Ni := Ti (li,x sinαi − li,y cosαi) , (6.5c)

Figure 6.1: CyberRig I: Scale model of a thruster controlled platform.

Figure 6.2: Thrusters one of the legs.
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such that

X =
I∑

i=1

Xi, Y =
I∑

i=1

Yi, and N =
I∑

i=1

Ni.

In addition we have that each azimuth angle αi and thrust force Ti are con-
strained to the sets

Oi :=
{
(αi, Ti)

∣∣ αi ≤ αi ≤ αi, T i ≤ Ti ≤ T i

}
,

i = {1, 2, . . . , I},

where αi, αi, T i and T i are lower and upper bounds on the azimuth angle and thrust
force for the ith thruster, respectively. We introduce the concept of attainable force
set4:

Definition 6.1 (Attainable Force Set (AFS)) The attainable force set for a set of
control effectors P := {p1, p2, . . . , pI} is given by

T := {τ ∈ Rnτ | (αi, Ti) ∈ Oi, i ∈ {1, 2, . . . , I}} .

In other words, the AFS is the set of generalized forces that can be generated by
the thrusters while fulfilling the constraints. For offshore vessels the AFS is usually
presented as a capability plot illustrating the wind and sea loads the thruster control
system is able to counteract (International Marine Contractors Association 2000).

The relationship (6.5) can be written as the non-linear equation

τ = A(α)T,

where α := [α1, . . . , αI ]T and T := [T1, . . . , TI ]T . To obtain a linear relationship
we follow the procedure in (Sørdalen 1997) where the concept of extended thrust
is introduced. The extended thrust vector is found by decomposing the individual
thrust vectors in the horizontal plane according to: ui,x := Xi, ui,y := Yi and
ui := [ui,x ui,y]T ∈ R2. The generalized thrust vector is then given by the linear
equation

τ = Bu,

where u := [u1,x u1,y u2,x u2,y . . . uI,x uI,y]T and the matrix B is given by

B :=




1 0 . . . 1 0
0 1 . . . 0 1

−l1,y l1,x . . . −lI,y lI,x


 .

4In the aviation literature the attainable force set is referred to as the attainable moment
set (Durham 1993)
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It is easy to see that the sets {Oi}I
i=1 translate into constraints on the con-

trols {ui}I
i=1 defined by

ui ∈ Ci :=



[ui,x ui,y]T

∣∣∣∣∣∣

ui,x = Ti cosαi,
ui,y = Ti sinαi,
(αi, Ti) ∈ Oi



 ,

i = {1, 2, . . . , I}.
We will refer to the sets {Ci}I

i=1 as attainable thrust regions; the set of surge and
sway forces that can be generated by a single thruster.

Definition 6.2 (Attainable Thrust Region (ATR)) The attainable thrust region for
a set of I thrusters is given by given by C :=

⊕I
i=1 Ci.

Hence, the ATR is the set of surge and sway forces that can be generated by a set
of thrusters.

Thruster Model

In this chapter we utilize a conventional quadratic thruster characteristic (Fossen
2002), that is, the thrust force from a given thruster is given by

T = KT ρD4|n|n =: γ(KT , ρ, n), (6.6)

where KT is a strictly positive thrust coefficient where the effect of losses have
been accounted for, ρ is the water density, D is the propeller diameter, and n is
the propeller speed. Assuming constant water density and thrust coefficient we see
that γ(·) is reduced to a function only of the propeller speed. Consequently, if for
the ith thruster the desired extended thrust vectors are Xi and Yi, we recover the
thrust force Ti and azimuth angle αi from the relationships (6.5) and the propeller
speed from (6.6). Note that it is straightforward to replace (6.6) by a more advanced
thruster characteristic.

The flow chart for constrained control allocation for the floating platform can
be represented as depicted in Figure 6.3. Our task is to compute some optimal u∗(τ)
when τ is given.

Figure 6.3: Flowchart for control and allocation for CyberRig I.



6.5 Case Study: Floating Platform 97

Thruster configuration

The thruster configuration for the floating platform is depicted in Figure 6.4(a).
Two azimuth thrusters are placed on each of the four legs and each thruster can

1
2

3
4 5

6

7
8

(a) Thruster configuration for CyberRig I. Thruster 1 and 2 are
situated on leg 1, thruster 3 and 4 on leg 2 etc.

(b) Translated ATRs for the two thrusters on leg 1.

Figure 6.4: Thruster configuration and translated ATRs.

rotate 360 degrees. It is not straightforward to obtain the AFS for the vessel due
to the following: Considering one leg of the platform, the two thrusters are posi-
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tioned such that one thruster may affect the flow pattern around the other thruster,
resulting in loss of thrust and non-linear behavior such that (6.6) does not hold. In
Figure 6.4(b) we have illustrated this interaction by translating the ATRs for the
two thrusters on leg one to their physical location on the vessel.

To avoid this interaction, sectors (Si and Si+1) are introduced that are mutually
exclusive in the sense that if thruster pi produces a force in direction αi ∈ Si,
then pi+1 cannot produce a force in direction αi+1 ∈ Si+1, where i ∈ {1, 3, 5, 7}.
See Figures 6.4(b) and 6.5(a) for an illustration. More precisely,

αi ∈ Si ⇒ αi+1 /∈ Si+1, i ∈ {1, 3, 5, 7}.

The most straightforward approach that may be utilized to meet this constraint
is to introduce forbidden sectors such that thruster pi (pi+1) never produce a force
in direction αi ∈ Si (αi+1 ∈ Si+1), where i ∈ {1, 3, 5, 7}. This means that pi

can only produce a force in a restricted ATR, that is, ui ∈ C̄i := Ci\Si. See
Figure 6.5(a) for an illustration.

6.5.2 Solution approach

We convexify and approximate the problem by restricting the ATR for each thruster
to be an inner polyhedral approximation of a half circle, see Figure 6.5(b). In the
sequel, we let inner approximations of the restricted ATRs {C̄i}I

i=1 be denoted by
{Ui}I

i=1. We then minimize the thrust magnitude for each thruster and the problem
becomes:

J∗(τ) := min
u,s

{
1
2

(
uT Ru + sT Qs

) ∣∣∣∣ (u, s, τ) ∈ Z)
}

, (6.7a)

Z :=
{

(u, s, τ)
∣∣∣∣

Bu = τ + s,
ui ∈ Ui, i ∈ {1, 2, . . . , 8}

}
, (6.7b)

where R = I , Q = 103 × I , and (u, s, τ) ∈ R16 × R3 × R3. This is clearly a
convex optimization problem that can be solved by a single pQP.

6.5.3 Fault tolerant control allocation

As described in Section 6.4.3, fault tolerant control allocation may be computa-
tionally demanding if an explicit solution to the problem is desired. However, for
this particular application, the geometry of the problem can be exploited to obtain
great reduction in both storage space and required off-line computation.

Consider the case where thruster 1 fails, abbreviated Pf1. The solution to this
problem is obtained simply by removing the associated controls u1 and correspond-
ing constraints from the optimization problem. The question becomes whether
solving this problem also give us the solutions to the scenarios where thruster 3,
5, or 7 fail. We argue that this is the case for thruster 3, abbreviated Pf3 (the ar-
guments, with obvious modifications, hold for the other situations as well). Pf3
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(a) Restricted ATR C̄1 for top thruster on the top left leg after
forbidden sector has been artificially removed. The sector S1

is removed to avoid unwanted non-linear interaction with the
second thruster on the leg.

(b) Translated and restricted ATRs for all thrusters after forbid-
den sectors have been removed.

Figure 6.5: Approximation of the ATRs.

would be identical to Pf1 if the vessel fixed coordinate was rotated 90 degrees,
however, surge and sway forces for each thruster would be defined relative to the
rotated coordinate system. Consequently, we can obtain the solution to Pf3 by the
following procedure:
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Thruster failure Rotated 90 Rotated 180 Rotated 270
1 3 5 7
2 4 6 8

1 & 2 3 & 4 5 & 6 7 & 8

Table 6.1: Leftmost column show the failure situations that have been explicitly
solved. The three other columns show what failure situations that are equivalent if
the vessel fixed coordinated system is rotated.

(i) Rotate the surge and sway components of τ by 90 degrees, i.e

τ r =


R(90)

[
X
Y

]

N


 .

(ii) Evaluate the solution to Pf1 at τ r, and denoted the solution ur(τ r).

(iii) Rotate each ur
i (τ

r), i = 2, . . . , 8, by -90 degrees to obtain ū∗i (τ
r), i =

2, . . . , 8. Let ū∗i be the control input to thruster i + 2, i = 2, . . . , 6 and
ū∗7 and ū∗8 the control inputs to thrusters 1 and 2, respectively.

Note that this procedure only works because the yaw component (N ) of the
generalized force is not affected by the rotation of the coordinate system due to the
geometry of the problem. See Table D.1 for the lengths l(·,·).

In Table 6.1 we have listed cases for which the solution can be found simply
by rotation of another solution. Hence, by considering 3 different failure configu-
rations, we obtain solutions for 12 cases.

6.5.4 Experimental Results

Nominal operation

The explicit solution to (6.7) consists of 12522 polyhedral regions. A binary search
tree (Tøndel, Johansen, and Bemporad 2003b) (see Appendix C) was then con-
structed for the purpose of evaluating the PWA function. The worst case depth of
the search tree was 24, worst case number of arithmetic operations needed to find
the solution was 264, and the tree was stored using 4.218.546 numbers, 468.923
being integers and 3.749.623 being real numbers. On a Dell LATTITUDE laptop
with a 1.7 GHz Intel Pentium M CPU running Windows XP and MATLAB 7.0
the PWA function could be evaluated at approximately 200 kHz. As described in
Appendix D, the QNX real-time system has a sample frequency of 10 Hz, so the
processor was freed for other tasks. In Figure 6.6 we have depicted commanded
and measured5 generalized forces for the case where all desired generalized forces

5Only the RPMs and azimuth angles are measured and the measured generalized forces are de-
rived from the inverse relationship in Figure 6.3.
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was contained in the feasible part of the AFS. In Figure 6.8(a) we have illustrated
the restricted ATRs and the measured thrust forces. In Figures 6.10(a), 6.11(a)
and 6.12(a) we have depicted the measured azimuth angles, RPMs and extended
thrust vectors, respectively. In Figure 6.7 we let the desired generalized forces be
infeasible (that is, either not contained in the AFS or in an infeasible part) in large
parts of the time-series. We cannot expect to achieve the desired generalized force
in this case, and as Figure 6.8(b) shows, the constraints are fulfilled, but that the de-
sired generalized force is not obtained. It is simple to prioritize which component
(surge, sway or yaw) that is the most important by setting the weights on the slack
variables s. In Figures 6.10(b), 6.11(b) and 6.12(b) we have depicted the measured
azimuth angles, RPMs and extended thrust vectors, respectively.

Figure 6.6: Experimental results for CyberRig I; control allocation over convex
ATRs and the desired generalized force was always contained in the AFS. The
dotted line is the commanded generalized force and the solid line is measured.

Fault tolerant control allocation

In Figure 6.9 we have depicted results for when thruster failure occurs. Assum-
ing the electric power buses are split into four segments, each corresponding to a
machine room and switchboard feeding two thrusters in each leg, this covers all
critical single point failures; from a single thruster to a whole machine room.

6.6 Further remarks and research

There are several interesting research directions for improving the control alloca-
tion for the platform:
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Figure 6.7: Experimental results for CyberRig I; control allocation over convex
ATRs and the desired generalized force was not always contained in the AFS. The
dotted line is the commanded generalized force and the solid line is measured.

1. It would be an improvement to be able to utilize a larger part or the entire
AFS. This would lead to a non-convex and non-linear optimization problem.

2. Rate constraints should be included in the optimization problem. This will
greatly complicate the parametric optimization problem as the previous con-
trol inputs would enter the problem as parameters yielding a 19 dimensional
parameter vector.

3. A more meaningful cost function should be formulated. As briefly men-
tioned earlier, rotating a thruster is also power consuming and leads to tear
and wear. It would be natural to consider penalizing both change in thrust
magnitude and in the azimuth angle in addition to thrust magnitude.

4. As there are no restrictions on the rate of change in the desired general-
ized force, the problem may obviously be infeasible in some cases (e.g. a
thruster can not rotate 180 degrees from one sample to the next). It may
then be beneficial to minimize deviation from the desired generalized force
over a prediction horizon, taking into account the thruster dynamics, current
azimuth angles and RPMs. It is easy to imagine that the optimal azimuth
angles and RPMs for the thrusters are far from the current situation, but that
the desired generalized force can be generated with a configuration that is
close.
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6.7 Conclusion

A convex constrained control allocation problem was formulated for the purpose of
mapping desired generalized forces to control inputs. An explicit solution was ob-
tained by utilizing parametric quadratic programming. The PWA solution function
was evaluated using a binary search tree and the allocation scheme was imple-
mented on a scale model of a thruster-controlled floating platform.

The PWA function could be evaluated at a frequency of several kHz, well
within the sampling rate of 10 Hz, and hence, freeing the computational unit for
other tasks. The tracking of the generalized forces was shown to be satisfactory
even if rate constraints were not included in the formulation. The method also
performed well under single point failure situations.
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(a) Measured force from each individual thruster where we have shaded the
translated ATRs. All generalized forces are feasible.

(b) Measured force from each individual thruster where we have shaded the
translated ATRs. Clearly, the constraints are fulfilled, but the controls are at the
boundary of the ATRs for large parts of the time series since the corresponding
desired generalized forces were infeasible.

.

Figure 6.8: Measured thrust forces and the translated ATRs.
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Figure 6.9: Experimental results for CyberRig I; control allocation over convex
ATRs. We have indicated time intervals in which either thruster 1 (p1) or where
both thruster 1 and 2 (p1&p2) have failed. The dotted line is the commanded and
the solid line is measured.
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(a) Azimuth angles under nominal operation.

(b) Azimuth angles in failure situations.

Figure 6.10: Dotted lines are azimuth angles for thrusters 1, 3, 5 and 7 and solid
lines are for 2, 4, 6 and 8.
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(a) RPMs under nominal operation.

(b) RPMs in failure situations.

Figure 6.11: Dotted lines are RPMs for thrusters 1, 3, 5 and 7 and solid lines are
for 2, 4, 6 and 8.
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(a) Extended thrust vectors under nominal operation.

(b) Extended thrust vectors in failure situations.

Figure 6.12: Extended thrust vectors. Dotted line is ui,x and solid line is ui,y.



Chapter 7

Decomposing Constrained
Control Allocation Problems

7.1 Introduction

The task in control allocation is to determine how to generate a specified general-
ized force from a redundant set of actuators where the associated controls are con-
strained, see e.g. (Bodson 2002; Bodson and Pohlchuck 1998; Buffington, Enns,
and Teel 1998; Johansen, Fossen, and Tøndel 2005; Luo and Doman 2004; Jo-
hansen, Fuglseth, Tøndel, and Fossen 2003). The main objective is to obtain the
desired generalized force, however, it is also common to incorporate secondary ob-
jectives, such as minimizing energy consumption and limiting the rate of change
for a control input. Several other factors, such as actuator dynamics (Luo and Do-
man 2004) and power management, can also be incorporated. One way of achiev-
ing these secondary goals is to solve a constrained optimization problem online at
every sampling instant.

Only recently, it has, in conformity with the explicit model predictive con-
trol approach (Bemporad, Morari, Dua, and Pistikopoulos 2002; Bemporad, Bor-
relli, and Morari 2002), been proposed to solve the optimization problem off-
line (Johansen, Fossen, and Tøndel 2005) by utilizing parametric programming
techniques (Gal and Nedoma 1972; Bemporad, Morari, Dua, and Pistikopoulos
2002; Dua and Pistikopoulos 2000; Tøndel, Johansen, and Bemporad 2003a; Bank,
Guddat, Klatte, Kummer, and Tammer 1983). The online computational effort then
reduces to evaluate a piecewise affine function, which can be formulated as a point
location problem (Tøndel, Johansen, and Bemporad 2003b; Jones, Grieder, and
Raković 2006). The four main advantages of this approach are: i) removing the
need for sophisticated optimization software on the microchip/proseccor, ii) the
correctness of the solution can be verified off-line, which is a key issue in safety
critical applications, iii) the worst case number of arithmetic operations needed to
find the solution can easily be computed, and iv) for a large class of problems the
average and worst case number of arithmetic operations needed to find the solution
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is greatly reduced. The main drawbacks, on the other hand, are that i) obtaining an
explicit solution may be computationally intractable, ii) the storage space required
to represent the solution may exceed the available memory, and iii) in the context
of constrained control allocation, the method does not easily allow reconfigurable
control without increasing solution complexity.

In this chapter we propose a decomposing strategy for obtaining feasible, sub-
optimal solutions to constrained linear control allocation problems. The procedure
is motivated by the observation that for practical problems not all the actuators
interact directly, suggesting a division of the problem into a set of smaller prob-
lems. The actuators are partitioned such that each element of the partition does not
interact with the other elements (note that in this chapter, the term actuators also
include effectors, for example, both the rudder, and the engine that drives it, are
labelled actuators). A master- and a set of sub-problems are designed for the pur-
pose of obtaining a feasible, but sub-optimal solution. The decomposing scheme
is also extended to yield an optimal solution for a class of allocation problems.
In the proposed scheme we can choose to solve some of the problems explicitly
and some online, allowing the designer to choose an approach that is best suited
for the hardware and software available. Another benefit of the procedure is that
reconfigurable control is somewhat more computationally tractable.

7.2 Problem setup

7.2.1 Basic definitions and nomenclature

If I is an index set, then |I| denotes the cardinality of I and Ii refers to the ith

element in I. When referring to a set of indices I, we assume that the set is or-
dered, i.e. for the ith element in I we have Ii < Ij , ∀j ∈ {i + 1, . . . , |I|}. Recall
that a partition of a set S is a collection of sub-sets of S such that the sub-sets are
mutually disjoint and their union is equal to S. Let Nq denote the set {1, 2, . . . , q}.
If A ∈ Rn×m is a matrix or column vector, then A(i,∗) ∈ R1×m denotes the ith

row of A and A(I,∗) ∈ R|I|×m denotes the matrix [AT
(I1,∗), . . . , A

T
(I|I|,∗)]

T . Sim-

ilarly, A(∗,i) ∈ Rn×1 denotes the ith column of A and A(∗,I) ∈ Rn×|I| denotes
the matrix [A(∗,I1), . . . , A(∗,I|I|)]. If A is a column vector, i.e. A ∈ Rn×1,
then A(I,∗) ∈ R|I|×1 is abbreviated AI . Finally, if

{J i | i ∈ I }
is a partition

of the index set J and u ∈ R|J | is a vector, we define the operator sort(·) as the
operator that maps the set of sub-vectors {uJ i | i ∈ I } into R|J | and restores the
original ordering of the vector, i.e. u = sort ({uJ i | i ∈ I }).

Recall that the set of affine combinations of points in a set S ⊂ Rn is called
the affine hull of S, and is denoted aff(S). The dimension of a set S ⊂ Rn is the
dimension of aff(S), and is denoted dim(S); if dim(S) = n, then S is said to be
full-dimensional. The closure and interior of a set S is denoted cl(S) and int(S),
respectively. A polyhedron is the intersection of a finite number of open and/or
closed half-spaces. A polygon is a finite union of polyhedra. If F : X → Y is a
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mapping, then the restriction of F to the domain D ⊆ X is written F |D : D → Y .
If a mapping F is set-valued the notation F : X ⇒ Y specifies this. A function f :
Rn → Rm is said to be piecewise affine (PWA) on D ⊂ Rn if D can be represented
as a finite union of polyhedra, relative to each of which f(x) is given by an affine
expression.

7.2.2 Static linear control allocation

Consider the equation

τ̄ = Bu,

where τ̄ ∈ T ⊆ Rr are the generalized forces (virtual controls), u ∈ Rm are the
controls, and the matrix B ∈ Rr×m defines the (linear) relationship between the
generalized forces and the controls. Assume further that a virtual controller τ :=
k(t, x) is given, i.e. τ is our desired generalized force (virtual control). The task
in control allocation is to generate the force τ the controller specifies using the
available controls u ∈ U ⊆ Rm, where U is assumed to be full-dimensional and
bounded. Since, in general, one cannot assume that it is possible to generate τ
when u is constrained to U , slacks s are introduced in order to ensure that a solution
is always obtained, i.e. Bu + s = τ . Hence, the linear control allocation problem
can be stated as:

P(τ) : J∗(τ) := inf
u,s
{J(u, s, τ) | (u, s, τ) ∈ Y } , (7.1a)

J(u, s, τ) := ‖Qs‖l + ‖Ru‖l, (7.1b)

Y :=
{

(u, s, τ)
∣∣∣∣

Bu + s = τ,
u ∈ U

}
, (7.1c)

where Q ∈ Rp×p and R ∈ Rm×m are weight matrices, respectively penalizing use
of controls and infeasibility, and l ∈ {1, 2,∞}1 denotes the weighting norm. We
will assume that P(τ) attains its minimum ∀τ ∈ T , where T is a full-dimensional
polygon (where each polyhedron in T is also assumed to be full-dimensional).
Henceforth, we write the problem as minimization. In the sequel let the set-valued
map Y∗ : Rr ⇒ Rm × Rr be defined by

Y∗(τ) := arg min
(u,s)

{J(u, s, τ) | (u, s, τ) ∈ Y },

and let (u∗, s∗) : Rr → Rm × Rr denote a single-valued selection of Y∗(·), i.e.
(u∗(τ), s∗(τ)) ∈ Y∗(τ) for all τ ∈ T .

In the sequel we distinguish between two types of linear allocation problems; i)
where the set U is convex, and ii) when U is non-convex. We will also make use
of the following assumption:

1l = 2 denotes, with some abuse of mathematical rigor, the quadratic norm, that is, ‖Qx‖2 :=
xT Qx.
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Assumption 7.1 Define:

Pε(τ) : J∗ε (τ) := min
(u,s)

{J(u, s, τ) | (u, s, τ) ∈ Yε } ,

Yε :=
{

(u, s, τ)
∣∣∣∣

Bu + s = τ,
u ∈ Uε

}
,

and let the set U be full-dimensional and bounded. Given any ε > 0 we assume
that there exists a polygon Uε := ∪i∈IU i that inner approximates U in the sense
that Uε ⊆ U , where I contains a finite number of elements and each U i is a
full-dimensional polyhedron, and

∀τ ∈ T J∗ε (τ) ≤ J∗(τ) + ε and arg min
(u,s)

{J(u, s, τ) | (u, s, τ) ∈ Yε } 6= ∅.

As a consequence of the above assumption, we will henceforth assume that the
set U in (7.1) is a polygon or a polyhedron, which will be clear from the context.

7.2.3 Reconfigurable control allocation

In many applications it is desirable to be able to switch on and off actuators or
to change the constraints imposed on the control inputs to an actuator. The most
straightforward way of achieving this is to define additional parameters φ, and
rewrite (7.1) as

J∗(τ, φ) : = min
(u,s)

{‖Qs‖l + ‖Ru‖l | (u, s, τ, φ) ∈ Y } ,

Y : = {(u, s, τ, φ) |Bu + s = τ, u ∈ U(φ)} .

This approach does not complicate the online optimization problem. In addition, if
the parametrization U(·) is linear, it is possible to solve the problem explicitly (Jo-
hansen, Fossen, and Tøndel 2005), however, with this approach the complexity of
the optimal control u∗(·, ·) is often too high for the available memory, and, in some
cases, it may even be computationally intractable to obtain the explicit solution.

7.3 Explicit solutions to control allocation problems

Recently it has been proposed to solve (7.1) explicitly(see e.g. (Johansen, Fos-
sen, and Tøndel 2005; Johansen, Fuglseth, Tøndel, and Fossen 2003)) and thereby
avoid online optimization. The next three subsections summarizes the solution
properties of parametric linear-, quadratic-, and mixed integer linear programs.
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7.3.1 Parametric linear programs

Consider the linear program with parameters on the right hand side of the con-
straints:

J∗(θ) : = min
x

{
cT x | (x, θ) ∈ P

}
, (7.2a)

P : = {(x, θ) |Ax ≤ b + Sθ} , (7.2b)

where c, A, b, and S are matrices with suitable dimensions, and (7.2) is to be
solved for all values of θ ∈ Θ ⊆ Rs, where Θ is the set of parameters in which the
minimum in (7.2) exists.

Theorem 7.1 Consider (7.2).

1. The function J∗ : Θ → R is continuous, convex and PWA on closed, full-
dimensional, polyhedra.

2. There exists an optimizer function x∗ : Θ → Rn such that

x∗(θ) ∈ arg min
x

{
cT x | (x, θ) ∈ P

}
,

that is continuous and PWA on closed, full-dimensional, polyhedra.

Obtaining a continuous selection x∗(·) can be done for instance via lexicographic
perturbation of the pLP (Jones, Kerrigan, and Maciejowski 2007) or by choosing
the minimum norm solution (Spjøtvold, Tøndel, and Johansen 2005a).

7.3.2 Parametric quadratic programs

Consider the convex quadratic program with parameters on the right hand side of
the constraints:

J∗(θ) : = min
x

{
1
2
xT Hx + cT x

∣∣∣∣ (x, θ) ∈ P

}
, (7.3a)

P : = {(x, θ) |Ax ≤ b + Sθ} , (7.3b)

where H , c, A, b, and S are matrices with suitable dimensions, and H = HT ≥ 0.

Theorem 7.2 Consider (7.3)

1. The function J∗ : Θ → R is continuous, convex and piecewise quadratic on
closed, full-dimensional, polyhedra.

2. There exists an optimizer function x∗ : Θ → Rn such that

x∗(θ) ∈ arg min
x

{
1
2
xT Hx + cT x

∣∣∣∣ (x, θ) ∈ P

}
,

that is continuous and PWA on closed, full-dimensional, polyhedra.

A continuous selection can be obtained by choosing the minimum norm solu-
tion (Spjøtvold, Tøndel, and Johansen 2007). Note that if H > 0, the solution
x∗(·) to (7.3) is unique, and hence, also continuous.
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7.3.3 Parametric mixed-integer linear programs

Consider the mixed integer linear program with parameters on the right hand side
of the constraints:

J∗(θ) : = min
(x,y)

{
cT x + dT y | (x, y, θ) ∈ P

}
, (7.4a)

P : = {(x, y, θ) ∈ Rn × {0, 1}p × Rr |Ax + Dy ≤ b + Sθ} (7.4b)

where c, d, A, D, b, and S are matrices with suitable dimensions.

Theorem 7.3 Consider (7.3)

1. The function J∗ : Θ → R is lower-semicontinuous and PWA.

2. There exists optimizer functions x∗ : Θ → Rn and y∗ : Θ → {0, 1}p such
that

(x∗(θ), y∗(θ)) ∈ arg min
(x,y)

{
cT x + dT y | (x, y, θ) ∈ P

}
,

that are respectively PWA and piecewise constant.

7.3.4 Explicit solution to constrained linear control allocation

If we consider (7.1), then under our assumption on U we have that T is a polygon.
Moreover, if l ∈ {1,∞} and U is a polyhedron, then (7.1) can be written as a
pLP (7.2) by viewing τ as parameters. Similarly if l = 2 and U is a polyhedron
we have a pQP (7.3). Finally, if U is a polygon, we have that (7.1) is a pMILP
(l ∈ {1,∞}) or pMIQP (l = 2).

7.4 Decomposing allocation problems

In this section we propose the decomposing scheme for constrained linear control
allocation. We first treat the case where U (or its inner approximation) is convex.
In the sequel, if u ∈ U ⊆ Rn and I ⊆ Nn is an index set, then UI denotes the
set UI :=

{
uI ∈ R|I|

∣∣ ∃uNn\I : (uI , uNn\I) ∈ U
}

. Moreover, if J ⊆ Nn is
another index set such that I ∩ J = ∅, then with some abuse of notation, UI(uJ )
denotes the set

UI(uJ ) :=
{

uI ∈ R|I|
∣∣∣∣
∃uNn\(I∪J ) :
(uI , uJ , uNn\(I∪J )) ∈ U

}

Definition 7.1 (Non-interacting actuators) Let the controls u be constrained to U .
Given two actuators, A and B, and corresponding index setsA andB such that uA ∈
R|A| and uB ∈ R|B| are the control inputs to actuator A and B, respectively. The
actuators A and B are said to be non-interacting if and only if

UA(uB) = UA, ∀uB ∈ UB, and

UB(uA) = UB, ∀uA ∈ UA.
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Remark 7.1 For linear constrained control allocation problems non-interacting
actuators means that by changing the control input for actuator A, the constraints
on the control inputs to actuator B are unchanged. Note however, that the con-
trols may still be coupled through the linear relationship Bu = τ̄ . In addition, we
would like to point out that the linear version of the control allocation problem is
often an approximation to a non-linear relationship τ̄ = g(x, u, t). If this is the
case, then one should add additional restrictions on the interactions between the
actuators in the sense that: the contribution to the generalized forces from actua-
tor A is unchanged for all possible contributions from actuator B. This captures
non-linear interaction between the actuators, for example, for marine vessels it is
not uncommon to loose effect from thruster A if thruster B affects the flow pattern
around thruster A.

Definition 7.2 (Non-interacting actuator partition) Consider a set of actuators
P := {pi | i ∈ I } and the partition {Pj | j ∈ J } ofP . If for every pair (pA, pB) ∈
Pk × Pj , ∀k ∈ J and ∀j ∈ J , k 6= j, (pA, pB) are non-interacting actuators,
then {Pj | j ∈ J } is said to be a non-interacting actuator partition of P .

In the sequel, let {Pj | j ∈ J } denote a non-interacting actuator partition of P and{J j | j ∈ J }
be the corresponding collection of index sets, i.e. the control inputs

to the actuators in Pj are uJ j . It is immediate that we can write P(·) as

J∗(τ) : = min
(u,s)

{‖Qs‖l + ‖Ru‖l | (u, s) ∈ Y(τ)} ,

Y(τ) : =
{

(u, s)
∣∣∣∣

s +
∑

j∈J B(∗,J j)uJ j = τ

uJ j ∈ UJ j , ∀j ∈ J
}

.

In the next section we re-formulate the above problem to obtain a master- and a set
of sub-problems.

7.4.1 Decomposing Constrained Linear Control Allocation over Con-
vex Sets

In this section we propose the method for decomposing the allocation problem.M(·)
will denote the master problem and a sub-problem will be denoted Sj(·) for j ∈ J .
The master problem is defined as

M(τ) : V ∗(τ) := min
{s,τ1,...,τ |J |}

‖Qs‖l +
∑

j∈J
‖Hjτ j‖l (7.5a)

s.t. s +
∑

j∈J
τ j = τ, (7.5b)

τ j ∈ T j ⊂ Rr, ∀j ∈ J , (7.5c)

where Hj = (Hj)T ≥ 0 ∈ Rr×r are suitably defined weight matrices and

T j :=
{
τ j ∈ T ⊆ Rr

∣∣∃yJ j : yJ j ∈ Nj(τ j)
}

(7.6a)

Nj(τ j) := UJ j ∩
{

yJ j ∈ R|J j | ∣∣ B(∗,J j)yJ j = τ j
}

. (7.6b)
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It is clear that T j is the set of all possible generalized forces (virtual controls) that
can be generated by the actuators in the jth element of the actuator partition.

For a given j ∈ J , the jth sub-problem is defined as:

Sj(τ j) : V ∗
j (τ j) := min

yJ j

{‖R(J j ,J j)yJ j‖l

∣∣ yJ j ∈ Nj(τ j)
}

. (7.7)

For notational simplicity we let {sM(·), τ1(·), . . . , τ |J |(·)} denote a set of single
valued, continuous, selections for M(·). Moreover, {yJ 1(·), . . . , yJ |J |(·)} are
single valued, continuous, selections for {Sj(·) | j ∈ J }. By a solution to M(·)
and {Sj(·) | j ∈ J } we mean the function y∗ : Rr → Rm defined as

y∗(τ) := sort
(
{yJ 1(τ1(τ)), . . . , yJ |J |(τ

|J |(τ))}
)

,

i.e. y∗(·) has the same dimension and ordering as u∗(·).

Lemma 7.1 ConsiderM(·), {Sj(·) | j ∈ J } and (7.1). We have that if (sM(·), y∗(·))
is a feasible solution to M(·) and {Sj(·) | j ∈ J }, then (sM(·), y∗(·)) is feasible
for (7.1). Moreover, if R(J j ,J j) = RT

(J j ,J j)
≥ 0 for all j ∈ J , then we have

1. if l = 2, then V ∗ : Rr → R and each V ∗
j : Rr → R, j ∈ J are piecewise

quadratic, convex, and continuous.

2. if l ∈ {1,∞}, then V ∗ : Rr → R and each V ∗
j : Rr → R, j ∈ J are PWA,

convex, and continuous.

PROOF: The feasible sets are equal by construction. The properties of V ∗(·)
and each V ∗

j (·) follows from noting that the problems are pQPs for l = 2 and pLPs
for l ∈ {1,∞} (Theorems 7.1 and 7.2).

¤

How to choose the weight matrices Hj , j ∈ J such that the solution function
(sM(·), y∗(·)) is not only feasible for (7.1), but also as close to optimal as possible
is non-trivial, however, we will not elaborate on this, since exact solutions to (7.1)
can be obtained by imposing a natural assumption on R, which is stated below.
In Section 7.5 we will show by example that if the problem has certain symmetry
properties, the weight matrices

{
Hj | j ∈ J }

are easy to choose.

Assumption 7.2 Consider (7.1). For the weighting matrix R, set of actuators
P := {p1, . . . , pI}, and non-interacting actuator partition {Pj | j ∈ J } of P ,
we assume that R(J i,J j) = R(J j ,J i) = 0 if i 6= j. Moreover, we assume that for
each j ∈ J we have that R(J j ,J j) = RT

(J j ,J j)
≥ 0.

Lemma 7.2 Assumption 7.2 has the consequence that for l ∈ {1, 2} we have:

‖Ru‖l =
∑

j∈J
‖R(J j ,J j)uJ j‖l, (7.8)
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and for l = ∞ we have

‖Ru‖∞ = max
j∈J

{‖R(J j ,J j)uJ j‖∞}

PROOF: For the quadratic norm we have

‖Ru‖2 := uT Ru =
[
uT
J 1 . . . uT

J |J |
]

diag
(
R(J 1,J 1), . . . , R(J |J |,J |J |)

) [
uT
J 1 . . . uT

J |J |
]T

= ‖R(J 1,J 1)uJ j‖2 + · · ·+ ‖R(J |J |,J |J |)uJ |J |‖2,

and for l = 1 we recall that if i /∈ J j then R(i,J j)uJ j = 0, and hence

‖Ru‖1 =
∑

p∈Nm

∣∣∣∣∣∣
∑

q∈Nm

R(p,q)uq

∣∣∣∣∣∣

=
∑

j∈J

∑

p∈J j

∣∣∣∣∣∣
∑

q∈J j

R(p,q)uq

∣∣∣∣∣∣
=

∑

j∈J
‖R(J j ,J j)uJ j‖1.

For l = ∞, Assumption 7.2 clearly leads to

‖Ru‖∞ = max





∣∣∣∣∣∣
∑

p∈Nm

R(1,p)up

∣∣∣∣∣∣
, . . . ,

∣∣∣∣∣∣
∑

p∈Nm

R(m,p)up

∣∣∣∣∣∣





= max
{
‖R(J 1,J 1)uJ 1‖∞, . . . , ‖R(J |J |,J |J |)uJ |J |‖∞

}
.

¤

In the following two theorems we are only concerned with the set T ∗ ⊆ T in
which s∗(τ) = 0 i.e. we have also assumed that ‖Qs‖l is an exact penalty function
for (7.1) (Johansen, Fossen, and Tøndel 2005).

Theorem 7.4 Consider M(·), {Sj(·) | j ∈ J } and (7.1), and let l ∈ {1, 2}. By
changing the master problem to

Me(τ) : V ∗(τ) := min
{t,τ1,...,τ |J |}

t (7.9a)

s.t. t ≥
∑

j∈J
V ∗

j (τ j) (7.9b)

∑

j∈J
τ j = τ, (7.9c)

τ j ∈ T j , ∀j ∈ J , (7.9d)
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we have that J∗(τ) = V ∗(τ) for all τ ∈ T ∗, (y∗(·), 0) ∈ Y∗(·) and Me(·) is a
convex optimization problem.

PROOF: Convexity of Me(·) follows easily by noting that all constraints are
linear except (7.9b), which is also convex due to Theorem 7.1 and 7.2. Note first
that by construction y(·) = u∗(·) is feasible for (7.9) and {Sj(·) | j ∈ J } and
that J(u∗(τ), 0, τ) = J∗(τ), ∀τ ∈ T ∗. We also have

V ∗(τ) = t∗(τ) ≥
∑

j∈J
V ∗

j (τ j) =
∑

j∈J
‖R(J j ,J j)yJ j (τ j)‖l

= ‖Ry∗(τ)‖l = J(y∗(τ), 0, τ).

Hence, if (y∗(τ), 0) /∈ Y∗(τ) then J(y∗(τ), 0, τ) > J(u∗(τ), 0, τ), which contra-
dicts optimality since u∗(τ) is feasible for (7.9) and {Sj(·) | j ∈ J }.

¤

For l = ∞ the master problem has to be modified slightly as demonstrated by
the following theorem:

Theorem 7.5 Consider M(·), {Sj(·) | j ∈ J } and (7.1), and let l = ∞. By
changing the master problem to

Me(τ) : V ∗(τ) := min
{t,τ1,...,τ |J |}

t

s.t. t ≥ V ∗
j (τ j) ∀j ∈ J

∑

j∈J
τ j = τ,

τ j ∈ T j , ∀j ∈ J ,

we have that J∗(τ) = V ∗(τ) for all τ ∈ T ∗, (y∗(·), 0) ∈ Y∗(·) and Me(·) is a
convex optimization problem.

PROOF: The proof is identical to the proof of Theorem 7.4, except

V ∗(τ) = t∗(τ) ≥ max{‖R(J 1,J 1)yJ 1(τ1)‖∞, . . . ,

‖R(J |J |,J |J |)yJ |J |(τ
|J |)‖∞} = ‖Ry∗(τ)‖∞.

¤

Remark 7.2 For l ∈ {1,∞} it is straightforward to solveMe(·) explicitly since T ∗
can be expressed as a union of polyhedra, and in each of theseMe(·) is a pLP. On
the other hand, for l = 2, there is currently no available algorithm for obtaining
an exact, explicit, solution of (7.9).
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7.4.2 Decomposing Constrained Linear Control Allocation over Non-
convex Sets

If the set of attainable forces U is a non-convex polygon, U = ∪i∈IU i, the op-
timization problem (7.1) is no longer convex. However, the set Y can be written
as

Y :=
{

(u, s, τ)
∣∣∣Bu + s = τ, u ∈ U1 ∨ · · · ∨ U |I|

}
,

and (7.1) becomes a parametric mixed integer program. In this case the problem
can also be decomposed into M(·) and {Sj(·) | j ∈ J } for the purpose of obtain-
ing sub-optimal solutions. The main difference being that the sets

{T j | j ∈ J }
are more computationally demanding to obtain, since UJ j = ∪i∈IU i

J j . In the
non-convex case, both the master- and sub-problems are parametric mixed integer
programs. For brevity, we do not consider this case in detail.

7.4.3 Reconfigurable control allocation

If the master-problem is solved online, we can obtain a tradeoff between the bene-
fits and drawbacks of the explicit solution when the scheme is applied to reconfig-
urable control allocation. By introducing extra parameters in the allocation prob-
lem, as described in Section 7.2.3, the complexity of u∗(·) may increase to the
level where the explicit scheme is rendered unusable. By solving the master prob-
lem online and the sub-problems explicitly, the control actions from actuator group
Pj can be limited simply by changing the constraints on τ j .

7.5 Numerical Example

Note that in this section we use slightly different indexing of the variables. Con-
sider the following allocation problem:

min
{u,s}





uT Ru + sT Qs

∣∣∣∣∣∣∣∣∣∣∣∣

sx +
∑4

i=1 ui,x = τx

sy +
∑4

i=1 ui,y = τy

|ui,x|+ |ui,y| ≤ 2,
i = 1, 2

|ui,j | ≤ 2,
i = 3, 4, j = x, y





(7.10)

where R = diag(1, 1, . . . , 1) and Q = diag(103, 103). In this problem we have
four actuators P := {p1, . . . , p4}, where the ith actuator has two controls, ui,x ∈ R
and ui,y ∈ R, and we have two generalized forces, τx ∈ R and τy ∈ R. More-
over, we define u := [u1,x, u1,y, . . . , u4,x, u4,y]T and τ := [τx, τy]T . Looking
at the constraints it can be straightforwardly verified that all the actuators are
non-interacting. In this example we show two different actuator partitions; first
choose the following non-interacting actuator partition {P1, P2}, where P1 =
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(a) The set of polyhedra representing the solu-
tion v∗(·) := (s∗(·), u∗(·)) to (7.10).
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(b) The set of polyhedra representing the solu-
tion z∗(·) to (7.11) with the actuator partition
P1 = {p1, p3} and P2 = {p2, p4}.
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(c) Set of polyhedra representing the solutions
u1(·) and u2(·) to the first sub-problem (7.12)
and the second sub-problem.

Figure 7.1: Explicit solutions with the actuator partition P1 = {p1, p3} and P2 =
{p2, p4}.

{p1, p3} and P2 = {p2, p4}, yielding u1 := [u1,x, u1,y, u3,x, u3,y]T , and u2 :=
[u2,x, u2,y, u4,x, u4,y]T . Following the proposed procedure we get the following
master problem

min
τ1,τ2,s



sT Qs +

2∑

j=1

(τ j)T Hjτ j

∣∣∣∣∣∣
τ = s + τ1 + τ2

τ j ∈ T j , j = 1, 2



 (7.11)

where

T 1 =



τ1 ∈ T

∣∣∣∣∣∣
∃u1 :

B1u1 = τ1

|u1,x|+ |u1,y| ≤ 2
|u3,i| ≤ 2, i = x, y,



 ,

where B1 consists of the column in B that multiply with u1, and T 2 is found by re-
placing the appropriate indices, which yields an identical set, i.e. T 1 = T 2. More-
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(a) The set of polyhedra representing the solu-
tion z∗(·) to (7.11) with the actuator partition
P1 = {p1, p2} and P2 = {p3, p4}.
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(b) Set of polyhedra representing the solution
u1(·) for the first sub-problem, defined by ac-
tuator group P1 = {p1, p2}.
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(c) Set of polyhedra representing the solution
u2(·) for the second sub-problem, defined by ac-
tuator group P2 = {p3, p4}.

Figure 7.2: Explicit solutions with the actuator partition P1 = {p1, p2} and P2 =
{p3, p4}.

over, since we have a symmetrical problem, we choose H1 = H2 = diag(1, 1).
The first sub-problem becomes

min
u1





(u1)T diag(1, 1, 1, 1)u1

∣∣∣∣∣∣∣∣

u1,x + u3,x = τ1
x

u1,y + u3,y = τ1
y

|u1,x|+ |u1,y| ≤ 2
|u3,i| ≤ 2, i = x, y





(7.12)

and the second sub-problem is found by replacing the appropriate indices. Let
the function z∗(·) := [s∗(·)T (τ1(·))T (τ2(·))T ]T denote the PWA solution to the
master problem, and u1(·) and u2(·) be the solutions to the two sub-problems. The
polyhedra that u∗(·), z∗(·) and u1(·) are defined on are depicted in Figures 7.1(a)-
7.1(c), respectively. Note also that u2(·) = u1(·). Figures 7.2(a)-7.2(c) depicts the
solutions for the master and two subproblems for the the actuator partition P1 =
{p1, p2} and P1 = {p3, p4}. Considering the first actuator partition it is apparent



122 Decomposing Constrained Control Allocation Problems

that an explicit solution to the problem can be found by solving two smaller pQPs
(the two sub-problems are identical), but more importantly, one can choose to solve
either of the problems on-line, allowing a tradeoff between the online computation
time and the required storage space. From this example we see that the proposed
strategy provides great flexibility. We have the following alternatives for the first
actuator partition:

1. Solving master and sub-problems online.

2. Solving the master problem online and one subproblem explicitly, and since
the sub-problems are identical this only yields 13 stored polyhedra.

3. Solving the master problem explicitly and one of the sub-problems online.

4. Solving both the master- and sub-problems explicitly.

Obviously, we have similar alternatives for the second actuator partition. Finally,
note that for the first actuator partition we have u1(·) = u2(·) and that the solution
to the original problem also has u1 = u2 (a strictly convex problem where the con-
straints and weights on u1 and u2 are identical.) Thus, if we choose H1 = H2 =
diag(1, 1), we have a strictly convex master-problem whose solution is unique
(τ1(·) = τ2(·)), hence, (u1(τ1(τ)))T u1(τ1(τ))) + (u2(τ2(τ)))T u2(τ2(τ)) =
(u∗(τ))T u∗(τ), i.e. the solution is optimal also for the original problem.

7.6 Decomposition Strategy applied to a Thruster Con-
trolled Floating Platform: Non-convex Formulation

Please note that this section is not self contained in the sense that it extends the
case study in Chapter 6. We also adopt the notation from Chapter 6. Consider the
thruster-controlled platform from the previous chapter where the virtual controller
(typically a dynamic positioning controller) specifies surge, sway and yaw forces.
In this section we no longer assume that each approximation Ui of the restricted
ATR C̄i is a convex set. In particular we let Ui = Ui,a ∪Ui,b where Ui,a and Ui,b are
convex polyhedra. See Figure 7.3(a) for an illustration. For this case, our allocation
problem becomes:

J∗(τ) := min
u,s

{
1
2

(
uT Ru + sT Qs

) ∣∣∣∣ (u, s, τ) ∈ Z
}

, (7.13a)

Z :=
{

(u, s, τ) ∈ R16 × R3 × R3

∣∣∣∣
Bu = τ + s, ui ∈ Ui,a ∨ Ui,b

i ∈ {1, 2, . . . , 8}
}

,

(7.13b)

where R = I and Q = 103 × I . The approach presented in (Johansen, Fuglseth,
Tøndel, and Fossen 2003) to solve a similar problem is to compute an explicit
solution to a set of convex problems and compare the solution online. That is, ui is
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constrained to either Ui,a or Ui,b and all such combinations are computed. This is
clearly not tractable in our case as this will lead to 28 = 256 different combinations
if symmetry is not exploited. Currently no algorithm that solves a pMIQP exactly is
presented in the literature, hence, we need another approach if we seek an explicit
solution.

We now utilize the decomposition strategy, however we seek to have 2 param-
eters in the sub-problems and 3 in the master problem and therefore introduce the
following terms in order to carry out the reformulation:

z1,x := u1,x + u2,x,

z1,y := u1,y + u2,y,

z2,x := u3,x + u4,x,

z2,y := u3,y + u4,y,

...

z4,x := u7,x + u8,x,

z4,y := u7,y + u8,y,

and let zi := [zi,x zi,y]T and z := [zT
1 . . . zT

4 ]T (zi are the surge and sway forces
from the ith leg). If we were only considering surge and sway forces, we could now
write Bu = τ as

[
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

]
z = τ.

The yaw component is, as we recall from (6.5), defined by

N := −l1,yu1,x + l1,xu1,y − l2,yu2,x + l2,xu2,y . . . − l8,yu8,x + l8,xu8,y,

and consequently not as easy to express in terms of zis. Consider first leg one and
its contribution τ1,N = N1 + N2 to the yaw moment:

τ1,N := −l1,yu1,x + l1,xu1,y − l2,yu2,x + l2,xu2,y. (7.14)

Noting that |l1,x| = |l2,y| and |l2,x| = |l1,y|, we see that the radiuses from the origin
of the vessel-fixed coordinate system to the two thrusters are equal. Clearly, there
must then exists an angle β such that if we rotate the vector r1 = [l1,x l1,y]T by
β and r2 = [l2,x l2,y]T by −β, the rotated vectors rr

1 and rr
2 would coincide, i.e.

rr
1 = rr

2 =: [lr1,x lr1,y]
T . We can now rewrite (7.14) as two equations:

τ1,N = −lr1,yz1,x + lr1,xz1,y, (7.15a)

−lr1,yz1,x + lr1,xz1,y = −l1,yu1,x + l1,xu1,y − l2,yu2,x + l2,xu2,y. (7.15b)

We have rewritten (7.14) in order to enforce (7.15a) in the master problem and (7.15b)
in the sub-problem.
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Assume temporarily that the set of surge and sway forces that can be generated
by the thrusters on the ith leg is given by Ti (we will return to the computation of
these sets). The master problem is then defined as:

M(τ) : V ∗(τ) := min
z,s

{
1
2

(
zT Hz + sT Qs

) ∣∣∣∣ (z, s, τ) ∈ Z
}

Z :=
{

(z, s, τ) ∈ R8 × R3 × R3

∣∣∣∣
B̂z = τ + s, zi ∈ Ti

i ∈ {1, 2, . . . , 4}
}

,

B̂ =




1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

−lr1,y lr1,x −lr2,y lr2,x −lr3,y lr3,x −lr4,y lr4,x


 ,

where H = HT > 0 is a suitably defined weight matrix.
The sub-problem for leg 1 is then defined as follows:

S1(z1) : J∗(z1) := min
u

{
1
2

(
uT Ru

) | (u, z1) ∈ P
}

P :=
{

(u, z1) ∈ R4 × R2

∣∣∣∣
B̄u = Wz1, ui ∈ Ui,a ∨ Ui,b,

i ∈ {1, 2}
}

,

B̄ =




1 0 1 0
0 1 0 1

−l1,y l1,x −l2,y l2,x


 ,

W =




1 0
0 1

−lr1,y lr1,x


 ,

where ui := [ui,x ui,y]T , u := [u1,x u1,y u2,x u2,y]T and R = I . Define similarly
the problems S2(z2) (with u := [u3,x u3,y u4,x u4,y]T and ui ∈ Ui,a ∨ Ui,b, i ∈
{3, 4}) to S4(z4).

The problem S1(·) is much simpler to solve than the original problem as only
four combinations must be considered.

We now consider how to obtain Ti. Clearly, the set T1 is a non-convex set given
by

T1 = (U1,b ⊕ U2,a) ∪ (U1,b ⊕ U2,b) ∪ (U1,a ⊕ U2,a) ∪ (U1,a ⊕ U2,b)
=: T1,a ∪ T1,b,

which is depicted in Figure 7.3(b). Thus the set T1 is represented by two convex
polyhedra. In Figure 7.4 we have shown all the Tis. Brute force computations
now yield 16 combinations of constraint sets for the master problem and 4 for the
subproblems. As in the previous chapter, we can utilize symmetry such that we
only consider 4 combinations in the master problem (for example leg 1 and 2) and
4 in the subproblems. Thus, with the decomposition strategy and symmetry the
number of problems that must be solved is reduced from 256 to a total of 8. If we
in addition approximate each Ti by a single inner convex polyhedron, a sub-optimal
solution could be found by solving only 5 problems.
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U8,a

U8,b
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X

(a) Approximation of each ATR by a union of two convex polyhedra.

T1,a

T1,b

Y

X

(b) Surge and sway forces that can be generated by thruster 1 and 2
approximated by a union of two convex polyhedra.

.

Figure 7.3: Non-convex ATRs.

7.7 Conclusion

We have proposed a decomposing strategy for linear constrained control allocation
problems. The actuators are partitioned such that a sub-optimal solution can be
found be solving a master- and a set of sub-problems. It has also been shown that
the decomposing strategy can provide an optimal solution to some classes of allo-
cation problems if the master problem is modified appropriately. The advantages
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X

Y
T4,b

T1,a

T3,b

T4,a

T3,a

T2,b

T2,a

T1,b

Figure 7.4: The sets Ti, i = 1, 2, 3, 4.

with the scheme is that it allows the designer to choose a mix of online optimiza-
tion and explicit solutions of the allocation problem, providing a tradeoff between
the benefits and drawbacks of the explicit approach.



Chapter 8

Conclusions and future research

8.1 Concluding remarks on the chapters

Part one of this thesis presented some new theoretical results in parametric pro-
gramming. In part two some new ways of utilizing parametric programming was
proposed. In part three control allocation was considered and parametric program-
ming was used on a thruster-controlled floating platform and experimental results
were reported.

A novel method for obtaining continuous solutions and unique polyhedral rep-
resentations of solutions to convex parametric quadratic programs was proposed in
Chapter 2. The method was based on choosing the minimum norm solution and
utilizing the normal cone optimality condition to characterize the parametric re-
gion in which the selection remained optimal. The method is applicable to almost
all algorithms for convex pQPs (with trivial modifications) as the minimum norm
problem can be solved as a separate strictly convex pQP in the parametric regions
for which the solution is non-unique.

It was shown in (Spjøtvold 2005) that the facet-to-facet property does not hold
for convex pQPs. In Chapter 3 we answered a harder question; does the property
hold for strictly convex pQPs? The facet-to-facet property was shown not to hold
for this problem, and consequently rendered some algorithms for pQPs without
guarantees of correct traversal of the parameter space. A simple procedure based
on combining the algorithms in (Tøndel, Johansen, and Bemporad 2003a) and (Be-
mporad, Morari, Dua, and Pistikopoulos 2002) was proposed to remedy this prob-
lem. Numerical results indicated that the proposed method was computationally
more efficient than the algorithm in (Bemporad, Morari, Dua, and Pistikopoulos
2002) for problems whose solution consisted of a large number of critical regions.

A framework for obtaining explicit solutions to inf – sup control of constrained
discontinuous piecewise affine systems affected by state- and input-dependent dis-
turbances was presented in Chapter 4. For this problem class, a solution might
not exist, and consequently we proposed a method that obtained an optimal solu-
tion when one existed and a sub-optimal solution when one did not. The method
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utilized parametric piecewise linear programming. The degree of sub-optimality
could be specified a priori and a bound on the total error was given. It turned out
that the total error was linear in the prediction horizon.

The efficiency of explicit MPC depends on the ability to solve the point location
problem at a high sampling rate. A method that utilized reachability analysis to
reduce the size of the point location problem was presented in Chapter 5. The
method intersected the one-step forward reach set with the solution partition in
order to reduce the number of candidate regions that could contain the state at
the next sampling instant. This approach reduced the computational load on the
microchip. If, in addition, one knew with certainty that the state was contained in
some strict subset of the state space at the initialization of the control scheme, the
worst case search time could also be reduced. The reduction of the point location
problem came at the expense of increased off-line processing and required storage
space.

Constrained control allocation was one of the applications of parametric pro-
gramming that was considered.

To demonstrate the usefulness of parametric programming as well as partially
(see future research) solving a challenging problem, parametric programming was
utilized to find an explicit solution to a control allocation problem for a thruster-
controller floating platform in Chapter 6. The solution was implemented on a scale-
model of a thruster-controlled platform and the experimental results were reported.
The performance of the explicit allocation was satisfactory with regards to obtain-
ing the desired generalized force. There is still work to be done to improve the
allocation scheme further, which we will address in Section 8.2.

A decomposition approach was presented in Chapter 7 for the purpose of pro-
viding the engineer with a flexible design tool. The master- and sub-problems were
constructed such that a mix of online optimization and explicit solutions could be
utilized. The possibility of a tradeoff between online optimization and explicit so-
lutions may in some cases be very beneficial, as for instance if the entire problem is
too complex for a complete explicit solution. In some cases the flexibility may also
allow added features in the control allocation problem, such as taking into account
actuator and effector dynamics at a low level.

In general, it seems that the field of parametric programming has matured with
the resurgence of interest caused by (Bemporad, Morari, Dua, and Pistikopoulos
2002). Challenges that are left include numerical stability and execution speed
of the algorithms. It is questionable if parametric programming is extendable to
more difficult problems than those already ”solved”. This is based on the fact that
it is difficult to design robust algorithms even for parametric mixed-integer linear
programs (see Section 8.2 for further discussion). Solving parametric non-linear
programs exactly is rarely possible and obtaining approximations are often numeri-
cally difficult and computationally very demanding. Nevertheless, as demonstrated
the last few years, parametric programming can be a powerful tool in many areas
within control and the author suspects that there is a substantial number of areas
not yet discovered.
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8.2 Future Research Directions

Although this thesis did not give a complete overview of the field of parametric
programming, we mention some research directions that may be investigated in
the future.

Parametric Mixed-Integer Linear Programming

Parametric mixed-integer linear programs (pMILP) may seem like a relatively sim-
ple but computationally demanding task. A pMILP can be solved by solving a fi-
nite number of pLPs (total enumeration of the integer variables) and comparing the
solutions. It has proven to be a difficult task to design a more efficient algorithm
that does not require comparisons of the pLP solutions to find the optimal solu-
tion. There exists some algorithms for obtaining upper bounds on the solutions to
pMILPs (Dua and Pistikopoulos 2000; Acevedo and Pistikopoulos 1997), however,
these are numerically non-robust and also computationally very demanding. There
are some problems with pMILPs that should be emphasized:

• Even though the solution is PWA, the restrictions are defined on open, closed
or neither open nor closed polyhedra. In addition, the polyhedra may be
lower-dimensional. If x∗i is defined on the polyhedron Pi, we can have the
situation where x∗j is defined on Pj where Pj is a strict subset of Pi. Natu-
rally, the same might be true for Pj and so on. Thus, the exploration strategy
is not straightforward to design and representing the solution may also be
problematic.

• The set of parameters that render the solution feasible and bounded may
be disconnected and/or lower-dimensional. Obviously, this complicates the
exploration strategy.

• The optimal integer solutions may be non-unique. This causes problems for
integer-cut strategies where one searches for improved integer solutions (Dua
and Pistikopoulos 2000).

The problems above are not trivial to overcome, however, the author suspects
that designing an algorithm, which is more efficient than total enumeration of the
integer solutions and finds an exact solution to pMILPs, is possible. One of the
first steps should be to enforce uniqueness of the integer solution, perhaps utiliz-
ing some perturbation strategy analogous to the one in (Jones, Kerrigan, and Ma-
ciejowski 2007). The author also suspects that the exploration strategy in (Dua and
Pistikopoulos 2000) is too numerically sensitive to yield an efficient algorithm, so
designing an algorithm that searches through some kind of basis solutions is per-
haps the approach that should be taken.
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Control Allocation

The control allocation problem for the thruster-controlled platform presented in
the thesis is challenging and there are several improvements that should be inves-
tigated. First of all rate constraints should be incorporated. Secondly, the cost
function should better reflect actual energy consumption and mechanical tear and
wear. These features are not simple to incorporate in the allocation problem as
it is inherently non-convex and non-linear. Mixed-integer programming may be
utilized to deal with the non-convex feasible set, however, the non-convex cost
function may cause multiple optima and require a non-linear programming solver.
It is also desirable to explicitly take into account the actuator dynamics in a predic-
tive fashion. The author believes that one may be able to use a predictive approach
with a mix of online optimization and explicit solutions.
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Mayne, D. Q., S. V. Rakovć, R. B. Vinter, and E. C. Kerrigan (2006). Char-
acterization of the solution to a constrained H∞ optimal control problem.
Automatica 42, 371–382.
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Zhuo, X. W., J. A. D. Doná, and M. M. Seron (2005). Explicit solution to con-
strained linear estimation. In Proc. IFAC World Congress on Automatic Con-
trol, Prague.



140 BIBLIOGRAPHY



Appendix A

Parametric Linear Programming
Results

The parametric linear program (pLP) is as follows:

z∗(θ) := min
x

{
cT x | (x, θ) ∈ P

}
, (A.1a)

P := {(x, θ) |Ax ≤ b + Sθ} . (A.1b)

The dual of (A.1) can be written as (Borrelli, Bemporad, and Morari 2003)

v∗(θ) := min
π

{
(b + Sθ)T π | (π, θ) ∈ R

}
, (A.2a)

R :=
{
(π, θ)

∣∣ AT π = c, π ≤ 0
}

. (A.2b)

The primal feasibility, dual feasibility and the complementary slackness conditions
for problems (A.1) and (A.2) are

Ax ≤ b + Sθ, (A.3a)

AT π = c, π ≤ 0, (A.3b)

(Aix− bi − Siθ)πi = 0, ∀i ∈ {1, . . . , q}, (A.3c)

respectively.
Let A be the optimal active set when θ = θ0. When both the primal and dual

solution to (A.1) are unique, then the value function, the optimizer function and
the closure of the critical region are uniquely given by

z∗(θ) = (b + Sθ)T π∗(θ0), (A.4a)

x∗A(θ) = A−1
A SAθ + A−1

A bA, (A.4b)

RA = {θ ∈ Θ |ANx∗A(θ) ≤ bN + SN θ} , (A.4c)

respectively, where π∗(θ0) is the optimal dual solution and N is the complement
of A.
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When only the dual solution is non-unique, the optimizer function and critical
region are uniquely defined and found by applying Gauss reduction to the system
of equalities, AAx = bA + SAθ.

When the primal solution is non-unique a selection must be made, for instance
by utilizing the minimum norm method presented in Chapter 2. To use the mini-
mum norm method the optimal active set must be identified, which can be found
either by using an interior point solver or utilizing the following lemma:

Lemma A.1 When the solution π∗(θ) to (A.2) is unique for a given θ, then A∗(θ)
is uniquely given by

A∗(θ) = {i ∈ {1, . . . , q} |π∗i (θ) < 0} . (A.5)

PROOF: Let x be an optimal solution to (A.1). Define the sets

K = {i ∈ {1, . . . , q} | i ∈ A(x, θ), π∗i < 0} ,

and
J = {i ∈ {1, . . . , q} | i ∈ A(x, θ), π∗i = 0} .

It is obvious that i ∈ K ⇒ i ∈ A∗ since the complementarity condition holds for
all optimal x. From (Mangasarian 1979) we have that π∗ is unique if and only if
LICQ holds for AK and there is at least one feasible solution d to the system

AKd = 0, AJ d < 0. (A.6)

Assume first that the primal solution is non-unique. The set of feasible directions
at x is given by

{
r

∣∣AA(x,θ)r ≤ 0
}

and consequently x̄ = x + αd is feasible for
sufficiently small scalar α > 0. It is clear that for α > 0 the constraints in J are
inactive, so it suffices to show that x̄ is optimal:

cT (x + αd) = π∗T A(x + αd) = π∗T Ax = cT x, (A.7)

where we have used (A.3b), (A.3c), and (A.6). This implies i ∈ J ⇒ i /∈ A∗. If
the primal solution is unique, then we have from (Mangasarian 1979) that

AKd = 0, AJ d ≤ 0, (A.8)

has no solution d 6= 0, hence, the solution to (A.6) is d = 0, and consequently
J = ∅.



Appendix B

Facet-to-Facet Violation Example

B.1 Violation of the facet-to-facet property

We show by an example that the facet-to-facet property does not generally hold for
strictly convex pQPs. To show that the violation of the facet-to-facet property is
not a consequence of numerical inaccuracies, the solution is analytically verified.
Notation used in this appendix is defined in Chapter 3, see also references therein.

Consider the following problem:

V ∗(θ) := min
x∈R3

1
2
xT x s.t. x ∈ P(θ), ∀θ ∈ Θ, (B.1a)

P(θ) :=





x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣

x1 − x3 ≤ −1 + θ1

−x1 − x3 ≤ −1− θ1

x2 − x3 ≤ −1− θ2

−x2 − x3 ≤ −1 + θ2
3
4x1 + 16

25x2 − x3 ≤ −1 + θ1

−3
4x1 − 16

25x2 − x3 ≤ −1− θ1





, (B.1b)

Θ :=
{
θ ∈ R2

∣∣ −3
2 ≤ θi ≤ 3

2 , i = 1, 2
}

. (B.1c)

The closures of the full-dimensional critical regions obtained by an implementa-
tion of the algorithm in (Tøndel, Johansen, and Bemporad 2003c) are depicted in
Figure B.1. It is clear that the facet-to-facet property is violated in this example if
this is the correct solution, so the remainder of this report is devoted to verify the
solution.

To rule out the possibility that numerical inaccuracy is the reason for the viola-
tion of the facet-to-facet property, analytical expressions for the closures of some
of the relevant critical regions will be derived. We will consider R2, R4 and R7:

• R2: Solving (B.1) for θ = [65 ,− 1
10 ]T we get the optimal active set A =

{2, 3, 6}.

• R4: Solving (B.1) for θ = [15 ,−1
2 ]T we get the optimal active set A =

{2, 4, 5}.
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Figure B.1: Facet-to-facet property violated.

• R7: Solving (B.1) for θ = [−1
5 , 1

2 ]T we get the optimal active set A =
{1, 3, 6}.

We rewrite the constraints as:

P(θ) =





x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣

x1 − x3 ≤ −1 + θ1

−x1 − x3 ≤ −1− θ1

x2 − x3 ≤ −1− θ2

−x2 − x3 ≤ −1 + θ2

ax1 + bx2 − x3 ≤ −1 + θ1

−ax1 − bx2 − x3 ≤ −1− θ1





.

The computations are given below:
R2: For the optimal active set A = {2, 3, 6} we have:

λ∗A(θ) =
1

(b− a + 1)2




−2a + b + 2a2 + b2 a− b− ab− a2 − b2

2a + b− ab− a2 − b2 − 1 −2a + a2 + 2b2 + 1
−2a− b + 2 a + 2b− 1


 θ

+
1

b− a + 1



−a
b
1


 ,

xA(θ) =
1

a− b− 1



−b b

a− 1 −(a− 1)
a− 1 −b


 θ +




0
0
1


 .
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The equations that ensure feasibility of xA(θ) are given by:

ANxA(θ) ≤ b̂N + SN θ ⇒ 2
a− b− 1



−(a− 1) b
−(a− 1) b
−(a− 1) b


 θ ≤




0
0
0


 .

R4: For the optimal active set A = {2, 4, 5} we have:

λ∗A(θ) =
1

(a + b + 1)2




3b− 2a + 2a2 + b2 + 2 a + b− ab + a2 + b2

ab− 3b− a2 − b2 + 1 −2a− a2 − 2b2 − 1
2a− b− 4 a− 2b + 1


 θ

+
1

a + b + 1




a
b
1


 ,

xA(θ) =
1

a + b + 1




b + 2 b
1− a −a− 1
a− 1 −b


 θ +




0
0
1


 .

The equations that ensure feasibility of xA(θ) are given by:

ANxA(θ) ≤ b̂N + SN θ ⇒ 2
a + b + 1




(1− a) b
(1− a) b
(1− a) b


 θ ≤




0
0
0


 .

R7: For the optimal active set A = {1, 3, 6} we have:

λ∗A(θ) =
1

(a + b + 1)2




2a− 3b− 2a2 − b2 − 2 ab− a− b− a2 − b2

3b− ab + a2 + b2 − 1 2a + a2 + 2b2 + 1
b− 2a + 4 2b− a− 1


 θ

+
1

a + b + 1




a
b
1


 ,

xA(θ) =
1

a + b + 1




b + 2 b
1− a (−a− 1)
1− a b


 θ +




0
0
1


 .

The equations that ensure feasibility of xA(θ) are given by:

ANxA(θ) ≤ b̂N + SN θ ⇒ 2
a + b + 1




a− 1 −b
a− 1 −b
a− 1 −b


 θ ≤




0
0
0


 .

If we examine the equations that ensure feasibility, we se that for R2 and R7

they can be written as (a−1)θ1−bθ2 ≤ 0, where we have assumed that a+b+1 >
0. For R4 we se that they can be written as (1 − a)θ1 + bθ2 ≤ 0. It is clear that
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R2 and R7 are in the opposite half-space of R4, because (a − 1)θ1 − bθ2 ≤ 0 ⇔
(1− a)θ1 + bθ2 ≥ 0.

R2 =





θ ∈ Θ

∣∣∣∣∣∣∣∣

(a− 1)θ1 −bθ2 ≤ 0

(2a− b− 2a2 − b2)θ1 (b− a + ab + a2 + b2)θ2 ≤ a2 − ab− a

(a2 + b2 − 2a− b + ab + 1)θ1 (2a− a2 − 2b2 − 1)θ2 ≤ b2 − ab + b
(2a + b− 2)θ1 (1− a− 2b)θ2 ≤ b− a + 1





R4 =





θ ∈ Θ

∣∣∣∣∣∣∣∣

(1− a)θ1 bθ2 ≤ 0

(2a− 3b− 2a2 − b2 − 2)θ1 (ab− a− b− a2 − b2)θ2 ≤ a2 + ab + a

(3b− ab + a2 + b2 − 1)θ1 (2a + a2 + 2b2 + 1)θ2 ≤ b2 + ab + b
(b− 2a + 4)θ1 (2b− a− 1)θ2 ≤ a + b + 1





R7 =





θ ∈ Θ

∣∣∣∣∣∣∣∣

(a− 1)θ1 −bθ2 ≤ 0

(3b− 2a + 2a2 + b2 + 2)θ1 (a + b− ab + a2 + b2)θ2 ≤ a2 + ab + a

(ab− 3b− a2 − b2 + 1)θ1 (−a2 − 2b2 − 2a− 1)θ2 ≤ b2 + ab + b
(2a− b− 4)θ1 (a− 2b + 1)θ2 ≤ a + b + 1





By letting a = 3/4 and b = 16/25 we have:
R2:

R2 =





θ ∈ Θ

∣∣∣∣∣∣∣∣




−50 −128
−3373

5000
13421
10000

3121
10000 − 8817

10000
7
50 −103

100


 θ ≤




0
−267

400
356
625
89
100








R4:

R4 =





θ ∈ Θ

∣∣∣∣∣∣∣∣




50 128
−19773

5000 −18821
10000

14121
10000

38817
10000

157
50 − 47

100


 θ ≤




0
717
400
956
625
239
100








R7:

R7 =





θ ∈ Θ

∣∣∣∣∣∣∣∣




−50 −128
19773
5000

18821
10000

−14121
10000 −38817

10000
−157

50
47
100


 θ ≤




0
717
400
956
625
239
100








Figure B.2 depicts the closures of the critical regions from the exact computa-
tion and we see that the facet-to-facet property is still violated. To illustrate that
we are not missing any small critical regions, we delete the equation that ensures
feasibility from the representations of the three closures, see Figure B.3.

To verify that the correct optimal active set has been chosen, we check that
(xA(θ), λ∗A(θ)) is the unique KKT point for the given θ.

R2: Let θ = [65 − 1
10 ]T and consider the feasibility condition:

AxA(θ)− b̂− Sθ =
−2

a− b− 1




−θ1 + aθ1 − bθ2

0
0

−θ1 + aθ1 − bθ2

−θ1 + aθ1 − bθ2

0



≤




0
0
0
0
0
0






B.1 Violation of the facet-to-facet property 147

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

R
2

R
4

R
7

θ
1

θ
2

Figure B.2: Closures of critical regions, exact computation.

Assuming that a− b− 1 < 0 yields:




−θ1 + aθ1 − bθ2

0
0

−θ1 + aθ1 − bθ2

−θ1 + aθ1 − bθ2

0



≤




0
0
0
0
0
0



⇒




−0.236
0
0

−0.236
−0.236

0



≤




0
0
0
0
0
0




.

So the feasibility condition holds. Since λ∗i = 0 for i /∈ A, the complementarity
condition also holds. Finally, λ∗A(θ) ≥ 0 is verified:

1

(b− a + 1)2




−2a + b + 2a + b a− b− ab− a− b
2a + b− ab− a− b− 1 −2a + a + 2b + 1

−2a− b + 2 a + 2b− 1




[
θ1
θ2

]
+

1

b− a + 1



−a
b
1


 ≥ 0

⇒


−(a + ab + 2aθ1 − aθ2 − bθ1 + bθ2 + abθ2 − a2 − 2a2θ1 + a2θ2 − b2θ1 + b2θ2)

(b− ab− θ1 + θ2 + 2aθ1 − 2aθ2 + bθ1 − abθ1 + b2 − a2θ1 + a2θ2 − b2θ1 + 2b2θ2)
(b− a + 2θ1 − θ2 − 2aθ1 + aθ2 − bθ1 + 2bθ2 + 1)


 ≥ 0

⇒


0.27623
0.10691
0.619


 >



0
0
0




Since x∗(θ) is unique, the optimal active set is determined uniquely, and since
LICQ holds for A, the KKT-point (xA(θ), λ∗A(θ)) is unique.
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Table B.1: Optimal active sets and analytically computed non-minimal critical re-
gions. The first |A| inequalities correspond to λ∗A(θ) ≥ 0, where | · | denotes the
cardinality.

Region A Polyhedron

R1 1, 5




2221
8817 0
2500
8817 0
9442
8817 0
2107
2939 1
3121
8817 −1
9442
8817 0




θ ≤




2221
8817

2500
8817

−8192
8817

− 832
2939

−5696
8817

−8192
8817




R2 2, 3, 6




−6746
7921

13421
7921

3121
7921 −8817

7921

1400
7921 −10300

7921

−50
89 −128

89

−50
89 −128

89

−50
89 −128

89




θ ≤




−75
89

64
89

100
89

0

0

0




R3 3, 6




1800
19073 −19721

38146

−10000
19073

1800
19073

−19773
19073 −18821

38146

3373
19073 −13421

38146

−16400
19073 −16121

19073

−16400
19073 −16121

19073




θ ≤




16121
38146

8200
19073

−17925
38146

6675
38146

− 5625
19073

− 5625
19073
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Table B.2: Optimal active sets and analytically computed non-minimal critical re-
gions. The first |A| inequalities correspond to λ∗A(θ) ≥ 0, where | · | denotes the
cardinality.

Region A Polyhedron

R4 2, 4, 5




−39546
57121 −18821

57121

14121
57121

38817
57121

31400
57121 − 4700

57121

50
239

128
239

50
239

128
239

50
239

128
239




θ ≤




75
239

64
239

100
239

0

0

0




R5 1, 3




2/3 1/3

−1/3 −2/3

2/3 −2/3

2/3 −2/3

−19
50 − 51

100

157
150 − 47

300




θ ≤




1/3

1/3

−2/3

−2/3
13
100

−239
300




R6 4, 5




− 1800
19073

19721
38146

10000
19073 − 1800

19073

− 3373
19073

13421
38146

19773
19073

18821
38146

16400
19073

16121
19073

16400
19073

16121
19073




θ ≤




16121
38146

8200
19073

6675
38146

−17925
38146

− 5625
19073

− 5625
19073
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Figure B.3: Closures of critical regions without feasibility constraints.

Without showing the calculations in details, we repeat the analytical computa-
tion of the region and the verification of the KKT point for all the critical regions.
We will also verify analytically that LICQ holds for all the optimal active sets.
In Tables B.1- B.4 the optimal active sets for each critical region and analytically
computed expressions for the closure of the critical regions are given. In Table B.5,
KKT points calculated from (xA(θ), λ∗A(θ)) are given. In Tables B.6 and B.7 it is
verified that LICQ holds for all the optimal active sets that define full-dimensional
critical regions. In Table B.6 the determinants of AA are given, hence only the opti-
mal active sets containing three elements are considered. In Table B.7 the Gaussian
reductions to ”staircase form” are given, i.e. LICQ is proven to hold for the optimal
active sets with two elements.

We now consider the lower dimensional critical region given byA = {1, . . . , 6}.
Since LICQ is violated for A the normal cone will be analytically computed. The
normal cone is defined as the conic hull of the column vectors of AT . The rays of
the normal cone is depicted in Figure B.4. To obtain the half-space representation
of the cone, a systems of 6 equations with 3 unknowns are solved, e.g. for ray 1



B.1 Violation of the facet-to-facet property 151

Table B.3: Optimal active sets and analytically computed non-minimal critical re-
gions. The first |A| inequalities correspond to λ∗A(θ) ≥ 0, where | · | denotes the
cardinality.

Region A Polyhedron

R7 1, 3, 6




39546
57121

18821
57121

−14121
57121 −38817

57121

−31400
57121

4700
57121

− 50
239 −128

239

− 50
239 −128

239

− 50
239 −128

239




θ ≤




75
239

64
239

100
239

0

0

0




R8 2, 4




−2/3 −1/3

1/3 2/3

−2/3 2/3

−2/3 2/3

−157
150

47
300

19
50

51
100




θ ≤




1/3

1/3

−2/3

−2/3

−239
300

13
100




R9 1, 4, 5




6746
7921 −13421

7921

−3121
7921

8817
7921

−1400
7921

10300
7921

50
89

128
89

50
89

128
89

50
89

128
89




θ ≤




−75
89

64
89

100
89

0

0

0
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Table B.4: Optimal active sets and analytically computed non-minimal critical re-
gions. The first |A| inequalities correspond to λ∗A(θ) ≥ 0, where | · | denotes the
cardinality.

Region A Polyhedron

R10 2, 6




−2221
8817 0

−2500
8817 0

−9442
8817 0

−3121
8817 1

−2107
2939 −1

−9442
8817 0




θ ≤




2221
8817

2500
8817

−8192
8817

−5696
8817

− 832
2939

−8192
8817




R11 1, 3, 5




−2018
507 −2993

507

−2107
507 −2939

507

3800
507

1700
169

−50
39 −128

39

−50
39 −128

39

−50
39 −128

39




θ ≤




25
13

64
39

−100
39

0

0

0




R12 2, 4, 6




2018
507

2993
507

2107
507

2939
507

−3800
507 −1700

169

50
39

128
39

50
39

128
39

50
39

128
39




θ ≤




25
13

64
39

−100
39

0

0

0






B.1 Violation of the facet-to-facet property 153

Table B.5: A KKT-point is analytically computed from xA(θ) and λ∗A(θ) for a
given parameter θ in the interior of each critical region. To verify that the correct
optimal active set has been chosen, one can substitute xA(θ) and λ∗A(θ) into the
KKT conditions and note that if LICQ holds for A, the KKT point is unique.

R1 R2

θT
[−3

2
1
2

] [
6
5 − 1

10

]
xA(θ)T

[ −10240
8817 −4000

8817
23605
17634

] [
416
445

65
178

563
445

]
λ∗A(θ)T

[
11105
17634

6250
8817

] [
27623
79210

10691
79210

6190
7921

]

R3 R4

θT
[
1 1

] [
1
2 −1

2

]
xA(θ)T

[
12300
19073 − 5625

19073
32521
19073

] [
100
239

100
239

517
478

]
λ∗A(θ)T

[
16121
19073

16400
19073

] [
56575
114242

27644
57121

5850
57121

]

R5 R6

θT
[−1 1

] [−1 −1
]

xA(θ)T
[ −2

3 −2
3

4
3

] [ −12300
19073

5625
19073

32521
19073

]
λ∗A(θ)T

[
2
3

2
3

] [
16121
19073

16400
19073

]

R7 R8

θT
[
0 1

2

] [
1 −1

]
xA(θ)T

[
32
239 −175

478
271
239

] [
2
3

2
3

4
3

]
λ∗A(θ)T

[
17029
114242

69409
114242

21550
57121

] [
2
3

2
3

]

R9 R10

θT
[−6

5 − 1
10

] [
3
2 −1

2

]
xA(θ)T

[ −352
445 − 55

178
627
445

] [
10240
8817

4000
8817

23605
17634

]
λ∗A(θ)T

[
781

79210
5665
15842

8250
7921

] [
11105
17634

6250
8817

]

R11 R12

θT
[−1 23

50

] [
1 −23

50

]
xA(θ)T

[ −288
325 − 9

26
362
325

] [
288
325

9
26

362
325

]
λ∗A(θ)T

[
5563
8450

3847
25350

154
507

] [
5563
8450

3847
25350

154
507

]

Table B.6: The determinants of AA are given to show that LICQ holds for the
optimal active sets with three elements.

R2 R4 R7 R9 R11 R12

det(AA) 89
100 −239

100 −239
100

89
100

39
100

39
100
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Table B.7: The Gaussian reductions of AA to ”staircase form” are given to show
that LICQ holds for the optimal active sets with two elements.

R1 R3

rref(AA)

[
1 0 −1

0 16
25 −1/4

] [ −3/4 −16
25 −1

0 −3/4 3/4

]

R5 R6

rref(AA)

[
1 0 −1

0 1 −1

] [
3/4 16

25 −1

0 −3/4 −3/4

]

R8 R10

rref(AA)

[ −1 0 −1

0 1 1

] [ −1 0 −1

0 16
25 1/4

]

and 4 the plane ax1 + bx2 + x3 = c is given by

−b− 1 = c,

a− 1 = c,

0 = c.

Thus, we get the inequality x1 − x2 + x3 ≤ 0. The normal cone is given by:




x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣∣

x1 − x2 + x3 ≤ 0
−x1 + x2 + x3 ≤ 0

−12
25x1 − x2 + x3 ≤ 0
x1 + 25

64x2 + x3 ≤ 0
12
25x1 + x2 + x3 ≤ 0

−x1 − 25
64x2 + x3 ≤ 0





=:
{
x ∈ R3

∣∣LAI x ≤ 0
}

We now compute the optimal solution xA(θ) by Gaussian reduction:

xA(θ) =




0 −64
25

0 −1
0 0




[
θ1

θ2

]
+




0
0
1


 .

The normal cone optimality condition becomes:

LAI xA(θ) ≥ 0 ⇒




0 −39
25

0 39
25

0 1393
625

0 −4721
1600

0 −1393
625

0 4721
1600




[
θ1

θ2

]
≥ −




1
1
1
1
1
1



⇒ −1600

4721
≤ θ2 ≤ 1600

4721
.
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Figure B.4: The normal cone associated with A = {1, . . . , 6} is the conic hull of
the rays in the figure. Each ray is normal to a constraint in P(θ).
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So the closure of the critical region becomes:

cl(Θ{1,...,6}) =
{

θ ∈ Θ
∣∣∣∣ θ1 = −64

25
θ2,−1600

4721
≤ θ2 ≤ 1600

4721

}
.

B.2 Maple files

Three Maple files supplement this appendix.

1. VerifyKKT.mv: The file verifies analytically that the KKT conditions hold
for a selected parameter in the interior of each critical region.

2. ComputeRegions.mw: The files computes the closures of the critical regions
analytically and verifies that LICQ holds for each optimal active set.

3. AllCombinations.mw: The file verifies numerically that every possible com-
bination of active constraints, which has not been reported as an optimal
active set in the solution, yields empty or lower dimensional critical regions.
To be more specific:

• For all combinations of constraints for which LICQ holds, the region is
computed using the KKT-conditions and the ”solve” command is used
to compute a minimal representation of the polyhedron.

• For all combination of constraints for which LICQ is violated, a Gaus-
sian reduction of G := AA − SA − bA is computed. This shows that
several combinations must yield lower-dimensional regions since we
get an equality constraint on θ, i.e. Ciθ = di.

• For all combination of constraints for which LICQ is violated and
Gaussian reduction does not yield a lower dimensional region, xA(θ) is
computed and used in the feasibility condition. The ”solve” command
is then used to compute the region of feasibility, and it turns out that
this is sufficient for showing that the remaining combinations of active
constraints yield lower-dimensional critical regions.

Finally, it should be noted that the active sets A = {3} and A = {4} define full-
dimensional critical regions if we consider Θ := Rs, but that the regions do not
intersect the polytope we are considering.

B.3 Convexity lemma

If S is a set, then cone(S) denotes the smallest cone containing S. If S is a set and
s0 is a point, then S + s0 denotes the set {s + s0 | s ∈ S }. In the below lemma we
use the notation conch{s, S} := cone(S − s) + s.
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Lemma B.1 Given two s-dimensional closed sets, P and S, in Rs, such that
int(P ) ∩ int(S) = ∅. A necessary condition for the set P ∪ S to be convex, is
that

dim(P ∩ S) = s− 1.

PROOF: The union of two disjoint closed sets is clearly non-convex so the in-
tersection must be non-empty. Denote the line segment from a point s ∈ S to a
point p ∈ P by (s, p). For the union to be convex, we must have (s, p) ∈ P ∪
S, ∀s ∈ S and ∀p ∈ P . Consider a point s0 ∈ int(S) and let C := conch{s0, P}.
Due to the s-dimensionality of P , C is clearly s-dimensional. Denote the extreme
rays of C by {v1, . . . , vn}. Clearly, vi is a direction from s0 to a point pi ∈ P . De-
note all line segments corresponding to these directions by (s0, pi), i = {1, . . . , n}.
By noting that int(P ) ∩ int(S) = ∅ we conclude that if (s0, pi) ∩ P ∩ S = ∅, then
we have (s0, pi) /∈ P ∪ S. So (s0, pi) ∩ P ∩ S 6= ∅ must hold ∀i for the union to
be convex, in other words, all extreme rays of C must run through the intersection.
Assume now that dim(P ∩ S) = s − 2. Take the conic hull of s0 and P ∩ S, i.e.
Cint := conch{s0, P ∩ S}, then Cint contains all directions from s0 to P ∩ S. It
is clear that since P ∩ S is spanned by s − 2 vectors, Cint is spanned by s − 1
vectors, i.e. dim(Cint) = s − 1. Since dim(C) > dim(Cint), ∃vl ∈ C such
that vl /∈ Cint, let (s0, pl) denote the line segment defined by vl. It is clear that
(s0, pl) ∩ P ∩ S = ∅ ⇒ (s0, pl) /∈ P ∪ S. All arguments made are valid for
dim(P ∩ S) < s− 2.

¤
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Appendix C

Binary Search Tree

We recall the procedure for evaluating a piecewise affine function presented in
(Tøndel, Johansen, and Bemporad 2003b).

Consider the set of full-dimensional polyhedra {X1, X2, ..., Xnr} and a corre-
sponding set of affine functions {F1, F2, ..., FK}. Note that K ≤ nr since sev-
eral polyhedra can be associated with the same affine function. Let all unique
hyperplanes defining the polyhedra {X1, X2, ..., Xnr} be denoted by aT

j x = bj

for j = 1, 2, ..., L, and define dj(x) = aT
j x − bj . Let the index representa-

tion J of a polyhedron denote a combination of indexes combined with the sign
of dj , e.g. J = {1+, 4+, 6−} would mean that d1(x) ≥ 0, d4(x) ≥ 0 and
d6(x) ≤ 0. Such an index representation obviously defines a polyhedron; P(J ).
We can further define the set of polyhedra corresponding to J as the index set
I(J ) = {i|Xi ∩ P(J ) is full-dimensional}.

The idea is to construct a binary search tree so that for a given x ∈ X , at each
node we will evaluate one affine function dj(x) and test its sign. Based on the sign
we select the left or the right sub-tree. Traversing the tree from the root to a leaf
node, one will end up with a leaf node giving a unique affine control law. Each
node of the tree will be denoted by Nk. An unexplored non-leaf node Nk will
consist of (Ik,Jk), where Jk is the index set (with signs) of hyperplanes obtained
by traversing the tree from the root node to Nk and Ik = I(Jk). An explored non-
leaf node will contain an index jk to a hyperplane, while a leaf node will contain
an affine control law, Fk. See Figure C.1 for an example of a simple search tree.

The next algorithm is used on-line to traverse the binary tree. In general, the
worst-case number of arithmetic operations required to search the tree and evaluate
the PWA function is (2n + 1)D + 2nm, where D is the depth of the tree, m is the
number of variables and n is the number of parameters. At each node there are
n multiplications, n additions and 1 comparison. Moreover, 2nm operations are
required to evaluate the affine state feedback of the leaf node.
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X2, F1

X6, F3 X4, F2

X1, F1

X3, F1

X5, F2j1

j6

j4
j5

j3

j2

I1={1,...,6}J1=Ø
j1=1I2={1,2,6}J2={1-}

j2=4

I3={2,3,4,5}J3={1+}
j3=3I5={6}J5={1-,4+}

F3

I4={1,2}J4={1-,4-}
F1

I6={4,5}J6={1+,3-}
F2

I7={2,3}J7={1+,3+}
F1

N1

N2 N3

N4 N7N6N5

Figure C.1: Search tree generated from partition with nr = 6 and K = 3

Procedure C.1 Evaluation of PWA functions via binary search tree

1 Let the current node N be the root node of the tree.

2 while N is not a leaf node

3 Evaluate the hyperplane d(x) = aT x− b corresponding to node N .

4 Let N be the child node according to the sign of d(x).

5 end (while)

6 Evaluate the function F corresponding to leaf-node N at x.



Appendix D

CyberRig I data

D.1 Physical Properties

The relevant physical properties of CyberRig I are given in Table D.1.

Water density, ρ 1000
Propeller diameter, D 0.05 m

Thrust coefficient, KT 0.6173
Sampling frequency 10 Hz

l1,x -0.305 m
l1,y 0.365 m
l2,x -0.365 m
l2,y 0.305 m
l3,x -0.365 m
l3,y -0.305 m
l4,x -0.305 m
l4,y -0.365 m
l5,x 0.305 m
l5,y -0.365 m
l6,x 0.365 m
l6,y -0.305 m
l7,x 0.365 m
l7,y 0.305 m
l8,x 0.305 m
l8,y 0.365 m

Upper limit on thrust magnitude, T i 2.4 N
Lower limit on thrust magnitude, T i 0 N

Table D.1: Relevant physical data for CyberRig I.
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D.2 Hardware

The inboard micro PC on CyberRig I is and IEI Wafer-5822-300 PC/104 compat-
ible board powered by a 300 MHz Pentium compatible CPU with 512 Mb RAM.
The micro PC is running a QNX Neutrino Version 6.2 real-time operating system
installed on a spearate 50 Gb hard drive. It controls 8 different cards connected to
PC/104 bus. The command station running Windows XP is a Dell LATTITUDE
D800 laptop PC with a 1.6 GHz Pentium M processor and 512 Mb RAM. All
communication between the micro PC and the host PC goes through a LAN.

The azimuth thruster propeller velocity is controlled by four Mesa Electronics
4127 Motor Controller Cards. 4127 is a low cost, LM629 based 2 axis DC servo
motor control system implemented on a stackable PC/104 card. The per axis output
of the 4127 is an 8 bit sign-magnitude PWM signal that drives a Mesa 7127 dual
H-bridge intended for motion control applications.

The rotation of the azimuth thrusters is controlled by three 5936 Stepper Motor
Controller PC/104 stackable cards. The 5936 allows a PC/104 based computer
system to control three independent SERVEX two phase stepper motor drivers.
The orientation of the azimuth is read by a position sensor that outputs an analog
voltage in the range 0-5 V to DM6210 PC/104 compatible I/O card.

The case holding the eight cards of the PC/104 stack and CPU is isolated in the
middle of the rig and connected to four boxes each containing a dual H-bridge and
two stepper motor drives. Each of these boxes are connected to one of the four legs,
each containing two stepper motors for azimuth and two RPM controlled propeller
motors.

D.3 Software

The low-level software of CyberRig I is written in C and implemented as S-functions
in MATLAB/SIMULINK. The SIMULINK models are handled by Opal RT-lab
which compiles all code necessary to download the model to the target QNX real-
time system. The sampling frequency of the system was chosen to be 10Hz.


