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Abstract

In this thesis an approach to joint source-channel coding using direct source
to channel mappings is studied. The system studied communicates i.i.d.
Gaussian sources on a point-to-point Gaussian memoryless channel with
limited feedback (supporting channel state information at most). The map-
pings, named Shannon-Kotel’nikov (SK) mappings, are memoryless map-
pings between the source space of dimension M and the channel space of
dimension N. Such mappings can be used for error control when M < N,
called dimension expansion, and for lossy compression when M > N,
called dimension reduction. The SK-mappings operate on amplitude con-
tinuous and time discrete signals (meaning that there is no bits involved)
through (piecewise) continuous curves or hyper surfaces in general.

The reason for studying SK-mappings is that they are delay free, robust
against varying channel conditions, and have quite good performance at
low complexity.

First a theory for determining and categorizing the distortion using SK-
mappings for communication is introduced and developed. This theory
is further used to show that SK-mappings can reach the information theo-
retical bound optimal performance theoretically attainable (OPTA) when their
dimension approach infinity.

One problem is to determine the overall optimal geometry of the SK-
mappings. Indications on the overall geometry can be found by study-
ing the codebooks and channel constellations of power constrained chan-
nel optimized vector quantizers (PCCOVQ). The PCCOVQ algorithm will
find the optimal placing of quantizer representation vectors in the source
space and channel symbols in the channel space. A PCCOVQ algorithm
giving well performing mappings for the dimension reduction case has
been found in the past. In this thesis the PCCOVQ algorithm is modified
to give well performing dimension expanding mappings for scalar sources,
and 1:2 and 1:3 PCCOVQ examples are given.

Some example SK-mappings are proposed and analyzed. 2:1 and 1:2
PCCOVQ mappings are used as inspiration for making 2:1 and 1:2 SK-
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ABSTRACT

mappings based on the Archimedean spiral. Further 3:1, 4:1, 3:2 and 2:3
SK-mappings are found and analyzed. All example SK-mappings are mod-
eled mathematically using the proposed theory on SK-mappings. These
mathematical models are further used to find the optimal coefficients for
all the proposed SK-mappings as a function of the channel signal-to-noise
ratio (CSNR), making adaptations to varying channel conditions simple.
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Chapter 1

Introduction

‘Information is not knowledge’

-Albert Einstein

Information, or whatever has been labeled information, has always been
around us in one form or another. Without the exchange of information
between humans and between humans and the environment we live in,
what would things have been like?

During the last half century a theory on information has emerged. In the
aftermath of its development humans have seen an explosion in the access
of information all across the planet and also in ways of communicating
it. Not only has the possibility to communicate across large distances and
orient ourselves at almost every point of the globe become possible, but
our understanding of the solar system and far reaches of the universe has
increased (or at least we think so) by interpreting the information in the
radiation from the universe.

One of the areas where information theory plays an indispensable role
is in (tele) communications. One area under strong development is com-
munication of multimedia content like audio, speech, video, pictures etc.
The difficulty in communicating multimedia content is its high informa-
tion content and demands on robustness, yet it is wanted to communicate
multimedia content on some of the most difficult media where both power
is limited and bandwidth is a scarce resource (like wireless channels).

Information theory also have many applications outside telecommuni-
cations. One area is neurobiology, since the human mind is one of the most
complex information processing networks we know of. In physics infor-
mation has become a common term discussed in many areas (where the
basic concepts of entropy initially came from). Applications also show up in
statistics and evolution of molecular codes. The development of quantum
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1. INTRODUCTION

information theory (giving a generalization of classical information theory)
probably lies at the frontier of information exchange and processing.

There are still many open problems and undeveloped areas in infor-
mation theory. The aspects discussed above shed light on the reasons and
motives to study and develop the field of information theory and its appli-
cations further.

1.1 Information theory

The first development towards a theory of information started out with the
term (information) entropy, which is a measure of the uncertainty connected
with a phenomenon (or a random variable in mathematical terms). The en-
tropy became the measure for the average information content of a source
of information. The word entropy comes from physics (the concept dating
back to the 1850’s), giving a measure of the disorder in a thermodynami-
cal system. Claude E. Shannon borrowed this term and built a theory on
information on it [Shannon, 1948]. It is Shannon’s concepts that have been
developed further to what information theory has become today.

To give bonds on what is ultimately possible for information transfer in
any system and the ultimate quality one will get when reducing informa-
tion, wether it is two units communicating in a point-to-point configura-
tion, or several units communicating in a network, are some of the topics
of information theory.

Although not by far every problem has been solved (e.g. the network
problem), there are certain cases which have well established bounds on
what is ultimately possible. The point to point link and compression of a
single source have well established bounds. But even though the bounds
are established, and it has been proved that certain coding techniques can
be used to reach them, one would still like to find out the best possible
way of reaching these bounds for a specific application, something which
is basically unknown, and depends on the type of information source in
question.

1.1.1 Bounds for coding of sources and capacity of
point-to-point links

Figure 1.1 show a typical point-to-point communication system. The trans-
mitter usually consists of both a source coder, which is compressing the
source information and a channel coder protecting the source information
from errors.

2
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n

Information
source

Receiver
Detected
source

x x̂z ẑ+Transmitter

FIGURE 1.1: General point-to-point communication system.

In transmitting a source of information the goal is to represent its infor-
mation it with the lowest rate possible and with the best possible quality
(fidelity). For discrete sources it is possible to do entropy coding, mean-
ing that the rate of the source is reduced without reducing the information
content (i.e. lossless compression). For analog sources, however, informa-
tion must in most (practically all) cases be reduced, meaning that the qual-
ity/fidelity of the source is reduced. Given a certain fidelity criterion, it is
of interest to represent the reduced source with as low a rate as possible.
Shannon derived an absolute lower bound of the rate of a source given a
certain distortion, called the rate-distortion (RD) function [Shannon, 1959].
In general, it is hard to find a closed form expression for this bound, but for
a Gaussian source with bandwidth B, given a mean-squared error (MSE)
distortion measure, a closed form expression is shown to be [Cover and
Thomas, 1991, pp.344-347]:

R (Dt) = max
[

Ws ln
(

σ2
x

Dt

)
, 0

]
, (1.1)

where, Ws is the source bandwidth, σ2
x is the source signal power and Dt

is the distortion, the ratio σ2
x /Dt is the signa-to-distortion ratio (SDR), and

the rate is in nats per second (using the natural logarithm).
Given that information shall be communicated from transmitter to re-

ceiver over some medium (channel) where noise is present (which is al-
ways the case in the physical world), there exists an absolute upper limit on
the rate that is achievable, guaranteing error free transmission, given a cer-
tain Channel signal-to-noise ratio (CSNR), called the channel capacity [Shan-
non, 1948]. Also for channel capacity it is hard to find closed form expres-
sions, but for a channel with additive Gaussian noise, bandwidth Wc, and
with an average power constraint (power per channel sample) the capacity
is shown to be [Cover and Thomas, 1991, pp.239-242]:

C
(
σ2

z
)

= Wc ln
(

1 +
σ2

z
σ2

n

)
, (1.2)
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where σ2
z is the average channel power and σ2

n is the channel noise power,
σ2

z /σ2
n is the CSNR, and the rate is in nats per second (using the natural

logarithm).
Both the RD-bound and channel capacity have been proven to be achiev-

able (see e.g. [Cover and Thomas, 1991]), but the bound achieving codes are
of infinite length, introducing both infinite complexity and delay into the
coders and decoders.

Considering the whole chain from source to receiver the information
transmission theorem states the following (lossy source coding case) [Berger,
1971, p.282]:

Theorem Let ε > 0 and D ≥ 0 be given. Let R(D) be the RD-function of a
time discrete stationary, ergodic source with respect to the single letter fidelity
criterion Fd generated by a bounded distortion measure d. Then the source output
can be reproduced with fidelity D at the receiving end of any channel of capacity
C > R(D). Conversely, fidelity D is unattainable over sufficiently long intervals
at the receiving end of any channel of capacity C < R(D).

(This theorem can be extended to unbounded distortion measures. See
[Berger, 1971, p.287]). Looking into this theorem and its proof, it actually
states that one can do source and channel coding separately, without any
loss (compared to a joint technique), in the case of using achievable codes.
This is probably the major reason why almost every communication sys-
tem today uses separate source and channel coding (SSCC) (also beneficial
when it comes to interfaces). But the drawback in the above statements
is that it is only guaranteed that nothing is lost using SSCC opposed to
joint source-channel coding (JSCC) when the codes in question are optimal,
i.e. introducing infinite complexity and delay. However, infinite complex-
ity and delay are impossible in practice, so suboptimal finite complexity
source- and channel coders are usually employed. These coders also usu-
ally introduces a significant delay into the system, especially if one should
close in on the information theoretical bounds. The question is if JSCC will
outperform SSCC at finite complexity or at a finite allowed delay.

Analog sources have an infinite information content [Cover and Thomas,
1991, pp.228-229]. Multimedia content like speech, images, audio and video
(and for that sake any description of the varieties of nature), are all analog
sources of information. To be able to communicate such sources some dis-
tortion has to be introduced (except at infinite capacity, which is not real-
izable in reality), either by the channel noise or by both the channel noise
and lossy compression. Distortion is introduced even if the dimensionality
of the codes goes to infinity, and so no guarantee for errorfree commu-
nication exists for an analog source. Also in showing that the Gaussian
channel’s capacity is achievable, a countable (countably infinite) number

4



INFORMATION THEORY

of separate messages are considered (sphere packing). To communicate an
analog source by separate messages, some sort of quantization has had to
occur, meaning that some distortion has already been introduced. This dis-
tortion, for a given rate, can not be smaller than the distortion given by the
rate-distortion function of the source in question. Considering the whole
chain from an analog source to the receiver, the only cases where capacity
can be said to be truly achieved, without introducing any errors/distortion,
would be at infinite capacity (since the information of analog sources is in-
finite) and by the use of infinite complexity (to reach capacity). Also, in the
case where distortion is introduced, infinite complexity is needed to reach
the rate-distortion function (e.g. by infinite dimensional vector quantizers).

From this point of view, the rate- distortion function and channel ca-
pacity seems like improper measurer in the practical sense, standing alone
by themselves, when considering communication of analog sources. A
more proper bound describing the information transfer of analog sources
is something that gives a certain fidelity at the receiver (signal-to-distortion
ratio (SDR)) for a given channel sinal-to-noise ratio (CSNR), in which both
the rate-distortion function and channel capacity are included. One such
bound is the optimal performance theoretically attainable (OPTA) [Berger and
Tufts, 1967].

1.1.2 OPTA

OPTA is the result of evaluating the rate-distortion function at channel ca-
pacity, and renders the minimum source signal distortion when communi-
cating a source over a channel with a given CSNR [Berger and Tufts, 1967].

The discussion of OPTA is limited to the case of a memoryless Gaussian
source and an AWGN channel in this thesis. This serves as the lowest
bound for other memoryless sources and channels, as well as e.g. corre-
lated sources and channels with memory. To find OPTA, one equates the
source rate and channel capacity: R = C. Solving this for the SDR, OPTA
is obtained

SDR =
σx2

Dt
=

(
1 +

σ2
z

σ2
n

)Wc/Ws

. (1.3)

The channel/source bandwidth ratio Wc/Ws can in principle take on any
real positive number. If Wc > Ws, redundant bandwidth is available for
communication, and could be used for error control. If Wc < Ws, the band-
width and so the information has to be reduced by some sort of lossy com-
pression before transmission.

Reaching OPTA is possible by introducing infinite complexity source
and channel coders, which also introduce infinite delay. Another problem
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in combining separate coders is that they are in general non-robust against
varying channel conditions. A strong alternative is to use JSCC, where it
should be possible to get closer to (and also in some cases reach) OPTA,
with both finite complexity and almost no delay. Further, it seems quite
simple to make JSCC systems which are robust against varying channel
conditions.

1.2 Joint Source-Channel Coding

Considering analog sources (such as video, pictures, sound etc.), JSCC is,
for the reasons mentioned in the previous sections, an interesting alter-
native to separate source and channel coding. Some specific systems il-
lustrate this. It has been proven in [Berger and Tufts, 1967; Gastpar, Ri-
moldi, and Vetterli, 2003] that for an independent and identically distrib-
uted (i.i.d.) source and an additive white Gaussian noise (AWGN) chan-
nel, both of the same bandwidth, OPTA is achieved by a direct source-
channel mapping. (i.e. a low complexity delay free mapping). Further
it has been shown in [Schalkwijk and Bluestein, 1967] that OPTA can be
reached also in the bandwidth expansion case (channel bandwidth larger
than the source bandwidth), by the use of a system with a noiseless feed-
back link. Newer results have also showed that even though it is noise
on the feedback channel, OPTA can be approximately reached, but now
only in a certain range [Ramstad, 2008]. Notice that other cases than ex-
pansion with a factor N ∈ N has not yet been proved, neither has it been
proved that OPTA can be reached in the bandwidth reduction case (source
bandwidth larger than channel bandwidth). Probably, also these cases can
be reached by finite complexity systems (an approach is suggested later
in this thesis to show that OPTA can be reached when Wc/Ws ∈ Q+, but
then with infinite dimensional systems). Of course, if a well performing
feedback channel is not available, the above mentioned systems can not
be used, and other types of systems (generally nonlinear) must be con-
sidered. An interesting observation is that the above mentioned systems
having good performance at low complexity are purely analog.

During the last decades, when most communication systems have be-
come digital, research has been almost uniquely focused on coding and
transmission of digital sources or in general amplitude- and time discrete
sources. In the days of purely analog circuitry, the emphasis was on amplitude-
and time continuous sources (often called waveform sources). One field
that also got some attention in “the old days” was the communication of
amplitude continuous and discrete time sources. All the three mentioned
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cases were described and analyzed in detail by Vladimir Aleksandrovich
Kotel’nikov in his 1947 PhD dissertation called The theory of optimum noise
immunity [Kotel’nikov, 1959] (a translation made available in the west in
1959). Since “the takeover” of digital communication it seems that research
on communication of amplitude continuous time discrete sources has been
almost absent. The reason for this is probably partly the takeover of digital
communication and maybe the problems of too high computational com-
plexity for a computer in the 1970’s and 80’s. The reasons for studying
amplitude continuous time discrete systems further are at first their robust
character against varying channel conditions, something which digital sys-
tems normally lack.

Considering OPTA in (1.3), the bandwidth ratio Wc/Ws can in prac-
tice be obtained by e.g. combining M source samples into N channel sam-
ples. Assuming Nyquist sampling and an ideal Nyquist channel Wc/Ws =
N/M = r. Notice that r has to be a positive rational number in this case,
i.e. r ∈ Q+. Both the source- and channel spaces can be considered Euclid-
ian with dimension M and N respectively. And so the transmitter in Fig-
ure 1.1 becomes a mapping between an M dimensional source vector and
an N dimensional channel vector (the opposite at the receiver). r is called
the “dimension change factor” in the following (or expansion/reduction
factor depending on the case under consideration). If M < N the source
dimension is expanded onto the channel, meaning that redundant dimen-
sions (e.g. bandwidth) are available, and can be used for noise reduction
(error control). If M > N the dimension of the source is reduced, meaning
that the information content of the source must be reduced before transmis-
sion, and so lossy compression is necessary. In the following, an operation
where a source of dimension M is mapped onto a channel of dimension N
is called an M:N mapping.

Some known JSCC systems are described in the following sections.

1.2.1 Optimal linear system: BPAM

Having a channel with no feedback BPAM (Block PAM) is the best possible
linear solution [Lee and Petersen, 1976]. Assume that an i.i.d. M dimen-
sional Gaussian vector x should be communicated in an optimal linear way
by means of an N dimensional channel vector z. Given that the transmit-
ter is a matrix T and the receiver is a matrix R, one would like to find the
minimum of

Dtot = E{(x− x̂)2} (1.4)

where
z = Tx x̂ = Rẑ (1.5)

7



1. INTRODUCTION

and where ẑ = z + n and n is an N dimensional AWGN vector. It can be
shown [Lee and Petersen, 1976] that the optimal matrices are

T =
σz

σx
IN×M R =

σxσz

σ2
z + σ2

n
IM×N (1.6)

when M > N (dimension reduction), and

T =
√

N
M

σx

σx
IN×M R =

√
M
N

σxσz

σ2
z + σ2

n
IM×N (1.7)

when M < N (dimension expansion). IM×N is an M× N matrix with ones
on the main diagonal and zeros elsewhere. σx, σz and σn is the source-,
channel-, and noise standard deviation respectively. Figure 1.2 shows a
plot of BPAM and OPTA for some dimension change factors. It is shown
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FIGURE 1.2: Some BPAM systems compared to OPTA.

in [Lee and Petersen, 1976] that BPAM reaches OPTA when CSNR → −∞.
Although this case is uninteresting one can see that BPAM are quite close
to OPTA for low CSNR (up to approximately 5-10 dB). At high CSNR how-
ever, BPAM systems are far away from OPTA (except in the case of r = 1
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in which BPAM is optimal). To get closer to OPTA it is necessary to turn to
nonlinear systems.

1.2.2 Nonlinear Modulation

Some well known nonlinear modulation techniques exists. Of amplitude-
and time continuous systems the most well known are Frequency Modu-
lation (FM, which anybody who listen to radio from the 1970’s and until
today has been involved with, knowing it or not) and Phase Modulation
(PM), which are well performing for large bandwidth expansion factors.
Among the amplitude continuous and time discrete systems Pulse Posi-
tion Modulation (PPM) and Frequency Position Modulation (FPM) are well
known. Both has been shown to be optimal when the expansion factor N
goes to infinity [Wozencraft and Jacobs, 1965, 666-674]. The problem with
all of these techniques is that they do not perform well for small bandwidth
expansion factors. The reason is that they do not fill the channel space espe-
cially well, since ideally, their envelope is constant (it will be explained in
chapter 2 why it is important to fill the channel space for small N compared
to large N).

Systems built on Kotel’nikovs geometric interpretation [Kotel’nikov, 1959,
pp.62-99] using (piecewise) continuous curves (explained further in sec-
tion 2.1), have shown improved and promising performance for lower band-
width expansion factors, making them important for applications where
bandwidth and power is limited. A special case of these systems is when
piecewise continuous line segments are used, such that some sub-channels
(of the N-dimensional channel) will have a discrete representation, whereas
the other sub-channels have a continuous representation. These are named
Mixed Base Modulation (MBM). See [McRae, 1971] for some example MBM
systems. A common name given to PPM, FPM and Kotel’nikovs 1:N sys-
tems is Twisted Modulation (TM) [Wozencraft and Jacobs, 1965, pp.611-645].

1.2.3 Hybrid Digital Analog systems

More recently developed nonlinear systems are Hybrid Digital Analog sys-
tems (HDA) [Coward and Ramstad, 2000; Skoglund, Phamdo, and Alajaji,
2002, 2006]. These schemes are, in principle, built on scalar or vector quan-
tizers and linear coders. Both the centroids (the discrete part, often includ-
ing channel coders) and the quantization errors (analog part, transmitted
with optimal linear systems) are transmitted to perform error control. If no
channel coders are included in the discrete part, a HDA system is the same
as an MBM system, and so can be included under TM-schemes. A well
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performing example of an optimized 1:2 HDA coder, not using traditional
channel codes are given in [Coward and Ramstad, 2000] named the Hybrid
Scalar Quantizer Linear Coder (HSQLC).

1.2.4 PCCOVQ

An example of a system that gives near optimal dimension reduction is
Power Constrained Channel Optimized Vector Quantizers (PCCOVQ), which is
an amplitude- and time discrete system. The PCCOVQ will, however, repli-
cate an amplitude continuous system by using a large number of quantizer
representation vectors. Figure 1.3 show a 2:1 PCCOVQ (compression by
a factor 2). The representation vectors (×) seem to lay on a continuous
curve in the source space (spanned by the components x1 and x2). The per-

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

(a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

(b)

FIGURE 1.3: A 2:1 PCCOVQ system. × is the representation vec-
tors. 1.3(a) Optimized for 12dB CSNR. 1.3(b) Optimized for 20dB CSNR

formance of dimension reducing PCCOVQ system shows close to optimal
performance (for all r), in being within approximately 1 dB distance from
OPTA [Fuldseth, 1997].

Dimension expanding PCCOVQ mappings have also been developed
[Fuldseth, 1997], but none of these had an especially good performance
(compared to the MBM and HDA systems mentioned earlier). In Chapter 3,
an approach yielding well performing expanding PCCOVQ mappings will
be given.
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1.2.5 Shannon-Kotel’nikov mappings

Shannon-Kotel’nikov (SK) mappings is an approach on merging source-
and channel coders into one delay free (piecewise continuous) mathemati-
cal operation, an so is a direct source-channel mapping. The SK-mappings
are meant to operate on time discrete and amplitude continuous signals.

The name Shannon-Kotel’nikov mapping was developed in two steps. First
the name Shannon mapping was chosen in [Ramstad, 2002] to honor Claude
E. Shannon, since he presented a geometrical view of the communication
problem in his 1949 paper [Shannon, 1949]. However, V. A. Kotel’nikov
had already developed a theory for bandwidth expanding modulation in
his doctoral dissertation [Kotel’nikov, 1959], dating back to 1947, which im-
plied the same type of structures as Shannon. And so the name Shannon-
Kotel’nikov mapping emerged. Kotel’nikov’s approach is geometrical, giv-
ing good insight into the problem. Such schemes have also been developed
further. [Wozencraft and Jacobs, 1965] and [Sakrison, 1968] sums up most
of these results.

The SK-mappings have been extended to both M:N dimension expan-
sion [Floor and Ramstad, 2006b] (M < N) and reduction [Floor and Ram-
stad, 2006a] (M > N) using hyper surfaces to map between source and
channel. These systems have been shown to perform quite well with low
complexity and to be quite robust against varying channel conditions
[Hekland et al., 2008; Hekland, Øien, and Ramstad, 2005; Floor and Ram-
stad, 2006c,b,a; Cai and Modestino., 2006]. The mappings, when found,
will also be easy to adapt to varying channel conditions, by merely chang-
ing a few coefficients in their equations [Hekland et al., 2008]. It is for these
reasons of interest to investigate and develop these types of systems fur-
ther.

Other examples that can be seen as SK-mappings is BPAM, HDA and
MBM mentioned in section 1.2.1, 1.2.3 and 1.2.2 respectively. SK-mappings
are also closely related to PCCOVQ systems with the exception that PC-
COVQ operates on a discrete set of representation vectors. But for a large
number of representation vectors, the PCCOVQ will basically be an SK-
mapping.

Although no complete theory for these mappings exists, some rules of
thumb on how they should be constructed were given in [Lervik, 1996, pp.
102-104]:
1. Mapping distortion (only for reducing mappings): Mapping a source
space of high dimension to a channel space of lower dimension creates
distortion unless noise is absent (the mathematician George Cantor found
a way of doing such a mapping in one-by-one manner using space-filling
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curves [Shannon, 1959], but this technique is impossible to use when noise
is added). To minimize the effect of mapping distortion, the SK-mapping
must cover the entire source space, such that every source vector have a
representation point as close as possible.
2. Channel signal power: To minimize the average channel power, source
vectors with high probability should be mapped to channel vectors with
low amplitude.
3. Robustness: To avoid making large errors in the reconstructed vectors,
vectors that are close in the channel space should correspond to vectors
close in the source space. The opposite, however, is not necessary.

A great deal of analysis on loss factors giving further insight into the
construction SK-mappings and also explaining the distance to OPTA for
some example SK-mappings are given in [Hekland, Øien, and Ramstad,
2007; Hekland, 2007].

Example on the use of SK- and PCCOVQ mappings

An image coder for flat fading channels built on direct source-channel map-
pings was presented in [Håkonsen, Ramstad, and Gjendemsjø, 2006] (and
a whole thesis on it is given in [Håkonsen, 2007]). The coder shows the
potential in using direct source-channel mappings. Its performance is very
close to a reference system based on JPEG2000 and adaptive coded modula-
tion. The reference system uses near capacity achieving channel transmis-
sion while the proposed system uses simple practical direct source-channel
mappings. The reference system is also less robust than the proposed sys-
tem.

Choice of mappings

The biggest problem with SK-mappings is in general to find them. If M and
N are large, they can probably not be found at all (both the SK-maps and
the PCCOVQ) due to their complexity. But it was argued in [Coward, 2001;
Håkonsen, 2007] that a finite set of well performing low dimensional map-
pings will together with power allocation do almost as well as an infinite
set of M:N mapping. The mappings chosen was

{M:0, 4:1, 2:1, 3:2, 1:1, 1:2} (1.8)

All compressive mappings (except the trivial M:0) are PCCOVQ, while the
1:1 mapping is optimal PAM, and 1:2 is the HSQLC system from [Coward
and Ramstad, 2000]. In [Håkonsen and Ramstad, 2006] it was shown that
also a 1:3 mapping should be included to make better performance at low
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CSNR. It would also seem convenient to have a better resolution between
1:1 and 1:2, like a 2:3 mapping, which should also be possible to find.

1.2.6 Scope of this thesis

Since no general theory on SK-mappings exists, it will be one of the cen-
tral topics of this thesis. An approach is given so that such systems can
be described mathematically. This theory is further used to analyze the
asymptotic performance of SK-mappings in the limit of infinite dimension-
ality.

One of the problems is to determine the overall geometrical structure
of the SK-mappings. The only indication one can get on the overall struc-
ture will be the PCCOVQ systems. For this reason the PCCOVQ algorithm
is modified in chapter 3 to yield better performing expanding PCCOVQ
mappings.

Finally, several example mappings are given and analyzed. These will
be

{4:1, 3:1, 2:1, 3:2, 2:3, 1:2, 1:3} (1.9)

(All of them SK-mappings, except the 1:3 mapping which is a PCCOVQ
system). The reason for some of these choices is given in section 1.2.5.
Each of these mappings (except the 1:3 PCCOVQ) are given an approxi-
mate mathematical model based on the proposed theory on SK-mappings.
The model will be compared to actual simulation of each system. All the
mathematical models of the proposed SK-mappings are optimized so that
their optimal coefficients as a function of the CSNR is found, making them
simple to adapt to varying channel conditions.

The theory presented in this thesis will in most cases be for i.i.d. Gaussian
vector sources with variance σ2

x per dimension and memoryless Gaussian
channels with noise variance σ2

n per dimension.

1.3 Outline

The reminder of the thesis is arranged as follows
Chapter 2: A theory for SK-mappings is developed. This theoretical model
is further used to show that SK-mappings can reach OPTA for all rational
dimension change factors r ∈ Q+ by letting M, N → ∞.
Chapter 3: The PCCOVQ algorithm is modified to yield better performing
1:N systems. Some problems concerning the algorithm are discussed. Spe-
cific examples on 1:2 and 1:3 PCCOVQ mappings are given.
Chapter 4: Example mappings based on Archimedean spirals are intro-
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duced. Archimedean spirals can be used for both the 2:1 and 1:2 case. Some
mathematical analysis is done, and the systems are optimized. Some mis-
match analysis and experiments on the given structures are done.
Chapter 5: Several SK-mappings are introduced. 3:1, 4:1, 3:2 and 2:3 map-
pings are simulated, and a mathematical model is given. The mathematical
models for all the mappings are further optimized. Problems around some
more aspects concerning SK-mappings are discussed.
Chapter 6: Conclusions are drawn and some future possible research top-
ics are given.

There are five appendices. Appendix A introduces some necessary re-
sults in mathematics. Appendix B derives the minimum weak noise distor-
tion for a dimension expanding SK-mapping. Appendix C derives a uni-
form spherical distribution, and the approximation distortion lower bound
for a dimension reducing SK-mapping. Appendix D derives the channel
signal distribution of M:1 SK-mappings. Appendix E derives the 3:2 Heli-
coid mappings channel distortion.
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Chapter 2

Theory on
Shannon-Kotel’nikov
Mappings

In this chapter a theory for making mathematical models of communication
systems using SK-mappings is introduced. This will involve some (simple)
concepts from differential geometry. Most concepts are taken from Rie-
mannian geometry. The necessary mathematics involved will be described
when needed (either in the text or in appendices).

The chapter starts by describing Kotel’nikov’s theory on 1:N bandwidth
expanding systems [Kotel’nikov, 1959] (expanding the bandwidth of a scalar
source by a factor N for transmission), since it is not mentioned in newer
literature, and as a reference for further generalization. Next, Kotel’nikov’s
theory is generalized to include vector sources (of dimension M). This
gives an M:N (M < N) dimension expanding system. An M:N expand-
ing system performs source error control by mapping the M dimensional
vector source onto an N dimensional channel through a parametric hy-
per surface of dimension M. This mapping will either use N/M times
the bandwidth of the source for transmission, or increase the transmission
time by a factor N/M. The theory derived is further used to show that
M:N expanding systems can close in on OPTA as the dimensionality of the
system approaches infinity. Increasing dimensionality means letting the
source and channel dimension grow while letting their dimension change
factor r = N/M (defined in section 1.2) be constant.

The ideas from the expansion case is further used to develop a theory
for M:N dimension reducing (M > N) systems. An M:N dimension re-
ducing system performs lossy compression through a projection of an M-
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dimensional vector source onto a parametric hyper surface of dimension
N. The developed theory is then used to show that also M:N reducing
systems close in on OPTA when the dimensionality grows to infinity.

2.1 Kotel’nikovs theory on 1:N bandwidth expanding
mappings

Figure 2.1 show a block diagram for the dimension expanding communica-
tion system under consideration, which can be used for illustration in this
section and section 2.2

n

⊆

∈x x̂∈= )(xSz ẑ
+)(⋅S

⊂
ML 
detector

FIGURE 2.1: Block diagram of a general dimension expanding SK-
system.

This section describes the necessary aspects (for the sake of this thesis) from
part 3 of Kotel’nikovs dissertation [Kotel’nikov, 1959, pp.62-99] in which
theory for transmission of amplitude-continuous, discrete-time sources are
developed (the theory of this section is presented in a similar way as in [Sakri-
son, 1968, pp.287-299]).

Consider an amplitude-continuous, time-discrete scalar source x ∈ D ⊆
R (Kotel’nikov refers to this as separate parameter values). The source is
communicated using a (parametric) curve in the channel space x 7→ s(x) ∈
S ⊂ RN , called the signal curve. Let the noise be denoted n ∈ RN (i.i.d.
and Gaussian). Then the received signal is ŝ(x) = s(x) + n, with the corre-
sponding likelihood function

fŝ|x(ŝ|x) =
(

1
2πσ2

n

)N/2

e
− ‖ŝ−s(x)‖2

2σ2
n . (2.1)

The maximum likelihood (ML) estimate is defined by [Therrien, 1992]

x̂ = max
x∈R

fŝ|x̂(ŝ|x) (2.2)

As the CSNR gets large, the ML estimate approaches that of the optimum
estimate (in the mean square sense) [Wozencraft and Jacobs, 1965, pp. 216-
219]. (2.1) is maximized by the value x that minimizes the norm
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‖ŝ− s(x)‖, and so the ML estimate of x corresponds to the point on the sig-
nal curve that is closest to the received vector in Euclidian distance. From
this Kotel’nikov reasoned that there are two different contributions to the
distortion of the source signal in such systems, weak noise which is referred
to in the following as weak noise distortion and anomalous errors which is
sometimes referred to as anomalous distortion.

When considering weak noise, the signal curve can be approximated in
the vicinity of any transmitted signal value x0 by (linear approximation)

s(x) ≈ s(x0) + s ′0 (x− x0), (2.3)

assuming that s(x) ∈ C1 (continuously differentiable with respect to x).
s ′0 = ds(x)/dx|x=x0

. The ML estimate of x can be approximated as the pro-
jection onto the tangent line through the value s(x0) on the signal curve.
Figure 2.2 illustrates this. Given that the value x0 was transmitted, Ko-

s(x0) + n

s(x0)

s(x0)
s(xML)

Tangent at

Signal
curve

FIGURE 2.2: ML estimate in the weak noise case.

tel’nikov showed that the minimum mean square error (MSE) in the weak
noise case is given by

ε2
wn = E{(x̂ML − x)2|x = x0} =

σ2
n

‖s′(x0)‖2 . (2.4)
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σ2
n is the noise variance and ‖s′(x0)‖ is the euclidian norm of the curve’s ve-

locity (tangent) vector at the parameter value x0. The weak noise distortion
is given by

ε̄2
wn = Ex{ε2

wn(x)} = σ2
n

∫

D
1

‖s ′(x)‖2 fx(x)dx. (2.5)

D is the source domain and fx(x) is the probability density function of x.
The geometric interpretation of this result is that in order to reduce the
noise corruption for a given expansion, without increasing the signal du-
ration or the transmit energy, the signal curve should be made longer (by
stretching it like a rubber band, which makes the velocity vectors longer).
This should be done without leaving a certain hyper-sphere in order to
satisfy a power constraint on the channel. To make the curve as long as
possible, it has to be folded/twisted inside this hyper-sphere. I.e. nonlin-
ear systems are needed in order to close inn on OPTA, with the exception of
very low CSNR (where linear systems are adequate) or if an ideal feedback
channel is available [Schalkwijk and Bluestein, 1967]. This concept is illus-
trated in Figure 2.3 and 2.4(a). However, the length of the curve cannot be

Source

Stretched
source

x
1 x

2

x
1

x
2

noise

noise

FIGURE 2.3: Kotel’nikovs concept of analog source error control seen
intrinsically.

increased beyond a certain length without introducing anomalous errors,
also called the threshold effect [Shannon, 1949]. These errors are large, since
they are the result of the channel noise taking us from one part of the curve
to another (and hence rule 3 in section 1.2.5 is violated). The occurrence
of these anomalous errors, depends on the relation between the standard
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deviation of the channel noise, and the density of the curve. Figure 2.4 il-
lustrates. Due to the severity of the anomalous errors it is wanted to make
them occur with as small a probability as possible. Notice that for linear
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FIGURE 2.4: 1:2 dimension expanding systems. 2.4(a) The straight line
illustrates a linear mapping, while the curved line represents a nonlinear
mapping. 2.4(b) A nonlinear mapping that has been stretched a signifi-
cant amount. If stretched too far, different parts of the signal curves come
too close. Large values of n might then take the transmitted point s0 to
the neighboring curve when decoding, resulting in severe distortion.

systems there is no anomalous distortion, i.e. all noise can be considered
weak. This also coincides with the way the weak noise distortion is calcu-
lated (linear approximation).

There is in addition something to gain in lowering the weak noise dis-
tortion further without increasing the probability for the threshold effect.
The gain is in the choice of stretching function. The stretching function is
a bijective function acting on the parameter space, before mapping it onto
the parametric curve. It will be denoted ϕ = ϕ(x) in the following. By for
instance mapping directly from the parameter x onto the curve, one will
in some cases (depending on the structure) get vectors of increasing length
for increasing values of x. Then the received distortion will depend on
the level of the source amplitudes, and the tangent vectors will be shortest
where most of the probability mass of the source resides (which is undesir-
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able). Appendix A.3 shows what ϕ to chose to make the source signal and
noise become mutually independent after decoding. ϕ can be chosen opti-
mally with respect to the pdf of the input signal. How to find the optimum
ϕ for a given pdf, is shown in [Sakrison, 1968, pp.294-297].

2.2 M:N Dimension Expanding SK-mappings.

In this section the theory from section 2.1 is generalized to include vector
sources x ∈ D ⊆ RM. This gives the possibility to consider more general
mappings and to exploit dimensionality for a given expansion factor r. As-
sume that the M source components are i.i.d. and Gaussian. The source
will be represented as a “parametric hyper surface” in the channel space
x 7→ S(x) ∈ S ⊂ RN which in the following is referred to as the “signal hy-
per surface” or just S . A general M dimensional hyper surface imbedded
in RN has the following form

S(x) = [S1(x), S2(x), · · · , SN(x)] (2.6)

where Si are component functions.
Using S for communication, the likelihood function of the received sig-

nal Ŝ = S(x) + n is

fŜ|x(Ŝ|x) =
(

1
2πσ2

n

)N/2

e
− ‖Ŝ−S(x)‖2

2σ2
n , (2.7)

i.e. the ML estimate of x corresponds to the point on S that is closest to the
received vector in Euclidian distance.

2.2.1 Weak noise distortion.

In the weak noise case, one can consider the surfaces’ tangent space. Fig-
ure 2.5 illustrates for the 2:3 case. Assume that each component function of
S is Si ∈ C1(RM), i = 1..N. The tangent space at a point x0 is given by
(first order Taylor polynomial)

S(x) ≈ S(x0) + J(x0)(x− x0), (2.8)

where J is the Jacobian matrix [Munkres, 1991, p.47] (or see Appendix A.1)
of S at x0. When using an ML detector, the detected value will be

S(xML) = S(x0) + Pprojn, (2.9)
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FIGURE 2.5: ML estimate in the weak noise case considering vector
sources.

where Pproj is a projection matrix given by [Strang, 1986]

Pproj = J(JT J)−1 JT = JG−1 JT. (2.10)

G is the metric tensor of S [Spivak, 1999, pp. 301-347] (or see appendix A.1
for a short description). Using (2.8), (2.9) and (2.10) one can easily show
that

J(xML − x0) = JG−1 JTn. (2.11)

By multiplying both sides from the left with the transpose of the Jacobian,
then G shows up on both sides. Since G is positive definite, and so also
invertible [Strang, 1986]

(xML − x0) = G−1 JTn. (2.12)

The MSE, given that x0 was transmitted, is

ε2
wn =

1
M

E{(xML − x0)T(xML − x0)}. (2.13)
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Inserting (2.12) in (2.13) one can derive that the weak noise distortion given
that x0 was transmitted is (see Appendix B for details)

ε2
wn =

σ2
n

M

M

∑
i=1

1
gii

, (2.14)

which is a natural generalization of (2.4) (gii is the squared norm of the
“velocity” vector of S in the direction of xi at a point x0). Considering a
Gaussian vector source with i.i.d. components and i.i.d. Gaussian noise
on each sub-channel, the above sum is minimized when gii = gjj, ∀i, j (a
spherical shape should be preserved in this case. If gii 6= gjj a spherical
region will be mapped to an elliptical region going from channel to source
at the receiver). The weak noise distortion will be given by

ε̄2
wn = Ex{ε2

wn(x)} =
σ2

n
M

∫∫
· · ·

∫

D

M

∑
i=1

1
gii(x)

fx(x)dx. (2.15)

This result is a natural generalization of (2.5), and it states that stretching
the source space out like a “sheet of rubber” makes the weak noise distor-
tion go down. Notice that although the derivation of (2.15) is done for C1

functions, one can also use it for piecewise C1 functions by being cautious
during the calculations.

Further one can consider a “shape preserving” mapping, which is to
say that every gii of S are equal and independent of x (in another word
that the distance between any vectors of the source are equally scaled, not
distorted when mapped through S). Then the act of S can be seen merely
as an amplification factor α (from source to channel at the transmitter). In
this case (2.15) is reduced to the simple expression

ε2
wn =

σ2
n

M
M

1
α2 =

σ2
n

α2 . (2.16)

(2.15) says nothing about any gain from increased dimensionality (this is
natural since locally linear systems are considered. In linear systems there
is nothing to gain from dimensionality increase). By increasing the dimen-
sionality from e.g. a 1:2 to a 2:4 mapping, and stretching an equal and maxi-
mum amount in both parameter directions, gives the same weak noise MSE
as in the 1:2 case.

2.2.2 Anomalous distortion and “sphere hardening”.

Consider normalized noise vectors in N dimensions ñ = n√
N

. These vec-

tors have a mean square length equal to σ2
n . It is shown in [Wozencraft and
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Jacobs, 1965, pp. 324-325] that the variance of the squared length goes to
zero as N → ∞. So as dimensionality increases, the length of the noise vec-
tors will be more and more localized around the noise standard deviation,
and limN→∞ ‖ñ‖ = σn, which will be referred to as the “sphere hardening
limit”. This is a consequence of the the law of large numbers. The distribu-
tion of the length ρ = ‖ñ‖ is given by [Cramér, 1951, p. 237]

fρ(ρ) =
2( N

2 )
N
2 ρN−1

Γ( N
2 )σN

n
e
−

N
2 ρ2

σ2
n , N ≥ 2, (2.17)

where Γ(·) is the Gamma function [Bateman, 1953]. Figure 2.6 show (2.17)
for some values of N.
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FIGURE 2.6: The pdf for the norm of the normalized noise vectors for
some values of N. The noise standard deviation is σn = 0.1.

Considering this effect on SK-mappings, one can benefit from increas-
ing dimensionality in reducing the probability for the anomalous errors,
still keeping the same distance between parts/folds of S . In an infinite di-
mensional system the anomalous distortion can be avoided by letting the
distance between folds of S be at least two times the standard deviation of
the noise.
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Now assume a map S , where one can stretch the same amount in each
parameter direction as was the case for one direction in (2.5). Then accord-
ing to (2.15), nothing is lost by increasing dimensionality (as long as there
are orthogonal basis vectors in the tangent space of S). But the structure
can be “packed” more densely in the channel space according to (2.17). This
yields additional stretching of the source space, and in principle one should
get closer to OPTA by increasing the systems dimensionality. Figure 2.7 il-
lustrates this concept (notice that the intersected 2:4 mapping in the figure
is just an example to show the concept, not an actual 2:4 mapping).

0 

0 

Constrained
region

1:2
system

Intersected
2:4 system

ρ
2:4

ρ
1:2

FIGURE 2.7: Illustration on how it might be possible to close in on OPTA
by increasing dimensionality. The green line is actually an intersected
surface. Since the distance between two parts of the 2:4 system is smaller,
the mappings can be made a bit “longer”

2.3 The effect of dimensionality increase on
dimension expanding SK-mappings.

In this section one approach is taken to show that it is possible to reach
OPTA by using dimension expanding SK-mappings (these results has been
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presented in [Floor and Ramstad, 2007]).
Assume that both the channel signal and the noise are normalized with

the channel dimension N. Considering a power constrained Gaussian chan-
nel, the normalized received vector will lie within an N− 1 sphere of radius

ρN =
√

N/N
√

PN + σ2
n + δ, (2.18)

where PN is the channel signal power per dimension, and σ2
n the noise vari-

ance per dimension. By adding the term δ one takes into consideration that
ρN exceeds

√
PN + σ2

n for finite N, so δ → 0 as N → ∞ (notice that the
definition of an N-sphere is SN = {y ∈ RN+1|d(y, 0) = constant} [Spivak,
1999, p.7], where d is the distance from any point y on SN to the origin
of RN+1. So the well known sphere imbedded in R3 is denoted S2, i.e the
“2-sphere”).

As a starting point the theory done in [Wozencraft and Jacobs, 1965, pp.
666-674] on 1:N mappings is presented, serving as a reference for further
generalization.

2.3.1 Asymptotic analysis on 1:N mappings

To be able to establish how long a signal curve can be made (and thereby
how small the weak noise distortion can be made) in the limiting case
N → ∞, one need to figure out how large a volume of the constrained
channel space the signal curve will occupy when anomalous errors should
be almost absent (actually avoided in the limit). To figure this out, the sig-
nal curve is considered to be the axis of a “hyper cylinder” of dimension
N − 1 and radius ρs (which is a function of the noise standard deviation).
Arguments in [Wozencraft and Jacobs, 1965, pp. 670-672] suggest that this
must be the optimal structure. This cylinder is placed into the given chan-
nel hyper sphere. The noise vectors can (conveniently) at every point be
decomposed into two statistical independent components: N − 1 compo-
nents normal to the curve na (contributing to the anomalous distortion)
and one components tangential to the curve nwn (contributing to the weak
noise distortion). For large N one can give an upper bound for the length
of the curve. N is assumed to be so large that anomalous errors are almost
avoided by letting ρs > ‖na‖ (and δ ≈ 0). Let BN denote the volume con-
tained within an (N − 1)- sphere of unit radius [Wozencraft and Jacobs,

25



2. THEORY ON SHANNON-KOTEL’NIKOV MAPPINGS

1965, pp.355-357]

BN =





π
N
2

( N
2 )!

, N even

2Nπ
N−1

2
N!

(
N−1

2

)
! , N odd

(2.19)

The following inequality must be satisfied in order for the anomalous errors
to be absent, and to fulfil the channel power constraint

LBN−1ρN−1
s ≤ BNρN

N (2.20)

where L is the length of the signal curve. Since N − 1 normalized noise

components are normal to the curve, ρs = ‖na‖ =
√(

(N − 1)/N
)
σ2

n for
very large N. Substituting this and (2.18) in (2.20) gives

LBN−1

(
N − 1

N
σ2

n

) N−1
2

≤ BN

(
PN + σ2

n

) N
2

, (2.21)

which limits the length of the curve to

L ≤ BN

BN−1
σn

(
1

1− 1/N

) N−1
2

(
1 +

PN

σ2
n

) N
2

. (2.22)

A further elaboration on this is given in [Wozencraft and Jacobs, 1965,
pp.673-674].

2.3.2 Asymptotic analysis of M:N expanding SK-mappings

In this section the result from 2.3.1 is generalized to include vector sources
to further show that one can reach OPTA by letting the mappings dimen-
sionality grow to infinity. A Gaussian source with limited Euclidian norm,
will be distributed on an M-disc or ball. This ball is stretched and twisted
by S into the channel hyper-sphere. To figure out how much volume of the
channel space the transformed source occupy when the anomalous errors
should be almost avoided, a structure that encloses S needs to be found
(like in the 1:N case). This structure must be of the same dimension as the
channel sphere, in order to be able to compare their volumes. The structure
chosen is S × SN−M−1 (which is a natural generalization of the “cylinder”
in section 2.3.1). S can be considered to be a ball (or M-disc) with a certain
radius ρM when considering shape preserving SK-mappings. SN−M−1 is a
hyper sphere with radius ρMN (ρMN ≥ ‖na‖ at least, to avoid anomalous
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errors). If the channel power constraint is to be satisfied and the anomalous
errors avoided, the following inequality must be obeyed

BMρM
MBN−MρN−M

MN ≤ BNρN
N . (2.23)

Again, the noise vectors can at each point (of the surface) be decomposed
into two statistically independent contributions: M components tangential
to the signal hyper surface nwn (contributing to the weak noise distortion)
and N− M components normal to it na (which are the ones causing anom-
alous errors). Assuming that N is so large that the sphere hardening limit
(ρNM → √

(N − M)/Nσn) can be approximately taken into account, (2.23)
turns into

BMρM
MBN−M

(
N − M

N
σ2

n

) N−M
2

≤ BN(PN + σ2
n)

N
2 . (2.24)

Assuming a shape preserving mapping (each gii of S is constant with re-
spect to x and can be identified by one of the gii’s) the stretch and thereby
the weak noise distortion is determined by the size of the radius ρM of S .
Solving (2.21) with respect to ρM

M gives

ρM
M ≤ BN

BMBN−M

(
1

1− M/N

) N−M
2 1

σN−M
n

σN
n

(
1 +

PN

σ2
n

) N
2

, (2.25)

and so the following restriction on the radius of S has to be obeyed

ρM ≤ M
√

B̃σn

(
1

1− M/N

) N−M
2M

(
1 +

PN

σ2
n

) N
2M

. (2.26)

For both even and odd N

B̃ =
BN

BMBN−M
=

Γ
(

N−M
2 + 1

)
Γ
(

M
2 + 1

)

Γ
(

N
2 + 1

) . (2.27)

This can easily be shown using a similar procedure as equation (C.2)-
(C.5) in Appendix C substituting the symbols in question. Putting M = 1
in (2.26) gives ρM = (L/2) compared to (2.22), which shows that (2.26)
is a generalization of (2.22). (2.27) can be expressed in terms of the Beta
function using the following relation [Bateman, 1953, p. 9]

B($, ς) =
∫ 1

0
t$−1(1− t)ς−1dt =

Γ($)Γ(ς)
Γ($ + ς)

, (2.28)
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and the Functional relation of the Gamma function [Bateman, 1953, p. 3]

Γ($ + 1) = $Γ($). (2.29)

Letting $ = (N−M)/2 + 1 and ς = M/2 + 1 and using the above relations
gives

B̃ =
(

N
2

+ 1
)
B

(
N − M

2
+ 1,

M
2

+ 1
)

=
(

N
2

+ 1
)
B(N,M). (2.30)

Since a shape preserving mapping is considered, the weak noise distortion
is given by (2.16), but the decomposition and normalization has to be taken
into account. Since M of N components of the normalized noise vectors are
the ones contributing to the weak noise distortion

ε̄2
wn =

E{‖nwn‖2}
ρ2

M
=

Mσ2
n

Nρ2
M
≥

M
N

(
N
2

+ 1
)− 2

M

B−
2
M

(N,M)

(
1

1− M/N

)− N−M
M

(
1 +

PN

σ2
n

)− N
M

.

(2.31)

ε̄wn can be considered as the total distortion Dt of the M:N system since the
anomalous errors can be considered almost absent when ρMN ≥ ‖na‖ and
M, N is close to infinity. Now assume a fixed bandwidth expansion r =
N/M (r is the expansion factor from source to channel). Then M = N/r,
and so

Dt =
1
r

(
1− 1

r

)r−1( N
2

+ 1
)− 2r

N

B−
2r
N

(N,r)

(
1 +

PN

σ2
n

)−r

, (2.32)

where

B(N,r) =
∫ 1

0
t

N
2r (r−1)(1− t)

N
2r dt. (2.33)

To show that this system can reach the OPTA bound, one need to show that

lim
N→∞

(
N
2

+ 1
)− 2r

N

B−
2r
N

(N,r) = r
(

1− 1
r

)1−r

. (2.34)

Using the product rule for limits [Edwards and Penney, 1998, p.68] gets rid
of the first term on the left hand side of (2.34) (limN→∞(N/2 + 1)2r/N = 1).
So the problem is reduced to show that

lim
N→∞

B−
2r
N

(N,r) = r
(

1− 1
r

)1−r

. (2.35)
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Hölders inequality, described in Appendix A.2, is used for this purpose.
Let f (t) = t

N
2r (r−1)(1− t)

N
2r and h = 1 on I = (0, 1). Further let p = ∞ and

q = 1. Clearly both f and h are Lebesgue integrable (for N ≥ 0, r ≥ 1 ),
and the norms ‖ f ‖∞ and ‖h‖1 exist. It is easy to see that ‖h‖1 = 1. To find
‖ f ‖∞ the maximum of f must be calculated. Differentiating f with respect
to t and then equating to zero, gives

tmax = 1− 1
r

. (2.36)

Substituting this in the expression for f gives

B(N,r) ≤ ‖ f ‖∞ =
(

1− 1
r

) N
2r (r−1)(1

r

) N
2r

. (2.37)

‖ f ‖∞ will dominate more and more over the rest of the contributions of the
integral in (2.33) the larger N gets, and when N → ∞ equality in (2.37) is
obtained. Raising the right hand side of (2.37) to the power −2r/N gives
the wanted result.

The above result does not contain the source variance σ2
x , so it is valid

for unit variance. σx can easily be included by letting ρM = ασx, where α
is an amplification factor (assuming a shape preserving mapping). Solving
the new equation with respect to α, and substituting for ρM in (2.31), gives
the wanted result.

It has to be mentioned that the above result will be valid for the given
fixed parameters, meaning that we have a distinct optimal point. If σn in-
crease while ρMN is kept constant the system breaks down rapidly, since
the probability for anomalous errors prae → 1. If σn decrease while ρMN
is kept constant the packing of S gets non-optimal and the system gets
further away from OPTA, but this time in a robust manner (like a linear
system, which is apparent from the derivation of the weak noise distortion.
The effect can be seen in the example systems in Figure 4.6 and 5.11 ).

2.3.3 Comments on finite dimensional expanding SK-mappings

At finite dimensionality the anomalous errors must be taken into account,
since they will occur with a certain small probability. This is because ‖ñ‖
will get a nonzero variance (if one do not take the fact that the variance
of ‖ñ‖ gets larger when N gets smaller into account, the performance will
exceed OPTA when N gets smaller). Assuming a nonzero (small) proba-
bility for the threshold effect an additional factor must be included in ρMN
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(radius of SN−M−1)

ρMN =

√
N − M

N
(σ2

n + δ2
MN). (2.38)

Given a certain probability for anomalous errors, δMN can be found from
the cdf of (2.17), substituting N − M for N (since N − M components are
normal to S). An additional factor must also be included in ρN , since the
variance of the received channel vectors also increase

ρN =
√

PN + σ2
n + δ2

N . (2.39)

Considering a large CSNR (the anomalous distortion is almost absent at
the optimal point for large CSNR), the distortion at the optimal point is
approximately given by the weak noise distortion, which in general is

Dt ≈ σ2
n
r

(
N
2

+ 1
)− 2r

N
(

1− 1
r

)r−1

B
(

N
2

(
1 +

1
r
)
+ 1,

N
2r

+ 1
)

(σ2
n + δ2

MN)(r−1)(PN + σ2
n + δ2

N
)−r

(2.40)

It seems to be more to gain from the sphere hardening effect the larger
r is (except when r is so large that the sphere hardening effect must be
taken into account, as discussed below). Consider the r = 2 versus the
r = 3 case. In the 1:2 case one will have a curve in a region of the plane,
wile in the 1:3 case one will have a curve in a region of space. Given a
certain CSNR value, the curve will always be longest in the r = 3 case.
Assuming that the dimension is increased to a 2:4 (r = 2) and 2:6 (r = 3)
mapping, sphere hardening will take place over the largest “space” in the
r = 3 case, meaning that there is more to “catch up to” (compared to OPTA)
by increasing dimensionality in the r = 3 case. This can be stated generally
as: A larger r gives a larger S for a given CSNR, which means that sphere
hardening takes place over a larger “space”. So one can expect that the gap
to OPTA will be larger the larger r is. However, when r gets so large that
sphere hardening starts to have an effect, it will again be easier to reach the
bounds, since systems with constant envelope (e.g. FPM and PPM, which
is shown to be optimal when r → ∞) can be used.

2.4 M:N Dimension Reducing SK-mappings.

Figure 2.8 show a block diagram for the dimension reducing communica-
tion system under consideration.
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n

⊆

∈x )ˆ(ˆ zSx =∈ẑ
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FIGURE 2.8: Block diagram of a general dimension reducing SK-system.

In this section ideas from the expansion case in section 2.2 are used to de-
velop a theory for M:N dimension reducing SK-mappings. To be able to
reduce the dimension of the source its information must be reduced (when
there is a channel power constraint). This necessitates lossy compression.
Compression is done by approximating the source vectors by their projec-
tion onto a hyper surface S which is an N dimensional subset of RM. This
operation is denoted q(x) ∈ S ⊂ RM. The dimension is subsequently
changed from M to N by a lossless operator dr : S → D ⊆ RN . The total
operation is named the “projection operation”, and denoted p = dr ◦ q :
x ∈ RM 7→ p(x) ∈ D ⊆ RN . As for the expansion case S is called the sig-
nal hyper surface (or signal curve in the M:1 case). S will be a parametric
hyper surface with the channel signal z as its parameters (exchange x with
z in (2.6)). The point on S , corresponding to p(x) is given a convenient
representation on the channel through an invertible (vector valued) func-
tion `. This function determines the way distances are measured from the
origin of S to the given approximated point. The inverse of ` is denoted ϕ
(plays a similar role as in the expansion case). The vector z = `(p(x)) is
transmitted over an AWGN channel with noise n ∈ RN . There will be two
contributions to the distortion in this system, approximation distortion (from
the information reducing projection operation), and channel distortion (the
effect the channel noise has on the signal when mapped through the SK-
mapping). These will be described further in the following.

2.4.1 Channel distortion

The received vector ẑ = z + n has to be passed through S to reconstruct x.
It is assumed that each component function of S is Si ∈ C1(RN), i = 1..M
(ϕ(·) is contained in S without loss of generality). For a given transmitted
channel vector z0 and small deviations due to the noise n, the received
signal x̂ = S(ẑ) can be approximated by (linear approximation)

S(z0 + n) ≈ S(z0) + J(z0)n, (2.41)
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where J(z0) is the Jacobian matrix of S evaluated at z0. The last term
in (2.41) is the distortion due to channel noise. The MSE per source compo-
nent caused by the channel noise, given that z0 was transmitted is

ε2
ch =

1
M

E
{
(J(z0)n)T(J(z0)n)

}

=
1
M

E
{(

∂S1

∂z1
n1 + · · ·+ ∂S1

∂zN
nN

)2

+ · · ·

+
(

∂SM

∂z1
n1 + · · ·+ ∂SM

∂zN
nN

)2}
.

(2.42)

Since the noise on each sub channel is assumed to be independent,
E{ninj} = σ2

nδij. After some rearrangement

ε2
ch =

σ2
n

M

((
∂S1

∂z1

)2

+ · · ·+
(

∂SM

∂z1

)2

+ · · ·+
(

∂S1

∂zN

)2

+ · · ·+
(

∂SM

∂zN

)2)

=
σ2

n
M

(
g11 + g22 + · · ·+ gNN

)
=

σ2
n

M

N

∑
i=1

gii.

(2.43)

gii (partials with respect to zi), are the diagonal components of the metric
tensor of S (again there is nothing to gain by choosing a nonorthogonal
basis for the tangent space of S). The channel distortion will be given by

ε̄2
ch = Ez{ε2

ch(z)} =
σ2

n
M

∫∫
· · ·

∫

D

N

∑
i=1

gii(z) fz(z)dz. (2.44)

The base vectors of the tangent space of S will increase in length when the
signal hyper surface is stretched. This means that the more a given sur-
face is stretched out in the source space, the larger is the channel distortion.
From this point of view, the surface should be stretched as little as pos-
sible. This is the opposite of what was wanted for the expansion case in
section 2.2.1.

Considering a shape preserving mapping (as in section 2.2.1) (2.44) is
reduced to (for the same reasons as mentioned in section 2.2.1)

ε̄2
ch =

Nσ2
n

M
α2 (2.45)

where α is the amplification/attenuation from the channel to the source at
the receiver.
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2.4.2 Approximation distortion

The approximation distortion is the distortion that comes from the lossy
projection operation. The size of it is linked to the minimum distance each
source vector has to S . For a given dimension reduction, one would like to
make the approximation distortion as small as possible. Then S have to fill
the source space as densely as possible (it must be stretched and twisted
into a given region). This is in conflict with the requirement of reducing
the channel distortion, so there is a tradeoff between the two distortion
contributions (as in the expansion case).

Since the approximation distortion is structure dependent, one can not
expect to find a general mathematical expression describing it (in a gen-
eral way). But to be able to do an asymptotic analysis for reducing map-
pings, some expression valid for large dimensions is needed. By assuming
an imbedding of S where at each point, the distance in the direction of
the normal vector (at the point) to another part of S is constant and equal
to ∆ (named a uniform structure), a similar analysis as for uniform vector
quantizers can be used (every centroid having an equal fixed distance ∆
between each neighboring centroid). For a uniform vector quantizer in
m dimensions (m will be related to M and N later) the distortion can be
lower bounded by assuming the decision regions around each centroid to
be (m− 1)-spherical [Gersho, 1979]. Denote the radius of the (m− 1)-sphere
ρm. The pdf of the approximation noise will be a uniform spherical distrib-
ution (a uniform distribution with spherical support, in this case of radius
∆/2) given by (expressed in generalized spherical coordinates. See Appen-
dix C)

fρm,Θ(ρm, Θ) =

{
m2m−1

π
m
2 ∆m

Γ
( m

2

)
, r ∈ [0, ∆/2], ∀θi

0 elsewhere.
(2.46)

The distortion will then be lower bounded by

ε̄2
a = E{ρ2

m} =
m

4(m + 2)
∆2. (2.47)

The derivations of the distribution in (2.46) and the distortion in (2.47)
are given in Appendix C. Due to the fact that the decision regions actu-
ally become spherical when m → ∞ using the right construction [Gersho,
1979], (2.47) will be exact when m → ∞ (called sphere packing). Notice
that this result differs from the well known distortion lower bound derived
in [Gersho, 1979]. The reason for this is that Gersho’s distortion expression
is scaling invariant (independent of the size of the cells containing the cen-
troids), whereas here we want the distortion to depend on the size of the
cells so it can be made dependent on the CSNR.
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The expression in (2.47) must be modified to take into account a general
M-dimensional signal hyper surface. The question is how. Consider first
a uniform 2:1 system (uniform spacing between any two parts of it) con-
sisting of concentric circles around the origin in R2 with a radial distance ∆
between them. The p operator will be 1D and the approximation distortion
the same as a scalar quantizer, except that it will be scaled by 1/2 (divided
between two source components). I.e. ε̄2

a = ∆2/24. Furthermore, consider
a uniform 3:2 mapping consisting of concentric spheres around the origin
in R3 with radial distance ∆ between them. This is again equivalent to a
scalar quantizer, except that the distortion is scaled by 1/3. Now consider
a 3:1 mapping consisting of circles of different radii (n∆ for n ∈ N) ly-
ing on parallel planes with an equal distance ∆ between them (filling out
a ball like region in the source space). This time p is 2D. The approxima-
tion distortion will now be equivalent to a 2D uniform vector quantizer
except that it will be scaled with 1/3. The same can be said about a simi-
larly constructed 4:2 mapping consisting of concentric spheres except that
the distortion will be scaled by 1/4. From this it seems apparent that the
approximation distortion can be lower bounded by (2.47) by substituting
m = M−N and scaling by 1/M (distortion per source dimension). And so
the lower bound for the approximation distortion will be given by

ε̄2
a =

M− N
4M(M− N + 2)

∆2. (2.48)

As for for vector quantizers, 2.48 serves as a lower bound, and probably
becomes the actual distortion when M, N → ∞ if the right construction
(imbedding) is chosen. Notice that in (2.48), ∆ must be a function of the
CSNR for the expression to be analyzed properly.

2.5 The effect of dimensionality increase in
dimension reducing SK-mappings.

In this section it is shown that also M:N dimension reducing systems can
close in on OPTA by letting M, N → ∞. To be able to show this, one has
to consider sphere hardening (considering the channel signal and noise,
and the source signal) and the sphere packing in M dimension (consid-
ered in section 2.4.2). As mentioned in section 2.4.2, there is a tradeoff be-
tween minimization of the channel distortion (stretching the signal surface
as little as possible) and the approximation distortion (stretching the sig-
nal surface as much as possible to cover the source space properly). Con-
sidering sphere hardening, the length of the source vectors will become
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ρM = ‖x‖ → √
Mσx (non-normalized signals) as M → ∞. This means that

there is a smaller space to cover, and so one will get a smaller approxima-
tion distortion without increasing the “size” of S when M, N grows. But
as the dimensionality increase S will also get a smaller spread due to the
sphere hardening of the channel signal and noise. It is hard to say if one
will gain or loose in total due to these effects. The analysis has to be done
in order to figure out what happens.

Asymptotic analysis: To show that it is possible to reach OPTA one has
to consider how much the signal surface S must be stretched in order to
cover the source space properly for a given CSNR. This has to be done in
a general manner without reference to a specific hyper surface. This can
be done by considering volumes. To find out how much space the signal
surface will occupy for a certain approximation distortion, it needs to be
enclosed in an entity that has the same dimension as the source sphere (to
be able to compare the volumes). The entity chosen is S × SM−N−1. S
will be a ball-like structure with radius ρN considering a shape preserving
mapping, while SM−N−1 is a hyper-sphere with radius ρMN . At all points
the distance between two points of S is kept constant and equal to ∆. This
means that ρMN = ∆/2. The reason why this uniform covering is chosen is
that (2.48) can be used as an expression for the approximation distortion
(M and N large). Notice that in this section (compared to section 2.3.2) it
is chosen not to normalize the source and channel signals with respect to
either the source- or channel dimension (for simplicity).

To make the approximation distortion as small as possible, BN×SM−N−1

should cover the entire source space (for large M and N, and in general the
space which has a significant probability associated with it), i.e. the follow-
ing inequality has to be satisfied

BNρN
N BM−NρM−N

MN ≥ BMρM
M. (2.49)

ρM = ‖x‖ =
√

M(σ2
x + δM) is the radius of the source-space and

ρN = α
√

N(PN + σ2
n + δN) is the radius of the channel space, where α is an

amplification factor, PN is the channel power per channel dimension, and
σ2

n is the noise variance per channel dimension. δM and δN are included to
take the sphere hardening effect into account, so δM → 0 as M → ∞ and
δN → 0 as N → ∞. Inserting the above in (2.49) and solving with respect
to α gives

α ≥
√

M
M
N

N
B̃

1
N

(
∆
2

)−M−N
N

σ
M
N

x σ−1
n

(
1 +

PN

σ2
n

)− 1
2

, (2.50)
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where

B̃ =
BM

BM−N BN
=

Γ
(

M−N
2 + 1

)
Γ
(

N
2 + 1

)

Γ
(

M
2 + 1

) . (2.51)

The last equality in (2.51) can be shown by using the expression for the unit
radius hyper spheres given in (2.19) and equations (C.2)-(C.5) in Appen-
dix C. A shape preserving mapping is assumed, and so by inserting (2.50)
in (2.45), a general expression for the channel distortion is found

ε̄2
ch = M

M
N −1B̃

2
N

(
∆
2

)−2 M−N
N

σ
2 M

N
x

(
1 +

PN

σ2
n

)−1

. (2.52)

Since it is assumed that the approximation distortion and the channel dis-
tortion are independent, the total distortion will be given by the sum

Dt = ε̄2
a + ε̄2

ch

=
M− N

4M(M− N + 2)
∆2 + M

M
N −1B̃

2
N

(
∆
2

)−2 M−N
N

σ
2 M

N
x

(
1 +

PN

σ2
n

)−1

.
(2.53)

Further the optimal ∆ needs to be determined. Differentiating 2.53 with
respect to ∆ gives

dDt

d∆
= 2

M− N
4M(M− N + 2)

∆−

2M
M
N −1 M− N

N
B̃

2
N 22 M−N

N ∆−2 M
N +1σ

2 M
N

x

(
1 +

PN

σ2
n

)−1

.
(2.54)

Equating to zero and solving with respect to ∆ gives

∆opt = M
M−N

2M

(
4M(M− N + 2)

M− N

) N
2M

(
M− N

N

) N
2M

21− N
M B̃

1
M σx

(
1 +

PN

σ2
n

)− N
2M

.

(2.55)

(2.51) can be expressed in terms of the Beta function using (2.28) and (2.29).
Letting $ = (M− N)/2 + 1 and ς = N/2 + 1 then

B̃ =
(

M
2

+ 1
)
B

(
M− N

2
+ 1,

N
2

+ 1
)

=
(

M
2

+ 1
)
B(M,N). (2.56)
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Inserting (2.55) and (2.56) in (2.53) gives

Dt =
(

1 +
N

M− N

)(
M− N

M− N + 2

)1− N
M

(
M− N

N

) N
M

(
M
2

+ 1
) 2

M

B
2
M
(M,N)σ

2
x

(
1 +

PN

σ2
n

)− N
M

.

(2.57)

Further assume a fixed dimension reduction r = N/M, then N = Mr.
Substituting this in 2.57 gives

Dt =
(

1 +
r

1− r

)(
1− r

1− r + 2/M

)1−r

(
1− r

r

)r( M
2

+ 1
) 2

M

B
2
M
(M,r)σ

2
x

(
1 +

PN

σ2
n

)−r

.

(2.58)

Since (using the product rule for limits [Edwards and Penney, 1998, p.68])

lim
M→∞

(
M
2

+ 1
) 2

M

= 1 and lim
M→∞

(
1− r

1− r + 2/M

)1−r

= 1, (2.59)

what is left to show is

lim
M→∞

(
1 +

r
1− r

)(
1− r

r

)r

B
2
M
(M,r) = 1, (2.60)

where

B(M,r) =
∫ 1

0
t

M
2 (1−r)(1− t)

Mr
2 dt. (2.61)

Doing a similar analysis as in section 2.3.2, one will find that

B(M,r) ≤ (1− r)
M
2 (1−r)r

Mr
2 . (2.62)

with equality when M → ∞. Then

(
1 +

r
1− r

)(
1− r

r

)r

B
2
M
(M,r) =

(
1 +

r
1− r

)(
1− r

r

)r

(1− r)(1−r)rr = 1
(2.63)

when M → ∞, which is what we wanted to show.
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2.6 Discussion

In this chapter a theory for SK-mappings has been introduced. This theory
has further been used to show that the SK-mappings can reach OPTA as
the dimensionality grows to infinity.

Fist a theory for dimension expanding mappings was developed. These
results show that the overall objective of constructing expanding mappings
is to find a structure S (a signal hyper surface representing the source on
the channel), which fill a power constrained region on the channel as prop-
erly as possible, by stretching it out as a “sheet of rubber” (minimizing the
weak noise distortion). This should be done while the distance between
any to folds/parts of S are kept as large as possible, in order to minimize
the effect of the anomalous distortion. This gives a tradeoff between the
two distortion contributions, and thus a unique minimum distortion for a
given system. This tradeoff seems quite similar to the one in traditional
channel coding, where it is desired to place as many codewords as possi-
ble into a constrained region (to make the rate as large as possible), and at
the same time have as large a distance between them as possible (to min-
imize the probability of exchanging codewords), as illustrated in [Cover
and Thomas, 1991, pp.242-243].

The theory developed was used to show that OPTA can be reached in
the limit of infinite dimensionality by using a uniform (fixed distance be-
tween any folds of S) and shape preserving (a diagonal metric tensor with
constant elements) structure. This, it seems, will not be optimal in the finite
dimensional case (especially for low dimensions) which is shown in [Sakri-
son, 1968, pp. 294-297].

Further a theory for dimension reducing systems was introduced. This
theory shows that the overall objective in constructing reducing systems is
to choose a structure S (representing the channel signal in the source space)
that cover the source space as properly as possible by keeping the distance
between any folds of it as small as possible, in order to minimize the ap-
proximation distortion. But on the other hand S should be stretched out as
little as possible to minimize the channel distortion. This gives a tradeoff
between the two distortion contributions also for reducing mappings. The
tradeoff seems quite similar to the one in lossy source coding, where it is
desired to cover the source space as properly as possible (to minimize the
distortion) with as few representation vectors as possible (to minimize the
rate), as illustrated in [Cover and Thomas, 1991, pp.357-358].

Then it was shown, using the theory developed, that also dimension re-
ducing systems can reach OPTA when the dimensionality grows to infinity,
again using uniform shape preserving mappings.
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DISCUSSION

Further research is needed in order to find a method for determining
the overall optimal geometrical structure given the source and channel
pdf’s and their dimensions. Hopefully the theory introduced in this chap-
ter can be extended or modified to some sort of variational calculus prob-
lem [Troutman, 1996]. If it is possible to find such (differential) equations,
they will probably be solvable in an analytically for low dimensional spaces
only.
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Chapter 3

Dimension expanding
PCCOVQ

In this chapter the PCCOVQ (power-constrained channel-optimized vec-
tor quantizer) algorithm from [Fuldseth, 1997] are modified to give well
performing bandwidth expanding PCCOVQ mappings for scalar sources
(these results has been presented in [Floor, Ramstad, and Wernersson, 2007]).

The reason for studying the PCCOVQ is because it seems like a correctly
designed PCCOVQ algorithm will give mappings that perform as close to
OPTA as possible for a given source and channel dimensions, due to the
high degree of freedom in placing points in space, not being stuck to a spe-
cific curve/surface. As mentioned in section 1.2.6, the PCCOVQ will give
indications on the overall structure of an SK-mapping. In trying to repli-
cate a PCCOVQ system by a mathematical structure, on would probably
be able to find a close to optimal SK-mapping (for a given dimensionality).

As mentioned in section 1.2.4, well performing dimension reducing PC-
COVQ has been found [Fuldseth, 1997]. Dimension expanding PCCOVQ
has also been studied in [Fuldseth, 1997], but these mappings showed quite
poor performance. Fuldseth gave two approaches. One approach, based on
general nonuniform channel signal sets, would probably give well perform-
ing mappings if it was possible to include several hundred points in the
channel signal set (representation points in the channel space). Finding
these optimal sets numerically requires exhaustive computations, since the
objective function is of many variables and irregular with lots of local min-
ima (this problem is discussed in further later in this chapter). The other
approach is based on uniform channel signal sets: N-fold Cartesian products
of uniform m-ary PAM, giving rise to K = mN points in the channel space,
which later will be referred to as K-PAM. This approach is fast, but the de-
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grees of freedom is less than in the nonuniform case, since it is stuck to a
fixed PAM grid. However, one can get around this problem by using large
signal sets (discussed in detail later in this chapter).

This chapter start off by describing the (uniform) PCCOVQ algorithm.
The algorithm used is basically the same as the one proposed in [Fuldseth,
1997]. Using different initial conditions and a larger number of centroids
and K-PAM symbols are the main differences. If the number of representa-
tion vectors and K-PAM symbols is large, the distortion cost of using most of
them will get too large, meaning that the algorithm automatically chooses
a subset of them. With a large enough number of K-PAM symbols (K=8000-
11000 symbols are used here), the selected subset will have a regular struc-
ture (even though we are stuck to a fixed grid). The inspiration for this was
taken from [Wernersson, Karlsson, and Skoglund, 2007]. The problems that
shows up when using a PCCOVQ with nonuniform channel signal sets are
also shortly addressed. Finally, examples on 1:2 and 1:3 PCCOVQ map-
pings are given.

3.1 Problem formulation

In this section the PCCOVQ optimization problem from [Fuldseth, 1997]
is described, first for the uniform K-PAM case, and then shortly for the
nonuniform signal set case. For all cases a Gaussian source x with zero
mean and variance σ2

x per component is assumed. Figure 3.1 show the sys-
tem under consideration.

n

Vector
quantizer

Signal
set

Signal 
detection

Source 
decoder

∈i ∈j

x x̂z ẑ
+

FIGURE 3.1: Block diagram for a PCCOVQ system.

The vector quantizer consists of a codebook C ⊂ RM of representation
vectors ci, each belonging to a specific partition in a partitioning P of the
source space RM. Each representation vector is assigned to a specific point
si in the channel signal set S ⊂ RN , through an index i ∈ I , where I is a
set of indices. The received signal set values are detected using an ML de-
tector. The detected signal set values are mapped to specific representation
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PROBLEM FORMULATION

vectors through an indices j ∈ I , giving the reconstructed source vectors.
Notice that since the emphasis is solely on dimension expansion in this
chapter, the symbol S is used to represent the channel signal set, which
will correspond to the signal curve/surface for an expanding SK-mapping.

3.1.1 Uniform channel signal set

Assume that there are K representation vectors in the codebook C = {ci}K−1
i=0 .

The source space (RM) is partitioned into K partitions P = {Ωi}K−1
i=0 , each

containing a specific representation vectors. The vector quantizer approx-
imates each source vector by a representation vector ci. Each ci is repre-
sented by an index i ∈ I = {0, 1, ..., K − 1}, corresponding to a specific
channel symbol si = ∆ui ∈ S . S is, in the uniform channel signal set case,
a K-PAM alphabet (defined at the start of this chapter). ∆ is the minimum
distance between points in S , and ui are vectors in the K-PAM alphabet
with unit distance. On the channel, the transmitted vectors (the si’s) are
corrupted by an additive noise vector n generated by a zero mean i.i.d.
Gaussian process with variance σ2

n per component. At the receiver the de-
tector chooses the index j that corresponds to the point sj in S closest to the
received signal ŝ, i.e.

j = arg min
j∈I

‖sj − ŝ‖2 (3.1)

The average total distortion per source component of this system is

D(P , C, ∆) =
1
M

E{‖x− x̂‖2} =
K−1

∑
i=0

∫

Ωi

di(x) fx(x)dx, (3.2)

where fx(x) is the source pdf, and

di(x) =
1
M

K−1

∑
j=0

pr∆(j|i)‖x− cj‖2 (3.3)

is the distortion associated with representation vector no.i, where pr∆(j|i)
is the probability of receiving index j given that i was transmitted. The
transmitted power per channel use is given by

P(P , ∆) =
∆2

N

K−1

∑
i=0

‖ui‖2
∫

Ωi

fx(x)dx (3.4)

The objective is to solve the following constrained optimization problem

min
{P ,∆,C}

[D(P , C, ∆) + λP(P , ∆)], (3.5)

where λ is a Lagrange multiplier.
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3.1.2 Nonuniform Signal set

Considering a nonuniform channel signal set, the equations from the pre-
vious section are almost the same, except that ‖ui‖ is replaced by a general
‖si‖ and pr∆(j|i) is replaced by prS (j|i). si (which corresponds to centroid
no. i) can in principle take on any value in the channel space, unlike ui
which can only take on values in a fixed K-PAM grid. From this it follows
that the transition probabilities prS (j|i) will be much harder to calculate
than what is the case for the uniform signal set.

3.2 The PCCOVQ Algorithm

As described in [Fuldseth, 1997], the minimum of (3.5) can be found by a
modified generalized Lloyd algorithm.

3.2.1 Uniform signal set

Select an appropriate initial C and S
Step 1. Partitioning: Given the codebook C and the signal set S , the opti-
mal partition P is given as

Ωi = {x|gi(x) ≤ gj(x), ∀j ∈ I}, i ∈ I (3.6)

where

gi(x) = di(x) +
λ∆2

N
‖ui‖2 (3.7)

is the distortion cost function. di(x) is given in (3.3).
Step 2. Update codebook: Given the partition P and the signal set S , the
optimal reconstruction vectors are given by:

cj =
∑K−1

i=0 pr∆(j|i) ∫
Ωi

x fX(x)dx

∑K−1
i=0 pr∆(j|i) ∫

Ωi
fX(x)dx

, j ∈ I (3.8)

Step 3. Update signal set: For a uniform K-PAM signaling set the only
parameter to consider is the minimum distance ∆. Since no known mathe-
matical expression for the optimal ∆ givenP and C exists, it has to be found
by a numerical optimization algorithm (gradient search) minimizing (3.5),
given P and C.
Step 4. Repeat or stop: IF the difference between the total distortion at
this iteration and the previous is smaller than a certain small convergence
criterion ε, then STOP! ELSE go to step 1.
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3.2.2 Nonuniform signal set

The first two steps are the same as in the uniform case, except that the tran-
sition probabilities pr∆(j|i) are replaced by prS (j|i) and ∆ui is replaced by a
general ‖si‖ (that in principle can take on any value in RN). The transition
probabilities are given by

prS (j|i) =
∫

Uj

fn(ŝ− si)dŝ, i, j ∈ I , (3.9)

where ŝ is the received signal and fn is the noise pdf. Uj ⊂ RN is defined
by

Uj = {ŝ|‖ŝ− sj‖2 ≤ ‖ŝ− sk‖2, ∀k ∈ I}, j ∈ I . (3.10)

and represents the partitioning of the channel space. The integral in (3.9)
has to be calculated at each iteration, which will make the algorithm more
complicated than in the uniform case. To find the optimal signal set (since
there to our knowledge exists no similar expression as (3.8) for channel sig-
nal sets) a numerical optimization algorithm has to be used. Since there
are K vectors of dimension N in the signal constellation, the optimization
algorithm has to find a solution in KN variables (compared to one variable
in the uniform case). Since the objective function is irregular, marred with
local minima, the problem gets computationally hard. The chosen opti-
mization algorithm is based on steepest descent [Nocedal and Wright, 1999,
pp. 21-22]. Although steepest descent is slower than most optimization
algorithms it might be the simplest to use in the case of consideration. Due
to the irregularity of the objective function, several step sizes has to be tried
at each iteration to avoid poor local minima.

3.3 Examples on dimension expanding PCCOVQ

In this section examples on both 1:2 and 1:3 PCCOVQ mappings are given.
The emphasis will be on uniform channel signal sets, although a specific
example on a nonuniform signal set will be given for the 1:2 case. In [Fuld-
seth, 1997] structured projection of the K-PAM alphabet was used to find the
initial codebook. In this thesis it is chosen to use a uniform midrise quan-
tizer as initial condition, which seems to get us closer to the global optimum
than structured projection. Each representation vector in the codebook is
mapped to a specific K-PAM symbol in the channel signal set. Figure 3.2
shows an example on the correspondence between the initial conditions in
the source- and channel space for the 1:2 case. The PCCOVQ algorithm
will select a subset of the initial representation vectors and PAM symbols
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FIGURE 3.2: Initial conditions for the 1:2 case using uniform channel
signal sets. × corresponds to representation vectors and PAM-symbols.
(a) Source space: uniform midrise quantizer. (b) Channel space: uni-
form 2-PAM alphabet. The representation vectors with magnitude Ymin
is mapped to the PAM symbol (-A,-A) and the representation vectors with
magnitude Ymax is mapped to the PAM symbol (A,A). The intermediate
representation vectors are mapped according to the line connecting the
PAM symbols in 3.2(b). A is chosen to be 4σx.

according to the distortion cost function in (3.7) (those who have the least
distortion cost associated with them). Using a very large PAM alphabet
will guarantee that certain representation vectors and PAM symbols will
be left out, and regular structures will emerge.

Notice that after running the uniform PCCOVQ algorithm, representa-
tion vectors that were in increasing order of magnitude (like the uniform
quantizer in Figure 3.2(a)) before running the algorithm is now highly shuf-
fled and so need to be sorted for the correct structure to appear. By sorting
the representation vectors in in increasing order of magnitude the signal
set can be found by mapping through the indices corresponding to the rep-
resentation vectors (the index assignment). Figure 3.3 displays the uniform
PCCOVQ concept graphically.

3.3.1 1:2 dimension expanding PCCOVQ

In this section, examples for both uniform and nonuniform signal sets are
presented.

Uniform signal set: The optimization is done for several CSNR values.
The initial condition is like shown in Figure 3.2 with A = 4σx. Different
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FIGURE 3.3: The concept of the uniform PCCOVQ algorithm illustrated
in the 1:2 case. Optimization is done for 5 dB CSNR

structures will emerge depending on the CSNR. The lower the CSNR the
simpler the structure. Figure 3.4 shows the channel space structures found
for 0, 5, 9 and 13 dB CSNR. At 0 dB CSNR a straight line emerges. This
is in accordance with [Lee and Petersen, 1976], where it is shown that lin-
ear systems (BPAM) perform close to OPTA when the CSNR is small (see
section 1.2.1). For higher CSNR a spiral like structure starts to emerge. At
larger CSNR, the structure consists of several curve segments. This seems
quite natural since the distortion due to jumps between different parts of
the structure caused by the channel noise (the anomalous distortion de-
scribed in section 2.1) will get smaller (we e.g. get jumps between positive
source values instead of jumps from positive to negative values). This will
make the system more robust against deteriorating channel conditions. The
number of selected symbols will grow with the CSNR (93 points at 0 dB and
706 points at 20 dB).

Nonuniform signal set: In [Fuldseth, 1997], the initial signal set was
picked at random from a Gaussian distribution. This initial condition is so
far from the optimal, that the algorithm will not evolve (i.e. it will be stuck
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FIGURE 3.4: Channel signal set for 1:2 dimension expanding uniform
PCCOVQ. Each × represent a specific si. The lines drawn between the
selected si’s show the correspondence between neighbors in the one di-
mensional reconstruction codebook. (a): 0 dB CSNR. (b): 5 dB CSNR. (c):
9 dB CSNR. (d): 13 dB CSNR.

on the same structure for all CSNR values). In our approach the initial
channel signal set is chosen to lie on a curve which close to the origin looks
like a straight line. Further out it bends back into the channel space in a
spiral-like manner (the reason why we let the curve bend is to get a nonzero
probability for the threshold effect, or else the algorithm will be stuck on a
straight line). All points along this curve are chosen to be equidistant. As
in [Fuldseth, 1997], noisy channel relaxation is used, meaning that one start
by designing the PCCOVQ for very low CSNR, and then in consecutive
iterations of the algorithm use the codebook and signal set from the previ-
ous CSNR as initial condition for the present. Figure 3.5 shows the channel
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signal set for the nonuniform PCCOVQ consisting of 64 points, optimized
for 9 dB and 13 dB CSNR. The structures emerging have similarities to the
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FIGURE 3.5: Channel signal set for 1:2 bandwidth expanding nonuni-
form PCCOVQ. Each × corresponds to a specific si. The lines drawn
between the selected si’s show the correspondence between neighbors in
the one dimensional reconstruction codebook. (a): 9 dB CSNR. (b): 13 dB
CSNR.

structures in Figure 3.4. The reason why the segmented structures of Fig-
ure 3.4 do not show up, might be that a restriction to 64 points in the chan-
nel constellation gives rise to different structures, or that the optimization
algorithm in question is unable to find piecewise continuous structures, or
(most probably) that the algorithm is stuck in a local minimum.

Figure 3.6 shows the performance of the 1:2 PCCOVQ systems. Figure
3.6(a) show an the performance for both uniform and nonuniform PC-
COVQ for a range of CSNR values. The curves are interpolations between
the optimal points for systems designed for different CSNR. One can ob-
serve that the uniform PCCOVQ is performing well for all CSNR in the
given range. The nonuniform PCCOVQ is on par with the uniform systems
for CSNR below 5 dB CSNR, but start to deteriorate above 5 dB CSNR. The
reason why the nonuniform PCCOVQ deteriorates the way it does, is prob-
ably because only 64 points are used (compared to using e.g. 235 points for
9 dB CSNR and 368 points for 13 dB CSNR chosen by the algorithm in the
uniform case). It is also highly likely that the numerical optimization algo-
rithm get stuck in a local minimum, due to the irregularity and the large
number of variables in the objective function. If it was possible to make the
nonuniform algorithm find the optimum for several hundred points in the
constellation, the nonuniform PCCOVQ would probably be on par with or

49



3. DIMENSION EXPANDING PCCOVQ

0 5 10 15 20
0

5

10

15

20

25

30

35

40

CSNR (dB)

R
ec

ei
ve

d 
S

D
R

 (
dB

)

OPTA
1:2 uniform PCCOVQ
1:2 nonuniform PCCOVQ

(a)

0 5 10 15 20
0

5

10

15

20

25

30

35

40

CSNR (dB)

R
ec

ei
ve

d 
S

D
R

 (
dB

)

OPTA
Uniform PCCOVQ, CSNR = 10dB
Uniform PCCOVQ, CSNR = 13dB
Uniform PCCOVQ, CSNR = 16dB

(b)

FIGURE 3.6: Performance of 1:2 bandwidth expanding systems. (a):
Comparison between the uniform and nonuniform 1:2 PCCOVQ. (b): Ro-
bustness plot for some selected 1:2 PCCOVQ mappings.

even outperform the uniform PCCOVQ. Also the uniform PCCOVQ dete-
riorates above 20 dB CSNR. The reason might be that the algorithm cannot
find the global distortion minimum (or at least something close to it). This
might improve if one cold implement noisy channel relaxation. The reason
why noisy channel relaxation was not used in this case, is that when the al-
gorithm first has left some centroids/PAM symbols out of the problem, we
know of no method to take them in again in a correct manner. This could
be a subject for further research.

Figure 3.6(b) shows the robustness against varying channel conditions
for some selected uniform 1:2 PCCOVQ mappings. One can observe that
the PCCOVQ is robust against varying channel conditions.

3.3.2 1:3 dimension expanding PCCOVQ

In this section PCCOVQ mappings for dimension expansion by a factor of
3 are considered. Only uniform signal sets will be considered. The initial
condition in the source space is the same as in Figure 3.2(a). The initial con-
dition in the channel space is a generalization of the initial condition shown
in Figure 3.2(b). The PAM symbols in Figure 3.2(b) lie in a plane. The initial
condition here is several such planes stacked upon each other with distance
∆ between them (forming a cube), each connected to its parallel plane at
one point. The optimization is done for several CSNR values. Figure 3.7
shows the channel space structures found for 4 dB and 8 dB CSNR. The se-
lected points in the signal set seem to lie on a curve that is twisted around
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FIGURE 3.7: Channel signal set for 1:3 bandwidth expanding uniform
PCCOVQ. Each • corresponds to a specific si. The lines drawn between
the selected si’s show the correspondence between neighbors in the one
dimensional reconstruction codebook. (a) 4 dB CSNR. (b) 8 dB CSNR.

in R3. At higher CSNR, the 1:3 mapping (like the 1:2 mapping) consists
of several curve segments (not shown, since it is hard to visualize it from
just one angle in R3). Also here the number of selected points grows with
CSNR.

Figure 3.8 shows the performance of the 1:3 PCCOVQ systems. In Fig-
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FIGURE 3.8: Performance plots. (a) Comparison between 1:3 PCCOVQ
and an optimal linear 1:3 system. (b) Robustness plot for some selected
1:3 PCCOVQ mappings.
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3. DIMENSION EXPANDING PCCOVQ

ure 3.8(a) the optimal performance of each PCCOVQ mapping is compared
to 1:3 BPAM. Although the PCCOVQ has a significant gain compared to the
linear system, the distance to the optimum bound is quite large. The per-
formance will probably get better if more points are included in the channel
signal set during optimization. It might also be that better initial conditions
can be chosen. Including noisy channel relaxation might also make the re-
sult improve. But as discussed in section 2.3.3, there seem to be more to
catch up to (compared to OPTA) by increasing dimensionality the larger
r is, so one can not expect to get as close to OPTA as the 1:2 system. In
Figure 3.8(b) the robustness against varying channel conditions for the 1:3
PCCOVQ system is shown for some selected mappings. From these results
it is evident that the PCCOVQ is robust.

3.4 Discussion.

In this chapter PCCOVQ algorithms for finding 1:N dimension expanding
JSCC systems have been introduced.

The PCCOVQ structures showing up in both the 1:2 (Figure 3.4) and 1:3
(Figure 3.7) case seem to be in accordance with the theory on SK-mappings
introduced in section 2.1. When the CSNR goes up the noise gets smaller
relative to the constrained region on the channel. Then, according to the
SK-theory from section 2.1, the signal curve can be made longer. This is
what one can observe to happen with the PCCOVQ structures. The larger
the CSNR the more PAM symbols are used (ranging from 93 for 0 dB CSNR
to 706 for 20 dB CSNR, in the 1:2 case). This results in the source informa-
tion being spread out over a larger region of the channel space, which again
makes it more immune against the channel noise. Further the structures are
segmented. It seems like the segmentation is done in such a way that the
probability for the threshold effect gets small, and that the noise introduced
when it first happens is as small as possible, without significantly increas-
ing the channel power. As seen from Figure 3.4(d), the structure start to get
a kind of square like shape. This is probably because the K-PAM alphabet
is square. One might expect that the PCCOVQ structure would become
more circular if the initial S was like a disc (and maybe even perform bet-
ter). Further, it might be possible to make the uniform PCCOVQ algorithm
improve by figuring out a way of including noisy channel relaxation.

Using nonuniform channel signal sets in the PCCOVQ should give the
best possible result. But the computational complexity gets too large if the
necessary amount of variables are taken into the problem. But if it was
possible to find an expression similar to (3.8) for signal sets, the problem
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would be solved since there would be no need for a numerical optimiza-
tion algorithm, and the nonuniform PCCOVQ algorithm would speed up
significantly. The problem is, compared to (3.8) that such an expression
would have to put different weights on crossing different edges in the cells
surrounding a specific channel symbol. This could be a subject for further
research.

It would be of interest to also develop the algorithm further to general
M:N expansion. Then one could get an indication on how to construct
more general SK-mappings, and also verify if there is any gain from in-
creased dimensionality as predicted in section 2.2.2 and (2.3).
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Chapter 4

The Archimedean spiral used
as 1:2 and 2:1 SK-mappings

In this chapter examples on 1:2 dimension expanding- and 2:1 dimension
reducing SK-mappings are given. This whole chapter is devoted to these
examples since the same structure give well performing mappings for both
expansion and reduction. Both the 1:2 and 2:1 mapping is realized using
parametric curves. One of the most important reasons for using curves
(or hyper surfaces in general) compared to e.g. a PCCOVQ system is that
once the overall mathematical structure of the curve is found, changing
coefficients in its equation is the the only thing needed to adapt to varying
channel conditions. Once a specific structure is chosen, one can use the
theory from Chapter 2 to calculate its performance.

For both the 1:2 and 2:1 case an approximate mathematical model when
using Archimedes’ spiral [Zwillinger, 2003] is given. These models are
used further to determine the optimal system parameters as functions of
the CSNR (these results have been presented in [Hekland et al., 2008]). At
the end of the chapter some experiments are performed to determine how
robust the proposed systems are against pdf mismatch on both source and
channel, and how the given systems can be modified to get closer to OPTA.

Block diagrams showing the systems under considered in this chapter
are depicted in Figure 4.1.

55
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FIGURE 4.1: (a): 2:1 dimension reducing SK-mapping. Two source sam-
ples are combined into one channel samples using a non linear map. (b):
1:2 dimension expanding system. One source sample is split onto two
channel samples using a non-linear map.

4.1 2:1 dimension reduction with the Archimedes’
Spiral

In this section a specific example of a 2:1 dimension reducing SK-mapping
for a Gaussian source, and an AWGN channel is given. A factor two dimen-
sion reduction, or compression, is achieved by combining two consecutive
source samples using a parametric curve in the plane (almost the same ana-
lysis was done in [Hekland et al., 2005]. The difference is that here the the-
ory in section 2.4 is used to derive the same results).

As mentioned in section 2.6, no known method for determining the
optimal geometry for an SK-mapping exists. Therefore a mapping whose
shape resembles the codebook of a 2:1 PCCOVQ is chosen (see Figure 1.3(b)
in section 1.2.4). The codebook has a similar shape as a double-intertwined
Archimedes’ spiral, and so it seems natural to use it as as a 2:1 mapping (in
general an Archimedean spiral which will be discussed at the end of this
chapter). The double Archimedes’ spiral seems to fulfill the requirements
for good mappings stated in section 1.2.5. With an average power con-
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2:1 DIMENSION REDUCTION WITH THE ARCHIMEDES’ SPIRAL

straint the spiral would cover the source distribution nicely. Furthermore,
the most probable source samples would be mapped to small channel am-
plitudes (if the origin of the channel space corresponds to the “origin” of
the spiral), and close neighbors in the channel space will always come from
close neighbors in the source space. Thus, the Archimedes’ spiral is a suit-
able choice as a mapping for this specific source and channel pair.

The communication chain considered is shown in Figure 4.1(a). Assume
a Gaussian source x with zero mean. Dimension reduction is performed by
transmitting a combination of two source samples x1 and x2 as one channel
sample y. First the vector x is projected down on one of the two spirals
shown in Figure 4.2. Then the 1D representation of the point on the spi-
ral is mapped through the measuring function ` (see section 2.4) onto the
channel. The channel signal is corrupted by AWGN. Detection is done by
calculating the vector x̂ corresponding to the received value ẑ = z + n using
the equation of Archimedes’ spiral given by (ϕ contained in s for simplic-
ity)

s(ẑ) = ±∆
π

ϕ(αẑ)
(

cos(ϕ(αẑ))i + sin(ϕ(αẑ))j
)

, (4.1)

where α is a gain factor, ϕ is a stretching function (see section 2.4), ∆ is
the (radial) distance between the two spiral arms, i and j are orthogonal
unit vectors pointing along the positive x1- and x2 directions respectively.
The equation with positive sign corresponds to positive channel values
(solid blue curve in Figure 4.2), while the equation with negative sign cor-
responds to negative channel values (dashed red curve in Figure 4.2), thus
creating a channel representation with no DC components, and the most
probable source symbols are represented with the lowest amplitudes. The
functions ` and ϕ should be chosen in a convenient manner. The vector
projected onto the spiral is first given a 1D representation as the radial dis-
tance ρ from the origin out to the given point. Then the `(·) operation is
performed, mapping from the radius ρ onto the channel. In this case it is
chosen to use the square of the radius times a constant

y = `±(ρ) = ±ζ
(π

∆

)2
ρ2 = ±ζ

(π

∆

)2
(x2

1 + x2
2), (4.2)

where ’+’ represents positive channel values and ’−’ represents negative.
The rationale behind choosing this representation is that the parameter
ζ = η∆ = 0.16∆ makes this `-operator an approximation to the length
along the spiral. This choice of mapping gives a unit speed parametrization
(see Appendix A.3), in which the velocity vectors along the curve is of unit
norm. This again will make the channel distortion independent of the chan-
nel input signal levels (as well as σx). The expression in (4.2) is found by

57
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FIGURE 4.2: Archimedes’ spiral.

using a nonlinear curve fit to the expression of the true arc length

`(ρ)s =
1
2

(
ρ

√
1 +

(π

∆
ρ
)2

+
∆
π

sinh−1
(π

∆
ρ
))

(4.3)

with the 2’nd degree function in (4.2) as input. The approximation of the
true arc length will be quite accurate for large intervals, and therefore a
good approximation at high CSNR. Near the origin, this expression will
differ from the actual curve-length function. The reason for using this ap-
proximative operator instead of using the expression for the true spiral
length is that the true arm length (4.3) does not have an analytic inverse.
Further, one can find the channel symbol distribution of Y analytically us-
ing this approximation something which simplifies the calculation of the
resulting channel symbol power. To determine the power of the channel
input signal σ2

y , it is assumed that the spiral is sufficiently dense to disre-
gard the approximation operation q in the calculations of it (high CSNR).
Then the analysis in Appendix D can be used to find both the channel pdf
and its corresponding variance. Considering a 2D source in Appendix D
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1:2 DIMENSION EXPANSION WITH THE ARCHIMEDES’ SPIRAL

(substitute M = 2) results in a Laplacian distribution with variance

σ2
y = 2

(
2ζ

π2

∆2 σ2
x

)2

, (4.4)

where ζ = 0.16∆ as in (4.2).
The only parameter to determine in this system is the optimal ∆ (which

must be found for a given CSNR). To do so a mathematical model is needed,
which can be found by using the theory from section 2.4. The distortion af-
ter decoding is Dt = ε̄2

a + ε̄2
ch, where ε̄2

a is the approximation distortion and
ε̄2

ch is the channel distortion (both defined in section 2.4). The channel in-
put signal y is scaled by a factor 1/α in order to satisfy an average power
constraint. Thus the channel power is given by

P = E{z2} = E{(y/α)2} =
σ2

y

α2 , (4.5)

and so α =
√

σ2
y /P. In the receiver the channel signal is re-scaled by α.

Since the Archimedes’ spiral can be seen as a uniform structure (except
close to the origin) the approximation distortion is given by (2.48) in sec-
tion 2.4.2, substituting M = 2 and N = 1. Further, since a unit speed
parametrization is used, the metric component g11 = ‖s′(z)‖2 = α2, ∀z
(a shape preserving map) and so the channel distortion is given by (2.45)
substituting M = 2 and N = 1, and so the total distortion is

Dt(∆) = ε̄2
a(∆) + ε̄2

ch(∆) =
(

∆2

24

)
+

σ2
nσ2

y

2P
, (4.6)

which corresponds to the total distortion determined in in [Hekland et al.,
2005]. The (unconstrained) optimization of this problem is done in [Hekland
et al., 2005] and also [Hekland et al., 2008], and the resulting optimal ∆ is

∆opt = 2πσx
4

√
6 · 0.162

CSNR
. (4.7)

Further it is also shown that ε̄2
a = ε̄2

ch at the optimal point. Some further
discussion on the proposed 2:1 mapping is given in section 4.3.1.

4.2 1:2 dimension expansion with the Archimedes’
Spiral

The communication chain considered in this case is shown in Figure 4.1(b).
The source is scaled by α then mapped onto the channel space through the
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signal curve s. ϕ is a stretching function as defined in section 2.1. At the
receiver the signal has to be projected back onto the curve (ML-detection)
and re-scaled. The different operations in this system are basically the same
as in the 2:1 case, except that the projection operation p does not introduce
any approximation distortion.

In chapter 3, specific examples on 1:2 bandwidth expanding PCCOVQ
were presented. From Figure 3.4 one can see that these mappings have a
segmented spiral like structure. As was discussed, this segmented struc-
ture shows up in order to minimize the error done when the threshold ef-
fect first occurs. Trying to replicate this structure by a parametrization is
possible to some extent, but the equation will get a bit complicated. There-
fore it is chosen to use the Archimedes’ spiral in (4.1). This spiral will fill the
power constrained channel space properly, but the anomalous errors will
be more severe than for the PCCOVQ, since when jumps from one spiral
arm to another occur, positive source samples will be decoded as negative
source samples and vice versa. To reduce the probability of the threshold
effect, larger distances between two parts of the curve (∆) compared to the
PCCOVQ is required, something which will limit the total spiral length.
As will be demonstrated at the end of this chapter, the effect of the severe
anomalous distortion can be reduced by using a nonuniform spiral.

The source will reside along the double spiral in Figure 4.2 (substituting
z1 for x1 and z2 for x2). Positive source values lie on the solid spiral (s1) and
negative values lie on the dashed spiral (s2 = −s1). The only difference
from (4.1) is that the parameter will be x instead of ẑ.

To be able to find the value of ∆ that maximizes the performance (SDR)
for a given CSNR, the channel power P, the weak noise distortion ε̄2

wn, and
the anomalous distortion ε̄2

th (both defined in section 2.1) needs to be cal-
culated. Similar calculations have been done before in [Thomas, May, and
Welti, 1975], using semicircles instead of the Archimedes’ spiral. Some of
the calculations here will be based on their work.

ϕ is chosen equal to the inverse curve length approximation

ϕ(x) = ±
√

x
η∆

. (4.8)

The reason for this choice is the same as in Section 4.1 (with velocity vectors
of equal length along the whole curve, the signal and noise are mutually
independent). This approximation is used in both calculations and simula-
tions. Assume a Gaussian input signal, truncated in the interval [−1, 1] (the
curve must have a finite length). By choosing the signal standard deviation
small enough (like σx = 0.25), the overload effect will be negligible, and
the signal can be considered Gaussian.
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Channel power:The channel power is given by (per channel sample)

P =
1
2

E{‖z‖2} =
1
2

∫ 1

−1
‖s(x)‖2 fx(x)dx =

α∆σx

η
√

2π5

(
1− e

− 1
2σ2

x
)
. (4.9)

Weak noise distortion: With a unit speed parametrization, ‖s′(x0)‖2 =
α2, and so the weak noise distortion will be given by (2.16) (shape preserv-
ing mapping)

ε̄2
wn =

σ2
n

α2 . (4.10)

Anomalous distortion: This contribution is calculated according to Fig-
ure 4.3. Due to symmetry it is sufficient to calculate the anomalous dis-
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FIGURE 4.3: Calculation of the threshold distortion. The dotted line
shows the decision spirals. The probability p for taking e.g. s+ to be the
received value is given by the shaded area outside the decision spiral.

tortion for one of the spiral arms, then multiplying the whole result by 2.
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Considering the positive spiral arm, the anomalous distortion can be found
from

ε̄2
th = 2pr

∫ 1

0
[(x− x̂+)2 + (x− x̂−)2] fx(x)dx, (4.11)

where erf(·) denotes the error function [Bateman, 1953, p.266], x̂± is the re-
constructed values when the threshold effect occur and

pr =
1
2

(
1− erf

(
∆

2
√

2σn

))
, (4.12)

is the probability for the threshold effect. The value one get when the
threshold effect first occurs is the one corresponding to the point on the
curve in radial distance ∆ from the wanted point. To find the two recon-
structed values x̂±, it is convenient to do the calculations in polar coordi-
nates. Considering transmission on the positive spiral arm the problem is
to solve (noise taking us outwards compared to the spiral origin)

s+ = s(x) + ∆ (4.13)

−∆
π

(ϕ(αx̂+)) =
∆
π

ϕ(αx) + ∆, (4.14)

and so

x̂± = −η∆
(√

x
η∆

± π√
α

)2

, (4.15)

where the ’−’ sign is added at the end to take into account that the detected
x will be negative when the threshold effect occur (when the transmitted x
was positive). x̂− is the closest received value when the noise takes us
inwards across the decision boundary to another part of the curve, and x̂+
is the received value the noise takes us outwards. In general, the probability
for the threshold effect pr should be inside the integral in (4.11). But with a
uniform structure, pr will be independent of x except for a little region close
to the origin, which gives a negligible contribution. Doing the integration
in (4.11) gives

ε̄2
th =

1√
πα2

(
1− erf

(
∆

2
√

2σn

))[
erf

(√
2

2σx

)(
4σ2

x
√

πα2 + η2∆2π
9
2

)

− 4
√

2σxαe
− 1

2σ2
x (α + 2η∆π2) + 8

√
2ηπ2∆σxα

]
.

(4.16)

Optimization of the 1:2 mapping: To determine the optimal ∆ for a
given CSNR, first solve (4.9) with respect to α

α =
Pη
√

2π5

∆σx
(
1− e

− 1
(2σ2

x )
) , (4.17)
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then substitute this into (4.10) and (4.16) (to reduce the optimization to an
unconstrained problem). The anomalous distortion decreases with increas-
ing ∆, whereas the weak noise distortion increases, which implies that there
exists a unique global minimum. The following unconstrained optimiza-
tion problem must be solved

∆opt = arg min
∆

[
ε̄2

wn(∆) + ε̄2
th(∆)

]
. (4.18)

Since the expression for the anomalous distortion (4.16) contains the error
function, no analytical expression for ∆opt can be found. Instead a numer-
ical optimization algorithm (Matlab’s optimization toolbox) is used. Fig-
ure 4.4(a) shows the two distortion contributions at the optimal point as a
function of the CSNR. Observe that for large CSNR, the contribution from
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FIGURE 4.4: Results from optimization. (a) The two distortion contri-
butions in a 1:2 bandwidth expanding system, shown at the optimal ∆
for a range of CSNR values. The optimization is done for σx = 0.25, and
channel power P = 1. (b): Comparison of the optimal ∆ as a function of
CSNR for the 1:2 and 2:1 case. The graphs are made for σx = 0.25 and√

P = 0.25.

the anomalous distortion is very small compared to the weak noise dis-
tortion at the optimum point (this is to be expected since the anomalous
distortion is severe). This is in contrast to the 2:1 case, where the two dis-
tortion contributions is equal at the optimum point.

It is convenient to find an approximate function for ∆opt. This can be
done by using a nonlinear least-squares curve fitting algorithm (Gauss-
Newton or Levenberg-Marquardt algorithm [Nocedal and Wright, 1999,
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4. THE ARCHIMEDEAN SPIRAL USED AS 1:2 AND 2:1 SK-MAPPINGS

pp.259-270]), for the following function

∆opt =
√

Pβe−(γCSNR2
dB+ϑCSNRdB). (4.19)

The coefficients have to be determined when the source standard devia-
tion is given. With σx = 0.25, the coefficients β = 5.223, γ = 3 · 10−4

and ϑ = 0.0801 emerge. This function lies very close to the real ∆opt in
the range 0-35dB CSNR. Figure 4.4(b) shows ∆opt as a function of CSNR
for both bandwidth compression and expansion when using Archimedes’
spirals. The two curves seem to have similar characteristics.

4.3 Results and discussion

In this section simulation results are presented and compared with the the-
oretical findings from section 4.1 and 4.2. In the simulation 5 · 104 Gaussian
distributed test vectors are used for bandwidth reduction. For bandwidth
expansion it is necessary to use at least 2 · 105 Gaussian test samples. This
is because the threshold effect must occur enough times to give consistent
results.

4.3.1 2:1 Bandwidth Reduction

The performance of the system is expressed in terms of the received SDR
as a function of the CSNR. By definition CSNR = P/σ2

n and SDR = σ2
x /Dt,

where P = σ2
y /α2, σ2

y is given by (4.4) and Dt is given by (4.6). As one
can observe from Figure 4.5 there is a close correspondence between cal-
culations and simulations above 30 dB CSNR. Below 30 dB, however, the
results start to differ. For CSNR above the optimum point (marked with
a star), one can observe that the curve representing the simulated perfor-
mance is shifted upwards relative to the calculated performance. This is be-
cause the actual approximation distortion near the spiral origin is smaller
than ∆2/24. But still the optimum point from the simulation is further away
from OPTA than the calculated results. The reason is that an approxima-
tion to the curve length function (4.2) is used. The derivative of the inverse
curve-length approximation has a vertical asymptote at the origin, as op-
posed to the real inverse curve-length derivative. Then the norm of the
spiral tangent vectors will get larger close to the origin than what was as-
sumed in the theoretical analysis. This makes the channel distortion larger
on average for low CSNR compared to the theoretical analysis, and the sim-
ulated optimal points will get further away from OPTA. For a fixed ∆ one
can also see a difference between calculations and simulations far from the
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FIGURE 4.5: Performance of a 2:1 dimension reducing system using
Archimedes’ spiral. Approximate calculations (thin green lines), simu-
lation (dashed red lines) together with BPAM (blue dash-dot) are shown.
The different curves correspond to different values of ∆opt. Each curve
is made from varying noise variances so that one can see the behavior
described in Section 2.4.

optimal point for decreasing CSNR. The reason is that the channel distor-
tion is calculated by using the linear approximation to the signal curve.

4.3.2 1:2 Bandwidth Expansion

The received fidelity is now given by SDR = σ2
x /(ε̄2

wn + ε̄2
th), where ε̄2

wn
and ε̄2

th are given by (4.10) and (4.16), respectively. Figure 4.6 shows both
the calculated and simulated performance of the 1:2 dimension expanding
system using Archimedes’ spirals, together with an optimal linear system
(BPAM). The system is robust in the sense that it is not highly sensitive to
incorrect choice of ∆opt, i.e. it shows graceful improvement, and to some ex-
tent graceful degradation (especially at low CSNR). The curves optimized
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FIGURE 4.6: Performance of a 1:2 dimension expanding system using
Archimedes’ spiral. Approximate calculations (thin green lines), simula-
tion (dashed red lines) together with BPAM (blue dash-dot) are shown.
The different curves correspond to different values of ∆opt. Each curve is
made from varying noise variances so that one can observe the behavior
described in Section 2.1.

for larger CSNR break down more steeply, although the breakdown is not
total, as is the case of traditional channel coders. Notice that there is a con-
siderable gain compared to a linear system except below 8− 10 dB CSNR.
Also observe the close correspondence between calculations and simula-
tions above 20 dB CSNR. As in the 2:1 case the difference between the sim-
ulated and calculated performance increase when CSNR gets lower. Here
the optimal point is closer to OPTA for the simulated case. The explanation
for this is similar to the 2:1 case in the previous section, but in this case the
longer tangent vectors will reduce the effect of the weak noise distortion,
and so the simulated results gets closer to OPTA than the calculated.
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4.4 Experiments

In this section the proposed systems are tested against mismatch in both
source and channel noise pdf’s. Further the proposed systems are modi-
fied, making them preform slightly better.

4.4.1 pdf mismatch

To get indications on how robust the example mappings given in section 4.1
and 4.2 are for mismatch in both source- and channel noise distributions,
they have been simulated with both Laplacian and uniform distributions
for both source and channel noise. The results are shown in Figure 4.7 for
the expansion case, and in Figure 4.8 in the compression case. As seen
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FIGURE 4.7: (a) Comparison between Gaussian, Laplacian and uniform
source in the 1:2 case. (b) Comparison between Gaussian, Laplacian and
uniform noise in the 1:2 case.

from figure 4.7(a), the loss/gain is quite insignificant having mismatch in
the source pdf in the 1:2 case. The sensitivity towards mismatch in the
noise pdf is quite significant though. From figure 4.7(b) one can observe
that there is a significant loss in the Laplacian case, whilst a significant gain
in the uniform case. The reason for the loss in the Laplacian case is that
the Laplacian pdf is “much wider” than the Gaussian pdf. So for a given
CSNR, ∆ must be larger in the Laplacian case in order to get the same prob-
ability for the anomalous errors. Then the curve has to be made shorter
to satisfy the channel power constraint, which makes the received SDR go
down, since the weak noise distortion gets larger (see equation (2.5)). In the
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Uniform noise case the opposite effect occurs. Since ∆ can be made smaller
for a given CSNR, the received SDR goes up.
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FIGURE 4.8: (a) Comparison between Gaussian, Laplacian and uniform
source in the 2:1 case. (b) Comparison between Gaussian, Laplacian and
uniform noise in the 2:1 case.

In contrast to the expansion case, the compressive mapping is quite sen-
sitive to source pdf mismatch. From figure 4.8(a) one can observe a quite
significant loss in the Laplacian case, whilst some gain in the uniform case.
The Laplacian source has a much “wider pdf” than the Gaussian. So given
a certain CSNR, the curve must be made longer in the Laplacian case to get
the same approximation distortion as in the Gaussian case. A longer curve
makes the channel distortion go up (according to equation (2.44)), and so
the performance deteriorates. In the uniform case the opposite effect oc-
curs. From figure 4.8(b) one can observe that the sensitivity towards noise
pdf mismatch is quite insignificant in the 2:1 case.

From these results it seems like the proposed systems are quite robust
against pdf mismatch. The performance seems to gradually decrease or in-
crease with the width of the pdf. The sensitivity towards pdf mismatch is
largest in the space where the signal curve resides (source pdf in the com-
pression case and channel noise pdf in the expansion case). The perfor-
mance is gradually decreasing as the pdf widens, and gradually increasing
as the pdf becomes narrower (compared to the Gaussian case).

4.4.2 Archimedean Spiral

In the previous sections only uniform spirals were considered. Using a
non-uniform spiral could be beneficial. Indeed, looking at the code-book
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for the 2:1 PCCOVQ in Figure 1.3(b) in section 1.2.4, one can see that the
spiral is slightly nonuniform. Also in the expansion case, considering the
anomalous distortion, it is beneficial that the distance between the spiral
arms increase for larger values of the source. This will make the probability
for the threshold effect go down for the most severe cases and somewhat
compensate for the non-segmented structure chosen (compared to the 1:2
PCCOVQ in Figure 3.4). Archimedean spirals are used in the examples.
This spiral is a generalization of Archimedes’ spiral, which can be seen
from its equation

s(z) = ±∆
π

(ϕ(αz))
1
k

(
cos(ϕ(αz))i + sin(ϕ(αz))j

)
. (4.20)

k is a factor determining if the spiral is uniform (k = 1) or if the distance
between the spiral arms increase (k < 1) or decrease (k > 1) with increasing
parameter values.

2:1 case: First an Archimedean spiral with k = 0.9 is tested (at both
transmitter and receiver). ϕ is again chosen to be the curve length approx-
imation. From Figure 4.9 one can observe that there is a gain compared
to the uniform spiral above 30dB CSNR for the k = 0.9 system. At 45 dB
CSNR, the distance to OPTA is approximately 0.95 dB compared to 1.1 dB.
Below 20 dB CSNR however, the nonuniform system with k = 0.9 is inferior
to the uniform system. Two curves are plotted in addition which outper-
form the other systems by 0.5− 1 dB for low CSNR. Here different spirals
are used at the transmitter and receiver, which means that the receiver no
longer is the inverse of the transmitter. At the receiver a spiral where the
distance between the spiral arms gets smaller the larger the channel sig-
nal amplitudes become is used. This means that all received vectors will
be slightly moved inwards towards the origin compared to the transmitted
vectors. This seems to have the same effect as a Wiener factor [Therrien,
1992] has for a linear coders. The polynomial `(ρ) = ∆(0.14ρ2 + 0.55ρ)
is used as a mapping function (it was found by choosing a 2’nd degree
polynomial, and then coarsely tuning the coefficients until the “best” re-
sult emerged). The Archimedean spiral systems are also compared to a 2:1
PCCOVQ system using 4096 representation vectors. As one can see at low
CSNR, one can get the spiral to perform on par with the PCCOVQ system
by using different nonuniform spirals, whilst the spiral (both uniform and
nonuniform) actually gets better than the PCCOVQ for high CSNR. The
PCCOVQ would probably be on par with the spiral mapping using more
representation vectors in the codebook.
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FIGURE 4.9: Comparison between different 2:1 systems, using uniform
and nonuniform Archimedean spirals and PCCOVQ. In the plot Tx is
denoting the transmitter, while Rx is denoting the receiver.

1:2 case: Here, different Archimedean spirals are tested for dimension
expansion. ϕ is given by (4.8) in all simulations. The simulations in Fig-
ure 4.10 shows the comparison between the 1:2 uniform system from Fig-
ure 4.6 (dashed red line) and two systems using nonuniform Archimedean
spirals together with a 1:2 PCCOVQ system (between 0-20 dB CSNR). Above
15 dB CSNR, the nonuniform system with k = 0.8 shows modest gains
compared to the uniform system for the optimal choice of ∆, but is more
gracefully degrading (compare with Figure 4.6). For CSNR below 15 dB,
however, the gain compared to the uniform system is more significant, es-
pecially for the k = 0.7 system. The PCCOVQ slightly outperforms the
spiral systems until about 17 dB CSNR, where it ends up slightly below the
spiral systems (probably because the PCCOVQ found by the algorithm at
such a high CSNR is a local minimum). In the 1:2 case it seems like one can
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FIGURE 4.10: Comparison between different 1:2 systems, using uniform
and non-uniform Archimedean spirals (k = 0.8 and k = 0.7) and PC-
COVQ.

gain something in performance for all CSNR values using an Archimedean
spiral with k < 1.

71





Chapter 5

Other mappings and
experiments

In this chapter examples on several SK-mappings are given. First three di-
mension reducing mappings are introduced. The mappings chosen to be
analyzed are 3:1 and 4:1 mappings based on parametric curves, and a 3:2
mapping based on a parametric surface. Second an example on a 2:3 di-
mension expanding mapping is given. This mapping is based on a vector
quantizer (VQ) and linear coders. All mappings are modeled mathemati-
cally and optimized, yielding the optimal coefficients in their given equa-
tions as a function of the CSNR.

The reason why these specific mappings are chosen is given in sec-
tion 1.2.5. Also, these mappings are simple enough (low enough dimen-
sionality) to determine their approximate mathematical model.

5.1 Dimension reducing mappings

In this section three dimension reducing mappings are presented. First a
3:1 mapping found by generalizing the Archimedean spiral from chapter 4
is given. Then a 4:1 mapping found based on a generalization of the pro-
posed 3:1 mapping. Both mappings are analyzed mathematically. Second
a 3:2 mapping is presented and analyzed, illustrating some of the problems
showing up going from parametric curves to parametric surfaces (hyper
surfaces in general).

Figure 5.1 shows a general block diagram for reducing mappings that
will be referred to in the following sections. The M dimensional source vec-
tor x is projected onto a signal hyper surface (or curve) S and mapped onto
an N dimensional channel vector y. ` has the same role as in section 4.1.
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Each component of the channel vector, yi, is scaled by 1/αi to satisfy a
given power constraint. Then the received vector is re-scaled and mapped
through the SK-mapping to reconstruct the transmitted source vector.
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FIGURE 5.1: Block diagram for an M:N dimension reducing system.

5.1.1 3:1 Mapping

The block diagram under consideration in this section is given by Figure 5.1
with M = 3 and N = 1, and α1 = α.

In section 4.1 it was argued that the spiral structure was chosen based
on the codebook of a 2:1 PCCOVQ. Furthermore it was argued that it sat-
isfied the conditions for a good mapping given in section 1.2.5. Since a 2D
Gaussian signal has a circular symmetry it is also natural to choose a spiral
as a 1D covering.

In the 3:1 case, similar arguments can be given. Since a 3D Gaussian sig-
nal has a spherical symmetry, one can naturally imagine a “ball of yarn”-
like structure as a 1D cover, where the middle of the “thread”, which is
at the origin of the source space, corresponds to the origin of the chan-
nel space. Then, as for the spiral, the most probable symbols are repre-
sented with the lowest power, the points close in the channel space will
also be close in the receivers source space guaranteing robustness, and the
structure fill a spherical region in the source space in a (relatively) proper
manner making the approximation distortion small. The last mentioned
point is the most difficult one. One problem is that one has many more
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choices of freedom on how to make a curve fill a ball in space then fill-
ing a disc in the plane. This makes it more difficult to find equations for
well performing systems for a large range of CSNR. As will be seen later
a 3:1 PCCOVQ structure (which is also like a ball of yarn) will outperform
the proposed system, probably because the PCCOVQ is capable of placing
points in space in a close to optimal way for each given CSNR, something
which is very hard to do with a given equation.

To find the parametric equations for a ball of yarn like structure, one
can start out with a tilted circle in R3

r(z) = cos(z)i + sin(z)j + sin(z)k. (5.1)

A spiral lying on a (tilted) plane shows up by multiplying the circle with
the parameter z. Since the functions in the j and k directions are linearly de-
pendent, the structure will not “twist” up in the last dimension. By multi-
plying by two linearly independent functions in these directions (the given
functions are orthogonal over periods of 2π), the wanted structure show
up. One equation, used for positive channel values, is

s+(z) =
∆
π

ϕ(αz)
(

cos(ϕ(αz))i + cos
( 1

2π
ϕ(αz)a) sin(ϕ(αz))j+

sin
( 1

2π
ϕ(αz)a) sin(ϕ(αz))k

)
.

(5.2)

Another configuration is chosen for negative channel values

s−(z) =− ∆
π

ϕ(αz)
(

sin
( 1

2π
ϕ(αz)a) cos(ϕ(αz))i + sin(ϕ(αz))j+

cos
( 1

2π
ϕ(αz)a) cos(ϕ(αz))k

)
.

(5.3)

∆ has a somewhat different meaning than in the 2:1 case (in that it is not
directly giving the distance between two parts of the curve), but can still be
seen as a scaling of the whole structure and can therefore be used to adapt
to varying channel conditions. ϕ has the same role as in previous chapters.
a is a factor that determines the “density” of the curve in a given region of
space (see Figure 5.2). In the following (5.2) and (5.3) together are referred
to as “system 1”. Figure 5.2 depicts the structure in (5.2) (blue line) and (5.3)
(red line).

In the following, an approximate mathematical model for the distor-
tion using (5.2) and (5.3) as a 3:1 mapping assuming a = 1 is given. Later
in this section different values of a and another structure will be tested and

75



5. OTHER MAPPINGS AND EXPERIMENTS

−4

−2

0

2

4

−4
−2

0
2

4
−4

−3

−2

−1

0

1

2

3

x
1x

2

x 3

(a)

−4
−2

0
2

4

−4
−2

0
2

4
−4

−2

0

2

4

x
1x

2

x 3

(b)

FIGURE 5.2: 3:1 dimension reducing mapping, named system 1. This is
the structure corresponding to equation 5.2 (blue line) and 5.3 (red line)
with two different values of a. (a) a = 1. (b) a = 2.5.

compared to a 3:1 PCCOVQ system and BPAM. For the same reasons as
in the 2:1 case, a unit speed parametrization is chosen (to make the chan-
nel input signal and the noise mutually independent, and to simplify the
calculations). In seems difficult to find an explicit expression for the curve-
length function for the given structure. But by using numerical integration
and a nonlinear curve fitting algorithm [Nocedal and Wright, 1999, pp.259-
270] (Gauss-Newton or Levenberg-Marquardt), it happily turns out that the
same approximation as in equation (4.2) in section 4.1 is good

y = `±(ρ) = ±ζ

(
π

∆

)2

(x2
1 + x2

2 + x2
3), (5.4)

again with ζ = η∆ where η = 0.16.
Channel power: It is shown in Appendix D that the pdf of the channel

signal can be approximated (at high CSNR, so the approximation operation
can be disregarded during the calculations) by a “double gamma distribu-
tion”, which has the variance (substituting M = 3 in (D.10))

σ2
y =

15(π2ζσ2
x)2

∆4 . (5.5)

And so the channel power will be Pt = σ2
y /α2 (see Figure 5.1).

Channel distortion: (2.44) determines the channel distortion. Using a
unit speed parametrization, then for the same reasons as in section 4.1, (2.45)
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can be used substituting M = 3 and N = 1 (shape preserving mapping)

ε̄2
ch =

σ2
n

3
α2 =

σ2
nσ2

y

3P
=

5(σnσ2
x π2η)2

∆2P
(5.6)

Approximation distortion: This contribution can unfortunately not be
found analytically due to the more irregular structure on the decision levels
(compared to the 2:1 case). The approximation will in this case be a func-
tion of both ∆ and σx. A numerical curve fitting algorithm must be used.
Assume that the approximation distortion is on the form

ε̄2
a = β3:1∆2−γ. (5.7)

Given that σx = 1, the optimal parameters is found to be β3:1 = 0.2104 and
γ = 1.09 by a nonlinear curve fitting algorithm. To simplify the analysis
one can say that γ3:1 = 1.0 and find that β =3:1 0.258 without changing the
results significantly (except at lower CSNR).

The total distortion is given by

Dt = β3:1∆ +
5(σnπ2η)2

∆2P
, σx = 1. (5.8)

Differentiating (5.8) with respect to ∆, setting the equation equal to zero
and solving with respect to ∆ gives

∆opt = 3

√
10(σnπ2η)2

β3:1P
= 3

√
10(ηπ2)2

β3:1CSNR
, σx = 1. (5.9)

The comparison between the above theoretical model and simulations of
the real system is shown in Figure 5.3(a). As one can see there is quite
a good correspondence between the theoretical model and simulations at
high CSNR (above 40 dB). At lower CSNR the results start to differ. The rea-
son is partly the same as explained for the 2:1 case in section 4.3.1 (the dis-
crepancy between the derivatives of the curve length function and its ap-
proximation close to the origin, and the accuracy in using the curve length
approximation for low CSNR) and that the model for the approximation
noise was made to fit best at high CSNR (small values of ∆). Considering a
specific graph (fixed ∆) at low CSNR it seems apparent that the approxima-
tion distortion is deviating the most from from the simulated performance
(part of graphs above the optimal point). Fitting the data for the approx-
imation distortion to a more complicated function would probably make
the theoretical model coincide better with the simulations at low CSNR.
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FIGURE 5.3: Performance of 3:1 dimension reducing systems. (a) Com-
parison between the theoretical model and the simulation of system 1. (b)
Comparison between different 3:1 systems.
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In Figure 5.3(b) several 3:1 systems are compared. One can observe
that changing the “density” of system 1 (increasing a) makes it perform
slightly better for a certain range of CSNR values, but then much worse
for other ranges (compared to a = 1). At high CSNR a different structure
is tested, called “system 2”. The equations of this mapping is the same
as (5.2) for positive channel values, and the negative of (5.2) for negative
channel values. In all cases an approximate unit speed parametrization is
used. Furthermore one can observe that the PCCOVQ system significantly
outperforms all the proposed systems. This is probably due to the fact,
as mentioned earlier, that the PCCOVQ has a higher degree of freedom in
placing points in space, not being stuck to a specific structure.
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FIGURE 5.4: Comparison between PCCOVQ (a) and system 1 (b).

Figure 5.4 shows the comparison between the structures of the PC-
COVQ and system 1 with a = 1 at 40 dB CSNR. From this figure it is
obvious that the PCCOVQ should have a smaller approximation distortion
than the parametric curve (covering the space more properly). Unfortu-
nately, the PCCOVQ structure seems too irregular to be modeled by a sim-
ple equation, but there might be possible to do a nonlinear curve fitting to
the component functions (corresponding to the component functions Si in a
parametrization like (2.6)) of the PCCOVQ showing up when interpolating
between the representation vectors for a given CSNR.

The difference between the Archimedes spiral and PCCOVQ in the 2:1
case was not significant. This is probably due to the fact, as mentioned
before, that there are not so many choices on how to fill a disc-like region
with a curve if one at the same time should obey the three conditions given
in section 1.2.5. Filling a ball-like region in space with a curve gives rise
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to much more flexibility. The advantages of the proposed SK-mapping(s)
over the PCCOVQ is that it is possible to find an approximate mathemati-
cal model, which makes it much simpler to adapt to varying channel con-
ditions (i.e. by (5.9) or a more complicated expression).

5.1.2 4:1 mapping

Here an example of a 4:1 mapping using a parametric curve is given. The
block diagram under consideration in this section is given by Figure 5.1
with M = 4 and N = 1, and α1 = α.

Since it is impossible to visualize a structure in 4D, the only thing one
can do is to generalize further what was done in section 5.1.1. The follow-
ing equations are chosen to be analyzed. (5.10) represents positive channel
values

s+(z) =
∆
π

ϕ(z)
(

sin
( 1

3π
ϕ(z)a) cos(ϕ(z))i + cos

( 1
2π

ϕ(z)a) sin(ϕ(z))j+

sin
( 1

2π
ϕ(z)a) sin(ϕ(z))k + cos

( 1
3π

ϕ(z)a) cos(ϕ(z))l
)

.

(5.10)

Negative channel values are represented by

s−(z) =− ∆
π

ϕ(z)
(

sin
( 1

3π
ϕ(z)a) cos(ϕ(z))i + sin

( 1
2π

ϕ(z)a) sin(ϕ(z))j+

cos
( 1

3π
ϕ(z)a) cos(ϕ(z))k + cos

( 1
2π

ϕ(z)a) sin(ϕ(z))l
)

.

(5.11)

An approximate mathematical model is given for a = 1. A unit speed
parametrization is chosen. Again, the same curve length approximation as
for the 2:1 and 3:1 mapping can be used (with η = 0.16).

Channel power: The channel pdf and its variance can be found from
Appendix D. Substituting M = 4 in (D.10) gives the variance of the channel
signal

σ2
y =

24(π2ζσ2
x)2

∆4 . (5.12)

Channel distortion: Using a unit speed parametrization, (2.45) deter-
mines the channel distortion substituting M = 4 and N = 1

ε̄2
ch =

σ2
n

3
α2 =

σ2
nσ2

y

4P
=

6(σnσ2
x π2η)2

∆2P
. (5.13)
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FIGURE 5.5: Performance of 4:1 dimension reducing systems. (a) Com-
parison between the theoretical model and simulation. (b) Comparison
between different 4:1 systems.
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Approximation distortion: As for the 3:1 case this contribution can not
be found analytically. The approximation will, as for the 3:1 case, be a func-
tion of both ∆ and σx. A similar procedure as in section 5.1.1 gives (for
σx = 1)

ε̄2
a = β4:1∆

7
10 , (5.14)

where β = 0.4061. The total distortion is given by

Dt = β4:1∆
7
10 +

6(σnπ2η)2

∆2P
, σx = 1. (5.15)

Differentiating (5.15) with respect to ∆, equating to zero and solving with
respect to ∆ gives

∆opt =
(

120(σnπ2η)2

7β4:1P

) 10
27

=
(

120(ηπ2)2

7β4:1CSNR

) 10
27

, σx = 1. (5.16)

The comparison between the above theoretical model and simulations of
the real system is shown in Figure 5.5(a). As one can see there is quite
a good correspondence between the theoretical model and simulations at
high CSNR (above 30 dB). At lower CSNR the results starts to differ (for
the same reasons as for the 3:1 system).

In Figure 5.5(b) several 4:1 systems are compared. One can observe
that increasing a makes the system of equation (5.10) and (5.11) perform
slightly better for a certain range of CSNR values, but then much worse
for other ranges (in both cases an approximate unit speed parametrization
is used). Further one can observe that the PCCOVQ system significantly
outperforms all the systems based on fixed curves.

5.1.3 3:2 Mapping.

In this section a surface (2D) will be used to try to cover a ball like region in
R3. Since no known method (at least to the authors knowledge) for finding
the equations of a surface which is optimally “wrapped” inside a spherical
region of space exists (minimizing the approximation distortion with the
“smallest” surface possible), a known surface will be analyzed. The ana-
lysis done will reveal some of the difficulties that show up going from one
to two parameters in the SK-mapping. This will give some indications on
guidelines for finding equations for optimally wrapped surfaces. Further,
it might be possible to generalize these concepts to N parameters (dimen-
sions).

The block diagram for the system under consideration is given in Fig-
ure 5.1 substituting M = 3 and N = 2. The structure chosen for S is a
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FIGURE 5.6: 3:2 dimension reducing mapping shown in the source
space. The structure corresponds to equation 5.17 where ∆1 = ∆2 = 1,
α1 = α2 = 1, and z1, z2 ∈ [−π, π].

Helicoid, also known as Archimedes’ screw and is shown in Figure 5.6. The
Helicoid has the parametric equation (with the channel signal as parame-
ters)

S(z1, z2) =
∆1α1

π
z1 cos(α2z2)i +

∆1α1

π
z1 sin(α2z2)j +

∆2α2

π
z2k. (5.17)

where ∆2 is corresponding to the distance between two “folds” of the sur-
face (at some distance from the x3 axis), i.e. it has the somewhat same role
as ∆ for the 2:1 mapping in section 4.1. ∆1 is determining the size of the
“radius” of the surface in the x1x2-plane (see Figure 5.6 from the ”top”).
To obtain a symmetric channel signal both positive and negative parame-
ter values are used ((z1, z2) = (0, 0) corresponds to the origin in R3). The
source vectors x is projected onto the Helicoid. The point (y1, y2) corre-
sponding to the point on the Helicoid represents the two channel signals.
The channel signal is further scaled by 1/α1 and α2 to satisfy a given power
constraint (giving rise to the pair (z1, z2)).
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In the following a mathematical model for the distortion using the map-
ping in (5.17) as a 3:2 mapping will be found. Further, an optimization of
the derived mathematical model is done and compared to a 3:2 PCCOVQ
system. At the end the difficulties showing up going from one to two vari-
able SK-mappings will be shortly addressed, and some guidelines for find-
ing the correct parametric equations will be given.

Channel distortion: The channel distortion is derived in Appendix E,
and is given by

ε̄2
ch =

σ2
n

3π2 ((∆2α2)2 + (∆1α1)2(1 + α2
2σ2

z1
)). (5.18)

From (5.18) one can observe that the channel distortion will increase lin-
early with the power on channel one (σ2

z1
). This can also be seen from the

metric component g22 derived in Appendix E

g22 =
(

∆1α1α2

π

)2

z2
1 +

(
∆2α2

π

)2

. (5.19)

One can observe that the length of the velocity vector along the z2 direction
is dependent on z1. Trying to compensate for the dependence in one direc-
tion, will affect the other and vice versa, as will be demonstrated at the end
of this section.

Channel power: The channel power can be found by considering equa-
tion (5.17) and Figure 5.6. The derivation is done leaving out the scaling
factors α1 and α2 (can be included at the end), so the statistics of the chan-
nel signals y1 and y2 are considered. Looking at the Helicoid from above
(z3 direction), one can see a disc in the x1x2 plane. The radius of this disc is
given by ρ = (∆1/π)y1 (the “rotated straight lines”), while y2 traces out all
angles (the “parallel helices”). Thus y1 is given by the function

y1 = ± π

∆1

√
x2

1 + x2
2. (5.20)

According to [Papoulis and Pillai, 2002, p.190], mapping by this function
of two Gaussian random variables, gives a Rayleigh distribution. But due
to the ± sign a zero mean “double Rayleigh” distribution shows up in this
case

fy1(y1) =
1
2

∆2
1|y1|

π2σ2
x

e
− ∆2

1y2
1

2π2σ2
x . (5.21)

To get the constants right, one has to use the fact that the random variable
h(y) = cy has the distribution fh(h) = (1/|c|) fy(h/c) [Papoulis and Pillai,
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2002, p.131]. Further in [Papoulis and Pillai, 2002, p 148] it is shown that
the second moment of the Rayleigh distribution (y/υ2)e−y2/(2υ2) is E{y2} =
2υ2, and so the signal variance on channel one is given by

σ2
y1

= 2
(

σxπ

∆1

)2

(5.22)

The other parameter, y2, will trace out parallel helices with ”radius” given
by (5.20). Consider first that y1 = 0. Then y2 will lie on the x3 axis and have
a Gaussian distribution since y2 and x3 have a linear relation. Since for this
case x3 = (∆2/π)y2 the variance of y2 will be

σ2
y2 |y1=0

=
(

πσx

∆2

)2

. (5.23)

Considering other cases (y1 6= 0) it seems like the variance (and the pdf)
stays almost the same and independent of the value of y1. Although y2 will
be on a helix, it seems to trace out all of z3 in the same (linear) way. The
little discrepancy from (5.23) seem to be more or less constant and equal to
1/2 except when ∆2 is very close to zero (a case which is of no interest), so
that

σ2
y2

=
(

πσx

∆2

)2

+
1
2

(5.24)

Taking the scaling into account, the total channel power become (per chan-
nel dimension)

P =
1
2

(
σ2

y1

α2
1

+
σ2

y2

α2
2

)
=

1
2
(σ2

z1
+ σ2

z2
) (5.25)

Approximation distortion: As for the other dimension reducing map-
pings considered in this chapter the approximation distortion seems diffi-
cult (if at all possible) to find analytically. So again a numerical model is
used. The approximation distortion is nearly independent of ∆1, and so
only ∆2 determines the size of the approximation distortion. A model that
seems to coincide well is (for σx = 1)

ε̄2
a ≈ β∆3

2 + γ∆2
2 + ϑ∆2

= −0.0036∆3
2 + 0.024∆2

2 + 0.0056∆2, ∆2 ∈ [0, 3], σx = 1,
(5.26)

found by the previously used nonlinear curve fitting algorithm.
Optimization of the Helicoid system: This procedure is done assum-

ing σx = 1. To find the optimal performance of the Helicoid system, one
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FIGURE 5.7: Performance of a 3:2 dimension reducing system. (a) Com-
parison between the theoretical model and a simulation. (b) Comparison
between the optimized Helicoid mapping a PCCOVQ and a linear sys-
tem.
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need to optimize it over ∆1, ∆2, α1 and α2 given a channel power constraint.
The Lagrangian of this problem is

L(∆1, ∆2, α1, α2, λ) = ε̄2
a(∆2) + ε̄2

ch(∆1, ∆2, α1, α2)− λct(∆1, ∆2, α1, α2),
(5.27)

where the constraint is

ct(∆1, ∆2, α1, α2) = Pmax − P(∆1, ∆2, α1, α2) ≥ 0. (5.28)

Pmax is the maximum allowed power per channel and P(∆1, ∆2, α1, α2) is
given by (5.25). The first order necessary conditions for a minimum is given
by the the Karush-Kuhn-Tucker (KKT) equations [Nocedal and Wright, 1999,
p.328]. One of the criterion that has to be satisfied to be in a KKT point (po-
tential minimum) is

∇∆1∆2α1α2L(∆1, ∆2, α1, α2, λ) = 0 (5.29)

Solving (5.29) analytically is impossible since it contains an equation of
high order, having no algebraic solution. Therefore numerical optimization
has to be used (optimization toolbox in Matlab). Using nonlinear curve-
fitting on the results of the optimization to the following functions

∆1(CSNRdB) = α1(CSNRdB) =
β∆1CSNR2

dB + γ∆1CSNRdB + ϑ∆1
4
√

Pmax

∆2(CSNRdB) = β∆2 e−(γ∆2

√
CSNRdB+ϑ∆2 CSNRdB)

α2(CSNRdB) =
βα2CSNR3

dB + γα2CSNR2
dB + ϑα2CSNRdB + ια2√

Pmax

(5.30)

gives the coefficients β∆1 = 5.253 · 10−4, γ∆1 = 4.733 · 10−3, ϑ∆1 = 2.165,
β∆2 = 6.559, γ∆2 = 0.1255, ϑ∆2 = 5.530 · 10−2, βα2 = 1.542 · 10−4, γα2 =
−5.359 · 10−3, ϑα2 = 0.1381 and ι∆2 = 0.3402. These functions with their
given constants are valid for all values Pmax and σx = 1 in the range CSNRdB ∈
[5, 40] dB and coincides well to the actual results. Figure 5.7(a) shows the
comparison between the theoretical model given above and a simulation.
One can observe that the performance of the theoretical model and the sim-
ulation coincide quite well (the functions in (5.30)). Figure 5.7(b) shows the
performance of the optimized Helicoid system compared to a PCCOVQ
system. Again the PCCOVQ system outperforms the proposed system (the
reason why the PCCOVQ system declines is probably that only 4096 cen-
troid are used, which is too small a number for representing a 2D space at
high CSNR). The reason is probably the same as discussed earlier in this
chapter (section 5.1.1).
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Further comments: As mentioned in section 4.1, one can make the chan-
nel distortion independent of the channel signal variance by using a unit
speed parametrization considering curves. According to appendix A.3. this
could be done for any continuous curve. A problem shows up trying to do
the same thing for surfaces. Assume that z1 is mapped through the function
ϕ(z1) before mapping onto the Helicoid. Then g22 becomes (α1 = α2 = 1
for simplicity)

g22 =
∆2

2 + ∆2
1z2

1
π2ϕ2(z1)

. (5.31)

Choosing ϕ(z1) =
√

∆2
2 + ∆2

1z2
1/π then g22 = 1. But now g11 will become

(putting ∆1 = ∆2 = 1 for simplicity)

g11 =
z4

1 + (z1z2)2 + 2z2
1 + 1

(1 + z2
1)2π2

(5.32)

Figure 5.8 show (5.32). This is worse than what was initially the case (linear
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FIGURE 5.8: The first diagonal component of the metric tensor
g11(z1, z2) for the Helicoid after a unit speed transformation of z2.

increase of g22 as a function of z2
1 given in (5.19)), since now, if the ampli-

tudes on channel two is relatively large, the noise on channel one will be
scaled the most for the most probable channel symbols on channel one, giv-
ing a large average distortion after decoding. This interdependence prob-
lem will show up in general using parametric surfaces (or for that matter
hyper surfaces) for communication. One can get around this by construct-
ing (or for that matter find) a surface which has either a constant metric
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tensor for all z1 and z2, i.e.

G =
[

κ1 0
0 κ2

]
(5.33)

(where κ1 = κ2 for an i.i.d. channel signal) or where g11(z1) is a function of
z1 and g22(z2) is a function of z2 only. These criteria will also be valid for
an N dimensional SK-mapping.

5.2 Expanding 2:3 mapping

In this section a 2:3 mapping is introduced. The chosen mapping is a gen-
eralization of the Hybrid Scalar Qunatizer Linear Coder (HSQLC) which
was proposed in Coward and Ramstad [2000], and is named Hybrid Vector
Quantizer Linear Coders, referred to in the following as HVQLC. The system
is shown in Figure. 5.9, where i are the VQ indices, e1 and e2 the two error
components from the quantization and α1 and α2 scaling factors to

1n

Spiral
VQ

1x

2x 1αi

2α

2α1e
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2z

3z

+

+

+

1x̂

2x̂

1/1 α î

1̂e

2ê

Decode

+

+

2n

3n

2/1 α

2/1 α

FIGURE 5.9: The HVQLC block diagram.

satisfy a given channel power constraint. To make the VQ code-book more
easily adaptable to varying CSNR, the centroids are placed on Archimedes’
spirals. A unit speed parametrization (see appendix A.3) is chosen so that
all centroids are equidistant. The distance between both the spiral arms and
the centroids along the arms are chosen to be equal to ∆, so a uniform VQ
structure on a disc shows up. Figure 5.10(a) show the VQ structure. Notice
that the cells are somewhat different from an ordinary uniform 2D vector
quantizer. The VQ indices are scaled by α1 and transmitted on channel 1,
while the two scaled (by α2) error components will be transmitted on chan-
nel 2 and 3. Figure 5.10(b) shows the simulated structure of the HVQLC
mapping on the channel.
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FIGURE 5.10: The HVQLC 2:3 mapping. (a) The Spiral VQ. (b) The
channel representation (α1 = 1).

At high CSNR an approximate mathematical model can be made, based
on the theory in section 2.2, which further can be used to find the optimal
parameters ∆, α1 and α2 as a function of the CSNR.

Weak noise distortion: The weak noise distortion can be found from
(2.16), since the HVQLC system is a shape preserving mapping (“cutting”
the source space is irrelevant to the weak noise distortion). The only con-
tributions to the weak noise distortion comes from the distortion of the two
error components, so

ε̄2
wn =

σ2
n

α2
2

. (5.34)

Anomalous distortion: The anomalous distortion can easily be calcu-
lated. Since the VQ indices are scaled by α1, the distance between each
plane in Figure 5.10(b) is α1 and so the error probability will be the same as
for the 1:2 mapping given in (4.12) substituting α1 for ∆. The error made
when the anomalous errors first occur is ∆, since the distance to the nearest
neighbor(s) for a given centroid is always ∆. The anomalous distortion is
given by

ε̄2
th =

∆2

2

(
1− erf

(
α1

2
√

2σn

))
. (5.35)

Channel power: The channel power can be found approximately af-
ter making some simplifications. First, since the centroids are placed on
the Archimedes’ spiral in an equidistant manner, the pdf of the signal on
channel one (z1) will have a “discrete Laplacian like” distribution at high
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CSNR. Although the distribution is discrete, its variance can be approx-
imated quite well by the variance of a Laplacian distribution (somewhat
the same case as in section 4.1). The power on channel one can therefor be
approximated by (4.4) scaled by α2

1

σ2
z1

= 2α2
1

(
2ζ

π2

∆2 σ2
x

)2

. (5.36)

Also here ζ = 0.16∆. Due to the discretization of the spiral, this variance
will always be a bit smaller than the real power, but the higher the CSNR
the better they coincide. Second, assuming that the spiral is dense (again
at high CSNR), each of the error components (e1 and e2) are approximately
uniformly distributed, limited by ∆/2. So the power on channel two and
three can be approximated by (2.47) substituting m = 1 and taking the
scaling α2 into account

σ2
z2

= σ2
z3

=
α2

2∆2

12
, (5.37)

which coincides well at high CSNR. The total channel power is

P =
2
3

((
2α1η

π2

∆
σ2

x

)2

+
α2

2∆2

12

)
, (5.38)

Optimization of the HVQLC To find the optimal performance of the
HVQLC, it must be optimized over ∆, α1 and α2. The Lagrangian for this
problem is

L(∆, α1, α2, λ) = ε̄2
wn(α2) + ε̄2

th(∆, α1)− λct(∆, α1, α2) (5.39)

where the constraining function is

ct(∆, α1, α2) = Pmax − P(∆, α1, α2) ≥ 0 (5.40)

Pmax is the maximum allowed power per channel and P(∆, α1, α2) is given
in (5.38). As mentioned in section 5.1.3 the KKT conditions [Nocedal and
Wright, 1999, p.328] must be satisfied at a potential minimum. One of these
conditions are

∇∆α1α2L(∆, α1, α2, λ) = 0 (5.41)

To be able to solve this problem analytically, the roots of the above gradient
must be found. But since it contains the error function, this can not be done
analytically. Therefore numerical optimization is used (optimization tool-
box in Matlab), and nonlinear curve-fitting is used to find the optimal ∆, α1
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and α2 as a function of the CSNR based on the result of the optimization.
Doing curve fitting to the following functions

∆(CSNRdB) = σxβ∆e−(γ∆CSNR2
dB+ϑ∆CSNRdB)

α1(CSNRdB) =
√

Pmaxβα1 e−(γα1

√
CSNRdB+ϑα1 CSNRdB)

α2(CSNRdB) =
√

Pmax

σx
βα2 e(γα2 CSNR2

dB+ϑα2 CSNRdB).

(5.42)

gives the following coefficients: β∆ = 4.567, γ∆ = 1.352 · 10−4, ϑ∆ =
4.293 · 10−2, βα1 = 2.978, γα1 = −0.2796, ϑα1 = 0.1299, βα2 = 0.7245,
γα2 = 9.091 · 10−5 and ϑα2 = 4.562 · 10−2. These functions with their
given constants are valid for all values of both Pmax and σx in the range
CSNRdB ∈ [5, 60] dB and coincide well with the actual functions. The per-
formance (robustness plot) of the optimized HVQLC system is shown in
Figure 5.11. The functions given in (5.42) are used to find the optimal para-
meters for both the calculated and simulated system. The theoretical model
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FIGURE 5.11: Comparison between simulated and calculated perfor-
mance of the HVQLC system and BPAM.
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coincides very well with simulations at high CSNR, wile there is a signifi-
cant difference at low CSNR, something that was expected. The reason for
the difference between the theoretical and simulated results in the horizon-
tal direction (CSNR) is probably that the power determined by the theo-
retical model is smaller than the real power (noticeably so at low CSNR).
The reason for the difference in the vertical direction (SDR) is that it is as-
sumed that the two error components are equal and uniformly distributed.
This does not coincide with reality if most of the probability mass of the
source is close to the origin of the spiral. At low CSNR, therefore, it will
probably be suboptimal to have equal scaling of the two error components.
Further, at low CSNR, a Wiener like scaling factor at the receiver is more
beneficial than just the inverse of the scaling at the transmitter (but by intro-
ducing such a factor, the mathematical analysis become significantly more
difficult). For fixed parameters (a given curve) one can also observe a dis-
crepancy between the calculated and simulated performance far from the
optimal point for decreasing CSNR. The reason for this is that in calculating
the anomalous distortion only mapping to the nearest neighboring planes
was considered.

One can observe that the HVQLC system has quite good performance
above 20dB CSNR, where it is in the range of 5dB from OPTA. Below 15dB
however, BPAM will outperform the proposed system (simulated), and so,
it is no point in using the HVQLC below this CSNR (BPAM is anyhow quite
close to OPTA below 15dB CSNR).

5.3 Discussion

In this chapter several SK-mappings has been introduced. The proposed
reducing mappings do not perform as well as the PCCOVQ system, mean-
ing that there is something more to gain when constructing them. The
main reason for the loss using curves (3:1 and 4:1 case) seems to a be non-
optimal source-space filling. It might also be possible to gain something
in these cases by finding the optimal ϕ (no known method for the dimen-
sion reduction case exists). In the 3:2 case the problem seems to be the
dependence on both channel parameters in the metric components of the
parametric surface. It might be that all of these problems can be avoided
if one could discover a differential equation determining the overall op-
timal structure (like a Variational calculus problem). Further, it might be
possible that some curve fitting or polynomial approximation can be used
to replicate the component functions (in each dimension) of the PCCOVQ
showing up when interpolating between the representation vectors/PAM
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symbols for a given CSNR.
Also a 2:3 HVQLC mapping was tested. This SK-mapping seem to

have quite good performance for high CSNR (no other known structure
to compare it with except for BPAM exists to the authors knowledge). At
CSNR below 15 dB however, the HVQLC performs worse than BPAM. The
HVQLC will perform better for lower CSNR by introducing some Wiener
factor like scaling at the receiver for the two error components, but the
mathematical analysis will become more difficult (since the theory intro-
duced assumes invertibility). To figure out the best possible performance
for the HVQLC system, the optimization that was done for the HSQLC
system in [Coward, 2001] should be generalized to the 2:3 case.
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Chapter 6

Conclusions, discussion and
Future research

‘Experience teaches only the teachable’

-Aldous Huxley

In this dissertation both theory and systems for compression and error
control of analog sources of information (amplitude continuous time dis-
crete) have been introduced and investigated. The case studied is Gaussian
memoryless sources communicated over a point-to-point link with reduced
possibilities for feedback (supports CSI at most). The systems studied are
called Shannon-Kotel’nikov (SK) mappings. The name SK-mapping comes
from the people who first suggested the use of such systems. Shannon and
Kotel’nikov independently suggested schemes using (piecewise) continu-
ous curves for communicating analog sources. Shannon (and for that sake
Kotel’nikov although the bounds in information theory were still to be dis-
covered at the time he proposed these schemes) argued that such schemes
might be the way to close in on what is optimal. Some of the advantages of
such systems are their robustness against varying channel conditions, that
they are delay free, and have seemingly good performance at low complex-
ity.

In this thesis the concept of SK-mappings, developed by V. A. Kotel’nikov
(for bandwidth expansion of scalar sources), has been generalized and ex-
tended to vector sources (using hyper surfaces) to be able to look at more
general dimension expanding mappings, and also make a theory on dimen-
sion reducing mappings. A mathematical framework for for calculating the
signal distortion using such mappings has been developed. The presented
theory has further been used to show that SK-mappings have the potential
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to reach OPTA by letting their dimensionality approach infinity. To reach
OPTA it seems like a “shape preserving uniform mapping” will do (for
both expansion and compression), something which is usually suboptimal
for finite dimensional systems. The theory presented does, unfortunately
not, yield the overall optimal geometry of the SK-mapping. Maybe the pre-
sented theory can be extended to some variational calculus problem giving
as solutions the optimal overall geometry.

The PCCOVQ algorithm probably gives close to optimal geometrical
structures in a numerical manner for a given dimension change factor, and
source and channel noise pdf’s. Well performing PCCOVQ mappings has
been found in the past [Fuldseth, 1997]. Some small modifications on the
PCOOVQ algorithm, done in this thesis, yield well performing dimension
expanding mappings for scalar sources as well (small expansion factors).
Examples on 1:2 and 1:3 PCCOVQ mappings are given. The complexity
in finding higher dimensional 1:N expanding PCCOVQs and also expan-
sion for vector sources, increases dramatically with the dimension due to
the number of representation vectors/PAM symbols involved. For the uni-
form PCCOVQ it might be possible to include a smaller number of rep-
resentation vectors/PAM symbols if some sort of method for doing noisy
channel relaxation could be found. This would probably also make it pos-
sible to make the example systems mentioned above perform better at high
CSNR (> 15− 20dB). For the nonuniform PCCOVQ (probably giving the
best possible result) it would be beneficial to find (if possible) a mathemati-
cal expression giving the optimal placing of the channel symbols given the
partitioning of the source space and the VQ coodebook. This would signif-
icantly speed up the algorithm, since one can avoid the use of numerical
optimization algorithms (which is slow for the objective function in ques-
tion).

Replicating the 2:1 and 1:2 PCCOVQ structure by Archimedean spirals,
gives well performing SK-mappings for both cases (preform on par with
the PCCOVQ). The 2:1 mapping is further used as a basis for generaliza-
tion to 3:1 and 4:1 mappings. These mappings have a reasonable good
performance: 1.5 − 2 dB from OPTA. But they are outperformed by the
PCCOVQ by approximately 1 dB. The reason for this is probably that the
PCCOVQ will place the representation vectors/PAM symbols in the best
possible manner in the spaces in question. The PCCOCQ mappings seem
to be too irregular to be replicated by one simple equation, but it might be
possible that some curve fitting or polynomial approximation can be used
to replicate the component functions (in each dimension) showing up when
interpolating between the representation values/PAM symbols for a given
CSNR. Although the PCCOVQ perform better than the SK-mappings, the
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advantage of using the proposed SK-mappings over PCCOVQ is that the
same structure can be used for all CSNR by merely changing coefficients in
their equations. Further a 3:2 system built on “Archimedes screw” (Heli-
coid) was tested. The performance of it was reasonably good for CSNR
< 15 dB. This example also shed light on some of the problems show-
ing up going from 1D to 2D structures. At last a 2:3 SK-mapping was
given, based on a generalization of the HSQLC system to vector quantiz-
ers, named HVQLC. The HVQLC has good performance for high CSNR
(> 15 dB): around 5 dB from OPTA (unfortunately no other reference sys-
tem than BPAM exists). It is also possible to make a simple approximate
mathematical model of it using the proposed theory of SK-mappings.

For all SK-mapping proposed in this thesis, approximate mathematical
models were given. Further, an optimization was done for all proposed
SK-mappings, determining the optimal coefficients in their equations as a
function of the CSNR, making them simple to adapt to varying channel
conditions.

It seem generally hard to find high dimensional SK-mappings (and PC-
COVQ mappings for that matter) due to the increased complexity of the
problem. But once a structure is found, however, these systems perform
quite well and are simple to adapt to varying channel conditions.

6.1 Contributions of this thesis

• A general theory for categorizing and calculating distortion using SK-
mappings are derived.

• It is shown that SK-mappings has the potential to reach OPTA.

• The PCCOVQ algorithm is modified to yield well performing dimen-
sion expansion for scalar sources.

• Concrete examples on 1:2 expanding and 2:1 reducing mappings are
given, using the Archimedean spiral for both cases.

• Some experiments on the proposed systems based on the Archimedean
spiral is given, and their robustness against pdf mismatch is analyzed
and discussed.

• Several example systems are developed: 3:1, 4:1 and 3:2 dimension
reducing systems and a 2:3 dimension expanding system is found
and analyzed.
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• All proposed systems are given a (approximate) mathematical model
using the proposed theory on SK-mappings. The mathematical mod-
els were optimized to yield the optimal coefficients for each mapping
as a function of CSNR.

• Analysis yielding the channel signal statistics for each example map-
ping is given.

6.2 Ideas to future research

• Extending (if possible) or finding a new theory giving the overall op-
timal geometry for SK-mappings given the dimension change factor
and the source and channel pdf’s. Maybe some variational calculus
problem could be formulated.

• The PCCOVQ algorithm should be generalized to M:N dimension
expanding mappings.

• Dimension expanding PCCOVQ: Noisy channel relaxation should be
incorporated in the uniform PCCOVQ algorithm. In the nonuniform
PCCOVQ a mathematical relation giving the optimal placing of the
channel symbols given the source partitioning and the codebook should
be found (if possible) to significantly speed up the algorithm.

• Find SK-mappings for other cases than Gaussian. The PCCOVQ al-
gorithm could also in these cases be used as a reference to determine
the optimal geometry.

• Figure out how sensitive the SK-mappings are to some practical as-
pects like non ideal carrier recovery, phase drift etc.

• Find general efficient ways to project vectors onto the SK-mappings,
and analyze their computational complexity in general.

• Find out how sensitive SK-mappings are to different noise phenom-
enon, eventually include such cases in the theory.

• Find a way to compare SK-mappings to traditional SSCC schemes, to
figure what one will gain/loose in using such systems

• Do curve fitting/find polynomials that can be used to replicate the
”component functions” of the PCCOVQ.
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Appendix A

Some necessary mathematical
results

A.1 The Metric Tensor

See [Spivak, 1999, pp.301-347] or [Dalarsson and Dalarsson, 2005, pp. 43-
53] for definition and more involved details.

Consider an imbedding of an M-manifold M given by the parametric
equation

S(x) = [S1(x), S2(x), · · · , SN(x)] (A.1)

where Si are component functions. The metric tensor for a smooth imbed-
ding of M in RN (M ≤ N) is given by:

G = JT J =




g11 g12 · · · g1M
g21 g22 · · · g2M
...

...
. . .

...
gM1 gM2 · · · gMM,


 (A.2)

where J is the Jacobian [Munkres, 1991, p.47] of M, given by

J =




∂s1
∂x1

∂s2
∂x1

· · · ∂sN
∂x1

∂s1
∂x2

∂s2
∂x2

· · · ∂sN
∂x2

...
...

. . .
...

∂s1
∂xM

∂s2
∂xM

· · · ∂sN
∂xM




T

(A.3)

The metric tensor G is symmetric and positive definite [Callahan, 2000, pp.
208-209]. gii can be interpreted as the squared length of the tangent vector
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in the direction of parameter xi, where xi is the i’th parameter in a para-
metric description of M. All “cross terms” gij, are the inner product of the
tangent vectors in the direction of xi and xj.

A.2 Hölders inequality

The following Lemma is taken from [Gasquet and Witomski, 1999]

Lemma Assume that f ∈ Lp(I) (| f |p is Lebesgue integrable on the interval I ∈ R)
and h ∈ Lq(I), where 1

p + 1
q = 1, then

∫

I
| f (t)h(t)|dt ≤ ‖ f ‖p‖h‖q (A.4)

Proof See[Gasquet and Witomski, 1999, p. 135-136]

A.3 Unit speed parametrization.

Assume a parametrization of a curve s(ϕ(x)). For every continuous para-
meter curve there exists a special ϕ that makes all tangent vectors along the
curve unit vectors.

Let s : x ∈ [a, b] ⊆ R → s(x) ∈ RN be a parametrization for the curve
C. Let `(x) denote the curve length function of s given by

`(x) =
∫ x

a
‖s′(q)‖dq (A.5)

and ϕ denote its inverse.

Theorem Let y(`) be a curve length parametrization of C. Then y(`) and s(ϕ(x))
will have the same image, and ‖y′(`)‖ = ‖s′(ϕ(`))‖ ≡ 1, ∀`.

Proof See[Callahan, 2000, pp. 115-116].
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Appendix B

Derivation of the weak noise
distortion

Here it is shown that

1
M

E{(G−1 JTn)T(G−1 JTn)} =
σ2

n
M

M

∑
i=1

1
gii

, (B.1)

gives the smallest possible weak noise distortion. G and J are described in
Appendix A.1. To simplify the analysis (so the general matrix multiplica-
tions can be avoided) the N-dimensional noise vector n is replaced, with-
out loss of generality, by its M dimensional projection nP, which will also
be Gaussian (since Pproj is a linear transformation [Strang, 1986, p.117]). Let
J = J(x0). Further it is assume that an hypothetical inverse B = J−1 exists
(which is also the case when the analysis is restricted to the M dimensional
tangent space). Let St denote the tangent hyper plane of S at x0. Further,
let the inverse of S be denoted S−1. Considering weak noise, the linear ap-
proximation of S−1 can be considered. Taking all the above into account,
the received vector will be given by

x̂ = S−1(St(x0) + nP) ≈ S−1(St(x0)) + BnP = x0 + BnP, (B.2)

and so, the MSE given that x0 was transmitted is

ε2
wn =

1
M

E{nT
PBTBnP} =

1
M

M

∑
i=1

M

∑
j=1

bT
i bjE{ninj}, (B.3)

where bi is column vector no. i in B. Since the noise is considered i.i.d. each
component of nP is independent, so E{ninj} = σ2

nδij and (B.3) is reduced to
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ε2
wn =

1
M

E{nT
PBTBnP} =

σ2
n

M

M

∑
i=1

bT
i bi =

σ2
n

M

M

∑
i=1
‖bi‖2 (B.4)

Since B = J−1, and it is well known that a matrix with orthogonal columns
has an inverse (if it exists), the above result tells us that there is nothing
to gain by choosing a nonorthogonal basis in the tangent space of S , so
the basis can always be chosen orthogonal. This simplifies both the ana-
lysis and the system itself. Making the Jacobian orthogonal will make the
metric tensor diagonal. Therefore G−1 is also diagonal with diagonal ele-
ments 1/gii. Now consider B.1 again. Using the fact that G−2 is diagonal,
E{ninj} = σ2

nδij and with (B.4) in mind one can easily derive the following

ε̄2
wn =

1
M

E{(G−1 JTn)T(G−1 JTn)}

=
1
M

E{(JTn)TG−2(JTn)} =
σ2

n
M

M

∑
i=1

1
g2

ii
‖Ji‖2

=
σ2

n
M

M

∑
i=1

1
gii

,

(B.5)

where Ji is column vector no. i of J and ‖Ji‖2 ≡ gii.
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Appendix C

Derivation of the uniform
spherical distribution and the
approximation distortion lower
bound

A uniform spherical distribution can be found by integrating a constant
over a spherical region of Rm and equating it to one. It is most convenient
to do the integration in generalized spherical coordinates [Richter, 2007]

∫ π

0
· · ·

∫ π

0

∫ 2π

0

∫ ∆/2

0
κρm−1

m−1

∏
k=1

sin(θk)m−1−kdρdθk = 1. (C.1)

This integral equals the volume of an m-sphere with radius ∆/2 scaled by
the constant κ

V∫ = κ





π
m
2(

m
2

)
!

( ∆
2

)m , m even

2mπ
m−1

2
(

m−1
2

)
!

m!

( ∆
2

)m , m odd

Using the relation Γ(n + 1) = n! [Bateman, 1953, p.3] for the Gamma func-
tion, then for even m

Veven =
π

m
2 ∆m

2m m
2

( m
2 − 1

)
!
=

π
m
2 ∆m

2m−1mΓ
( m

2

) (C.2)
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DISTORTION LOWER BOUND

For odd m, things get more involved. Legendre’s duplication formula [Bate-
man, 1953, p.5] must be used

Γ(2n) = (2π)−
1
2 22n− 1

2 Γ(n)Γ
(
n +

1
2
)

(C.3)

then
Γ(n)

Γ(2n)
=

(2π)
1
2

22n− 1
2 Γ

(
n + 1

2

) (C.4)

and so

Vodd =
2mπ

m−1
2

m(m− 1)(m− 2)!

(
m− 1

2

)(
m− 3

2

)
! =

2mπ
m−1

2

2m
Γ
( m−1

2

)

Γ(m− 1)

=
2mπ

m−1
2

2m
1

2(m−1)− 1
2 Γ

(
m−1

2 + (2π)
1
2

2

) =
π

m
2 ∆m

2m−1mΓ
( m

2

)
(C.5)

This implies that the pdf of the approximation distortion (uniform spherical
distribution) is given by

fρ,Θ(ρ, Θ) =

{
m2m−1

π
m
2 ∆m

Γ
( m

2

)
, ρ ∈ [0, ∆/2], ∀θi

0 elsewhere
(C.6)

Assuming a uniform source and equal distance between each neighbour-
ing cell and one centroid at the origin, the approximation distortion can be
found by

ε̄2
a =

∫ π

0
· · ·

∫ π

0

∫ 2π

0

∫ ∆/2

0
ρ2 fρ,Θ(ρ, Θ)ρm−1

m−1

∏
k=1

sin(θk)m−1−kdρdθk (C.7)

The innermost integral in (C.1) is

κ
∫ ∆/2

0
ρm−1dr =

1
m

(
∆
2

)m

(C.8)

and so (the contributions from the other integrals will cancel out with fρ,Θ)

ε̄2
a =

1
m

(
∆
2

)m ∫ ∆/2

0
ρ2 fρ,Θ(ρ, Θ)ρm−1dρ =

1
m

(
∆
2

)m 1
m + 2

(
∆
2

)m+2

=
m

4(m + 2)
∆2

(C.9)
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Appendix D

Channel symbol distributions
for M:1 mappings

In this appendix the channel symbol distribution that shows up when using
M:1 mappings with unit speed parametrization (proposed in this thesis) is
derived. Since all the compressive mappings based on parametric curves
found in this thesis seems to have a curve-length function that can be ap-
proximated by the same parabola, a common procedure can be used to find
their channel pdf and variance.

Assuming that the given parametric curve is so dense (small ∆) that one
can disregard the approximation operation in the calculations, the whole
M:1 mapping operation can be seen as a mapping h : RM → R. All the
parametric curves used for dimension reduction in this thesis seem to have
a curve-length function that can be approximated by the second degree
function `(ρ) = ±ζ(π/∆)2ρ2. The domain of consideration is a ball in RM.
The channel signal y is given by

Y = h(X1, X2, · · · , XM) = ±ζ
π2

∆2 (X2
1 + X2

2 + · · ·+ X2
M). (D.1)

The resulting cumulative distribution of y can be found by a generalization
of [Papoulis and Pillai, 2002, pp.180-181]

Fy(y) = pr{Y ≤ y} = pr{(X1, · · · , XM) ∈ D+
Y ∪D−

Y }
=

∫∫
· · ·

∫

D+
Y ∪D−Y

fX1···XM(x1, · · · , xM)dx1 · · ·dxM,
(D.2)

where

fX1···XM(x1, · · · , xM) =
1

(2π)
M
2 σM

x

e
− x2

1+···+x2
M

2σ2
x (D.3)
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is the joint Gaussian distribution and

D+
Y =

{
(x1, · · · , xM)

∣∣x2
1 + · · ·+ x2

M ≤ ∆2y
ζπ2 , y ≥ 0

}
,

D−
Y =

{
(x1, · · · , x2)

∣∣x2
1 + · · ·+ x2

M ≥ −∆2y
ζπ2 , y < 0

}
.

(D.4)

The pdf can be found by differentiating (D.2) with respect to y. The sim-
plest is to consider only the positive domain in (D.4) then use the fact that
the channel pdf will be symmetric about the origin. Further, since the do-
main in consideration is spherically symmetric, it is convenient to do the
integration in generalized spherical coordinates [Richter, 2007]

fy(y) =
1
2

d
dy

∫ π

0
· · ·

∫ π

0

∫ 2π

0

∫ ∆
√

y
π
√

ζ

0
fρ(ρ)ρM−1

M−1

∏
k=1

sin(θk)M−1−kdρdθk

(D.5)

From Appendix C one can observe that the integral over all θi is

IΘ =
π

M
2

2Γ
( M

2

) . (D.6)

Further
d

dy

∫ C1
√

y

0
ρM−1e−

ρ2
C2 =

CM
1
2

y
M
2 −1e−

C2
1 y

C2 , (D.7)

where C1 = ∆/(π
√

ζ) and C2 = 2σ2
x . Using this and multiplying (D.6)

and (D.7) and further using absolute value (to make the pdf symmetric
around the origin) gives

fy(y) =
∆M|y|M

2 −1

2(
√

2ζπσx)MΓ
( M

2

) e
− ∆2 |y|

2π2ζσ2
x (D.8)

According to [Papoulis and Pillai, 2002, p.87] the gamma distribution has
the general form

fγ(x) =
1

Γ(c)bc xc−1e−
x
b u(x). (D.9)

This means that the M:1 channel symbol distribution in (D.8) is a “dou-
ble gamma distribution” where c = M/2 and b = (2π2ζσ2

x)/∆2. Further
in [Papoulis and Pillai, 2002, p.154], it is shown that the second moment
of of (D.9) is given by E{x2} = c(c + 1)b2, and so since (D.8) is a double
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gamma distribution with zero mean (second moment equal to second cen-
tral moment when the mean is zero), the variance of (D.8) is

σ2
y =

M(M + 2)(π2ζσ2
x)2

∆4 . (D.10)

(D.10) gives the channel power (before scaling) in the M:1 case using uni-
form structures with unit speed parametrization.
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Appendix E

Derivation of the Helicoid’s
channel distortion

In this appendix the channel distortion using the Helicoid as a 3:2 SK-
mapping is derived. The equation of the Helicoid is given by

S(z1, z2) =
∆1α1

π
z1 cos(α2z2)i +

∆1α1

π
z1 sin(α2z2)j +

∆2α2

π
z2k. (E.1)

To determine the channel distortion one will need the diagonal components
of the metric tensor of S

g11 =
∥∥∥∥

∂S
∂z1

∥∥∥∥
2

=
∥∥∥∥

∆1α1

π
cos (α2z2)i +

∆1α1

π
sin (α2z2)j + 0k

∥∥∥∥
2

=
(

∆1α1

π

)2

,

(E.2)

and

g22 =
∥∥∥∥

∂S
∂z2

∥∥∥∥
2

=
∥∥∥∥−

∆1α1

π
z1 sin (α2z2)α2i +

∆1α1

π
z1 cos (α2z2)α2j +

∆2α2

π
k
∥∥∥∥

2

=
(

∆1α1α2

π

)2

z2
1 +

(
∆2α2

π

)2

.

(E.3)
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The off diagonal elements can easily be shown to be 0 (using the derivatives
in (E.2) and (E.3))

g12 = g21 =
∂S
∂z1

∂S
∂z2

=

−
(

∆1α1

π

)2

α2z1 cos (α2z2) sin (α2z2) +
(

∆1α1

π

)2

α2z1 sin (α2z2) cos (α2z2)

= 0.
(E.4)

Using (2.44) with M = 3 and N = 2 and the two metric components in (E.2)
and (E.3), one can calculate the channel distortion

ε̄2
ch =

σ2
n

3

∫ ∞

−∞

∫ ∞

−∞

[(
∆1α1

π

)2

+
(

∆1α1α2

π

)2

z2
1 +

(
∆2α2

π

)2]
fz1,z2(z1, z2)dz1dz2

=
σ2

n
3

∫ ∞

−∞

[(
∆1α1

π

)2

+
(

∆1α1α2

π

)2

z2
1 +

(
∆2α2

π

)2] ∫ ∞

−∞
fz1,z2(z1, z2)dz2dz1

=
σ2

n
3π2

(
(∆1α1)2 + (∆2α2)2 + (∆1α1α2)2

∫ ∞

−∞
z2

1 fz1(z1)dz1

)

=
σ2

n
3π2 ((∆2α2)2 + (∆1α1)2(1 + α2

2σ2
z1

)).

(E.5)
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