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Chapter 1

Introduction

This thesis started with the intention to investigate a possible alternative
explanation as to why the observations of galaxies did not �t with the com-
monly accepted theory of gravity. As time went on, our focus shifted to
cosmology. We decided to investigate the relations between the models of
Hilbert�Einstein and Huggins [1] seeking to understand the e�ect the expan-
sion of the universe during in�ation would have on the energy-momentum
tensor. The Huggins term was used by Callan, Coleman and Jackiw to intro-
duce an improved energy-momentum tensor [2]. In Chapter 2 the Huggins
term will be explored through adding it to the Hilbert�Einstein �eld theory.
In chapter 3 we solve the equations numerically through a python script and
in chapter 4 we investigate the results of the python script.

We begin with a brief overview of the theoretical foundation for the thesis
and the work that has led to what it has become. The Einstein equation of
gravity with a cosmological constant Λ reads [3]

Gµν − gµνΛ = κTµν , (1.1)

where gµν is the metric tensor, Gµν is the Einstein tensor, Tµν is the energy-
momentum tensor, GN is the gravitational constant, c is the speed of light
and

κ =
8πGN
c4

. (1.2)

We use here the metric signature (+,−,−,−). The cosmological constant
Λ may be moved to the other side of the equation and reinterpreted as a
vacuum energy density.

Taking the divergence of (1.1) and using the mathematical identities
Gµν;ν = 0 and gµν;ν = 0 we get as a consistency condition for the Einstein
equation that

Λ,ρ = −κT νρ;ν . (1.3)
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2 Introduction

Thus, if Λ is really constant, the energy-momentum conservation equation

Tµν;ν = 0 (1.4)

is a consistency condition.
In standard cosmology the universe is assumed to be homogeneous and

isotropic. Then the line element of the spacetime geometry may be written
as

ds2 = c2 dt2 − a(t)2
[

dr2

1− kr2
+ dΘ2 + sin2 Θ dΦ2

]
(1.5)

where a(t) is a time dependant scale factor and k = 0,±1 is a measure
of the curvature of space. The matter content is described by the energy-
momentum tensor

Tµν = diag(ε,−P,−P,−P ) (1.6)

where the energy density ε and the pressure P depend only on time. The
Einstein equation then reduces to the two Friedmann equations

ȧ2

a2
+
kc2

a2
=

8πGN
3c2

ε (1.7a)

ä

a
= −4πGN

3c2
(ε+ 3P ). (1.7b)

The energy-momentum conservation law Tµν;ν = 0 reduces to

ε̇+ 3(ε+ P )
ȧ

a
= 0. (1.8)

A further relation between ε and P is the equation of state. This is
usually de�ned by an equilibrium condition for instantaneous states of the
universe, the same as one would have in thermodynamic equilibrium in a
static universe. The equation of state may change as the universe evolves
but is not assumed to depend on the rate of expansion of the universe. This
description can be expected to be good as long as the universe changes slowly
compared to the rates of thermal equilibrium. As a �rst correction one may
proceed to viscous cosmology. In recent years attempts have been made to
incorporate the universe's rate of expansion by adding a term

Pvisc = −3ηv

(
ȧ

a

)
(1.9)

to the pressure. Here ηv is the coe�cient of bulk viscosity, also known
as volume viscosity, sometimes denoted by the symbol ξ, which again will
depend on the instantaneous state of the universe.
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This provides a simple way to model the backreaction of expansion on the
behaviour of matter. It may be a valid approach when the rate of expansion
is comparable to but still smaller than the rate of thermal equilibration.
Here, we will consider a di�erent approach to the backreaction, considering
e�ective �eld theory models where the Lagrangian depends on the geometry
beyond its obvious dependence on the metric.
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Chapter 2

General relativity with a

Huggins term

In this Chapter, after establishing the general equations and conventions
used, we will discuss the e�ects of adding a Huggins term (2.13c) to the
Hilbert�Einstein and matter Lagrangian.

2.1 Conventions and general equations

The in�nitesimal line element

ds2 = gµν dx
µ dyν (2.1)

is used here with a metric signature of (+,−,−,−). The covariant derivative
is de�ned as

Dλ = ∂λ + Γλ (2.2)

where Γλ is a matrix, this derivative should be metric compatible, i.e.

Dλgµν = 0 (2.3)

implying that the matrix elements are

(Γλ)µν = Γµνλ =
1

2
gµσ (gσν,λ + gσλ,ν − gλν,σ) . (2.4)

The Riemann tensor is de�ned as

Rλρ = [Dλ, Dρ] = ∂λΓρ − ∂ρΓλ + [Γλ,Γρ] (2.5)

with the property
(Rλρ)

α
β = Rαβλρ . (2.6)
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6 General relativity with a Huggins term

It follows that the Riemann tensor can be written as

Rαβλρ = ∂λΓαβρ − ∂λΓαβρ + ∂ρΓ
α
βλ + ΓαγλΓγβλ − ΓαγρΓ

γ
βρ. (2.7)

The Ricci tensor is de�ned as

Rβρ = Rαβαρ , (2.8)

and the Ricci scalar is

R = gβρRβρ . (2.9)

The Einstein tensor is

Gβρ = Rβρ −
1

2
Rgβρ . (2.10)

The functional derivative is de�ned as

δF [f(x)]

δf(y)
= lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]

ε
. (2.11)

2.2 The action

The action S is de�ned as a space-time integral

S =

∫
d4x
√
−gL . (2.12)

The lagrangian L is a sum of three terms, the Hilbert�Einstein term with
a cosmological constant, the matter term with the scalar �eld ϕ, and the
Huggins term,

LHE = − c4

16πGN
(R+ 2Λ) = − 1

2κ
(R+ 2Λ) , (2.13a)

Lmatter =
1

2
gµν∂µϕ ∂νϕ− V (ϕ) , (2.13b)

LHuggins =
1

2
ξϕ2R . (2.13c)

Here V (ϕ) is potential of the scalar �eld ϕ. The Euler-Lagrange equations
obtained by varying the metric become

− 1

κ
(Gµν − gµνΛ) + Tµν = 0 (2.14)
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with the energy momentum tensor

Tµν =
2√
−g

δ(Smatter + SHuggins)

δgµν

= ∂µϕ∂νϕ−
1

2
gµν ∂

αϕ∂αϕ+ gµν V (ϕ)

+ ξ
[
Gµν + gµν�−∇µ∇ν

]
ϕ2 . (2.15)

The Euler�Lagrange equation we get by varying ϕ is

1√
−g

∂µ
√
−g gµν∂νϕ+ V ′(ϕ)− ξRϕ = 0 (2.16)

For the potential V (ϕ) = λ2ϕ2/2 and no coupling with ξ = 0 this gives
the Klein�Gordon equation

1√
−g

∂µ
√
−g gµν∂νϕ+ λ2ϕ = 0 (2.17)

and the Klein�Gordon energy-momentum tensor

Tµν = ϕ,µϕ,ν −
1

2
gµνϕ

,αϕ,α + gµν
λ2

2
ϕ2 . (2.18)

We will call (2.16) the generalized Klein�Gordon equation.

2.3 Specialization to the Friedmann�Lemaître�

Robertson�Walker universe

In this section we will see how the general equations reduce to the the Fried-
mann equations for the FLRW model.

The line element (1.5) results in the metric tensor

gµν =


1 0 0 0

0 − a2

1− kr2
0 0

0 0 −a2r2 0

0 0 0 −a2r2 sin2 θ

 (2.19)

and its inverse

gµν =



1 0 0 0

0 −1− kr2

a2
0 0

0 0 − 1

a2r2
0

0 0 0 − 1

a2r2 sin2 θ


(2.20)
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with the square root of the metric tensor determinant being

√
−g =

a3r2 sin θ√
1− kr2

(2.21)

and the nonzero connection coe�cients

Γ0
11 =

1

c

aȧ

1− kr2
, Γ0

22 = − 1

c
aȧr2 , Γ0

33 = − 1

c
aȧr2 sin2 θ ,

Γ1
01 =

ȧ

a
, Γ1

11 =
kr

1− kr2
, Γ1

21 =
1

r
, Γ1

31 =
1

r
,

Γ2
02 =

ȧ

a
, Γ2

12 =
1

r
, Γ3

03 =
ȧ

a
, Γ3

13 =
1

r
, Γ3

23 = cot θ

(2.22)

The connection is symmetric, Γλµν = Γνλµ . The Einstein tensor (2.10) is
diagonal with elements

G0
0 =

3

c2

(
ȧ2

a2
+
kc2

a2

)
(2.23a)

G1
1 = G2

2 = G3
3 =

1

c2

(
2
ä

a
+
ȧ2

a2
+
kc2

a2

)
. (2.23b)

The Ricci scalar is

R = −Gµµ = − 6

c2

(
ä

a
+
ȧ2

a2
+
kc2

a2

)
. (2.24)

The energy-momentum tensor

We de�ne the four vector W to be the gradient of the time dependent ϕ2(t),

Wν = ∇νϕ2 = ∂νϕ
2 =

(
2

c
ϕϕ̇, 0, 0, 0

)
(2.25)

Applying another derivative to Wν we obtain the covariant derivative

∇µ∇νϕ2 = ∇µWν = ∂µWν − ΓρµνWρ = ∂µ∂νϕ
2 − Γ0

µν∂0ϕ
2 . (2.26)

Only the diagonal elements are nonzero

∇0∇0ϕ
2 = ∂20ϕ

2, (2.27)
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∇i∇iϕ2 = −Γ0
ii

2

c
ϕϕ̇. (2.28)

The wave operator in curved space-time applied to ϕ2 gives

�ϕ2 =
1√
−g

∂µ
√
−g gµν∂νϕ2 =

1√
−g

∂0
√
−g ∂0 ϕ2

=
2

c2

(
ϕ̇2 + ϕϕ̈+ 3

ȧ

a
ϕϕ̇

)
. (2.29)

The energy density is

ε = T 0
0 =

ϕ̇2

2c2
+ V (ϕ) + ξ

(
G0

0ϕ
2 +

6

c2
ȧ

a
ϕϕ̇

)
(2.30)

and the pressure is

P = −T 1
1 = −T 2

2 = −T 3
3 (2.31)

=
ϕ̇2

2c2
− V (ϕ)− ξ

(
G1

1ϕ
2 +

2

c2

[
ϕ̇2 + ϕϕ̈+ 2

ȧ

a
ϕϕ̇

])
.

(2.32)

The scalar �eld equation

The Euler�Lagrange equation we get by varying ϕ is

1

c2
ϕ̈+

3

c2
ȧ

a
ϕ̇+ V ′(ϕ)− ξRϕ = 0 (2.33)

where R is given by the equation (2.24). For simplicity we will call this the
Klein�Gordon equation.

2.4 Summary of the equations

Altogether we have the gravitational equations (1.1) with a cosmological
constant term and the generalized Klein�Gordon equation (2.16). We use
two of the gravitational equations,

G0
0 = κε+ Λ , G1

1 = −κP + Λ . (2.34)

By using (2.23a) and (2.30) the �rst equation takes the form

3
(
1− ξκϕ2

)( ȧ2
a2

+
kc2

a2

)
= κ

(
1

2
ϕ̇2 + c2V (ϕ) + 6ξ

ȧ

a
ϕϕ̇

)
+ Λc2 . (2.35)
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To eliminate Λ and V (ϕ) we take the di�erence of the two equations,

G0
0 −G1

1 = κ(ε+ P ) . (2.36)

By using (2.23a), (2.23b), (2.30), and (2.39) this equation takes the form

2(1− ξκϕ2)

(
− ä
a

+
ȧ2

a2
+
kc2

a2

)
= κ

(
ϕ̇2 + 2ξ

[
− ϕ̇2−ϕϕ̈+

ȧ

a
ϕϕ̇

])
. (2.37)

The generalized Klein�Gordon equation is

ϕ̈+ 3
ȧ

a
ϕ̇+ V ′(ϕ) = −6ξ

(
ä

a
+
ȧ2

a2
+
kc2

a2

)
ϕ . (2.38)

Thus we have three equations for the two unknowns a(t) and ϕ(t). This
is consistent because the energy conservation equation (1.8) is satis�ed.

Analysis of the equations

The �rst equation, (2.35), contains no higher than �rst derivatives of the
variables a and ϕ. There is one coupling term in the equation that prevents
separation of the variables. This equation is a constraint equation that has to
be satis�ed at all times. In particular, we have to take it into account when
choosing initial values for a, ȧ, ϕ, ϕ̇, and Λ in our numerical integrations.

When we integrate the other equations numerically, we use equation
(2.35) to compute Λ as a function of a, ȧ, ϕ, ϕ̇. It is an important test of the
precision of our numerical integration that Λ computed in this way should
be constant in time.

The second and third equations, (2.37) and (2.38), are two linear equa-
tions for the second derivates of a and ϕ. They do not contain Λ. It is these
two equations that we integrate numerically. They have the form

c11ä+ c12ϕ̈ = A(a, ȧ, ϕ, ϕ̇) ,

c21ä+ c22ϕ̈ = B(a, ȧ, ϕ, ϕ̇) . (2.39)

The determinant of the equation system is

c11c22 − c12c21 = −2

a
(1 + ξ(6ξ − 1)κϕ2) . (2.40)

The determinant can vanish completely for certain values of ϕ2 if 0 < ξ <
1/6. In the two cases ξ = 0 and ξ = 1/6 the determinant is no longer
dependant on ϕ and is determined simply by −2/a.



Chapter 3

Solving the equations

3.1 Units

It is convenient to choose units such that

c = 1 = 299 792 458 m/s ,

GN = 1 = 6.6738× 10−11 m3 kg−1 s−2 , (3.1)

κ = 8π .

We are still free to choose a time unit. A convenient time unit in cosmology
may be

t0 = 109 year = 3.1558× 1016 s . (3.2)

This �xes the length unit as

L0 = 109 light year = 9.4607× 1024 m . (3.3)

Then we get

GN = 1 = 6.6738× 10−11
L 3
0

(9.4607× 1024)3
kg−1

(3.1558× 1016)2

t 20

= 7.9244× 10−53 L 3
0 kg−1 t−20 = L 3

0 M
−1
0 t−20 , (3.4)

when we introduce the mass unit

M0 = 1.2619× 1052 kg . (3.5)

This is about the total mass of the Universe [4].
In these units, the value of the cosmological constant, from the observa-

tions with the Planck satellite, is

Λ = 1.11× 10−52 m−2 = 0.0099 L−20 . (3.6)

11



12 Solving the equations

The reduced Planck's constant is

~ = 1.0546× 10−34 kg m2 s−1 = 2.9466× 10−120 M0 L
2
0 t
−1
0 . (3.7)

The unit of the parameter λ of the scalar �eld is inverse length. Quanti-
zation of the scalar �eld with the potential V (ϕ) = λ2ϕ2/2 gives �eld quanta
of mass

m =
~λ
c

= 2.9466× 10−120 M0 L0 λ . (3.8)

Thus, if we take λ = 1/L0 we get

m =
~λ
c

= 2.9466× 10−120 M0 = 3.7183× 10−68 kg . (3.9)

This is a very small mass, about 10−38 times the mass of the electron,
or 10−33 times the experimental upper limit on the mass of the electron
neutrino.

3.2 Choosing the initial conditions

For the sake of simplicity we set k = 0, c = 1 and V (ϕ) = λ2ϕ2/2 thus
(2.35) takes the form

3
(
1− ξκϕ2

) ȧ2
a2

= κ

(
ϕ̇2

2
+
λ2ϕ2

2
+ 6 ξ

ȧ

a
ϕϕ̇

)
+ Λ. (3.10)

and equation (2.38) takes the form

ϕ̈+ 3
ȧ

a
+ λ2ϕ = −6ξ

(
ä

a
+
ȧ2

a2

)
ϕ . (3.11)

Equation (2.37) takes the form

2(1− ξκϕ2)

(
− ä

a
+
ȧ2

a2

)
= κ

(
ϕ̇2 + 2ξ

[
− ϕ̇2 − ϕϕ̈+

ȧ

a
ϕϕ̇

])
. (3.12)

Now we can choose the initial values of a, ϕ, ȧ, and ϕ̇, in order to simplify
as much as possible. We choose ϕ(0) = 0 and a(0) = 1 and reduce the initial
value condition (3.10) to the simple relation between ȧ(0) and ϕ̇(0)

(ȧ(0))2 = κ
(ϕ̇(0))2

6
+

Λ

3
. (3.13)

We observe from equation (3.10) that the equation for ȧ(0) becomes a more
general second order equation when ϕ(0) 6= 0 and ξ 6= 0.
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We choose to investigate the two values ξ = 0 and ξ = 1/6 where the
determinant (2.40) is guaranteed to be non-zero.

We take the constraint equation, (2.35), as a de�nition of Λ(t). It is a
test of the accuracy of the calculations that Λ(t) should be constant. We
therefore plot Λ(t) − Λ(0). This di�erence is seen to �uctuate below 10−7

which is a reasonable numerical accuracy. It is also a non-trivial veri�cation
that the analytical formulas are correct.
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Chapter 4

Numerical examples

The calculations done in the Python script use the units from section 3.1
where c = 1 and GN = 1. The time unit is t0 = 109 years. We choose to set
a(0) = 1, ϕ(0) = 0, and ϕ̇(0) = 0.1 for all plots and only vary the constants
ξ, Λ, and λ.

We present here plots of the scale parameter a(t), the scalar �eld ϕ(t), the
Hubble parameter ȧ(t)/a(t), and the numerical error parameter Λ(t)−Λ(0)
for 12 di�erent cases. Note that Λ(t)− Λ(0) is always multiplied by 109.

Note also that when we take λ = 1, which means λ = 1/L0, more realistic
values in terms of known particles would be 1030/L0 or 1040/L0, which would
give extremely rapid oscillations of ϕ on cosmological time scales.

15



16 Numerical examples

Figure 4.1: ξ = 0, Λ = 0, λ = 1

Figure 4.2: ξ = 1/6, Λ = 0, λ = 1
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Figure 4.3: ξ = 0, Λ = 0.01, λ = 1

Figure 4.4: ξ = 1/6, Λ = 0.01, λ = 1
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Figure 4.5: ξ = 0, Λ = −0.01, λ = 1

Figure 4.6: ξ = 1/6, Λ = −0.01, λ = 1
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Figure 4.7: ξ = 0, Λ = 0, λ = 0

Figure 4.8: ξ = 1/6, Λ = 0, λ = 0
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Figure 4.9: ξ = 0, Λ = 0.01, λ = 0

Figure 4.10: ξ = 1/6, Λ = 0.01, λ = 0
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Figure 4.11: ξ = 0, Λ = −0.01, λ = 0

Figure 4.12: ξ = 1/6, Λ = −0.01, λ = 0
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4.1 Conclusions and outlook

We see that, in the cases we have plotted, a positive value of the cosmological
constant Λ makes the universe expand exponentially for large times, whereas
a negative Λ makes the Universe collapse in a �nite time. We see little
di�erence between the cases ξ = 0 and ξ = 1/6, except that the oscillations
around a smooth curve of the Hubble parameter ȧ/a, due to the oscillations
of the scalar �eld ϕ, are smoothed out when ξ = 1/6.

For the Figures 1 to 6 we have set λ = 1, which makes ϕ oscillate and
go to zero as the universe expands. This allows the expansion to continue
inde�nitely when Λ = 0.

For the Figures 7 through 12 we have set λ = 0, which removes the
oscillation of ϕ and allows it to grow. In the case Λ = 0 this makes the
universe collapse in a �nite time. In the case Λ > 0, on the other hand, the
exponential growth of the scale factor a stops the growth of ϕ, and makes
it go to zero when ξ = 1/6.

We have investigated here only two di�erent values of the coupling con-
stant ξ of the Huggins term. Other cases may be more interesting, in par-
ticular 0 < ξ < 1/6 where the determinant (2.40) becomes zero for certain
values of ϕ, changing the second order nature of the di�erential equations.

In general, a nonzero value of ξ may have e�ects simulating a variable
gravitational constant. We conclude that there may be room for further
investigations of the present model.



Appendix A

Python code

from __future__ import d i v i s i o n
import sys
import time
import numpy as np
import mpmath as mp
import matp lo t l i b . pyplot as p l t
import s c ipy as sp

from s c ipy . i n t e g r a t e import ode int

x i =1.0/6.0
kcc=0.0
#kappa=1
kappa=8∗np . p i
lmbda=0
c=1
a0=1
varphi0=0.0
dot_varphi0=0.1
#Lambdacc0=0.01
Lambdacc0=0.01
#dot_a0=np . s q r t ( kappa /6)∗np . abs ( dot_varphi0 )
dot_a0=np . sq r t ( ( a0∗∗2 /3)∗ ( kappa∗dot_varphi0∗∗2/2+Lambdacc0 ) )
print ( dot_a0 )
#dot_a0=0.2
#quadsolve_a=1
#quadsolve_b=(−2∗ x i ∗kappa ∗( a0 )∗( c ∗∗2)∗ varph i0 ∗ dot_varphi0 ) /

23
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# (1− x i ∗kappa∗ varph i0 ∗∗2)
#quadsolve_c=(−kappa ∗( a0 ∗∗2)∗( c ∗∗2))∗( dot_varphi0 ∗∗2 +
# ( lmbda ∗∗2)∗( varph i0 ∗∗2)/2)/
# (3∗(1− x i ∗kappa ∗( varph i0 ∗∗2)))

quadsolve_aL=(1−x i ∗kappa∗ varphi0 ∗∗2)∗3/ a0∗∗2
quadsolve_bL=−6∗(kappa∗ x i ∗ varphi0 ∗dot_varphi0/a0 )
quadsolve_cL=−(kappa ∗( dot_varphi0 ∗∗2/2 + lmbda∗∗2∗ varphi0 ∗∗2/2)

+Lambdacc0 )
dot_a0=(−quadsolve_bL+np . sq r t ( quadsolve_bL∗∗2−4∗quadsolve_aL∗

quadsolve_cL ) )/ (2∗ quadsolve_aL )
print ( dot_a0 )
#dot_a0=(−quadsolve_b+np . s q r t ( quadsolve_b∗∗2−4∗ quadsolve_a∗
# quadsolve_c ))/(2∗ quadsolve_a )

#dot_a0=(−quadsolve_b−np . s q r t ( quadsolve_b∗∗2−4∗ quadsolve_a∗
# quadsolve_c ))/(2∗ quadsolve_a )
y0=[a0 , varphi0 , dot_a0 , dot_varphi0 ]
t_stop=2000
t_inc=0.01
t=np . arange ( 0 . , t_stop , t_inc )

# Den kosmo log i ske konstanten som funks jon av de andre va r i a b l en e
def big_lambdacc (y ) :

a = y [ 0 ]
varphi = y [ 1 ]
dot_a = y [ 2 ]
dot_varphi = y [ 3 ]
l h s=(1−x i ∗kappa∗ varphi ∗∗2)∗3∗( dot_a∗∗2+kcc )/ a∗∗2
rhs=kappa ∗ (0 . 5∗ dot_varphi ∗∗2 +0.5∗ c ∗∗2∗ lmbda∗∗2∗ varphi ∗∗2 +

x i ∗6∗( dot_a/a )∗ varphi ∗dot_varphi )
#eq 2.37
return lhs−rhs

#de f d e r i v e r t (a , varphi , dot_a , dot_varphi ) :
def d e r i v e r t (y , t ) :

#dobb e l t_de r i v e r t=np . empty (2)∗0 #array f o r
a = y [ 0 ]
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varphi = y [ 1 ]
dot_a = y [ 2 ]
dot_varphi = y [ 3 ]
c o e f f 1 1=−2∗(1−x i ∗kappa∗ varphi ∗∗2)/ a #ddot_a c o e f f
c o e f f 1 2=2∗x i ∗kappa∗ varphi #ddot_varphi c o e f f
A=kappa ∗( dot_varphi∗∗2+2∗ x i ∗(−dot_varphi∗∗2+(dot_a/a )∗

varphi ∗dot_varphi ))−2∗(1− x i ∗kappa∗ varphi ∗∗2)∗
( dot_a∗∗2+kcc )/ a∗∗2

c o e f f 2 1=6∗x i ∗ varphi /a
c o e f f 2 2=1
B=(−6∗x i ∗( dot_a∗∗2+kcc )/ a∗∗2 − c ∗∗2∗ lmbda∗∗2)∗ varphi −

3∗( dot_a/a )∗ dot_varphi
det=co e f f 1 1 ∗ coe f f 22−c o e f f 1 2 ∗ c o e f f 2 1
ddot_a=( c o e f f 2 2 ∗A−c o e f f 1 2 ∗B)/ det #ddot_a
ddot_varphi=( c o e f f 1 1 ∗B−c o e f f 2 1 ∗A)/ det #ddot_varphi
return [ dot_a , dot_varphi , ddot_a , ddot_varphi ]

ode so l=ode int ( de r i v e r t , y0 , t )

#f i g = p l t . f i g u r e (0 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 0 ] )
f i g = p l t . f i g u r e (1 , f i g s i z e =(8 ,8))

#f i g = p l t . f i g u r e (1 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 1 ] )

#f i g = p l t . f i g u r e (2 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 2 ] )

#f i g = p l t . f i g u r e (3 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 3 ] )
#f i g = p l t . f i g u r e (1 , f i g s i z e =(8 ,8))

#f i g = p l t . f i g u r e (0 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 0 ] )
ax1 = f i g . add_subplot (221)
ax1 . p l o t ( t , ode so l [ : , 0 ] )
ax1 . s e t_x labe l ( ' time ' )
ax1 . s e t_y labe l ( r ' $a$ ' )
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#f i g = p l t . f i g u r e (1 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 1 ] )

#f i g = p l t . f i g u r e (2 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 2 ] )
ax1 = f i g . add_subplot (222)
ax1 . p l o t ( t , ode so l [ : , 1 ] )
ax1 . s e t_x labe l ( ' time ' )
ax1 . s e t_y labe l ( r ' $\ varphi  $ ' )

#f i g = p l t . f i g u r e (3 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , ode so l [ : , 3 ] )
ax1 = f i g . add_subplot (223)
ax1 . p l o t ( t , ( ode so l [ : , 2 ] / ode so l [ : , 0 ] ) )
ax1 . s e t_x labe l ( ' time ' )
ax1 . s e t_y labe l ( r ' $\dot{a}/a$ ' )
##p l t . y l a b e l ( ' some numbers ' )

t e s t = np . matrix . copy ( t )

#Lambdacc = big_lambdacc ( y0 )
Lambdacc=Lambdacc0
print (Lambdacc0 )
print ( big_lambdacc ( y0 ) )

i i =0
for t t in t :

t e s t [ i i ] = big_lambdacc ( ode so l [ i i , : ] ) −Lambdacc0
i i+=1

#f i g = p l t . f i g u r e (5 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , 1 e9∗ t e s t )
#f i g = p l t . f i g u r e (5 , f i g s i z e =(8 ,8))
#p l t . p l o t ( t , 1 e9∗ t e s t )
ax1 = f i g . add_subplot (224)
ax1 . p l o t ( t , 1 e9∗ t e s t )
ax1 . s e t_x labe l ( ' time ' )
ax1 . s e t_y labe l ( r ' $\Lambda ( t )−\Lambda(0) $ ' )
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p l t . show ( )



28 Python code



Bibliography

[1] E. Huggins, Quantum Mechanics of the Interaction of Gravity with Elec-
trons: Theory of a Spin-two Field Coupled to Energy. California Institute
of Technology, 1962.

[2] C. Callan, S. Coleman, and R. Jackiw, A New Improved Energy-
momentum Tensor. MIT; Laboratory for nuclear science, 1969.

[3] J. Myrheim, Classical Theory of Fields. NTNU; Department of Physics,
2011.

[4] D. Valev, �Estimations of total mass and energy of the universe,� Physics
International, vol. 5, no. 1, 2014.

29


	Introduction
	General relativity with a Huggins term
	Conventions and general equations
	The action
	Specialization to the FLRW universe
	Summary of the equations

	Solving the equations
	Units
	Choosing the initial conditions

	Numerical examples
	Conclusions and outlook

	Python code

