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INTRODUCTION

This thesis consists of three papers, each can be read independently of the others.
The papers are:

I : AF equivalence relations associated to locally finite groups.
II: Induced subsystems associated to a Cantor minimal system.
III : Dynamical Choquet simplices and Cantor minimal systems.

In this introduction chapter we give an overview of the theory of dynamical
systems that is relevant for this thesis. Most results will be presented without
proofs.

Roughly, one can divide dynamical systems into topological and measurable, and
our focus will mainly be on the former. A topological dynamical system is a pair
(X, T ), where X is a compact, second countable Hausdorff space (equivalently, X
is compact and metrizable), and T : X → X is a homeomorphism. In this thesis X
will (mostly) be a Cantor set and T : X → X will be a minimal homeomorphism
(see definitions below). We will state the results with this framework in mind,
although many of the results hold more generally.

The theory of measurable dynamical systems (or ergodic theory) is the study of
measure-preserving systems (X,T,B, µ), where (X,B, µ) is a Lebesgue space, i.e.
B is a (standard) σ-algebra of measurable subsets of X, and µ is a probability
measure on X. The map T : X → X is measurable, and µ(T−1(A)) = µ(A) for all
A ∈ B.

There are strong links and a lot of parallel properties and results in ergodic
theory and topological dynamics, cf. [9] and [11].

1. Cantor minimal systems

A Cantor set is a totally disconnected compact metric space, where there are
no isolated points. One can choose a basis for the topology consisting of clopen
(i.e both open and closed) sets. It is a famous result by Cantor and Hausdorff,
saying that any two Cantor sets are homeomorphic. One classical way to realize
the Cantor set, is to start with the closed unit interval C1 = I = [0, 1], remove
the open middle third to obtain C2 = [0, 1

3 ] ∪ [ 23 , 1], remove the open middle third
of each of these intervals again to obtain C3 = [0, 1

9 ] ∪ [ 29 , 1
3 ] ∪ [ 23 , 7

9 ] ∪ [ 89 , 1], and
continue this proses infinitely many times. What remains will be the Cantor set.

Let T : X → X be a homeomorphism on a space X, and define the orbit (or T -
orbit) [x]T of a point x ∈ X to be the set [x]T = {y ∈ X | y = Tnx for some n ∈ Z}.
If all orbits are dense in X, we say that the homeomorphism T is minimal. There
are several equivalent definitions of minimality:

Proposition 1.1. Let (X, T ) be a dynamical system. The following are equivalent:
(i) T is minimal.
(ii) X has no non-trivial closed T -invariant subsets.
(iii) If U is a non-empty open subset of X, then ∪∞−∞T−1(U) = X.

By a Cantor minimal system (X, T ) we understand a dynamical system where
X is the Cantor set and T : X → X is a minimal homeomorphism. In the theory of
dynamical systems the class of Cantor minimal systems have a ”universal property”,
in the sense that given any dynamical system (Y, S), there exists a Cantor minimal
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2 INTRODUCTION

system (X,T ) having (Y, S) as a factor, i.e. there exists a continuous map F : X →
Y such that F (Tx) = S(F (x)) for all x ∈ X. This illustrates in a striking way that
the family of Cantor minimal systems is vast.

Definition 1.2. Two Cantor minimal systems (X,T ) and (Y, S) are conjugate
(respectively flip conjugate) if there exists a homeomorphism F : X → Y such that
F (Tx) = S(F (x)) (respectively F (Tx) = S(F (x)) or F (Tx) = S−1(F (x))) for all
x ∈ X. We write (X, T ) ' (Y, S) for two conjugate Cantor minimal systems.

To classify Cantor minimal systems up to conjugacy, or flip conjugacy, would
seem like a hopeless task in light of the comment preceding Definition 1.2. On
the other hand, motivated by C∗-algebra theory, via the so-called crossed product
construction, new invariants for Cantor minimal systems were found, which were
computable and of (ordered) K-theoretic nature. These invariants are complete
invariants for orbit equivalence and strong orbit equivalence, respectively (cf. Def-
inition 1.3 and Definition 1.4). We remark however, that within each strong orbit
equivalence class (and even more so within each orbit equivalence class) there are
an abundance (in fact, uncountably many) of non-flip conjugate Cantor minimal
systems.

Definition 1.3. Two Cantor minimal systems (X, T ) and (Y, S) are orbit equivalent
if there exists a homeomorphism F : X → Y sending orbits to orbits, i.e. F ([x]T ) =
[F (x)]S for all x ∈ X. We call F an orbit map.

Orbit equivalence is an equivalence relation on the set of Cantor minimal systems.
One can show that an orbit map F : X → Y maps the set of T -invariant probability
measures onto the set of S-invariant probability measures. Two conjugate (or flip
conjugate) systems are easily seen to be orbit equivalent.

To two Cantor minimal systems (X, T ) and (Y, S) that are orbit equivalent we
associate two maps (so-called orbit cocycles), n : X → Z and m : X → Z, such that
for every x ∈ X we have F (Tx) = Sn(x)(F (x)) and F (Tm(x)) = S(F (x)). If one of
the functions n(x), m(x) are continuous, then M. Boyle [8, Thm. 2.4] proved that
the systems are either conjugate or flip conjugate.

Definition 1.4. Two Cantor minimal systems (X,T ) and (Y, S) are strongly orbit
equivalent if each of the maps n(x) and m(x) defined above, has at most one point
of discontinuity.

According to Boyle’s theorem, the strong orbit equivalence condition is the
mildest weakening possible beyond flip conjugacy. As alluded to above, we will
see in Section 3 that there exist complete invariants for both orbit equivalence and
strong orbit equivalence of Cantor minimal systems that are computable.

There is also a notion of weak orbit equivalence, introduced by Glasner and Weiss
in [10]. Let FG(X, T ) denote the group of all self homeomorphisms α of X, for
which there exists a function n : X → Z, such that α(x) = Tn(x)(x) for all x ∈ X.
The function n(x) is called the time change corresponding to α, and the group
FG(X, T ) is called the full group associated to (X, T ).

Definition 1.5. Two Cantor minimal systems (X, T ) and (Y, S) are said to be
weakly orbit equivalent if there exist a homeomorphism α ∈ FG(X, T ) such that
the system (X, α) admits (Y, S) as a factor, and a homeomorphism β ∈ FG(Y, S)
such that the system (Y, β) admits (X,T ) as a factor.

Some of the results obtained in the classification of weak orbit equivalent Can-
tor minimal systems will be presented later, after we have established some more
notation and definitions. We start by introducing a concrete way to obtain a very
useful model for a given Cantor minimal system.
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Figure 1. An example of the first four levels of a Bratteli diagram.

2. Bratteli diagrams

Definition 2.1. A Bratteli diagram (V,E) consists of a vertex set V , an edge set
E and two maps, t, i : E → V such that

(i) The vertex set can be written as a disjoint union of finite sets; V = ∪∞n=0Vn,
and V0 = {v0} is a one-point set.

(ii) The edge set can be written as a disjoint union of finite sets; E = ∪∞n=1En.
(iii) The range (or terminal) map t satisfies t(En) ⊂ Vn and t−1(v) 6= ∅ for all

v ∈ V \ V0.
(iv) The source (or initial) map i satisfies i(En) ⊂ Vn−1 and i−1(v) 6= ∅ for all

v ∈ V .

Originally, Bratteli diagrams were introduced for the purpose of investigating
inductive limits of finite dimensional C∗-algebras, but later they have showed to be
a very useful and important tool also in the study of dynamical systems.

A Bratteli diagram is often presented as a (downward) directed graph, where
the nodes at level n is in one-to-one correspondence with the vertices in Vn, and
where the edges between two consecutive levels n and n + 1, are in one-to-one
correspondence with the edges in En, in such a way that the range and source
maps can be read from the graph. See Figure 1 for an example. If for each vertex
set Vn, one chooses a linear order on the vertices, the diagram can be coded in a
sequence of matrices, called incidence matrices, {An}∞n=1 = {(an

ij)}∞n=1, where the
entry an

ij gives the number of edges connecting vi ∈ Vn = {v1, v2, · · · , vln} and
wj ∈ Vn−1 = {w1, w2, · · · , wln−1}, i.e. aij is the number of edges having range vi

and source wj .
We say that (e1, e2, · · · ) is an infinite path of the diagram (V,E) if en ∈ En and

t(en) = i(en+1) for all n > 0. One defines a finite path (el, el+1, · · · , ek) between
levels l and k, k > l, similarly. We denote by X(V,E) the set of all infinite paths
starting at v0 ∈ V0.

There is a natural notion of isomorphism between Bratteli diagrams (V, E) and
(W,F ), namely a pair of bijections, one between the vertex sets V and W , and
one between the edge sets E and F , preserving the gradings and intertwining
the respective source and range maps. Also, starting with a Bratteli diagram
(V, E), one can create a new Bratteli diagram (W,F ), by telescoping to a se-
quence 0 = t0 < t1 < t2 < · · · of natural numbers, i.e. one sets Wk = Vntk

and
Fk = {the set of all finite paths between level nk−1 and level nk in (V,E)}. The
range and source maps of (W,F ) are defined the obvious way.
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We define the equivalence relation ∼ on the set of Bratteli diagrams to be the
equivalence relation generated by isomorphism and telescopings, and note that
between equivalent Bratteli diagrams there is a natural isomorphism between the
path spaces.

Remark 2.2. One can show (cf. [7, Lemma 4.13]) that two Bratteli diagrams (V, E)
and (W,F ), are equivalent if and only if there exists a third diagram (Ṽ , Ẽ), such
that telescoping (Ṽ , Ẽ) to even levels yields a telescope of (V, E), while telescoping
(Ṽ , Ẽ) to odd levels yields a telescope of (W,F ). We will refer to the diagram (Ṽ , Ẽ)
as an aggregate diagram for the equivalence between (V,E) and (W,F ).

The path space X(V,E) of a Bratteli diagram (V, E) is a totally disconnected,
compact metric space, where one possible metric is given by d(x, y) = 1

n+1 , where
x = (e1, e2, · · · ), y = (f1, f2, · · · ) ∈ X(V,E), and n = sup{k | e1 = f1, · · · , ek = fk}.
As a clopen basis for the topology one can take the cylinder sets, which we now
define. Let x = (e1, e2, · · · ) be an infinite path in X(V,E), and define the k’th
cylinder set Ck(x) associated to x, by Ck(x) = {(f1, f2, · · · ) ∈ X(V,E) | e1 = f1, e2 =
f2, · · · , ek = fk}, i.e. Ck(x) consists of all paths that agree with x at the first k
edges. By a simple Bratteli diagram (V,E) we will understand a Bratteli diagram
such that for given n and any v ∈ Vn, there exists a level m > n such that v is
connected to all vertices in Vm by at least one (finite) path. For a simple Bratteli
diagram it is not hard to show that there are no isolated points, and hence the
path space is a Cantor set. (We will always assume our Bratteli diagrams (V, E)
are non-trivial, i.e. X(V,E) is an infinite set.)

In order to define a minimal homeomorphism on the path space, we introduce
the notion of ordered Bratteli diagrams. Let (V, E) be a Bratteli diagram. For
v ∈ Vn, give a linear order to the set of edges in t−1(v). Doing this for all vertices,
we say that (V, E) is an ordered Bratteli diagram, and we denote it by (V, E,≥).
We can now give a partial order to the set of paths, using the lexicographic order,
i.e. given two paths x = (e1, e2, · · · ) and y = (f1, f2, · · · ) in X(V,E), we say that
x > y if there exists k such that en = fn for all n > k, and ek > fk in the linear
order given to t−1(t(ek))(= t−1(t(fk))). Note that we only compare paths that are
cofinal, i.e. paths that follow each other from some vertex level on.

Definition 2.3. Let (V, E,≥) be an ordered Bratteli diagram. We say that (V,E,≥)
is properly ordered if (V, E) is simple, and the order is such that there are exactly
one path, denoted xmax, for which all edges are maximal, and exactly one path,
denoted xmin, for which all edges are minimal.

For a properly ordered Bratteli diagram (V, E,≥), we define the Vershik map
T(V,E) : X(V,E) → X(V,E) to be the map sending a non-maximal path to its successor
in the lexicographic order, while the unique maximal path is mapped to the unique
minimal path.

Proposition 2.4. [12, section 3] Let (V,E,≥) be a properly ordered Bratteli dia-
gram. Then (X(V,E), T(V,E)) is a Cantor minimal system.

The Cantor minimal system (X(V,E), T(V,E)) obtained from (V, E,≥) is called
the Bratteli-Vershik system associated to (V,E,≥).

One would also like to go the other way, i.e. start with a Cantor minimal system
(X, T ) and create a Bratteli diagram representing it, i.e. find a properly ordered
Bratteli diagram (V,E,≥) such that (X,T ) is conjugate to (X(V,E), T(V,E)). In [12,
section 4] this is done in detail. We only give a short overview here.

Let (X, T, x0) be a Cantor minimal system, where x0 ∈ X is a fixed point. We
call (X, T, x0) a pointed Cantor minimal system. Let U be a clopen set in X, and
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define the return time map λ : U → N, by λ(x) = inf{n > 0 |Tnx ∈ U}. Because
U is clopen, λ is continuous, and because U is compact, the range of λ is a finite
subset of N, say {h1, h2, · · ·hs}. Define Uj = {x ∈ U |λ(x) = hj}, j = 1, · · · s.
Then U = ∪s

j=1Uj is a clopen partition of U . Also, using minimality, we get that

X = ∪s
j=1 ∪hj−1

i=0 T i(Uj) is a clopen partition of X. We refer to such a partition
as the Kakutani-Rohlin partition of X associated to T , with basis set U . The set
Cj = ∪hj−1

i=0 T i(Uj) is called a tower of the partition (of height hj), while T i(Uj) is
the i’th floor of the j’th tower. Uj is referred to as the ground floor. The floors
can be considered as ordered by the powers of T i.

Starting with a decreasing sequence of clopen neighborhoods Un of x0, such
that ∩∞n=1Un = {x0}, and a sequence of clopen partitions whose union generates
the topology of X, one can inductively construct a nested sequence {Pn}∞n=1 of
Kakutani-Rohlin partitions of X generating the topology. Also, the construction
is such that the towers of the (n + 1)’th partition traverse the towers of the n’th
partition, meaning that the ground floor of the tower C

(n+1)
j of the (n + 1)’th

partition will be contained in the ground floor of a tower C
(n)
k of the n’th partition.

Hence the hk first floors of C
(n+1)
j – where hk is the height of C

(n)
k – will be contained

in C
(n)
k . Further, if the height of C

(n+1)
j is greater than hk, then the (hk + 1) floor

of C
(n+1)
j will be contained in the ground floor of some other (or possible the same)

tower C
(n)
k′ of the n’th partition, and so C

(n+1)
j will traverse this tower in the same

manner. Because the floors are labeled by T i, one can say that the tower C
(n+1)
j

traverses the towers of the n’th partition in a specific order.
Now, assume {C(n)

1 , C
(n)
2 , · · · , C

(n)
sn } are the towers of the n’th partition Pn,

and assume {C(n+1)
1 , C

(n+1)
2 , · · · , C

(n+1)
sn+1 } are the towers of the (n + 1)’th par-

tition Pn+1. Let (V, E,≥) be the ordered Bratteli diagram we get by setting
Vn = {v(n)

1 , v
(n)
2 , · · · , v

(n)
sn }, Vn+1 = {v(n+1)

1 , v
(n+1)
2 , · · · , v

(n+1)
sn+1 }, i.e. we let the

vertices be in one-to-one correspondence with the towers, and where we have an
edge between v

(n)
k and v

(n+1)
l iff the tower C

(n+1)
l traverses the tower C

(n)
k . We

order the edges according to the order in which the towers traverse each other. It
turns out that the diagram will be properly ordered.

In [12, Theorem 4.4.] it is proved that the equivalence class of (V,E,≥) con-
structed this way does not depend of the choice of Kakutani-Rohlin partitions for
(X, T, x0), and we have the following important model theorem for Cantor minimal
systems:

Theorem 2.5. [12, Theorem 4.5] Let (X, T, x0) be a pointed Cantor minimal
system. Let (V, E,≥) be the properly ordered Bratteli diagram constructed as ex-
plained above. Then (X, T, x0) is (pointedly) conjugated to (X(V,E), T(V,E), xmin),
i.e. (X, T ) ' (X(V,E), T(V,E)) by a map sending x0 to xmin.

Theorem 2.6. [12, Theorem 4.7] There is a bijective correspondence between equiv-
alence classes of properly ordered Bratteli diagrams and pointed topological conju-
gacy classes of minimal systems.

We end this section by proving a transitivity result for Cantor minimal systems,
the proof of which we have not found in the literature.

Lemma 2.7. Let (V, E) be a a simple Bratteli diagram, and let x = (e1, e2, · · · )
and y = (f1, f2, · · · ) be two infinite paths in X(V,E), such that x is not cofinal to
y. There exists a proper ordering of (V, E) such that x and y becomes the unique
maximal and minimal paths, respectively.
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Proof. Because the diagram is simple, we can, by telescoping, assume that x and y
have no edges in common and that there is full connection between any two con-
secutive vertex levels. We show how to order the edges in En. Let v

(n)
x , w

(n+1)
x , v

(n)
y

and w
(n+1)
y be the vertices of x and y at level n and n + 1, respectively. For the

vertex w
(n+1)
x , we order the incoming edges such that the edge en of x becomes

maximal, and such that one of the edges connecting w
(n+1)
x to v

(n)
y becomes min-

imal. For the vertex w
(n+1)
y , we order the edges such that edge fn of y becomes

minimal, and one of the edges connecting w
(n+1)
y to v

(n)
x becomes maximal. For

any other vertex w
(n+1)
k at level n + 1, we order the incoming edges such that the

minimal edge connects w
(n+1)
k to v

(n)
y , and the maximal edge connects w

(n+1)
k to

v
(n)
x . It is easy to verify that in this order, x becomes the unique maximal path

and y becomes the unique minimal path. ¤

Lemma 2.8. Let X be a Cantor set and let x and y two (not necessarily distinct)
points in X. There exists a homeomorphism h : X → X such than h(x) = y.

Proof. If x = y, then we can choose h to be the identity map. The Cantor set X
is homeomorphic to the path space X(V,E) of any simple Bratteli diagram (V,E).
Choose one such representation X(V,E) for X. If x and y are not cofinal, choose
a proper ordering of (V, E) such that x becomes the unique maximal path, and y
becomes the unique minimal path. Let h be the Vershik transformation according
to this order. Then h(x) = y. On the other hand, if x and y are cofinal, let T(V,E)

be the Vershik transformation associated to any proper ordering of (V, E). If x < y
in this order, a finite iteration, say m iterations, of T(V,E) will map x to y, so we
let h = Tm

(V,E) in order to get h(x) = y. If x > y, then a finite iteration of T−1 will
do the trick. ¤

Remark 2.9. The homeomorphism in Lemma 2.8 is not necessarily minimal.

We can easily generalize the above lemma to the following: Given two pointed
Cantor sets (X, x) and (Y, y), there exists a homeomorphism h : X → Y such
that h(x) = y. To see this, just let φ : X → Y be a homeomorphism, and find
h1 : X → X such that h1(x) = φ−1(y). Then h = φ ◦ h1 will be a homeomorphism
mapping x to y.

We also have the following extension:

Lemma 2.10. Given (X, x1, x2, . . . , xn) and (Y, y1, y2, . . . , yn), where X and Y
are Cantor sets, and x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y are distinct points. There
exists a homeomorphism h : X → Y such that h(xi) = yi, i = 1, . . . , n.

Proof. Find a clopen partition {X1, . . . , Xn} of X such that xi ∈ Xi, and a clopen
partition {Y1, . . . , Yn} of Y such that yi ∈ Yi. Then (Xi, xi), (Yi, yi) are (pointed)
Cantor sets so, for i = 1, . . . n, we can find hi : Xi → Yi such that hi(xi) = yi.
Define h : X → Y by h(x) = hi(x) if x ∈ Xi. ¤

Proposition 2.11. Let (X, T ) be a Cantor minimal system and let A = {x1, . . . , xn}
⊂ X and B = {y1, . . . , yn} ⊂ X be two sets of distinct points, such that A∩B = ∅.
There exists a Cantor minimal system (X, S), such that Sxi = yi, i = 1, . . . , n, and
such that (X, S) ' (X, T ).

Proof. Choose n distinct points z1, · · · , zn of X, such that {zi}n
i=1 ∩ {Tzi}n

i=1 = ∅.
Apply Lemma 2.10 to get a homeomorphism h : X → X such that h(zi) = xi and
h(Tzi) = yi, i = 1, . . . , n. Let S : X → X be defined by Sx = (h ◦ T ◦ h−1)x. Then
Sxi = (h◦T ◦h−1)xi = (h◦T )zi = yi, i = 1, . . . , n, and clearly (X,S) ' (X, T ). ¤
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3. Dimension groups

In this section we will introduce the main invariants in the classification theory
of Cantor minimal systems.

By an ordered group we shall mean a countable abelian group G together with
a subset G+, called the positive cone, so that

(i) G+ + G+ ⊂ G+,
(ii) G+ −G+ = G, and
(iii) G+ ∩ (−G+) = {0}.

We will denote such a group by (G,G+). We shall write a ≤ b (resp. a < b) if
b − a ∈ G+ (resp. b − a ∈ G+ \ {0}). We say that the ordered group (G,G+) is
unperforated if a ∈ G and na ∈ G+ for some n ∈ N implies a ∈ G+. It is easily
seen that an unperforated ordered group is torsion free.

Definition 3.1. A dimension group is an ordered group (G,G+) isomorphic to the
direct limit of a sequence

Zr0 φ1−→ Zr1 φ2−→ Zr2 φ3−→ · · ·
where the rn’s are positive integers, the Zrn ’s are assumed to have standard order,
i.e. Zrn+ = {(z1, · · · , zrn) ∈ Zrn | zi ≥ 0 for i = 1, . . . , rn}, and where the φi’s are
positive group homomorphisms inducing the order.

One can also define a dimension group abstractly:

Definition 3.2. A dimension group is an unperforated ordered group (G,G+) with
the Riesz interpolation property, i.e. given g1, g2, h1, h2 ∈ G with gi ≤ hj , there
exists an element f ∈ G such that gi ≤ f ≤ hj (i, j = 1, 2).

In [3], Elliott proved that any dimension group satisfies the Riesz interpolation
property, and in [2, Theorem 2.2], Effros, Handelman and Shen showed that the
two definitions are in fact equivalent.

By an order unit u of a dimension group (G,G+), we mean an element u ∈ G+,
such that for any g ∈ G there exists an n ∈ Z such that nu ≥ g. A dimension group
(G,G+) is simple if every element u ∈ G+ \ {0} is an order unit. Fixing an order
unit u, we denote by Inf G the infinitesimal subgroup of G consisting of all elements
g ∈ G such that −p

q u ≤ g ≤ p
q u for every p

q ∈ Q. Here p
q a ≤ b means pa ≤ qb. The

subgroup Inf G does not depend on the order unit if G is a simple dimension group,
and G/Inf G is again a simple dimension group.

We now define dimension groups associated to Bratteli diagrams and Cantor
minimal systems.

For a properly ordered Bratteli diagram (V,E,≥), consider the sequence

Z|V0| A1−→ Z|V1| A2−→ Z|V2| A3−→ · · · ,

where |Vn| is the number of vertices at level n, and the An’s are the incidence
matrices defining the diagram. We let K0(V, E) denote the dimension group we
get by taking the direct limit of this sequence. The image of 1 ∈ Z|V0|(= Z) is
the canonical order unit, denoted by 1. The dimension group is simple if and only
if the Bratteli diagram is simple. It is not hard to show that if (V,E) ∼ (W,F ),
then (K0(V, E),K0(V, E)+,1(V,E)) and (K0(W,F ),K0(W,F )+,1(W,F )) are isomor-
phic as ordered groups with distinguished order units, i.e. there exists a group
isomorphism ψ : K0(V,E) → K0(W,F ) such that ψ(K0(V, E)+) = K0(W,F )+ and
ψ(1(V,E)) = 1(W,F ). We write K0(V, E) ' K0(W,F ) if this is the case.

If (X, T ) is a Cantor minimal system, let C(X,Z) denote the set of continuous
functions on X taking integer values, and let C(X,Z)+ = {f ∈ C(X,Z) | f ≥ 0}
denote the positive functions in C(X,Z). Define the coboundary ∂T C(X,Z) of
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C(X,T ), by ∂T C(X,Z) = {f −f ◦T−1 | f ∈ C(C,Z)}. We let K0(X, T ) denote the
quotient group C(X,Z)/∂T C(X,Z). In [12] it is shown that (K0(X, T ),K0(X, T )+, [1])
is a simple dimension group with order unit [1], where K0(X,T )+ is the image
of C(X,T )+ in K0(X, T ), and [1] denotes the image of the constant function
1 ∈ C(X,Z). (We will sometimes write K0(X,T ) for (K0(X, T ),K0(X, T )+, [1]).)

We have the following theorem, saying that all dimension groups can be realized
by Cantor minimal systems:

Theorem 3.3. [12, Cor.6.3] Let (G,G+, u) be a simple dimension group. Then
there exists a Cantor minimal system (X,T ) such that K0(X, T ) is order isomorphic
to G with distinguished order units, i.e. there exists a group isomorphism φ : G →
K0(X, T ) such that φ(G+) = K0(X, T )+ and φ(u) = [1].

The next theorem relates the dimension group associated to (V, E), where (V, E,≥
) is a properly ordered Bratteli diagram, and the dimension group of the associated
Cantor minimal system (X(V,E), T(V,E)):

Theorem 3.4. [12, Theorem 5.4] Let (V, E,≥) be a properly ordered Bratteli di-
agram. If (X(V,E), T(V,E)) is the Bratteli-Vershik system associated to (V,E,≥),
then K0(V,E) and K0(X(V,E), T(V,E)) are isomorphic as ordered groups with dis-
tinguished order units.

For orbit equivalent and strong orbit equivalent Cantor minimal systems, dimen-
sion groups serve as complete invariants, as the following two theorems state:

Theorem 3.5. [8, Thm. 2.1] Let (X,T ) and (Y, S) be Cantor minimal systems.
The following are equivalent:

(i) (X, T ) and (Y, S) are strong orbit equivalent.
(ii) K0(X, T ) ' K0(Y, S) by a map preserving order units.

Theorem 3.6. [8, Thm. 2.2] Let (X, T ) and (Y, S) be two Cantor minimal systems.
The following are equivalent:

(i) (X, T ) and (Y, S) are orbit equivalent.
(ii) K0(X, T )/Inf K0(X,T ) ' K0(Y, S)/Inf K0(Y, S) by a map preserving or-

der units.

For weak orbit equivalent systems, one has a similar result. First we define weak
isomorphism between dimension groups.

Definition 3.7. For two simple dimension groups (G,G+, u) and (H, H+, v) with
(distinguished) order units u and v, G and H are said to be weakly isomorphic if
there exists an order and order unit preserving homomorphisms from G into H and
from H into G.

Theorem 3.8. [10, Theorem 2.3] Let (X, T ) and (Y, S) be Cantor minimal systems.
The following are equivalent:

(i) (X, T ) and (Y, S) are weakly orbit equivalent.
(ii) K0(X, T )/Inf K0(X,T ) and K0(Y, S)/Inf K0(Y, S) are weakly isomorphic

as simple ordered dimension groups with order units.

We include one last result concerning weak orbit equivalence.

Definition 3.9. Two Cantor minimal systems (X, T ) and (Y, S) are called weakly
isomorphic if each is a factor of the other.

Theorem 3.10. [10, Proposition 3.2] Let (X,T ) and (Y, S) be two weakly iso-
morphic Cantor minimal systems. Then (X, T ) and (Y, S) are also weakly orbit
equivalent.
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4. Equivalence relations on Cantor minimal systems and Bratteli
diagrams

In this section we still consider Cantor minimal systems and Bratteli diagrams,
and we will now see how they can be used to construct equivalence relations on the
Cantor set. We start with some general theory of equivalence relations.

Consider a countable equivalence relation R on a compact and metrizable Haus-
dorff space X. So each equivalence class [x]R = {y ∈ X | (x, y) ∈ R} is at most
countable. We say that the equivalence relation is minimal if [x]R is dense in X for
all x ∈ X. R has a natural groupoid structure, where the product of composable
pair (x, y), (y, z) ∈ R is defined by (x, y)(y, z) = (x, z) ∈ R, and the inverse of
(x, y) ∈ R is the element (y, x) ∈ R. The set ∆X = {(x, x) |x ∈ X} is called the
diagonal of R, and it coincides with the unit space of the groupoid. If we give
R a locally compact and metrizable topology T , such that the inverse map is a
homeomorphism and the product map is continuous in the product topology, then
(R, T ) is a locally compact (principal) groupoid (cf. [16]). We will be interested in a
special class of topological equivalence relations, namely étale equivalence relations.

Definition 4.1. A countable equivalence relation R on a locally compact metric
space X, with a topology T making it a locally compact groupoid, is an étale
equivalence relation if the range map r : R → X, defined by r(x, y) = x for
(x, y) ∈ R, is a local homeomorphism, i.e. for all (x, y) ∈ R there exists an open
neighborhood U (x,y) of (x, y), such that r(U (x,y)) is open in X, and r : U (x,y) →
r(U (x,y)) is a homeomorphism.

We note that ∆X can be identified with the underlying space X in a natural
way, namely by the map (x, x) → x, so when R is an étale equivalence relation, ∆X

is homeomorphic to X. We will use the acronym CEER to denote compact étale
equivalence relations (R, T ).

We remark that the étale topology T on R ⊂ X × X, only rarely coincides
with the relative topology on R, considered as a subset of X ×X with the product
topology. The étale topology is usually finer than the relative topology. If (R, T )
is a CEER on X, then T coincides with the relative topology. Moreover, in this
case R is a closed subset of X ×X, and it is uniformly finite, i.e. there is a natural
number N such that the number of elements in [x]R is at most N (cf. [7, Prop.
3.2]).

Definition 4.2. An equivalence relation (R, T ) on X is an AF-equivalence relation
if it is the inductive limit of an ascending sequence (Rn, Tn) of CEER’s on X, where
Rn is an open subequivalence relation of Rn+1 for every n, i.e. Rn ⊂ Rn+1 and
Rn ∈ Tn+1, and R = ∪∞n=1Rn. The set U ⊂ R is in T iff U ∩Rn ∈ Tn for all n.

We note that every AF-equivalence relation is étale.

Definition 4.3. Two equivalence relations (R1, T1) and (R2, T2) on X and Y ,
respectively, are isomorphic, denoted (R1, T1) ' (R2, T2), if there exists a homeo-
morphism F : X → Y such that

(i) (x, y) ∈ R1 if and only if (F (x), F (y)) ∈ R2, and
(ii) F × F : (R1, T1) → (R2, T2) is a homeomorphism.

If only condition (i) is satisfied, we say that (R1, T1) is orbit equivalent to (R2, T2).
(In the case that R1 and R2 are the equivalence relations associated to (countable)
group actions, orbit equivalence of R1 and R2 coincides with orbit equivalence of
the two group actions.)

We now introduce equivalence relations associated to Cantor minimal systems
and Bratteli diagrams, and present some of the results concerning those.



10 INTRODUCTION

Let (X,T ) be a Cantor minimal system. Define an equivalence relation RT ⊂
X × X by RT = {(x, Tnx) |x ∈ X, n ∈ Z}, i.e. the equivalence class of x is
the T -orbit of x. We can topologize RT by transferring the product topology
of X × Z (where Z has the discrete topology) to RT , using the bijective map
(x, n) → (x, Tnx). It is easy to verify that in this topology, (RT , TT ) becomes an
étale equivalence relation.

In [7] it is proved that if (X, T ) and (Y, S) are two Cantor minimal systems, then
RT ' RS if and only if (X, T ) and (Y, S) are conjugate or flip conjugate. We also
have the following result:

Theorem 4.4. [8, Thm. 2.3] A minimal AF-equivalence relation (R, T ) is or-
bit equivalent to (RT , TT ) for some Cantor minimal system (X,T ). Conversely,
if (X, T ) is a Cantor minimal system, then (RT , TT ) is orbit equivalent to some
minimal AF-equivalence relation (R, T ).

For a Bratteli diagram (V,E) with associated path space X(V,E), we define the
tail equivalence relation on X(V,E) as follows: Let x = (e1, e2, · · · ) be an infinite
path in X(V,E). Then the infinite path y = (f1, f2, · · · ) ∈ X(V,E) is (tail) equivalent
to x if there exists N ∈ N such that ek = fk for all k > N , i.e. x and y follow
the same set of edges from level N on. We denote the tail equivalence relation
on X(V,E) by AF (V,E). It turns out that, topologized properly, AF (V, E) is an
AF-equivalence relation. (It will be convenient to use the same notation, AF (V,E),
for this AF-equivalence relation.) To see this, let (Rn, Tn) be the compact, étale
equivalence relation on X(V,E)×X(V,E), where two paths are equivalent iff they are
cofinal from level n, and where Tn is the relative topology from X(V,E) × X(V,E).
Then AF (V,E) is the inductive limit of {Rn}∞n=1, and is given the inductive limit
topology T (i.e. U ∈ T if and only if U ∩Rn ∈ Tn for all n).

If two Bratteli diagrams (V,E) and (W,F ) are equivalent, it follows easily from
Remark 2.2 that AF (V, E) ' AF (W,F ). In fact, we have the following:

Theorem 4.5. [7, Lemma 4.13] Let (V, E) and (W,F ) be two Bratteli diagrams.
The following are equivalent:

(i) (V, E) ∼ (W,F );
(ii) AF (V,E) ' AF (W,F );
(iii) K0(V,E) ' K0(W,F ) as ordered groups with distinguished order units.

AF-equivalence relations associated to Bratteli diagrams serve as the prototype
of all AF-equivalence relations, which the following theorem states precisely:

Theorem 4.6. [7, Thm. 3.9] Let (R, T ) be an AF-equivalence relation on the Can-
tor set X. Then there exists a Bratteli diagram (V,E) such that (R, T ) is isomorphic
to the AF-equivalence relation AF (V, E) associated to (V, E). Furthermore, (V, E)
is simple if and only if (R, T ) is minimal.

One would like to say something about the equivalence relation AF (V, E) asso-
ciated to a properly ordered Bratteli diagram (V, E,≥) and the equivalence relation
RT(V,E) associated to the Cantor minimal system (X(V,E), T(V,E)). Since the Vershik
map T(V,E) : X(V,E) → X(V,E) maps a non-maximal path to its successor, it should
be clear that for a path x ∈ X(V,E), not cofinal with neither the maximal nor the
minimal path, the equivalence class [x]T(V,E) of x in RT(V,E) coincide with the tail
equivalence class of x in AF (V,E). But for the maximal and the minimal paths
this is not so. In fact, in RT(V,E) the maximal and the minimal paths are equiva-
lent. So AF (V, E) is a subequivalence relation of RT(V,E) with the property that by
gluing together two distinct equivalence classes in AF (V, E), we get RT(V,E) . This
suggests that we should split an orbit of a Cantor minimal system in order to get
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an AF-equivalence relation. Indeed, let (X, T ) be a Cantor minimal system and let
x0 be a point in X. Define R{x0} to be the subequivalence relation of RT we get
by splitting the orbit of x0 in its forward and backward orbits, keeping all other
orbits unchanged. That is,

[x]R{x0}
=





[x]T if x /∈ [x0]T ,
{Tnx0 |n ≥ 1} if x = T kx0 for some k ≥ 1,
{Tnx0 |n ≤ 0} if x = T kx0 for some k ≤ 0.

Then R{x0} is an open subequivalence relation of RT , and equipped with the
relative topology T{x0} from (RT , TT ), it is an AF-equivalence relation on X. We
have the following:

Theorem 4.7. [7, Thm. 4.3] Let (X,T, x0) be a (pointed) Cantor minimal sys-
tem, and let (V,E,≥) be a properly ordered Bratteli diagram such that (X, T, x0) is
(pointedly) conjugate to (X(V,E), T(V,E), xmax). Then R{x0} ' AF (V, E).

5. General group actions on the Cantor set

Definition 5.1. Let G be a countable group and let X be the Cantor set. We say
that α : G → Homeo(X) is an action of G on X if αgh = αg ◦ αh for all g, h ∈ G.
We will use the notation gx for αg(x), g ∈ G, x ∈ X, and let [x]G = {gx | g ∈ G}
denote the orbit of x under the action of G. Furthermore, we let (X,G) denote a
group action of G on X.

Let (X,T ) be a Cantor minimal system. Let G = Z and define αn = Tn. Then
clearly (X,T ) = (X, G), so Cantor minimal systems are only a special case of
general group actions on the Cantor set.

A group action (X, G) is minimal if every orbit is dense in X. The action is free
if gx = x for some x ∈ X, implies that g is the identity element of G. We note that
a Cantor minimal system (X,T ) always defines a free action.

Similarly as we did for a Cantor minimal system, one can define an equivalence
relation on X associated to a general group action (X, G), by RG = {(x, gx) |x ∈
X, g ∈ G}, i.e. the equivalence classes coincide with the orbits. If the action is free,
this can be topologized by transferring the product topology of X ×G, where G is
assumed to have the discrete topology, by the bijective map (x, g) → (x, gx), and
the resulting equivalence relation (RG, TG) will be an étale equivalence relation.
There is also a way to define an étale topology on RG when the action is not free,
provided the fix points sets, fix(g) = {x ∈ X | gx = x}, are clopen for all g ∈ G. We
will not describe this here, but refer to the paper I in this thesis for details.

As an aside we remark that all étale equivalence relations on the Cantor set
comes from group actions, in the following sense:

Theorem 5.2. [7, Prop. 2.3] and [13, Cor.4.2] Let (R, T ) be an étale equivalence
relation on the Cantor set X. There exists a countable group G of homeomorphisms
of X so that R = RG, where RG = {(x, gx) |x ∈ X, g ∈ G}. However, in general
the action of G can not be chosen to be free.

A special class of group actions are those of locally finite groups.

Definition 5.3. A countable group G is locally finite if it can be written as the
union of a sequence G0 ⊂ G1 ⊂ · · · ⊂ G = ∪∞n=0Gn of finite groups, i.e. each Gn is
a finite group.

In [7] it is proved that locally finite groups are closely related to AF-equivalence
relations:
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Theorem 5.4. [7, Thm. 3.8] Let G be a countable group acting minimally and
freely on the Cantor set X, and let (RG, TG) be the associated étale equivalence
relation. Then (RG, TG) is an AF-equivalence relation if and only if G is locally
finite.

Furthermore, in [14] it is showed that Z-actions serve as the prototype of all min-
imal actions of locally finite groups on the Cantor set, again under the assumption
that fix-point sets are clopen – which certainly is true for free actions.

Theorem 5.5. [14, Cor. 2.3.1] If G is a locally finite group acting minimally on
the Cantor set X with clopen fix-point sets, then the dynamical system (X, G) is
orbit equivalent to a Cantor minimal system (Y, T ), i.e. it is orbit equivalent to a
minimal Z-action on the Cantor set Y .

We end this section by presenting some recent remarkable results on the orbit
structure of Zd-actions. We shall need the useful concept of affability:

Definition 5.6. We say that the equivalence relation R on X is affable (AF-able)
it is orbit equivalent to an AF-equivalence relation.

We note that if an equivalence relation R (with no topology) is order equivalent
to an AF-equivalence relation (R̃, T̃ ) via the map F , then F × F can be used
to transfer the topology on R̃ to a topology on R, making R an AF-equivalence
relation. It is clear that for a Cantor minimal system (X, T ), the equivalence
relation RT is affable, being orbit equivalent to AF (V, E) for some simple Bratteli
diagram (V, E).

Again there is an ordered group serving as an invariant for orbit equivalence
for general group actions on the Cantor set. Let (X, G) be a free and minimal
group action, and let RG be the associated étale equivalence relation on X. As
before, we let C(X,Z) denote the continuous functions on X taking integer values.
Define M(X, RG) to be the set of RG-invariant probability measures on X, i.e µ ∈
M(X, RG) if µ is a probability measure on X, and for all Borel subsets E, F ⊂ X,
for which there exists a Borel bijection f : E → F contained in RG, we have
µ(E) = µ(F ). (This can be shown to be equivalent to µ(gE) = µ(E) for all
g ∈ G and all Borel sets E ⊂ X, and so M(X, RG) coincides with the set of G-
invariant probability measures.) Let Bm(X,RG) be the subgroup of C(X,Z) of all
functions f such that

∫
X

fdµ = 0 for all µ ∈ M(X, RG), and define the quotient
group Dm(X, RG) = C(X,Z)/Bm(X, RG). Taking Dm(X, RG)+ to be the image
of C(X,Z)+ = {f ∈ C(X,Z) | f ≥ 0} under the quotient map, and [1] to be the
image of the constant function 1, we have that (Dm(X, RG), Dm(X, RG)+, [1]) is an
ordered group. We note that, in general, if (R, T ) is an étale equivalence relation
on X, then the set of R-invariant probability measures, M(X,R), can be defined
in a similar way as for RG. In fact, one can show that M(X,R) coincides with the
set of G-invariant probability measures, where G is the group in Theorem 5.2.

Theorem 5.7. [4, Thm. 1.2] Let X be a Cantor set and let R be a minimal AF-
equivalence relation on X. The group, with positive cone and distinguished order
unit, (Dm(X,R), Dm(X,R)+, [1]), is a complete invariant for orbit equivalence.

The range of Dm(X,R) for minimal AF-equivalence relations (R, T ), is the set of
simple dimension groups with no non-trivial infinitesimal elements. Moreover, all
such dimension groups can also be realized as the K0-group of a minimal Z-action.
In [6], Giordano, Matui, Putnam and Skau have proved the following two theorems:

Theorem 5.8. [6, Thm. 2.4] Let Zd, d ≥ 1, act minimally and freely on the
Cantor set X. Then the associated equivalence relation is affable. In particular,
the Zd-action is orbit equivalent to a Z-action.
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Theorem 5.9. [6, Thm. 2.5] Let (X, R) and (X ′, R′) be two minimal equivalence
relations on Cantor sets which are either AF-equivalence relations or arise from
minimal and free actions of the group Zd, d ≥ 1. Then they are orbit equiva-
lent if and only if (Dm(X, R), Dm(X, R)+, [1]) ' (Dm(X ′, R′), Dm(X ′, R′)+, [1′])
as ordered groups with distinguished order units.

6. Simple dimension groups and Choquet simplices

We summarize briefly the connection between Choquet simplices and simple
dimension groups, and refer to [1] and [2] for details.

Definition 6.1. A (metrizable) Choquet simplex is a convex and compact subset
K of a locally convex Hausdorff space E, with the property that for each x ∈ K
there exists a unique probability measure on K, supported on the extreme points
∂eK of K, such that a(x) =

∫
K

a dµ for every continuous affine function a : K → R
(i.e. a(λy+(1−λ)z) = λa(y)+(1−λ)a(z) for y, z ∈ K, 0 ≤ λ ≤ 1). We let Aff(K)
denote the continuous affine functions on K.

Definition 6.2. Let (G,G+, u) be a simple dimension group with distinguished or-
der unit u. The state space Su(G) of (G,G+, u) is the set of positive homomorphism
s : G → R (so s(G+) ⊂ R+), such that s(u) = 1.

Proposition 6.3. [1, Thm. 4.4] The state space Su(G) of the simple dimension
group (G,G+, u) with distinguished order unit u, is a Choquet simplex in the locally
convex space RG (with the product topology).

Theorem 6.4. [1, Cor. 4.2 and Thm. 4.4] Let (G,G+, u) be a simple dimension
group with distinguished order unit u, and with state space K = Su(G). The map
Θ : G → Aff (K), defined by Θ(g)(p) = p(g) for p ∈ Aff (K), determines the order
on G in the sense that G+ = {g ∈ G |Θ(g)(p) > 0 for all p ∈ K} ∪ {0}. Also,
g ∈ ker(Θ) if and only if g ∈ Inf(G). Furthermore Θ(G) is dense in Aff (K) (in
the uniform topology).

Corollary 6.5. [1, Cor. 4.6] All simple dimension groups (G,G+) with trivial
infinitesimal subgroups occur as countable dense additive subgroups of Aff (K), for
some Choquet simplices K. (The order on Aff (K) is the strict one, i.e. p < q if
p(x) < q(x) for all x ∈ K.)

Remark 6.6. If (X, G) is a minimal dynamical system, i.e. G is a countably group
that acts minimally as homeomorphisms on X, then the set M(X, G) of G-invariant
probability measures is a Choquet simplex.
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AF EQUIVALENCE RELATIONS ASSOCIATED TO LOCALLY
FINITE GROUPS

HEIDI DAHL

Abstract. In [5, Theorem 3.8], Giordano, Putnam and Skau showed that the
étale equivalence relation associated to a (countable) group acting minimally
and freely on the Cantor set is AF if and only if the group is locally finite.
In this paper we answer what types of AF equivalence relations arise for such
actions, linking them to Bratteli diagrams with the so-called equal path num-
ber property. Furthermore, we explore more general actions of locally finite
groups, and we give a new and more transparent proof of a result by Krieger
[9, Theorem 3.5 and Corollary 3.6] in the process.

1. Preliminaries and basic definitions

We start by giving some basic definitions that are relevant for this paper, no-
tably étale equivalence relation, AF equivalence relation, Bratteli diagram and tail
equivalence. At the same time we introduce notation that will be used in the sequel.
As a general reference we refer to [5].

Let X be a compact, second countable (hence metrizable) Hausdorff space, and
consider a countable equivalence relation R ⊂ X × X on X, i.e. we require all
equivalence classes [x]R = {y ∈ X | (x, y) ∈ R} to be countable. We will mostly
be interested in the case when X is a Cantor set, i.e. X is a metrizable, totally
disconnected compact space without isolated points. (It is a classical result that
all Cantor sets are homeomorphic, so we may talk about the Cantor set.) The
equivalence relation is minimal if for all x ∈ X the equivalence class [x]R of x is
dense in X. We put a groupoid structure on R by defining the inverse of (x, y) ∈ R to
be (x, y)−1 = (y, x) ∈ R, and the product of two composable pairs (x, y), (y, z) ∈ R
to be (x, y)(y, z) = (x, z). We assume R has a locally compact, Hausdorff, second
countable (hence metrizable) topology T , making the product of composable pairs
(given the relative topology from R×R (with product topology)) a continuous map,
and also making the inverse map on R a homeomorphism. So (R, T ) is a locally
compact (principal) groupoid.

Definition 1.1. (Étale equivalence relation) Let (R, T ) be a locally compact groupoid,
where R is a countable equivalence relation on a locally compact metric space X.
We say that (R, T ) is étale if the range map r : R → X, defined by r((x, y)) = x
for (x, y) ∈ R, is a local homeomorphism, i.e. for any (x, y) ∈ R there exists an
open neighborhood U (x,y) ∈ T of (x, y) such that r(U (x,y)) is open in X and r is a
homeomorphism from U (x,y) to r(U (x,y)). For short we will sometimes write R for
(R, T ) when the topology T is understood from the context.

Remark 1.2. It follows easily from this definition that the source map s : R → X,
defined by s(x, y) = y, is a local homeomorphism as well. Also, the diagonal

1
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∆ = {(x, x) |x ∈ X} is an open set homeomorphic to X by (restriction of) the
map r, and so we may identify ∆ with X, which we will do whenever convenient.
Only rarely is T the relative topology from X ×X. In general, T is finer than the
relative topology.

Two étale equivalence relations (R1, T1) on X and (R2, T2) on Y are isomorphic
if there exists a homeomorphism F : X → Y such that

(i) (x, y) ∈ R1 ⇔ (F (x), F (y)) ∈ R2, and
(ii) F × F : (R1, T1) → (R2, T2) is a homeomorphism.

We write (R1, T1) ' (R2, T2) for two isomorphic equivalence relations, or just
R1 ' R2.

An étale equivalence relation (R, T ) is compact if R \∆ is a compact set, where
∆ is the diagonal of R. If X itself is compact, this is the same as requiring R to be
compact. We will use the acronym CEER to denote a compact étale equivalence
relation. In [5, Proposition 3.2] it is shown that if (R, T ) is a CEER on X, then T
is the relative topology from X ×X.

Definition 1.3. (AF equivalence relation) Let X be a compact zero-dimensional
space, i.e. X is a (compact) metrizable space with a countable basis consisting
of clopen (i.e. closed and open) sets. (Equivalently, X is a totally disconnected
(compact) metrizable space.) An equivalence relation (R, T ) on X is AF (approx-
imately finite-dimensional) if it is the inductive limit of a sequence {(Rn, Tn)}∞n=0

of CEERs on X, where Rn is an open subequivalence relation of Rn+1, and (R, T )
is given the inductive limit topology, i.e. U ∈ T if and only if U ∩ Rn ∈ Tn for all
n. In particular, Rn is open in R for all n.

Remark 1.4. The condition that Rn is open in Rn+1 is superfluous – it can be
shown that it is automatically satisfied (cf. comment after Definition 3.7. of [5].)
It is easily seen that an AF equivalence relation is étale.

The concept of AF equivalence relation is closely related to the concept of a
Bratteli diagram. Bratteli diagrams were introduced in the early 1970’s by Bratteli
in [1] in order to study inductive limits of finite-dimensional C∗-algebras, the so-
called AF-algebras. Subsequently, Elliott [3], motivated by these diagrams, defined
what he called dimension groups, and realized the K-theoretic underpinning of this.
Later Bratteli diagrams have turned out to be important tools also for studying
topological dynamical systems and equivalence relations. We give the definition of
a Bratteli diagram and then explain how we can relate this to an AF equivalence
relation. We refer to [4, Section 3] for details on Bratteli diagrams.

Definition 1.5. (Bratteli diagram) A (standard) Bratteli diagram (V, E) consists
of a vertex set V , an edge set E and two maps t, i : E → V , the range (or terminal)
and source (or initial) maps, respectively, satisfying the following conditions:

(i) The vertex set is a disjoint union of finite, non-empty sets, V =
⋃∞

n=0 Vn,
where V0 is a one-point set, V0 = {v0}.

(ii) The edge set is a disjoint union of finite, non-empty sets, E =
⋃∞

n=1 En.
(iii) t(Ei) ⊂ Vi for all i ≥ 1, and t−1(v) 6= ∅ for all v ∈ V \ V0.
(iv) i(Ei) ⊂ Vi−1 for all i ≥ 1, and i−1(v) 6= ∅ for all v ∈ V .

We often draw the diagram as a downward directed graph, referring to Vn as the
vertices at level n and En as the edges between level (n − 1) and n. See Figure 1
for an example.
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Figure 1. An example of the first four levels of a Bratteli diagram.

The diagram can be coded by a sequence of matrices {An}∞n=1, where An =
(aij)i,j is the incidence matrix between vertex levels (n − 1) and n, where aij is
the number of edges between the i’th vertex at level n and the j’th vertex at level
(n− 1), the vertices being ordered from left to right.

Given a Bratteli diagram (V,E), the path space X(V,E) consists of all infinite
paths of (V,E), where a path is an (infinite) sequence of edges x = {ei}∞i=1 such
that en ∈ En and i(en) = t(en−1) for all n > 1. If we truncate to k, i.e. we
consider z = {ei}k

i=1, we call z a finite path (of length k). We will also consider
(finite) paths not starting at v0. The diagram is simple if for any n and any vertex
v ∈ Vn there exists m > n such that v is connected to each vertex at level Vm by
a finite path. One can put a metric on the path space, by defining the distance
between two infinite paths to be 1

n+1 if they agree on the n first edges and differ on
the (n + 1)’th edge. The path space X(V,E) is a compact, zero-dimensional space,
and so, in particular, X(V,E) is totally disconnected. It is easy to see that when
(V, E) is a simple Bratteli diagram, then X(V,E) is a Cantor set, since there are no
isolated points. (We will always assume that (V, E) is non-trivial, i.e. X(V,E) is an
infinite set.) As a clopen (countable) basis for the topology we can take the family
of cylinder sets {Ck(x)}: For any finite path x = {ei}k

i=1 starting at v0 ∈ V0, we
denote by Ck(x) the set of all infinite paths in X(V,E) having e1, e2, . . . , ek as their
first k edges.

A telescoping of a Bratteli diagram (V,E) to levels {ki}∞i=0, where 0 = k0 <
k1 < k2 < · · · is an increasing sequence of positive integers, is the Bratteli diagram
(V ′, E′), were V ′

n = Vkn and E′
n = {all (finite) paths between Vkn−1 and Vkn}.

The range and source maps of finite paths are defined in the obvious way. So
in the process of telescoping we delete some of the vertex levels, and the new
edges are concatenations of the old edges. There is a natural homeomorphic map
Π : X(V,E) → X(V ′,E′).

There is an obvious notion of isomorphism between Bratteli diagrams (V,E) and
(V ′, E′); namely there exists a pair of bijections between V and V ′, and between
E and E′ preserving the gradings and intertwining the respective source and range
maps. We let ∼ denote the equivalence relation on Bratteli diagrams generated by
isomorphism and telescoping. It is not hard to show that (V, E) ∼ (V ′, E′) iff there
exists an (”aggregate”) Bratteli diagram (W,F ) such that by telescoping (W,F )
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to even and odd levels, respectively, one gets telescopings of (V, E) and (V ′, E′),
respectively. Since the term ”equivalence” will be omnipresent in this paper, we
will henceforth - by abuse of language - say that (V, E) is isomorphic to (V ′, E′) if
(V, E) ∼ (V ′, E′).

We introduce an equivalence relation on the path space X(V,E). Two infinite
paths x = {ei}∞i=1 and y = {fi}∞i=1 are tail-equivalent if they coincide from some
level on; i.e. there exists N such that for all n > N we have en = fn. It is straight-
forward to verify that this is an equivalence relation. In fact, this becomes an AF
equivalence relation, by introducing a natural topology which we now describe. For
n = 0, 1, 2, . . . , let Rn = {(x, y) ∈ X(V,E) × X(V,E) | ei = fi for all i > n}, and
let Rn be given the relative topology Tn as a subset of X(V,E) ×X(V,E) (with the
product topology). Then Rn is closed in X(V,E) × X(V,E), and so, in particular,
compact. Also (Rn, Tn) is an étale equivalence relation. In fact, let (x, y) ∈ Rn and
take U (x,y) = (Cn(x) × Cn(y)) ∩ Rn. Then r : U (x,y) → Cn(x)(= r(U (x,y))) is a
homeomorphism. (Continuity of product and inverse maps is simple to show.) One
sees easily that Rn is an open subset of Rn+1, and so the inductive limit (R, T ) of
the sequence {(Rn, Tn)}∞n=0 is an AF equivalence relation. Clearly R is tail equiva-
lence. Given the Bratteli diagram (V, E), let AF (V, E) denote the AF equivalence
relation on X(V,E) as described above.

We have the following theorem which characterizes AF equivalence relations in
terms of Bratteli diagrams [5, Theorem 3.9.].

Theorem 1.6. Let (R, T ) be an AF equivalence relation on the compact and zero-
dimensional space X. There exists a Bratteli diagram (V, E) such that (R, T ) is
isomorphic to the AF equivalence relation AF(V, E) associated to (V,E). The dia-
gram is simple if and only if (R, T ) is minimal.

Bratteli diagrams are closely connected to dimension groups. Abstractly defined,
a dimension group is an ordered abelian group (G, G+), where G+(⊂ G) is the
positive cone, satisfying the following conditions:

(i) G+ + G+ ⊂ G+

(ii) G+ −G+ = G
(iii) G+ ∩ (−G+) = {0}
(iv) if g ∈ G and ng ∈ G+ for some n ∈ N, then g ∈ G+ (i.e. G is unperforated)
(v) G has the Riesz interpolation property, i.e. if g1, g2 ≤ h1, h2, there exists

g ∈ G such that g1, g2 ≤ g ≤ h1, h2 (where s ≤ t denotes t− s ∈ G+).
An element u ∈ G+ is an order unit if for every g ∈ G there exists n ∈ N such that
g ≤ nu. If every element of G+ \ {0} is an order unit, we call (G, G+) a simple
dimension group.

We associate to a Bratteli diagram (V,E) a dimension group, which we will
denote by K0(V, E), and it is defined to be the inductive limit of the sequence

Z = Z|V0| A1−→ Z|V1| A2−→ Z|V2| A3−→ · · · ,

where An is the incidence matrix between level (n−1) and n of the Bratteli diagram.
Each Z|Vn| has standard order. The natural maps determined by the matrices An

are positive, and the group K0(V, E) is given the induced order. The canonical
order unit is the element corresponding to 1 ∈ Z|V0|(= Z).

An order isomorphism φ between two ordered groups with order units (G1, G
+
1 , u1)

and (G2, G
+
2 , u2) is a group isomorphism φ : G1 → G2 such that φ(G+

1 ) = G+
2 and
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φ(u1) = u2. One can show [2, Theorem 3.1] that any dimension group (G,G+, u)
is order-isomorphic to K0(V, E) for some Bratteli diagram (V, E). Furthermore,
(G,G+) is simple iff (V, E) is a simple Bratteli diagram.

It is a well known fact that two Bratteli diagrams (V,E) and (V ′, E′) are isomor-
phic if and only if K0(V,E) is order-isomorphic to K0(V ′, E′), by a map sending
the canonical order unit of one to the canonical order unit of the other (c.f.[3]).

We recall the following result which links Bratteli diagrams, AF equivalence
relations and dimension groups.

Theorem 1.7. [5, Lemma 4.13]. If (Ri, Ti) ' AF (Vi, Ei), i = 1, 2, then the
following are equivalent:

(i) (R1, T1) ' (R2, T2)
(ii) (V1, E1) ∼ (V2, E2)
(iii) K0(V1, E1) ' K0(V2, E2)

Remark 1.8. Let (R, T ) be an AF equivalence relation such that R ' AF (V,E).
By Theorem 1.7 the dimension group K0(V, E) is a complete isomorphism invariant
for (R, T ), and we will denote it by K0(R, T ) (or K0(R) for short).

2. Étale equivalence relations associated to group actions

By an action of a (countable, discrete) group G on a (compact) topological space
X we shall mean an injective map α : G → Homeo(X) such that αg ◦ αh = αgh

for all g, h ∈ G. Thus we may consider G embedded as a subgroup of Homeo(X).
We will use the notation gx instead of αg(x), and let (X, G) denote the dynamical
system associated to the action α. The action is free if gx = x for some x ∈ X,
g ∈ G, implies that g = id, and it is minimal if for every x ∈ X, the G-orbit
[x]G = {gx}g∈G is dense in X.

A conjugacy of two dynamical systems (X, G) and (Y, H) is a pair of maps
Θ : X → Y and γ : G → H, where Θ is a homeomorphism and γ is a group
isomorphism, such that the diagram

X
g //

Θ

²²

X

Θ

²²
Y

γ(g) // Y

commutes for all g ∈ G. We will write (X,G) ' (Y,H).
Given an action of G on X, we define the associated equivalence relation RG by

RG = {(x, gx) |x ∈ X, g ∈ G} ⊂ X ×X.

If fix(g) = {x ∈ X | gx = x} is an open set (hence it is clopen) for all g ∈ G,
then we can define an étale topology TG on RG by choosing as a basis the family
consisting of local graphs. Specifically, if (x, gx) ∈ RG for some x ∈ X, g ∈ G,
a local basis at (x, gx) consists of the sets graph(g|U ) = {(y, gy) | y ∈ U}, where
U ⊂ X is an open neighborhood of x in X. It is routine to verify that this defines
an étale topology TG on RG. We omit the details. In the particular case that the
action is free, i.e. fix(g) = ∅ if g 6= id, then the topology TG that we have described
coincides with the topology we get by transferring the product topology of X ×G
to RG via the bijection (x, g) → (x, gx). We observe that RG is compact if and
only if G is a finite group.



6 HEIDI DAHL

In particular, we will be interested in the equivalence relation associated to a
locally finite group. A group G is locally finite if it can be written as a union of an
increasing sequence of finite groups, i.e. G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ G = ∪∞n=0Gn, each
Gn finite. The following result is the starting point of our paper, and we therefore
present its simple proof.

Theorem 2.1. [5, Theorem 3.8]. Let G be a countable group acting minimally and
freely on a compact, zero-dimensional space X, and let (RG, T ) be the associated
étale equivalence relation. Then (RG, T ) is an AF equivalence relation if and only
if G is locally finite.

Proof. Assume G is locally finite, and let G0 = {id} ⊂ G1 ⊂ G2 ⊂ · · · ⊂ G =
∪∞n=0Gn, where each Gn is a finite group. Then {(RGn

, Tn)}∞n=0 is an increasing
sequence of compact étale equivalence relations (CEERs) on X, and it is easily
seen that (RG, T ) is the inductive limit of this sequence. Hence (RG, T ) is an AF
equivalence relation.

Conversely, assume (RG, T ) is an AF equivalence relation, and write R = ∪∞n=0Rn,
each Rn being CEER and open in R, where R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ R. Let F ⊂ G
be a finite set. In order to show that G is locally finite, it suffices to show that the
subgroup generated by F is finite. Now X × F is compact, so by the identification
(x, g) ↔ (x, gx) it is contained in some Rn. Define H = {g ∈ G | X × {g} ⊂ Rn}.
Clearly F ⊂ H, and since Rn is an equivalence relation, this implies that H is a
subgroup of G. In fact, if h1, h2 ∈ H, then both (x, h2x) and (h2x, h1(h2x)) are
in Rn for all x ∈ X, and so by reflexivity (x, (h1h2)x) ∈ Rn for all x ∈ X. Hence
h1h2 ∈ H. Similarly it follows that h ∈ H implies h−1 ∈ H. Since Rn is compact,
H must be finite, and so the subgroup generated by F is finite.

¤

Combining Theorem 1.6 and Theorem 2.1 we get that the étale equivalence rela-
tion RG = {(x, gx) |x ∈ X, g ∈ G} associated to a locally finite group acting freely
and minimally on a compact, zero-dimensional space, is isomorphic to AF (V, E)
for some Bratteli diagram (V, E).

Before we study this connection in more detail, we give a few more definitions
concerning groups acting on (path spaces of) Bratteli diagrams.

Let (V,E) be a Bratteli diagram. We let H̃n denote the group acting on the
path space X(V,E) by permuting paths that are cofinal from level n. Specifically, if
h ∈ H̃n and x = (ei)∞i=1 ∈ X(V,E), then h(x) = (fi)∞i=1, where fk = ek for k > n

and t(fn) = t(en). We may also say that H̃n permutes the cylinder sets meeting
at the same vertex at level n, and we assume that all possible permutations occur.
The way H̃n is embedded in H̃n+1 is the obvious one, namely that if h ∈ H̃n

maps the cylinder set Cn(x), x = (ei)n
i=1, to the cylinder set Cn(y), y = (fi)n

i=1,
where t(en) = t(fn), then h acts, considered as an element of H̃n+1, respecting
the subpartition of Cn(x) and Cn(y) that occurs at level (n + 1), i.e. h fixes the
(n+1)’th edge of the cylinder sets defined at level (n + 1).

Definition 2.2. The full AF-group associated to a Bratteli diagram (V, E) is de-
fined to be the locally finite group H̃(V, E) = ∪∞n=0H̃n, where H̃0 = {id} and H̃n

acts on the path space X(V,E) as described above. We will call a subgroup H of
the full AF-group H̃(V, E) an AF-group (associated to (V, E)), and the action of
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a group element will be called an AF-action. We say that H acts transitively if
Hn = H ∩ H̃n acts transitively on each of the collections of cylinder sets which
meet at the same vertex at level n, for n = 1, 2, . . . . Clearly H = ∪∞n=0Hn, where
Hn = H ∩ H̃n.

Remark 2.3. Observe that when H = ∪∞n=0Hn is an AF-group, the fix-point set
fix(h) = {x ∈ X(V,E) |hx = x}, is a clopen set for each h ∈ H. Also, if (V, E) is a
simple Bratteli diagram and H is an AF-group acting transitively on X(V,E), then
the action is minimal.

Definition 2.4. A group G acting as homeomorphism on a (compact, metrizable)
zero-dimensional space X is ample (we also say, G acts amply) if it satisfies the
following: If X = tm

i=1Ai = tm
i=1Bi are two (finite) clopen partitions of X having

the same cardinality, such that for each i = 1, . . . , m, there exists gi ∈ G such that
gi(Ai) = Bi, then there exists g ∈ G such that g|Ai

= gi|Ai
, i = 1, . . . ,m, where

g|Ai denotes the restriction of g to Ai. (The symbol t is used for disjoint union.)

Remark 2.5. Observe that ampleness is preserved under conjugation. The full AF-
group H̃(V, E) = ∪∞n=0H̃n associated to a Bratteli diagram (V, E) is ample. In fact,
assume we have two clopen partitions X(V,E) = tm

i=1Ai and X(V,E) = tm
i=1Bi and

group elements hi such that hi(Ai) = Bi i = 1, 2, . . . ,m. Then there is a an n such
that h1, . . . hm ∈ H̃n. So we may assume that all partition elements are cylinder sets
of length n. If hi(Ai) = Bi, then Ai and Bi terminate at the same vertex at level
n, by definition of the AF-action. Since the full AF-group consists of all possible
permutations on each vertex level, there exists a single element h ∈ H̃n such that
h(Ai) = Bi for all i = 1, . . . ,m. It is easily seen that a transitive AF-group can not
be ample unless it is the full AF-group. Observe that if we telescope the Bratteli
diagram (V,E) and get the new Bratteli diagram (V ′, E′), then (X(V,E), H̃(V, E))
is conjugate to (X(V ′,E′), H̃(V ′, E′)) via the obvious map Π : X(V,E) → X(V ′,E′).

We introduce the following terminology: Let P = {P1, P2, . . . , Pn} and
Q = {Q1, Q2, . . . , Qm} be two (finite) coverings of the (compact, metrizable) zero-
dimensional space X, i.e. X =

⋃n
i=1Pi =

⋃m
j=1Qj . We say that P is a refinement

of Q (notation Q ≺ P) if each Qi ∈ Q is a union of Pj ’s in P. In general, if P and
Q are two coverings, we let P ∨ Q denote the smallest refinement of P and Q, i.e.
P ∨ Q = {Pi ∩ Qj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. In particular, this applies to clopen
partitions of X.

3. A Bratteli diagram model for RG

In this section we construct a Bratteli diagram representation of (X, G), where
G = ∪∞n=0Gn is a locally finite group acting on a compact, metrizable, zero-
dimensional space X. We will need the fix-point set fix(g) = {x ∈ X | gx = x} to
be clopen for each g ∈ G. An important special case of this is when the action is
free, i.e. fix(g) = ∅ if g 6= id. Specifically, we prove that under these assumptions
(X, G) is conjugate to the action of an AF-group associated to the constructed
Bratteli diagram (V,E). If G acts amply the AF-group in question will be the full
AF-group. We will use these results to relate the étale equivalence relation RG

associated to the G-action to the dynamical system (X, G).
We state the main theorem of this section.
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Theorem 3.1. Let G = ∪∞n=0Gn be a locally finite, countable group acting on a
compact, metrizable, zero-dimensional space X such that the fix-point sets fix(g) =
{x ∈ X | gx = x} are clopen for all g ∈ G. There exists a Bratteli diagram (V, E)
and a homeomorphism Π : X → X(V,E) such that if we let H = {Π◦g◦Π−1 | g ∈ G},
then H is an AF-group acting transitively on X(V,E), and (X, G) is conjugate to
(X(V,E),H) via the map Π. Furthermore, if G acts amply then H is the full AF-
group associated to (V,E). Finally, the Bratteli diagram (V, E) is simple if and
only if the G-action is minimal.

The next lemma is the key result for the construction of the Bratteli diagram
(V, E), and hence for the proof of the theorem. The proof of the lemma is essentially
contained in [9], but we have chosen to present a simple alternative proof that can
be found in [8].

Lemma 3.2. Let G = ∪∞n=0Gn be a locally finite group, where {id} = G0 ⊂ G1 ⊂
G2 ⊂ · · · ⊂ G, the Gn’s being finite groups. Let G act on the compact, metrizable,
zero-dimensional space X such that for each g ∈ G the set fix (g) = {x ∈ X | gx = x}
is clopen. There exists a nested sequence of (finite) clopen partitions {X} = P0 ≺
P1 ≺ P2 ≺ · · · of X such that:

(i) If g ∈ Gn and P ∈ Pn, then gP ∈ Pn.
(ii) If g ∈ Gn, P ∈ Pn and gP ∩ P 6= ∅, then g |P = id |P .
(iii) The sequence {Pn}∞n=0 generates the topology on X.

Proof. We claim that it is sufficient to show that for any clopen, finite partition
Q of X and any finite group G acting on X with clopen fix-point sets, we can
construct a clopen partition P of X such that P is a refinement of Q, and P satisfies
condition (i) and (ii) of the lemma. In fact, starting with a sequence {Qn}∞n=0,
Q0 = {X}, of clopen partitions generating the topology of X, we inductively define
Q′n = Pn−1 ∨ Qn, where we set P0 = {X}, and apply the stated claim to Q′n and
Gn to obtain Pn. Then clearly the sequence {Pn}∞n=0 satisfies the conditions of the
lemma. So let G and Q be given as above. Let x be a point in X, and consider
the finite set {gx}g∈G. Enumerate the distinct points of this set as x1, x2, . . . , xl.
Choose a disjoint family of clopen sets {Ui}l

i=1 such that for each i ∈ {1, 2, . . . , l},
xi ∈ Ui and Ui is contained in a set i Q. Let Vi = Ui ∩

⋂

g∈G
xi∈fix(g)

fix(g), and observe

that if gxi = xi for some g, then g |Vi= id |Vi , since Vi ⊂ fix(g). Note that xi ∈ Vi,
and that {Vi}l

i=1 is a disjoint family of clopen sets such that each Vi is contained
in some set in Q. For i ∈ {1, 2, . . . , l}, we define the set Wi to be Wi =

⋂

g∈G
xi=gxj

g(Vj).

We observe that Wi ⊂ Vi, since gxi = xi for g = id, and so {Wi}l
i=1 is a disjoint

family of clopen sets, and each Wi is contained in some set in Q. The following
holds:

(a) Given h ∈ G such that hxi = xk. Then
h(Wi) =

⋂

g∈G
xi=gxj

(hg)(Vj) =
⋂

g∈G
xk=(hg)xj

(hg)(Vj) =
⋂

g′∈G
xk=g′xj

g′(Vj) = Wk.

(b) Assume h(Wi)∩Wi 6= ∅. By (a), h(Wi)∩Wi = Wk ∩Wi for some k, so we
must have i = k. Hence h(Wi) = Wi and hxi = xi, and so h |Wi= id |Wi

(since Wi ⊂ Vi).
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Hence Px = {Wi}l
i=1 satisfies condition (i) and (ii) of the lemma, and each Wi

is contained in some set in Q. By compactness of X we can find a finite number
of points, say y1, y2, . . . , yN , in X such that Py1 ,Py2 , . . . ,PyN

together cover X.
Setting P = ∨N

j=1Pyj
we obtain the desired partition refining Q and satisfying (i)

and (ii). ¤

Next we describe the construction of the Bratteli diagram associated to the
sequence of clopen partitions {Pn}∞n=0 of X, satisfying the conditions in Lemma
3.2. We will henceforth write gP instead of g(P ), where P ∈ Pn and g ∈ Gn.
The group Gn acts on Pn by left multiplication, and the distinct orbits under this
action yields a clopen partition of X into distinct towers, whose floors are made
up of sets in Pn. Specifically, the tower containing the set P ∈ Pn as a floor is
[P ]n = {gP | g ∈ Gn}. Consider two consecutive partitions Pn−1 and Pn, and
an element P ∈ Pn, n ≥ 1. Since Pn−1 ≺ Pn, there exists a unique P ′ ∈ Pn−1

such that P ⊂ P ′. We will refer to P ′ as a superset of P . Let g ∈ Gn−1 ⊂ Gn.
Then gP ⊂ gP ′ ∈ [P ′]n−1, so the set {gP | g ∈ Gn−1} is contained in the tower
[P ′]n−1. Also, for g′ ∈ Gn \ Gn−1 we have g′P ⊂ P ′′ for some P ′′ ∈ Pn−1,
and so the set {g(g′P ) | g ∈ Gn−1} is contained in the tower [P ′′]n−1. We may
describe this by saying that the towers at the n’th level are traversing the towers
at the (n − 1)’th level. The vertex set Vn, n ≥ 0, at the n’th level of our Bratteli
diagram (V, E) will be in one-to-one correspondence with the towers at level n.
Specifically, we set Vn = {[P ]n |P ∈ Pn}. The edge set En ⊂ E is defined to be
En = {{gP | g ∈ Gn−1} |P ∈ Pn}. The range t(e) of e = {gP | g ∈ Gn−1} ∈ En

is defined by inclusion, i.e. t(e) = [P ]n ∈ Vn since e ⊂ [P ]n. The source i(e) of e
is defined to be the element [P ′]n−1 = {gP ′ |g ∈ Gn−1} ∈ Vn−1, where P ′ is the
unique superset of P lying in Pn−1. Loosely speaking, we put an edge between
a vertex v ∈ Vn and a vertex w ∈ Vn−1 whenever the tower represented by v is
traversing the tower represented by w in the way we have described above. Since
P0 = {X}, we get a standard Bratteli diagram.

Observe that there is a bijective correspondence Πn between Pn and the set of
finite paths (or the associated cylinder sets) from v0 ∈ V0 to level n in the Bratteli
diagram. In fact, given P ∈ Pn and 1 ≤ k ≤ n, then the k′th edge of Πn(P ) is
the edge {gP ′ | g ∈ Gk−1} between level k − 1 and k which is uniquely determined
by the requirement that P ′ ∈ Pk is a superset of P . In particular, this implies
that the number of paths from v0 to v = [P ]n ∈ Vn is the same as the height of
the tower [P ]n. Since the sequence {Pn}∞n=0 generates the topology of X, it is
easy to see that this determines a homeomorphism Π : X → X(V,E), defined by
Π(x) = lim

n→∞
Πn(Pn), where x ∈ Pn ∈ Pn for all n ≥ 0 (and so the descending

sequence {Pn}∞n=0 of clopen sets shrinks to a unique path in X(V,e)).

Proof of Theorem 3.1. We have above described the construction of the Bratteli
diagram (V, E) and the homeomorphism Π : X → X(V,E). It remains to show
that Π implements a conjugacy between (X, G) and (X(V,E),H), where H is an
AF-group acting on X(V,E).

Let g ∈ G. Define h = Π ◦ g ◦ Π−1. We need to show that h acts on X(V,E)

by permuting only the initial segment of paths that are cofinal from some specified
vertex level, leaving the tail unchanged, and thus h will be an element of the
full AF-group H̃(V, E) = ∪∞n=0H̃n. Now g ∈ Gn for some n. Consider a path
x = (ei)∞i=1 ∈ X(V,E) passing through the vertex v = [P ]n ∈ Vn, where P ∈ Pn.
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As [gP ]n = [P ]n, we get that x is mapped by h to another path going through the
same vertex. For m > n, the edge em = {g′P ′ | g′ ∈ Gm−1} ∈ Em, where P ′ ∈ Pm,
is fixed under the action of g ∈ Gn ⊂ Gm−1. Therefore (hx)m = em, and so h acts
solely by permuting finite paths from the top vertex to a given vertex v in Vn. We
conclude that H = {Π ◦ g ◦ Π−1 | g ∈ G} is a subgroup of H̃(V,E), and so is an
AF-group. In fact, we get that ΠGnΠ−1 = H ∩ H̃n = Hn, H = ∪∞n=0Hn.

We may identify the action of G on X and the conjugate action of H on the path
space X(V,E). Clearly the G-orbit of an infinite path is a subset of its cofinality
class. We show that they coincide. Assume x = (ei)∞i=1 and y = (fi)∞i=1 are two
cofinal paths in X(V,E). We want to find g ∈ G such that x = gy. Let n be such
that ei = fi for i > n and let P1, P2 ∈ Pn be such that (ei)n

i=1 = Πn(P1) and
(fi)n

i=1 = Πn(P2). Then P1 and P2 are floors in the same tower at level n, and so
t(en) = t(fn) = v ∈ Vn, and there is an element g ∈ Gn which maps P1 to P2.
Clearly g maps Πn(P1) to Πn(P2), and by the same argument as we gave above g
fixes all edges below n. Hence x = gy. Observe that we have actually proved that
g maps the cylinder set associated to Πn(P1) onto the cylinder set associated to
Πn(P2), and hence G acts transitively (cf. Definition 2.2). So if G acts amply, then
by Remark 2.5, G is the full AF-group H̃(V, E).

Finally, the last assertion follows form the well-known fact that a Bratteli dia-
gram (V,E) is simple if and only if for each x ∈ X(V,E), the set of paths that are
cofinal with x is dense in X(V,E). ¤

Corollary 3.3. Let (X, G) be as in Theorem 3.1. Then the étale equivalence rela-
tion (RG, TG) introduced in Section 2 is an AF equivalence relation. In fact, RG is
isomorphic to AF (V,E), where (V, E) is the Bratteli diagram in Theorem 3.1.

Proof. By Theorem 3.1 we may assume that X = X(V,E) for some Bratteli diagram
(V, E), and that G is an AF-group acting transitively on X(V,E). It is now easy
to see that (RG, TG) is isomorphic to AF (V, E). In fact, the graph of an element
g ∈ G is obviously related to the maps of cylinder sets that are relevant for the
topology on AF (V, E). We omit the details. ¤

The following theorem is essentially due to Krieger [9, Theorem 3.5 and Corollary
3.6]. However, we state it in terms of equivalence relations, and our proof is an easy
consequence of Theorem 3.1.

Theorem 3.4. For i = 1, 2, let (Xi, Gi) be a dynamical system, where Xi is a
compact, metrizable, zero dimensional space, and Gi is a locally finite group acting
amply on Xi, such that the fix-point sets fix(g) = {x ∈ Xi | gx = x} are clopen
for all g ∈ Gi. Then (X1, G1) is conjugate to (X2, G2) if and only if (RG1 , TG1) is
isomorphic to (RG2 , TG2).

Proof. One implication is immediate, namely that (X1, G1) conjugate to (X2, G2)
implies that (RG1 , TG1) is isomorphic to (RG2 , TG2). For the converse implication,
we may by Theorem 3.1 at start assume that Xi = X(V (i),E(i)), where (V (i), E(i))
is a Bratteli diagram, and Gi is the full AF-group H̃(V (i), E(i)) associated to
(V (i), E(i)), i = 1, 2. As in the proof of Corollary 3.3 we have that (RGi , TGi) '
AF (V (i), E(i)), i = 1, 2. By Lemma 4.13 of [5] there exists an ”aggregate” Brat-
teli diagram (V,E) such that telescoping (V,E) to odd levels yields a telescope of
(V (1), E(1)), and telescoping to even levels yields a telescope of (V (2), E(2)). By
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Remark 2.5 we have that

(X(V (1),E(1)), H̃(V (1), E(1))) ' (X(V,E), H̃(V, E)) ' (X(V (2),E(2)), H̃(V (2), E(2))),

and this completes the proof. ¤

4. Free action of a locally finite group

In this section we consider the extreme opposite case of ample action, namely
that the action of the locally finite group G = ∪∞n=0Gn on the Cantor set X is free,
i.e. if gx = x for some x ∈ X, g ∈ G, then g = id. For free actions condition (ii)
in Lemma 3.2 becomes: If g ∈ Gn, P ∈ Pn and gP ∩ P 6= ∅, then g = id. This will
imply that the Bratteli diagram constructed in Section 3 will have the equal path
number property, cf. Definition 4.1. Conversely, we will show that to any Bratteli
diagram having the equal path number property, one can associate a (locally finite)
AF-group acting freely on the path space.

Definition 4.1. A Bratteli diagram (V, E) is said to have the equal path number
property (abbreviated e.p.n-property) if for any two vertices v and v′ at the same
level, the number of (finite) paths from the top vertex v0 ∈ V0 terminating at v is
the same as the number terminating at v′. It is easy to see that this is equivalent
to say that |t−1(v)| = |t−1(v′)| for all v, v′ ∈ Vn, n = 1, 2, . . . . In other words, the
incidence matrix An between levels (n− 1) and n of (V, E) has constant row sums
for n = 1, 2, . . . . Obviously the e.p.n-property is preserved under telescoping.

Bratteli diagrams having the e.p.n-property arise in the study of Toeplitz flows.
In fact, in the Bratteli-Vershik model (V, E,≥) (cf. [7, Theorem 4.6]) for Toeplitz
flows the underlying Bratteli diagram (V,E) has the e.p.n-property [6]. Conversely,
if (V,E) has the e.p.n-property, there exists a Toeplitz flow (X,T ) such that the
dimension group K0(X, T ) associated to (X, T ) is order-isomorphic to K0(V, E)
[11].

For free actions we have the following version of Theorem 3.1, Corollary 3.3 and
Theorem 3.4:

Theorem 4.2. If G = ∪∞n=0Gn is a locally finite group acting freely and minimally
on the Cantor set X, then there exists a simple Bratteli diagram (V, E) having the
e.p.n-property such that RG is isomorphic to AF(V, E). Also, (X,G) is conjugate
to (X(V,E),H), where H = ∪∞n=0Hn is an AF-group acting transitively and freely
on X(V,E), such that the number of paths from v0 ∈ V0 to any vertex v ∈ Vn is
|Gn| = |Hn|, n = 1, 2, . . . .

Proof. We only need to show that the Bratteli diagram has the e.p.n-property, as
the rest are immediate consequences of Theorem 3.1 and Corollary 3.3. Looking
at the way we construct the Bratteli diagram (V, E) in the proof of Theorem 3.1,
wee see that the height of a tower [P ]n = v ∈ Vn at level n, where P ∈ Pn, is equal
to the order |Gn| of Gn. This is an immediate consequence of the freeness of the
action. So (V,E) has the e.p.n-property. ¤

We will now look at the converse problem, and this is treated in the following
theorem.

Theorem 4.3. Let (V,E) be a simple Bratteli diagram having the equal path number
property. There exists a locally finite group G = ∪∞n=0Gn acting freely on the path
space X(V,E) such that G is a transitive AF-group (with respect to (V,E)), and we
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have that RG is isomorphic to AF (V, E). In particular, if bn is the number of paths
from v0 ∈ V0 to a vertex at level n, we can choose Gn to be the cyclic group on bn

symbols.

Proof. We will inductively construct a sequence G0 = {id} ⊂ G1 ⊂ G2 ⊂ · · · ⊂
Gn−1 ⊂ Gn ⊂ . . . of finite cyclic groups, where the action of Gn can be described
by how it permutes the finite paths of length n, or rather the corresponding cylinder
sets. It will be clear from our construction that G will be a transitive AF-group, and
so we get by Corollary 3.3 that RG ' AF (V, E). It is clearly sufficient to describe
how a generator gn of Gn, n = 0, 1, 2, . . . , acts on X(V,E). First, let b1 be the number
of edges from v0 to a vertex at level 1. This number does not depend upon the choice
of vertex, because (V, E) has the e.p.n-property. Let G1 be the cyclic group of order
b1, and let g1 be a generator. Then g1 shall act by cyclically permuting the first edge
of any x ∈ X(V,E), keeping the tail unchanged. Specifically, if x = (e1, e2, e3, . . . ) ∈
X(V,E), we let gx = (e, e2, e3, . . . ) ∈ X(V,E), (and so in particular t(e) = t(e1) =
v ∈ V1), where e is the successor of e1 ∈ E1 in a linear ordering we give t−1(v), say
f1, f2, · · · , fb1 , with the proviso that we define f1 to be the successor of fb1 . Let
v′ ∈ V1 be another vertex. In the sequel we will use the order preserving bijection
between t−1(v) and t−1(v′) to identify these two edge subsets of E1 – the relevance of
this will become clear in what follows. We will describe how the cyclic group G2 acts
on X(V,E), keeping in mind that the action of G2 must be compatible with the action
of the subgroup G1. Since the same type of argument works in general, i.e. going
from Gn−1 to Gn – the modifications that have to be made being obvious – we will
content ourselves with showing this special case. Now |G2| equals b2, the number
of paths from v0 ∈ V0 to any vertex in V2. Let g2 be a generator for G2. We may
clearly assume that gr

2 = g1, where r = b2
b1

= row sum of the incidence matrix A2 =

(aij)i=1,...,q
j=1,...,p

between levels 1 and 2. We order the b2 paths from v0 ∈ V0 to v
(2)
i ∈

V2 = {v(2)
1 , v

(2)
2 , . . . v

(2)
q }: Let V1 = {v(1)

1 , v
(1)
2 , . . . v

(1)
p }, which we give a linear

ordering, say from left to right. A path from v0 ∈ V0 to v
(2)
i passing through

v
(1)
j ∈ V1 gets the label (s, j, t), where s ∈ {1, . . . b1} tells which edge in E1, in the

ordering we introduced above, that the path follows. Furthermore t ∈ {1, . . . , aij}
tells which edge between v

(1)
j and v

(2)
i the path follows, where we give these edges

an (arbitrary) linear ordering. Note that there are b1 ·
∑p

j=1 aij = b1r = b2 different

labels. We order the paths from v0 to v
(2)
i lexicographically, i.e. (s, j, t) > (s′, j′, t′)

if (i) s > s′ or (ii) s = s′ and j > j′, or (iii) s = s′, j = j′ and t > t′. Now
let the generator g2 ∈ G2 act by cyclically permuting these edges (or, rather, the
corresponding cylinder sets), keeping tails fixed, analogous to what we did at the
first level. It is now straightforward to verify that this action is compatible with
the action of G1. In fact, one verifies easily that g1(x) = gr

2(x) for all x ∈ X(V,E).
Finally, the action of G that we have defined is free. In fact, if g ∈ Gn and gx = x

for some x = (e1, e2, . . . , en, en+1, . . . ) ∈ X(V,E), then by definition of the action, g
will fix (pointwise) the cylinder set associated to the (finite) path (e1, e2, . . . , en),
and hence g will fix every cylinder set of length n since the generator gn of Gn

cyclically permutes the cylinder sets (keeping tails fixed), analogous to what we
explained for n = 1 and 2. So g = id. ¤
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A natural question to ask is if the locally finite group we can associate to a
Bratteli diagram having the e.p.n-property, acting as stated in Theorem 4.3, is in
some sense unique? The answer to that question is answered by Proposition 4.4,
Corollary 4.7 and Proposition 4.9.

Proposition 4.4. Let (V, E) be a simple Bratteli diagram having the equal path
number property. Assume an is the number of edges terminating at a vertex at level
n, i.e. an is the row sum of the incidence matrix An between levels (n− 1) and n

of (V, E). Then for any locally finite group G = ∪∞n=0Gn, with |Gn|
|Gn−1| = an (where

we assume G0 = {id}, a0 = 1), one can define a free and transitive AF-action of
G on X(V,E).

Proof. We will describe how G1 and G2 acts on the cylinder sets (keeping tails fixed)
at level 1 and level 2, respectively. From this it will be clear how one proceeds to
define the action of Gn on cylinder sets at level n, n > 2. Let G1 = {h1, . . . , ha1},
and let G1 act by left multiplication; i.e. label the edges meeting at any vertex v
in V1 by h1, h2, . . . ha1 , and let the action of an element h ∈ G1 on the cylinder set
associated to the edge hj , with t(hj) = v, be defined by left multiplication, keeping
tails fixed. Specifically, if x = (hj , e2, e3, . . . ) ∈ X(V,E), then hx = (hhj , e2, e3, . . . ).
Clearly, this is a free action, since hx = x implies hhj = hj , and so h = id. Next
we label the paths from v0 ∈ V0 to any w ∈ V2 by elements of G2, and then
letting G2 act on the associated cylinder sets by left multiplication, similarly to
what we did above for G1. Also, we have to make this action compatible with
the action of G1(⊂ G2). We proceed as follows: For g ∈ G2, form the right coset
G1g = {hg |h ∈ G1}. This gives a partition of G2 into |G2|

|G1| = a2 disjoint cosets,
each having |G1| elements. Pick a representative for each coset to get the set
{g1, g2, . . . , ga2}. We label the edges meeting at any w ∈ V2 by g1, g2, . . . , ga2 . We
label the path (hi, gj) from v0 to w ∈ V2, i.e. first following the edge labeled hi,
and then the edge labeled gj (where t(hi) = i(gj) = v ∈ V1), by higj ∈ G2. We
claim that if we let G2 act by left multiplication on the cylinder sets associated to
these paths, then we get what we want. To prove this is routine, and we omit the
details. ¤

Remark 4.5. If we telescope the diagram (V,E) in Proposition 4.4 to levels 0 =
n0 < n1 < n2 < . . . to get the new diagram (V ′, E′), and we write G = ∪∞k=0Gnk

,
then it is easy to see that Gnk

acts on the cylinder sets at level k of (V ′, E′) the
same way as Gnk

acts on the cylinder sets at level nk of (V, E), by making the
obvious identification between paths of length k in (V ′, E′) with paths of length nk

in (V, E).

Definition 4.6. Let G = ∪∞n=0Gn be a locally finite group, where |G0| = 1.
The superorder of G is the generalized natural number N(G) = Π∞n=1

|Gn|
|Gn−1| =

pk1
1 pk2

2 pk3
3 · · · , where p1 < p2 < . . . are the prime numbers, and ki ∈ {0, 1, 2, . . . ,∞}.

(We factor |Gn|
|Gn−1| = an = p

l
(n)
1
1 p

l
(n)
2
2 · · · , and then ki = l

(1)
i + l

(2)
i + · · · .)

Corollary 4.7. Let (V,E) be a simple Bratteli diagram having the e.p.n-property,
and assume that G = ∪∞n=0Gn is a locally finite group acting freely and transitively
(hence minimally) as an AF -group on X(V,E). Then for any locally finite group
H = ∪∞n=0Hn such that N(H) = N(G), there is a free and transitive AF-action of



14 HEIDI DAHL

H on the path space of a Bratteli diagram (V ′, E′) such that (V, E) ∼ (V ′, E′), or,
equivalently, (RG, TG) ' (RH , TH) (cf. Theorem 1.7).

Proof. The last assertion, i.e. (V, E) ∼ (V ′E′) if and only if (RG, TG) ' (RH , TH),
is an immediate consequence of Theorem 4.3 and Theorem 1.7.

By Proposition 4.4 and Remark 4.5 it is sufficient to construct an (”aggregate”)
simple Bratteli diagram (W,F ) having the e.p.n-property such that the following
hold:

(i) Telescoping (W,F ) to odd levels yields a telescope of (V, E).
(ii) Telescoping (W,F ) to even levels yields a diagram (V ′, E′) (with the e.p.n-

property) such that the number of paths from v′0 ∈ V ′
0 to any vertex v′ ∈ V ′

k

equals |Htk
|, k = 1, 2, . . . , where 0 < t1 < t2 < . . . .

We describe the construction of the first three levels of (W,F ), and it will then
be clear how one proceeds to construct the whole diagram. Let |G1| = a1. Because
N(H) = N(G), we can find n2 such that |Hn2 | = a1 · a2, with a2 ∈ N. Next find
n3 > 1 = n1 such that |Gn3 | = a1 · a2 · a3, with a3 ∈ N.

Let W0 = V0 = {v0}, W1 = V1 and W3 = Vn3 . We let F1 = E1, retaining the
range and source maps from (V, E), and so the number of edges terminating at any
vertex in W1 is a1. We let W2 consist of |Vn3 | · a3 vertices, and we connect each
vertex in W2 to exactly one of the vertices in W3 with a single edge. Furthermore,
each vertex in W3 is connected to a3 of the vertices in W2 (by a single edge).
This defines F3, and so there are a3 edges terminating at each vertex in W3. We
now define F2 by the requirements that there are a2 edges terminating at each
vertex in W2, and such that if we telescope between W1(= V1) and W3(= Vn3),
by deleting W2, we get exactly the same as if we telescope between V1 and Vn3

in (V, E). This is possible to achieve since the number of (finite) paths of (V, E)
terminating at (any) vertex in Vn3 , and with source in V1, is a2 · a3. We omit the
details, which are easy to establish. The rest of (W,F ) is constructed likewise.
Clearly telescoping (W,F ) to odd levels yields a telescope of (V, E) to the levels
n0 = 0 < n1 = 1 < n3 < n5 < . . . . Also, the diagram (V ′, E′) obtained by
telescoping (W,F ) to even levels has the property stated in (ii), with tk = n2k.
This finishes the proof. ¤

Remark 4.8. It follows from Corollary 4.7 that there exist an abundance of ex-
amples of non-isomorphic locally finite groups acting freely and minimally on the
Cantor set such that the associated (simple) C*-algebra crossed products are iso-
morphic. In fact, if RG ' RH for two such groups G and H, then the associated
C*-crossed products are isomorphic, cf. [10].

Given a dimension group D with order unit u, define Q(D) = {d ∈ D |nd =
mu, some n,m ∈ Z} ⊂ D. Then Q(D) is order isomorphic to a subgroup of the
rational numbers Q (with the standard ordering), via the map d ∈ Q(D) → m

n ∈ Q,
where nd = mu. In particular, the order unit u of D is in Q(D) and is sent to 1 ∈ Q
by this map. Q(D) is called the rational sub-dimension group of D [6, Section 4.1].
Such groups are (order-)isomorphic to either Z, or to subgroups of Q of the form
{ m

a1a2··· ak
|m ∈ Z, k = 1, 2, . . . }, for some {an | an ≥ 2, n = 1, 2, . . . }, cf. [2, Chapter

4]. If (V, E) is a simple Bratteli diagram with the e.p.n-property, and ak is the
number of edges terminating at (any) v ∈ Vk, k = 1, 2, 3, . . . , then it is easy to see
that Q(K0(V,E)) = { m

a1a2···ak
|m ∈ Z, k = 1, 2, . . . } (cf. also [6, Section 4.1]).
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Let N = pk1
1 pk2

2 pk3
3 · · · be a generalized natural number, and let n be a natural

number with unique factorization n = pl1
1 pl2

2 pl3
3 · · · (only a finite number of the

li’s are > 0). We say that n is a divisor in N if li ≤ ki for i = 1, 2, . . . , and
we use the notation n|N . We let Q(N) denote the subgroup of Q defined by
Q(N) = {m

n |m ∈ Z, n|N}.
We can now state the following proposition whose proof is immediate from the

above.

Proposition 4.9. Let G = ∪∞n=0Gn be a locally finite group with superorder N =
N(G). Let G act freely and minimally on the Cantor set X, and let RG be the
associated AF equivalence relation. Then Q(K0(RG)) ' Q(N), where K0(RG) is
the simple dimension group associated to RG (cf. Remark 1.8).
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INDUCED SUBSYSTEMS ASSOCIATED TO A CANTOR
MINIMAL SYSTEM

HEIDI DAHL AND MATS MOLBERG

Abstract. Let (X, T ) be a Cantor minimal system and let (R, T ) be the
associated étale equivalence relation (the orbit equivalence relation). We show
that for an arbitrary Cantor minimal system (Y, S) there exists a closed subset

Z of X such that (Y, S) is conjugate to the subsystem (Z, eT ), where eT is the
induced map on Z from T . We explore when we may choose Z to be a T -
regular and/or a T -thin set, and we relate T -regularity of a set to R-étaleness.
The latter concept plays an important role in the study of the orbit structure
of minimal Zd-actions on the Cantor set, cf. [3], [4].

1. Main results

We state the two main theorems of this paper, postponing the proofs to later. In
the next two sections we will give definitions of pertinent concepts, and state some
properties and results that will be relevant for the proofs.

Theorem 1.1. Let (X,T ) be a Cantor minimal system, and let (Y, S) be an arbi-
trarily given Cantor minimal system. There exists a closed subset Z ⊂ X such that
all points in Z have finite return times under the action of T , and if T̃ : Z → Z

is the induced map (i.e. T̃ z = Tmz, where m = inf{k ∈ N |T kz ∈ Z}), then
(Y, S) ' (Z, T̃ ). We can choose Z ⊂ X to be a T -regular set if we allow one
point x in Z to have infinite return time, appropriately defining T̃ x. Moreover, we
can always choose Z to be a T -thin set in X, i.e. µ(Z) = 0 for all T -invariant
probability measures µ.

Theorem 1.2. Let (X, T ) be a Cantor minimal system and let (R, T ) be the as-
sociated étale equivalence relation. Let Z be a non-empty closed subset of X. The
following are equivalent:

(i) Z is T -regular, i.e. the (forward and backward) return time maps (with
respect to Z) are continuous.

(ii) Z is R-étale, i.e. R ∩ (Z × Z) is an étale equivalence relation.
(iii) Z is R{x}-étale for all x ∈ X, where R{x} is obtained from R by splitting

the T -orbit of x in the forward and backward T -orbits.

2. Basic concepts

In this and the next section we will recall some basic definitions and results that
we will need concerning Cantor minimal systems and étale equivalence relations.
For details we refer to [1], [2], [5] and the survey article [6].

Let X be a locally compact and second countable (hence metrizable) Hausdorff
space. An étale equivalence relation R(⊂ X ×X) on X is a countable equivalence
relation (i.e. every equivalence class is at most countable), which has a topology T

1



2 HEIDI DAHL AND MATS MOLBERG

making it a locally compact topological groupoid, and with the added property that
the range map, r : R −→ X, defined by r((x, y)) = x, is a local homeomorphism.
Recall that r is a local homeomorphism if for all (x, y) ∈ R there exists an open
neighborhood U(x,y) ⊂ R of (x, y) such that

(i) r(U(x,y)) is open in X;
(ii) r : U(x,y) −→ r(U(x,y)) is a homeomorphism.

Recall that the product of composable pairs (x, y), (y, z) ∈ R is (x, y)·(y, z) = (x, z),
and the inverse (x, y)−1 of (x, y) ∈ R is (y, x). We will denote an étale equivalence
relation by (R, T ), or simply by R. We say that R is minimal if [x]R is dense in
X for every x ∈ X, where [x]R = {y ∈ X | (x, y) ∈ R} is the equivalence class of x.
The diagonal ∆ = {(x, x) |x ∈ X} is a clopen subset of R, and is homeomorphic to
X. It should be remarked that only rarely does the topology T on R coincide with
the relative topology from X ×X. In general, T is finer than the relative topology.
We will refer to U(x,y) as an étale neighborhood, and the local homeomorphism
condition as the étale condition. It is easily seen that if S(⊂ X × X) is an open
subequivalence relation of R, then S is étale in the relative topology.

Let (Ri, Ti) be étale equivalence relations on Xi, i = 1, 2. We say that (R1, T1)
is isomorphic to (R2, T2), and write (R1, T1) ∼= (R2, T2), if there exists a homeo-
morphism F : X1 −→ X2 such that

(i) (x, y) ∈ R1 ⇐⇒ (F (x), F (y)) ∈ R2;
(ii) F × F : (R1, T1) −→ (R2, T2), defined by F × F ((x, y)) = (F (x), F (y)) for

(x, y) ∈ R1, is a homeomorphism.

If condition (i) is satisfied, we say that (R1, T1) and (R2, T2) are orbit equivalent.
(Note that condition (i) is equivalent to F ([x]R1) = [F (x)]R2 for each x ∈ X.)

By an action of a countable (discrete) group G on a locally compact, second
countable space X we mean a homomorphism α : G → Homeo(X) such that
αg ◦ αh = αgh for all g, h ∈ G. When the action is free, i.e. if αg(x) = x for some
x ∈ X, some g ∈ G, then g is the identity element of G, this gives rise to an étale
equivalence relation RG on X. That is, we let RG be the orbit equivalence relation
induced by α, where the equivalence class of x ∈ X is the orbit [x]G = {αg(x)|g ∈
G}. We give RG the topology TG, which is obtained by transferring the (product)
topology from the product space X ×G using the map (x, g) −→ (x, αg(x)). (This
map is bijective since the action α is free.) The resulting space (RG, TG) will be an
étale equivalence relation on X.

We will be concerned with the following, which falls under the general scheme
described above: Let (X, T ) be a Cantor minimal system, i.e. X is the Cantor set
and T : X → X is a minimal homeomorphism, where minimality means that the
orbit [x]T = {Tnx |n ∈ Z} is dense in X for all x ∈ X. By viewing (X,T ) as a
(free) Z-action on X, where 1 ∈ Z corresponds to T , we get an étale equivalence
relation on X as described above.

Two Cantor minimal systems (X,T ) and (Y, S) are conjugate, written (X, T ) '
(Y, S), if there exists a homeomorphism h : X → Y such that h ◦ T = S ◦ h.
Conjugate Cantor minimal systems gives isomorphic orbit equivalence relations.

Let (X, T ) be a Cantor minimal system. For a closed, non-empty subset Z
of X, define λ+, λ− : Z −→ N ∪ {∞}, where N ∪ {∞} is given the one point
compactification topology, by

λ+(z) = inf{k ≥ 1 |T kz ∈ Z},
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λ−(z) = inf{k ≥ 1, |T−kz ∈ Z}.
(We use the convention that inf of the empty set is ∞.) These maps are called the
forward and backward return time maps with respect to Z. We say that Z ⊂ X is
regular with respect to T (or T -regular) if both maps λ+ and λ− are continuous.

Remark 2.1. The maps λ+ and λ− are lower semi-continuous. To see this, just
observe that if λ+(z) = k, then T iz is not in Z for i = 1, . . . , k− 1, and since X \Z
is open, there are open neighborhoods UT iz ⊂ X around each of these points, each
UT iz disjoint from Z. Hence V = ∩k−1

i=1 T−i(UT iz) ∩ Z is an open neighborhood
of z in Z, and for all z′ ∈ V we have λ+(z′) ≥ k. With a slight modification the
argument goes through also for λ+(z) = ∞, by considering VN = ∩N

i=1T
−i(UT iz)∩Z

for each N ∈ N. A similar proof can be given for λ−.

Given an étale equivalence relation (R, T ) on a locally compact second countable
space X and a (non-empty) closed subset Z of X we define R|Z = R ∩ (Z × Z)
as an equivalence relation on Z. We say that Z is R-étale if R|Z , given relative
topology T |Z from T , is étale.

3. Bratteli diagrams as models for Cantor minimal systems and for
AF-equivalence relations

The concept of a Bratteli diagram will be important for us, because it serves
as a model, and as such as a crucial tool, for both AF-equivalence relations and
for Cantor minimal systems (when an ordering is introduced). A Bratteli diagram
(V, E) is a special directed infinite graph, consisting of a vertex set V , an edge set
E and two maps i, t : E → V such that

(i) V is an infinite union of disjoint, non-empty finite sets; V = ∪∞n=0Vn, and
V0 is a one-point set; V0 = {v0}.

(ii) E is an infinite union of disjoint, non-empty finite sets; E = ∪∞n=1En.
(iii) The source (or initial) map i satisfies i(En) ⊂ Vn−1 for all n ≥ 1, and

i−1(v) 6= ∅ for all v ∈ V .
(iii) The range (or terminal) map t satisfies t(En) ⊂ Vn for all n ≥ 1, and

t−1(v) 6= ∅ for all v ∈ V \ V0.
For a Bratteli diagram (V, E) we denote by X(V,E) the set of all infinite paths

in (V,E), where a path x = (en)∞n=1 is a sequence of edges e1, e2, · · · , such that
en ∈ En and t(en) = i(en+1) for all n. We can also talk about (finite) paths between
a vertex v ∈ Vn and a vertex w ∈ Vm, m > n, and it is obvious what we mean
by that. If there exists an edge e ∈ En with source v ∈ Vn−1 and range u ∈ Vn,
we say that v is connected to u. We say that two paths x = (en)∞n=1, y = (fn)∞n=1

in X(V,E) are cofinal if there exists an N ∈ N such that en = fn for all n > N .
Henceforth we will only consider non-trivial Bratteli diagrams (V, E), i.e. X(V,E) is
an infinite set.

We describe two operations that we can perform on a Bratteli diagram, turn-
ing it into new Bratteli diagrams that retain the basic properties of the origi-
nal. These are telescoping and its converse, symbol splitting. Let (V,E) be a
Bratteli diagram. Let 0 = t0 < t1 < t2 < . . . be a sequence of natural num-
bers. Define a new Bratteli diagram (V ′, E′) by setting V ′

n = Vtn and E′
n =

{the set of all finite paths between Vtn−1 and Vtn}. The range and source maps are
the obvious ones. We say that (V ′, E′) is a telescope of (V, E).
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Figure 1. An illustration of telescoping
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Figure 2. An illustration of symbol splitting

By the operation of symbol splitting we create a new diagram (V ′, E′) from (V, E)
by inserting new vertex levels. Let V ′

2k = Vk for k ≥ 0, and let |V ′
2k−1| = |Ek| for

k ≥ 1. There is an obvious way of defining E′
2k−1 and E′

2k such that by telescoping
between levels 2k− 1 and 2k we get Ek. In other words, each edge in Ek is split in
two by introducing a vertex in V ′

2k−1. (See Figure 1 and Figure 2 for examples of
telescoping and symbol splitting, respectively. (Disregard the ordering of the edges
for the time being.)

A diagram is simple if it can be telescoped into a diagram (V ′, E′) where each v ∈
V ′

n−1 is connected to each u ∈ V ′
n, all n > 0. For a simple Bratteli diagram (V,E),

the path space X(V,E) becomes a Cantor set, where the cylinder sets {Cn(x) |x =
(e1, e2, · · · ) ∈ X(V,E), n ∈ N} form a clopen basis for the topology. Here Cn(x) =
{y = (f1, f2, · · · ) ∈ X(V,E) | f1 = e1, f2 = e2, · · · , fn = en}. We remark here that if
we drop the condition that (V,E) is simple, then X(V,E) is still a zero-dimensional
space, i.e. X(V,E) has a countable basis of clopen sets (consisting of the cylinder
sets Cn(x)).
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We can give a partial order to the edge set by giving a linear order to the
set of edges t−1(v) for each vertex v ∈ V \ V0. Let (V, E,≥) denote a Bratteli
diagram equipped with a partial order ≥ on E, called an ordered Bratteli diagram.
This induces a (partial) lexicographic order on the path space X(V,E). Specifically,
(ei)∞i=1 > (fi)∞i=1 if there exists n ∈ N such that r(en) = r(fn), ek = fk for all k > n
and en > fn. A path x = (e1, e2, · · · ) ∈ X(V,E) is a maximal (resp. minimal) path
if all edges en are maximal (resp. minimal) in the linearly ordered set r−1(r(en)).

Given an ordered Bratteli diagram (V, E,≥), the Vershik map T(V,E) : X(V,E) →
X(V,E) is defined such that a non-maximal path is mapped to its successor in the lex-
icographic order, while a maximal path is mapped to a minimal path. Let (V, E,≥)
be an ordered Bratteli diagram, where (V,E) is simple. We say that (V,E,≥) is
properly ordered if there exist exactly one maximal path and one minimal path.
Then (X(V,E), T(V,E)) is a Cantor minimal system, and we call such a system a
Bratteli-Vershik system.

We state a basic theorem that we shall need, which we may call the model
theorem for Cantor minimal systems, and we will refer to the properly ordered
Bratteli diagram (V, E ≥) occurring in the theorem as a Bratteli-Vershik model
(for the given Cantor minimal system (X, T )).

Theorem 3.1. ([5, Thm.4.7], [6, Thm.4]) Let (X,T, x) be a (pointed) Cantor mini-
mal system, where x ∈ X. There exists a properly ordered Bratteli diagram (V, E,≥)
such that (X, T, x) is (pointedly) conjugate to
(X(V,E), T(V,E), xmin), where xmin is the unique minimal path in X(V,E). This
means that the conjugating map h : X → X(V,E) maps x to xmin.

Remark 3.2. There is a natural way to introduce an ordering on a Bratteli dia-
gram which is obtained from an ordered Bratteli diagram by either telescoping or
symbol splitting, cf. [1, Section 3]. Both telescoping and symbol splitting yield nat-
ural homeomorphisms, preserving cofinality, between the original path space and
the new path space, such that (X(V,E), T(V,E)) is conjugate to (X(V ′,E′), T(V ′,E′)),
where (V ′, E′,≥) is the ordered Bratteli diagram obtained from (V, E,≥) by a finite
number of telescopings and/or symbol splittings.

The Bratteli diagram (V, E) induces an equivalence relation on X(V,E), denoted
by AF (V,E), namely, two paths are equivalent if and only if they are cofinal.
Topologized appropriately (cf. [2, Example 2.7 (ii)]), AF (V,E) becomes a so-called
AF-equivalence relation, according to the following definition.

Definition 3.3. An AF-equivalence relation R on a zero-dimensional space X is
an étale equivalence relation (R, T ) such that R = ∪∞n=1Rn, where R1 ⊂ R2 ⊂ · · ·
is an increasing sequence of subequivalence relations of R such that Rn = (Rn, Tn)
is a compact étale equivalence relation (CEER) for all n. R is given the inductive
limit topology, i.e. U ⊂ T iff U∩Rn ∈ Tn for all n. We write (R, T ) = lim

−→
(Rn, Tn).

In a similar way as ordered Bratteli diagrams serve as models for Cantor minimal
systems, (unordered) Bratteli diagrams serve as models for AF-equivalence relations
as stated in the following theorem.

Theorem 3.4. ([2, Thm. 3.9]) Let (R, T ) = lim
−→

(Rn, Tn) be an AF-equivalence

relation on the zero-dimensional space X. There exists a Bratteli diagram (V, E)
such that (R, T ) is isomorphic to the AF-equivalence relation AF (V, E) associated
to (V, E). Furthermore, (V, E) is simple if and only if (R, T ) is minimal.
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Combining Theorem 3.1 and Theorem 3.4 we get the following corollary.

Corollary 3.5. ([2, Theorem 2.4]) Let (X,T ) be a Cantor minimal system and let
(R, T ) be the associated étale equivalence relation as described in Section 2. Let x be
an arbitrary point in X. The subequivalence relation R{x} of R whose equivalence
classes are the full T -orbits, except that the T -orbit of x is split into two at x —
the forward orbit {Tnx |n ≥ 1} and the backward orbit {Tnx |n ≤ 0} — is open
in R. Furthermore, (R{x}, T{x}) is an AF-equivalence relation on X, where T{x} is
the relative topology.

Remark 3.6. It is noteworthy that if x1 and x2 are any two points in X, then
(R{x1}, T{x1}) ' (R{x2}, T{x2}). This follows from [2, Lemma 4.13] and [5, Theorem
5.3].

Let (V, E) be a Bratteli diagram. By a subdiagram of (V, E) we mean a Bratteli
diagram (W,F ), where W ⊂ V , F ⊂ E and t(F ) ∪ {v0} = i(F ). The range and
source maps of (W,F ) are the restrictions of the range and source maps of (V,E).
Note that a subdiagram (W,F ) of a Bratteli diagram (V, E) is being telescoped or
symbol splitted in an obvious way simultaneously as these operations are applied to
(V, E). If (V, E,≥) is an ordered Bratteli diagram, a sub-diagram (W,F ) of (V, E)
will inherit the order in an obvious way. Note that if (W,F ) is a sub-diagram of
(V, E), then the topology of AF (W,F ) coincides with the relative topology from
AF (V, E), and so AF (V, E)|X(W,F ) is AF, and hence étale. With the terminology
we have introduced we can say that X(W,F ) is AF (V, E)-étale.

4. Proof of Theorem 1.1

The key to the proof is the following lemma, which illustrates what a useful tool
Bratteli diagram models can be. In fact, by elementary and easy manipulations on
a given Bratteli diagram (ordered or unordered) one can set the stage for proving
non-trivial results that seems to be inaccessible otherwise.

Lemma 4.1. Let (X, T ) be a Cantor minimal system, and let {(lk, nk)}∞k=1 be as
sequence of pairs of natural numbers, where lk ≥ 2. There exists a Bratteli-Vershik
model (V, E,≥) for (X, T ) such that

(i) |Vk| ≥ lk, ∀k > 0.
(ii) xmin and xmax do not pass through the same vertex at any level k ≥ 1

of (V, E), where xmin and xmax denote the unique minimal and maximal
paths, respectively, in X(V,E).

(iii) If Vk−1 = {v1, v2, . . . , vmk−1}, k ≥ 1, then for all vertices w ∈ Vk and for
all vi ∈ Vk−1 we can choose nk edges {e(i,j)}nk

j=1 in Ek connecting w to vi.
Furthermore, the ordering of these edges are as follows: e(1,1) < e(2,1) <
· · · < e(mk−1,1) < e(1,2) < e(2,2) < · · · < e(mk−1,2) < · · · < e(1,nk) < · · · <
e(mk−1,nk).

Proof. Let (V,E,≥) be a Bratteli-Vershik model for (X, T ). It is easy to see that
by a succession of telescoping, symbol splitting and telescoping, in that order, one
may satisfy condition (i) and (ii). Indeed, more can be achieved by the same
token. If (V ′, E′,≥) denotes the new ordered Bratteli diagram obtained, which by
Remark 3.2 is again a Bratteli-Vershik model for (X, T ), then we can assume that
|V ′

k−1| ≤ |V ′
k| for all k ≥ 1. Furthermore, we may assume that (V ′, E′) is totally

connected, that is, between any v ∈ V ′
k−1 and w ∈ V ′

k, there exists an edge e ∈ E′
k
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connecting the two, i.e. i(e) = v and t(e) = w. We observe that all the properties
of (V ′E′,≥) listed above are preserved under telescopings of (V ′, E′,≥).

So we may at start assume that (V,E,≥) has all the above-mentioned properties.
We want to show that condition (iii) can be obtained by telescoping (V,E,≥), and
this will finish the proof by the above remarks. Clearly we can choose a level
k1 ≥ 1 such that if we telescope between level k0 = 0 and k1 of (V, E,≥), then
(iii) is satisfied for k = 1. Assume we have telescoped (V, E,≥) between the levels
0 = k0 < k1 < · · · < kl, such that (iii) is satisfied for k = 1, 2, . . . , l. Now
choose an arbitrary u ∈ Vkl+1. By our assumption on total connection, there
exists an edge ei ranging at u and sourcing at vi for every i ∈ {1, 2, . . . , s}, where
Vkl

= {v1, v2, . . . , vs}. By rearranging we may assume that e1 < e2 < · · · < es.
There exists a level kl+1 > kl+1 such that the number of paths from u to any vertex
in Vkl+1 is at least nk+1. We telescope between level kl and kl+1 of our diagram,
and for each vi ∈ Vkl

and w ∈ Vkl+1 we choose nk+1 paths arbitrarily between
vi and w, except that we require the first edge of each path to be ei. Now it is
easy to see, using the lexicographic way we order paths, that we may arrange these
nk+1 paths, which becomes edges after telescoping, in such a way that they satisfy
condition (iii) for k = kl+1. Telescoping (V, E,≥) to levels 0 = k0 < k1 < k2 < · · · ,
we get a diagram satisfying the three conditions of the lemma. ¤

Proof of Theorem 1.1. The idea is to use Lemma 4.1 to construct a Bratteli-Vershik
model (V, E,≥) for (X,T ), in which we can imbed a Bratteli- Vershik model
(W,F,≥) for (Y, S), such that the ordering on (W,F ≥) coincides with the one
induced from (V, E,≥). This will obviously give a conjugacy h : (Y, S) → (Z, T̃ ),
where Z = X(W,F ), and T̃ : Z → Z is the induced map as described in the theorem.

Let (W,F,≥) be a Bratteli-Vershik model for (Y, S), where the maximal and
the minimal paths pass through different vertices at each level. Let lk = |Wk|
and let nk be the maximal number of edges ranging at a vertex at level Wk, i.e.
nk = max{|t−1(w)| |w ∈ Wk}. Let (V,E,≥) be a Bratteli-Vershik model for (X, T )
satisfying the conditions of Lemma 4.1 with respect to the sequence {(lk, nk)}∞k=1.
We describe how to define a copy of (W,F ) as a sub-diagram of (V, E), such that
the order of (W,F,≥) coincides with the induced order from (V, E,≥).

For k > 0, choose lk = |Wk| vertices {v(k)
1 , v

(k)
2 , . . . , v

(k)
lk
} ⊂ Vk, including the

ones that the unique maximal and minimal paths pass through, denoting these by
v
(k)
max and v

(k)
min, respectively. We denote the corresponding vertices in Wk by w

(k)
max

and w
(k)
min, respectively. Let gk be a bijection between Wk and {v(k)

i }lk
i=1, such that

gk(w(k)
max) = v

(k)
max and gk(w(k)

min) = v
(k)
min. We define g0(w0) = v0, where W0 = {w0}

and V0 = {v0}.
Next we define an injective map hk from Fk into Ek. For a vertex w(k) ∈ Wk, let

{fs}m
s=1 be the linearly ordered edges in Fk with range w(k), i.e. f1 < f2 < · · · < fm.

Let v(k) = gk(w(k)), and let {et}n
t=1 be the linearly ordered edges in Ek with range

v(k). Define hk(f1) = et1 , where et1 is the minimal edge in {et}n
t=1 such that

gk−1(i(f1)) = i(et1). Note that if f1 is an edge of the unique minimal path in
X(W,F ), then et1 is an edge of the unique minimal path in X(V,E). After having
defined hk(fl) = etl

, where l < m and l + 1 < m, we define hk(fl+1) = etl+1 , where
etl+1 is the minimal edge in {et}n

t=1 greater than etl
, such that gk−1(i(fl+1)) =

i(etl+1). If l + 1 = m, we define hk(fm) to be the maximal edge e in {et}n
t=1 such

that gk−1(i(fm)) = i(e). Note that if fm is an edge of the unique maximal path in



8 HEIDI DAHL AND MATS MOLBERG

X(W,F ) then hk(fm) will be an edge of the unique maximal path in X(V,E). The
properties satisfied by the ordered Bratteli diagram (V, E,≥) entail that the map
hk is well-defined for k = 1, 2, . . . .

Let W ′ = {gk(w) |w ∈ Wk, k = 0, 1, 2 · · · }, F ′ = {hk(f) | f ∈ Fk, k = 1, 2, · · · }.
It is easy to see that (W ′, F ′) is a subdiagram of (V, F ), and that (W ′, F ′) is
a an obvious way isomorphic to (W,F ). Transferring the order from (W,F ≥)
to (W ′, F ′) by this isomorphism we get a copy, (W ′, F ′,≥), of (W,F,≥). Hence
the two associated Bratteli-Vershik systems are conjugate, with conjugating map
h : X(W,F ) → X(W ′,F ′) being defined by h(x) = (h1(f1), h2(f2), · · · ) ∈ X(W ′,F ′),
where x = (f1, f2, · · · ) ∈ X(W,F ). Furthermore, it follows by our definition of the
pair of maps (gk−1, hk), for k = 1, 2, · · · , that the ordering on (W ′, F ′,≥) coincides
with the induced ordering from (V, E,≥), i.e. if f1, f2 ∈ F ′ and t(f1) = t(f2), then
f1 < f2 in (W ′, F ′,≥) if and only if f1 < f2 in (V, E,≥). We conclude from all this
that the proof of the first statement of the theorem is complete if we show that the
return times to Z = X(W ′,F ′) is finite. But this follows from the fact that by our
set-up the unique maximal and minimal paths in X(W ′,F ′) coincide with the unique
maximal and minimal paths, respectively, in X(V,E). We omit the easy details.

The set Z = X(W ′,F ′) may not be regular since the forward return time map
at xmax, and the backward return time map at xmin, may not be continuous.
(Here xmax and xmin denote the (coinciding) unique maximal and minimal paths,
respectively, in X(W ′,F ′) and X(V,E).) At all other paths it is easy to see that the
two return time maps are continuous. By a slight modification of the construction of
(W ′, F ′,≥) we can achieve that Z = X(W ′,F ′) is regular, but we pay the price that
at the unique maximal and minimal paths in X(W ′,F ′) (which no longer coincide
with the corresponding ones in X(V,E)) the return time is no longer finite. Referring
to the notation used above, we let lk = |Wk|+2. This time we avoid v

(k)
max and v

(k)
min

for all k in the construction of the subdiagram (W ′, F ′). It is easy to see that Z =
X(W ′,F ′) is T -regular, and that (Y, S) ' (Z, T̃ ), where we define T̃ (ymax) = ymin.
(Here ymax and ymin denote the unique maximal and minimal paths, respectively,
in X(W ′,F ′).) We have that in this case the forward return time of ymax, and the
backward return time of ymin, are both infinite. However, the return time maps at
both these points are continuous. We omit the details.

The last assertion of the theorem is easy to obtain. In fact, we can telescope
(V, E), before we define the subdiagram (W ′, F ′), such that the ratio of the number
of paths from the top vertex in (V, E) to any vertex at level k to the corresponding
number for (W,F ), tend to zero as k goes to infinite. Then Z = X(W ′,F ′) is going to
be a thin subset of X(V,E), a fact that is easily seen. This completes the proof. ¤

We give a simple example to illustrate the construction done both in the proof
of Lemma 4.1 and Theorem 1.1. We keep the above notation.

Example 4.2. Let (Y, S) be the Sturmian flow with rotation number equal to the
golden mean. The simplest Bratteli-Vershik model (W,F,≥) for (Y, S) is shown
in Figure 3, cf. [6, 3.3]. In this case the parameters are lk = |Wk| = 2 for all
k ≥ 1, and nk = 2 for k ≥ 2. Let (X, T ) be the 2-odometer. The simplest Bratteli-
Vershik model for (X, T ) is shown to the left in Figure 4. Also in Figure 4 we
indicate the manipulations done in order to get a Bratteli-Vershik model (V, E,≥)
for (X,T ) that is adapted for the construction of a copy (W ′, F ′,≥) of (W,F,≥)
as a subdiagram. (Note that in this case we only need the operations of symbol
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(W,F,≥)
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Figure 3. A Bratteli-Vershik model for (Y, S).
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Figure 4. Starting with the two-odometer, we first do symbol
splitting between every level, then we telescope to the sequence
0 < 1 < 5 < 9 < 13 < . . . .

splitting and telescoping, in that order.) The edges belonging to (W ′, F ′,≥) are
solidly drawn.

5. Proof of Theorem 1.2

Proof of Theorem 1.2. We start by showing (i) ⇒ (ii). For k ∈ N, define the maps
λ+

k , λ−k : Z −→ N ∪ {∞}, by

λ+
k (z) = inf{l ≥ 1,∞ | ∃0 < l1 < ... < lk−1 < lk = l s.t. T liz ∈ Z, i = 1, ..., k},
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λ−k (z) = inf{l ≥ 1,∞ | ∃0 < l1 < ... < lk−1 < lk = l s.t. T−liz ∈ Z, i = 1, ..., k}.
We call these maps the positive and negative k-th return time maps with respect
to Z. We claim that λ+

k and λ−k is continuous for every k ∈ N if and only if λ+

(respectively λ−) is continuous. This follows by induction on k, and the observation
that for all z ∈ Z we have λ+

k+1(z) = λ+
k (z)+λ+(Tλ+

k (z)(z)). The claim concerning
λ−k is completely analogues. (The modifications needed if λ±k (y) = ∞ are obvious.)

Suppose Z is regular. Let z0 ∈ Z, and assume that the equivalence class of
z0 in Z is [z0]R|Z = {..., z−1, z0, z1, ...}, where zi = Tmiz0, and we have arranged
the points such that ... < m−1 < m0 = 0 < m1 < .... We want to find an
étale neighborhood U(z0,z) ⊂ R|Z for all possibilities of z ∈ [z0]R|Z . If z = z0,
then obviously ∆X ∩ (Z × Z) is an étale neighborhood containing (z0, z0), where
∆X = {(x, x) |x ∈ X} is the diagonal of R. Next assume z is in the positive
orbit of z0. Note that if λ+(z0) = ∞ then there are no points to check. Suppose
z = zk, i.e. z = Tmkz0. This means that z0 ∈ (λ+

k )−1(mk), which is open in Z

by continuity of λ+
k . Let V(z0,z) be an étale neighborhood of (z0, z) in R, and let

Uz0 = (λ+
k )−1(mk) ∩ r(V(z0,z)) ⊂ Z. Define U(z0,z) = {(x, Tmkx) | x ∈ Uz0}. This is

an étale neighborhood of (z0, z) in R|z, a fact that is easily verified. If z is in the
negative orbit the argument is analogous, using the continuity of λ−k .

To prove (ii) ⇒ (iii), let x ∈ X. By Corollary 3.5 R{x} is open in R, and hence
R{x}|Z is open in R|Z . As Z is R-étale, it follows that Z is R{x}-étale, since every
open sub-equivalence relation of an étale equivalence relation is étale.

To show (iii) ⇒ (i) suppose that Z is not regular. We want to show that this
implies that there exists x ∈ X such that Rx|Z is not étale. In fact, we will
show that x = z ∈ Z, where z is a point of discontinuity of either λ+ or λ−. So
let z ∈ Z, and suppose λ+ is not continuous at z. (A similar argument applies
with respect to λ−.) As λ+ is always lower semi-continuous, it is not upper semi-
continuous at z. So there exist a sequence {zn}∞n=1 ⊂ Z such that zn −→ z and
limn λ+(zn) > λ+(z). [Note: limn λ+(zn) may be infinite, but if so, the ensuring
argument is unchanged.] Assuming R|Z is étale there exist an étale neighborhood
U(z,T λ+(z)z) of (z, Tλ+(z)z) in R|Z . Choose an open neighborhood Vz of z in X.

Put V(z,T λ+(z)z) = {(x, Tλ+(z)x)|x ∈ Vz}. V(z,T λ+(z)z) is an étale neighborhood of

(z, Tλ+(z)z) with respect to R. This implies that U(z,T λ+(z)z)∩V(z,T λ+(z)z) is another

étale neighborhood of (z, Tλ+(z)z) with respect to R|Z . This is clear since R|Z has
the relative topology from R. However, {zn}∞n=1∩ r(U(z,T λ+(z)z)∩V(z,T λ+(z)z)) = ∅,
and so r(U(z,T λ+(z)z) ∩ V(z,T λ+(z)z)) can not be open in Z, and hence U(z,T λ+(z)z) ∩
V(z,T λ+(z)z) is not an étale neighborhood of (z, Tλ+(z)z). This contradiction finishes
the proof of (iii) ⇒ (i), and so the proof of Theorem 1.2. ¤

Corollary 5.1. Let (X, T ) be a Cantor minimal system, and let (R, T ) be the
associated étale equivalence relation. Let Z be a R-étale subset of X. For any x ∈ X
there exists a simple Bratteli diagram (V, E) and a homeomorphism h : X(V,E) → X

implementing an isomorphism h×h : AF (V, E) → R{x} such that h−1(Z) = X(W,F )

for some subdiagram (W,F ) of (V, E).

Proof. By Corollary 3.5, R{x} is an AF-equivalence relation for x ∈ X. By Theorem
1.2 we have that Z is R{x}-étale. By [2, Theorem 3.11] we get the result. ¤
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Figure 5. The subdiagram (W,F ) of the Bratteli diagram (V, E)
is obtained by deleting the dotted edges.

The example we will now exhibit is somewhat related to the above corollary,
even though it illustrates a different aspect of the theory. Figure 5 shows that
not every sub-diagram of a properly ordered, simple Bratteli-diagram is regular
with respect to the Vershik map, and hence not all subdiagrams give rise to étale
sub-equivalence relations by Theorem 1.2. Let (X(V,E), T(V,E)) be the Bratteli-
Vershik system associated to (V, E,≥) in Figure 5, and let xmin and xmax be the
unique minimal and maximal paths, respectively, in X(V,E). Let Z = X(W,F ). Now
λ+(xmax) = 1, but there exists a sequence {zn} in Z converging to xmax, such that
λ+(zn) −→∞, which shows that λ+ is not continuous at xmax.

Note also, referring again to Figure 5, that Z is R{xmax}-étale, but not R{xmin}-
étale. This underscores the requirement (iii) of Theorem 1.2 , namely that Z should
be R{x}-étale for all x ∈ X.

We end this paper by giving the following result which extends Theorem 1.2
when the subset Z ⊂ X satisfies a certain condition.

Corollary 5.2. Let (X, T ) be a Cantor minimal system and let (R, T ) be the
associated étale equivalence relation. Let Z be a non-empty closed subset of X such
that ∃z0 ∈ X with [z0]T ∩ Z contained in either {Tnz0|n ≥ 1} or {T−nz0|n ≥ 0}.
(Recall that [z0]T denotes the T -orbit {Tnz0 |n ∈ Z} of z0.) The following are
equivalent.

(i) Z is regular;
(ii) Z is R-étale;
(iii) Z is R{x}-étale for all x ∈ X;
(iv) There exists a simple Bratteli diagram (V, E), containing a sub-diagram

(W,F ), and a map h : X(V,E) −→ X such that h× h : AF (V, E) −→ R{z0}
is an isomorphism and h(X(W,F )) = Z.

Proof. By Corollary 5.1 we have that (ii) ⇒ (iv). We will prove (iv) ⇒ (ii). The
rest follows by Theorem 1.2.

Let (V, E) and (W,F ) be as in (iv). Now AF (W,F ) is an AF-equivalence relation
on X(W,F ), and the topology coincides with the relative topology from AF (V,E).
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So (h × h)(AF (W,F ) = Rz0 |Z is an AF-equivalence relation, and hence étale, on
h(X(W,F )) = Z. This means that R|Z is étale, since R|Z = R{z0}|Z , and both R|Z
and R{z0}|Z have relative topology from R. ¤
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DYNAMICAL CHOUQET SIMPLICES AND CANTOR MINIMAL
SYSTEMS.

HEIDI DAHL

Abstract. We prove that if K is a dynamical simplex of probability measures
on the Cantor set X, for which the extreme points, ∂eK, of K is a finite set,
then there exists a minimal homeomorphism T : X → X such that M(X, T ) =
K, where M(X, T ) denotes the T -invariant probability measures on X.

Introduction

For a Cantor minimal system (X,T ), the set of T -invariant probability measures,
with the w∗-topology, is known to be a Choquet simplex consisting of non-atomic
(probability) measures of full support, and where the extreme points are ergodic
measures which are mutually singular with respect to each other (cf. [14, Ch 6.2]
and [11, Ch 10]). Downarowicz [3], and later Gjerde and Johansen [7] – using a
Bratteli-Vershik approach – showed that in fact any metrizable Choquet simplex is
affinely homeomorphic to the set of invariant measures of some 0− 1 Toeplitz flow.

In [1], Akin showed that if µ is a so-called good measure on the Cantor set X,
there exists a uniquely ergodic transformation on X for which µ is the unique in-
variant probability measure. In this paper we extend Akin’s definition of a good
measure to Choquet simplices of probability measures, and show that for any Can-
tor minimal system (X, T ) the set of T -invariant probability measures is what we
will call a dynamical simplex. Also, given a dynamical simplex K of probability
measures on the Cantor set X, where the extreme boundary ∂eK is a finite set,
there exists a minimal homeomorphism on X having precisely K as its set of in-
variant measures. Our proofs are very different in spirit from Akin’s in that we
base our arguments on the approach initiated in [10], and further developed in [6]
and [9]. In fact, by this method one can even sharpen Akin’s result in the uniquely
ergodic case. However, our goal is to prove a result for a general dynamical simplex,
but we have only succeeded so far to prove it for finite-dimensional simplices. The
relevant definitions and terminology will be presented below.

1. Dynamical simplices associated to Cantor minimal systems

Throughout this paper, let X denote the Cantor set and let M(X) denote the
set of probability measures on X. For a Cantor minimal system (X, T ), we denote
by M(X,T ) the set of all T -invariant probability measures on X, i.e. M(X, T ) =
{µ ∈ M(X) |µ(T−1(A)) = µ(A) for all Borel sets A ⊂ X}.

Recall that a convex set K ⊂ M(X) is a Choquet simplex if it is compact in
the w∗-topology, and each µ ∈ K is represented by a unique probability measure
supported on the extreme boundary ∂eK of K, cf [11]. If ∂eK is a finite set, K is
affinely homeomorphic to a finite-dimensional simplex in a Euclidean space.

1
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Definition 1.1. Let K ⊂ M(X) be a Choquet simplex consisting of non-atomic
probability measures with full support. We say that K is a dynamical simplex
(abbreviated D-simplex ) if it satisfies the following two conditions:

(i) For clopen subsets A and B of X with µ(A) < µ(B) for all µ ∈ K, there
exists a clopen subset B1 ⊂ B such that µ(A) = µ(B1) for all µ ∈ K (the
subset condition).

(ii) If µ, ν ∈ ∂eK, µ 6= ν, then µ and ν are mutually singular, i.e. there exists
a measurable set A ⊂ X such that µ(A) = 1 and ν(A) = 0.

Remark 1.2. Part (i) is an obvious extension of the definition of a good measure
given by Akin in [1], applied to a set of probability measures .

As we pointed out above, it is well known that for any Cantor minimal system
(X, T ), the set M(X, T ) is a Choquet simplex of non-atomic probability measures
with full support, where the extreme points are mutually singular. In fact, the
following proposition, whose proof is due to Glasner and Weiss [9], shows that
M(X, T ) is a dynamical simplex.

Proposition 1.3. [9, Lemma 2.5] Let (X,T ) be a Cantor minimal system. The
set M(X, T ) of T -invariant probability measures on X is a D-simplex.

Proof. We only need to show the subset condition. Assume A and B are clopen
subsets of X such that µ(A) < µ(B) for all µ ∈ M(X,T ). Since µ(A) = µ(A∩B)+
µ(A \B) and µ(B) = µ(A∩B) + µ(B \A), we can assume A and B to be disjoint.
Define a function f by f = χB − χA, where χE denotes the characteristic function
of a clopen set E ⊂ X, i.e. χE(x) = 1 if x ∈ E and χE(x) = 0 otherwise. Choose
c such that 0 < c < inf{∫

X
fdµ | µ ∈ M(X, T )}. This is possible since M(X, T )

is a compact set. We claim that there exists N0 ∈ N such that for all x ∈ X and
all N ≥ N0 we have 1

N

∑N−1
j=0 f(T jx) ≥ c. If not, there exist a sequence {xk}∞k=1

in X, and an increasing sequence {Nk}∞k=1 in N, such that 1
Nk

∑Nk−1
j=0 f(T jxk) < c

for all k. Then the sequence 1
Nk

∑Nk−1
j=0 δT jxk

converges in the w∗-topology to a T -
invariant measure ν ∈ M(X, T ) as k →∞, and

∫
X

fdν ≤ c, giving a contradiction.
This proves the claim.

Next we find a non-empty clopen set D ⊂ X such that D, T (D), · · · , TN0−1(D)
are mutually disjoint clopen subsets of X, and we construct the Kakutani-Rohlin
partition of X with basis set D. That is, first define the return time map λ : D → N
by λ(x) = inf{k > 0 |T kx ∈ D}. Since D is compact, there are only finitely many
different return times, say {h1, h2, . . . , hl}, and hence we can write D as the disjoint
union D = ∪l

j=1Dj , where Dj is the set of points in D having return time hj . Note
that hj ≥ N0 for j = 1, 2, . . . , l. Now X can be written as the disjoint union
X = ∪l

j=1 ∪hj−1
i=0 T i(Dj), and this is called the Kakutani-Rohlin partition of X

(associated to T ) with basis set D. The set Cj = ∪hj−1
i=0 T i(Dj) is called the j’th

tower of the partition (of hight hj), while T i(Dj) is called a floor of the j’th
tower. For a T -invariant probability measure µ, each floor in the same tower has
the same µ-measure. We may assume by subdividing the towers that the partition
is compatible with A and B, i.e. if A ∩ T i(Dj) 6= ∅ for some 1 ≤ j ≤ l, some
0 ≤ i < hj , then T i(Dj) ⊂ A, and likewise for B. For a tower Cj in the partition,
choose x ∈ Dj and consider the sum 1

hj

∑hj−1
i=0 f(T ix). Since hj ≥ N0, this is

a positive number ≥ c. But as f(T ix) = 1 if T ix ∈ B (hence T i(Dj) ⊂ B),
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and f(T ix) = −1 if T ix ∈ A (hence T i(Dj) ⊂ A), and f(T ix) = 0 otherwise,
the number of floors of Cj contained in B is (strictly) greater than the number of
floors of Cj contained in A. Hence we can find B1 ⊂ B with µ(A) = µ(B1) for
all µ ∈ M(X,T ), simply by picking out from each tower of the partition as many
floors contained in B as there are floors contained in A in this tower. ¤

2. From D-simplices to Cantor minimal systems

Assume that we start with an arbitrary D-simplex K of probability measures on
the Cantor set X. The goal is to construct a minimal homeomorphism T : X → X
such that M(X, T ) = K. The main ingredients of our construction will be Bratteli
diagrams and dimension groups. We give a brief overview of the two concepts
below, for a more thorough discussion cf. [4], [6] and [10]. For a survey article, we
refer to [13].

Definition 2.1. A Bratteli diagram (V, E) consists of a vertex set V , an edge set
E and two maps; r, s : E → V (the range and source map, respectively), such that

(i) The vertex set is a disjoint union of non-empty finite sets; V =
⋃∞

n=0 Vn,
and V0 = {v0} is a one-point set.

(ii) The edge set is a disjoint union of non-empty finite sets; E =
⋃∞

n=1 En.
(iii) r(En) ⊂ Vn and r−1(v) 6= ∅ for all v ∈ V \ V0.
(iv) s(En) ⊂ Vn−1 and s(v) 6= ∅ for all v ∈ V .

If we give a linear order to each of the Vn’s, the Bratteli diagram can be coded
in a sequence of incidence matrices {An}∞n=1 = {(a(n)

ij )}∞n=1, where the entry a
(n)
ij

is the number of edges in En having range vi ∈ Vn = {v1, v2, · · · , vln} and source
uj ∈ Vn−1 = {u1, u2, · · · , uln−1}.

For a Bratteli diagram (V, E), we define the path space X(V,E) to be the set of
all infinite paths of the diagram, where a path x = (en)∞n=1 is a sequence of edges
e1, e2, · · · such that en ∈ En and r(en) = s(en+1) for all n > 0. We will only consider
non-trivial Bratteli diagrams, i.e. diagrams (V,E) for which X(V,E) is an infinite
set. The path space is a totally disconnected metric space. When (V, E) is a simple
Bratteli diagram, X(V,E) is a Cantor set. (Here simple means that for any n and any
vertex v ∈ Vn, there exists m > n such that v is connected to all vertices in Vm by a
finite path.) For an infinite path x = (ei)∞i=1, we denote by Ck(x) the k’th cylinder
set associated to x, i.e. Ck(x) = {(fn)∞n=1 ∈ X(V,E) | fn = en for n = 1, 2, . . . , k}.
Define the range of Ck(x) by r(Ck(x)) = r(ek) ∈ Vk. The cylinder sets form a
clopen basis for the topology of X(V,E). Let P

(k)
(V,E) denote the set of finite paths

starting at v0 ∈ V0 and ranging at a vertex in Vk. The set P
(k)
(V,E) can be identified in

an obvious way with the set of all cylinder sets ranging at level k (and hence with a
clopen partition of X). We will make this identification whenever it is convenient.

Given a Bratteli diagram (V,E), one can define a partial order ≥ on the path
space by, for each vertex v ∈ V \ V0, choose a linear order on the set of edges with
range v, and then use the lexicographic order on X(V,E). That is, x = (en)∞n=1 >
y = (fn)∞n=1 if there exists k ∈ N such that en = fn for all n > k and ek > fk.
If the diagram is simple and the order is such that there are exactly one path in
X(V,E) for which all edges are maximal and exactly one path in X(V,E) for which all
edges are minimal, we say that (V,E,≥) is a properly ordered Bratteli diagram. For
a properly ordered Bratteli diagram (V, E,≥), the Vershik (or lexicographic) map
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T(V,E) : X(V,E) → X(V,E), defined by sending a non-maximal path to its successor
and the maximal path to the minimal path, is a minimal homeomorphism, and
hence (X(V,E), T(V,E)) is a Cantor minimal system.

In [10], the following basic result is proved.

Theorem 2.2. [10, Thm. 4.7]. Let (X,T ) be a Cantor minimal system. There
exists a properly ordered Bratteli diagram (V, E,≥) such that (X, T ) is conjugate
to (X(V,E), T(V,E)), i.e. there exists a homeomorphism F : X → X(V,E) such that
T = F−1 ◦ T(V,E) ◦ F .

Consider an invariant probability measure µ for (X(V,E), T(V,E)). For k ∈ N and
a path x = (en)∞n=1 ∈ X(V,E) having a non-maximal edge ei, for some i ≤ k, the
Vershik map will map the cylinder set Ck(x) to a cylinder set Ck(y) such that
r(Ck(x)) = r(Ck(y)). Hence all cylinder sets in P

(k)
(V,E) having the same range also

have the same µ-measure. Furthermore, if Ck(x) = ∪R
i=1Ck+1(yi) is the disjoint

partition of a cylinder set of length k into cylinder sets of length (k + 1), then
µ(Ck(x)) =

∑R
i=1 µ(Ck+1(yi)).

Definition 2.3. A dimension group (G,G+, u), with an order unit u ∈ G+, is an
ordered abelian group G, where

(i) The positive cone G+ ⊂ G satisfies
G+ + G+ ⊂ G+,
G+ ∩ (−G+) = {0} and
G+ −G+ = G.

(ii) For all g ∈ G there exists n ∈ N such that g ≤ nu.
(iii) The Riesz interpolarization property holds; i.e. given gi, fj ∈ G, i, j = 1, 2

such that gi ≤ fj for i, j = 1, 2, then there exists h ∈ G with gi ≤ h ≤ fj ,
i, j = 1, 2.

A dimension group is said to be simple if every g ∈ G+ \{0} is an order unit. Also,
the infinitesimal subgroup, Inf G, of G is defined by InfG = {g ∈ G | − εu ≤ g ≤
εu for every 0 < ε = p

q ∈ Q (where p
q a ≤ b means pa ≤ qb)}

The dimension group K0(V, E) associated to a Bratteli diagram (V,E), is the
dimension group obtained by taking the inductive limit of the sequence

Z|V0| A1→ Z|V1| A2→ Z|V2| A3→ · · · ,

where An is the incidence matrix between level (n− 1) and level n of the diagram,
and we assume all Z|Vn| to have standard order. The canonical order unit is the
element corresponding to 1 ∈ Z|V0| = Z. K0(V, E) is a simple dimension group
iff (V,E) is a simple Bratteli diagram. One can show (cf. [5]) that any dimen-
sion group is order-isomorphic to one associated to a Bratteli diagram. In [10] it
is shown that any simple dimension group with order unit u, (G, G+, u), G 6= Z,
is order isomorphic to (K0(X, T ),K0(X,T )+,1) by a map sending u to 1 (1, the
canonical order unit of K0(X, T ), corresponds to the constant function 1 on X),
where (X,T ) is some Cantor minimal system. (Here K0(X, T ) is the countable
abelian group obtained from C(X,Z) (the continuous functions on X taking values
in Z) by dividing out with the coboundary {f −f ◦T−1 | f ∈ C(X,Z)}. K0(X, T )+

is the image of C(X,Z)+ under the quotient map.) In fact, if (V, E) is a sim-
ple Bratteli diagram, one can introduce a partial ordering ≥, making (V,E,≥) a
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properly ordered Bratteli diagram. The Cantor minimal system (X(V,E), T(V,E)) as-
sociated to (V,E,≥), has the property that K0(X(V,E), T(V,E)) is order isomorphic
to K0(V, E) by a map respecting canonical order units. We will use the notation
K0(V,E) ' K0(X(V,E), T(V,E)). The map implementing the order isomorphism is
natural, sending a cylinder set C (or rather its equivalence class) in C(X(V,E),Z)
to the group element in K0(V,E) corresponding to r(C), i.e. the range of C. The
survey article [13] gives an overview of all this. With this in mind, we remark that
any positive element g ∈ K0(V, E)+ can be viewed as a (positive) linear combina-
tion of vertices at some vertex level k, and so we can write g =

∑l
i=1 aiCk(xi),

where the Ck(xi)’s are mutually disjoint cylinder sets in P
(k)
(V,E), and ai are positive

integers.

Definition 2.4. A state on a dimension group (G,G+, u) is a positive normalized
homomorphism s : G → R, i.e. s(G+) ⊂ R+ and s(u) = 1.

We let S(G) denote the set of all states on (G,G+, u), which is a compact and
convex set, cf. [4, Ch. 4]. For a simple dimension group (G,G+, u) the order of G
is determined by S(G). In fact, G+ = {g ∈ G | s(g) > 0 , ∀s ∈ S(G)} ∪ {0}, cf. [5,
Cor. 1.5] and [4, Ch. 4].

For the dimension group K0(V, E) associated to a properly ordered Bratteli
diagram (V,E,≤), there is an affine bijective correspondence s → µs between the set
S(K0(V, E)) of states on K0(V, E) and the set M(X(V,E), T(V,E)) of T(V,E)-invariant
probability measures on X(V,E) (cf. [10, Theorem 5.5]), and the correspondence is
such that µs(Ck(x)) = s(Ck(x)) for all s ∈ S(K0(V,E)). Here Ck(x) is viewed
both as an element of K0(V,E) and as a clopen subset of X(V,E), in accordance
with the identification we have described above. By Theorem 2.2 we get a similar
correspondence between states on K0(X,T ) and M(X,T ), where (X,T ) is a Cantor
minimal system.

Definition 2.5. For a simplex K ⊂ M(X), let Aff(K) be the set of affine contin-
uous functions from K to R, i.e. Aff(K) = {φ : K → R |φ continuous, and φ(tµ1 +
(1− t)µ2) = tφ(µ1) + (1− t)φ(µ2), ∀µ1, µ2 ∈ K, t ∈ [0, 1]}

Note that any real-valued continuous function f ∈ C(X) gives rise to a con-
tinuous affine function f̂ : K → R by f̂(µ) =

∫
X

fdµ. One can show that
{f̂ | f ∈ C(X)} is uniformly dense in Aff(K) [2, Cor. I.1.5]. Define the strict
order on Aff(K) by f̂ < ĝ if and only if f̂(µ) < ĝ(µ) for all µ ∈ K, and set
Aff(K)+ = {f̂ ∈ Aff(K)|f̂ > 0̂} ∪ {0̂}. The function 1̂ is the canonical order unit.

The following result is due to Effros, Handelman and Shen:

Theorem 2.6. [4, Thm. 4.5] Suppose K is a Choquet simplex and that H is a
uniformly dense subgroup of Aff(K). Then with the strict order, H is a simple
dimension group (6= Z) such that InfH = {0}.
Definition 2.7. For a simplex K ⊂ M(X), define the set G(K) = {f̂ : K →
R | f ∈ C(X,Z)}, where f̂(µ) =

∫
X

f dµ for µ ∈ K, and give G(K) the (inherited)
strict order from Aff(K). We will denote the positive cone by G(K)+. So G(K)+ =
G(K) ∩Aff(K)+. We note that G(K) is a subgroup of Aff(K).

In the rest of this section we assume that K is a D-simplex of probability mea-
sures on the Cantor set X. Furthermore, we assume G(K) = {f̂ : K → R | f ∈
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C(X,Z)} is dense in Aff(K), such that according to Theorem 2.6, (G(K), G(K)+, 1̂)
is a simple dimension group with the canonical order unit 1̂ (note that 1̂(µ) = 1 for
µ ∈ K). We note that the state space S(G(K)) of G(K) can be identified with K.
In fact, the map sending µ ∈ K to the state µ̂ : G(K) → R, where µ̂(f) =

∫
X

fdµ,
f ∈ G(K), is an affine isomorphism. This follows from [11, Prop. 1.1.].

Our next goal is to prove Theorem 2.11, which says that under these conditions
there exists a Cantor minimal system (X,T ) such that K = M(X,T ).

Definition 2.8. Given two systems (X, K1), (Y,K2), where X, Y are Cantor sets
and K1(⊂ M(X)), K2(⊂ M(Y )) are convex sets. Then K1 is affinely isomorphic
to K2, written K1

∼= K2, if there exists a homeomorphism h : X → Y such
that h∗ is an affine bijection between K1 and K2. The map h∗ is defined by
h∗(µ)(B) = µ(h−1(B)), µ ∈ K1, for all Borel sets B ⊂ Y . (Note that this is
equivalent to f̂ ◦ h(µ) = f̂(h∗(µ)) for all f ∈ C(Y ). If f = χB , B clopen, we get
h∗(µ)(B) = µ(h−1(B)), and this in turn implies the former.) We will say that h
implements the affine isomorphism between K1 and K2.

Lemma 2.9. Given (X, K1) and (Y, K2), where X, Y are Cantor sets and where
K1 ⊂ M(X), K2 ⊂ M(Y ) are D-simplices. Then K1

∼= K2 if and only if there
exists an affine bijection Θ : K1 → K2, such that for any clopen set A ⊂ X,
there exists a clopen set B ⊂ Y such that µ(A) = Θ(µ)(B) for all µ ∈ K1, and,
conversely, for any clopen set B ⊂ Y , there exists a clopen set A ⊂ X such that
ν(B) = Θ−1(ν)(A) for all ν ∈ K2.

Proof. One direction is an immediate consequence of Definition 2.8, setting Θ = h∗.
Conversely, assume we have an affine bijection Θ : K1 → K2 satisfying the

condition of the lemma. We want to construct a homeomorphism between X and
Y which will implement an affine isomorphism between K1 and K2. Let {Pn}∞n=1

and {Qn}∞n=1 be sequences of clopen partitions generating the topology on X and
Y , respectively. Set A1 = P1 = {A11, · · · , A1k1}. By assumption on Θ, we can
find a clopen set B11 ⊂ Y such that µ(A11) = Θ(µ)(B11) for all µ ∈ K1. If
A1 = {A11, A12}, i.e. k1 = 2 and so A12 = X \ A11, we chose B12 = Y \ B11.
If k1 > 2, we have that µ(A12) < µ(X \ A11) for all µ ∈ K1 (since µ has full
support). There exists a clopen set B′

12 ⊂ Y such that µ(A12) = Θ(µ)(B′
12) for

all µ ∈ K1. Since µ(A12) < µ(X \ A11) for all µ ∈ K1, we have Θ(µ)(B′
12) <

Θ(µ)(Y \ B11), and so – using the fact that K2 is a D-simplex – we can find a
clopen set B12 ⊂ Y such that µ(A12) = Θ(µ)(B12), and B12 is disjoint from B11.
We find B13, B14 · · ·B1(k1−1) similarly, and by choosing B1k1 = Y \ ∪k1−1

j=1 B1j , we
get a clopen partition B1 = {B11, B12, · · ·B1k1} of Y . Then B1 is measurably
comparable to A1, i.e. µ(A1i) = Θ(µ)(B1i) for all i = 1, 2, . . . , k1. Set B2 =
B1 ∨Q1 = {B21, . . . B2k2}. Using the same technique as described above, we find a
clopen partition {A′21, . . . , A′2k2

} of X such that µ(A′2i) = Θ(µ)(B2i), i = 1, . . . , k2,
µ ∈ K1. This might not refine A1, but B2 is a refinement of B1, so for each
i ∈ {1, . . . , k2}, B2i ⊂ B1j for some j ∈ {1, . . . , k1}. Hence for all µ ∈ K1, µ(A′2i) =
Θ(µ)(B2i) ≤ Θ(µ)(B1j) = µ(A1j), with strict inequality if B2i ( B1j . Again using
the subset condition of a D-simplex, this implies that we can find a clopen set
A2i ⊂ A1j , with µ(A′2i) = µ(A2i). As before we can choose the sets such that
A2 = {A21, · · · , A2k2} becomes a clopen partition of X. It is still measurably
comparable to B2, and it refines A1. Now set A3 = A2 ∨ P2, and continue to
switch back and forth between X and Y to obtain nested sequences {An}∞n=1,
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{Bn}∞n=1 of generating clopen partitions of X and Y , respectively, such that the
µ-measure of the sets in An coincide with the Θ(µ)-measure of the sets in Bn, for all
µ ∈ K1 and all n. There is a standard way to construct a Bratteli diagram from a
nested sequence of clopen partitions of a Cantor set, where the sequence generates
the topology. In our case, the Bratteli diagram (V, E) constructed by using the
sequence {An}∞n=1 will be identical to the Bratteli diagram (W,F ) constructed
using {Bn}∞n=1. Consequently we have a homeomorphism h : X → Y , defined by
sending x ∈ X to y ∈ Y such that the path representation of x in (V,E) is equal
to the path representation of y in (W,F ). It remains to show that h∗ is in fact an
affine bijection between K1 and K2. But this is clear, since for all n and all sets
Bni ∈ Bn we have h∗(µ)(Bni) = µ(h−1(Bni)) = µ(Ani) = Θ(µ)(Bni). Hence Θ is
an affine bijection, and the proof is complete. ¤

Lemma 2.10. Let K ⊂ M(X) be a D-simplex of probability measures on the
Cantor set X. Let (V, E,≥) be a properly ordered Bratteli diagram, such that
K0(V,E) ' G(K)(= {f̂ : K → R | f ∈ C(X,Z)}) as ordered dimension groups
with order units. Then M(X(V,E), T(V,E)) ∼= K.

Proof. For each µ ∈ K the function µ̂ : G(K) → R defined by µ̂(f̂) =
∫

X
fdµ,

f̂ ∈ G(K), is a state on (G(K), G(K)+, 1̂), and as we remarked above, all states on
G(K) are of this form. By G(K) ' K0(V, E) and the affine bijective correspondence
between S(K0(V,E)) and M(X(V,E), T(V,E)), we get an affine bijection Θ : K →
M(X(V,E), V(V,E)).

Let A be a clopen set in X. Then f = χA ∈ C(X,Z), and so the corresponding
element f̂ defined by f̂(µ) =

∫
X

fdµ, µ ∈ K, is in G(K)+ ' K0(V, E)+, and is
less or equal to the canonical order unit. Hence f̂ can be viewed, according to the
identification we have explained above, as a positive linear combination of mutually
disjoint cylinder sets at some specified level k in (V, E); f̂ =

∑l
i=1 Ck(xi). So with

B =
⋃l

i=1 Ck(xi)(⊂ X(V,E)), we get Θ(µ)(B) = µ(A) for all µ ∈ K. Similarly, if we
start with a clopen B ⊂ X(V,E), we can find a clopen A ⊂ X such that Θ(µ)(B) =
µ(A) for all µ ∈ K. By Lemma 2.9 we get that M(X(V,E), T(V,E)) ∼= K. ¤

Putting these preliminary results together, we get the main theorem of this
section:

Theorem 2.11. Given a Cantor set X and a D-simplex K ⊂ M(X). Assume
G(K) is uniformly dense in Aff(K). Then there exists a homeomorphism T : X →
X such that (X,T ) is a Cantor minimal system with M(X, T ) = K.

Proof. If G(K) is uniformly dense in Aff(K), then G(K) is a dimension group.
Let (V, E,≤) be a properly ordered Bratteli diagram such that G(K) ' K0(V,E).
By Lemma 2.10, K ∼= M(X(V,E), T(V,E)), where X(V,E) is the path space of (V, E)
and T(V,E) is the Vershik-map. Assume h : X → X(V,E) is a homeomorphism
implementing the affine isomorphism. Then T = h−1 ◦ T(V,E) ◦ h : X → X is a
homeomorphism on X, and M(X, T ) = K. In fact, let A ⊂ X be a Borel set, and
let µ ∈ K. Then

µ(T−1(A)) = µ((h−1 ◦ T−1
(V,E) ◦ h)(A)) = h∗(µ)((T−1

(V,E) ◦ h)(A))
= h∗(µ)(h(A)) = µ((h−1 ◦ h)(A)) = µ(A),

,



8 HEIDI DAHL

so K ⊂ M(X, T ). For the other inclusion, assume we have a T -invariant measure ν
on X, and define ν̃ on X(V,E) by ν̃(B) = ν(h−1(B)) = h∗(ν)(B), where B ⊂ X(V,E)

is Borel. Then ν̃ is a probability measure, and

ν̃(T−1
(V,E)(B)) = ν((h−1 ◦ T−1

(V,E))(B)) = ν((h−1 ◦ T−1
(V,E) ◦ h ◦ h−1)(B))

= ν((T−1 ◦ h−1)(B)) = ν(h−1(B)) = ν̃(B),
,

so ν̃ is T(V,E)-invariant, and hence ν̃ ∈ M(X(V,E), T(V,E)). This implies that ν ∈ K
and we conclude that M(X, T ) = K. ¤

3. When is G(K) dense in Aff(K)?

For K a D-simplex of probability measures on the Cantor set X, we defined
G(K) = {f̂ | f ∈ C(X,Z)}, where f̂ : K → R is the continuous affine map defined by
f̂(µ) =

∫
X

fdµ, µ ∈ K. If G(K) is (uniformly) dense in Aff(K), then G(K) becomes
a simple dimension group (in the inherited ordering from Aff(K)). Conversely, it is
proved in [4, Thm.4.4] that if G(K) is a simple dimension group, then necessarily
G(K) is dense in Aff(K). We proved in Theorem 2.11 that if G(K) is dense in
Aff(K), or equivalently, G(K) is a simple dimension group, then there exists a
minimal homeomorphism T : X → X, such that M(X, T ) = K. So the question
becomes: When is G(K) dense in Aff(K)? We are presently not able to answer
this question in general, but in this section we show that if ∂eK is a finite set, then
the answer is affirmative.

The following definition is also found in [1], and, furthermore, Lemma 3.2 is
contained in [1, Proposition 1.4]. We present an alternative proof, using Bratteli
diagrams.

Definition 3.1. For a probability measure µ on X, define the clopen value set

S(µ) = {µ(U)|U clopen in X }.
Lemma 3.2. Let µ be a non-atomic probability measure on a Cantor set X. Then
S(µ) is a countable dense subset of the unit interval I = [0, 1].

Proof. The set S(µ) is countable because X has a countable clopen basis, and
every clopen subset of X is a finite union of sets in the basis. To show that S(µ) is
dense in I, we represent X as the path space of a Bratteli diagram (V,E). Given
ε > 0, there exists N such that µ(Cn(x)) < ε for all Cn(x) ∈ P

(n)
(V,E), n ≥ N .

Otherwise, using the fact that µ(Ck(x)) ≥ µ(Ck+1(x)), there would be a path
x = (ei)∞i=1 having measure greater than (or equal to) ε. But this would contradict
that µ is non-atomic. Let r ∈ I and ε > 0 be given. We can find a level N such
that µ(CN (x)) < ε for all CN (x) ∈ P

(N)
(V,E). Since

∑
CN (x)∈P

(N)
(V,E)

µ(CN (x)) = 1,

we can find a clopen set U consisting of a union of such cylinder sets such that
|µ(U)− r| < ε. This shows that S(µ) is dense in I. ¤

For a finite set {µi}n
i=1 ⊂ M(X), let µ̄ = [µ1, µ2, · · · , µn]. We extend Definition

3.1.

Definition 3.3. For a finite set {µi}n
i=1 ⊂ M(X), define the set

S(µ̄) = {[µ1(U), µ2(U), · · · , µn(U)] |U clopen in X} ⊂ In.

Lemma 3.4. Let {µi}n
i=1 be mutually singular, non-atomic probability measures

on the Cantor set X. Then S(µ̄) is dense in In.
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Proof. This is an easy corollary of Lyapunov’s theorem, which says the follow-
ing: Suppose ν1, · · · , νk are non-atomic measures (not necessarily probability mea-
sures) on a σ-algebra M. Define ν(E) = (ν1(E), · · · , νk(E)), E ∈ M. Then
the range of ν is a compact convex subset of Rk. (For a proof, see [12, Thm.
5.5].) In our case the measures {µi}n

i=1 are mutually singular, and it is easy
to see that this implies that there exists for each i ∈ {1, · · · , n}, a Borel set
Ei ⊂ X such that µj(Ei) = δij , j = 1, · · · , n. Hence by Lyapunov’s theorem,
{(µ1(E), · · · , µn(E)) |E Borel set in X} = In. Now by the regularity of the mea-
sures µ1, · · · , µn, we conclude that S(µ̄) is dense in In. ¤

We are now able to show the following result:

Lemma 3.5. If K is a D-simplex with only finitely many extreme points, G(K) is
dense in Aff(K).

Proof. Let ∂eK = {µi}n
i=1 be the extreme points of K. By the previous lemma

we have that S(µ̄) is dense in [0, 1]n. This means that given any affine function
ĝ : K → R, with ĝ(µk) ∈ [0, 1], k = 1, . . . , n, we can by Lemma 3.4 find a clopen
set A ⊂ X such that the function χ̂A ∈ G(K) approximates ĝ on µ1, · · · , µn

arbitrarily well, and so by Krein-Milman approximates ĝ uniformly on K. If ĝ
takes values outside [0, 1], we can by a simple scaling argument transfer this to the
first situation. ¤
Corollary 3.6. Let K ⊂ M(X) be a D-simplex of probability measures on the Can-
tor set X. Assume ∂eK is a finite set. Then there exists a minimal homeomorphism
T : X → X such that M(X, T ) = K.

Remark 3.7. The only thing that was used to prove that G(K) is dense in Aff(K)
in Lemma 3.5, was that the extreme points in K are mutually singular non-atomic
measures. One may ask if this is true in general. That is, if K is a simplex
consisting of non-atomic probability measures on the Cantor set X, such that if
µ1, µ2 ∈ ∂eK, µ1 6= µ2, then µ1 is singular with respect to µ2, is it then true that
G(K) is dense in Aff(K)?
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