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Chapter 1

Introduction

This thesis started with the intention to investigate a possible alternative
explanation as to why the observations of galaxies did not fit with the com-
monly accepted theory of gravity. As time went on, our focus shifted to
cosmology. We decided to investigate the relations between the models of
Hilbert—Einstein and Huggins [1] seeking to understand the effect the expan-
sion of the universe during inflation would have on the energy-momentum
tensor. The Huggins term was used by Callan, Coleman and Jackiw to intro-
duce an improved energy-momentum tensor [2]. In Chapter 2 the Huggins
term will be explored through adding it to the Hilbert—Einstein field theory.
In chapter 3 we solve the equations numerically through a python script and
in chapter 4 we investigate the results of the python script.

We begin with a brief overview of the theoretical foundation for the thesis
and the work that has led to what it has become. The Einstein equation of
gravity with a cosmological constant A reads [3]

GH — g A = kT, (1.1)

where g"” is the metric tensor, G*¥ is the Einstein tensor, T#" is the energy-
momentum tensor, G is the gravitational constant, ¢ is the speed of light

and
8rG N

A
We use here the metric signature (+,—, —, —). The cosmological constant
A may be moved to the other side of the equation and reinterpreted as a
vacuum energy density.
Taking the divergence of (1.1) and using the mathematical identities
G"., =0 and ¢"",, = 0 we get as a consistency condition for the Einstein
equation that

. (1.2)

Ap=—rkT",, . (1.3)
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2 Introduction

Thus, if A is really constant, the energy-momentum conservation equation
™ 6 =0 (14)

is a consistency condition.
In standard cosmology the universe is assumed to be homogeneous and
isotropic. Then the line element of the spacetime geometry may be written
as
dr?
1 — kr?

where a(t) is a time dependant scale factor and k£ = 0,+1 is a measure
of the curvature of space. The matter content is described by the energy-
momentum tensor

ds? = 2 dt? — a(t)? + d6? + sin? © d®? (1.5)

T", = diag(e, — P, — P, —P) (1.6)

where the energy density ¢ and the pressure P depend only on time. The
Einstein equation then reduces to the two Friedmann equations

a® k2 81GnN
= €

2t e T 3e (1.72)
a 47G N
2o TN (e3P, (1.7b)
The energy-momentum conservation law 7", = 0 reduces to
) a
E+ 3+ P) S =0, (1.8)

A further relation between € and P is the equation of state. This is
usually defined by an equilibrium condition for instantaneous states of the
universe, the same as one would have in thermodynamic equilibrium in a
static universe. The equation of state may change as the universe evolves
but is not assumed to depend on the rate of expansion of the universe. This
description can be expected to be good as long as the universe changes slowly
compared to the rates of thermal equilibrium. As a first correction one may
proceed to wiscous cosmology. In recent years attempts have been made to
incorporate the universe’s rate of expansion by adding a term

a
Piisc = _3771) () (1.9)
a

to the pressure. Here 7, is the coefficient of bulk viscosity, also known
as volume viscosity, sometimes denoted by the symbol &, which again will
depend on the instantaneous state of the universe.



This provides a simple way to model the backreaction of expansion on the
behaviour of matter. It may be a valid approach when the rate of expansion
is comparable to but still smaller than the rate of thermal equilibration.
Here, we will consider a different approach to the backreaction, considering
effective field theory models where the Lagrangian depends on the geometry
beyond its obvious dependence on the metric.
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Chapter 2

General relativity with a
Huggins term

In this Chapter, after establishing the general equations and conventions
used, we will discuss the effects of adding a Huggins term (2.13c) to the
Hilbert-FEinstein and matter Lagrangian.

2.1 Conventions and general equations

The infinitesimal line element

ds® = g, dzt dy” (2.1)
is used here with a metric signature of (4, —, —, —). The covariant derivative
is defined as

Dy =0\+T) (2.2)

where I'y is a matrix, this derivative should be metric compatible, i.e.

DAg,uu =0 (23)
implying that the matrix elements are
1
(F/\)Mu = Puu)\ = 59'MU (gazx,)\ + Gorp — g,\u,a) . (2.4)

The Riemann tensor is defined as
R)\p = [D)\, Dp] = 8,\Fp — apr)\ -+ [F/\7FP} (25)

with the property
(R)\p)aﬁ = Raﬁ)\p . (26)
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6 General relativity with a Huggins term

It follows that the Riemann tensor can be written as
Ro‘ﬁ)\p = 8>\Fo‘ﬁp - ékf‘o‘ﬁp + 8pI‘O‘ﬁ)\ + I‘O‘V)\va — I‘O‘wlﬂﬁp. (2.7)

The Ricci tensor is defined as

Rg, = Raﬂap , (2.8)
and the Ricci scalar is
R=¢"Rs, . (2.9)
The Einstein tensor is
1
Gpp = Lpp — §Rgﬂp . (2.10)

The functional derivative is defined as

W:l% F[f($)+65(w6—y)]—F[f(fv)] _ (2.11)
2.2 The action
The action S is defined as a space-time integral
S:/d%ﬂc. (2.12)

The lagrangian £ is a sum of three terms, the Hilbert—Einstein term with
a cosmological constant, the matter term with the scalar field ¢, and the
Huggins term,

4

c 1
Lyg = —m(R +2A) = _ﬂ(R'F 2A) , (2.13a)
1
ﬁmatter = 5 g,uuaugp 81190 - V(@) ) (2'13b)
1 2
EHuggins = 5590 R. (213C)

Here V(¢) is potential of the scalar field ¢. The Euler-Lagrange equations
obtained by varying the metric become

1
- (G — guw\) + T, =0 (2.14)
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with the energy momentum tensor
2 5(Smatter + SHuggins)

=75 59"
1
= 0up 0 = 59 0% Oap + 9 V()
+ £ [Gu + 9,0- V.V, ] ©°. (2.15)
The Euler-Lagrange equation we get by varying ¢ is
1 14
ﬁau V=99"0p +V'(p) —ERp =0 (2.16)

For the potential V(¢) = A?¢?/2 and no coupling with £ = 0 this gives
the Klein—-Gordon equation

1
ﬁau V=99" 0,0+ Np =0 (2.17)
and the Klein—Gordon energy-momentum tensor
1 N P
T = 00$0 = 59w Pa+ G5 ¢ (2.18)

We will call (2.16) the generalized Klein—Gordon equation.

2.3 Specialization to the Friedmann—Lemaitre—
Robertson—Walker universe
In this section we will see how the general equations reduce to the the Fried-

mann equations for the FLRW model.
The line element (1.5) results in the metric tensor

[ 0 0 0 ]
2
a
0 ———— 0 0
Guv = 1— kr? (2.19)
0 0 —a?r? 0
0 0 0 —a?r?sin%0
and its inverse
1 0 0 0
1 — kr?
_727" 0 0
g = “ 1 (2.20)
0 0 —— 0
a“r 1
0 0 0 S
L a2r2sin26 |




8 General relativity with a Huggins term

with the square root of the metric tensor determinant being

a3r?sin 6

and the nonzero connection coefficients

1 aa 1 . 1 .5 .

Y, = -, Y = — —aar?, Yy = — —aar’sin?6,
cl—kr c c
a kr 1

ri, =2 i = ri, = T = -

01 a’ 11 1— kr2’ 21 ) 31 r’

2 a 2 1 3 a 3 3 _

Loy = P I'fy = g o3 = —, Iig=—, I'53 = cot

(2.22)

The connection is symmetric, I‘ﬁy = I'§,- The Einstein tensor (2.10) is
diagonal with elements

3 /a2 ke?
0 _
1 [/ .d & ke
1 _ 2 _ ~3 _ = _ -
GI_GQ_G3_C2(2a+a2+a2>. (2.23b)
The Ricci scalar is
6 (4 > ke
— (O — _ z 2
R = Gu 2 (a+a2+a2>' (2.24)

The energy-momentum tensor

We define the four vector W to be the gradient of the time dependent ©?(t),

2
W, = VVQOQ = aVQOQ = < v, 0,0, 0) (225)
c
Applying another derivative to W, we obtain the covariant derivative
VuVop? = VW, = 0,W, —T0, W, = 0,0,¢° —T9,00¢° . (2.26)
Only the diagonal elements are nonzero

VoVop?® = 932, (2.27)
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2
ViVip® = —F?iESOQO- (2.28)
The wave operator in curved space-time applied to ¢? gives
Op? = —— 0, V= 9" 0® = —= V=00 ¢
= L 0° =
V=9 " V=9
2 [, B a
= <<p2 + pp + 3<pg0> . (2.29)
c a
The energy density is
o _ & 6
e=T :2—C2+V(gp)—|—§ GO ¢? +t3 <pg0 (2.30)
and the pressure is
P=-T, =-T% =-T% (2.31)
¢’ 1 2
=5a2 VP - €<G 197+ 5 [<ﬁ +o@ +2 WD
(2.32)
The scalar field equation
The Euler-Lagrange equation we get by varying ¢ is
1 3 a .
C2cp+ g0+V( )—&Rp =0 (2.33)

where R is given by the equation (2.24). For simplicity we will call this the
Klein—Gordon equation.
2.4 Summary of the equations

Altogether we have the gravitational equations (1.1) with a cosmological
constant term and the generalized Klein-Gordon equation (2.16). We use
two of the gravitational equations,

G% = ke + A, G'Y = —kP+A. (2.34)

By using (2.23a) and (2.30) the first equation takes the form

a*  kc? 1 a
3(1—5/@@2) <a2+a2>:/<c<2g02+c Ve )+6£a4pg0>—|—Ac2. (2.35)
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To eliminate A and V() we take the difference of the two equations,
G% — G, = k(e + P). (2.36)

By using (2.23a), (2.23b), (2.30), and (2.39) this equation takes the form

.2 k‘Q .
- +ac2> :n(¢2+25[—¢2—@¢+290¢]>. (2.37)

2(1—gﬂ¢2)<—3+a2

The generalized Klein—Gordon equation is

. a . i a® ke
<p+3a<p+vl(g0):6§<a+a2+a2>90- (2.38)

Thus we have three equations for the two unknowns a(t) and ¢(¢). This
is consistent because the energy conservation equation (1.8) is satisfied.

Analysis of the equations

The first equation, (2.35), contains no higher than first derivatives of the
variables a and ¢. There is one coupling term in the equation that prevents
separation of the variables. This equation is a constraint equation that has to
be satisfied at all times. In particular, we have to take it into account when
choosing initial values for a, a, ¢, ¢, and A in our numerical integrations.

When we integrate the other equations numerically, we use equation
(2.35) to compute A as a function of a, a, ¢, ¢. It is an important test of the
precision of our numerical integration that A computed in this way should
be constant in time.

The second and third equations, (2.37) and (2.38), are two linear equa-
tions for the second derivates of a and ¢. They do not contain A. It is these
two equations that we integrate numerically. They have the form

Clld + 612¢ == A(CL, aa @, ()0) P
21 + 229 = B(a,a,,9) - (2.39)

The determinant of the equation system is
2 2
Cl1C22 — G121 = — (1+£(66 —1)rp?). (2.40)
The determinant can vanish completely for certain values of p? if 0 < & <

1/6. In the two cases £ = 0 and £ = 1/6 the determinant is no longer
dependant on ¢ and is determined simply by —2/a.



Chapter 3

Solving the equations

3.1 Units

It is convenient to choose units such that
c=1=299792458 m/s ,
Gy =1=6.6738x 107" m3 kg™t s72, (3.1)
K = 8.

We are still free to choose a time unit. A convenient time unit in cosmology
may be

to = 10% year = 3.1558 x 100 5. (3.2)
This fixes the length unit as
Lo = 10 light year = 9.4607 x 10%* m. (3.3)
Then we get
Gy =1 = 6.6738 x 10-11 (9'4607L§ T — (3.1558t0>2< 1016)2
=7.9244 x 10793 L3 kg™t t52 = Lg My 52, (3.4)

when we introduce the mass unit
My = 1.2619 x 10°% kg . (3.5)

This is about the total mass of the Universe [4].
In these units, the value of the cosmological constant, from the observa-
tions with the Planck satellite, is

A=111x10"2m 2 =0.0099 Ly?. (3.6)

11



12 Solving the equations

The reduced Planck’s constant is
h=1.0546 x 10** kg m? s 71 = 2.9466 x 10720 My L t,*. (3.7)

The unit of the parameter A of the scalar field is inverse length. Quanti-
zation of the scalar field with the potential V() = A2p? /2 gives field quanta
of mass

D)
m =~ = 2.0466 x 107129 My Lo X. (3.8)

Thus, if we take A = 1/Lgy we get

hA
m = —— =2.9466 x 107129 My = 3.7183 x 10" kg. (3.9)
c
This is a very small mass, about 1073® times the mass of the electron,
or 10733 times the experimental upper limit on the mass of the electron
neutrino.

3.2 Choosing the initial conditions

For the sake of simplicity we set k = 0, ¢ = 1 and V(p) = A\2¢?/2 thus
(2.35) takes the form

d2 (p2 2S02 a
1 —¢re?) — = k| = —pp | +A. 1
3( gw)cﬂ /£<2 + = +65aw>+ (3.10)
and equation (2.38) takes the form
. . .2
p+3° +A2@:—6g<“+“2>¢. (3.11)
a a a

Equation (2.37) takes the form

) i a’ 5 o .G
2(1 — &rp®) — ta)=n ©T 28| — ¢ —eetvd) ) (3.12)
Now we can choose the initial values of a, ¢, a, and ¢, in order to simplify
as much as possible. We choose ¢(0) = 0 and a(0) = 1 and reduce the initial
value condition (3.10) to the simple relation between a(0) and ¢(0)
(2(0)* A

(a(0)* = k=== + 3. (3.13)

We observe from equation (3.10) that the equation for a(0) becomes a more
general second order equation when ¢(0) # 0 and £ # 0.
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We choose to investigate the two values £ = 0 and £ = 1/6 where the
determinant (2.40) is guaranteed to be non-zero.

We take the constraint equation, (2.35), as a definition of A(¢). It is a
test of the accuracy of the calculations that A(¢) should be constant. We
therefore plot A(t) — A(0). This difference is seen to fluctuate below 107
which is a reasonable numerical accuracy. It is also a non-trivial verification
that the analytical formulas are correct.
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Chapter 4

Numerical examples

The calculations done in the Python script use the units from section 3.1
where ¢ = 1 and Gy = 1. The time unit is ¢ty = 10? years. We choose to set
a(0) =1, ¢(0) = 0, and ¢(0) = 0.1 for all plots and only vary the constants
&, A, and A

We present here plots of the scale parameter a(t), the scalar field p(t), the
Hubble parameter a(t)/a(t), and the numerical error parameter A(t) — A(0)
for 12 different cases. Note that A(t) — A(0) is always multiplied by 10°.

Note also that when we take A = 1, which means A = 1/Lg, more realistic
values in terms of known particles would be 103° /Lo or 10%°/ Ly, which would
give extremely rapid oscillations of ¢ on cosmological time scales.

15



Ja

16 Numerical examples

5.0 T T T T T 0.08 T T T T
4.5 Bl 0.06
40 1 0.04
35 4
0.02
s 30 ] o
0.00
25 1
20 | -0.02
15 1 —0.04
1.0 —0.06
0 5 10 15 20 25 30 0 10 15 20 25
time time
0.25 30

time time
Figure 4.1: £ =0, A=0, A=1
5.0 T T T T T 0.08 T T T T
4.5 Bl 0.06
40 1 0.04
35 4
0.02
= 3.0 B Y
0.00
25 1
20 | -0.02
15 1 —0.04
10 —0.06
5 10 15 20 25 30 0 10 15 20 25
time time

time

Figure 4.2: £ =1/6,A=0, A =1

time




a,

a,

17

F 0.04

s 0.02

F 0.00

—-0.02

time

time time

Figure 4.3: £ =0, A=0.01, A =1

0.06

L 0.04

o 0.02

0.00

—-0.02

=N WA U o N @ ©

o
w

10 15 20 25 30
time

0.22
0.20
0.18

0.16
0.14
0.12
0.10
0.08
0.06

0.04

time time

Figure 4.4: £ =1/6, A=0.01, A\ =1



a,

a

18 Numerical examples

0.10 T T T T
0.05 4
0.00 1
Bl ES
=0.05 4
-0.10
-0.15
0 10 15 20 25 30
time time
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20
-0.25
time time
Figure 4.5: £ =0, A= -0.01, A =1
0.10 T T T T
0.05 q
0.00 Bl
Bl ES
—-0.05 4
-0.10
-0.15
0 10 15 20 25 30
time time
0.20 40
0.15
20
0.10
0.05 0
=
0.00 =
T 20 .
-0.05 =
=
-0.10 =40 4
-0.15
~60 ]
-0.20
-0.25 -80
0 5 10 15 20 25 30 10 15 20 25 30
time time

Figure 4.6: £ =1/6, A = —0.01, A =1



aja

19

s

0.4

0.2

0.0

-0.2

0.4

-0.8

-1.0

0.2

0.0

-0.4

-0.6

1.0 T T T

0.8

0.6

0.4

0.2

time

0.0
0

500

12

14

=500

-1000

-1500

—-2000

n L L n 2500 n L n
10 12 14 16 18 0 2 4 6

18

time

500

20

-500
-1000
S -1500
= -2000
=
-2500
-3000
-3500

—-4000

time

15 20 25 0 5

Figure 4.8: £ =1/6, A=0, A =0

20

25



af

a,

20 Numerical examples

0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04

0.22
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04

time

time

time

10

15
time

20

25

30

time

time

30

20

0

time

Figure 4.10: £ =1/6, A =0.01, A=0

10

15
time

20

25

30



aja

21

0.2

0.0

-0.4

-0.6

0.7

0.6

0.5

0.4

0.3

0.2

0.1

time

0.0
0

time

10

12

14

=50

-100

A(t)-A(0)

-150

—200

—-250

time

-300

time

16

time

500

20

=500
=1000

S -1500
= -2000
=

-2500

-3000
=3500
—-4000

15 20 25
time

Figure 4.12: £ =1/6, A = —0.01, A=0

20

25
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4.1 Conclusions and outlook

We see that, in the cases we have plotted, a positive value of the cosmological
constant A makes the universe expand exponentially for large times, whereas
a negative A makes the Universe collapse in a finite time. We see little
difference between the cases £ = 0 and £ = 1/6, except that the oscillations
around a smooth curve of the Hubble parameter a/a, due to the oscillations
of the scalar field ¢, are smoothed out when ¢ = 1/6.

For the Figures 1 to 6 we have set A = 1, which makes ¢ oscillate and
go to zero as the universe expands. This allows the expansion to continue
indefinitely when A = 0.

For the Figures 7 through 12 we have set A = 0, which removes the
oscillation of ¢ and allows it to grow. In the case A = 0 this makes the
universe collapse in a finite time. In the case A > 0, on the other hand, the
exponential growth of the scale factor a stops the growth of ¢, and makes
it go to zero when &£ = 1/6.

We have investigated here only two different values of the coupling con-
stant £ of the Huggins term. Other cases may be more interesting, in par-
ticular 0 < £ < 1/6 where the determinant (2.40) becomes zero for certain
values of ¢, changing the second order nature of the differential equations.

In general, a nonzero value of £ may have effects simulating a variable
gravitational constant. We conclude that there may be room for further
investigations of the present model.



Appendix A

Python code

from _ future  import division
import sys

import time

import numpy as np

import mpmath as mp

import matplotlib.pyplot as plt
import scipy as sp

from scipy.integrate import odeint

xi=1.0/6.0

kce=0.0

#kappa=1

kappa=8+np. pi

Imbda=0

c=1

al=1

varphi0=0.0

dot _varphi0=0.1

#Lambdacc0=0.01

Lambdacc0=0.01

#dot_aO=np. sqrt (kappa/6)«np.abs(dot_varphi0)

dot_al0=np.sqrt ((a0**x2 /3)x(kappaxdot varphi0x%2/2+Lambdacc0))
print (dot_a0)

#dot _a0=0.2

#quadsolve a=1

#quadsolve b=(—2xxixkappax(al)*x(cxx2)xvarphiO«xdot_ varphil) /

23



24 Python code

# (1—zixkappaxvarphiOxx2)
#quadsolve_c=(—kappax(a0%%2)x(cxx2))x(dot_varphiOx*2 +
# (Imbdax*2)x(varphiOxx2)/2)/

# (3% (1—zixkappax(varphiOxx2)))

quadsolve aL=(l—xixkappaxvarphiQ*2)%3/a0**2

quadsolve bL=—6x(kappa*xi*varphiOxdot_ varphi0/a0)

quadsolve cL=—(kappax(dot_varphi0*x2/2 + lmbda**2xvarphi0xx2/2)
+Lambdacc0)

dot _a0=(—quadsolve bL+4np.sqrt (quadsolve bLx*2—4xquadsolve alLx

quadsolve cL))/(2%quadsolve al)
print (dot_a0)
#dot_al0=(—quadsolve b+np.sqrt(quadsolve bxx2—jxquadsolve ax

# quadsolve ¢ ))/ (2% quadsolve a)

#dot_a0=(—quadsolve _b—np.sqrit(quadsolve bxx2—4*xquadsolve ax
# quadsolve _c¢))/ (2% quadsolve a)

y0=[a0 , varphiO ,dot a0,dot_ varphiO]

t_stop=2000

t _inc=0.01

t=np.arange (0.,t stop, t_inc)

# Den kosmologiske konstanten som funksjon av de andre wvariablene
def big lambdacc(y):

a = y[0]

varphi = y|[1]

dot _a = y|[2]

dot _varphi = y|[3]

lhs=(1—xixkappasxvarphi**2)*3x(dot_ axx2+kcc)/a*x*2

rhs=kappa*(0.5xdot varphi**2 +0.5xc**2xIlmbdax*2xvarphi**2 +

xi*6x*(dot_a/a)xvarphixdot varphi)
#Heq 2.37
return lhs—rhs

#def derivert(a,varphi,dot_a,dot wvarphi):

def derivert(y,t):
#dobbelt derivert=np.empty(2)x0 #array for
a = y[0]
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varphi = y|[1]

dot _a = y|[2]

dot _varphi = y[3]

coeffll=—2«(1—xixkappaxvarphi**2)/a #ddot_a coeff

coeffl2=2xxixkappaxvarphi #ddot wvarphi coeff

A=kappax(dot varphix*2+42xxix(—dot_ varphixx2+4(dot_a/a)x
varphisxdot varphi))—2%(1—xixkappaxvarphi*2)x
(dot _axx2+kce)/a*x*2

coeff21=6xxixvarphi/a

coeff22=1

B=(—6xxix(dot_a*xx2+kcc)/a*xx2 — c*x*x2xlmbdaxx2)xvarphi —
3x(dot_a/a)xdot_ varphi

det=coeffllxcoeff22—coeffl2xcoeff21l

ddot _a=(coeff22xA—coeff12xB)/det #ddot_a

ddot _varphi=(coeffll+«B—coeff21%A)/det  #ddot_ wvarphi

return [dot_a, dot_ varphi, ddot a, ddot_ varphi]

odesol=odeint (derivert , y0, t)

#fig = plt. figure (0, figsize=(8,8))
#plt.plot(t,odesol[:,0])
fig = plt.figure(1l, figsize=(8,8))

#fig = plt. figure (1, figsize=(8,8))
#plt.plot(t,odesol[:,1])

#fig = plt. figure (2, figsize=(8,8))
#plt.plot(t,odesol[:,2])

#fig = plt. figure (3, figsize=(8,8))
#plt.plot(t,odesol[:,3])
#fig = plt. figure (1, figsize=(8,8))

#fig = plt. figure (0, figsize—=(8,8))
#plt.plot(t,odesol[:,0])

axl = fig.add _ subplot(221)
axl.plot (t, odesol[:,0])

axl.set xlabel(’time’)

axl.set ylabel(r’$a$’)
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#fig = plt. figure (1, figsize—=(8,8))
#plt.plot(t,odesol[:,1])

#fig = plt. figure (2, figsize=(8,8))
#plt.plot(t,odesol[:,2])

axl = fig.add subplot(222)
axl.plot(t, odesol[:,1])

axl.set xlabel(’time’)

axl.set ylabel(r’$\varphi_$7)

#fig = plt. figure (3, figsize=(8,8))
#plt.plot(t,odesol[:,3])

axl = fig.add subplot(223)

axl.plot (t, (odesol[:,2]|/odesol]|:,0]))
axl.set xlabel(’time’)

axl.set ylabel(r’$\dot{a}/a$’)

#4plt . ylabel ('some numbers’)

test = np.matrix.copy(t)

#Lambdacc = big_lambdacc (y0)
Lambdacc=Lambdacc0

print (Lambdacc0)

print (big lambdacc(y0))

i1=0

for tt in t:
test|1i| = big_lambdacc(odesol|[ii ,:|) —Lambdacc0
1i+=1

#fig = plt. figure (5, figsize=(8,8))
#plt.plot(t,1e9xtest)

#fig = plt. figure (5, figsize—=(8,8))
#plt.plot(t,1e9xtest)

axl = fig.add subplot(224)

axl.plot(t, le9xtest)

axl.set xlabel(’time’)

axl.set ylabel (r’$\Lambda_(t)—\Lambda(0)$")
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plt .show ()
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