
Knowledge Management in Medium-Sized Software
Consulting Companies

An investigation of Intranet-based Knowledge Management
Tools for Knowledge Cartography and Knowledge Reposito-
ries for Learning Software Organisations

Torgeir Dingsøyr

Knowledge Management in
Medium-Sized Software
Consulting Companies
An Investigation of Intranet-based Knowledge
Management Tools for Knowledge Cartography and
Knowledge Repositories for Learning Software
Organisations

Submitted for the Partial Fulfillment of the Requirements for the Degree
of Doktor Ingeniør

Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical
Engineering
Norwegian University of Science and Technology
January, 2002

©Unipub forlag and Torgeir Dingsøyr 2002

ISBN 82-7477-107-9

ISSN: 1502-1408

Information concerning this publication can be directed to:

Phone: +47 22 85 30 30

Fax: +47 22 85 30 39

E-mail: post@unipub.no

The book can also be purchased at www.gnist.no

Cover: Askim Grafix AS

Printed in Norway by: GCSM AS, Oslo 2002

Layout: Hanne Holmesland

All rights reserved. No part of this publication may be reproduced or

transmitted in any form or by any means, without permission.

Unipub forlag is a subsidiary company of Akademika AS, owned by

Studentsamskipnaden i Oslo

Abstract
Companies that develop software have a pressure from customers to
deliver better solutions, and to deliver solutions faster and cheaper. Many
researchers have worked with suggestions on how to improve the devel-
opment process; software process improvement. As software develop-
ment is a very knowledge intensive task, both researchers and industry
have recently turned their attention to knowledge management as a
means to improve software development. This often involves developing
technical tools, which many companies have spent resources on. But the
tools are often not used in practise by developers and managers in the
companies, and it is often unknown if the tools improve how knowledge
is managed.

In order to build efficient knowledge management tools, we need a bet-
ter understanding of how the tools that exist are applied and used in
software development.

We present and analyse eight case studies of knowledge management
initiatives from the literature. We found evidence of improved software
quality, reduced development costs and evidence of a better working
environment for developers as a result of these initiatives.

Further, we examine success criteria in knowledge management codifica-
tion initiatives, based on Intranet tools in medium-sized software com-
panies. We found four factors that we consider important: Having a
culture for sharing knowledge, having a stable focus on knowledge man-
agement, developing knowledge management tools incrementally, and
coupling knowledge management initiatives well to business goals. This
research was based on participation with software companies in im-
provement projects.

In addition, we investigate how knowledge management tools are used
for different purposes by different groups of users in two software con-
sulting companies. They use tools both as support for personalization
and codification strategies. The consulting companies are two medium-
sized Norwegian companies with 40 and 150 employees, which work in

development projects that lasts from a few weeks to several years. We
used semi-structured interviews with developers, project managers and
managers, examined logs of tool usage, and company-internal minutes
from development meetings, as well as handbooks, project plans and
annual reports.

The frequency of usage varied between the two companies: in one, most
employees used tools on a daily basis, whilst in the other, employees
used tools weekly. We find that tools for codification are in use for trans-
ferring knowledge from projects in order to solve technical problems, get
an overview of technical problem areas, avoiding rework in having to
explain many people about the same technical solution, improving the
employees' work situation by tips on better configuration of technical
tools, and also for finding who knows what in the organisation. The
tools for personalization are in use for searching for competence to solve
technical problems, resource allocation, finding projects and external
marketing, and for competence development. In all, we found a variety
of uses of a variety of tools by several groups of employees in a com-
pany.

«The maturation of the information technology revolution in the 1990s has
transformed the work process, introducing new forms of social and technical

division of labor.»

Manuel Castells in The Rise of the Network Society

Contents
Abstract

Contents

Acknowledgements

List of Figures

List of Tables

1 Introduction ..1

1.1 Problem Outline ...2

1.2 Claimed Contributions ..3

1.3 Chosen Research Strategy ...7

1.4 Research Context..9

1.5 Scope ..9

1.6 Structure of the Thesis ... 10

2 Software Development; Problems and Remedies ... 13

2.1 Software development .. 13

2.2 Problems in Software Engineering: Overruns and Unfulfilled
Requirements.. 15

2.3 Suggested Solutions: Is There A Silver Bullet? ... 17

2.4 Knowledge Management and Learning Organisations 23

2.5 Research Methods in Software Engineering ... 29

3 Knowledge Management ... 35

3.1 What is Knowledge? ... 35

3.2 Learning .. 37

3.3 What is Knowledge Management? ... 43

3.4 Case Studies of Knowledge Management in Software Engineering 57

4 Research Goals, Method and Design... 65

4.1 Research Goals .. 65

4.2 Research Process and Methods... 68

4.3 Validity Considerations... 76

4.4 Ethical considerations... 78

5 Empirical Investigation .. 81

5.1 Prestudy: Four Codification Initiatives .. 81

5.2 Main Study: Alpha and Beta .. 84

5.3 Usage of Knowledge Management Tools in Alpha and Beta 91

6 Discussion and Analysis .. 113

6.1 Knowledge Management Case Studies from the Literature 113

6.2 Success Factors in Codification Initiatives .. 117

6.3 Knowledge Transfer by Intranet-Tools ... 123

6.4 Comparison of the Different Studies... 131

6.5 Empirical Investigations in Relation to Theory.. 135

6.6 What is Special for Medium-Sized Companies? ... 136

7 Conclusion and Further Work ... 139

7.1 Conclusions from the Literature Study.. 139

7.2 Conclusions from the Prestudy... 140

7.3 Conclusions from the Main Study .. 142

7.4 Implications of our Findings ... 144

7.5 Evaluation... 144

7.6 Further Work ... 145

Appendix A Interview Guides ... 147

A.1 Questions for developers: .. 147

A.2 Questions for process owner for knowledge management: 149

A.3 Questions for management: ... 151

A.4 Questions for knowledge sharers of the month: .. 152

Appendix B: Processed Usage Logs.. 155

Index... 163

References.. 167

Acknowledgements
During the work on this thesis, I have benefited from a lot of communi-
cation with many people, who have provided inspiration and motivation.
First of all, I would like to thank my supervisor, Reidar Conradi, who has
commented on an enormous number of drafts through the last four
years. Also, thanks to present and former members of the software engi-
neering group at the Department of Computer and Information Science,
NTNU, for providing a good work environment: Elisabeth Bayegan,
Roxana Diaconescu, Monica Divitini, Ekaterina Prasolova-Førland,
Letizia Jaccheri, Jens-Otto Larsen, Øystein Nytrø, Tor Stålhane, Sivert
Sørumgård, Carl-Fredrik Sørensen, Marco Torchiano and Alf Inge
Wang.

Another source of inspiration has been the possibility to participate in
two research projects during my PhD work: The Software Process Im-
provement for Better Quality (SPIQ) and Process Improvement for IT-
industry (PROFIT) projects. I would like to thank participants from
Sintef Telecom and Informatics: Tore Dybå, Geir Kjetil Hanssen, Nils
Brede Moe and Kari Juul Wedde (now Clustra) as well as from the Uni-
versity of Oslo: Erik Arisholm, Dag Sjøberg, Magne Jørgensen and proj-
ect manager Tor Ulsund from Bravida Geomatikk. Thanks are also due
to the contact persons from companies that participated in these proj-
ects, which provided a pragmatic research environment that greatly in-
fluenced the focus of this PhD. I am also grateful to the Norwegian Re-
search Council who financed the PhD work.

A part of the work for the thesis was done as fieldwork in two compa-
nies, and I am deeply grateful to these companies and the contact per-
sons and the people I interviewed for their willingness to share experi-
ence about their knowledge management efforts.

During the last phase of the work, I was able to stay at the Fraunhofer
Institute for Experimental Software Engineering in Kaiserslautern, Ger-
many. Many people deserve thanks for both social and professional in-
clusion. It was especially nice to be able to work on the COIN Experi-
ence Factory project with Björn Decker and Markus Nick, which made
me see knowledge management from another perspective. And I am

very grateful to Klaus-Dieter Althoff for organising the stay, and also to
the rest of the Systematic Learning and Improvement group at the insti-
tute for numerous discussions.

Through the years that I have been working as a doctoral candidate, I
have benefited greatly from discussions with students that I have super-
vised in project and diploma work: Arne Bakkebø, Terje Nygaard, Bjør-
gulv O. Sandanger, Thies Schrader, Torkel Westgaard, Helge Jenssen and
Bjørn-Ovin Wivestad. In the early phase of thesis work, I also had many
discussions with Bent Ingebretsen, who had written his masters thesis in
this field.

There are also other people that I would like to thank for collaboration
during the thesis work: Emil Røyrvik on the Kunne project at Sintef
Technology Management for discussions and writings on skills manage-
ment. Trond Knudsen at Norsk Regnesentral for letting me present an
early version of research approach which provoked many new thoughts.
Petter Gottschalk at the Norwegian School of Management BI, for giv-
ing me an early version of his book on knowledge management which
directed me to new references. Also, I would like to thank Frank Maurer
at the University of Calgary and Mirjam Minor at Humboldt Universität
Berlin for organising guest lectures where some of the material in the
thesis was presented and discussed.

I am further grateful to the people who have commented on parts of the
thesis: Of course, Reidar Conradi as my supervisor, but also Stefan Biffl
at the Technical University of Vienna, Magne Jørgensen at the University
of Oslo, and Monica Divitini, Letizia Jaccheri, Roxana Diaconescu and
Alf Inge Wang at the Department of Computer and Information Science
at NTNU. I am also grateful to Terje Brasethvik at the Information Sys-
tems group at NTNU for a number of discussions on research topics
and comments on drafts. Also thanks to Gavin Gaudet for tips on how
to improve the oral English in the Empirical Investigations chapter. And
thanks to Preben Randhol for help with scripts to handle usage logs.

Finally, I would like to thank family and friends for inspiraton and en-
couragement, and especially Sissel for her patience.

Trondheim, January 21st
Torgeir Dingsøyr

List of Figures
Figure 1.1: The main contributions in this thesis, with references to thesis
chapters and published papers. ...5

Figure 2.1: Some factors that influence productivity and quality in software
development. ... 18

Figure 3.1: The Four Modes of Learning in Kolb's model.. 40

Figure 3.2: Conversion of knowledge according to Nonaka and Takeuchi. We
can imagine knowledge going through all conversion processes in a spiral form
as it develops in an organisation. ... 42

Figure 3.3: The Experience Factory as seen in the PERFECT Project....................... 45

Figure 3.4: A Model of the Components of a Knowledge Management System. 47

Figure 3.5: Types of Knowledge Management Tools or Architecture (Borghoff
and Pareschi). .. 54

Figure 4.1: Relationships between company culture to knowledge sharing,
properties of computer tools, attitudes of employees, and actual use of
knowledge management tools. Note that the arrows point both ways, indicating
a relation, not a one-way causal relationship.. 66

Figure 4.2: The Research Process that was used for this work..................................... 68

Figure 4.3: A Screenshot of N5 - a Tool for Analysis Non-Numerical Data............. 75

Figure 5.1: A manager at Alpha working in his office. Most of the employees sit
in offices like this, and around 20% work at a customers' offices................................ 86

Figure 5.2: An office room at Beta, where two people are working. Most of the
people work with software development work in an environment like this............... 89

Figure 5.3: We will use Tools, Usage Situations and User Groups to organise
our empirical material from Alpha and Beta.. 91

Figure 5.4: A Screen-shot from the front page of the Intranet at Alpha. 93

Figure 5.5: The Front Page of the Intranet at Beta... 94

Figure 5.6: Usage of the Front Page of the Intranet at Alpha over Time. 97

Figure 5.7: The front of the project guide - where you can choose a «phase»,
«product», «role» or «topic» view.. 98

Figure 5.8: The «Well of experience» (WoX) search interface for the knowledge
repository of «experience notes». ... 99

Figure 5.9: «I've been WoX'ing today, have you?». One of several posters
promoting the use of the WoX knowledge repository at Alpha. 100

Figure 5.10: The Usage of the Knowledge Repository and Library Tools over
Time.. 104

Figure 5.11: A list of «competence blocks» that is available in the competence
block manager. .. 105

Figure 5.12: An Example of a result after querying for competence on «object-
oriented development» in the Skills Manger. The names of people have been
removed. .. 106

Figure 5.13: The Usage of The Knowledge Cartography Tools over weeks............ 110

Figure 6.1: Usage of Knowledge Repository and Knowledge Cartography Tools
over Time... 124

List of Tables
Table 2.1: Validation Methods for Software Engineering (Modified from
(Zelkowitz and Wallace, 1998)) .. 29

Table 3.1: A Framework for Knowledge Management with Examples of Tools...... 53

Table 3.2: What Knowledge Management initiatives and approaches we found
in the literature .. 64

Table 6.1: A List of what Companies did, and what Knowledge Management
Approach they Chose. ... 115

Table 6.2: A List of Effects of Knowledge Management in the Companies............ 116

Table 6.3: Some Characteristics of the four Initiatives. ... 118

Table 6.4: Results of the Companies' Efforts in Codification Initiatives. 119

Table 6.5: Some Influential Factors for the Codification Initiatives.......................... 120

Table 6.6: List of Knowledge Repositories and Libraries at Alpha and Beta. 125

Table 6.7: Groups of Contributors and Users of Knowledge in the most used
Knowledge Repositories/Libraries.. 127

Table 6.8: List of Knowledge Cartography Tools at Alpha and Beta. 129

Table 6.9: What was done in Company One - Four, Alpha and Beta. 133

Table 6.10: The Effect of the Knowledge Management Initiatives in Companies
One - Four, Alpha and Beta. .. 134

1

1 Introduction
This thesis is about how Intranet-based Knowledge Management Tools
can be used to support what has been called a «Learning Software
Organisation». An Intranet-based tool is a software program that pro-
vides help for software developers. We will define what we mean by a
tool more precisely later.

Software development usually takes place in team-based projects where
the participants work towards a shared goal. Many companies have
problems with transferring what people learn in one project to other
projects in the same company. Knowledge Management is a set of
strategies and techniques to increase the transfer and use of different
types of knowledge in a company or organisation.

We find many knowledge management tools and methods in companies
and in the research literature, but most of the scientific work on tools is
concentrating on technology to build such tools; on the structure of
knowledge and technical work on retrieval mechanisms. Also, work on
knowledge management methods is usually describing an ideal way of
collecting and sharing knowledge, which is often difficult to reproduce in
practise. There is little work on how tools and methods for knowledge
management are actually applied in the software engineering domain.
Also, many tools that are introduced in companies are abandoned later.
This is often because they turned out not to be so useful as people
thought before they were introduced.

We think that we would be able to design better tools and methods, if
we knew more about how the existing tools are used - or why they are
not used.

In this thesis we discuss how companies can improve their knowledge
management by adjusting Intranet-based knowledge management tools,
and thus become more of a learning organisation. We will base this dis-
cussion on an examination of tools and initiatives that are used in me-
dium-sized companies that develop software. These medium-sized com-
panies are four case companies in a prestudy, and a main and a contrast

TORGEIR DINGSØYR

2

case in a main study - as well as reports of knowledge management tools
from the literature.

Now, we go on to define a problem outline for this thesis that will be
further narrowed later and state the main contributions of this thesis.
Then, we briefly state what main choices we have made for carrying out
research. Further, we narrow the scope of this work, and finally give an
overview of the structure of the thesis.

1.1 Problem Outline

In this thesis, we are interested in studying how tools for knowledge
management are used in medium-sized companies that develop software.
The specific tools are Intranet-based tools that companies have pro-
duced themselves. There are, however, many such tools, and we will only
be concerned with Knowledge Repository and Library, and Knowledge
Cartography Tools. We will introduce these types later. and argue why
these are particularly interesting to examine.

The type of companies where we have studied this phenomenon is in
medium-sized companies in Norway that develop software. By medium-
sized we will mean companies with from 50 to 500 employees.

Many knowledge management tools are in use in the software industry.
But there has been done little work on how these tools actually work in
practise. Also, many research prototypes for knowledge management
tools exist in the research literature. But not many of them has made it
into industrial practise.

We are then asking the following research question:

• How can Intranet-based knowledge management tools be used in
medium-sized software consulting companies to facilitate a
«learning software organisation»?

This research question will be further discussed and elaborated after we
have introduced more theory. We will also elaborate what we mean by a
«Learning Software Organisation».

INTRODUCTION

3

The critical reader might already now ask: But do these knowledge man-
agement tools help solve the problems that the software industry has
(which will be described in the next chapter)? The answer is: we are not
sure. But we think we need to know more about the tools in use, and
about how they are used before we can begin to answer the question of
whether they are solving problems or not, and of how cost-effective they
are.

But is it really any use in studying such tools? The technology is changing
so fast. When we have completed this study, the tools will be completely
different! Although we think that developing tools for knowledge man-
agement is a long process, and the ones we will study are by no means
«completed» - we still think it is important to study how they work, be-
fore moving on to something else. It has been claimed that it is a general
problem in software engineering, that we do not systematically study the
effect of technology and methods, before we jump on to newer tech-
nologies. We think it is a sound scientific task to analyse the impact of
«new» tools. Yet, we acknowledge that the results might be a bit «old»
when we finish.

Then, when we examine such tools, what is the relation between their
usage and the potential improvement of the productivity or quality of the
software that is developed? It is a long chain of events from the effects
of a knowledge management tool, to this knowledge being learned and
used by employees, which should then finally affect the quality of the
developed software or the productivity of the software development
team. We do not intend to show a causal relationship between these
factors, but we think a knowledge management tool is one of many fac-
tors in a good work environment that can stimulate learning, creativity,
and employee motivation, which will affect the quality of the output. But
we limit ourselves here to study how knowledge management tools can
be used, leaving more «hard measurements» for further work.

1.2 Claimed Contributions

The work in this thesis can be divided into four major phases, where we
claim to have some contributions in each, related to the field of studying
Learning Software Organisations by empirical methods. Some work in

TORGEIR DINGSØYR

4

the thesis has been published before, and we give references to these
papers for each phase:

• Literature study: We present literature on knowledge manage-
ment in software engineering, and have made a taxonomy of
knowledge management tools based on findings from the litera-
ture. We have also surveyed existing case studies of how knowl-
edge management tools are applied in companies that develop
software, and present, and discuss these approaches. This work
can be found in chapter 3 in the thesis, and in papers 1 and 8.

• Method for experience capture: We have contributed in develop-
ing a method to capture experience from completed software
projects though a group process: lightweight postmortem re-
views. This method is given as an example of experience capture
methods in chapter 3, and is described in further detail in papers
2, 5 and 6.

• Four cases studies on knowledge management in software engi-
neering companies: Here, we studied four companies that have
applied different knowledge management initiatives, and discuss
success factors. The cases are presented in chapter 5.1, and dis-
cussed in chapter 6. This analysis has also been published as pa-
per 4.

• Deep case study and a contrast case: We examine further what
kind of knowledge management tools that exist in two compa-
nies, and describe how different groups of users apply them. The
cases are presented in chapter 5.2 and 5.3, and are discussed in
chapter 6. Some of the work here on Skills Management has been
published in papers 3 and 10.

We have further published paper 7 as a first discussion on the selected
research topic and research questions in this thesis, that can be found in
chapter 4. Finally, paper 9 gives a further description of knowledge man-
agement tools than the ones that can be found in chapter 3.

INTRODUCTION

5

Figure 1.1: The main contributions in this thesis, with references to thesis chapters
and published papers.

The following are the papers that has been published or are undergoing a
publication process:

Journal articles

1. Dingsøyr, Torgeir, Conradi, Reidar: A Survey of Case Studies of
Knowledge Management in Software Engineering, submitted to Interna-
tional Journal of Software Engineering and Knowledge Engineering. A
previous version of this paper was published as paper 9.

Deep Case Study And Contrast Case
Chapter 5.2 and 5.3

Papers [3,10]

Four Case Studies
Chapter 5.1
Papers [4]

Literature Study

Method for Experience
Capture

Chapter 3
Papers [2,5,6]

Software Engineering Case
Studies

Chapter 3
Papers [1,8]

TORGEIR DINGSØYR

6

2. Birk, Andreas, Dingsøyr, Torgeir, Stålhane, Tor: Postmortem:
Never leave the project without it, submitted to IEEE Software, special
issue on knowledge management in software engineering.

3. Dingsøyr, Torgeir, Djarraya, Hans Karim, Røyrvik, Emil: Manag-
ing Hard Skills: Findings from Practical Tool Use in a Software Con-
sulting Company, submitted to IEEE Software, special issue on knowl-
edge management in software engineering.

Book chapter

4. Dingsøyr, Torgeir, Conradi, Reidar: Knowledge Management
Systems as a Feedback Mechanism in Software Development Processes:
A Search for Success Criteria, submitted as a chapter to a book on
Feedback and Evolution in the Software Process. A revised and
extended version of: Conradi, Reidar and Dingsøyr, Torgeir (2000)
Software experience bases: a consolidated evaluation and status report,
Second International Conference on Product Focused Software Process
Improvement, PROFES 2000, June 20-22, Oulu, Finland, Springer
Verlag, vol. 1840, pp. 391 - 406.

Conference papers

5. Dingsøyr, Torgeir, Moe, Nils Brede and Nytrø, Øystein (2001)
Augmenting Experience Reports with Lightweight Postmortem Reviews,
Third International Conference on Product Focused Software Process
Improvement, 10-13 September, Kaiserslautern, Germany, Springer
Verlag, Lecture Notes in Computer Science, vol. 2188, pp. 167 - 181.
Also published at the Norwegian Informatics Conference (NIK) 2001,
Tromsø.

6. Stålhane, Tor, Dingsøyr, Torgeir, Moe, Nils Brede and Hanssen,
Geir Kjetil (2001) Post Mortem - An Assessment of Two Approaches,
EuroSPI, 10-12 October, Limerick, Ireland.

Workshop papers

7. Dingsøyr, Torgeir (2000) Focus for planned research: Knowledge
Management for Software Process Improvement, The Ninth Nordic

INTRODUCTION

7

Workshop on Programming Environment Research, 28-30 May, Lille-
hammer, Norway.

8. Dingsøyr, Torgeir (2000) An evaluation of Research on Experi-
ence Factory, Workshop on Learning Software Organisations at the in-
ternational conference on Product-Focused Software Process Improve-
ment, Oulo, Finland, University of Oulu, VTT Electronics, Fraunhofer
IESE, pp. 55 - 66.

9. Dingsøyr, Torgeir (2000) An Analysis of Process Support in
Knowledge Management Tools for Software Engineering, Workshop on
Flexible Strategies for Maintaining Knowledge Containers,14th Euro-
pean Conference on Artificial Intelligence, 20-25. August, Berlin,
Germany, Humboldt-Universität zu Berlin, ECAI Workshop Notes, pp.
6 - 13.

10. Dingsøyr, Torgeir and Røyrvik, Emil (2001) Skills Management
as Knowledge Technology in a Software Consultancy Company,
Learning Software Organizations Workshop, 12 - 13 September, Kai-
serslautern, Germany, Springer Verlag, Lecture Notes in Computer
Science, vol. 2176, pp. 96-107.

1.3 Chosen Research Strategy

In researching the question outlined in section 1.1, we have chosen to
investigate it in a real environment. That is, to go into a real organisation,
and study tools in «vivo». We will discuss this further in the Research
Methods and Design chapter. The main reasons for choosing to study
real organisations, and doing case and field studies, are that:

• Many prototype knowledge management tools are already devel-
oped in research institutions, so the need for making more proto-
types is small.

• Few studies exist on how knowledge management tools are used
in software companies.

In software engineering, several environments have expressed the need
for a more empirical basis of software engineering, promoting what has
been called empirical software engineering.

TORGEIR DINGSØYR

8

In empirical software engineering, it is necessary to use different research
methods than normally applied in software engineering. This is because
we have no strict control of the environment. Also, in our case, there is
relatively little information to find about the usage of knowledge man-
agement systems in the research literature.

In studying organisations, we have used research methods that are com-
mon in social science, but not in technology-oriented disciplines such as
software engineering. A common problem when using such methods is
that: «technologists regard sociologists as, apparently, merely wishing to
observe and give an account of what they observe, with no interest nec-
essarily in this leading to social action». While on the other hand, «soci-
ologists regard technologists as simply wanting plans of action to make
their technology more ‘effective’» (Low et al., 1996). Here, we hope that
our proposed theory will be seen as a contribution to better understand
the tools, and then be useful for anyone wanting to improve the design
or usage of such tools later.

Much of the work in software engineering has been done in the spirit of
modernity; with a rational view that the problems at hand can be solved
if we just establish good enough work methods and tools. The search for
a silver bullet (which will be discussed further in the next chapter) is evi-
dence of such a view.

However, many people now have a more post-modern view of software
development. That is, it is futile to «solve problems» related to organiza-
tional, human and technological factors by say technology alone. Instead
of looking for a silver bullet, we can only hope to find a set of «weapons»
- that will help us to reduce the impact of some problems as they appear
to some people.

In fact, the whole idea of software «engineering» is questioned by some
environments (see an interesting discussion on the engineering metaphor
in (Bryant, 2000)). Engineering is often associated with words like «sci-
ence», «mathematics», as well as «practical methods». But we could also
see software development as a creative task (Glass, 1995), where for ex-
ample improvisation (Dybå, 2000) is more important than rigour.

In this thesis we will adopt a subjectivist, or postmodern view, that dif-
ferent people might have different goals, and they do not necessarily

INTRODUCTION

9

always act in a pre-planned or even rational manner. In studying how
people use knowledge management tools, we consider the software
practitioners (or «community of practise») to be the true, skilled, experts
to judge what kind of tools they find useful or not. Therefore, we have
opted for a research strategy with a close interaction with developers,
project managers and management in the field. We will discuss this fur-
ther in our chapter about research goals, method and design.

1.4 Research Context

The work which was performed in this thesis was a part of two larger
research projects on software process improvement (SPI) which in-
volved many Norwegian companies that develop software.

The Software Process Improvement for Better Quality (SPIQ) project
aimed to increase the competitiveness of 12 participating Norwegian
software companies, by creating an improvement environment in the
companies, and introducing ideas from an American context, like the
Experience Factory, and adopting it for small and medium-sized enter-
prises in Norway (Conradi, 1996). It also included pilot projects for im-
provement in companies, as well as discussion forums for issues related
to process improvement. Further, it contained dissemination activities
like conferences and the writing of a method handbook for process im-
provement in Norwegian (Dybå et al., 2000). This project lasted from
1997 to 1999.

This project was followed by the Process Improvement for IT industry
(PROFIT) project, which focused more on software process improve-
ment in companies with frequent changes in technology and market. Can
such companies benefit from the same improvement initiatives as more
stable organisations? This was one of the major questions in this project,
which is still ongoing, and involved eight companies from the start. This
project lasts from 2000 to 2002.

1.5 Scope

In this thesis, we are concerned with how Intranet-based tools are used
for knowledge management in medium-sized organisations that develop

TORGEIR DINGSØYR

10

software. We have thus limited the field of knowledge management to
those processes that can be supported by computer tools, and specifi-
cally tools with a web-interface on a company-internal Intranet. We also
concentrate on a specific set of tools that will be discussed later. Further,
we have limited the usage of these tools to the domain of software de-
velopment and maintenance, and specifically in medium-sized compa-
nies, where most of the development is done «in-house», and where
most of the staff spends much of their working day in front of a com-
puter.

When we examined the knowledge management tools, we have only
looked at how they are used. We have not looked at issued in developing
such tools, and not on economical issues - whether they are cost-
effective or not.

We have neither looked at specific tools for reusing code or other soft-
ware artifacts, but at tools that operate on a higher level of abstraction.
But these tools may be linked to code, like a system that help you solve
problems by showing example code. In the companies where we have
been working, reuse of code is usually organised through development of
software libraries of «baseline products» that get input from all people in
the organisation.

To introduce knowledge management as an «improvement» in an organi-
sation is of course not without problems. What some people in the or-
ganisation see as «improvements» might be seen as «deteriorating» efforts
by other people. For example, some employees might think that their
knowledge is ignored by a company, because it is not included in a com-
puter tool. This, and other political issues in deploying knowledge man-
agement tools are not issues that we will discuss here.

1.6 Structure of the Thesis

The structure of the rest of this thesis is as follows:

Chapter 2: Software Development; Problems and Remedies. In this chapter, we
discuss what software development is about, and some of the challenges
the field is concerned with. We also discuss some of the main improve-
ment initiatives that have been in the field, and discuss one of them,

INTRODUCTION

11

namely knowledge management and learning organisations in more de-
tail. Finally, we give an overview of research methods in software engi-
neering.

Chapter 3: Knowledge Management: In General and in Software Engineering.
Here we first discuss knowledge management in general, and then spe-
cifically its application in software engineering. We discuss terms like
experience, information and knowledge, and other common terms in the
knowledge management field, like organisational memory, corporate
memory, and experience factory. We also examine how knowledge is
transferred in an organisation, and introduce a knowledge management
program as a strategy, a set of processes and a set of tools. We present
case studies on knowledge management tools in companies that develop
software, found in the literature.

Chapter 4: Research Goals, Method and Design. Here we further specify our
research goals, using concepts from chapter 3. We list the topics of in-
terest in the form of research questions. We present the research method
that we selected, with arguments for why this approach is suiting the
topics under study.

Chapter 5: Empirical Investigation. First, we present a prestudy of four case
studies of knowledge management programs in Norwegian companies.
Then, we present two companies where we did case studies, together
with projects that we followed in each of them. We present the infra-
structure for knowledge management that exist in the companies, and
our findings on the usage of them.

Chapter 6: Discussion and Analysis. We discuss the findings from the litera-
ture, our prestudy and main study cases in light of the theory which is
given in chapter 3.

Chapter 7: Conclusion and Further Work. We sum up the main findings from
the discussion, and outline possible further work in the field of learning
software organisations.

Appendix A: Interview guides - here we present the interview guides that
was used in semi-structured interviews in the two companies in the main
study.

TORGEIR DINGSØYR

12

Appendix B: Processed Usage Logs - Here, we list processed usage data from
Knowledge Management Tools in Alpha, one of the main study compa-
nies.

This is a doctoral thesis, written for the research community. It is not the
intention to come up with direct, practical aid for companies on how to
improve their knowledge management, but more to bring forward theory
about how knowledge management is used. This will hopefully make it
into practise, but it is out of the scope to concentrate on that issue. That
is the responsibility of the research field as a whole.

Reading this thesis requires knowledge of software engineering and spe-
cifically software process improvement, and what has been called learn-
ing software organisations (knowledge management in software engi-
neering). It also requires knowledge of research methods in general.

 newrelease!
TORGEIR DINGSØYR
Knowledge
Management in
Medium-Sized
Software Consulting
Companies
ISBN: 82-7477-107-9
PRICE: 278,- NOK
PAGES: 206

Torgeir Dingsøyr is a
research scientist at the
SINTEF Telecom and
Informatics research
foundation in Trondheim,
Norway. He wrote this
doctoral thesis at the
Department of Computer
and Information Science,
Norwegian University of
Science and Technology.

In order to build efficient knowledge management tools, we need a better
understanding of how the tools that exist are applied and used in software
development.
This doctoral thesis examines how software consulting companies use
Intranet tools to share knowledge across project - to improve software
development.
The thesis contains depth studies of how two organisations work with
knowledge management, and explains how knowledge management tools
are used in different ways, and with different frequencies. The usage varies
after what work tasks employees have, and also after their personal taste.

Torgeir Dingsøyr is a research scientist at the SINTEF Telecom and
Informatics research foundation in Trondheim, Norway. He wrote this
doctoral thesis at the Department of Computer and Information Science,
Norwegian University of Science and Technology. He has published papers
on knowledge management in software engineering, case-based reasoning
and on software engineering education. In 2001, he spent half a year as a
guest researcher at the Fraunhofer Institute for Experimental Software
Engineering in Kaiserslautern, Germany.

Software companies are under pressure from customers to deliver
solutions faster, cheaper, and with higher quality. As software
development is a very knowledge intensive task, both researchers and
industry have recently turned their attention to knowledge management
as a means to improve software development. This often involves
developing technical tools. But the tools are often not used in practise by
developers and managers in the companies, and it is often unknown if
the tools improve how knowledge is managed.

PLEASE SEND ME ___ COPY(S) OF

Knowledge Management in Medium-Sized Software
Consulting Companies
Company:___
Name:__
Billingaddress__
Zip:__
City:__
Country:__
Signature:___

For ordering and
information about the book
or its author, contact us by
phone: +47 22 85 33 00
fax: +47 22 85 30 39
email: post@unipub.no
or by mail
Unipub AS, Postboks
84 Blindern
N-0314 Oslo
NORWAY

Selected papers from the thesis

Article:

Andreas Birk, Torgeir Dingsøyr, and Tor Stålhane, “Postmortem: Never leave
a project without it,” IEEE Software, special issue on knowledge management
in software engineering, no. 3, vol. 19, pp. 43 - 45, 2002.

Copyright © 2002 IEEE. Reprinted from IEEE Software no3, vol 19.

 This material is posted here with permission of the IEEE. Such
 permission of the IEEE does not in any way imply IEEE endorsement of
 any of NTNU Library's products or services Internal or personal
 use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional
 purposes or for creating new collective works for resale or
 redistribution must be obtained from the IEEE by sending a blank email

message to pubs-permissions@ieee.org.

focus

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 4 3

improvement suggestions from completed
projects and works even in small- and
medium- size companies that cannot afford
extensive KM investments. However, PMA
has been mainly advocated for situations
such as completion of large projects, learning
from success, or recovering from failure.2–4

When used appropriately, PMA ensures
that team members recognize and remember
what they learned during a project. Individ-
uals share their experiences with the team
and communicate them to other project
groups. Additionally, PMA identifies im-
provement opportunities and provides a
means to initiate sustained change.

We have applied a lightweight approach
to PMA in several projects5,6 by focusing on
a few vital principles:

� PMA should be open for participation
from the entire team and other project
stakeholders.

� Goals can—but need not—provide a fo-
cus for analysis.

� The PMA process comprises three
phases: preparation, data collection, and
analysis. For each phase, team members

can apply a number of fairly simple
methods, such as the KJ method (after
Japanese ethnologist Jiro Kawakita)7

that collects and structures the data from
a group of people.

Preparation
When we conduct PMA in software com-

panies, two software process improvement
group members work as facilitators together
with two to all project team members. Facili-
tators organize the analysis, steer the discus-
sion, and document the results. They can be
employees in the company where the PMA is
conducted or external, as we are. External fa-
cilitators often have an advantage performing
the PMA because participants regard them as
more neutral and objective. However, they
might not know the company as well as inter-
nal facilitators, so preparation is important.

During the preparation phase, we walk
through the project history to better under-
stand what has happened. We review all
available documents, such as the work
breakdown structure, project plans, review
reports, and project reports.

We also determine a goal for the PMA.

Postmortem: Never Leave
a Project without It

Andreas Birk, sd&m

Torgeir Dingsøyr, Sintef Telecom and Informatics

Tor Stålhane, Norwegian University of Science and Technology

Although primarily
used for large
projects and
companies,
postmortem analysis
also offers a quick
and simple way to
initiate knowledge
management in
small- or medium-
size software
projects.

I
n every software project, the team members gain new knowledge and
experience that can benefit future projects and each member’s own
professional development. Unfortunately, much of this knowledge re-
mains unnoticed and is never shared between individuals or teams.

Our experience with project postmortem analysis proves that it is an ex-
cellent method for knowledge management,1 which captures experience and

knowledge management

Goals might be “Identify major project
achievements and further improvement op-
portunities” or “Develop recommendations
for better schedule adherence.” If a PMA
does not have a specific focus to guide our
preparation, we briefly discuss the project
with the project manager and key engineers.

We find it practical to distinguish between
two PMA types: One is a general PMA that
collects all available experience from an ac-
tivity. The other is a focused PMA for un-
derstanding and improving a project’s spe-
cific activity, such as cost estimation. It helps
to explicitly state goals for both of these
PMA variants during this phase.

Data collection
In the data collection phase, we gather the

relevant project experience. Usually, project
team members and stakeholders have a
group discussion, or experience-gathering
session. We can often conduct data collec-
tion and the subsequent analysis within the
same session. You shouldn’t limit experience
gathering to the project’s negative aspects,
such as things to avoid in the future. Instead,
maintain a balance by identifying a project’s
successful aspects, such as recommended
practices. For example, during a PMA at a
medical software company, the team realized
that the new incremental software integra-
tion process significantly improved process
control and product quality. Integration had
been so smooth that without the PMA, its
important role might have gone unnoticed.

Some techniques that we find useful for
data collection include

� Semistructured interviews. The facilita-
tor prepares a list of questions, such as
“What characterizes the work packages
that you estimated correctly?” and
“Why did we get so many changes to
the work in package X?”

� Facilitated group discussions. The facil-
itator leads and focuses the discussion
while documenting the main results on a
whiteboard.

� KJ sessions. The participants write down
up to four positive and negative project
experiences on post-it notes. Then they
present their issues and put the notes on
a whiteboard. The participants re-
arrange all notes into groups according
to topic and discuss them.

Once the group identifies the important
topics, we must prioritize them before pro-
ceeding with the analysis. This will ensure that
we address the most significant issues first.

For example, during a PMA we per-
formed in a satellite software company, fre-
quent and late requirements changes
emerged as an important topic. A software
developer commented that during the proj-
ect, team members found it difficult to iden-
tify when the requirements had changed, so
much so that the code had to be rewritten
completely. In such situations, they made a
few wrong decisions, which reduced the
software’s quality. After this PMA session,
other project members made requirements
changes a high-priority topic for analysis.

Analysis
In this phase, as facilitators, we conduct a

feedback session in which we ask the PMA
participants: “Have we understood what you
told us, and do we have all the relevant facts?”

When we know that we have sufficient
and reliable data, we use Ishikawa dia-
grams6 in a collaborative process to find the
causes for positive and negative experiences.
We draw an arrow on a whiteboard, which
we label with an experience. Then, we add
arrows with causes—which creates a dia-
gram looking like a fishbone. In our exam-
ple from the satellite software company, we
found four causes for changing require-
ments: poor customer requirements specifi-
cation, new requirements emerging during
the project, little contact between the cus-
tomer and software company, and the soft-
ware company’s poor management of re-
quirements documents.

Because PMA participants are a project’s
real experts and we have time limitations,
we perform all analysis in this step.

Results and experience
Facilitators document the PMA results in a

project experience report. The report contains

� A project description, including products
developed, development methods used,
and time and effort needed

� The project’s main problems, with de-
scriptions and Ishikawa diagrams to
show causes

� The project’s main successes, with de-
scriptions and Ishikawa diagrams

Once the group
identifies the

important
topics, we must
prioritize them

before
proceeding with

the analysis.

4 4 I E E E S O F T W A R E M a y / J u n e 2 0 0 2

� A PMA meeting transcript as an appen-
dix, to let readers see how the team dis-
cussed problems and successes

In an example from the satellite software
company, facilitators wrote a 15-page re-
port in which they documented the problem
with changing requirements with an
Ishikawa diagram that showed the four
main causes. After facilitators submit a re-
port, the knowledge management or quality
department must follow up.

In our experience, PMA is suitable when a
project reaches a milestone and when the com-
pany is looking for qualitative experience that
will help improve a similar, future project. You
should not apply PMA in situations with un-
finished activities, or when serious underlying
conflicts might remove the focus from im-
provement. If the atmosphere isn’t appropriate
for discussing a project’s problems, we prefer
using approaches other than PMA, such as
those outlined in Project Retrospectives: A
Handbook for Team Reviews.2 When there
have been serious conflicts in the project, this
is more appropriate for managing the risk that
discussions degenerate into a hunt for scape-
goats. Finally, you must have enough time for
following up on PMA results.

In our experience, if teams apply PMA in
the right setting, it is an excellent step into
continuous knowledge management and im-
provement activities. It makes project team
members share and understand one another’s
perspectives, integrates individual and team
learning, and illuminates hidden conflicts. It
documents good practice and problems, and
finally, it increases job satisfaction by giving
people feedback about their work.

Performing a PMA can even improve proj-
ect cost estimation. We applied PMA to three
projects in an Internet software development
company, which all had serious cost over-
runs. The company could not allocate work-
ers with skills specific to the project. This led
to a need for courses—the team’s experts had
to act as tutors for the rest of the team and
were distracted from their roles in the proj-
ect. By performing the PMA, the company
realized the gravity of the qualification issue
and how it led to the project going over
budget. As an improvement action, a training
budget was set up on the company level in-
stead of the project level. The company no
longer charged staff qualification to the pro-

ject’s budget, and now views it as an invest-
ment into quality and competitive advantage.
As a result of this PMA, management real-
ized the strategic importance of staff qualifi-
cation and knowledge management—a truth
that often gets buried in the hectic rush of In-
ternet software business.

W e received a lot of positive feed-
back from PMA participants in
different companies. Particularly,

they like that PMA offers a simple yet effec-
tive way to uncover both achievements and
improvement opportunities. One developer
at the satellite software company noted, “If
you do a PMA on the project...you have to
think through things,” which is a crucial
part of knowledge management. So, never
leave a project without it!

References
1. C. Collison and G. Parcell, Learning to Fly: Practical

Lessons from One of the World’s Leading Knowledge
Companies, Capstone, New York, 2001.

2. B. Collier, T. DeMarco, and P. Fearey, “A Defined
Process For Project Post Mortem Review,” IEEE Soft-
ware, vol. 13, no. 4, July/Aug. 1996, pp. 65–72.

3. N.L. Kerth, Project Retrospectives: A Handbook for Team
Reviews, Dorset House Publishing, New York, 2001.

4. A.J. Nolan, “Learning from Success,” IEEE Software,
vol. 16 no. 1, Jan./Feb. 1999, pp. 97–105.

5. T. Stålhane et al., “Post Mortem—An Assessment of
Two Approaches,” Proc. European Software Process
Improvement (EuroSPI 01), ICSN, Bray, Ireland.

6. T. Dingsøyr, N.B. Moe, and Ø. Nytrø, “Augmenting Ex-
perience Reports with Lightweight Postmortem Re-
views,” 3rd Int’l Conf. Product Focused Software
Process Improvement (Profes 01), Lecture Notes in
Computer Science, vol. 2188, Springer-Verlag, Berlin,
pp. 167–181.

7. D. Straker, A Toolbook for Quality Improvement and
Problem Solving, Prentice Hall International, London,
1995, pp. 89–98 and 117–124.

M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 4 5

About the Authors

Andreas Birk is a consultant and software engineering professional at sd&m, software
design and management. His special interests include software engineering methods, knowl-
edge management, and software process improvement. He holds a Dr.-Ing. in software engi-
neering and a Dipl-Inform. in computer science and economics from the University of Kaiser-
slautern, Germany. He is a member of the IEEE Computer Society, ACM, and German Computer
Society. Contact him at sd&m, Industriestraße 5, D-70565 Stuttgart, Germany;
andreas.birk@sdm.de.

Torgeir Dingsøyr is a research scientist at Sintef Telecom and Informatics research foun-
dation in Trondheim, Norway. He wrote his doctoral thesis on “Knowledge Management in
Medium-Sized Software Consulting Companies” at the Department of Computer and Information
Science, Norwegian University of Science and Technology. Contact him at Sintef Telecom and In-
formatics, SP Andersens vei 15, NO-7465 Trondheim, Norway; torgeir.dingsoyr@sintef.no.

Tor Stålhane is a full professor of software engineering at the Norwegian University of
Science and Technology. He has a MSc in electronics, and a PhD in applied statistics from Nor-
wegian University of Science and Technology. He has worked on compiler development and
maintenance and software reliability, and on software process improvement and systems
safety. Contact him at Department of Computer and Information Science, Norwegian Univer-
sity of Science and Technology, NO-7491 Trondheim, Norway; tor.stalhane@idi.ntnu.no.

Article:

Torgeir Dingsøyr, Nils Brede Moe, and Øystein Nytrø, “Augmenting
Experience Reports with Lightweight Postmortem Reviews,” in Third
International Conference on Product Focused Software Process Improvement,
Lecture Notes in Computer Science, vol. 2188, F. Bomarius and S. Komi-
Sirviö, Eds. Kaiserslautern, Germany: Springer Verlag, 2001, pp. 167 - 181.

Copyright © 2001 Springer Verlag. Reprinted from Lecture Notes in Computer Science #
2188.

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2001, LNCS 2188, pp. 167-181, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Augmenting Experience Reports with Lightweight
Postmortem Reviews

Torgeir Dingsøyr1, Nils Brede Moe2, and Øystein Nytrø1,2

1Department of Computer and Information Science,
Norwegian University of Science and Technology

 Currently at: Fraunhofer Institute for Experimental Software Engineering,
Sauerwiesen 6, 67661 Kaiserslautern, Germany

dingsoyr@idi.ntnu.no

2SINTEF Telecom and Informatics,
7491 Trondheim, Norway

(Nils.B.Moe|Oystein.Nytro)@informatics.sintef.no

Abstract. Many small and medium-sized companies that develop software
experience the same problems repeatedly, and have few systems in place to
learn from their own mistakes as well as their own successes. Here, we propose
a lightweight method to collect experience from completed software projects,
and compare the results of this method to more widely applied experience
reports. We find that the new method captures more information about core
processes related to software development in contrast to experience reports that
focus more on management processes.

1 Introduction

Many small and medium-sized companies that develop software seem to experience
the same problems in several projects, like using more effort than originally planned,
for example in the test phase. To reduce the impact of such problems, project
managers would often like to know what preventive actions other projects in a similar
situation has taken, and what the results of these actions has been. Other projects
might experience technical problems with, say a compiler, that they know have
appeared in the company before, but it is difficult to find which people were involved
in solving the problem then. Very few companies have systems that will capture and
share this type of information.

Another characteristic of small and medium-sized companies that develop software
is that they are usually under strict time pressure. They do not have the time to invest
in prevention of possible future problems in the project. Usually, projects are also
pretty small, involving typically between 5-10 people, which also means that they
cannot use a lot of resources on this.

Here we suggest a lightweight method to capture experiences from completed
software projects, that is suitable for companies focusing on learning from their own
experience. The reasons can be either to improve the quality of their products, be

168 T. Dingsøyr, N.B. Moe, and Ø. Nytrø

more efficient, or to make the company a stimulating place to work. This is often
referred to as knowledge management [1], and involves collecting, refining,
packaging and distributing knowledge within a company.

Within software engineering, to focus on knowledge management has often been
called to “set up an experience factory” [2]; an organizational framework for
capturing and reusing experience from accomplished software projects. The idea here
is to allocate resources for managing company-internal knowledge (the “experience
factory”). –This unit should collect experience from ongoing and completed projects
and make this available for others. It does not have to be a separate part of an
organization, but some people should have a responsibility for it.

An interesting question in knowledge management in general, and particularly
within software engineering, is how to collect, “harvest”, or “make explicit”
experience from projects so that they can be usable for others. What efficient methods
exist, that do not require a lot of effort to make requisite knowledge available? In this
paper, we are interested in looking at different lightweight approaches to capturing
experience from projects (indicated with the bold arrow in Fig. 1), and in particular
projects that are completed. This can be a way to make tacit knowledge [3] present in
software development project explicit, and to store it in a knowledge repository or
“experience base” to make it available as support for future projects. It can also be a
source of data for improvement activities, which will be of interest to the management
or “sponsoring organization”. By “experience package engineering” in the figure, we
mean to collect and make available experience on different topics in a way so that
they are easy to use.

We will look at two different methods for capturing experience:
• Writing Experience Reports, reports written by project managers to sum

up experience from the projects (single-author documents)
• Conducting Postmortem Reviews, a group process to investigate problems

and successes in a project. We have developed a particular lightweight
method, which does not require much effort.

To see differences between the methods, we have examined resulting reports from
two software companies. Now, we first discuss the nature of experience, before
saying what we mean by Experience Reports, Postmortem Reviews, and in particular
lightweight Postmortem Reviews. We then give some context by describing the
research project where this work was performed, as well as the companies where we
collected the experience. Next, we limit the scope of this paper, and go on to present
the research method applied here in section 2, results from each method in section 3,
discuss them in section 4 and conclude in section 5.

Augmenting Experience Reports with Lightweight Postmortem Reviews 169

Software Development Project

Sp
on

so
ri

ng
 O

rg
an

is
at

io
n

St
ra

te
gi

c
Im

pr
ov

em
en

t
M

an
ag

em
en

t

Project
Support

Experience
Base

E
xp

er
ie

nc
e

P
ac

ka
ge

E
ng

in
ee

ri
ng

Experience Factory

Fig. 1. Experience Factory organization, with experience capture from projects shown in bold.
(Taken from the Perfect Project [4]).

1.1 What Is Experience, and What Forms Does It Take?

Let us start by defining a related, but more broad term, “knowledge”. Here, we will
use “knowledge” in a quite wide sense, meaning information that is “operational”,
that is, usable in some situation.

Experience in a strict sense is something that resides in humans, and that is not
possible to transfer to others, because you have to experience it yourself to call it an
experience. We will use the word in a less strict sense here, as “a description of an
event that happened during project execution”. An example is “Because of frequent
changes of the requirements, it was hard to see what consequences they would have.
This affected the testing of the software.” Each such description, we will refer to as an
“experience item”.

A way to categorize experience or knowledge is to look at where it is applicable,
and how easy it is to transfer. Novins and Armstrong [5] have suggested the following
framework for categorizing knowledge: Experience that is collected can be used in a
setting that we can divide into two categories: local and global. If experience is usable
only locally, it is not applicable for many people or projects. If it is globally usable,
many people can benefit from it. We can also use two categories of how transferable
knowledge is. If it is easily transferable, we say that it is programmable. If it is
difficult to transfer, we say that it is unique. Then we get the Tab. 1.

Yet another way to classify experience would be according to the topic they are
about, for example to which part of the development process they are related, to
which organizational role, or to what tools or special work methods. We developed
one set of categories that are relevant to the projects we will describe later:

170 T. Dingsøyr, N.B. Moe, and Ø. Nytrø

Table 1. Categorization of experience according to applicability and transferability.

Local Global

Programmable
Easy to transfer, but

suits only in some
situations.

Easy to transfer, and usable
in many situations.

Unique
Hard to transfer, and

only relevant in some
situations.

Hard to transfer, but
relevant in many situations.

• Processes: Contract negotiation, estimation, planning, specification,
design, implementation, testing, administration and maintenance.

• Actors: Customer, Project Manager, Management, Developer
• Technology: (no subcategories).

We will come back to how we applied these categorization frameworks in the
discussion in section 4.

1.2 Collecting Experience from Projects

Now, how are we supposed to collect experience from completed projects? We first
give an overview of a frequently used method, then introduce Postmortem Reviews,
and explain how the effort in conducting such can be reduced to make “lightweight
Postmortem Reviews”.

1.2.1 Experience Reports

A way to collect experience from a completed project is to write an “Experience
Report”. This document is usually written by the project manager after the project is
finished. The report follows a fixed template, which makes it possible to compare
reports from different projects. In one of the companies we worked with, the report is
divided into two parts: The first part gives an overview of all the facts and numbers
from the project: Start and finish date, size of contract, labour used, deviation from
estimated work size, the number of source lines-of-code developed, documents
produced, and the activities that contributed most to the excess consumption. The
second part of the report describes problems during project execution with proposal
for improvement. For each phase of the project there is a Problem Description and
Proposal for Improvements. This information is represented as text. In the other
company they only have part two with problem definitions and proposed
improvements.

These reports are usually not longer than 10-15 pages in one company we worked
with, and about 4 pages in the other. About 50% is devoted to each part.

Augmenting Experience Reports with Lightweight Postmortem Reviews 171

1.2.2 Postmortem Reviews

There are several ways to perform Postmortem Reviews. Apple has used a method [6]
which includes designing a project survey, collecting objective project information,
conducting a debriefing meeting, a “project history day” and finally publishing the
results. At Microsoft they also put quite much effort into writing “Postmortem
reports”, which are a bit more similar to what we have called “Experience Reports”.
These contain discussion on “what worked well in the last project, what did not work
well, and what the group should do to improve in the next project” [7]. The size of the
resulting documents are quite large, “groups generally take three to six months to put
a postmortem document together. The documents have ranged from under 10 to more
than 100 pages, and have tended to grow in length”.

In a book about team software development, Watts Humphrey suggests a way to do
postmortems to “learn what went right and wrong, and to see how to do the job better
the next time” [8].

A problem with these approaches is that they are made for very large companies,
who can spend a lot of resources on analysing completed projects. We work with
medium-sized companies where 5-10 people usually participate in a project, ranging
in size from about 8 to 50 manmonths. To suit this type of projects, we have
developed a “lightweight” version of Postmortem Reviews.

1.2.3 Lightweight Postmortem Reviews

We have used Postmortem Reviews as a group process, where most of the work is
done in one meeting lasting only half a day. We try to get as many as possible of the
people who have been working in the project to participate, together with two
researchers, one in charge of the Postmortem process, the other acting as a secretary.
The goal of this meeting is to collect information from the participants, make them
discuss the way the project was carried out, and also to analyse causes for why things
worked out well or did not work out. A further description of what we did can be
found in the “results” section.

Our “requirements” for this process is that it should not take much time for the
project team to participate, and it should document the most important experience
from the project, together with an analysis of this experience.

A description of another lightweight approach which seeks to elicit experience
using interviews, and not a group process, is described by Schneider [9].

1.3 The Research Setting

Here we describe in what setting the research was carried out. We first introduce the
research project we worked in, and then give a brief description of each of the
companies and projects where we collected the empirical data for this paper.

172 T. Dingsøyr, N.B. Moe, and Ø. Nytrø

1.3.1 The Research Project

The Process Improvement for IT industry (PROFIT) project is a Norwegian research
project where researchers are working in tight cooperation with nine companies that
develop software, with different process improvement initiatives. There are three
main work packages: Process improvement under uncertainty and change, learning
from experience, and process improvement through innovative technology and
organization. The work which is reported here focuses on learning from experience.
Some background information on earlier work on knowledge management systems
within Norwegian software development companies has been published earlier [10].

1.3.2 Northern Software

Northern Software makes software and hardware for receiving stations for data from
meteorological and Earth observation satellites. Since the company was founded in
1984, they have delivered turnkey ground station systems, consultancy, feasibility
studies, system engineering, training, and support. Northern Software has been
working with large development projects, both as a prime contractor and as a
subcontractor. They possess a stable and highly skilled staff, many with masters
degrees in Computer Science, Mathematics of Physics, and have what we can
describe as a “engineering culture”. Approximately 60 people are working in the
company, and the majority is working with software development. Projects are
managed in accordance with quality routines fulfilling the European Space Agency
PSS-05 standards, and are usually fixed price projects.

1.3.3 Southern Software

Southern Software is a software house specialising in advanced web-solutions, but not
eBusiness. Examples are games, newspapers, customer services and resources,
database access etc. Projects are usually small to medium sized. Larger projects are
broken down in smaller packages by incrementally adding services to a web portal.

They have a heterogeneous staff; people with software as well as design
background. Project teams often consist of many people with non-overlapping
competence of webdesign- and programming, user interfaces, databases and
transactions, software architecture, requirements and management. This means that
communication costs are fairly high compared to overall project size.

The company recently started using Rational Unified Process (RUP) for some
project parts (user requirements, management and testing). They recently assigned
one full-time “knowledge manager” who receives all “knowledge harvest”-
documents, user surveys and other project documents. This work has just started.

1.4 Scope

We could have looked at a lot of issues when comparing the two approaches
discussed here. For example, we think that the Postmortem Reviews seemed to be

Augmenting Experience Reports with Lightweight Postmortem Reviews 173

quite inspiring for the people who participated in the meetings, an effect you probably
will not get with an Experience Report. However, we have limited the scope here to
only discuss the results of the methods, that is, the written reports, and not the process
of producing them, or any other effects they might have. What we will look for, is
what kind of information we get out of each method.

2 Research Methods

The research performed is done in close collaboration with industry. We have
participated in collecting experience from real software projects in a real
environment, which means that we have little control of the surroundings. This is
often referred to as action research [11, 12]. The benefit with this type of research is
that the actual problems are very relevant to industry. A difficulty is that we have
limited control over the surroundings, so the results might not be as generally
applicable as when using for example experiments.

The material collected for this research is from two companies that we co-operated
with in the PROFIT project. They were not selected arbitrarily; they were interested
in working with the same topics that we were interested in. The projects we used as
cases for lightweight Postmortem Reviews were selected by the companies. However,
we asked them to select “typical” projects from their company, and also projects of a
certain size.

The researchers have had two roles in this work: First, as a kind of process leader
who have organized a meeting: Set the agenda in co-operation with industry and
organized discussions. On the other hand, the researchers have been observers trying
to document the process and the results of the meeting. In one company by using a
tape recorder and transcribing important sections of the meeting, in another company
by writing detailed minutes during the meeting.

When we analysed the material gathered, we had two reports, one experience
report, and one post mortem review report from each company. An example part of an
experience report is:

In this project the team members did not sit together, which complicated the
communication between the members. In the last week of the project, however, the
system track was placed together, which resulted in good communication and a
stronger feeling of belonging to a team.

In our analysis, we would select sentences like the one underlined, and call them
experience items. This was used in our later analysis as:

negative experience: physically separate

Another example is from a postmortem meeting, where one thing that was mentioned
was:

Incremental development: Partial deliveries are motivating. Externally visible.

174 T. Dingsøyr, N.B. Moe, and Ø. Nytrø

This was later documented in the report as:

The idea of incremental development, i.e. partial deliveries to the customer, worked
very well. The customer became more aware of the project status, and was able to
guide and enforce changes at an early stage.

Which was again summed up as an experience item:

positive experience: partial deliveries

Later, we would then do categorizations based on these experience items.

3 Results

Here we first present how we conducted lightweight Postmortem Reviews. Then we
describe the contents of each of the reports from the Experience Report and the
lightweight Postmortem Review, and give some examples of the experience that was
collected. We only give examples from one company to save space, but will use
results from both companies when we go on to discuss the differences between the
results of the methods in section 4.

3.1 Lightweight Postmortem Review

We have used two techniques to carry out lightweight Postmortem Reviews. For a
focused brainstorm on what happened in the project, we used a technique named after
a Japanese ethnologist, Jiro Kawakita [13] – called “the KJ Method”. For each of
these sessions, we give the participants a set of post-it notes, and ask them to write
one “issue” on each. We usually hand out between three and five notes per person,
depending on the number of participants. After some minutes, we ask one of them to
attach one note to a whiteboard and say why this issue was important. Then the next
person would present a note and so on until all the notes are on the whiteboard. The
notes are then grouped, and each group is given a new name.

We use a technique for Root Cause Analysis, called Ishikawa or fishbone-diagrams
to analyse the causes of important issues. We draw an arrow on a whiteboard
indicating the issue being discussed, and attach other arrows to this one like in a
fishbone with issues the participants think cause the first issue. Sometimes, we also
think about what was the underlying reasons for some of the main causes and attached
those as well.

Now, for the Postmortem Analysis meeting, we organized it with the following
sections:

1. Introduction: First, we (the researchers) introduce the agenda of the day
and the purpose of the Postmortem Review.

Augmenting Experience Reports with Lightweight Postmortem Reviews 175

2. KJ session 1: We handed out post-it notes and asked people to write down
what went well in the project, heard presentations, grouped the issues on
the whiteboard, and gave them priorities.

3. KJ session 2: We handed out post-it notes and asked people to write down
problems that appeared in the project, heard presentations, grouped the
issues on the whiteboard, and gave them priorities.

4. Root Cause Analysis: We drew fish-bone diagrams for the main issues,
the things that went well and the things that were problematic.

We used a tape recorder during the presentations, and transcribed everything that was
said. The researchers wrote a Postmortem report about the project, which contained
an introduction, a short description of the project that we analysed, how the analysis
was carried out, and the results of the analysis. The result was a prioritised list of
problems and successes in the project. We used statements from the meeting to
present what was said about the issues with highest priority, together with a fishbone
diagram to show their causes. In an appendix, we included everything that was written
down on post-it notes during the KJ session, and a transcription of the presentation of
the issues that were used on the post-it notes. In total, this report was about 15 pages
long.

The day after the meeting, we presented the report to the people involved in the
project to gather feedback and do minor corrections.

A comparison of this method to another way of performing lightweight
Postmortem Review is discussed in another paper [14], where you also find
information on the resources required.

3.2 Results from Lightweight Postmortem Review

One result from the KJ session was two post-it notes grouped together and named
“changing requirements”. They are shown in the upper left corner of (some of) the
results from the KJ process in Fig. 2.
Developer statements pertaining to this part of the KJ diagram:

”Another thing was changes of requirements during the project: from my point of
view – who implemented things, it was difficult to decide: when are the requirements
changed so much that things have to be made from scratch? Some wrong decisions
were taken that reduced the quality of the software”.

“Unclear customer requirements – which made us use a lot of time in discussions
and meetings with the customer to get things right, which made us spend a lot of time
because the customer did not do good enough work.”

176 T. Dingsøyr, N.B. Moe, and Ø. Nytrø

Unclear
customer

requirements

Key people not
available

Management gives in to
customer too easily

Difficult to get an
overview in such
a large project

Producing
testdata was
demanding

Little follow-up
on unit testing

The code is not
very

maintainable

Difficult
integration

Too little reuse
of code

More work without
extending schedule

Frequent
changes from

customer

Changing requirements
during development

Schedule
requirements

from customer

Little time
means low code

quality

"Big bang"
integration - too
little preparation

Fig. 2. Post-it notes showing some of the problems in a software development project.

Changing
Requirements

Poor
specification

from customer

New
requirements

Poor
document

management

Incomplete

Fault

Vague

Untestable

Knew little of
what the

customer did

Little information
from customer

Fig. 3. Ishikawa diagram for “Changing Requirements”.

When we later brought this up again and tried to find some of the root causes for
“changing requirements”, we ended up with the fishbone diagram in Fig. 3.

Augmenting Experience Reports with Lightweight Postmortem Reviews 177

The root causes for the changing requirements, as the people participating in the
analysis saw it, was that the requirements were poorly specified by the customer,
there were “new requirements” during the project, and the company knew little of
what the customer was doing. Another reason for this problem was that documents
related to requirements were managed poorly within the company. In Fig. 3, we have
also listed some subcauses.

In total, we found 21 experience items using this method at Northern Software,
where nine were “positive”, and 12 were “negative”. At Southern Software, we found
18 “positive” and 8 “negative” experience items, making it a total of 26.

3.3 Experience Report

The project manager wrote the experience report. Of nine pages of information, five
was introduction and description of the project, and four pages contained descriptions
of “problems during project execution” with proposals for improvement.

An example of a problem is the “Architectural Design Phase”, which was
described in the following way: “This phase should have been carried out in ten
weeks according to the plan. We carried out this according to the plan, and was just
two weeks late (this delay was introduced earlier in the project). We still got changes
from (customer department) in this phase. The negotiations about the contract did not
start before this phase was finished, and we worked for a while without an
architecture proposal or a contract in a period. Much of the management work was
done through the architecture design phase: Contract negotiation, revising schedules,
etc”.

To solve the problems that appeared during this phase, the project manager has the
following suggestions for improvement: “In total, this phase worked out ok. We were
300 hours behind schedule after this phase, which mainly came as a result of
clarifying requirements from the customer. In the progress reports, I wrote that we
should not give in to requests for changes in the estimates in the contract change
notifications, or in the schedule. Experience indicated that we would get problems in
the two next phases of the project, because the requirements were not stable, and the
project was run according to (a standard process used in the company). I think we
gave in to the customer in the negotiations about the schedule a bit easily, as well as
the requirement on an intermediate delivery, which in a way worked as a template for
the later negotiations. On the other hand, we got acceptance for the time estimates that
we identified in contract change notification number 1 through 4.”

At Northern Software, we found in total 28 experience items, where 27 were about
problems, and just one about an activity that went well. The company produced this
report with no inference from the researchers, who started working with them at a
later stage. At Southern Software, we found 26 experience items, where 11 were
“positive” and 15 “negative”.

178 T. Dingsøyr, N.B. Moe, and Ø. Nytrø

4 Discussion

Now, when we have seen a part of the reports from each of the two experience
harvesting methods, can we say that there is any difference? Did the methods produce
the same results? Could one method replace the other? To investigate this question,
we studied the results in detail, and tried to group each of the experience items that
were captured into one of the categories that we outlined in section 1.1.

We tried to apply the framework suggested by Novins and Armstrong, and to see if
the experience could be said to be either unique or programmable, and local or
global. Here, almost everything seemed to fit in the category programmable – the
experience seemed to be pretty easy to transfer. To us, it looked like the experience
would be valid for the whole company, that is, global. So with this framework, we
could not distinguish between the results from the two methods.

We further found that almost all of the experience from both reports in both
companies seemed to be of a kind that we can describe as “Problem understanding”
[15, 16] – they were not as detailed as to use as a guideline, and we found little hard
“facts” apart from in the introduction section in the Experience Report. Most of the
information seemed to help “develop a better comprehension of a particular problem”,
and would be usable for “problem understanding”.

Then, we tried to look at the topics that the experience was about. We made a list
of processes in use in the companies, actors that would have different responsibilities,
and also a category for technology, for experience related to tools, platforms and
products. Using this type of categorization, and allowing one experience item to be
related to both an actor, a processes or “technology”, we found that the experience
divided into the categories given in Fig. 4.

Fig. 4. Experience according to categories. Results from the Lightweight Postmortem Review
in white and from the Experience Report in grey.

We see that most of the categories have experience from each of the methods,
although the number varies. If we try to see which categories that have experience
only from Postmortem Reviews, from both of the methods, and experience only

1
6 8

4 3 1

9

0 0

4
1

4

C
u

st
o

m
e

r

P
ro

je
ct

M
a

n
a

g
e

r

M
a

n
a

g
e

m
e

n
t

D
e

ve
lo

p
e

rs

C
o

n
tr

a
ct

E
st

im
a

tio
n

S
p

e
ci

fic
a

tio
n

P
la

n
n

in
g

D
e

si
g

n

Im
p

le
m

e
n

-
ta

tio
n

T
e

st
in

g

A
d

m
in

is
tr

a
-

tio
n

M
a

in
te

n
a

n
ce

T
e

ch
n

o
lo

g
y

Actors Processes

3 2 0 0 0 2 2 0
3 3

11

0 1 0 0
3

N
o

rt
h

e
rn

S
o

ft
w

a
re

C
a

te
g

o
ry

S
o

u
th

e
rn

S
o

ft
w

a
re

0
3 5 7

0 2
6

0 0
3 1 3 2 3 4

2 3 1 3 1 2 0 0 1 0 0 1 0

Augmenting Experience Reports with Lightweight Postmortem Reviews 179

from the Experience Report, we find that the majority of experience categories are
covered by both methods (6 categories). Postmortem Reviews covers one more (4)
category than the Experience Reports (3) for Northern Software, but it is the other
way around in the results from Southern Software. So it seems that the methods have
covered slightly different issues.

To investigate this further, we examined the experience we had put in each
category in more detail. Would these experience turn out to be the same, or different
issues related to the same things in the same category? The results of this examination
are given in Tab. 2. We have used the same set of categories as in Fig. 4, but replaced
the name of each category with a number to save space. The number of categories that
are “similar” means that “that number of the same experience items were found with
both methods”. The “total” figure refers to the sum of experience found with both
methods.

From Tab. 2, we see that relatively few experience items are about the same issue.
Only 5 experience items were found with both methods of a total of 69 experience
items in Northern Software (some were put in several categories, so the sum of the
“totals” in the table will be larger). At Southern Software, we found only three
experience items with both methods, of a total of 49 experience items.

Table 2. Similarities of experience from each of the categories. “Total” is the total number of
experience items in each category. Results from postmortem reviews are abbreviated PM, and
experience report ER.

Actors Processes
Category

1 2 3 4 5 6 7 8 9 10 11 12
1
3

PM 1 8 3 9 0 1 3 0 0 2 11 1 0

ER 6 4 1 0 4 4 2 0 2 0 0 0 3

Total 7 12 4 9 4 5 5 0 2 6 11 1 3
Northern

Similar 2 1 2 0 0 0 0 0 0 0 0 0 0

PM 0 5 0 6 0 1 2 4 3 2 0 0 1

ER 3 7 2 0 3 3 3 2 1 0 1 0 0

Total 3 12 2 6 3 4 5 6 4 2 1 0 1
Southern

Similar 0 0 0 0 0 1 0 2 0 0 0 0 0

So why is this? Why is it that we did not find a very large overlap in the results of
the methods? One reason might simply be that by using a group process to elicit
experience, we get to view what happened through several “different eyes”. A reason
in the Southern Software case might be that the content of the lightweight Postmortem
Review was known when the Experience Report was written. But it was the other way
around in the Northern Software case.

Another thing we found, independently of the categorization frameworks, is that
most of the experience from the Experience Report at Northern Software were about
problems, whilst we intended to get 50% about problems and 50% about successes in
the Postmortem Reviews. A reason for this might be that the Experience Report is
used more to explain what went wrong than the Postmortem Reviews, which had a

180 T. Dingsøyr, N.B. Moe, and Ø. Nytrø

more precise goal of capturing experience that might be useful for others. At Southern
Software, we did not find this in the Experience Report.

A difference we noted in Southern Software, was that the lightweight Postmortem
Review would assign an experience to a situation and role, whereas the Experience
Report would have a more managerial view of the experience, relating to the overall
process. For example, enforcing formal change requests from the customer resulted in
better cost control and planning from the management point of view. However, the
developers considered that the main improvement was that they were relieved of
direct, and frequent, customer interruptions.

5 Conclusions

Now we will sum up the conclusions we can draw from the discussion:
• The two methods find very little overlapping experience: We found more

experience related to implementation, administration, developers and
maintenance with the lightweight Postmortem Review. Whereas with the
experience reports, we found more experience related to contract issues,
design and technology.

• The experience items found with both methods seem to be usable for most
projects within the companies, and seem to be quite easy to transfer.

• The two methods seem to find experience that can be used for problem
understanding.

In all, it seems that both methods elicit information that are similar in style, but which
is related to a bit different topics. If you are interested in issues related to the core
processes of software development, lightweight Postmortem Reviews seems to be a
better method than Experience Reports. If you are more interested in relations to the
customer, Experience Reports seem to be a better choice.

Acknowledgements

We would like to acknowledge colleagues in the PROFIT project for providing a
stimulating research environment, as well as our contact persons in Northern and
Southern software. We are very grateful to Stefan Biffl at the University of Vienna,
Reidar Conradi at the Norwegian University of Science and Technology as well as the
anonymous reviews, for helpful comments on this paper. Furthermore, we are grateful
to Geir Kjetil Hanssen at Sintef Informatics who managed part of the Lightweight
Postmortem Review at Southern Software, and who made important contributions to
the analysis. This work was supported by the Norwegian Research Council under
project 137901/221.

Augmenting Experience Reports with Lightweight Postmortem Reviews 181

References

[1] K. M. Wiig, Knowledge Management Methods: Schema Press, 1995.
[2] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Experience Factory,” in

Encyclopedia of Software Engineering, vol. 1, J. J. Marciniak, Ed.: John Wiley, 1994,
pp. 469-476.

[3] M. Polanyi, Personal Knowledge - Towards a Post-Critical Philosophy. London:
Routledge and Kegan Paul, 1958.

[4] PERFECT Consortium, “PIA Experience Factory, The PEF Model,,” ESPRIT Project
9090 D-BL-PEF-2-PERFECT9090, 1996.

[5] P. Novins and R. Armstrong, “Choosing your Spots for Knowledge Management,”
Perspectives on Business Innovation, vol. 1, pp. 45-54, 1998.

[6] B. Collier, T. DeMarco, and P. Fearey, “A Defined Process For Project Postmortem
Review,” IEEE Software, vol. 13, pp. 65-72, 1996.

[7] M. A. Cusomano and R. W. Selby, Microsoft Secrets - How the World’s Most
Powerful Software Company Creates Technology, Shapes Markets, and Manages
People: The Free Press, 1995.

[8] W. S. Humphrey, “The Postmortem,” in Introduction to the Team Software Process,
SEI Series in Software Engineering. Reading, Massachusets: Addison Wesley
Longman, 1999, pp. 185-196.

[9] K. Schneider, “LIDs: A Light-Weight Approach to Experience Elicitation and
Reuse,” presented at Second International Conference on Product Focused Software
Process Improvement, PROFES 2000, Oulu, Finland, 2000.

[10] R. Conradi and T. Dingsøyr, “Software experience bases: a consolidated evaluation
and status report,” presented at Second International Conference on Product Focused
Software Process Improvement, PROFES 2000, Oulu, Finland, 2000.

[11] D. J. Greenwood and M. Levin, Introduction to Action Research: Sage Publications,
1998.

[12] D. Avison, F. Lau, M. Myers, and P. A. Nielsen, “Action Research,” Communications
of the ACM, vol. 42, pp. 94-97, 1999.

[13] R. Scupin, “The KJ Method: A Technique for Analyzing Data Derived from Japanese
ethnology,” Human Organization, vol. 56, pp. 233-237, 1997.

[14] T. Stålhane, T. Dingsøyr, N. B. Moe, and G. K. Hanssen, “Post Mortem - An
Assessment of Two Approaches,” submitted to European Conference on Software
Process Improvement, EuroSPI, Limerick, Ireland, 2001.

[15] C. W. Choo, The Knowing Organization : How Organizations Use Information to
Construct Meaning, Create Knowledge, and Make Decisions: Oxford University
Press, 1998.

[16] R. S. Taylor, “Information Use Environments,” presented at Progress in
Communication Science, 1991.

	profes2001_dingsoyr_moe_nytroe.pdf
	1 Introduction
	1.1 What Is Experience, and What Forms Does It Take?
	1.2 Collecting Experience from Projects
	1.2.1 Experience Reports

	1.2.2 Postmortem Reviews
	1.2.3 Lightweight Postmortem Reviews
	1.3 The Research Setting
	1.3.1 The Research Project
	1.3.2 Northern Software
	1.3.3 Southern Software

	1.4 Scope

	2 Research Methods
	3 Results
	3.1 Lightweight Postmortem Review
	3.2 Results from Lightweight Postmortem Review
	3.3 Experience Report

	4 Discussion
	5 Conclusions
	Acknowledgements
	References

