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Abstract

This thesis concerns some experimental and theoretical issues in fiber optics.
In particular, properties and devices based on photonic crystal fibers (PCFs)
are investigated.

The work can be grouped into three parts. In the first part we use
sound to control light in PCFs. The lowest order flexural acoustic mode of
various PCFs is excited using an acoustic horn. The acoustic wave acts as a
traveling long-period grating. This is utilized to couple light from the lowest
order to the first higher order optical modes of the PCFs. Factors affecting
the acoustooptic coupling bandwidth are also investigated. In particular,
the effect of axial variations in acoustooptic phase-mismatch coefficient are
studied.

In the second part of the thesis we use an electric field to control transmis-
sion properties of PCFs. Tunable photonic bandgap guidance is obtained
by filling the holes of an initially index-guiding PCF with a nematic liq-
uid crystal and applying an electric field. The electric field introduces a
polarization-dependent change of transmission properties above a certain
threshold field. By turning the applied field on/off, an electrically tunable
optical switch is demonstrated.

The third part consists of two theoretical works. In the first work, we
use relativistic causality, i.e. that signals cannot propagate faster than the
vacuum velocity of light, to show that Kramers-Kronig relations exist for
waveguides, even when material absorption is negligible in the frequency
range of interest. It turns out that evanescent modes enter into the Kramers-
Kronig relations as an effective loss term. The Kramers-Kronig relations are
particularly simple in weakly guiding waveguides as the evanescent modes of
these waveguides can be approximated by the evanescent modes of free space.
In the second work we investigate dispersion properties of planar Bragg
waveguides with advanced cladding structures. It is pointed out that Bragg
waveguides with chirped claddings do not give dispersion characteristics
significantly different from Bragg waveguides with periodic claddings.
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Chapter 1

Introduction

1.1 Background

Photonic crystal fibers, also called microstructured optical fibers, are optical
fibers having a microstructure in the transverse plane. These fibers can
guide light by means of total internal reflection, as in standard fibers, or by
the photonic bandgap effect. There also exist fibers with a periodicity in
the propagation direction of the light. Such fibers are called fiber gratings.
The axial periodicity can induce coupling of light between co-propagating
or counter-propagating modes.

Initial developments of PCFs

At about the same time as the standard, step index fiber was developed [1],
it was realized that light could be guided in a silica core, surrounded by a
microstructured air/silica cladding [2]. However, work on this type of fiber
was abandoned due to the success of the step index fiber.

In the mid 1970s, a new type of guiding mechanism was proposed and
analyzed by Yeh et al. [3–5]. They considered light guidance by Bragg
scattering from a periodic cladding. This allows for light to be guided in a
hollow core. The new type of fiber, called a Bragg fiber, did however prove
difficult to fabricate, and little experimental progress was made during the
following years.

The proposal that light can be confined in all three spatial dimensions
due to the photonic bandgap effect [6, 7], stimulated much interest in pho-
tonic crystals [8]. The idea of using a photonic bandgap to trap light inspired
Knight et al. to stack silica capillaries together in a hexagonal lattice, and
draw them to a PCF with a solid core [9]. The first PCF did however not
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2 CHAPTER 1. INTRODUCTION

guide light by the photonic bandgap effect. Instead, the air holes lowered
the effective index of the periodic cladding, making the fiber guide light by
total internal reflection [10]. An example of such an index-guiding PCF is
shown in Fig. 1.1.

Figure 1.1: Cross-section of an index-guiding PCF.

By optimizing the PCF structure, true bandgap guidance was then
demonstrated in a hollow core PCF [11]. However, the guided light was
mainly located in silica in this fiber. This was overcome by Cregan et al. in
1999, who experimentally demonstrated bandgap guidance in air [12]. The
first comprehensive theoretical analysis of air-guiding PCFs came shortly
after [13].

It can be noted that there are several examples of photonic microstruc-
tures in nature. One example is the Morpho rhetenor butterflies, having
highly reflective wings due to discrete multilayers of varying refractive in-
dex [14].

Applications of PCFs

Photonic crystal fibers have found a number of applications. A review of
some properties and applications of PCFs can be found in Refs. [15–17].

Since bandgap guiding PCFs can guide light in an air core, the guided
light is little affected by the absorption of 0.15 dB/km in silica. This sug-
gests that air-guiding PCFs might find applications as transmission fibers.
However, other loss mechanisms must be taken into consideration [18]. The
lowest loss demonstrated to date is 13 dB/km in a single-mode air-guiding
PCF [19], and 1.7 dB/km in a weakly multimode air-guiding PCF [20]. The
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latter result is still about an order of magnitude larger than the loss of
standard fibers.

Low loss alone is not sufficient for a successful transmission fiber; the
effects of dispersion are also important for transmission at high bit rates. It
has recently been shown theoretically that the waveguide dispersion of air
core Bragg fibers can be tailored by introducing defects in the cladding [21].

Small-core index-guiding PCFs with high air fill fraction can have un-
usual dispersion properties in addition to high effective nonlinearity. Ranka
et al. observed a broadening of the pulse spectrum when launching 100
fs pulses with 0.8 nJ energy into a 75 cm long PCF [22]. In fact, the
wavelength spectrum of the pulse spanned over more than one octave after
propagation through the fiber. This broadening, called supercontinuum gen-
eration, is caused by the combination of dispersion and nonlinearity of the
PCF. Supercontinuum generation has found applications within frequency
meteorology [23].

PCFs equivalent to double-clad fibers are useful within the field of high
power fiber lasers and amplifiers [24, 25]. This is due to the possibility of
having an outer cladding with high NA, allowing for high pump collection
efficiency, and a large, active, single-mode signal core, reducing nonlinear
effects.

Interesting physics and applications are found when filling the air holes
with various materials. Low threshold stimulated Raman scattering has
been demonstrated in a Hydrogen-filled air-core PCF [26]. Various devices,
such as a variable optical attenuator, has been demonstrated by filling the air
holes of a solid core PCF with polymers [27]. Another interesting possibility
is to fill the air holes of an initially index-guiding PCF with a high-index liq-
uid. This will turn the fiber into a bandgap guiding PCF. Tunable bandgap
guidance has been demonstrated in such a fiber by varying the tempera-
ture [28]. Filling the air holes with liquid crystals is particularly interesting,
since they can be highly sensitive to external perturbations [29].

Finally, it must be emphasized that advanced fully-vectorial simulation
programs are of prime importance in the design of PCFs, due to the com-
plexity of the PCF structures. An example of such a simulation model is
given in Ref. [30].

Fiber gratings

While PCFs have a periodic structure in the transverse plane, fiber gratings
are fibers having a periodically varying refractive index in the propagation
direction of the light [31].
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Consider a fiber where partly reflecting mirrors are placed periodically
in the axial direction, with separation Λ. Maximum reflectivity occurs when
the partial waves reflected from each mirror add up in phase. This gives the
Bragg condition

λB = 2n1Λ, (1.1)

where λB is the Bragg wavelength, i.e. the wavelength of maximum reflec-
tivity, and n1 is the effective refractive index of the reflected mode.

The grating in the example above is called a short-period grating. There
also exists a class of fiber gratings denoted long-period gratings, which couple
light between co-propagating modes. In this case one may think of the
grating consisting of periodically spaced scatterers, which scatter the light
in the forward direction from e.g. mode 1 to mode 2. This gives the same
condition as Eq. (1.1) for the wavelength of maximum coupling, except that
2n1 is replaced by n1−n2, where n1 and n2 are the effective indices of mode
1 and 2, respectively. Since 2n1 � n1−n2, it follows from Eq. (1.1) that the
period of short-period gratings (typically about one micron) is much smaller
than the period of long-period gratings (typically hundreds of microns).

One way of creating a long-period grating is to launch an acoustic wave
along the fiber [32]. Thus, the fiber acts as a waveguide for both light and
sound. The acoustic wave causes a periodic bending of the fiber, result-
ing in a long-period grating with the grating period equaling the acoustic
wavelength. Hence, by adjusting the acoustic wavelength, one can tune
the optical coupling wavelength. Long-period gratings have found several
applications, e.g. as optical filters [33].

It is possible to make broadband and narrow-band filters by using fibers
with optimized geometrical parameters [34]. Hence, tailoring fiber parame-
ters using PCFs opens up the possibility of combining transverse and longi-
tudinal periodicity for making new fiber devices [35, 36].

1.2 Outline

Chapter 2 and 3 give an introduction to fundamental characteristics of pho-
tonic crystal fibers and acoustooptic long-period fiber gratings, respectively.
Chapter 4 summarizes the main results of the included papers and states
the author’s contributions. Conclusions are drawn in Chapter 5, together
with suggestions for future work. The included papers constitute the main
part of the Ph.D. work, and are collected in Appendix B.



Chapter 2

Photonic crystal fibers
(PCFs)

Most PCFs fall into one of to classes, according to their guiding mechanism.
The first type is index-guiding PCFs, which guide light by total internal
reflection. The second type is bandgap guiding PCFs, which utilize the
photonic bandgap effect to guide light. In this chapter, we will mainly focus
on explaining the basics of the two types of guiding mechanisms.

2.1 Index-guiding PCFs

Consider the fiber in Fig. 1.1. This fiber is a pure silica cylinder with a
number of air holes in it. The air holes are arranged in a triangular lattice
with lattice spacing Λ. The diameter of the periodically spaced air holes is
denoted d. The core consists of the absence of an air hole. Experimentally,
it turns out that such a PCF guides only the fundamental mode when d/Λ
is sufficiently small [10]. An example of the mode profile of the fundamental
mode is shown in Fig. 2.1. The mode profile is calculated using a localized
basis-function approach, where the field is written as a sum of Hermite-
Gauss functions [37,38].

2.1.1 Effective index model

There is a simple model, called the effective index model [10], which qual-
itatively explains the fundamental properties of index-guiding PCFs. The
basic idea behind this model is to treat the index-guiding PCF as a standard
step-index fiber, with an appropriately chosen effective cladding index, core
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6 CHAPTER 2. PHOTONIC CRYSTAL FIBERS (PCFS)

Figure 2.1: The fundamental mode of an index-guiding PCF.

index, and core radius. The important point for index-guiding PCFs is that
the core index is higher than the effective cladding index, since the air holes
lower the effective cladding index compared to the silica core. The effec-
tive cladding index is taken to equal the mode index of the fundamental
mode of an infinite cladding. This mode is usually called the fundamen-
tal space-filling mode (FSM). The mode index of the FSM can effectively
be found using numerical approaches, such as the plane-wave expansion
method [30]. At short wavelengths, the field of the FSM is mainly located
in silica, and nFSM approaches the refractive index of silica. However, at
long wavelengths, the field of the FSM extends into the air holes. nFSM

then approaches fnair + (1 − f)nsi, where f is the air-filling fraction of one
unit cell in the cladding lattice [39]. Thus, the effective cladding index is
strongly wavelength dependent.

The effective core index is nsi, since the core consists of the absence of an
air hole. It is however not a priori obvious how to choose the effective core
radius in the effective index model, except that it has to be of the order of
magnitude one lattice spacing Λ. It turns out that an effective core radius
aeff ≈ 0.6Λ gives best agreement between the effective index approach and
results obtained by a fully vectorial solution of Maxwell’s equations [40].

2.1.2 Effective V -parameter

Once nFSM has been found numerically, one can compute the effective V -
parameter for the PCF, defined as

Veff =
2π

λ
aeff

√
n2

si − n2
FSM. (2.1)

Veff for hole diameters d = 0.2Λ, 0.3Λ, . . . , 0.8Λ is shown in Fig. 2.2 as a
function of normalized frequency Λ/λ. The refractive index of silica is taken
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Figure 2.2: Effective V -parameter.

to be equal 1.444 in the calculation. An important thing to notice in the
figure is that Veff approaches a constant value at high frequencies. This is
in strong contrast to standard step-index fibers, where V is proportional to
λ−1.

Standard step-index fibers are single-mode for V < 2.4. We observe
from Fig. 2.2 that this criterion is satisfied for all frequencies when d ≤ 0.3Λ.
This prediction by the effective index model is in qualitative agreement with
experiments and simulations [10, 41, 42]. It can be noted that the endlessly
single-mode property can be utilized to make single-mode fibers with large
mode area, simply by choosing a large value of Λ and a small value of
d/Λ [43].

Furthermore, index-guiding PCFs can be designed to support the fun-
damental and second order modes over an practically infinite wavelength
range [44]. To see this, consider a PCF with d/Λ = 0.5 and Λ = 10 μm.
Such a PCF will have Veff ≈ 2.9 . . . 3.5 for λ < 2 μm, according to Fig.
2.2. This is above the second-order mode cutoff at V = 2.4, but below the
third-order mode cutoff at V = 3.8. This practically endlessly two-mode
property is an attractive feature for two-mode devices. In must however be
kept in mind that other issues, such as macrobending loss [45], also have to
be taken into consideration.

It is also possible to make index-guiding PCFs with very small mode
area [46]. This can be done by choosing a high air-fill fraction, e.g. d = 0.8Λ,
to obtain a large index contrast between the core and the cladding, and a
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small hole spacing Λ ≈ λ, to obtain a small effective core diameter. Such
a fiber can be thought of as a silica rod of diameter ∼ Λ, suspended in air.
The large effective index contrast and small core diameter will lead to a
tightly confined mode. This confinement results in high intensity for a given
optical power, leading to enhanced nonlinear effects. An example of this
type of PCF is shown in Fig. 2.3(a).

(a) (b)

Figure 2.3: A small-core PCF (a) and a multimode PCF (b). Pictures
appear courtesy of Crystal Fibre A/S.

Finally, consider an index-guiding PCF with high air-fill fraction and
large hole spacing. Such a fiber will be multimode, according to Fig. 2.2.
This kind of PCF is useful for guiding high powers due to a low intensity
for a given optical power. Figure 2.3(b) shows a variation of such a PCF.

2.2 Bandgap guiding PCFs

The second main type of PCFs guide light by the photonic bandgap effect.
We will first give an introduction to photonic bandgaps, and then discuss
the basic properties of bandgap guiding waveguides. For simplicity, focus
is placed on planar Bragg waveguides. Based on the properties of planar
Bragg waveguides, we will briefly consider bandgap guiding PCFs.

2.2.1 Bloch’s theorem and photonic bandgaps

Here some general properties of light in periodic media is presented. Much
of the formalism is similar to that of electrons in solid state physics [47].

Consider electromagnetic fields in an isotropic, non-magnetic, non-dispersive,
lossless, linear medium, with no free charges and currents. A time depen-
dence exp(−iωt) is assumed for the electric and magnetic fields. In this case,
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the equation for the magnetic field H becomes

∇×
[

1
εr(r)

∇× H(r)
]

=
(ω

c

)2
H(r), (2.2)

where εr is the relative permittivity. We notice that this equation takes
the form of an eigenvalue problem, where H is the eigenvector and ω2/c2

is the eigenvalue. In fact, it can be shown that the operator on the left
hand side of Eq. (2.2) is Hermitian [8]. Consequently, all properties of
Hermitian operators, which are well-known in quantum mechanics, applies
here. One important property is that the eigenvalues are real, and that
the eigenvectors are orthogonal. The reader is referred to general quantum
mechanics textbooks, such as Ref. [48], for a discussion of some further
properties, such as simultaneous diagonalization of commuting operators,
the variational theorem, and first order perturbation theory.

We then assume that the permittivity is periodic, i.e. that

εr(r + R) = εr(r), (2.3)

where R is a lattice vector. According to Bloch’s theorem [8], one then has

H(r) = uk(r)eik·r, (2.4)

where
uk(r + R) = uk(r). (2.5)

Thus, the eigenvectors take the form of a plane wave modulated by a periodic
function uk, which has the same periodicity as εr. The Bloch vector k
defines the direction of the Bloch wave. Note that k has to be real in
an infinite photonic crystal; if it is complex, the Bloch wave will increase
exponentially for some direction, which is unphysical in an infinite crystal.
A range of frequencies where there are no real values of k is denoted a
photonic bandgap.

Consider then a semi-infinite photonic crystal, which occupies the region
x > 0. We assume that a plane wave with wave vector [kx, 0, 0], is incident on
this structure. It is assumed that the frequency of the plane wave is within
the bandgap of the photonic crystal. Now since the photonic crystal is semi-
infinite, a complex Bloch vector [k + iκ, 0, 0], where κ > 0, is allowed, since
this will lead to an exponentially decaying Bloch wave uk exp(ikx) exp(−κx)
in the +x-direction, but no unlimited exponential increase in the opposite
direction, since the photonic crystal only occupies the x > 0 region. Due to
energy conservation, it then follows that all light must be reflected by the
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photonic crystal. This leads to the conclusion that a semi-infinite photonic
crystal acts as a perfectly reflecting mirror for a plane wave impinging on it
from the outside, for frequencies within the bandgap. This effect is utilized
in bandgap-guiding fibers, where the photonic crystal cladding acts as a
highly reflecting mirror for a certain range of frequencies and propagation
constants.

2.2.2 Planar Bragg waveguides

The simplest example of a bandgap guiding waveguide is the planar Bragg
reflection waveguide [3], where a hollow core is surrounded by a periodic
cladding consisting of an infinite number of alternating high and low in-
dex layers. As a specific example, consider the symmetric Bragg reflection
waveguide in Fig. 2.4. Since the waveguide is symmetric, the modes are
either symmetric or anti-symmetric [8], and we therefore only need to con-
sider one half of the waveguide structure, say y > 0. The index of refraction
is 1.5 in the high index layers and 1 in the low index layers. Consider a TE-
polarized plane wave with frequency ω and wave vector [0, ky, β] incident on
the periodic cladding. Due to continuity of the E-field, a Bloch wave with
Bloch vector [0, k + iκ, β] and frequency ω is excited in the cladding. k + iκ
is determined by β and ω. It is useful to map out values of (β, ω) where
κ > 0. In these regions, the Bloch wave is evanescent in the y-direction, and
an incoming plane wave will be reflected from the cladding. The bandgaps
are shown in yellow in Fig. 2.5.

0 2 4 6

−0.5

0

0.5

1

y/λ
0

A
m
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itu

de

0 2 4 6

1

1.2

1.4

1.6
Fundamental mode

Refractive index

Figure 2.4: The fundamental TE-mode at λ = λ0, and the refractive index
profile of a symmetric Bragg reflection waveguide. λ0 is an arbitrary length.
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A guided mode in the Bragg reflection waveguide can be thought of as
a plane wave bouncing back and forth in the core, forming a standing wave
pattern. Two conditions must be satisfied for this to happen. The first
condition is that all light is reflected from the cladding, i.e. that the (β, ω)
value of the mode is within a bandgap. The second requirement is that
the plane wave should interfere constructively with itself after one round
trip. This phase match condition yields the dispersion relation, ω(β), of
the mode. From the dispersion relation, one can determine the mode index,
group velocity, and dispersion coefficient. The dispersion relations for lowest
order modes of the Bragg reflection waveguide are shown in dark blue in
Fig. 2.5. The mode profile of the fundamental mode at the wavelength λ0

w
[2

p
/l

]
c

0

b [2p/l ]

1

2

1 20

Figure 2.5: Band diagram for TE-polarized light in the planar Bragg reflec-
tion waveguide.

is shown in Fig. 2.4. The corresponding point in the dispersion diagram is
shown as a black circle in Fig. 2.5.

Note that one must have ω > cβ in order to have a core-guided mode,
otherwise the field would be evanescent in the core. The line ω = cβ is the
solid red line in Fig. 2.5. The dotted red line shows ω = (c/1.5)β. In the
region cβ > ω > (c/1.5)β, the fields are evanescent in the low index layers,
but harmonically varying in the high index layers. In this case, each high
index layer acts as an index-guiding waveguide. The cladding can then be
thought of as an infinite number of coupled index-guiding waveguides [4].
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Below the line ω = (c/1.5)β, the fields are evanescent in both the high and
low index layers, and no solutions of Eq. (2.2) exist.

2.2.3 Air-guiding PCFs

An example of an air-guiding PCF is shown in Fig. 2.6. This type of fiber

Figure 2.6: An air-guiding PCF. Picture appear courtesy of Crystal Fibre
A/S.

guides light by the same mechanism as the Bragg reflection waveguide, that
is, the cladding acts as a mirror for (β, ω) values in the photonic bandgap.
A typical band diagram of such a fiber is given in Ref. [13]. However,
the finite number of cladding layers cause leakage of light out of the core.
This loss mechanism can be reduced to less than 0.1 dB/km by choosing
a sufficiently large number of cladding layers [49]. Furthermore, material
absorption in silica causes less loss than for standard fibers, since most of the
light propagates in air. It has recently been suggested that surface roughness
determines the ultimate limit to the loss [18], and that the attenuation
of 1.7dB/km, in the lowest loss air-guiding PCFs reported [20], is already
dominated by this loss mechanism.



Chapter 3

Acoustooptic fiber gratings

Coupled mode theory is an useful alternative to the Bloch-wave formalism
when treating fibers with a periodically varying refractive index in the prop-
agation direction of the light [50]. This chapter considers the application
of coupled mode theory to optical fiber devices that use a traveling flexural
acoustic wave to couple light between two co-propagating optical modes.

3.1 Perturbation due to an acoustic wave

An optical fiber with the coating removed can as a first approximation be
regarded acoustically as a homogeneous cylinder. There are generally three
types of acoustic modes in homogeneous cylinders: Torsional, flexural, and
longitudinal [51]. Here we will consider the lowest order flexural mode in
the low frequency regime, i.e. when

fa/ct � 1, (3.1)

where f is the acoustic frequency, a is the fiber radius, and ct is the transverse
acoustic wave velocity in silica, which is 3764 m/s. The condition in Eq.
(3.1) corresponds to f � 60 MHz for a fiber radius of 62.5 μm.

The lowest order flexural acoustic mode causes a periodic bending of
the fiber in the low frequency regime [52], and the displacement can be
approximated by [53]

u(x, y, z, t) = u0 cos(Kz − Ωt)x̂. (3.2)

Here the acoustic wave is taken to be polarized in the x-direction. From
energy conservation, the relation between the amplitude u0 and the power

13



14 CHAPTER 3. ACOUSTOOPTIC FIBER GRATINGS

carried by the acoustic wave is [51]

P = 4ρ(π7cexta
5f5)1/2u2

0, (3.3)

where the density ρ of silica is 2200 kg/m3, and cext = 5760 m/s. We
note that the power is proportional to the square of the acoustic amplitude.
Typically, the amplitude of the acoustic wave is of the order of magnitude
1 nm. This gives a power of 36 mW, assuming an acoustic frequency of 10
MHz and a fiber radius of 62.5 μm.

The dispersion relation for the lowest order flexural mode in the low
frequency regime is [52]

Λa = (πacext/f)1/2, (3.4)

where Λa is the acoustic wavelength. For example, f = 10 MHz and a =
62.5 μm give Λa = 0.3 mm.

The acoustic wave perturbs the fiber in two ways. The first effect is
an asymmetrical change is optical path length due to the bending of the
fiber. The second effect is a change in the refractive index of silica due
to the elasto-optic effect. The combination of these two effects causes a
perturbation [53,54]

Δn(x, y, z, t) = Δn(x, y) cos(Kz − Ωt), (3.5)

where
Δn(x, y) = n0(1 + χ)K2u0x. (3.6)

Here χ = −0.22 is for silica, which expresses the reduction in Δn due to the
elasto-optic effect, and n0 is the refractive index profile of the unperturbed
fiber.

The acoustic wave is quickly damped in the fiber coating. This implies
that the acoustooptic interaction region is defined by the stripped part of
the fiber, as shown in Fig. 3.1.

hornV

stripped fiber

Figure 3.1: An acoustic wave traveling in the stripped part of a fiber.
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3.2 Coupled mode equations

It is assumed that the acoustic wave couples light between two optical modes,
denoted mode 1 and mode 2. Coupling to all other modes is neglected.
The electric field in the stripped fiber section can then be represented as a
superposition of mode 1 and mode 2

ψ(r, t) =
2∑

i=1

ai(z)ψi(x, y) exp [i(βiz − ωit)] . (3.7)

A scalar notation is used here for simplicity. ai, ψi, βi, and ωi denote
mode weight, normalized mode profile, propagation constant, and angular
frequency, respectively, for mode i. It can be shown that the angular fre-
quencies of the coupled modes must satisfy [50]

ω1 = ω2 + Ω. (3.8)

This frequency shift can be thought of as a Doppler shift due to the traveling
acoustic wave.

It can also be shown that the electric field evolves according to the
coupled mode equations [50]

da1(z)
dz

= iκa2(z) exp(−iΔβz) (3.9)

da2(z)
dz

= iκa1(z) exp(iΔβz), (3.10)

where the acoustooptic phase-mismatch coefficient Δβ is given by

Δβ = β1 − β2 − K, (3.11)

and κ is the acoustooptic coupling constant, which is given by

κ ≈ k1

2
〈ψ2|Δn(x, y)|ψ1〉, (3.12)

where k1 = ω1/c. An important thing to notice is that since the perturbation
Δn(x, y) is anti-symmetric with respect to the x-axis, one only obtains a
non-zero coupling coefficient between symmetric and anti-symmetric modes
(with respect to the x-axis). For example, one may couple light between the
symmetric LP01 mode and the anti-symmetric LP11 mode.

From Eqs. (3.9)-(3.10), we find that

d

dz

(|a1(z)|2 + |a2(z)|2) = 0, (3.13)
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that is, an increase of the power in mode 1 is always accompanied by a
decrease of the power in mode 2, and vice versa.

We will consider three cases. In all cases it is assumed that a1(0) = 1
and a2(0) = 0.

a1 constant

The case a1(z) ≈ 1 is considered first. This is relevant when the coupling
is too weak to cause significant transfer of energy from mode 1 to mode 2
over the acoustooptic interaction region. We can then integrate Eq. (3.10)
directly and obtain

|a2(L)|2 = (κL)2sinc2

(
ΔβL

2

)
, (3.14)

Where L is the length of the acoustooptic interaction region. The bandwidth
is found by considering the first zero of the sinc function. This gives

|Δβ| <
2π

L
, (3.15)

which shows that the bandwidth is inversely proportional to the length of
the acoustooptic interaction region.

Δβ = 0

The condition Δβ = 0 is denoted perfect phase-match. Inserting Δβ = 0
into Eqs. (3.9) and (3.10) gives, using the initial conditions, that

|a1(L)|2 = cos2(κL) (3.16)
|a2(L)|2 = sin2(κL), (3.17)

which shows that light is coupled periodically from mode 1 to mode 2, and
vice versa. All light is coupled from one mode to the other after a length

L =
π

2κ
. (3.18)

Note that Δβ = 0 corresponds to the Bragg condition Eq. (1.1). The proof
of this is left to the reader.
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General case

By solving the coupled mode equations exactly using the the initial condi-
tions, we obtain

|a2(L)|2 =
κ2

κ2 +
(

Δβ
2

)2 sin2

⎛
⎝

√
κ2 +

(
Δβ

2

)2

L

⎞
⎠ . (3.19)

A plot of |a2(L)|2 when κL = π/2 is shown in Fig. 3.2.

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8
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Δβ L

|a
2(L

)|
2

Figure 3.2: Fraction of light coupled to mode 2 when κL = π/2.

3.2.1 Coupling bandwidth

We will finally take a closer look at the acoustooptic coupling bandwidth [55].
It is assumed that κL = π/2, i.e. that all light is coupled from mode 1 to
mode 2 at the end of the interaction region when Δβ = 0. We wish to find
the range of |Δβ| satisfying

|a2(L)|2 >
1
2
. (3.20)

This gives from Eq. (3.19) that

|Δβ| <
2.5
L

. (3.21)
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This is somewhat less than Eq. (3.15) due to a different definition of the
bandwidth.

We then use that

Δβ(λ, f) = 2π

(
1

Lb(λ)
− 1

Λa(f)

)
, (3.22)

where Lb is the intermodal beatlength between mode 1 and 2. Note that
Δβ is a function of both λ and f . The most common situation takes place
when the acoustic frequency is constant, and the transmission 1−|a2(L)|2 is
recorded as a function of optical wavelength using e.g. broadband light and
an optical spectrum analyzer. In this case we write Δβ = Δβ(λ). Assuming
that Δβ(λ0) = 0, we can Taylor expand Lb(λ) to first order around λ0

obtaining

Δβ(λ) ≈ −2πL′
b(λ0)Δλ

L2
b(λ0)

, (3.23)

where Δλ = λ − λ0. Inserting this into Eq. (3.21), we obtain

ΔλFWHM =
0.8
L

L2
b(λ0)

|L′
b(λ0)| , (3.24)

where ΔλFWHM is the FWHM coupling bandwidth.
We note from Eq. (3.24) that there are two factors determining the

coupling bandwidth. The first factor is the length L of the acoustooptic
interaction region. L must be in the range from 1 cm to 100 cm in practice:
Power requirements and damping of the acoustic wave outside the acous-
tooptic interaction region limit the minimum length, while acoustic damping
along the stripped fiber and practical device sizes limit the maximum length.
However, the coupling bandwidth is also determined by the fiber properties
through the term L2

b(λ0)/|L′
b(λ0)|. This term can be tailored by optimiz-

ing the fiber geometry. This makes PCFs useful for making acoustooptic
devices, since they provide freedom in tailoring fiber properties.



Chapter 4

Summary of papers

This chapter gives an overview of each included paper. We also provide the
motivation for the papers and state the author’s contributions. The included
papers are denoted Paper A, Paper B, and so on.

4.1 Acoustooptic experiments

The main motivation behind these experiments was to investigate to what
extent characteristics of index-guiding photonic crystal fibers affect the prop-
erties of acoustooptic long-period fiber gratings. One such property is the
acoustooptic coupling bandwidth [34]. Tailoring the coupling bandwidth
might be useful in acoustooptic tunable filters for use as dynamic gain-
flattening devices for Erbium-doped fiber amplifiers [56].

Paper A: Acoustooptic properties of a weakly multimode solid
core photonic crystal fiber

This paper reports a measurement of the phase velocity for the lowest order
flexural acoustic mode for both a solid core and a hollow core PCF, and a
measurement of the intermodal beat length between the lowest order and
first four nearly degenerate higher order optical modes of the solid core PCF.
The measurements of acoustic phase velocity and optical beat length were
seen to be in good agreement with calculations. There was a broadening
of the notches in the optical transmission spectra at increased acoustic fre-
quency. This is likely caused by the combined effect of fiber imperfections
and splitting in mode index between the four nearly degenerate higher order
modes for a perfect structure.

I performed the simulations and experiments, and wrote the paper.
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Paper B: Acoustooptic characterization of a birefringent two-mode
photonic crystal fiber

It is critical that fibers used in acoustooptic tunable filters are axially uni-
form, since axial non-uniformities may give rise to significant sidelobes in
the transmission spectrum [57–59]. We therefore investigated to what ex-
tent axial variations in acoustooptic phase-mismatch coefficient contributed
to the acoustooptic coupling bandwidth in a birefringent two-mode PCF.
A method is presented, where axial variations in the acoustooptic phase-
mismatch coefficient are obtained directly from the transmission spectrum.
This method is compared to an existing method where axial non-uniformities
are measured using acoustic pulses [59]. The two methods are found to be
in good agreement. The measurements show that the minimum coupling
bandwidth was limited by axial variations in acoustooptic phase-mismatch
coefficient.

I performed the simulations and experiments, and wrote the paper.

4.2 Electrical tuning of photonic bandgaps

This work was carried out in collaboration with Thomas T. Alkeskjold dur-
ing a stay at DTU in the spring of 2004. The original plan was to use a
flexural acoustic wave to control transmission properties of a liquid crystal
filled PCF. Previously, Larsen et al. had shown that temperature tuning
and highly sensitive thermal switching of a photonic bandgap fiber could
be accomplished with a liquid crystal filled PCF [29]. The initial acoustic
experiments were unsuccessful, and the focus was turned to electrical tuning
instead. Such a device could possibly find applications within polarization
control.

Paper C: Electrically tunable photonic bandgap guidance in a
liquid-crystal-filled photonic crystal fiber

In this paper we demonstrate that tunable bandgap guidance can be ob-
tained by filling the holes of an initially index-guiding solid core PCF with
a nematic liquid crystal, and applying an electric field. A polarization de-
pendent change in optical transmission properties was observed above a
threshold field, and the response times were found to be in the ms range.
The insertion loss was 1.3 dB at 1500 nm wavelength, in addition to the
splice loss.

I performed the experiments and wrote the paper.
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4.3 Origin and properties of waveguide dispersion

The effects of dispersion are crucial for a range of applications such as trans-
mission at high bit rates, dispersion compensation, and enhancement or
suppression of nonlinear effects. In order to exploit the potential of mi-
crostructured fibers, it is therefore important to understand the origin of
waveguide dispersion. The first of our studies was also motivated by the
fact that photonic bandgap fibers can have large values of waveguide disper-
sion, in addition to sharp transmission features [60]. Consequently, it was
of interest to find out if Kramers-Kronig relations similar to those for ho-
mogeneous media exist for waveguides. The main motivation for the second
study was to investigate dispersion properties of planar Bragg waveguides
with advanced cladding profiles. Since many of the characteristics of Bragg
fibers are similar to those of the planar case, the results could also be useful
for Bragg fibers.

Paper D: Causality and Kramers–Kronig relations for waveguides

It is shown that Kramers-Kronig relations exist for waveguides, even when
material dispersion and material loss is negligible in the frequency range of
interest. The theory is applied to hollow waveguides with perfectly conduc-
tive walls, index-guiding dielectric waveguides, and bandgap-guiding wave-
guides. We demonstrate that for hollow waveguides with perfectly conduc-
tive walls, each mode propagates causally, and the associated mode index
obeys the usual Kramers-Kronig relations. That is, the real part of the mode
index is determined by the imaginary part, and vice versa. For dielectric
waveguides, it turns out that the (real) mode index of a guided mode is re-
lated to the (imaginary) mode indices of the evanescent modes. For weakly
guiding waveguides, we show that the derivative of the mode index with re-
spect to frequency for a certain mode is given solely by the associated mode
field profile.

The theory was developed in collaboration with Johannes Skaar. I per-
formed the simulations, and wrote the paper.

Paper E: Dispersion properties of planar Bragg waveguides

In this paper we study some properties of planar Bragg waveguides with
a finite number of cladding layers. We show that the leaky mode condi-
tion (no incoming flux from the outermost layer) can be reformulated as
a phase match condition, similarly to that of conventional, planar dielec-
tric waveguides. We also give a simple, approximate formula for the loss.
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These relations are useful as they enable efficient analysis of the modes. A
general expression for the waveguide dispersion can be derived using the
phase match condition. With the help of this expression and numerical
calculations, we explain that chirped claddings do not give dispersion char-
acteristics significantly different from waveguides with periodic claddings.
This is an important result as it shows that dispersion tailoring cannot be
achieved in a similar way as with fiber Bragg gratings or thin-film filters.
Also, in order to understand the dispersion characteristics of other waveg-
uides with non-periodic claddings, we consider waveguides with high-index
defects close to the core [61].

I wrote an initial version of the simulation program, contributed at least
half to the theory, and contributed to the writing of the paper.
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Conclusions and outlook

In summary, several properties and devices based on photonic crystal fibers
have been studied in this thesis. Based on the results obtained, we will here
draw some conclusions, make suggestions for further work, and comment on
some recent developments.

Regarding the acoustooptic experiments, it was found that the acousto-
optic coupling bandwidth was larger than expected for coupling to a single
mode in a perfect fiber. This is an undesired feature for narrow-band acous-
tooptic tunable filters. For the birefringent PCF, the broadening in acous-
tooptic coupling bandwidth was due to axial variations in the acoustooptic
phase-mismatch coefficient. A natural next step would be to investigate
the cause of these variations. One could, for example, use a laser probe to
measure axial variations in fiber thickness, in order to check if this is the
cause of the axial variations in acoustooptic phase-mismatch coefficient. If
so, acoustooptic coupling could find applications as a tool for performing
quality checks of fabricated PCFs.

It would also be interesting to study acoustooptic coupling in photonic
bandgap fibers, since these fibers have properties radically different from
index-guiding PCFs. Long-period gratings in bandgap-guiding PCFs have
recently been demonstrated using periodic microbending [62].

Finally, a promising new idea is to study Brillouin scattering in small-
core PCFs with high air fill-fraction. In such fibers, the core can approxi-
mately be regarded acoustically as a glass cylinder suspended in air. This
will modify the dispersion relation of the acoustic phonons and thereby alter
the properties of Brillouin scattering [63].

PCFs filled with liquid crystals are candidates for highly tunable and
compact fiber devices [64]. In the work using an applied voltage to control

23
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transmission properties of liquid crystal filled PCFs, it was found that the
optical transmission properties could be altered above a certain threshold
field. However, a complete computer simulation of the resulting polarization-
dependent transmission was not performed. One important step would
therefore be to reproduce the observed transmission properties theoretically.
Some computer simulations of liquid crystal filled PCFs have already been
performed [65,66].

There could be several potential applications of voltage-controlled liquid
crystal filled PCFs, e.g. within polarization control, as tunable polarizers,
and as electric field sensors.

Some recent work has utilized different anchoring conditions to avoid a
threshold field, and to avoid reverse tilt domains [67]. Optically induced
thermal tuning has also recently been demonstrated [68].

Using the principle of relativistic causality, we found that Kramers-
Kronig relations exist for waveguides, even with negligible material absorp-
tion in the frequency range of interest. The crucial point is that evanescent
modes act as an effective loss term in these relations.

There are several ways in which this work could be extended. An
important question is that of completeness for absorbing waveguides. It
would be useful to identify the exact conditions under which completeness
holds for the normal modes of a general absorbing waveguide. Some work
regarding completeness in absorbing waveguides has previously been per-
formed [69, 70]. In addition, studying Kramers-Kronig relations in weakly
guiding waveguides with weak absorption could find useful applications. In
this case, the Kramers-Kronig relations could be used as a new method to
determine dispersion by measuring the mode field of a given mode as a func-
tion of wavelength using e.g. a tunable laser and a CCD camera. This would
make it possible to measure dispersion using very short (on the order of 10
cm) fiber sections.

Regarding dispersion properties of planar waveguides, it would be nat-
ural to consider how the results would apply to Bragg fibers and bandgap-
guiding PCFs. For air-core bandgap fibers, it has been found that the loss
is dominated by surface roughness, and that this effect can be reduced by
increasing the diameter of the core [18]. This will unfortunately make the
fibers multimode. However, a new and interesting idea is to introduce de-
fects close to the core to obtain large loss for all higher order modes, except
for the fundamental mode [71]. This seems like a possible route for making
low-loss air-core bandgap fibers.
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