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Abstract

Interpreters of seismic data struggle with the limitations of their hardware
and software every day. The archiving and transporting of seismic data vol-
umes require huge transmission capacities and large storage mediums. A large
seismic survey typically comes to more than one terabyte; hence the seismic
industry must search for effective ways of handling data. To work around these
problems, geoscientists have traditionally decreased the size of the seismic data
volume for their interpretation. Examples include reduction of the temporal
range and/or resampling in time, reduction of the spatial range and/or resam-
pling in space, and clipping of the amplitudes, thereby reducing the dynamic
range.

Different from conventional or conservative approaches, lossy compression
using subband coding is in this dissertation considered as the most desirable
way of improving the efficiency of transmission and storage of seismic data. De-
pending upon the required fidelity of the reconstructed (decompressed) seismic
data, the goal is to obtain compression ratios of 1(:1-20:1 for prestack seismic
data. The ability to compress seismic data for example 10:1 means that 10
times more data can be stored in the space that it takes to store the original
data set. Compression of 10:1 may for instance help to surmount the ever-
recurring problem of shortage of disk space for processing, interpretation, and
permanent storage.

The seismic industry is careful not to use procedures that introduce noise
into the original seismic data set. Nevertheless, speaking about digital seismic
data without noise is meaningless due to the sampling of a non-band-limited
seismic signal in time and space with subsequently quantization of the ampli-
tudes. Lossy seismic data compression can be seen as just one out of several
minor noise sources in the acquisition and processing of seismic data. In best
case, seismic data quality can even be increased by correct use of lossy compres-
sion since ambient noise components at high frequencies and high wavenumbers
are effectively reduced.
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With an understanding of the associated drawbacks it is expected that the
need for reduced turnaround times, from seismic data acquisition to processing
and interpretation, will push the use of seismic data compression as a routine
component of standard survey operations.

The dissertation is composed of three (submitted journal) papers:

¢ Seismic data compression,
Part I: Subband coding of common offset gathers;

e Seismic data compression,
Part Il: Lossless coding of trace identification headers;

e Seismic data compression,
Part I1I: 1ts influence on processing and interpretation.

The first paper deals with lossy compression of prestack seismic data using
subband coding, the second paper is about lossless coding of the associated
trace headers using entropy coding, and the third paper analyzes the influence
of lossy seismic data compression on processing and interpretation.

A copy of the individual abstracts to the papers follows:

Seismic data compression,
Part I: Subband coding of common offset gathers

Seismic data require huge transmission capacities and large storage mediums,
and the volume of seismic data is continuing to increase rapidly due to, e.g.,
acquisition of large 3-D surveys, re-processing of prestack seismic data, and cal-
culation of poststack seismic data attributes. We consider lossy compression as
an important tool for efficient handling of large seismic data sets. We present
a 2-D lossy seismic data compression algorithm based on subband coding, and
focus on adaptation and optimization of the method for common offset gathers.
The subband coding algorithm consists of five stages: First, a preprocessing
phase using an automatic gain control to decrease the non-stationary hehavior
of seismic data. Second, a decorrelation stage using a uniform analysis filter
bank to concentrate the energy of seismic data into a minimum number of
subbands. Then, an iterative classification algorithm based on the variance to
blocks of subband samples to classify the subband samples into a fixed num-
ber of classes with approximately the same statistics. Fourth, a quantization
step using a uniform scalar quantizer which gives an approximation of the
subband samples to allow for high compression ratios. And finally, an entropy
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coding stage using a fixed number of arithmetic encoders matched to the corre-
sponding statistics of the classified and quantized subband samples to actually
achieve compression. Decompression basically performs the opposite opera-
tions in reverse order. We compare the proposed subband coding algorithm
with three other seismic data compression algorithms. The high performance
of our subband coding scheme is supported by objective and subjective results.
For the common offset gather example, a compression ratio of 10:1 gives com-
pression noise below the level of the ambient noise, while the compression noise
is hardly visible at a compression ratio of 30:1.

Seismic data compression,
Part I1: Lossless coding of trace identification headers

Trace headers are an integral part of seismic data. Uncompressed trace head-
ers become a significant portion of the total volume of seismic data in case
the associated trace data samples are compressed. We present an efficient
lossless compression algorithm applicable for the trace headers of the SEG-
Y standard. The proposed technique uses differential coding and run-length
coding in conjunction with class-wise entropy coding of the symbols (run}
and the counts (length). Four entropy coding methods are compared: non-
conditional semi-adaptive Huffiman coding, non-conditional adaptive Huffman
coding, non-conditional semi-adaptive arithmetic coding, and finally, condi-
tional adaptive arithmetic coding. Typical compression ratios, in the case of
trace headers of the common offset gather examples, are about 25:1 for the
three non-conditional entropy coding methods and around 250:1 for the con-
ditional entropy coding method. For low and medium orders, the compression
ratio increases monotonically as a function of the order of the conditional
probability model. The best suited order is 8. After compression, the size of
trace headers becomes, independently of the applied entropy coding method,
negligible compared to the size of the associated trace data samples.

Seismic data compression,
Part I11: Its influence on processing and interpretation

We investigate the impact of lossy seismic data compression on processing
and interpretation of a 2-D seismic data set acquired in the North Sea. The
seismic data set is sorted into common offset gathers which are separately com-
pressed using a 2-D subband coding method. The associated trace headers are
compressed by a lossless arithmetic coding technique. After compression and
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decompression, we study the influence of the introduced coding noise to a rep-
resentative processing sequence. Important processing steps, in chronological
order, include attenuation of water-bottom multiples, true amplitude recov-
ery, predictive deconvolution, attenuation of peg-leg multiples, migration, and
stacking. In general, migration and stacking reduce the effect of the coding
noise at all compression levels, while for high compression ratios (i.e., much
greater than 10:1) the coding noise has a destructive effect on the predic-
tive deconvolution step and on the two applied multiple attenuation methods.
Two sequences of the lossy compression method are explored. In the first
sequence the seismic data are compressed before predictive deconvolution (de-
noted pre-decon compression), while in the second sequence the seismic data
are compressed after predictive deconvolution (denoted post-decon compres-
sion). Several seismic data responses are examined, for example prestack and
poststack amplitude analysis in addition to poststack inversion. For pre-decon
and post-decon compression, compression ratios between 7.5:1-15:1 and 15:1-
30:1, respectively, provide excellent reconstruction quality of the seismic data
set.
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Chapter 1

Introduction

Interpreters of seismic data struggle with the limitations of their hardware
and software every day. The archiving and transporting of seismic data vol-
umes require huge transmission capacities and large storage mediums. A large
seismic survey typically comes to more than one terabyte; hence the seismic
industry must search for effective ways of handling data. To work around these
problems, geoscientists have traditionally decreased the size of the seismic data
volume for their interpretation. Examples include reduction of the temporal
range and/or resampling in time, reduction of the spatial range and/or resam-
pling in space, and clipping of the amplitudes, thereby reducing the dynamic
range.

Different from conventional or conservative approaches, compression is in
this thesis considered as the most desirable way of improving the efficiency of
transmission and storage of seismic data. Given a certain limited resource of
storage capacity or transmission bandwidth, lossy seismic data compression is
without guestion a much better alternative than non-sophisticated data reduc-
tion methods. Contrary to traditional data reduction methods, seismic data
compression preserves the dynamic range and can increase the resolution of the
seismic signal. Depending upon the required fidelity of the reconstructed (de-
compressed) seismic data, the goal is to obtain compression ratios of 10:1-20:1
for prestack seismic data in the case of 2-I compression algorithms, or even
50:1-100:1 in the case of 3-D compression algorithms. The ability to compress
seismic data for example 10:1 means that 10 times more data can be stored in
the space that it takes to store the original data set.

Data compression makes the storage of seismic data more efficient, and
has a potential of reducing the time for network and satellite transmission of
seismic data from hours to minutes. Hence, a significant reduction in cost
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is achieved. For example, a compression ratio of 50:1 reduces one terabyte of
seismic data to 20 gigabytes. Taking the cost of storage per megabyte of seismic
data on robotic tape to be $0.20 per year, the storage price would be reduced
by 196,000 dollars per year per terabyte of raw data. Furthermore, assuming
a satellite transmission cost equal to $2.0 per megabyte of seismic data, the
transmission cost of the same compression example would be decreased from
2.0 million doHars to 40,000 dollars per terabyte of raw data.

‘Two main types of compression techniques exist; lossless and lossy com-
pression. No errors are introduced into the data by lossless compression and
the seismic data set can be reconstructed without any loss of information.
The least significant bits (containing mostly background noise) and the most
significant bits in this case are given equal weight of importance. Since all
bits are reconstructed exactly, lossless compression of seismic data can only
offer compression ratios in the order of 2:1. Compression of text files (e.g.,
trace identification headers), on the other hand, can achieve compression ra-
tios in the order of several hundreds to one by lossless methods (Resten et
al., 1999c}. A text file contains frequently repeated letters and patterns of
letters while & typical seismic data file is far less structured (Reiter and Heller,
1994). During lossy compression of seismic data some errors are introduced.
Due to the introduction of compression noise, lossy methods generally offer
higher compression ratios than lossless methods. The characteristics of the
compression noise depend on the compression ratio. A high compression ratio
{much higher than 10:1) gives a high level of compression noise. At the same
time, the compression noise becomes more and more coherent (i.e., non-white)
as the compression ratio increases.

‘Throughout all parts of the seismic industry, from acquisition to processing
and interpretation, users are careful not to employ procedures that introduce
noise into the seismic data set. In general, compression of prestack seismic data
at the acquisition phase can be dangerous since all processing procedures are
performed after compression and decompression; compression at later stages
of processing is safer. Nevertheless, as such, lossy seismic data compression
can be seen as just one of the noise sources in the acquisition and processing of
seismic data. What “simply” remains before seismic data compression becomes
widely used is that the effects of compression noise on seismic data must be
thoroughly understood and documented. With an understanding of the asso-
clated drawbacks it is expected that the need for reduced turnaround times,
from acquisition to processing and interpretation, will push the use of seismic
data compression as a routine component of standard survey operations.
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1.1 Background and objective

From a very simplistic point of view, seismic signals can be viewed as a com-
bination of three types of components: pure geophysical or geological informa-
tion, redundancy in the signal representation, and noise or alterations arising
from different kinds of sources. This combination results in the statement

seismic signal = information + redundancy -+ noise.

Entropy is a measure of the amount of information in a signal. Redundancy is
a repetition of information such as the same measurements made several times
(perhaps in several ways), but also for example multiple reflections in the case
of plane, homogeneous layers. Multiple reflections can, dependent on the ap-
plication, also be regarded as information or (source-generated coherent) noise.
Each and every task capable of separating information, decreasing redundancy,
and suppressing noise is generally not performed by one single method, but
commonly involves many seismic data processing tools. Besides, many seismic
applications including analysis, denoising, processing, and data management
(e.g., data access, visualization, and compression} commonly provide a focus-
ing of the mformation. By reducing the dynamic range of the seismic data
in some way or another, it is possible to discard redundancy and noise in the
seismic data set. Discrete wavelets provide such a representation. They have
been applied to seismic data analysis (Foster et al., 1997), to denoising of
seismic data (Miao and Cheadle, 1998), to migration of seismic data {Dessing
and Wapenaar, 1994, 1995; Wu and McMechan, 1998), and to seismic data
compression (Bosman and Reiter, 1993; Donoho et al., 1995; Chen, 1995).
Discrete wavelets are based on the usage of a lowpass and a highpass filter,
employed in an iterative scheme leading for example to the discrete wavelet
transform {DWT) or to the discrete wavelet packet transform (DWPT). A
decomposition scheme involving several stages of filters and sampling oper-
ators (i.e., up-sampling and down-sampling) is generally called a filfer bank
system, and DWT and DWPT are sub-class of filier banks (Ramstad et al.,
1995). Filter banks are more universal than {orthogonal or biorthogonal) dis-
crete wavelets by involving more than 2 filters, having several different iterative
schemes, and being non-unitary (i.e., neither orthogonal nor biorthogonal).}!
Since discrete wavelet transforms represent a special case of filter banks, they
may be inferior to non-unitary filter banks as shown for seismic data compres-
sion by Rgsten et al. (1996, 1997a,b). Non-unitary filter banks have also been

*Biorthogonal filter banks ave strictly speaking also non-unitary.
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applied to denoising (i.e., white-noise attenuation) of seismic data by Duval
and Rgsten (2000) and to migration of seismic data by Rgsten and Ramstad
(1998) and Rgsten et al. {1998a,b).

The main topic addressed in this thesis is lossy compression of prestack
seismic data using subband coding (SBC; Ramstad et al., 1995), the main
focus being optimization of the method with an investigation of the effects of
compression noise on seismic processing and interpretation.

The principles of SBC are: At the kncoder side, the input signal is de-
composed into M spectral subbands by an analysis filter bank to reduce the
redundancy. The analysis filter bank decorrelates the input signal, and con-
centrates the energy of the input signal into a minimum number of subband
channels. After subband decomposition, the subband samples in branch or
channel number m for m = 0,1,... , M — 1 are critically down-sampled by ¢,
(every amth subband sample is retained) with e, € Z > 2 and

M-3

> am =1, (1.1)

m==0

to keep the total number of subband samples unchanged compared to the
original signal representation. Then the down-sampled subband samples are
quantized by scalar quantization to allow for high compression ratios. The
scalar quantization stage gives an approximation of the subband samples, and
solely introduces the compression noise.>? Finally, the quantized subband
samples are entropy coded (thus compression is achieved). At the decoder side,
the M spectral subbands are entropy decoded and dequantized by inverse scalar
quantization. Then the subband samples in branch or channel number m are
up-sampled by oy, (that is inserting o, — 1 zeros between every dequantized
subband sample), and the signal is at the end reconstructed by a synthesis
filter bank. In this dissertation only wniform filter banks, where all subband
channels have equal bandwidth, i.e., setting all c,,’s to M , will be considered.

12Phe analysis and synthesis filter banks are assumed to be a perfect reconstruction systern.
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1.2 Fundamentals

In this section, the basics of seismic data acquisition and processing are pre-
sented. The intention is not to give a comprehensive description of these issues,
but rather to present the most important parts of seismic data acquisition and
processing required to understand the terminology used in this dissertation.
For details, the interested readers are referred to Yilmaz (1987) and Sheriff
and Geldart (1995).

Exploration seismology includes the fields of data acquisition, processing,
and interpretation. The main objective of a reflection survey is to map the
depth, dip, and strike of interfaces which usually are parallel to the bedding,
and lateral or horizontal changes in reflections. A second objective is to de-
fine stratigraphic variations from normal move-out measurements or from the
amplitude and waveshape of reflection events.

1.2.1 Seismic data acquisition and preprocessing of data

Offshore, seismic data are collected by seismic vessels. Air guns filled with
highly compressed air are commonly used as an energy source generating F-
waves or acoustic waves. A P-wave is a2 body wave in which particle motion is
in the direction of the propagation, and is the type of seismic wave recorded
in conventional marine seismic exploration. A FP-wave is also called a longi-
tudinal wave or pressure wave. The air-gun array is towed behind the survey
vessel on a suitable frame. When the source is fired, the pressure wave prop-
agates down through the water layer and into the earth below the sea floor.
When a wave hits an interface separating two different geologic layers, some
of the wave is reflected and the rest of the wave is transmitted. The reflected
wave travels upwards and is finally measured by pressure-sensitive hydrophones
deployed in the streamer or cable towed behind the vessel. ach hydrophone
records pressure-wave amplitude reflections as a function of two-way traveltime
(TWT).

Seismic data are recorded and digitized in rows of samples; samples at the
same time at consecutive hydrophone or receiver groups. Demultiplexing is the
first preprocessing task which involves sorting the data into columns of samples;
all the time samples in one receiver group followed by all the time samples of
the next receiver groups. The record for each shot from each receiver group
is now called a trace. Preprocessing also involves trace editing; noisy traces,
for example traces with transient glitches, are zeroed. Finally, field geometry
and acquisition parameters are incorporated with the seismic data. Based on
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surveying information, coordinates of shot and receiver-group locations for all
traces are stored on trace identification headers. Geometry assignment is one
of the most important aspects of seismic data processing, and many types of
seismic data processing problems arise from incorrectly setting up the field
geometry.

Specifically, the seismic data set considered in this dissertation is a 2-D
surface line acquired offshore central Norway during 1992. The source was a
conventional air-gun array with a total volume of 1580 cubic inches (x 25900
em?). The shot interval was 18.75 m, the sotrce depth was 5 m, and the total
number of shots in the data set was 1101. Furthermore, the streamer had 240
receiver groups with a group distance of 12.5 m, and the streamer depth was
8 m. The source-receiver-offset is defined as the distance from the center of
the source array to the center of the receiver group. The distance between
the center of the source array and the center of the first group (near offset)
was 108.5 m. Finally, the record length (i.e., TWT) was 4000 ms with sample
interval 2 ms. Hence, the number of samples per trace in the data set is 2001.

As further preprocessing, the data set was conveniently decimated by a
factor of 2 in time applying anti-alias filtering, increasing the time sample
interval from 2 to 4 ms and reducing the number of samples per trace from
2001 to 1001 {see Figure 1.1).

1.2.2  Domains or organizations of seismic data

The simplest 2-D shooting configuration will suffice to illustrate the four do-
mains commonly used to process and analyze seismic data. Figure 1.2 illus-
trates a standard off-end recording geometry assuming a single plane reflector.
Off-end spread configuration means that all the receiver groups are on one side
of the shot, for example to the right of the shot. For each shot or recording in
2-D profiling, the coordinates of the shot point and each receiver group along
the lateral distance are surveyed.

Figure 1.3 is known as a stacking chart and illustrates a useful technique for
visualizing the interrelationships along overlapping recordings in a conventional
2-D seismic survey. By plotting shot coordinate s against receiver coordinate
g in a 2-I) orthogonal coordinate frame, the overlapping recording geometries
can be visualized. The stacking chart can help us understand the different
dornains or organizations of the data that are used in seismic data handling.
For example, a horizontal slice parallel to the ¢ axis at a fixed s coordinate
represents a common shot gather {CSG) or the shot domain, this is the way the
data are collected [see also Figure 1.1 and Figure 1.4 (a)]. A vertical slice at a
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Figure 1.2: Seismic data acquisition is done in shot-receiver (s, g) coordinates,
and mid-point-offset (u, h) coordinates is an alternative coordinate representation.
The shooting direction is to the left and the ray path is given by the arrow. The
gray circle denotes the shot and the white triangle denotes a receiver group.

fixed g coordinate represents a common receiver gather (CRQ) or the receiver
domain [see Figure 1.4 (b)], which is a seismic experiment. in which many shots
at different coordinates s are recorded by a single receiver group at location
g. There are two other domains that are very important as well. T hey are
represented by the rotated axis corresponding to the coordinate transformation
into the common offset axis

h=(g-s)
and the common mid-point axis
u=(s+g)/2

The offset axis h measures {half) the source-to-receiver distance, and the mid-
point axis u measures the average source and receiver distance along the seismic
profile. A collection of traces parallel to the mid-point axis at at fixed h is called
a common offset gather (COG) or the offset domain {see also Figure 1.1 and
Figure 1.4 (c)]. Finally, a collection paralleling the offset axis at a fixed u
is called a common mid-point (CMP) gather [see Figure 1.4 (d)], the latter
representing the CMP domain.

All four domains are useful representations for different aspects of seismic
signal processing and analysis. Nevertheless, the CMP domain is the primary
one for conventional seismic data processing. An important observation about
the different domains of seismic data. is that the CSG configuration of Figure 1.4
(a) represents the only physical experiment actually performed in the seismic
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Figure 1.3: Stacking chart. Each black dot represents a single trace with the
time axis perpendicular to the plane of the page. Shot-receiver (s, ¢) and mid-
point-offset (u, h) coordinates are superimposed with the (u, k) plane rotated 45
degrees in the clockwise direction with respect to the (s, g) plane.

data acquisition phase. The other three domains are simply reorganizations of
data performed after acquisition by sorting traces according to the domains.

As the distance between source and receiver increases, the travel path for
reflection lengthens and the arrival time for a reflection event at the detector
increases. The move-out is the difference in arrival time at different receiver
positions. For a single horizontal reflector separating two homogeneous half-
spaces, the simplest one of all earth models, the TWT-distance relationships
or move-out of the reflector become horizontally aligned for a COG and hyper-
bolically shaped for the three other types of gathers. Thus, in this case, the
offset domain is the most attractive one for seismic data compression due to
higher redundancy compared to the shot domain (see Figure 1.1).

1.2.3 Representation of frequency and wavenumber

The analysis and processing of seismic data can be performed in several other
domains different from those previously mentioned. The transformation of
seismic data from time and space to frequency and wavenumber (i.e., spatial
frequency), respectively, is sometimes appropriate for several reasons (e.g., the
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issue of implementation and the consideration of artifacts). The transformation
is usually done by the discrete {or fast} Fourier transform applied separately in
time and space. The frequency-wavenumber domain is simply the result of a
2-13 discrete Fourier transform of a seismic record or a seismic section. Appli-
cations include for instance frequency-wavenumber dip filtering, anti-aliasing
filtering, and migration. The two other combinations of frequency-space do-
main and time-wavenumber domain can also be suitable for some applications.

1.2.4 Classification of noise

The term signal is used for any event on a seismic record which is used to obtain
information about the subsurface. Noise, on the other hand, is an unwanted
signal. Noise can be classified into two parts:

s Coherent or colored noise;

e Incoherent or white noise.

Coherent noise is correlated from trace to trace on a record, while incoherent
noise is not.

Alternatively, noise can be classified into source-generated noise or ambi-
ent noise. Examples of source-generated coherent noise components in marine
seismic work are multiples. Multiples are reflected waves that have undergone
more than one reflection, and multiples are usually considered as an important
source of noise. Unless the water or sea surface is quite rough, it is an almost
perfect reflector for upcoming seismic waves. In many areas, the water bottom
is also a hard reflector, resulting in a large fraction of the source energy being
trapped and reverberating in the water layer, generating water-bottom multi-
ples. In addition to multiples trapped entirely in the water layer, any reflected
wave cant have one or more water-layer reverberations added to it at the source
or receiver end of its path, creating so-called peg-leg or inter-bed multiples.
Ambient noise is the same as background noise. Examples of ambient coher-
ent and incoherent noise components in marine seismic work are vessel noise
and wave noise, respectively.

The most troublesome noise is source-generated coherent noise. The signal-
to-noise ratio (SNR) for ambient noise, whether coherent or incoherent, can
be increased by increasing the source energy or by enlarging the fold (to be
explained later). Source energy has no effect on SNR for source-generated
coherent noise and this type of noise is most effectively attenuated by for
example seismic data processing techniques, e.g., methods for attenuation of
multiple reflections.
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From now on, ambient noise is simply treated as incoherent noise such as
wave noise (see Figure 1.1), and source-generated noise is simply regarded as
coherent noise. Noise is therefore classified into either (i) source-generated
coherent noise (or compression-produced coherent noise at high compression
ratios) or (ii) ambient incoherent noise (or compression-generated incoherent
noise at low compression ratios).

1.2.5 Categorization of seismic signal

The recorded seismic signal in marine exploration, ignoring redundancy and
noise, consists of different types of signal contributing to the information about
the subsurface. Some types of signal are more important than other. The pri-
mary reflections are the main signal component, and the other signal types are
sometimes classified as noise since they usually are unwanted. For this thesis
a definition of the four most significant classes of signal are needed (Sheriff,
1991):

1. direct wave;
2. (primary) reflections;
3. refractions;

4, diffractions.

The direct wave [see Figures 1.1 or 1.4 (a)] corresponds simply to the source
energy which travels directly from the source to the receivers. The direct wave
is easily attenuated by a mute, at least for small offsets. A reflection is the
energy or wave from a seismic source which has been reflected according to
Snell’s law from a contrast in elastic parameters (i.e., density, P-wave velocity,
and shear-wave or S-wave velocity) or series of contrasts within the earth.
The objective of most reflection seismic work is to determine the location and
attitude of reflectors from measurements of the traveltime of primary reflections
and to infer the geologic structure and stratigraphy. Refractions are also called
head waves. A head wave is a wave characterized by entering and leaving a
high-velocity medium at the critical angle defined by Snell’s law. P-wave
refractions are effectively muted, at least for large offsets (see Figure 1.1).
Finally, diffractions are the bending of wave energy around obstacles without
obeying Snell’s law. Such events result at the termination of reflectors (for
example at faults) and are characterized on seismic records and sections by a
distinctive curved alignment. When correctly migrated, a simple diffraction
collapses at the location of the diffracting point.
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1.2.6 Seismic data processing

The preprocessed seismic data must be processed further to give useful infor-
mation. First static corrections are applied to the seismic data to compensate
for the effects of variations in elevation, weathering thickness, weathering ve-
locity, and reference from a floating datum to a final datum. The remaining
or primary processing stages in reflection seismic methods in their usual order
of application are:

¢ true amplitude recovery;

e predictive deconvolution;

e attenuation or rejection of multiple reflections;
s migration;

¢ stacking.

The seismic data processing techniques may operate in any one of the domains
presented in Figure 1.4. For the data set used in this thesis, geometrical spread-
ing and absorption are compensated for by applying true amplitude recovery
in the shot domain. Predictive deconvolution is applied in the shot domain
as well. Ideally, the process of predictive deconvolution improves the temporal
resolution of seismic data by compacting the seismic wavelet and attenuating
ringing energy. The seismic wavelet is equal to the source signature convolved
with the source and receiver ghosts and convolved with the instrument re-
sponse. In order to give an acceptable result, traditional deconvolution, based
on a causal infinite impulse response (IIR) or inverse filter, requires the seismic
wavelet being minimum-phase. A more advanced deconvolution technique can
for example be found by convolving a maximum-phase finite impulse response
(FIR) filter with a minimum-phase [IR filter, i.e., so-called mixed-phase decon-
volution (Porsani and Ursin, 1998; Ursin and Porsani, 2000). Furthermore, de-
convolution assumes seismic data without, or at least small amounts of, noise;
noise components can have harmful effect on predictive deconvolution (Duarte,
1992). In this thesis, two different multiple attenuation techniques are applied.
Attenuation of water-bottom multiples (actually performed before true ampli-
tude recovery) is done in the shot domain using the so-called wave-equation-
multiple-rejection (WEMR; Wiggins, 1988) method. Rejection of peg-leg or
inter-bed multiples using the parabolic Radon transform (Hampson, 1986), on
the other hand, is performed after predictive deconvolution in the CMP do-
main with normal move-out (NMO; explained in more detail below) correction
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Figure 1.5: Taper-on and taper-off zones in the CMP domain.

applied to the CMP gathers. Then, after inverse NMO correction, prestack mi-
gration is done in the offset domain. Migration moves dipping reflectors into
their true subsurface positions and collapses diffractions, thereby improving
the spatial resolution. At the end, stacking is applied in the CMP domain.

If the shot-receiver spread in a multi-channel reflection survey is moved
forward in such a way that any two reflected ray paths do not sample the same
point on a subsurface reflector, the survey coverage is said to be single-fold.
A conventional CMP recording technique, on the other hand, uses redundant
recording to improve the SNR. In CMP profiling, which has become the stan-
dard method of 2-D multi-channel seismic surveying, a set of traces recorded
at different offsets contains reflections from a CMP on the reflector. The ad-
vantages of CMP surveying are many. First, the CMP gather represents the
best possible data set for computing the velocity field from the NMO effect
(discussed in the subsequent section). Second, with accurate velocity informa-
tion the move-out can be removed from each trace of a CMP gather to produce
a set of traces that may be summed algebraically. The traces within a CMP
gather are summed to yield a single stacked trace, and the collection of sev-
eral side by side stacked traces gives a seismic stack image. The data before
and after stacking are called prestack and poststack seismic data, respectively.
The CMP stack or simply the stack is generally acknowledged as the most im-
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{(a) Plane layer; CMP and CDP coincides.

(b) Dipping layer; CMP and CDP do not converge.

Figure 1.6: CDP reflection profiling for plane and dipping layers.

portant data-processing application in improving data quality, i.e., increasing
SNR. CMP stacking effectively attenuates ambient incoherent noise, but also
source-generated coherent noise such as multiples. This is because reflected
signals and coherent noise usually have different (stacking) velocities.

The fold of the stacking refers to the number of traces in the CMP gather.
The higher the fold is, the higher the gain in SNR is achieved. At the beginning
and ending of a CMP gather, the fold of coverage is gradually built up and
dropped off, respectively. These two zones are known as taper on and taper off
{see Figure 1.5).13 The CMP gathers having maximum fold of coverage are
said to be full-fold. The fold for the data set used in this thesis is given by the
number of receiver groups multiplied by the receiver-group distance divided by
two times the shot interval, that is F' = (240 x 12.5)/(2 x 18.75) = 80.

A CMP coincides with the common depth-point (CDP) in the case of plane,
homogeneous layers [see Figure 1.6 (a)]. Strictly, the CMP principle breaks
down in the presence of dip because the CDP no longer converges with the
CMP and the reflection point differs for rays traveling to different offsets {see
Figure 1.6 (b)]. Dip move-out (DMO) correction is a process that creates

L34 CRG has taper-on and tapor-off zones as well, but not CSGs and COGs.
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apparent CDP gathers with the feature that the NMOQ for reflectors from a
dipping bed no longer depends on the dip angle. Note that the term CDP
frequently, but uncritically, is used instead of CMP. Both NMO and DMO
are key elements of modern seismic data processing, and a non-mathematical
discussion of the nature and action of these procedures is presented by Liner
(1999). NMO, DMO, inverse NMO, CMP stacking, and poststack migration
are conventionally used instead of prestack migration if the structure and ve-
locity variation are not too ill-natured. However, this efficient sequence of
operations breaks down and fails to give a good image in the case of struc-
tural complexity and/or lateral velocity variation, and a single grand process
(prestack migration) is required to achieve a geologically meaningful image.

1.2.7 Velocity analysis

The estimate of propagation velocity in the reflection seismic method is essen-
tial to the effective imaging of the subsurface and in particular for NMO and
migration. The velocity is a property of the medium and depends on the type
of waves, for example the P-waves in a conventional reflection seismic survey.
A common simplification is the assumption of isotropic medium which means
that the velocity does not depend on the direction the wave is traveling. Dis-
persion is a variation of velocity with frequency, but the dispersion of seismic
body waves is very small under most circumstances,

Seismic data provide an indirect measurement of velocity. A large number
of different types of velocities can be derived, such as interval, average, root-
mean-square (rms), NMO, stacking, and migration velocities. However, the
velocity that most commonly is derived from seismic data is the velocity that
yields the best stack, i.e., the stacking velocity. It is determined by welocity
analysis and is the value used for CMP stacking. Assuming a layered media,
stacking velocity is related to NMO velocity. This, in turn, is related to rms
velocity, from which the average and interval velocities are derived.

The specific details of velocity estimation are not to be discussed. Most
of the traditional velocity estimation methods are based on manual inspection
of semblance plots of the seismic data, that is so-called velocity picking. As
previously mentioned, the NMO for CMP gathers is the best basis for deter-
mining velocities from seismic data. The velocity required to correct for NMO
is the NMO velocity. For a single horizontal layer, the NMO velocity is equal
to the velocity of the medium above the reflector. For a dipping reflector, the
NMO velocity is equal to the medium velocity divided by the cosine of the dip
angle. The NMO velocity is the velocity for NMO correction in the limit as the
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source-receiver-distance becomes small. In the limit as the offset approaches
zero, the stacking velocity approaches the NMO velocity.

An important observation is that the velocities required by stacking and
migration are not necessarily the same. Similar to the NMO velocity, for
data collected parallel to the dip direction of a single dipping reflector, the
stacking velocity is the velocity of the medium above the reflector divided by
the cosine of the dip angle. On the contrary, the migration velocity is the
velocity of the medium itself. In other words, stacking velocity is sensitive to
dip angle, while migration velocity is not. A widespread, conventional approach
to determine dip-independent stacking velocities is to apply velocity analysis
on CMP gathers after NMO (using initial NMO or initial stacking velocities),
DMO, inverse NMQ, and prestack migration of all common offset gathers. This
method is employed in this dissertation, and the estimated stacking velocity is
used for NMO while a smoothed version of the estimated stacking velocity is
used for prestack migration to avoid artifacts.

1.3 Filter banks

Figure 1.7 (a) shows a 2-channel analysis-synthesis filter bank system. At
the analysis side, the input signal z is filtered by a lowpass filter hq and a
highpass filter h1. The outputs of the filters are critically down-sampled by 2,
i.e., every second sample is removed. The analysis filter bank splits the input
signal into @, a coarse and smoother approximation (lowpass filtered version)
of #, and into d, a detail signal (highpass filtered version of z). The resulting
decomposition is non-expansive: the total number of samples after the analysis
filtering is the same as the number of input samples due to the down-sampling
procedure. At the synthesis side, & and d (called subband samples} are up-
sampled by 2 (one zero is inserted between every subband sample). Then the
two up-sampled signals are filtered by lowpass and highpass synthesis filters,
denoted gy and g, respectively. The reconstructed signal & finally follows by a
summation at the end. The signal z can be perfectly reconstructed, i.e., z = &
if the analysis and synthesis filters obey a so-called perfect reconstruction (PR}
condition. That is, the synthesis filter bank cancels aliasing, amplitude, and
phase distortions introduced by the analysis filter bank.

The special case of DWT is based on a repeated tree-structured lowpass
analysis filtering of the approximation a, and results in a non-uniform filter
bank with a so-called dyadic or octave-band decomposition. Figure 1.7 (b)
shows a 2-level tree-structured dyadic filter bank system. In the 2-D case,
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Spatial dir. Spatial dir. Spatial dir.
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Temporal dir
Temporal dir.
Temporal dir

(a) Dyadic; type-1. (b) Dyadic; type-2. {c) Uniform.

Figure 1.8: 2-level dvadic type-1 decomposition, 2-level dyadic type-2 decom-
position, and 4-channel uniform decomposition.

one can apply a l-level DWT decomposition first in the temporal direction
and second in the spatial direction, and then iterate the 1-level DWT analysis
filtering procedure §—1 number of times on the lowpass-lowpass subband {type-
1; see Figure 1.8 {a})}. An alternative is to apply an S-level DW'T decomposition
first in time and second in space {type-2; see Figure 1.8 (b)|. Of the two different
types of DWT schemes, type-1 is more known than type-2.

A general structure of an § + 1-channel parallel-structured filter bank sys-
tem Is given in Figure 1.9. The 1.D input signal z is split into S + 1 num-
ber of subbands by an analysis filter bank. The sampling coefficients o, for
m=0,1,....,5 and a,, € Z > 2 are subject to the condition

5
> am =1 (1.2)
m=0

in order to keep the decomposition non-expansive. The special case S = 1,
i.e., a 2-channel filter bank with o = a; = 2, represents a l-level DWT. An
S + l-channel filter bank with

g =2° (1.3a)
and

am = 25T1m 1 <m <8, (1.3b)

has equivalent decomposition appearance as an S-level DWT,
In the case of 2-channel (or S + I-channel for S+ 1 > 2) filter banks, the
filters can be divided into three classes:
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Figure 1.9: An S + 1-channel parallel-structured filter bank.

» orthogonal PR filter banks: they generate an orthogonal basis for signal
decomposition.

= h1, go, and g1 are derived from hg;

* biorthogonal PR filter banks: they generate two bases where the hy,’s are
orthogonal to the gn,’s, but the two bases are not orthogonal themselves.

— g1 and hy are derived from hg and gy, respectively;
¢ other non-unitary filter banks or filter banks without restrictions.'*4

The choice of the hy,, and g, filters for m == 0,1 is crucial. Please refer
to the book by Strang and Nguyen (1996) for a comprehensive survey of the
construction of orthogonal and biorthogonal 2-channel PR filter banks. Or-
thogonal bases organized in non-overlapping blocks, like the discrete Karhune-
Loéve transform (DKLT), generally provide better separation between sig-
nal and (white) noise components (Therrien, 1992). For instance, loup and
Toup (1998) used an orthogonal Daubechies wavelet for denoising of seismic
data, and showed its advantages over standard discrete Fourier transform fil-
tering. Nevertheless, the orthogonality constraint is a very strong condition
in 2-channel filter bank design. For instance, it is not possible to have both
orthogonal PR and linear-phase filters except for trivial cases like for exam-
ple the orthogonal Haar wavelet. The orthogonality constraint is relaxed for
biorthogonal and other non-unitary filter banks. As a consequence, in the 2-
channel case, biorthogonal filter banks may simultaneously be PR and have

"“*Non-unitary filter banks need not to be PR.



1.3 Filter banks

21

linear-phase — non-trivial — filter coefficients. The linear-phase property is
commonly used to avoid for example artifacts such as edge effects in data
compression. Miao and Cheadle (1998) used the popular “9,7” biorthogonal
wavelet {(i.e., 9 and 7 number of filter taps in ho/g; and go/hz, respectively) in
noise attenuation of seismic data. At the same time, many data compression
applications involve the same “9,7” biorthogonal wavelet (e.g., Doncho et al.,
1995; Vassiliou and Wickerhauser, 1997) or non-unitary linear-phase near-PR
filter banks (e.g., Resten et al., 1996, 1997a).

Some authors (see e.g., Vermeer et al., 1996), have pointed out that the
DWT might not be the best suited decomposition scheme since it lacks ac-
curacy in the high frequency subbands. Furthermore, a 2-channel filter bank
intuitively possesses less degrees of freedom than filter banks having three or
more channels. Simultaneous, orthogonality and linear-phase constraints in
the S + 1-channel case for S+ 1 > 2 are easier to meet since more filters add
more coefficients to be tuned. By relaxing the orthogonality or biorthogonal-
ity constraint even greater degrees of freedom will arise. In the rest of the
thesis, the main focus is on M-channel parallel-structured uniform decompo-
sitions using non-unitary linear-phase near-PR filter banks, setting all a,,’s
to M = S+ 1 (see Figure 1.10). Specifically, the number of channels used is
M = 8. Figure 1.8 (c) illustrates a uniform decomposition in the 2-D case by
utilizing a 4-channel analysis filter bank first temporally and second spatially.
The design and properties of non-unitary filter banks depend on the targeted
applications. An overview is given in the next subsection. Please refer to Ram-
stad et al. (1995) and Balasingham (1998} for detailed issues on the design of
non-unitary filter banks.

1.3.1 Application to seismic data

As previously mentioned, filter banks have been applied for instance to de-
noising of seismic data, to migration of seismic data, and to seismic data com-
pression. Of these three applications the greatest success has without question
heen in the case of compression.

The main objective of the analysis filter bank is to decorrelate the input
signal and compact the energy of the signal. Unfortunately, the analysis filter
bank generally introduces aliasing, amplitude, and phase distortions which
must be canceled by the synthesis filter bank in the PR case. In addition the
M separate analysis-synthesis-filter pairs are not linear time-invariant systems
due to the down-sampling and up-sampling procedures {see e.g., Villasenor et
al., 1995); the output signals of the synthesis filter bank in channel or branch




22

Introduction

“Black box”
z
™ ho =M TM™ g
™~ LM TM™ @
hav—1 UM TM™ gm-1
F
Analysis fiiter bank Synthesis filter bank

Figure 1.10: An M-channel parallel-structured uniform filter bank with a “black
box” between the analysis and synthesis sides.

number m from an input signal and a delayed version of the same input signal
are not simply delayed versions of each other, but they can be highly different.
This can cause some problems at least in the case of seismic migration.

For all applications a “black box” is put between the analysis and synthesis
filter banks (see Figure 1.10). In the case of denoising the “black box” is {(soft
or hard) thresholding of the subband samples (Strang and Nguyen, 1996; Du-
val and Regsten, 2000), and the analysis filters should optimally provide a good
separation between signal and noise. In the case of migration the “black box”
is composed of the wave-field extrapolation and imaging steps used in conven-
tional (time-space domain} migration, but mapped to the subband domain.
Unfortunately, unwanted cross-terms between all subbands are introduced due
to the aliasing distortion introduced by the analysis filter bank (Rgsten and
Ramstad, 1998). In other words, such a scheme needs wave-field extrapola-
tion filters from each subband to all the other subbands. As a consequence,
migration in a subband domain provides a trade-off between resolution and
efficiency. The scheme is either efficient giving low resolution (i.e., insufficient
quality) or the scheme is slow having the same quality as provided by conven-
tional migration techniques. The efficiency can be increased somewhat, while
securing the guality, by well designed analysis filters; a high number of filter
taps or coefficients (i.e., long impulse responses) can reduce the aliasing dis-
tortion. A big dilemma is, however, that the sparseness of the extrapolation
filters at the same time is given by the lengths of the impulse responses of the
analysis and synthesis filter banks. A better solution to diminish the aliasing
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problem is probably to perform a minor over-sampling, e.g., by a factor of
M/4, in every subband channel.

In the case of SBC, the “black box” can be made up of uniform scalar
quantization and entropy coding at the encoder side and of entropy decoding
and inverse uniform scalar quantization at the decoder side. Now, the filter
banks should be optimized by maximizing the so-called coding gain (Ramstad
et al., 1995). SBC of seismic data is, nevertheless, not straightforward. Speech,
audio, image, and video coding have SBC applications for storage and frans-
mission, and the compression ratio may be set as high as desired, consistent
with demands put forward by human perception. If further data processing
is required, the processing is most conveniently carried out with the original
uncompressed data. Compression of seismic data, on the other hand, is more
complicated. For example, if compression is applied in the acquisition phase
offshore, and the compressed seismic data set is transmitted to land, the effects
of compression noise on the seismic data must be negligible since the complete
processing flow is carried out with the seismic data after decompression. This
very important complication is to be discussed in this dissertation.

1.4 Directions for future research

The use of seismic data compression raises several questions. Naturally, many
of these will not be answered completely in this dissertation. Some suggestions
for future research within the area of seismic data compression using SBC are
for instance:

e compression of other prestack seismic data sets, both land and marine;

s extensive subjective evaluation of the reconstructed seismic data per-
formed by non-biased geoscientists, for example side by side comparisons
of original and decompressed prestack and poststack seismic data,

e development of safe SBC algorithms for seismic data based on for exam-
ple the level and characteristics of ambient noise components (see e.g.,
Donoho et al., 1999b, 2000);

e SBC methods for seismic data using fast and flexible implementations
of filter banks such as for example provided by the so-called lifting
schemes (see e.g., Claypoole and Baraniuk, 1998; Khéne and Abdul-
Jauwad, 2000).
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1.5 Organization

The remainder of the thesis is composed of three papers on seismic data com-
pression submitted to an international journal where the papers are currently
undergoing the review process. Chapter 2 (Paper 1), Chapter 3 (Paper 2)
and Chapter 4 (Paper 3) are written as self-contained papers, with their own
abstract, introduction, discussion, conclusions, and appendices. Consequently,
redundancy between the material covered in each chapter is difficult to avoid,
but the overlaps are kept to a minimum. The first paper deals with lossy
compression of common offset gathers using SBC, the second paper consid-
ers lossless coding of the associated trace identification headers using entropy
coding, and the third paper analyzes the influence of lossy seismic data com-
pression on processing and interpretation. Following the papers, a complete
references list is presented. An index is given at the end of the thesis.

The three main chapters can be read separately in any preferred order
though it is natural to read them in chronological order. For all papers, valu-
able contributions have been given by the two supervisors in addition to one
former and one present colleague of the undersigned. The titles of the papers
and the names of the co-authors with corresponding affiliations are listed below:

Paper 1
Seismic data compression,
Part I: Subband coding of common offset gathers
Tage Rgsten®, Tor A. Ramstad” and Lasse Amundsen’

Paper 2
Seismic data compression,
Part II: Lossless coding of trace identification headers
Tage Rgsten*, Tor A. Ramstad® and Lasse Amundsen?

Paper 3
Seismic data compression,
Part II: Its influence on processing and interpretation
Tage Resten®, Patrick Waldemar™¥, Arild Buland? and Lasse Amundsen?

*Norwegian University of Science and Technology.
Statoil Research Centre.
$Now: Fast Search & Transfer.









Chapter 2

Seismic data compression,
Part I. Subband coding of
common offset gathers

2.1 Abstract

Seismic data require huge transmission capacities and large storage mediums,
and the volume of seismic data is continuing to increase rapidly due to, e.g.,
acquisition of large 3-D surveys, re-processing of prestack seismic data, and cal-
culation of poststack seismic data attributes. We consider lossy compression as
an important tool for efficient handling of large seismic data sets. We present
a 2-D lossy seismic data compression algorithm based on subband coding, and
focus on adaptation and optimization of the method for common offset gathers.
The subband coding algorithm consists of five stages: First, a preprocessing
phase using an automatic gain control to decrease the non-stationary behavior
of seismic data. Second, a decorrelation stage using a uniform analysis filter
bank to concentrate the energy of seismic data into a minimum number of
subbands. Then, an iterative classification algorithm based on the variance to
blocks of subband samples to classify the subband samples into a fixed num-
ber of classes with approximately the same statistics. Fourth, a quantization
step using a uniform scalar quantizer which gives an approximation of the
subband samples to allow for high compression ratios. And finally, an entropy
coding stage using a fixed number of arithmetic encoders matched to the corre-
sponding statistics of the classified and quantized subband samples to actually
achieve compression. Decompression basically performs the opposite opera-

27



28

Part I: Subband coding of common offset gathers

tiong in reverse order. We compare the proposed subband coding algorithm
with three other seismic data compression algorithims. The high performance
of our subband coding scheme is supported by objective and subjective results.
For the common offset gather example, a compression ratio of 10:1 gives com-
pression noise below the level of the ambient noise, while the compression noise
is hardly visible at a compression ratio of 30:1.

2.2 Introduction

The term date compression refers to the process of reducing the amount of
data (number of bits per sample} required to represent a given quantity of
information of the signal. A clear distinction must be made between data and
information. They are not synonymous. In fact, data are the means by which
information is conveyed. Various amounts of data may be used to represent
the same amount of information. Some data provide no relevant information
or simply restate already known information. Data are thus said to contain re-
dundancy. In addition, some data simply have less relevant information than
other data, and thus data are said to contain irrelevancy. On the contrary,
the amount of relevant information inherent in the data typically change from
application to application. In other words, data with relevant information for
one application can be data with irrelevant information for another application.
We thus say that the two applications have different tolerance levels for the
information. Data compression is achieved when redundancy is reduced, irrel-
evancy is eliminated, and/or an accepted tolerance level for the information is
reached. When the redundancy is reduced from the data, while the irrelevancy
is not utilized, data compression will not introduce distortion. This approach
is called lossless data compression. On the other hand, when redundancy and
irrelevancy are exploited, digtortion is introduced. This approach is called
lossy data compression. Due to the introduction of compression distortion,
lossy methods generally offer smaller number of bits per sample, i.e., lower bit
rates or higher compression ratios, than lossless methods. As a rule of thumb,
a compression ratio greater than 2:1 (for floating-point data) requires a lossy
method. Compression of text, on the other hand, can achieve significantly
higher compression ratios than 2:1 by lossless methods. This is because a text
file contains frequently repeated letters and patterns of letters while a typical
seismic data file is far less structured.

When we are talking about a compression system we are actually referring
to two algorithms: The compression algorithm at the encoder side generating
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a compressed signal, and the decompression algorithm at the decoder side
generating a reconstructed signal. We follow the convention of referring to both
the compression and decompression parts of the system as the compression
algorithm.

The basic problem in lossy data compression is to achieve the minimum
possible distortion for a given bit rate, or equivalently, to achieve a given ac-
ceptable level of distortion with the least possible bit rate (Jayant and Noll,
1984). This is described by the rate-distortion function. In the rest of this pa-
per, the bit rate is specified as the number of bits per sample. The distortion
can be measured by objective measurements such ag signal-to-noise ratio and
mean-square error, or by subjective {e.g., visual) measurements. An additional
parameter that enters the picture is complexity of compression, but the role of
this is commonly ignored.

Bit rate is commonly classified into low and high. For simplicity we say
that bit rates lower than “approximately” 3.2 bits per sample are low bit rates,
while bit rates higher than 3.2 bits per sample are high bit rates. Seismic data
are most frequently represented by 32 bits per sample (floating-point number
representation). Thus, a compression ratio of 16:1 makes the “limit” between
low and high compression ratios of seismic data.

2.2.1 Lossy compression of seismic data

Lossy compression is the tool for efficient transmission and storage of prestack
seismic data. We claim that the distortion introduced by lossy compression
can be regarded as harmless for seismic data processing and interpretation if
the compression noise has an amplitude level below, and has similar charac-
teristics (e.g., white) as ambient noise components. Our claim is supported by
the literature. Seismic data compression is not dangerous to processes that at-
tenuate noise in the seismic data, for example migration and stacking (see e.g.,
Bosman and Reiter, 1993; Hall et al., 1995; Bradley et al., 1996; Rasten et al.,
2000b}. Migration and stacking are beneficial procedures after decompression
for compression ratios up to at least 20:1. Deconvolution, on the other hand,
can be a harmful process after decompression already at a compression ratio
of 10:1 since preserved phase appears to be crucial for deconvolution (Guo and
Burrus, 1996). However, reducing the dynamic range of the seismic data by re-
versible amplitude balancing and emphasis filtering can somewhat circumvent
this problem (Polzer et al., 1997).

To the authors’ knowledge, the first significant article in the area of seismic
data compression was written by Wood (1974). He presented a transform cod-
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ing (T'C) method based on the discrete Walsh-Hadamard transform (DWHT;
Jain, 1989). Although the quality of the reconstructed seismic data set was sat-
isfactory for visual inspection, which was Wood’s dominant concern, its limited
quality tended to degrade the performance of more complicated seismic data
interpretation tools. The basis functions of the DWHT are orthogonal binary
sequences of amplitudes plus and minus one, and this transform is suitable
for the compression of data with sharp discontinuities, but not to compress
seismic data which consist of oscillating functions. A study on seismic data
compression using T'C was presented by Spanias et al. (1991). More recently,
Waldemar et al. (1997) proposed a TC technique of seismic data using the
singular value decomposition (SVD; Jain, 1989). Vermeer et al. (1996), Duval
et al. (1999a,b), and Wang and Wu (1999} have presented variants of more tra-
ditional block oriented TC methods of seismic data compression by designing
smoothed and overlapped (trigonometric) analysis-synthesis basis functions, a
concept first introduced by Malvar and Staclin {1989).

Previous work on lossy compression of seismic data using two related tech-
niques to TC, that is discrete wavelet transform coding (DWTC) and sub-
band coding (SBC), shows that the data organization (e.g., dimensionality
and sorting) is important to achieve large compression ratios with an accept-
able distortion level (Villasenor et al., 1996; Rasten et al., 1999a). Luo and
Schuster (1992) used a DWTC based technique to compress seismic traces
individually, but this 1-D approach limits the potential compression ratio to
approximately 5:1 since the high trace-to-trace spatial correlation is not ex-
ploited (see also Chen, 1995). Using a 2-D data organization, compression
ratios of 100:1 (Rgsten et al., 1996) for poststack seismic data and 20:1 (Reiter
and Heller, 1994) for prestack seismic data are achieved with small degrada~
tion. Nevertheless, in the case of poststack amplitude analysis, prestack seismic
data can probably tolerate higher compression ratios than poststack seismic
data due to the averaging along stacking trajectories (Reiter and Heller, 1994).
With 3-D and 4-D data organizations compression ratios of 50:1 and 100:1, re-
spectively, are possibly achieved for prestack seismic data with small resulting
distortion. In this context, high-dimensional data organization does not re-
fer to 3-D or 4-D data surveys in general. High-dimensional data organization
rather means data sets structured into one temporal and at least two spatial di-
mensions. A quantitative comparison of 1-D, 2-D, and 3-D DWTC of seismic
data has been done by Reiter (1996). A full utilization of the dimensional-
ity makes the seismic data compression easier due to increased redundancy.
Notwithstanding, it becomes more complicated to restore for instance single
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traces after high-dimensional compression since large volumes of traces must
be decompressed. To circumvent this problem, Donoho et al. (1998) simply
suggested to divide the seismic data set into overlapping (to prevent blocking
artifacts) sub-volumes with separate compression of each sub-volume. Such
division into stationary sub-volumes is in any case necessary for large seismic
data sets.

In this paper, we consider compression of 2-D prestack seismic data ac-
quired offshore. Notice, compression of seismic data acquired on land is usually
more involved than compression of marine seismic data due to, e.g., overwhelm-
ing amounts of non-white noise such as ground roll (Ergas et al., 1996). We
focus on the optimization of a 2-D SBC scheme using a proper organization
of the seismic data, i.e., common offset gathers. However, the proposed SBC
algorithm can be easily extended to an arbitrary number of dimensions and to
other domains of seismic data, for example common-mid point gathers.

This paper is organized as follows. First, we discuss some important char-
acteristics of seismic data which put some constraints on the compression of
seismic data. Second, we present the principles of SBC based on a uniform
analysis filter bank, a uniform scalar quantizer, and arithmetic coding. We
stress the strong relationship between SBC, DWTC, and TC. Next, the pro-
posed SBC method is adapted to seismic data, and the optimization procedure
is explained in detail. In the results section, we compare our SBC method with
three other seismic data compression algorithms (Duval et al., 1999b; Donoho
et al., 1995; Chen, 1995). These results are based on comparisons of the data
immediately after decompression. The high performance of the proposed SBC
algorithm is supported by objective and subjective results of a common offset
gather example. Finally, discussion and conclusions end the paper.

This article is the first in a collection of three papers on seismic data com-
pression. Lossless compression of the trace identification headers of the SEG-Y
standard based on entropy coding is presented in Part II (Rasten et al., 1999c)
while an analysis of the influence of lossy seismic data compression on process-
ing and interpretation, using the proposed SBC, is presented in Part Il (Rgsten
et al., 2000b).
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2.3 Important characteristics of seismic data

Seismic data have several characteristics which have serious implications for
compression. Seismic data must always be processed. After processing, seismic
data are interpreted.

The most important attribute with respect to compression is that the sig-
nal energy is mostly concentrated at low frequencies and low wavenumbers
of the seismic data. Hence, the information content in the seismic data is
low. The seismic data can therefore be compressed substantially using lossy
methods. Moreover, seismic data are frequently over-sampled in time which
gives redundancy in the temporal direction of seismic data. Nevertheless, the
redundancy in raw common shot gathers is not particularly high neither verti-
cally nor horizontally. In SBC, a 1-D analysis filter bank is commonly applied
separately along the temporal and spatial directions. Thus, the signal decom-
position does not exploit the coherency or correlation of the raw common shot
gathers. Exploiting coherency motivates the application of a non-separable
2-D filter bank. Also, a different organization or domain of seismic data with
better coherency might be tried.

For instance, we can alternatively compress common mid-point gathers,
which can be obtained from sorting the common shot gathers almost in real
time, and apply a normal move-out {(NMO) correction to horizontally align
the primary reflection events. This approach has been suggested by for in-
stance Reiter and Heller (1994) in the case of seismic data compression for the
purpose of quality control. However, a brute NMO correction gives only minor
improvements in the compression results {Rgsten and Waldemar, 1998). A
well adapted NMO correction requires a high number of velocities which must
be sent as side information from the encoder to the decoder.

A more convenient organization of seismic data, at least in the case of
seismic data compression for the purpose of storage, seems to be common off-
set gathers. Compression of comumon offset gathers is appropriate for three
main reasons: First, the primary reflection events will be horizontally aligned
for a non-dipping sub-surface. Second, a common shot gather or a common
mid-point gather are eventually reconstructed from a set of independently de-
coded common offset gathers. The distortion introduced in the reconstructed
common shot gathers or common mid-peint gathers will therefore, intuitively,
be less correlated. This second property is important because the majority of
seismic data processing techniques are utilized on commeon shot gathers or com-
mon mid-point gathers. Prestack migration, on the other hand, is commonly
applied on common offset gathers. Third, the direct wave and the sea-floor re-
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flection (at small offsets) and the P-wave refractions (at large offsets) are easily
detected on common offset gathers. The main part of the two-way traveltime
(TWT) delay of the water layer above the first-break arrival can be efficiently
compressed using, e.g., run-length coding (RLC; Nelson and Gailly, 1996).

Some of the advantages with using common offset gathers rather than com-
mon shot gathers in seismic data compression are demonstrated in Dessing and
Hoekstra (1997) and Rosten et al. (1999a). Note, however, that the spacing
between the traces in a common offset gather is usually higher than in a com-
mon shot gather. Therefore, in a steeply dipping environment, common offset
gathers may be aliased and the coherency property will be lacking.

Unfortunately, the local statistics of seismic data are highly varying. Adap-
tation to this “non-stationary” behavior can be achieved by dividing the seis-
mic data into more stationary sub-signals with separate compression of each
sub-signal. A more straightforward approach to decrease the non-stationary
response is to perform an amplitude balancing at the encoder (see e.g., Vermeer
et al., 1996) combined with, in the case of subsequent true-amplitude seismic
data processing, an inverse amplitude balancing at the decoder. This ampli-
tude balancing should of course be adaptive to the seismic data, for example by
automatic gain control (AGC), while at the same time the inverse gain function
must be efficiently parameterized (compressed). Be aware that an amplitude
balancing can simultaneously increase the magnitude of the ambient noise.
After AGC and inverse AGC, a more uniform quality of the reconstructed
seismic data is obtained at least in the deep zone. The number of bits used
in the compression increases at the same time, directly and indirectly, due to
the preprocessing. For example, after AGC, the deep zone of a common offset
gather contains mostly seismic data with low coherency.

2.3.1 Preprocessing of seismic data

To maximize the compression performance, we have to carry out preprocessing
of the seismic data. At the encoder side, we sort the seismic data from common
shot gathers {CSGs) to cornmon offset gathers (COGs) to match the signal
decomposition to the correlation. For each COG, we compress the main part
of the TWT delay of the water layer using RLC, i.e., the run of small amplitude
values in the TWT delay of the water layer is set to zero and solely expressed
by a count which represents the number of zeros in the run. Figure 2.1 shows
an example of a COG without the main part of the TWT delay of the water
layer. This COG is identical to the COG with offset equal to -2108.5 (or
receiver number h = 161) of the data set used in Rgsten et al. (2000b). The
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Figure 2.1: An example of a COG without the TWT delay of the water layer.
The size is (1001 — 132+ 1) x 1101 = 870 x 1301 samples. The first time sample
index and the first shot number start at 1. The TWT delay is modeled as the
area from and above a horizontal line placed at time sample index n» = 131,

TWT delay of the water layer is for simplicity modeled as the area in the
COG from and above a horizontal line placed at time sample index n = 131.
This horizontal line is placed in a secure distance from the direct wave and
the P-wave refractions to prevent the appearance of edge effects to propagate
into important areas of the seismic data. As the final step in preprocessing,
we apply a 2-D AGC to decrease the non-stationary behavior of the COG.

The AGC is efficiently tmplemented by calculating the mean of absolute
values of square blocks of B x B = 32 x 32 (i.e., height x width) adjacent
non-overlapping samples. Smaller and larger block sizes, e.g., 16 x 16 and
64 x 64, give lower efficiency and resohution, respectively, of the estimated
mean of absolute values. Since the coherency of a COG is larger in the lateral
direction, a rectangular block size, e.g., 16 X 64, can be used instead.

The estimated gain values are compressed using a fixed-rate open-loop dif-
ferential pulse code modulation (DPCM; Gersho and Gray, 1991). This method
exploits the large lateral coherency of the gain values in a COG, and the de-
tails are: The gain values are scanned row-wise from left to right (to exploit
the large lateral coherency) and column-wise from top to bottom. A simple
1-D predictor, using a first-order finite impulse response (FIR) filter with pre-
diction coefficient equal to 0.50, and a mid-tread Lloyd-Max threshold scalar
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Figure 2.2: The AGC function derived from the COG shown in Figure 2.1
Dark blue color corresponds to 0.03, i.e., the utilized threshold value in the AGC
scheme.

quantizer (see Gersho and Gray, 1991, and Figure 2.7) with 4 bits per sample
{i.e., 2* = 16 decision levels) are utilized in the DPCM scheme. The mean and
standard deviation values from the DPCM scheme are sent as side information
from the encoder to the decoder. We assume a Laplacian probability density
function for the difference samples. The size of the file with compressed gain
values is approximately 0.01 % of the size of the associated COG.

To obtain a perfectly reversible AGC the encoder and decoder sides must
have identical replicates of the compressed mean of absolute values. To achieve
this we decode the compressed gain values at both the encoder and decoder.
Piecewise-linear interpolation between the decoded mean of absolute values is
used separately in the temporal and the spatial directions to give a complete
AGC function. AGC values below .05 are thresholded to prevent the domina-
tion of ambient noise with large magnitudes. Figure 2.2 displays the complete
AGC function derived from the COG shown in Figure 2.1. At the encoder,
the COG is divided sample by sample by this AGC function. Notice the re-
duced dynamic range obtained after applying the AGC (see Figure 2.3). At
the decoder, on the other hand, the reconstructed COG is multiplied sample
by sample by the same AGC function.

Applying some preprocessing procedures which can strengthen the coh-
erency of the original seismic data is undoubtedly beneficial to the final result.
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Shot number, s

Time sample index, n

Figure 2.3: The COG shown in Figure 2.1 after AGC has been applied.

But there is a trade-off between the additional number of bits required and the
time spent by preprocessing, and the effect achieved by such a procedure.

2.4 Subband coding — Introduction to our method

It follows from Shannon’s data compression theorem that the best compression
system can be designed by using vector quantization (VQ; Gersho and Gray,
1991) of the samples to the input signal. In theory, this design approach
requires a compression system with infinite complexity and delay. In practice,
further preprocessing of the input signal prior to quantization is performed to
remove the statistical dependencies, e.g., redundancy or correlation, between
the signal samples. Then, in the extreme case where all statistical dependencies
are removed, simple scelar quentization (SQ), i.e., VQ with the number of
dimensions equal to one, can be efficiently used (Jayant and Noll, 1984).

SBC has become quite popular in speech, audio, image, and video coding.
A typical subband encoder [see Figure 2.4 (a)] consists of three parts: an
analysis filter bank, a quantizer, and an entropy encoder. The subband decoder
[see Figure 2.4 (b)] performs in general the opposite operations in reverse order:
an entropy decoder, an inverse quantizer (“dequantizer”), and a synthesis filter
bank.

‘The principles of the SBC method are: At the encoder side, the input sig-
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(a) The encoder.
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Compressed signal

(b} The decoder.

Figure 2.4: A typical lossy SBC system. Of the six processes only the quantizer-
dequantizer pair is lossy, the other pairs are reversible.

nal is decomposed into M spectral subbands by a uniform analysis filter bank.
This subband decomposition decorrelates the input signal and concentrates
the energy of the input signal into a minimum number of subbands. Then
the subband sampies in every subband are critically down-sampled by M (ev-
ery Mth subband sample is retained} to keep the total number of subband
samples unchanged compared to the original input signal representation. The
down-sampled subband samples are quantized by a uniform scalar quantizer
to eliminate the irrelevancy. The uniform scalar quantizer gives an approxima-
tion of the subband samples, and solely introduces the compression noise. >
Finally, the quantized subband samples are entropy coded o achieve compres-
sion. At the decoder side, the M spectral subbands are entropy decoded and
dequantized. Then the subband samples in every subband are up-sampled by
M (that is inserting M — 1 zeros between every dequantized subband sam-
ple). At the end, the signal is reconstructed by a uniform synthesis filter bank.
The only distortion introduced by the SBC method is the compression noise
introduced due to the quantization process.

In this article, we use a lossy SBC method applicable for common offset
gathers. The filter coefficients of the analysis and synthesis filter banks are
adapted to the temporal and spatial correlations of COGs (explained later).
The rest of the SBC system contains of conventional blocks (see Figure 2.4)

2iThe filter bank system is assumed to be perfect reconsruction.
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Figure 2.5: An M-channel maximally decimated filter bank system in the ab-
sence of quantization and entropy coding. The symbols | M and 1 M denote
down-sampling and up-sampling by M, respectively.

except for (see Figures 2.12 and 2.13) the preprocessing of the COGs {(using
RLC/RLC™! of the TWT delay of the water layer and AGC/AGC™! of the
COGs) and the classification of the subband samples into €' number of classes
(also explained later). We thus use C entropy encoders and decoders.

2.4.1 Filter bank signal decomposition and reconstruction

We assign the following capital letters:

— the length or number of samples of a 1-D input signal;

the number of analysis and synthesis subband channels;

— the number of filter taps of the analysis and synthesis filters;
~  the number of subband samples in each subband.

S e
;

The subband decomposition and reconstruction system of COGs is based on
separable parallel-structured uniform FIR analysis and synthesis filter banks.
Figure 2.5 shows an M-channel parallel-structured uniform filter bank in the
absence of quantization and entropy coding. The 1-D input signal z(n) for
n = 0,1,... ,N —1is decomposed into M subbands, each subband having K
subband samples, by the uniform analysis filter bank. The input signal can be
perfectly reconstructed from the M subbands in the absence of quantization
(except from a pure positive delay) if the analysis and synthesis filters obey a
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so-called perfect reconstruction (PR) condition. Then
&(n) = z(n — ng), (2.1)

where #(n) stands for the reconstructed signal and ng the delay.

We denote the analysis filters by Ap(l) for m = 0,1,... , M — 1 and
1=0,1,...,L~—1, the subband signals by ym(k} for & € N, the reconstructed
subband signals by §j,(k}, and, finally, the synthesis filters by g,,(I}. The equa-
tions for the analysis and synthesis filter banks are (Ramstad et al., 1995)

Um (k) = Z R (kM — n)z(n) (2.2a)
and
M-1 oo
Bn)= Y > gmln—kM)gn(k), (2.2b)
m=0 k=—00
respectively.

The 2-D subband decomposition and reconstruction system for COGs is
made by separately filtering, for instance, first row-wise and then column-wise
at the analysis side, and vice versa at the synthesis side. The total number of
subbands or subband images becomes M x M (see Figure 2.9 for M x M =
8 x 8).

The types of analysis and synthesis filters can be divided into three classes:

¢ orthogonal PR filter banks;

e biorthogonal PR filter banks;

e other non-unitary filter banks or filter banks without restrictions.??

Please refer to Strang and Nguyen (1996) for a precise definition of biorthog-
onality. For simplicity we say the analysis filters by, for m = 0,1,... ;M —1 are
orthogonal to all reversed and shifted by &M, k € Z, versions of the synthesis
filters g, but the hy,,’s and the gp’s are not orthogonal themselves.

Alias, amplitude, and phase distortions are introduced by the analysis fil-
ters, and the synthesis filters seek to cancel out these deformations. However,
in the case of lossy compression, the analysis and synthesis filters need not to be

22Biorthogonal filker banks are strictly speaking also non-unitary, but non-unitary filter
banks need not to be PR.
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Figure 2.6: Venn-diagram of different sets of filter banks. Remark, orthogonal
and biorthognal wavelets are subsets of orthogonal and biorthogonal filter banks,
respectively.

a PR system since distortion in any case will be introduced by the quantization
process. Actually, at low bit rates, the optimal filter bank in a mean-square
error (mse) sense is far from PR (Hjgrungnes et al., 1999). Hence, orthogonal
and biorthogonal filter banks are not optimal to use in the mse sense since they
are always PR (see also Figure 2.6). For high bit rates, on the other hand, the
optimal filter bank in the mse sense is close to a PR system.

2.4.1.1 Maximally decimated filter banks

For maximum compression efficiency, we prefer a non-expansive subband de-
composition to retain the length of the input signal, N, after subband recon-
struction. N divided by M has to be equal to K, 1.e., the number of subband
samples in each subband, K, should ideally be the same for all subbands. This
is accomplished by three steps: First, the last sample of the input signal is
repeated until the required input signal length is reached. Second, intelligent
extension of the edges of the input signal (see below) prior to the filter bank
signal decomposition is performed. Third, the subband samples are critically
down-sampled by M. The combination of these operations gives a maximally
decimated filter bank system with the property K x M = N. Moreover, both
z(n) and #(n) will have lengths equal to N. Note that the lower and upper
summation indices for n and & in equations 2.2a and 2.2b are for simplicity set
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to ~co and oo, respectively, due to the application of this three steps.

The main techniques for the second step are: zero, circular, and mirror
extensions of the input signal edges (see e.g., Martucci, 1991; Brislawn, 1996).
Zero and circular extensions generally introduce a discontinuity of the input
signal at the edges. Mirror extension (used by e.g., Duval et al., 1999ab) on
the other hand, generally introduces a discontinuity in the first derivative of
the input signal at the edges. In coping with edge effects, the mirror extension
method, which requires linear-phase or symmetric filters (for example the most
common 2-channel biorthogonal wavelets and M-channel for M # 2 orthogonal
and non-unitary filter banks), offers better compression results compared to
the zero (used by e.g., Wang and Wu, 1999) and circular extensions. Zero and
circular extension methods are utilized in the case of non-symmetric filters
(e.g., all non-trivial 2-channel orthogonal filter banks).

2.4.1.2 Freguency domain coders

TC and DWTC are strongly related to SBC. All three are based on filter
banks and belong to a class of compression systems called frequency domain
coders. The filter bank signal decomposition in TC [e.g., using the discrete
cosine transform (DCT)] is strictly block oriented, i.e., L = M, whereas the
subband decomposition in SBC allows also for overlapping blocks, ie., L > M.
Blocking effect and ringing noise are the artifacts experienced in fraditional
TC and SBC, respectively. SBC has benefited considerably from TC both in
theory and practice (Ramstad et al., 1995). The DCT is the most well-known
linear-phase orthogonal PR filter bank, and the DCT is currently used in the
Joint Photographic Expert Group (JPEG) image compression standard. Other
examples of linear-phase orthogenal PR filter banks are the lapped orthogonal
transform (LOT; Malvar and Staelin, 1989) and the generalized LOT (Gen-
LOT; Queiroz et al., 1996). The DCT and LOT are special cases of GenLOT
with L = M (i.e., no overlap) and L = 2 x M, respectively.

The SBC was developed by signal processing researchers for speech coding
by Crochiere et al. (1976) and for image compression by Woods and O’Neil
(1986). The DWTC introduced some years later in applied mathematics has
been recognized as a different view of SBC (see e.g., Vetterli and Herley, 1992).
In DWTC, 2-channel orthogonal or biorthogonal wavelets (which are special
cases of orthogonal and biorthogonal filter banks, respectively) are typically
used in a tree-structured dyadic or octave-band filter bank. This type of filter
bank is also sometimes called a logarithmic filter bank since the bandwidths
of the subbands are equal on a logarithmic scale.
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The orthogonality constraint is a very strong condition in 2-channel filter
bank design. For instance, it is not possible to have both orthogonal PR. and
linear-phase filters except for trivial cases. The orthogonality constraint is
relaxed for biorthogonal and other non-unitary filter banks. As a consequence,
in the 2-channel case, biorthogonal filter banks may simultaneously be PR and
have linear-phase - non-trivial — filter coefficients. The linear-phase property
is commonly used to avoid for example artifacts such as edge effects in data
compression. By relaxing the orthogonality or biorthogonality constraint even
greater degrees of freedom will arise.

In the rest of the thesis, the main focus is on M-channel parallel-structured
uniform filter banks using non-unitary linear-phase near-PR analysis and syn-
thesis filters. Specifically, we use M = 8§ number of subbands flter banks and
the number of filter taps is L = 32. Please refer to Ramstad et al. (1995) for
detailed issues on the design of non-unitary filter banks and SBC in general.

2.4.2 Quantization

The quantization process introduces the main loss in the SBC method. Conse-
quently, careful design of the quantization procedure is extremely important in
obtaining good compression results. In the case of seismic data, we are often
interested in the large amplitudes to estimate various seismic parameters. We
therefore want to keep these seismic data in position and amplitude as accu-
rately as possible. A uniform scalar quantizer might in this case be a good
choice for allocating the compression error in an optimal way for our purposes.
At the same time, the small subband samples might often be classified as
white ambient noise. A uniform scalar quantizer with dead-zone around zero
out-passes some of the ambient noise components {see e.g., Chen, 1995). As
pointed out by Farvardin and Modestino {1984), the mid-tread uniform scalar
quantizer with dead-zone?* (see Figure 2.7 and below for description) is close
to the optimal entropy-coding constrained scalar quantizer.

Since we employ entropy coding, a mid-tread uniform threshold scalar
quantizer {Gersho and Gray, 1991) of COGs after subband decomposition is
therefore utilized. SQ can be viewed as a nonlinear mapping of y,, (k) = y(k) €
R to a finite set v = {y(0),v(1)... ,y(I = 1)}. The pumbers ¢ =0,1,... , I —1
and the numbers (i} are called the quantizer indices and the quantizer rep-
resentation levels, respectively. The distance between the guantizer decision
levels is termed the quantizer step-size and denoted A. The step-size is con-
stant for a uniform scalar quantizer. Finally, T = 28 x A for 8 > 0 represents

23Por simplicity called a mid-tread uniform threshold scalar quantizer.
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Figure 2.7: Mid-tread uniform threshold scalar quantizer with infinite range.
The scalar quantizer is mid-tread since the origin is in the middle of a tread. The
step-size is denoted A, and T represents the width of the dead-zone (i.e., the
threshold) around zero.

the total width of dead-zone around zero. In image compression, 5 = 0.5

is commonly used (Ramstad et al., 1995) which provides no dead-zone. A
dead-zone with 8 = 0.6 has been used for seismic data (Donoho et al., 1995;
Villasenor et al., 1996), and 8 = 0.6 is also used in this work. Small com-
pression ratios (i.e., lower than 10:1) requires f < 0.5 to give low amount of
guantization noise.

We divide the quantization process into two operations, although the two
steps are not reversible: a quantizer at the encoder and an inverse quantizer
at the decoder. We denote the quantizer output by g(k) (see Figure 2.7) and
the reconstructed subband signal by §{k) [see Figure 2.4 (b)]. The quantizer
operator, g(k) = SQ{y(k)} for (k) € 1%, selects the quantizer index according
to (I is even):

If2+ L(y(k) + T/2)/A), y(k) < -T/2
1=4¢ I/2, ~-Tj2 <ylk}y <T/2 (2.3a)
112+ [(y(k) - T/2)/A], yl(k) 2T/2
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The inverse quantizer operator, §(k} = SQ *{q(k)} for §(k} € ~(4), finds
the quantizer representation level by

¥(5) = (i — 1/2) x A. (2.3b)

The quantizer representation levels are choosed to be equal to the mid-points
of the corresponding quantizer decision intervals (see equation 2.3b) although
the centroids are optimal to use in the mse sense (Gersho and Gray, 1991).
Thus, the step-size will be given by A = |y(j) —~(j—1}| for s = 1,2,... , T 1.

Remark, the dynamic range of the mid-tread uniform threshold scalar quan-
tizer is exceeded if

y(B) < =I/2xA-T/2 or y(k)>({I/2-1)xA+T/2. (2.4)
Then, equation (2.3a) must be exchanged with
i=0 or d=17I-1, (2.5)

respectively.

2.4.3 Entropy coding

The last step in the SBC system is reversible entropy or variable-rate coding
of the quantizer outputs, going from a fixed number to a variable number {but
a lower number in mean) of bits per quantizer index. The idea is to assign
short bit-codes to quantizer indices that appear frequently while reserving long
bit-codes to less frequent ones, thus achieving compression. Here, arithmetic
coding (AC) of the quantizer outputs, representing the COGs after subband
decomposition and quantization, is utilized. AC replaces the sequence of quan-
tizer outputs (called a message) by a single number lying between two real
numbers, P and P, such that 0.0 < F, < F, < 1.0, representing a half-open
interval [Py, Pe). More bits for the interval are needed in the resulting bit-code
for longer messages. Each quantizer output added to the message incremen-
tally modifies the bit-code. Thus, the net effect of each quantizer output on
the resulting bit-code can be a fractional number of bits instead of an inte-
gral number of bits as in the case of Huffman coding (used by e.g., Donoho et
al., 1995). AC typically offers higher compression ratios than Huffman coding
(HC), but is more complex to implement {(Witten et al., 1987). In both cases,
a good estimate of the actual probability density function of the quantizer in-
dices to be compressed is needed for efficient compression. A simple numerical
example of entropy coding using AC and HC is given in Rgsten et al. {1999c).
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Consider the I possible quantizer indices, ¢ = 0,1, ... ,7—1, and their asso-
ciated probability of occurrences, Pg(i) (the quantizer indices are represented
by a real stochastic variable @), satisfying

I-1

3 Poli) =1.0. (2.6)

i=(

We want to arithmetic encode the sequence of quantizer outputs, ¢(k) € 4, of
length K from all quantized subbands (see e.g., Nelson and Gailly, 1996):

1. initialize the so-called current interval to [0.0, 1.0), that is P = 0.0 and
P, = 1.0

2. for all g(k), starting with the first and ending with the last quantized
subband sample, do the following:

(a) split the current interval to I subintervals, e.g., a subinterval for each
of the possible quantizer indices. The width of the ¢th subinterval
is proportional to its associated probability of occurrence, Fp(i);

(b) the subinterval which corresponds to g(k) is the next current inter-
val, e.g., the jth subinterval is the next current interval if g(k) = 7,
j €.

3. Set [P, P.) equal to the two probabilities defining last current interval;

4. the arithmetic encoder allocates a number of bits for the sequence of
quantizer outputs large enough to distinguish the last current interval
from all possible last current intervals. The arithmetic decoder knows
the length K of the sequence of quantizer outputs.

The lower bound of the average number of bits per sample needed for lossiess
compression of the quantizer indices, assuming independent and identically
distributed (i.i.d.) quantizer indices, is given by the so-called Shannon or first-
order entropy:

I-1

H ==Y Pyli)logy[Py(i)) (27)
=0

in bits per sample (or bits per quantizer index). In theory, AC can achieve this
lower bound H {Witten et al., 1987).
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The price paid for the bit rate efficiency in entropy or variable-rate coding
compared to fixed-rate coding (e.g., Lloyd-Max scalar quantizer with bit allo-
cation) is, as indicated by the name, the variability in bit rate. In practice, we
must tune the quantizer step-size and/or the threshold of the uniform scalar
quantizer until the desired bit rate is achieved. Fortunately, this search can
be done quickly since the rate-distortion function is a convex function (Jayant
and Noll, 1984).

2.5 Optimization of the subband coding method

Efficient optimization of a compression system calls for good statistical models
of the signal to be compressed. In our case, two statistical models are required.
One for handling the statistics of common offset gathers to optimize the filter
bank with respect to coding gain, and another statistical model of common
offset gathers after subband decomposition to optimize the variable-rate coding
part, with respect to rate-distortion performance. For the first model, we use
separable and real-valued Gauss-Markov processes fitted to the correlations of
COGs. For the second model, on the other hand, we use a memoryless infinite
Gaussian mixture distribution fitted to the histograms of COGs after subband
decomposition.

The COG with the smallest (i.e., near) offset is often used as a first-order
approximation of the resulting poststack seismic data. It is therefore reasonable
to use similar statistical models to optimize subband coding algorithms for
COGs and poststack seismic data. The optimization of a SBC method for
poststack seismic data has been presented by Resten et al. (1996, 1997a).
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2.5.1 Optimization of the filter banks

The analysis filter bank is usually optimized to decorrelate the original signal
such that the signal energy is maximized in a minimum number of subbands.
This property is known as redundancy reduction or energy compaction, and is
obtained by maximizing the so-called coding gain to SBC. Additional practical
constraints can be placed on the type of splitting and on length of the filters.

The coding gain to SBC over pulse code modulation, Ggpc, assuming
a uniform non-unitary PR AM-channel L-tap filter bank is — in dB - given
by (Katto and Yasuda, 1991)

m=0

—1/M
Ggpo = 10 x logyg I:H Am} , (2.8)
provided that the synthesis filters, g, ({), have unit norm:

L1
> g =1, Vm. (2.9)
=0

Ap, in equation (2.8) can be calculated from the analysis filters, hn, (1), and the
autocorrelation function (ACF) of the 1-D input signal, r4-(n), in the following
way

t‘-‘

-1L-1

B () hm (g (G — 1), (2.10)
{=0

o,
i
=]

To find the filter banks optimized with respect to coding gain, we use the
Nayebi method (see e.g., Nayebi et al., 1990} generalized by Aase (1993). Aase
(1993) incorporated suitable error functions to guarantee the design of non-
unitary linear-phase FIR filter banks having almost PR, good suppression of
blocking effects, as well as high coding gain (see Appendix 2.B). From equa-
tion (2.10} it is evident that we need to know the ACF of the input signal to
maximize equation (2.8). In the 2-D case, we have to investigate the sample
to sample correlations both vertically and horizontally. Figures 2.8 (a) and (b)
show the normalized measured ACFs in the temporal and spatial directions,
respectively, of the COG after AGC displayed in Figure 2.3.

We choose a direction dependent separable statistical model with different
zero-mean autoregressive (AR) processes to represent the ACFs in the two
directions. The ACFs of first-order and second-order AR processes are given
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Figure 2.8: The normalized measured ACFs from the COG shown in Figure 2.3
(solid lines) and the ACFs of the utilized AR processes (dashed lines}.

in Appendix 2.A. Rgsten et al. (1999a) used a second-order Gauss-Markov or
AR(2) process and a first-order Gauss-Markov or AR(1) process to model the
correlations of COGs without AGC in the vertical and horizontal directions,
respectively: the selected normalized correlation coefficients were equal to p1 =
0.85 and py = 0.50 for the AR(2) model, and p; = 0.70 for the AR(1) model.
Similarly, Resten et al. (1996, 1997a) used AR(2), with p; = 0.62 and P2 =
0.10, and AR(1}, with p; = 0.97, models to represent the correlations in the
vertical and horizontal directions, respectively, of poststack seismic data.

In this article, we have to estimate the correlations of COGs with AGC.
AGC will mainly increase the temporal resolution of COGs, stacking will do
the same. Hence, we expect the correlation in the temporal direction of COGs
with AGC to approach the vertical correlation of poststack seismic data. The
resolution and correlation in the lateral direction of COGs will not be affected
significantly by AGC. Thus, the optimized filter bank in the vertical direction
of COGs with AGC is for simplicity chosen to be the same as the optimized
filter bank in the temporal direction for poststack seismic data. The optimized
filter bank in the horizontal direction of COGs with AGC, however, is the
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same as the optimized filter bank in the spatial direction of COGs without
AGC. Figures 2.8 {a) and (b) in addition to qualitative experiments for several
common offset gathers, indicate that the ACFs of the selected AR processes
provide a reasonable fit to sample to sample correlations of COGs for small
lags, that is n,s < 10. For comparison, Duval et al. {1999a,b) optimized a
GenLOT with respect to coding gain for seismic data using an AR(1) process
with p1 = 0.95. A similar model is commonly used for images (Ramstad et al.,
1995). Nevertheless, this model is not well matched to seismic data.

As previously mentioned, we set the number of subbands to M = 8 and the
length of the filters to L = 32. We use the so-called filter bank configuration I
which allows for full length filters in all channels (Aase, 1993). The same filter
bank properties are utilized in subband decomposition of poststack seismic
data (Rgsten et al., 1996, 1997a). Duval et al. (1999b), however, utilized an
8-channel GenLOT with the number of filters taps, I, ranging from 40 to 48.
Their experiments confirmed that longer, overlapping basis functions will give
the best compression results (see also Vassiliou and Wickerhauser, 1997). We
assign the following names for the selected filter banks: 8-32-1_062_010 for
the filter bank in the time dimension and 8-32-1_070 for the filter bank in the
space dimension. Tables 2.B-2 to 2.B-5 in Appendix 2.B quote the 8-channel
32-tap uniform filter banks.

Figure 2.9 presents the COG shown in Figure 2.3 after subband decompo-
sition. The energy of this COG is mostly concentrated at subband number 1
or 2 temporally (i.e., bandpass) and at subband number 0 spatially (i.e., low-
pass). Note that further subband decomposition of such high energy subbands
with high remaining correlation can increase the compression performance.
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Lateral subband number

Temporal subband number

Figure 2.9: The COG shown in Figure 2.3 after subband decomposition into
M x M = 8 x 8 number of subbands. The size is (8 x 109) x (8 x 138) = 872x 1104
subband samples. The lowpass-lowpass subband (with numbers 0,0) is located in
the upper-left corner. Clearly, the bandpass-lowpass subbands with numbers 1,0
or 2,0 pick up most energy. This is reasonable since COGs typically are bandpass
and lowpass signals in the temporal and lateral directions, respectively.

2.5.2 Optimization of the variable-rate coders

An efficient coder has to adapt dynamically to the subband signal statistics.
We use a method where the subband samples are classified into a fixed number
of classes, each class consisting of subband samples with approximately the
same statistics. After uniform SQ, each class is compressed class-wisely with
a semi-adaptive arithmetic coder matched to the statistics of the class.

A uniform analysis filter bank is used for signal decomposition of COGs
into M x M = 8 x 8 subbands, and square blocks consisting of B x B adja-
cent non-overlapping subband samples are classified into one out of C classes
depending on the block energy, which is an asymptotically unbiased estimate
of the variance (the so-called block variance) given that the blocks of B x B
subband samples have zero-mean. A block size of Bx B = 4 x 4 is found to give
a satisfactory trade-off between local adaption and the amount of classifica-
tion side information. As for the block size, the number of classes (arithmetic
coders) is chosen as a compromise between the adaption and the amount of
classification side information; C' = 5 is found by experiments to give the best
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over-all compromise. Similar parameters are utilized in the proposed SBC
method for poststack seismic data (Resten et al., 1996, 1997a).

The next task is to model the statistics of the subband samples of common
offset gathers. If we assume block-wise stationarity and statistical independent
subband samples, the subband samples within each block will be 1.i.d., and can
therefore be characterized by a 1-D probability density function (pdf). The
subband samples are represented by a zero-mean stochastic variable ¥ € R
with pdf py (y). Furthermore, we assume that a given block of subband samples
is characterized by a single stochastic variable 2 € [0, 0o}, the variance, with
pdf Psy (05). Consequently, this results in a memoryless infinite Gaussian
mizture distribution model (see also Lervik and Ramstad, 1996):

Py (4102) = ——e exp (—iw») (2.11)
_ | |
= Y 1/27TJ§ 205

where py|s2 (ylo2) is a Gaussian pdf. The use of this model is justified by
the fact that subband samples of seismic data are approximately zero-mean.
In addition, subband samples of seismic data which have approximately the
same estimated variance tend to have a Gaussian distribution (Lervik et al.,
1996). Furthermore, the subband samples can be assumed to be uncorrelated
(i.e., memoryless) and the number of estimated variances is typically very high
{i.e., infinite}.

We define c"rﬁ,c forc=0,1,...,C as the C+1 variance decision levels limit-
ing the used range of each arithmetic coder. E.g., an estimated block variance
of the subband samples, 62, is classified into class ¢ if o €103 ,05 o41), Where
62’0 = ( and 5425,0 = oo. Likewise, we define &2, for ¢ = 0,1,...,C ~ 1 as
the C wariance representation levels. The variance representation levels spec-
ify the variances of the Gaussian probability density functions for which the
C arithmetic coders could be optimized. However, instead of using Gaussian
distributions with variances equal to the variance representation levels, better
compression results are obtained by using the actual class histograms in the
arithmetic coders (Lervik, 1896). Hence, the optimal variance representation
levels can be interpreted as a tool for finding the optimal variance decision
levels via an iterative algorithm to be described next.

The classification is adapted to each COG after subband decomposition.
In a rate-distortion sense, assuming a Gaussian distribution, the optimal or
maximum likelihood variance decision levels giving the optimal variance rep-
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resentation levels are (Lervik and Ramstad, 1996)

In ( 5£,c,opt )
=2
~ gr,c—l,opt
J?i,c,opt = 1 i , €= 1,2,... ,O— 1. (2‘12)

2 T =3
r.c—1,0pt Jr,c,opt

o

On the contrary, the optimal or maximum likelihood wariance representation
levels giving the optimal variance decision levels are the centroids of the block
variances belonging to the corresponding variance decision intervals. Thus,
this optimization procedure is related to the optimization of Lloyd-Max scalar
quantizers (Gersho and Gray, 1991}. Although not strictly optimal, the vari-
ance representation levels are for simplicity set equal to the mid-points of the
block variances. The iterative algorithm to find the optimal variance decision
levels can be formulated as follows:

1. choose the block size B x fi‘, the number of classes €', and a stop-criterion
e>0;

2. set the bounding values of the optimal variance decision levels, that is
9 . ~2 e e
Tapopt = 0 and 57 ¢ oy = 003

3. choose initial values for the rest of the variance decision levels 62, ., for
c=1,2,... ,C — 1 where 0 < 5§,c,init < &§,c+1,mit < 093

4. find the biased (maximum likelihood) estimates of the B x B block vari-
ances. The B x B blocks of subband samples are assumed to have zero-
mean;

5. for ¢ = 0,1,...,C — 1 find the optimal variance representation levels
&E‘C,opt as the mid-points of the block variances belonging to the corre-
sponding half-open initial variance decision interval [&3 it c"rﬁ,c +1,im't);

6. for ¢ = 1,2,... ,C ~ 1 find the optimal variance decision levels &ﬁ’c’ opt
using equation (2.12);

o1
. ) -5 - .
7. if Z |85 c.0pt— T, init] > € then set aﬁ’c,mu = aic,opt fore=1,2,... ,C—
=1
1, and return to step 5. Else go to step 8;

8. stop the iterative algorithm.



2.5 Optimization of the subband coding method

53

Table 2.1: Optimal variance decision levels (57, ,,; = 0 and 63‘0’0” = 00) and
optimal variance representation levels. The block size is 4 x 4 and the number of
classes C = 3.

Block classification levels Proportionality constants
o’ o2 d
d,c,opt r,c,0pt e

(94
0 0.01
1 0.02 0.05 1.50
2 0.11 0.28 1.70
3 (.59 1.56 1.90
4 3.60 11.54 3.006

The optimal variance decision and representation levels of the COG after
subband decomposition (see Figure 2.9) are found using the iterative algorithm
described above (see Table 2.1). For low bit rates, the variance decision levels
are reformulated as follows (see e.g., Hjgrungnes and Lervik, 1997):

53, =60 g Hde x A%, c=1,2,...,C—1, (2.13)

where d, for ¢ = 1,2,...,C — 1 are proportionality constants and A is the
step-size of the uniform threshold scalar quantizer. The employed constants
are also provided in Table 2.1.

As an example, the histogram of the subband samples which belong to
class 2 (i.e., ¢ == 2) at high bit rates is displayed in Figure 2.10. This his-
togram, as well as the histograms of the subband samples which belong to the
other classes, show close resemblance to a Gaussian pdf. Several qualitative
experiments indicate that the Gaussian mixture distribution model seems to
be appropriate for COGs after subband decomposition. When the block class
entries are arranged in a matrix according to the location of the blocks in
the subbands, the se-called block classification table is obtained. Figure 2.11
presents the block classification table for the common offset gather after sub-
band decomposition shown in Figure 2.9.
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Figure 2.10: Normalized histogram of subband samples which belong to class 2
at high bit rates, that is 03 € [67 5 ,pt) 55 5.pe)» 2nd the associated Gaussian pdf
(solid line), i.e., ~ N(0,62, ,.0).
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Figl}re 2.11: Block classification table. The step-size is A = 0.50, the block size
Bx B = 4x4, and the number of classes C = 5. The size of the block classification
table is (872/4) x (1104/4) = 218 x 276 block class entries (see Figure 2.9).
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2.5.3 Structure of the subband coding method

A complete block diagram of our SBC method is displayed in Figures 2.12
and 2.13. The combination of all techniques used in the SBC method represents
a unique method. At the encoder, we first sort the common shot gathers
to common offset gathers. After RLC of the TWT delay of the water layer
and amplitude balancing by an AGC image, the COG is decomposed into
M x M = 8 x 8 subbands by a separable analysis filter bank (Aase, 1993},
denoted FB. The AGC mean of absolute values of Bx B = 32x32 input samples
are coded using a 1-D fixed-rate open-loop DPCM and sent as side information.
The 64 subbands are segmented into square blocks of B x B = 4 x 4 samples
from the same subband, and the variance of each block is estimated. Each
block is then classified into one out of C' = 5 classes according to its variance
estimate (Lervik, 1996). Al subband samples are quantized in one common
mid-tread uniform threshold scalar quantizer, denoted SQ.

The presumably uncorrelated subband samples in class number ¢ are coded
with a non-conditional semi-adaptive multi-alphabet arithmetic encoder {Wit-
ten et al., 1987), AC,, ¢ = 0,1,...,4, and sent as main information. The
class histograms are computed for each class and used as probability mod-
els for the semi-adaptive arithmetic coders. Hence, the non-zero probabilities
must also be sent as side information. Typically, for the four lowest variance
classes, approximately 5 % of the possible quantized subband indices have non-
zero probability of occurrence. For the highest class, i.e., ¢ = 4, typically about
20 % of the quantized subband indices have non-zero probability of occurrence.

An alternative strategy would be to employ fixed (that is non-adaptive) or
adaptive arithmetic coders. With these two alternative coding strategies, the
non-zero probabilities need not to be sent as side information. Nevertheless,
experiments indicate that the use of semi-adaptive arithmetic coders give the
best compression results. A possible explanation for the superiority of semi-
adaptive arithmetic coders is, for instance, that the probability models for the
fixed and adaptive arithmetic coders are not perfectly matched and tuned,
respectively.

The block classification table, on the other hand, is coded using a condi-
tional adaptive multi-alphabet arithmetic encoder {Nelson and Gailly, 1996),
OAC, and sent as side information. Apparently, there is a dependency between
block classification table entries from different subbands representing the same
area of the original COG (see Figures 2.9 and 2.11). Experiments manifest that
using a conditional adaptive arithmetic coder of the block classification table is
more efficient than using a straightforward first-order semi-adaptive arithmetic
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Figure 2.12: The encoder of the utilized SBC method with C = 5 classes.

coder. Specifically, we employ a third-order {i.e., O = 3) conditional adaptive
arithmetic coder of the classification table entries.

At the decoder, the block classification table is decoded by a conditional
adaptive multi-alphabet arithmetic decoder, YAC~!. The reconstructed block
classification table is used to select the proper non-conditional semi-adaptive
multi-alphabet arithmetic decoder, AC;, ¢ =0,1,... .4, to decode the quan-
tizer indices for each block. Subsequently, the subband samples are recon-
structed in one common inverse mid-tread uniform threshold scalar quantizer,
SQ!. The reconstructed COG is obtained from the M x M = 8 x 8 subbands
by the separable synthesis filter bank, denoted FB~!, followed by inverse AGC,
AGC™1. The AGC mean of absolute values are achieved by a 1-D inverse fixed-
rate open-loop DPCM, DPCM™| and the complete AGC image is retrieved
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Figure 2.13: The decoder of the utilized SBC method with C' = 5 classes.

by piecewise-linear interpolation applied separately in the temporal and spatial
directions. The TWT delay of zero amplitude values is put back on the COG
at the end. Finally, we resort from COGs to CSGs.

2.6 Compression results

In this section, we test our SBC algorithm on the seismic data set displayed
in Figure 2.1. Specifically, the data set is a COG at medium offset with 1101
number of shots and 1001 number of samples per trace. The sampling interval
in time and space is 4.0 ms and 12.5 m, respectively. Using this COG example,
we compare our SBC algorithm (named system I) with three other seismic data
compression techniques: two non-commercial algorithms [system II (GenLOT;
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Duval et al., 1999b} and system IXI (Seismic Unix; Chen, 1995)] and one
commercial algorithm [system IV (ProMAX; Donoho et al., 1995)].

System I is based on parallel uniform 8-channel 32-tap GenLOT signal de-
composition with uniform SQ and so-called embedded zero-tree coding (EZC;
Shapiro, 1993) using non-conditional adaptive AC. The GenLOTs are adapted
to the correlation of COGs using the AR processes suggested in this work (see
Duval and Regsten, 2000). In EZC, the “most important” quantizer indices
are sent from the encoder to the decoder first. An interesting feature of EZC
is progressive compression. Embedded means that the encoder can stop en-
coding at any desired (integer) target bit rate with approximately optimal
rate-distortion performance. Similarly, the decoder can stop decoding at any
desired target bit rate. This property is for instance appealing for quality con-
trol of seismic data. The comparison with system IT is not quite “fair” since it
is implemented to compress seismic data having 32 bits unsigned-long-integer
number representation. Thus, an extra quantization error is introduced in the
conversion {from the floating-point to the fixed-point number representation at
the encoder, and vice versa at the decoder. Anyhow, this extra quantization
error 1s small and a fairly good comparison can be made.

System III is the “wptcomp”/“wptuncomp” software inchided in the Seismic
Unix package (see e.g., Stockwell, 1997) which is based on tree-structured full-
split {or uniform) orthogonal wavelet signal decomposition, with uniform SQ
and HC. System IV is installed as a so-called third-party software on ProMAX
and based on tree-structured dyadic biorthogonal wavelet signal decomposi-
tion, with uniform adaeptive SQ followed by RLC and HC. We demonstrate the
performance of our SBC algorithm compared to the three other seismic data
compression techniques with both quantitative and qualitative results.

The same preprocessing is utilized by all four compression systems, i.e.,
we compress the COG after RLC and AGC (see Figures 2.3 and 2.12). Thus,
the necessary amount of side information for this preprocessing is equal for all
four compression schemes. Immediately after compression and decompression
[including AGC™! and RLC™! (see Figure 2.13)], we calculate the full signal-
to-quantization-noise ratio (SQNR; Vermeer, 1999) between the original and
the decoded COG, and use the SQNR as a quantitative measure of compression
quality. We use the term SQNR to distinguish it from the more conventional
expression signal-to-noise ratio (SNR). The SNR is commonly used for the
purpose of quality measure of seismic data in the presence of ambient noise (see
e.g., Junger, 1964}.
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Figure 2.14: SQNR as a function compression ratio for the four systems.

The SQNR — in dB ~ is defined as:

rms
SQNR = 20 x logyq (l_mse) , (2.14)
where rms is the root-mean-square value of the original seismic data and rmse is
the root-mean-square error between the original and the decompressed seismic
data. The SQNR is used as a quality measure although the SQNR is highly
dependent on the bandwidth characteristics and the amplitude distribution
(or balance) of the data set. For example, a narrow bandwidth compressed-
decompressed data set normally has higher SQNR than a broad bandwidth
dataset. A well balanced compressed-decompressed data set tends to have
lower SQNR than a poorly balanced data set even though the actual quality
of well balanced data sets is better (Reiter, 1996). Nevertheless, the SQNR
provides a good relative indication of the preferred grading between different
compression algorithms.

Figure 2.14 shows the resulting SQNR as a function of compression ratio
(CR), ranging from 7.5:1 to 60:1, for the four different compression algorithrns.
The CR is simply defined as the size of the trace data samples before compres-
ston, divided by the size of the trace data samples after compression. Thus,
a CR of R : 1 corresponds to 32/R bits per sample. System I and system II
have more or less identical performance, but they significantly outperform the
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Figure 2.15: Measure of compression noise versus time for the four systems.

two other compression methods at all compression ratios. For example, at an
SQNR equal to 15 dB, system I and system Il perform at least 30 % better
than the two other compression algorithms in terms of CR.

A relative measure of compression noise as a function of time is computed
by dividing the rmse between the original and the decompressed COGs — row-
wisely - by the rms value of the original COG (see Figure 2.15). The CR is
approximately 30:1 for all four compression schemes. System I and system I
have the lowest relative amounts of compression noise at all times. The am-
plitudes just prior to the first break (or the TWT delay of the water layer)
provides an estimate of ambient noise in the data set (Donoho et al., 1999a,b,
2000). As can be seen, in the target zone below the TWT delay of the water
layer, i.e., from (132 — 1) x 4 = 524 ms, the relative measure of compression
noise versus time is always lower than the relative measure of compression
noise (or ambient noise) in the shallow zone (being equal to 1.0). This is rea-
sonable since the amplitudes in this shallow zone are set to zeros during the
COTNPression.

The energy of the compression noise can be larger than the energy of the
ambient noise (Donoho et al., 1999b), at least for high compression ratios.
Figure 2.16 shows the histogram of the estimated ambient noise (i.e., pre-
first-break arrivals) and the histograms of the compression noise for the four
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Figure 2.16: Normalized histograms of the compression noise for the four sys-
tems, histogram of the estimated ambient noise (blue line), and the associated
Gaussian pdf (red line), i.e., ~ A(0,0.01).

compression systems at a CR of 30:1. A common assumption is that the amb-
ient noise can be modeled as additive white Gaussian noise. The pre-first-break
arrivals closely exhibit a Gaussian pdf for the example (compare the blue line
and the red line in Figure 2.16). Clearly, at a CR of 30:1, the compression
noise is somewhat larger in average than the ambient noise. In addition, the
histograms of the compression noise have long tails, indicating non-Gaussian
pdfs. Figure 2.17 plots the rms levels of the compression noise as a function
of CR, ranging from 7.5:1 to 60:1, for the four compression systems. This
diagnostic metric has been suggested by Donoho et al. (1999b). As can be
seen, the rms levels of the compression noise are larger than the rms level of
the ambient noise at all compression ratios from 10:1 to 60:1. In the range
from 7.5:1 {for systems I1I and IV) to 10:1 (for systems I and iI), however,
the rms levels of the compression noise strongly approach {or become lower
than) the rms level of the ambient noise. At the same time, the histograms of
the compression noise approach Gaussian pdfs for all four systems.

Closeup views in the time window from 1252 to 2752 ms of the 30:1 de-
compressed COGs using system I, II, II1, and IV are shown in panel (b)
of Figures 2.18, 2.19, 2.20, and 2.21, respectively. The original section is for
convenience given in panel {a) of all four figures. Very detailed and good recon-
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Figure 2.17: Compression-noise rms levels for the four systems as a function of
compression ratio, and the rms level of the estimated ambient noise (dashed line).

structions are provided; the original and the reconstructed sections look almost
identical. In fact, the decoded COGs appear more distinct compared to the
original common offset gather. The difference sections, gained by a factor of 5
(see panel (c) of Figures 2.18 to 2.21), exhibit mostly the presence of “uncor-
related” compression noise, even though the examined piece is taken near the
water bottom, where the largest differences are observed. However, systems I
and IT have lower amounts of, and probably less correlated, compression error
compared to systems III and IV.

2.7 Discussion

We have used a 2-DD AGC to decrease the non-stationary behavior of seismic
data prior to compression. Alternatively, we can gain the traces individually
as a function time ¢ by applying a time-power constant § > 1.0, i.e., 0. Ap-
propriate values of § can be estimated from trace to trace, but these values
must be compressed and sent as side information. The main drawback with
this approach, however, is that the head waves, that arrive after the first break,
can have very high amplitudes. A t*-strategy usually blows these refractions
up out of all proportions (at least for large offsets) since head waves do not
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decay according to such a overly simplistic gain function. The application of
an outer mute prior to compression to remove head waves is thus desired.

The complexity of the proposed SBC scheme is of the same order of magni-
tude as the JPEG standard (see e.g., Nelson and Gailly, 1996) and the dyadic
biorthogonal wavelet-based seismic data compression algorithm of Donoho et
al. (1995). The performance of the JPEG standard is, however, poor for seismic
data due to blocking artifacts. The complexity increase due to the classifica-
tion procedure of our SBC method is somewhat compensated for by avoiding
RLC as used by Donoho et al. (1995). The complexity of the algorithms pre-
sented by Chen (1995) and Duval et al. (1999b) are slightly lesser and higher
than our SBC algorithm, respectively.

Tests indicate that optimization of the filker banks and optimization of the
variable-rate arithmetic coders are more or less of equal importance. Using
the filter banks optimized for still images (Aase, 1993), that is AR{1) model
with p; = 0.95 employing the same filter bank properties as for seismic data
and using one single arithmetic coder, our SBC method stiil has better perfor-
mance than the two wavelet-based seismic data compression algorithms of Chen
and Donoho et al. Tests indicate (see Duval and Resten, 2000) that our non-
unitary filter banks perform slightly better than the orthogonal GenLOTs used
by Duval et al..

2.8 Conclusions

A 2-D lossy subband coding scheme for seismic data has been presented. We
have focused on the compression of common offset gathers since they have
higher coherency, and therefore are more suited for compression, than for ex-
ample common shot gathers. The introduced compression noise is more or
less equal to, and has similar characteristics as, ambient noise components at
moderate compression ratios (around 10:1) for the COG example.

From quantitative and qualitative compression results we find that the
proposed subband coding algorithm has excellent performance compared to
three other seismic data compression algorithms. Nevertheless, no definitive
preference between the four different seismic data compression algorithms can
be made due to the limited number of examples.

Due to its good compression results and low complexity, the proposed sub-
band coding method is a very promising approach which can be easily extended
to high-dimensional compression of prestack and poststack seismic data.
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Figure 2.18: Closeup views of reconstructed and difference COGs; system 1.
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Figure 2.19: Closeup views of reconstructed and difference COGs; system IL
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Figure 2.20: Closeup views of reconstructed and difference COGs; system IT1.
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2.A Autocorrelation functions of AR processes

The ACFs of first-order and second-order real-valued Gauss-Markov processes
are given in Jayant and Noll (1984). The 1-D input sample, z(n), is assumed to
be characterized by a zero-mean unit-variance real stochastic variable, z € X.

2.A.1 AR(1) process
The ACYK of an AR{1) process is

Tex(n) = Pl1n|a

where p; denotes the normalized correlation coefficient at lag one.

2.A.2 AR(2) process
The ACF of an AR(2) process is recursively given by

1.0, n=20
Tez(f) = ¢ree(n — 1)+ ¥rp(n - 2), n>1
Tez{—7), n < (.

The constants ¢ and 9 in equation (2.A-2) are given by

— _ A2
g0l 2’2) and g = L2200

1~ pi 1—p}’

where po denotes the normalized correlation coefficient at lag two.

(2.A-1)

(2.A-2)

(2.A-3)
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2.B Filter coeflicients

The filter coefficients of the 8-channel 32-tap uniform filter banks used in this
work are given in Tables 2.B-2-2.B-5. The analysis h, (I} and the synthesis
gm(l) filter coefficients for m = 0,1,...,7 and [ = 0,1,...,31 are first given
in the temporal direction, and then in the spatial direction. Remark, only the
first half of the filter coefficients are tabulated. The second half of the filter
coefficients are given by even or odd symmetry since the FIR filter banks have
linear phase: even symmetry for m even and odd symmetry for m odd.

2.B.1 Error function

The filter banks are optimized using suitable error terms to approach PR,
removal of blocking effects, and high coding gain. The requirement of linear
phase filters is an additional constraint. A suitable error function for our pu-
rpose is (Ramstad et al., 1995)

£ = wpep + WBER + WGEG: (2.B-1)

where the error terms are included to account for PR (ep), blocking effect {ep),
and coding gain (eg). To find the expressions and the associated derivatives
for the terms in the error function is a comprehensive task, and full details can
be found in Aase (1993). For example, the error term corresponding to coding
gain is given by (see equation 2.8):

1/M

Eq = (2.B-2)

M-1

11 4n
m=0

As shown in equation 2.B-1, each error term is multiplied by a proper weight
factor. A suitable choice of weight factors for our purpose is wp = 100.0,
wp = 1000.0, and we = 1.0. These respective weight factors were found by a
systematic trial and error procedure.

The error function of equation 2.B-1 is minimized through a gradient search
method, and hence we can not claim to find definite optimal filter banks. For
faster convergence and for reducing the risk of falling into a local optimum, a
proper filter bank system is used as an initial filter bank in the optimization
procedure. We have used the DCT with M = I, = 8 as a starting point
for the iterations. Since the optimized filter banks should have M = 8, bui
L = 32, the initial filter coefficients outside the 8-tap center of the DCT filter
coefficients are set to zero.
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2.B.2 Coding gain results

The mazimum theoretical coding gain, Ggpe, can be found assuming a uniform
filter bank having infinite number of channels and infinite number of filter taps
in all channels. The Ggpe, as well as the Ggpe (see equations 2.8 and 2.10),
depends on the ACF of the input signal {Jayant and Noll, 1984). The maximum
theoretical coding gain for a zero-mean unit-variance AR(1) process is given
by

Gl = (1 - g2) 7. (2.B-3)

Similarly, a zero-mean unit-vartance AR(2) process has maximum theoretical
coding gain equal to

2 2y —1
GanD) (1 PP ("1%23)—) . (2.B-4)
1
The resulting practical and maximum theoretical coding gains — in dB ~ for
the optimized filter banks are tabulated in Table 2.B-1. For comparison, the
resulting practical coding gains for the 8-channel DCT, assuming similar AR
processes as for the optimized filter banks, are also tabulated. Significantly im-
provements for the optimized filter banks compared to the DCT are achieved.
The coding gain decreases for decreasing L. On the other side, the DCT is
close to the optimal transform [i.e., the discrete Karhunen-Loéve transform
(DKLT)] for an AR(1) process with p; approaching unity (Ramstad et al.,
1995).

Table 2.B-1: Practical and maximum theoretical coding gains. The Ggpe for
the 8-channel DCT are for comparison enclosed within parentheses.

Coding gains (dB)
Practical, Gsgg Maximum, Ggpc

Filter
8-32-1_062_010 3.07 (2.45) 3.15
8-32-1 070 2.87 (2.50) 2.92
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Chapter 3

Seismic data compression,
Part II: Lossless coding of trace
identification headers

3.1 Abstract

Trace headers are an integral part of seismic data. Uncompressed trace head-
ers become a significant portion of the total volume of seismic data in case
the associated trace data samples are compressed. We present an efficient
lossless compression algorithm applicable for the trace headers of the SEG-
Y standard. The proposed technique uses differential coding and run-length
coding in conjunction with class-wise entropy coding of the symbols (run}
and the counts (length). Four entropy coding methods are compared: non-
conditional semi-adaptive Huffman coding, non-conditional adaptive Huffman
coding, non-conditional semi-adaptive arithmetic coding, and finally, condi-
tional adaptive arithmetic coding. Typical compression ratios, in the case of
trace headers of the common offset gather examples, are about 25:1 for the
three non-conditional entropy coding methods and around 250:1 for the con-
ditional entropy coding method. For low and medium orders, the compression
ratio increases monotonically as a function of the order of the conditional
probability model. The best suited order is 8. After compression, the size of
trace headers becomes, independently of the applied entropy coding method,
negligible compared to the size of the associated trace data samples.
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3.2 Introduction

Acquisition of seismic surveys generates huge amounts of data. Despite the
fact that more effective storage and transmission capacities are also intro-
duced, there is an increasing demand for data compression techniques to make
the seismic data handling more efficient. In previous work on seismic data
compression, emphasis has been on lossy compression of the trace deta sam-
ples (see e.g., Luo and Schuster, 1992; Bosman and Reiter, 1993; Donoho et
al., 1995; Resten et al., 1996, 1997a). Lossless compression of trace data sam-
ples can only offer compression ratios in the order of 2:1. 'Trace headers are
an integral part of seismic data, and lossless compression of trace headers can
achieve significantly higher compression ratios than 2:1. This is because trace
headers contain frequently repeated letters and patterns of letters while trace
data samples typically are far less structured (Reiter and Heller, 1994},

A complete seismic data compression system needs to incorporate lossless
compression of the trace headers preceding the trace data samples. We have to
use lossless compression in the case of trace headers since seismic data process-
mg problems else would arise from incorrect reconstructed field geometry. If
we do not compress the trace headers, but do compress the trace data samples,
the trace headers become a significant portion of the total volume of the data
set (Diller et al., 1996). If we for simplicity assume that that trace headers
occupy 10 % of an original data set, the uncompressed trace headers start to
“dominate” (that is, become the largest part of) the data set when the trace
data samples are compressed more than 9:1 (see Figure 3.1). Trace headers
are compressed by a factor of at most 10:1 if standard non-matched lossless
compression methods are applied (Villasenor et al., 1996). Thus, increasing
the compression ratio of trace headers is attractive since compression ratios
significantly greater than 90:1 of trace data samples would otherwise provide
less marginal coding efficiency.

Recently, we proposed a lossless compression algorithm of trace head-
ers (Rgsten et al., 2000a) based on (zero-order) non-conditional semi-adaptive
arithmetic coding. However, we have showed that (higher-order) conditional
adaptive arithmetic coding significantly increases the compression efficiency of
trace headers (Rgsten and Ramstad, 1999). In this work, we compare the com-
pression results of trace headers nsing four different entropy coding methods:

e Two Huffman coding (HC) schemes:

1. non-conditional semi-adaptive HC;
2. non-conditional adaptive HC;
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Figure 3.1: Percentage share of trace data samples and trace headers versus
compression ratio of trace data samples.

e Two arithmetic coding (AC) schemes:

3. non-conditional semi-adaptive AC;

4. conditional adaptive AC.

HC and AC are two of the most well-known entropy coding methods. Their
principles are given in Appendix 3.A. To compress data using HC or AC, we
need a statistical model of the letters to be compressed. Accurate estimation
of the probabilities of symbols in the input data is an inherent need in HC and
AC. A zero-order or non-conditional probability model is less complex than a
higher-order or conditional probability model. The conventional way of data
compression is first to make a pass over the letters to be compressed to gather
statistics for the probability model. Then a second pass is made to actually
compress the data. The statistics are normally sent as side information so
that the decoder will have a copy. Such a sermi-adaptive entropy coding ap-
proach obviously has serious problems if the statistics of the probability model
take more space than the data to be compressed. This situation likely occurs
for complicated data and/or complex probability models. Adaptive entropy
coding is the solution to this dilemma. In adaptive entropy coding, both the
encoder and the decoder start with the same probability model and gradu-



84

Part II: Lossless coding of trace identification headers

ally update the statistics. Adaptive entropy coding has a slight disadvantage
in that it starts the compression with non-optimal statistics. Given the cost
of transmitting the statistics as side information, an adaptive entropy coding
algorithm usually performs better than a semi-adaptive entropy coding tech-
nique. In general, a conditional probability model requires an adaptive entropy
coding method.

This paper is organized as follows. First, the trace identification head-
ers of the SEG-Y standard are characterized. Next, we present the lossless
compression algorithm for the trace identification headers based on differential
coding and run-length coding in conjunction with class-wise entropy coding of
symbols {i.e., the run) and counts (i.e., the length). Subsequently the trace
identification headers of common offset gathers from a 2-D seismic data set are
compressed using the four different entropy coding methods. In the results we
attend the dependency of the compression performance as a function of the
order of the conditional probability model applied in the adaptive AC scheme.
Finally, discussion and conclusions end the paper.

This article is the second in a collection of three papers on seismic data
compression. Lossy compression of seismic data (i.e., the trace data samples)
based on subband coding (SBC) is presented in Part I (Rgsten et al., 1999b)
while an analysis of the influence of seismic data compression on processing
and interpretation, using the proposed SBC, is presented in Part ITI (Rgsten
et al., 2000b).

3.3 Seismic data format standards

During the early years of digital recording of seismic data, numerous recording
formats were put into use. The resulting proliferation problem led to the
development of the SEG-A, the SEG-B, and the SEG-X seismic data format
standards that were introduced by the Society of Exploration Geophysicists
(SEG) in 1967 (Northwood et al., 1967). In 1972, the SEG-C standard (Meiners
et al., 1972) was introduced by the SEG due to several new developments in
field system technology. The SEG-Y standard was developed by the SEG in
1975 (Barry et al., 1975) for the extended use of workstations in field systems.
The growing use of multiple streamers in seismic data acquisition governed
the SEG-D standard published by the SEG in 1977 (see e.g., SEG Tech. Std.
Comm., 1997). Later the SEG-D has been revised two times, in 1994 and in
1996, to increase its fiexibility and ability to manage ocean bottom seismic.
Today, the trend is that the SEG-Y and the SEG-D standards are the ones
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used during processing and field recordings of seismic data, respectively. For
clarity, we focus on the SEG-Y standard.

3.3.1 The SEG-Y standard

A SEG-Y data set is divided into three parts [see Figure 3.2 (a)]; the reel
identification header (RIH}, the trace identification headers (TIHs), and the
trace data samples. We assume that the native workstation word format is
utilized for all three parts. The use of the native format will not affect the
compression performance, but is, strictly speaking, sometimes a misuse of the
SEG-Y standard. For instance, the legal word format of the trace data samples
is one of four different IBM formats, while the 32-bit IEEE floating-point
number representation is the native format on many workstations (e.g., SGI
and SUN).

The RIH contains 3600 bytes of information used to identify the entire
data set and is subdivided into two sub-blocks. The first sub-block is the
Extended Binary Coded Decimal Interchange Code (EBCDIC) card image
block organized into 40 card images with 80 byte EBCDIC each (i.e., 40 lines
of text with 80 characters per line). Card image line numbers 23 through 39
are unassigned for optional use. The second sub-block of the RIH is the binary
coded section of 400 bytes of information valid for the full data set. The leading
60 bytes in this second sub-block are assigned while the trailing 340 bytes are
unassigned for optional use. The size of the RIH is negligible compared to a
typical size of trace data samples. Consequently, we do not compress the RIH
in this work [see Figure 3.2 (b)].

Each trace is preceded by a 240 byte TIH. The leading 180 bytes are as-
signed and the trailing 60 bytes are unassigned for optional use. The leading
180 assigned bytes are grouped into letters of either two or four bytes when
interpreted. The TIH block is used to specify the characteristics of the record-
ing, the geometry, the preprocessing parameters, and so forth. For a trace
containing 1001 data samples (e.g., 4000 ms of trace data samples at a sam-
pling interval equal to 4 ms), the total size of the TIHs is 6 % of the size of
the trace data block. As a rule of thumb, we say that 10 % of a SEG-Y data
set is composed of TIHs and 90 % of a SEG-Y data set is consequently trace
data samples (the RIH is ignored). Therefore, if the TTH block is maximally
compressed R : 1, then compression ratios B : 1 > 9 x R : 1 for the trace
data samples provide less marginal coding efficiency. Note, a compression ra-
tio of B : 1 of the trace identification headers corresponds to 8 /R bits per
byte number. Similarly, a compression ratio of i : 1 of the trace data samples
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Figure 3.3: The lossless coding system for TIHs.

corresponds to 32/ R bits per sample.

3.4 Methodology

In Rgsten et al. (1999b), we presented a lossy SBC scheme for the trace data
samples. Here, we propose an effective lossless compression algorithm for the
trace identification headers based on entropy coding (see e.g., Rgsten and Ram-
stad, 1999; Rgsten et al., 2000a).

3.4.1 Characteristics of the TIHs

In general, two main characteristics of the TIH block are recognized and uti-
lized by the proposed compression algorithm. First, some of the bytes are
recognized to be constant across many traces. For instance, the TIH entries
“Water depth at source” and “Water depth at group”, designated in byte num-
bers 61 through 64 and 65 through 68, respectively, are usually constant for all
the traces. Second, the values for some of the byte numbers are recognized to
increase or decrease by a constant value when moving from trace to trace. This
condition is frequently satisfied, for instance, for the TIH entry “Trace sequence
number within reel” specified in bytes 5 to 8. In addition, some of the bytes
obey both characteristics. For example, the TIH entry “Energy source point
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Figure 3.4: Scanning of the TIH block. The arrows indicate the row-wise byte-
plane scanning (across the direction of the traces) utilized before differential cod-
ing and run-length coding.

number” described in bytes 17 to 20, is usually constant for all the traces which
belong to the same shot, but is normally increased by one when sequentially
moving from shot to shot.

3.4.2 Structure of the lossless coding system

The lossless coding system for trace identification headers is sketched in Fig-
ure 3.3. First, at the encoder [see Figure 3.3 (a)], the TIH block is scanned
byte-wise across the traces, starting with byte number b = 1 and ending with
byte number b == 240 (see Figure 3.4). The byte-wise scanning reshapes a 2-D
matrix to a I-D vector, organizes the header data in & natural manner for
compression, simplifies the reading of the variable-length letters while, finally,
preserves the two postulated characteristics of the TIH block. Second, 1-D
first-order fixed differential coding (DC) is utilized to decrease the redundancy
between the bytes after the scanning procedure (i.e., 1-D). First-order fixed
DC consists of a single constant prediction coefficient in an error prediction
filter. It is very common that subsequent bytes are equal or differ with one
in absolute value, and for this reason, we assign a prediction coefficient equal
to 1.0 in the DC scheme (see Figure 3.5). Third, we utilize run-length coding
{RLC) to take advantage of bytes from the error prediction filter that are con-
stant across many traces. RLC is a simple technique used to compress runs of
identical symbols in a data stream. It encodes a run of symbols as a symbol (S)
and a count (C) which represents the number of symbols in the run. The C's
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TIH no. j —1
TIH no. j
TiHno j+1

........ Byte no. b before DC

................ Byte no. b after DC

Figure 3.5: Configuration of 1-D first-order fixed DC with a prediction coeffi-
cient equal to 1.0. The figure shows byte no. b for 1 < b < 240 between TIH no.
j—tand TTHno. j+ifor2<j<J~2,

for all the &’s are in principle increased by the byte-wise scanning and the DC.
As the core of the lossless coding system, we use entropy coding (EC}. Since
the RLC gives two data sequences with different probability distributions, we
use one BC scheme for the 8's (denoted ECg) and another EC scheme for the
C’s {denoted EC¢), that is class-wise entropy coding.

The decoder [see Figure 3.3 (b)] performs in general the opposite operations
in reverse order: entropy decoding, denoted ECE1 and ECEE, respectively, to
reconstruct the &’s and the C’s. The &’s and the C’s are then passed through
inverse RLC, RLC !, and 1-D first-order fixed inverse DC, DC™*. The TIH
block follows after rescanning at the end.

3.4.3 Probability models for entropy coding

The idea of EC is to assign short bit-codes to letters that appear frequently
while reserving long bit-codes to less frequent ones (i.e., variable-rate coding).
We compare HC and AC, two of the most well-known EC methods. In general,
AC offers higher compression ratios than HC (see Appendix 3.A}, but AC is
more complex to implement compared to HC. In both cases, a good estimate
of the probability density function for the letters to be compressed is needed
for efficient compression.
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3.4.3.1 Non-conditional probability model

In Rgsten et al. (2000a}, a simple non-conditional or zero-order probability
model was found to give satisfactory compression results. Assume for sim-
plicity that we denote the sequences of §’s and C’s by the letter s(k) for
k =0,1,... ,K — 1. Furthermore, suppose that s(k) is one out of M < K
distinct values or symbols s(k) € A, for m = 0,1,...,M — 1. Then the
non-conditional probability Ps(s) (the sequence of letters are represented by
a stochastic variable S) is determined from:

K(Am)

Psls()] = Ps(Am) = =,

(3.1)

where K(Ay,) denotes the number of occurrences of symbol A,, such that
M1
3 K(An) = K. (3.2)
m={

3.4.3.2 Conditional probability model

Nevertheless, neither the 8’s nor the C’s are necessarily memoryless. In fact, in
Rgsten and Ramstad (1999) it was recognized that the S’s and the C’s, despite
the DC and the RLC, typically and locally seem to have a kind of periodicity.
Hence, we can use a conditional probability model of order @, PS(? (s), instead
of the zero-order probability model, Ps(s):

P§s(k)] = Psls(k) | sk —1),5(k =2),... ,s(k = O)].  (3.3)

3.5 Compression results

The proposed lossless compression algorithm is evaluated for the trace iden-
tification headers belonging to the 240 common offset gathers from the 2-D
seismic data set we used in Rgsten et al. (2000b). Notice that the RIH and the
trace data samples are stripped off and ignored for the purpose of this paper.
The following four multi-alphabet EC schemes are compared (i.e., ECs and
EC¢ are subsequently one of these four types):



3.5 Compression resulés

91

29 :1 T F T T 13
: . . -¥— Scheme HC-I
: & Scheme HC-IT
: —£ Scheme AC-Y
285 : : .
e 28 _
g
B q
g 27.5
|
(47
©
[a 9
B 27t .
[}
. 1 | 1 1 L
%1 40 ) 190 160 300 240

Receiver number, b

Figure 3.6: R : 1 versus offset; the three non-conditional EC methods.

Scheme HC-IL:

1. ECg¢ are non-conditional semi-adaptive HC systems;

Scheme HC-11:

2. ECg ¢ are non-conditional adaptive HC systemns;

-

Scheme AC-I:

3. ECs¢ are non-conditional semi-adaptive AC systems;

Scheme AC-II:

4. “ECg ¢ are conditional adaptive AC systems of order O.

Figure 3.6 displays the compression ratio (CR) versus receiver number, A,
for schemes HC-1, HC-II, and AC-I. The CR. is simply defined as the size
of the trace identification headers before compression, divided by the size of
the trace identification headers after compression. As previously mentioned,
a CR of B : 1 corresponds to 8/R bits per byte number. As can be seen,
the non-conditional semi-adaptive AC method performs, as expected, slightly
better than the two HC approaches. Non-conditional semi-adaptive HC and
non-conditional adaptive HC have more or less similar compression ratios.
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Figure 3.7: R : 1 versus offset; conditional adaptive AC for O = {2,4,6,8}.

Figure 3.7 displays the CR versus receiver nnmber for scheme AC-II, that is
the most complex EC method, using orders of the conditional probability model
ranging from O = 2 to O = 8. Remark, the order is always the same for °ECg
and “ECq. The resulting compression ratio is monotonically increasing as a
function of the order up to O =8, but O = 9 and @ = 10 represent oversized
orders which somewhat reduce the compression ratios (see Figure 3.8).

Most interesting, despite the “mile-high” improved coding results for scheme
AC-TI, R : 1 is without exception so high for all four tested EC methods
that the size of the trace identification headers becomes, independently of the
applied EC method, negligible compared to the size of the associated trace
data samples.

3.6 Discussion

A straightforward implementation of the conditional adaptive AC algorithm
results in a highly increasing memory consumption as @ is enlarged; if the
order of the conditional probability model increases linearly, then the memory
consumed by the conditional probability model increases exponentially (Nelson
and Gailly, 1996). Fortunately, there is a solution to this problem. Instead of
letting every value or symbol to appear automatically in the probability table,
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Figure 3.8: R : 1 versus offset; conditional adaptive AC for O = {8,9,10}.

we start off with an empty probability table and add values or symbols to the
probability table only as they appear. In addition, the probability table is or-
ganized as a tree. This organization lets the conditional model adjust rapidly
and efficiently to changing statistics. Tests indicate that with this enhanced
conditional adaptive AC algorithm, the CPU time becomes approximately in-
dependent of the order. Hence, based on the compression results, a suitable
order in the case of common offset gathers is 8. This order is also recommended
for common shot gathers (Rgsten and Ramstad, 1999).

Since the RIH is not compressed, the unassigned portion of it can be utilized
to memorize parameters used in the compression of the SEG-Y data set for
iater decompression.
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3.7 Conclusions

The use of conditional adaptive arithmetic coding is highly successful in lossless
compression of the trace identification headers of the SEG-Y standard. Com-
pression ratios up to 275:1 have been demonstrated in the case of common
offset gathers, the optimal order of the conditional probability model being 8.
It is trivial to extend the compression algorithm to other seismic data format
standards than the SEG-Y. The proposed compression technique is compu-
tationally fast. Such compression can therefore be incorporated as a natural
component in the storage and transmission of seismic data.
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3.A Entropy coding examples

We give numerical examples of multi-alphabet HC and AC (see e.g., Gersho
and Gray, 1991; Nelson and Gailly, 1996) for a test sequence. We assume for
simplicity that the input letter s(k) for £ =0,1,... , K — 1 is one out of four
distinct symbols s(k) € A, for m = 0,1,...,3. The following five-symbol
(ie., K = 5) sequence or message, s(0)s(1)s(2)s(3)s(4) = ApA1dada Ay, is
compressed by the two variable-rate coding techniques. We have a zero-order
or non-conditional probability model where the probability of occurrence Ps(s)
is given by

k

0.2, s(k) = Ao
PO = 0 = @)
0.2, S(k) =.:4.3.

Moreover, the probability model is predetermined and fixed (i.e., neither semi-
adaptive nor adaptive). The probabilities are known at the encoder and the
decoder, and the side information associated with the probability model is thus
neglected.

3.A.1 Non-conditional non-adaptive Huffman coding

The first step in HC is to create a series of source reductions by ordering
the probabilities of the letters under consideration, and combining the two
lowest probability symbols into a single symbol that replaces them in the next
source reduction step. Table 3.A-1 illustrates the first step in HC. At the far
left, the set of {source) symbols and their probabilities are ordered from top
to bottom in terms of decreasing probability value. To form the first source
reduction, the two bottom probabilities marked with a red box, 0.2 and 0.2,
are combined to a “compound symbol” with probability 0.4. This compound
symbol and its associated probability (written in yellow text) are placed in the
first source reduction column so that the probabilities of the reduced source
are also ordered from the most to the least probable. This source assignment
process is repeated until a reduced source with two symbols (at the far right)
is reached.

The second step in HC is to encode each reduced source, starting with
the smallest reduced source and working back to the original source. The
minimal length binary code for a two-symbol source is 0 and 1. As Table 3.A-
2 shows, these codes (written in blue text) are assigned to the two symbols on
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Table 3.A-1: Source reduction step in HC, going from left to right.

Original source Source reduction
Symbol Probability 0. 1. 2.
Ag 0.4
Ag 0.2 0.2
Ar 0.2
v 0.2

Table 3.A-2: Source assignment step in HC, going from right to left.

Original source Source reduction
Symbol Probability Code 0. 1. 2.
Ao 0.4 1 041 041 060
Ag 0.2 01 0201 0400 041
Ay 0.2 000 02000 0201
As 0.2 001 0.2 001

the right marked with a yellow box {the assignment is arbitrary; reversing the
order of 0 and 1 would work just as well). As the reduced source symbol with
probability 0.6 (written in red text) was generated by combining two symbols
in the reduced source to its left, the 0 used to code it is now assigned to both
of these symbols, and 0 and 1 are arbitrarily appended to each to distinguish
them from each other. This operation is then repeated for each reduced source
until the original source is reached. The final binary code appears in the third
column of Table 3.A-2. In general, short bit-codes are assigned to symbols
that appear frequently while long bit-codes are reserved to less frequent ones.
The average length of this message is

L=04x1+02x2402x3+0.2x 3 =20 bits per symbol, (3.A-2)

while the Shannon or first-order entropy of the source is

3
H == 3" Ps(An)l0gy[Ps(An)] ~ 1.92 (3.A-3)
m={0

bits per symbol. Thus the coding efficiency of the Huffman code for the test
sequence is 96 %. Remark, this example is somewhat artificial since fxed-rate
coding of the message also gives 2.0 bits per symbol, i.e., equal to the average
length of the message provided by the HC method.
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The Huffman code is the optimal code for a set of symbols and probabilities
subject to the constraint that the symbols are coded one at a time. After the
code has been created, encoding and/or decoding is accomplished in a simple
table look-up manner. The code itself is instantaneous, if starting at the correct
bit position, because each code word in a string of code symbols can be decoded
without referencing succeeding symbols. In addition, it is uniquely decodable
because any string of code symbols can be decoded in only one way. Thus, any
string of Huffman encoded symbols can be decoded by examining the individual
symbols of the string in a left-to-right manner. For the binary code given in
Table 3.A-2, a lefi-to-right scan of the 10-bit encoded string 0100011001 reveals
that the first valid code word is 01, which is the code for symbol Agy. The next
valid code word is 000, which corresponds to symbol A;. Continuing in this
manzer reveals the completely decoded message to be AgArAzAzAsz.

3.A.2 Non-conditional non-adaptive arithmetic coding

Unlike HC, AC generates non-block codes. In AC, a one-to-one correspondence
between source symbols and code words does not exist. Hence, AC is a non-
instantaneous type of entropy coding. Instead, an entire sequence or message
of input letters is assigned a single arithmetic code word. The code word
itself defines a half-open interval of real numbers greater than or equal to 0.0
and less than 1.0. As the number of input letters in the message increases, the
interval used to represent, it becomes smaller and the number of bits required to
represent the interval becomes larger. Each symbol of the message reduces the
size of the interval in accordance with is probability of occurrence. The more
likely symbols reduce the range by less than the unlikely symbols and hence
add fewer bits to the encoded string. Because this technique does not require,
as does traditional HC, that each source symbol transiates into an integral
number of bits (that is, the symbols are coded one at at time) AC achieves (but
only in theory) the bound established by the Shannon or first-order entropy.
Note that more advanced HC methods can also reach the Shannon bound by
grouping together several original symbols to new symbols.

As already stated, the output from an AC process is a single number greater
than or equal to P == 0.0 and less than P, = 1.0. This single number can
be uniguely decoded to create the exact stream of symbols that went into
its construction. At the start of the AC process, the message is assumed to
occupy the entire half-open interval [P, P.) = [0.0,1.0). In our case, this
interval is initially subdivided into four regions based on the probabilities of
each source symbol (see Table 3.A-3). Symbol Ay for example, is associated
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Table 3.A-3: Initial subintervals in arithmetic coding.

Original source

Symbol  Probability Initial subinterval
Ag 0.2 [0.0,0.2)
A 0.2 [0.2,0.4)
A 0.4 [0.4,0.8)
A3 0.2 [0.8,1.0)

with subinterval {0.0,0.2). Because it is the first symbol of the message being
coded, the message interval is at the start narrowed to [0.0,0.2). Specificaily, if
A; for 0 < j < 3 is the present symbol to be coded, then the message interval
is narrowed according to

j—1
Py=P+ | Ps(An)| % (P - B) (3.A-4a)
m=0
and
i J
Po=P+ | > Ps(An)| x (P — Ry), (3.A-4b)
M=

with P, = P, and P, = P, after each encoded symbol.

The probability range is continuously narrowed according to equations 3.A-
4a and 3.A-4b for each source symbol, until all symbols in the message are put
into the interval narrowing process. In this manner, the second symbol A4y
narrows the subinterval to [0.04,0.08), the third symbol Ay further narrows
it to [0.056,0.072), and so on (see Table 3.A-4). The final message symbol
Ajz narrows the range to [0.06752,0.0688). Of course, any number within this
subinterval, for example 0.068, can be used to represent the message.

In the arithmetically coded message of Table 3.A-4, minimum three decimal
digits are used to represent the five-symbol message. This translates into

L =3/5=10.6 decimal digits per symbol (3.A-5)
using base 10, since the above encoding was performed in decimal format. The

Shannon or first-order entropy of the source is

3
H =" Ps(Am)logg[Ps(An)] ~ 0.58 (3.A-6)

m=0
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Table 3.A-4: Arithmetic encoding example.

Probability range

Message [Py, Pe)
Ay [0.0,0.2)
Ar {0.04,0.08)
Aa [0.056,0.072)
Ay [0.0624,0.0688)
As [0.06752,0.0688)

Table 3.A-5: Arithmetic decoding example.

Encoded information Probabilities
Number Output symbol Initial subinterval Distance
0.068 Ap {0.0,0.2) 0.2
0.34 A 10.2,0.4) 0.2
0.7 Ay [0.4,0.8) 04
0.75 Ay [0.4,0.8) 0.4
0.875 Az [0.8,1.0) 0.2

decimal digits per symbol. Thus the coding efficiency of the arithmetic code for
the test sequence is 96.7 %, which is slightly higher than the coding efficiency of
the Huffman code. Of course, we normally work in binary format, transmitting
bits and measuring entropy in bits per symbol.

In practice, two factors cause AC performance to fall short of the bound.
First, the message-length K (or alternatively a special end-of-file indicator)
must be appended to the encoded string to separate one message from an-
other. Second, the use of finite precision arithmetic somewhat cornplicates the
AC process (see e.g., Nelson and Gailly, 1996). Practical implementations of
AC address the latter problem by introducing a scaling strategy and a round-
ing strategy (Rissanen and Langdon, 1981; Witten et al., 1987). The scaling
strategy renormalizes each subinterval to the [0.0,1.0) probability range be-
fore subdividing it in accordance with the symbol probabilities. The rounding
strategy guarantees that the truncations associated with the use of finite preci-
sion arithmetic do not prevent the coding subintervals from being represented
accurately.

Given the encoding example in Table 3.A-4, it is trivial to see how the
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decoding process operates {see Table 3.A-5). Find the first symbol in the
message by seeing which symbol owns the space our encoded string falls in.
Since 0.068 falls between 0.0 and 0.2, the first character must be Ag. Then
remove Ap from the encoded number; since we know the lower and upper limit
of the probability range of Ay, remove its effects by reversing the encoding
process. First subtract the lower limit of 4g, giving 0.068 again. Second
divide by the width of the range of Ay, or 0.2. This gives 0.34. Then locate in
which interval that number falls, which is in the range of the next letter in the
message, ;. Continuing in this manner reveals again the completely decoded
message to be ApA1.A2A43A3.

3.A.3 On the coding efficiency of HC and AC

AC has significantly higher coding efficiency compared to HC when a symbol
has probability of occurrence approaching unity (see e.g., Nelson and Gailly,
1996), for example 0.9, and in the case of long messages, i.e., K much greater
than 3. A symbol emanating from such a source conveys negligible information
(=2 0.15 bits per symbol), but requires at least 1 bit to be transmitted in the
case of conventional HC. AC dispenses with the restriction that each symbol
must translate into an integral number of bits, thereby coding more efficiently.
A well suited probability model (e.g., conditional) exposes the deficiencies of
traditional HC compared to AC more starkly than non-optimal ones {Witten
et al., 1987). This is because advanced probability models more commonly
predict symbols with probability close to one, the worst case for HC. Thus,
conditional adaptive HC is not an appropriate entropy coding method.










Chapter 4

Seismic data compression,
Part III: Its influence on
processing and interpretation

4.1 Abstract

We investigate the impact of lossy seismic data compression on processing
and interpretation of a 2-I) seismic data set acquired in the Noxrth Sea. The
seismic data set is sorted into common offset gathers which are separately com-
pressed using a 2-D subband coding method. The associated trace headers are
compressed by a lossless arithmetic coding technique. After compression and
decompression, we study the influence of the introduced coding noise to a rep-
resentative processing sequence. Important processing steps, in chronological
order, include attenuation of water-bottom multiples, true amplitude recov-
ery, predictive deconvolution, attenuation of peg-leg multiples, migration, and
stacking. In general, migration and stacking reduce the effect of the coding
noise at all compression levels, while for high compression ratios (i.e., much
pgreater than 10:1) the coding noise has a destructive effect on the predic-
tive deconvolution step and on the two applied multiple attenuation methods.
Two sequences of the lossy compression method are explored. In the first
sequence the seismic data are compressed before predictive deconvolution (de-
noted pre-decon compression), while in the second sequence the seismic data
are compressed after predictive deconvolution {(denoted post-decon compres-
sion). Several seismic data responses are examined, for example prestack and
poststack amplitude analysis in addition to poststack inversion. For pre-decon
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and post-decon compression, compression ratios between 7.5:1-15:1 and 15:1-
30:1, respectively, provide excellent reconstruction quality of the seismic data
set.

4.2 Introduction

Data compression makes the storage of seismic data more efficient, and has a
potential of reducing the time for network and satellite transmission of seismic
data from hours to minutes. Hence, a significant reduction in cost is achieved.
For example, a compression ratio of 20:1 reduces one terabyte of seismic data,
to 50 gigabytes. Taking the cost of storage per megabyte of seismic data on
robotic tape to be $0.20 per year, the storage price would be reduced by 190,000
dollars per year per terabyte of raw data. Furthermore, assuming a satellite
transmission cost equal to $2.0 per megabyte of seismic data, the transmission
cost of the same compression example would be decreased from 2.0 million
dollars to 100,000 dollars per terabyte of raw data.

Two main types of compression techniques exist; lossless and lossy com-
pression. No errors are introduced into the data by lossless compression and
the seismic data set can be reconstructed without any loss of information. The
least significant bits (containing mostly ambient noise) and the most signif-
icant bits in this case are given equal weight of importance. Since all bits
are reconstructed exactly, lossless compression of seismic data can only offer
compression ratios in the order of 2:1. Compression of text files (e.g., trace
identification headers), on the other hand, can achieve compression ratios in
the order of several hundreds to one by lossless methods (Rgsten et al., 1999c).
This is because a text file contains frequently repeated letters and patterns of
letters while a typical seismic data file is far less structured (Reiter and Heller,
1994). During lossy compression of seismic data some errors are introduced.
Due to the introduction of compression noise, lossy methods generally offer
higher compression ratios than lossless methods. The characteristics of the
compression noise depend on the compression ratio. A high compression ratio
{much higher than 10:1) gives a high level of compression noise. At the same
time, the compression noise becomes more and more coherent (i.e., non-white)
as the compression ratio increases.

Throughout all parts of the seismic industry, from acquisition to processing
and interpretation, users are careful not to employ procedures that introduce
noise into the seismic data set. Nevertheless, as such, lossy seismic data com-
pression can be seen as just one of the noise sources in the acquisition and
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processing of seismic data. For example, only 1 % perturbation in the stacking
velocity field can lead to very different processing results (Bosman and Reiter,
1993). More int erestingly, lossy compression actually removes some of the
ambient noise inherent in the seismic data. This observation has been stressed
by Dessing and Hoekstra (1997). It is not necessarily a problem to introduce
distortion while carrying out certain processing steps. However, it is a prob-
lem if the properties of the noise are unknown, in addition to an ignorance of
the noise’s influence on the seismic data. In light of this uncertainty, Vermeer
(1999) suggested that the compression distortion should not affect the dynamic
range of the overall acguisition system, describing logsless compression “in all
but name”. Vermeer et al. {1996) and Donocho et al. (1999b), being less restric-
tive than Vermeer (1999), proposed that the compression distortion should
not exceed the level of, and should have the same characteristics (e.g., additive
white Gaussian noise} as other (i.e., ambient) noise components. Being even
less restrictive than Vermeer et al. (1996) and Donoho et al. (1999b), we seek to
explore some of these uncertainties by not constraining the compression noise
in any way. With an understanding of the associated drawbacks we expect
that the potential of reduced turnaround times, from seismic data acquisition
to processing and interpretation, will push the use of lossy compression as a
routine component of standard survey operations.

Traditionally, the size of seismic data is reduced by for example reduction
of the temporal range and/or resampling in time, reduction of the spatial range
and/or resampling in space, and clipping of the amplitudes, thereby reducing
the dynamic range. Seismic data acquisition usually provides 2.0 ms and 12.5
m sampling intervals in time and space, respectively. Still, before processing,
the seismic data are commonly down-sampled by a factor of two both tempo-
rally and spatially (see e.g., Stigant et al., 1995). This down-sampling implies
a compression ratio of 4:1 for 2-D seismic data, and is strictly speaking a lossy
process since seismic data are non-band-limited in time and space. Seismic
data are originally represented by 32 bits per sample (floating-point number
representation). For many purposes, however, a fixed-point number repre-
sentation of 16 bits per sample provides sufficient numeric precision. Hence,
seismic data are further lossy compressed by 2:1.

Different from such conservative approaches, we consider lossy seismic data
compression as a more sophisticated alternative than traditional seismic data
reduction methods; lossy compression preserves the dynamic range of the seis-
mic signal and automatically removes “unnecessary” seismic data components
at high frequencies and high wavenumbers.
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Previous work in lossy seismic data compression are mainly based on so-
called frequency domain coders. Subband coding (SBC; see e.g., Rgsten et
al., 1996, 1997a), discrete wavelet transform coding (DWTC; see e.g., Luo and
Schuster, 1992; Reiter and Heller, 1994; Donoho et al., 1995), and transform
coding (TC; see e.g., Spanias et al., 1991; Vermeer et al., 1996; Duval et al.,
1999b) belong all to frequency domain coders. The origin of frequency do-
main based compression methods was within the field of speech (Crochiere et
al., 1976) and image coding (Woods and O'Neil, 1986). Speech, audio, image,
and video coding have SBC applications for storage and transmission, and the
compression ratio may be set as high as desired, consistent with demands of
achieved quality after decompression put forward by human perception. If
further data processing is required, the processing is most conveniently car-
ried out with the original uncompressed data. Compression of seismic data,
however, is more complicated. For example, if compression is applied in the
acquisition stage offshore, and the compressed seismic data set is transmitted
to land, the effects of compression noise on the seismic data must be negligible
since the complete processing flow is carried out with the seismic data after
decompression.

A successful field trial using satellite communication from offshore to land
in combination with a 4-D lossy seismic data compression scheme has been re-
ported by Stigant et al. (1995). Preliminary results showed that a compression
ratio of 50:1 preserved the quality of the scismic data (Stigant et al., 1995). Un-
fortunately, no definite conclusions on the character of the compression noise
and its influence on the seismic data have been reported. An industry-wide
consortium designated the Seismic Compression Diagnostic Initiative (SCDI)
was formed in 1997 to address some of these questions (see e.g., Donoho et al.,
199%a,b, 2000).

The seismic data organization (i.e., dimensionality and sorting) is impor-
tant fo achieve large compression ratios with an acceptable distortion level.
For instance, 2-D seismic data compression is in general more efficient than
1-D seismic data compression due to decreased redundancy in the latter case.
A quantitative comparison of 1-D, 2-D, and 3-D seismic data compression us-
ing DWT'C has been done by Reiter (1996}, Moreover, common offset gathers
seem to be more suited for compression than common shot gathers (Dessing
and Hoekstra, 1997, Rgsten et al., 1999a). For example, primary reflection
events are horizontally aligned for a non-dipping surface in the former case,
giving higher redundancy.

In this work, we investigate the use of lossy seismic data compression and
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investigate some of its influence on processing and interpretation. The applica-
bility of the results discussed in this study is restricted to marine seismic data,
compression of seismic data acquired on land is usually more involved due to
overwhelming amounts of non-white noise such as ground roll (Ergas et al.,
1996). Furthermore, we restrict the theory to 2-D seismic data compression
with examples of common offset gathers. We use a lossy SBC method {Rgsten
et al., 1999b) for the compression of common offset gathers, and a lossless
compression technique based on arithmetic coding (Rgsten et al., 1999¢) to
compress the associated trace identification headers (containing for example
acquisition parameters, geometry, etc.).

We explore the following two sequences, called pre-decon and post-decon
compression, to better discriminate the influence of highly data adaptive or
dependent processing steps (for example predictive deconvolution and atten-
uation of multiple reflections) on the seismic data. The compression method
itself is fixed for both sequences, the only difference between them (except
from two different types of preprocessing schemes as explained later) is where
im the processing sequence the compression and decompression algorithms are
applied (see Figure 4.1):

+ pre-decon compression — each and every of individual processing tasks,
including predictive deconvolution and multiple attenuation, is performed
after compression and decompression of seismic raw data;

» post-decon compression — possible harmful processing steps when ap-
plied to decompressed seismic data (i.e., predictive deconvolution and
multiple attenuation) are carried out before seismic data compression.
Processing tasks which attenuate white noise (i.e., prestack migration
and stacking) are, on the other hand, performed after decompression of
the seismic data.

In the following sections, we describe the seismic data set and the entire
processing flow, for which the influence of compression distortion is investi-
gated. Then we summarize the compression methods applied to the trace data
samples of the seismic data and the associated trace identification headers.
Compression results are given for both pre-decon and post-decon compression.
In the amplitude analysis section we compare the two different sequences of pre-
decon and post-decon compression, considering prestack (amplitude variation
with offset analysis, angle stacks, etc.) and poststack amplitudes. Poststack
inversion examples are given next. Finally, discussion and conclusions end the

paper.
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1 Comp;ession | |Predictive deconvolution |
I Decompression I l Multiple attenuation l
Y
!Predictive deconvolution—l 1 Compression I
Y
| Multiple attenuation l | Decompression |
1 !
I Prestack migration | | Prestack migration f
Y
| Stacking I | Stacking |
(a) Pre-decon compression. (b) Post-decon compression.

Figure 4.1: The main part of the two processing sequences; pre-decon and post-
decon compression. The compression and decompression stages are skipped in
the case of original stacked data.

4.3 Description of the seismic data set

The seismic data set we consider is a 2-D surface line acquired offshore central
Norway during 1992. The source was a conventional air-gun array with a total
volume of 1580 cubic inches (= 25900 cm®). The shot interval was 18.75 m, the
source depth was 5 m, and the total number of shots in the data set was 1101.
Furthermore, the streamer had 240 receiver groups with a group distance of
12.5 m, and the streamer depth was 8 m. The distance between the center of
the source array and the first group (near offset) was 108.5 m. Finally, the
record length (two-way traveltimne} was 4000 ms with sample interval 2 ms.
Hence, the number of samples per trace in the data set is 2001.

As preprocessing, we conveniently decimate the data set by a factor of 2
in time applying anti-alias filtering, increasing the time sample interval from
2 to 4 ms and reducing the number of samples per trace from 2001 to 1001.
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Figure 4.2: Cube of the original data set consisting of 1101 shots, 1601 samples
per trace, and 240 receivers each. The first time sample index, and the first
receiver and shot numbers start at 1.

At this point, we have the original representation of the seismic data. The
seismic data can be viewed as a rectangular volume with axes of time, receiver
(or offset), and shot. Figure 4.2 shows a cube of the original seismic data set
containing 240 common offset gathers along the offset coordinate or receiver

number direction.
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4.4 The complete processing flow

In this study, we employ a simple, but representative processing sequence.
The processing flow is carried out on original and decompressed seismic data,
and the goal of the experiments is to investigate how the compression noise
interferes with the seismic data during processing. The processing sequence
is optimized for subsequent prestack and poststack amplitude analysis, with
particular attention paid to preserving amplitude. Important steps include
noise suppression, amplitude corrections, predictive deconvolution, attenuation
of multiple reflections, and migration.

The processing parameters are similar for original and decompressed seis-
mic data, but the parameters are tuned for the original data set. The stacking
velocity field, which we denote the root-mean-square (rms} velocity field vyms,
is picked for every hundred CMP gather (or for every 625 m) based on the
original data set.

The entire processing scheme can be divided into four main elements, given
in sequential order:

1. processing of common shot gathers (CSGs);
2. sorting into and processing of common mid-point (CMP) gathers;
3. sorting into and processing of common offset gathers (COGs);

4. finally, sorting into CMP gathers with stacking.

4.4.1 Processing of common shot gathers

We attenuate the water-bottom multiples using a technique based on the acous-
tic wave equation, i.e., the so-called wave-equation-multiple-rejection (WEMR,
Wiggins, 1988) method. With this data adaptive approach, the sea-floor multi-
ples are predicted by extrapolation of the seismic data, and then the predicted
multiples are adaptively subtracted from the original data. True amplitude
recovery (TAR) is then applied to balance the amplitudes of the seismic data
caused by geometrical spreading and absorption.

Predictive deconvolution can be regarded as a standard processing method
employed to improve the temporal resolution of seismic data by compacting the
seismic wavelet and attenuating ringing energy (Yilmaz, 1987). In order to give
an acceptable result, conventional predictive deconvolution requires a seismic
wavelet with minimum phase. Furthermore, predictive deconvolution assumes
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noise free seismic data; noise components have harmful effect on deconvolu-
tion (see e.g., Duarte, 1992). Hence, predictive deconvolution is — probably -~
the most difficult processing task to apply on decompressed seismic data, at
least for high compression ratios. Only testing will determine whether decon-
volution performs satisfactorily or not on seismic data with a noise problem,
i.e., on seismic data with compression noise.

Summary of the processing flow (“1.”):

1-a. elimination of sea-floor multiples using WEMR. with a constant P-wave
velocity in water of 1500 m/s;

1-b. top mute to remove direct waves and P-wave refractions;

1-c. spherical spreading correction using v2,s X #, where ¢ denotes time, and
correction of absorption by 3.5 dB/s;

1-d. minimum-phase conversion of the seismic wavelet using a filter derived
from the far-field signature;

1-e. predictive deconvolution using 32 ms prediction lag, 400 ms operator
length, and 0.1 % additive white Gaussian noise; one design window -
near offset: 700-3500 ms, far offset: 1700-4000 ms;

i-f. zero-phase conversion of seismic data after predictive deconvolution by a
filter derived from the average seismic wavelet.

4.4.2 Processing of common mid-point gathers

In the CMP domain, the CMP spacing is 6.25 m, the trace spacing within an
individual CMP is 37.5 m, and the maximum fold is F = 80.

The parabolic Radon transform is utilized on normal move-out (NMO)
corrected CMP gathers for multiple attenuation (Hampson, 1986; Foster and
Mosher, 1992). A parabolic form is utilized since multiples have an approx-
imately parabolic trend after NMO. After CMP sorting of the data set, we
combine three and three adjacent CMP gathers to obtain super CMP gathers,
representing the full range of offsets, to avoid spatial aliasing in the parabolic
Radon transform (Hugonnet and Canadas, 1995). This means that we merge
three neighboring CMP gathers, each having 80 traces, into one super CMP
gather containing 240 traces. Hence, the trace spacing decreases from 37.5 to
12.5 m.

The Radon demultiple method consists of forward and inverse Radon trans-
forms in addition to top-mute operations. The multiples are estimated in the
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Radon or time-moveout space and subtracted from the Radon transformed in-
put data. Primaries ideally map from offset space to zero residual move-out
in the Radon domain, while multiples map to the positive residual move-out
zone.

Summary of the processing flow (“2.7):

2-a. NMO correction using vrms;
2-b. top mute to remove dominant NMO stretch;

2-¢. multiple attenuation by parabolic Radon transform using 300 parabolas
sampled uniformly from -200 to 1500 ms at reference offset equal to
3096.0 m;

2-d. inverse NMO correction;

2-e. zero-phase bandpass filtering in three time gates to remove low-frequency
and high-frequency noise components:*? 1-4-90-110 Hz in time gate O-
1500 ms, 1-4-90-100 Hz in time gate 2500-3000 ms, and 1-4-80-90 in time
gate 3500-4000 ms.

4.4.3 Processing of common offset gathers

The final processing element is migration of COGs. Migration moves dipping
reflectors into their true subsurface positions and collapses diffractions, thereby
increasing spatial resolution. Migration further reduces the amount of noise,
including compression distortion, in the data set. Remark, prestack migration
is utilized due to prestack amplitude analysis (Mosher et al., 1996).

The data set is binned into super common offset sections, i.e., we merge
three and three neighboring COGs into super common offset sections, each
containing all CMPs. Thus, the CMP spacing within the common offset sec-
tions decreases from 18.75 to 6.25 m. The super common offset panels are
migrated separately.

Summary of the processing flow (“3.7):

3-a. prestack Kirchhoff time migration using smoothed vms field. The max-
imum frequency migrated is 70 Hz, and the migration aperture is sef to
3000 m;

3-b. top mute to remove seismic data migrated above the water bottom.

*1The frequencies are denoted fay-For-fpa-Fsg, where fs and fs, are stopband frequencies
and fu,-fp, are passband frequencies.
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4.4.4 Stacking of common mid-point gathers

The processed data are sorted into CMP gathers which are stacked. Figure 4.3
displays the seismic image, for CMP locations from 750 to 3600 and time
window from 0 to 3000 ms, after a complete processing of the original seismic
data set. The stack section is of good quality. We choose “Base Lysing”,
denoted BL, as a reference horizon for subsequently prestack and poststack
amplitude analysis. BL is one of the strongest reflectors and is located in the
zone between approximately 1700 and 2100 ms for CMP locations from 1800
to 2700 (see the yellow box in Figure 4.3).

4.5 Compression methods

In this section, we summarize the compression methods utilized for the seismic
data (or trace data samples) and the associated trace identification headers
(TTHs). For details we refer to Rgsten et al. (1999b,c), respectively.

The data set, with headers, is gathered into 240 common offset sections
each having 1101 number of traces and 1001 samples per trace. The original
data set is represented with 32 bits per sample, i.e., 4004 bytes per trace.
The size of the TIHs is 240 bytes per trace which is about 6 % of the size
of the trace data samples. The total volume of the data set, including reel
and trace identification headers (SEG-Y standard, SEG Tech. Std. Comm.,
1997), exceeds 1.12 gigabytes. Consequently, for the data set, if the TIHs is
maximally compressed R : 1, then compression ratios R : 1 > 94/6 x R:1
for the trace data samples provide less marginal coding efficiency. Eventually
uncompressed trace identification headers start to dominate (or become the
largest part of) the data set when the trace data samples are compressed more
than approximately 16:1.

At the compression or encoder side [see Figure 4.4 (a}], each of the 240
common offset gather is multiplexed into a trace data sample block {with
4004 x 1101 number of bytes), a reel identification header (RIH) of 3600 bytes,
and a TIH block (with 240 x 1101 number of bytes). The trace data sample
blocks and the connected TIH parts are separately compressed using a 2-D
(lossy) SBC method (Resten et al., 1999b) and a 1-D (lossless) arithmetic cod-
ing (AC) method (Resten et al., 1999c), respectively. The RIH however is left
uncompressed. At the decompression or decoder side [see Figure 4.4 (b)], in-
verse operations are performed in reverse order: the trace data samples and the
TIHs are separately reconstructed by SBC™! (using superscript —1 although
not a perfect inverse operation) and AC™!, respectively, and combined with
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Figure 4.4: The complete compression algorithm.

the RIH into integral COGs. Finally, the 240 reconstructed COGs are merged
into a new version of the data set, the only difference to the original data set
is the compression noise introduced inte the trace data samples.

4.5.1 Lossy compression of the frace data samples

The principles of 1-D SBC (Ramstad et al., 1995), at the encoder, is based on
the decomposition of the input signal into M spectral subbands by an anal-
ysis filter bank to reduce the redundancy. Ideally, the analysis filter bank
decorrelates the input signal, and concentrates the energy of the input signal
into a minimum number of subband channels. After subband decomposition,
the subband samples are down-sampled by M (every Mth subband sample is
retained) to keep the total number of subband samples unchanged compared
to the original signal representation. The down-sampled subband samples are
quantized to eliminate the irrelevancy. The quantization step gives an approx-
imation of the subband samples, and solely introduces the compression noise.
Finally, the quantized subband samples are entropy coded (thus compression
is achieved). At the decoder, the M subband samples are entropy decoded
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Figure 4.5: Shot number 1 for the original data set; the model of the TWT
delay is given by the solid line. The display is conveniently scaled with a 100 ms
standard AGC and down-sampled by 4 in the offset direction for display purposes.

and dequantized. Then the subband samples are up-sampled by M (that is
inserting M — 1 zeros between every subband sample), and the signal is re-
constructed by a synthesis filter bank at the end. 2-D SBC is implemented by
separable analysis and synthesis filter banks.

To maximize the compression performance, we have to carry out prepro-
cessing of the seismic data (Rgsten et al., 1999b). At the encoder, we first
compress the main part of the two-way traveltime (TWT) delay of the water
layer for every COG using run-length coding (RLC; Nelson and Gailly, 1996).
The run of small amplitude values in the TWT delay of the water layer (e.g.,
ambient noise) is set to zero and uniquely expressed by a count C which rep-



4.5 Compression methods

117

resents the number of zeros in the run. The TWT delay of the water layer is
for simplicity modeled as the area in the COGs from and above a horizontal
line placed at time sample index, 7. For our data set, we employ this heuristic
and continuous model which is found by visual inspection:

[0.8x h+095], 1<h<I159
[0.5 x h+50.0], 160 < h < 240,

where h denotes the receiver number. The count of zeros in the run is thus
given by C == 1101 x i since every COG has 1101 number of shots. Figure 4.5
shows the model of TWT delay as a function of offset for shot number 1.
As can be seen, this simple model is placed in a secure distance from, e.g.,
the direct wave (at small offsets) and the P-wave refractions (at large off-
sets). Thus, the appearance of edge effects after decompression is prevented
to propagate into important areas of the seismic data. Second, in the case
of pre-decon compression, we apply a 2-D automatic gain control (AGC) to
diminish the “non-stationary” behavior of the COGs. The AGC is efficiently
implemented by calculating the mean of absolute values of B x B = 32 x 32
adiacent non-overlapping signal samples. These AGC values are reshaped to
a vector and coded using a 1-D fixed-rate open-loop differential pulse code
modulation (DPCM; Gersho and Gray, 1991). Piecewise-linear interpolation
between the decoded mean of absolute values is used separately in the temporal
and spatial directions to give a complete AGC function. In the case of post-
decon compression, on the other hand, AGC is not applied since the seismic
data set is already balanced by TAR.

After preprocessing, the common offset gathers are compressed using a 2-D
SBC method (Rgsten et al., 1999b). We use M x M = 8 x 8 separable parallel-
structured uniform finite impulse response {FIR) analysis and synthesis filter
banks. The decomposition is fixed, i.e., parallel and uniform, but the coeffi-
cients of the filter banks are adapted to the temporal and spatial correlation
of COGs. The filter banks are optimized to maximize the so-called coding
gain, while securing near perfect reconstruction in the absence of quantization
noise (Aase, 1993}). At the encoder, every COG is decomposed by the sepa-
rable analysis filter bank. The 64 subbands are segmented into square blocks
of B x B = 4 x 4 samples from the same subband, and the variances of in-
dividual blocks are estimated. FEach block is then classified into one out of
C' = 5 classes according to its variance estimate (Lervik, 1996). All subband
samples are quantized in one common uniform scalar quantizer using a con-
stant step-size. Finally, the classes of quantized subband samples are coded
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using C' = 5 different variable-rate arithmetic encoders. At the decoder, the
quantized subband samples are decoded by appropriate arithmetic decoders.
Subsequently, the subband samples are approximated by an inverse uniform
scalar quantizer. The recreated COGs are obtained from the 64 dequantized
subbands by the separable synthesis filter bank, followed by inverse AGC in
the case of pre-decon compression. The AGC values are achieved by an in-
verse fixed-rate open-loop DPCM, and the complete AGC function is found by
piecewise-linear interpolation applied separately in the temporal and spatial
directions. The TWT delay of zero amplitude values is finally put back on
every COGQG, totally removing the original inherent ambient noise in this time
interval of the seismic data.

4.5.2 Lossless compression of the trace identification headers

The associated trace identification headers are compressed using a 1-D loss-
less AC method (Rgsten et al., 1999¢). First, at the encoder, the TIH block
is scanned byte-wise across the traces within every COG, starting with byte
number 1 and ending with byte number 240 to organize the TIHs in 2 natural
manner for compression. Second, 1-D first-order fixed differential coding (DC)
is utilized to decrease the redundancy between the bytes after the scanning
procedure. Third, we utilize RLC to take advantage of bytes from the DC
being constants across many traces. As the core of the compression method,
we finally use conditional adapiive multi-alphabet AC of order @ = 8. At the
decoder, we perform the inverse operations in reverse order: inverse conditional
adaptive AC, inverse RLC, and 1-D first-order fixed inverse DC followed by a
rescanning procedure at the end.

4.6 Results after compression and decompression

We compress the sefsmic data set at four compression ratios, 7.5:1, 15:1, 301,
and 45:1, spanning the range of practical compression ratios from low to high.
The compression ratio (CR) is simply defined as the size of the data set, in-
cluding reel and trace identification headers, before compression, divided by
the size of the data set after compression. Since we employ variable-rate arith-
metic coding, the achieved compression ratio is highly data dependent for the
same quantizer settings. The step-size of the uniform scalar quantizer has to
be tuned iteratively until the desired overall CR, including R: 1 and B : 1 for
all COGs, is reached; decreasing the quantizer step-size will lower R : 1 while
R : 1 is not tunable. Thus, an exact total CR is difficult to accomplish. The
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four desired compression ratios are therefore approximative (or average), and
we denote them 7.5:1,15: 1, 30 : 1, and 45 : 1, respectively.

Immediately after compression and decompression, we calculate the full
signal-to-quantization-noise ratio (SQNR; Vermeer, 1999) between the trace
data samples of the original and reconstructed data sets, and use the SQNR
as a quantitative measure of compression quality. We use the term SQNR
to distinguish it from the more conventional expression signal-to-noise ratio
(SNR). The SNR is commonly used for the purpose of quality measure of
seistnic data in the presence of ambient noise (see e.g., Junger, 1964).

The SQNR — in dB - is defined as:

rms
SQNR = 20 x logy, (Imse) ,

where rms is the root-mean-square value of the original trace data samples, and
rmse is the root-mean-square error between the original and decompressed
seismic data. The fraction between rms and rmse is doubled per 6.02 dB
increment of SQNR. The scalar SQNR is an average measure of compression
quality and can unfortunately not give any localized information about the
degradation of the compression noise. Nevertheless, the SQNR provides a good
relative indication of the preferred grading between different compression ratios
or coding algorithms.

An SQNR exceeding 15-20 dB provides for all practical purposes a non-
visible compression degradation.

4.6.1 Compression of the trace data samples

The amplitudes of the seismic data before compression are balanced by AGC
(pre-decon compression) or TAR (post-decon compression). Therefore, we emn-
ploy a constant quantizer step-size for all common offset gathers to equalize the
quantization-noise energy which is important for prestack amplitude analysis.
Nevertheless, R : 1 for the trace data samples will differ somewhat between the
common offset gathers due to different correlation properties, but also directly
owing to the compression method. For the case of post~-decon compression, the
RLC of the TWT delay becomes continuously more efficient for larger offsets,
giving typically increasing R : 1 as a function of receiver number (see Fig-
ure 4.6). Unfortunately, for the case of pre-decon compression, the increasing
efficiency of the RLC of the TWT delay is more or less counterbalanced by
enlarged amount of ambient noise as a function of offset, mainly because no
top-mute or bandpass-filtering operations have been applied. The case of pre-
decon compression also has slightly higher amount of side information, and
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Figure 4.6: Compression ratio of the trace data samples of the common offset
gathers, R : 1, versus offset at four overall compression ratios; pre-decon (red
fines) and post-decon (blue lines) compression.

therefore less amount of main information for a fixed CR, due to the AGC
procedure.

In general, despite the use of fixed quantizer step-size and amplitude bal-
ancing, the SQNR slightly decreases (for a given total CR) as a function of
offset for both pre-decon and post-decon compression (see Figure 4.7). The
rms value of the original seismic data simply drops, i.e., the size of the TWT
delay of the water layer having small amplitudes increases, for incrementing
receiver number.

The SQNR results are difficult to compare objectively, at least for high
compression ratios. In pre-decon compression, for example, no gain is applied
to the seismic data after decompression, (i.e., AGC-AGC™'). In post-decon
compression, on the other hand, the data set is balanced by TAR. A well bal-
anced compressed-decompressed data set tends to have lower SQNR then an
improperly balanced data set despite the fact that the actual or visual quality
on well balanced data sets is better (Reiter, 1996). At 30: 1 and 45: 1, pre-
decon and post-decon compression have corresponding SQNR results. How-
ever, the SQNR-versus-offset gradient is slightly steeper for post-decon com-
pression which can be explained by the highly increasing R : 1 as a function
of receiver number (see Figure 4.6). On the other hand, the compression noise
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Figure 4.7: SQNR between the original and reconstructed trace data samples
of the common offset gathers versus offset immediately after compression and
decompression at four overall compression ratios; pre-decon (red lines) and post-
decon {blue lines) compression.

is more correlated for pre-decon compression. At 7.5 : 1 and 15 : 1, the recon-
structed seismic data are without visual degradation due to compression noise.
Nevertheless, post-decon compression has now at least 10 dB better SQNR
results due to more redundant data sets.

4.6.2 Compression of the trace identification headers

The CR of TIHs, R : 1, is highly regular for both pre-decon and post-decon
compression (see Figure 4.8). The utilized seismic data processing scheme
before compression leads to extended amount of — and more random — trace
identification header information in the latter case. In other words, pre-decon
compression has the benefit of higher redundancy in the TTHs. Nevertheless,
R:1 is, without exception, so high that the overall CR is more or less solely
dependent upon the CR of trace data samples, & : 1, for both pre-decon and
post-decon compression.
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Figure 4.8: Compression ratio of the trace identification headers of the common
offset gathers, K : 1, versus offset; pre-decon {red line) and post-decon (blue line)
compression.

4.7 SQNR results after the processing flow

Up to now, we have examined the compression results, using quantitative
SQNR measurements of the trace data samples of the common offset gathers,
immediately after compression and decompression (or “before” the processing
flow). The optimal information about the earth’s subsurface emerges only after
the seismic data have been subjected to a number of processing steps. Ulti-
mately, our assessment of the performance of compression has to be done on
seismic data after they have been processed by the complete processing fow;
we proceed by comparing the compression noise immediately after compression
and decompression with the compression noise that remains after the complete
processing sequence.

After processing, it is most natural to study CMP gathers because this
domain of seismic data is commonly used for subsequently prestack amplitude
analysis and stacking. Hence, we investigate how the compression noise intro-
duced into the COGs propagates to the CMP gathers. In practice, we divide
the evaluation in accordance with the utilized processing flow, and further
split the assessment into the cases of pre-decon and post-decon compression
for all four compression ratios. Specifically, we evaluate the decompressed
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CMP gathers before processing and affer processing elements (see section 4.4}
“1.7, %27 “37 and “4.” in the pre-decon compression case, while we evaluate
the decompressed CMP gathers prior to migration and after migration and
stacking in the post-decon compression case. As a quantitative measure, we
simply calculate the mean value of the SQNR results over the range of NMO
corrected CMP gathers at locations from 750 to 3600. The mean SQNR values
are rounded to the nearest integers. NMO correction is not applied to already
migrated CMP gathers. An identical top mute operation of corrected CMP
gathers is utilized for all cases to provide the most fair comparison. Based on
a similar argument, TAR is always included in the SQNR results.

We separate the discussion into three important issues: (i) attenuation
of multiple reflections and predictive deconvolution (processing elements “1.”
and “2.7), (ii) migration (processing element “3.”}, and (iii) stacking (processing
element “4.”).

4.7.1 Multiple attenuation and predictive deconvolution

The evaluation of multiple attenuation and predictive deconvolution is reason-
ably restricted to the case of pre-decon compression only (see Table 4.1).

4.7.1.1 WEMR. and predictive deconvolution

After WEMR and predictive deconvolution, the compression noise is enlarged
compared to before processing for all levels of compression {(see the column
marked with “1.” in Table 4.1). As mentioned earlier, ambient noise and com-
pression error components can have a harmful effect on deconvolution (Chen,
1995; Guo and Burrus, 1996; Polzer et al., 1997). WEMR is data adaptive
and can be considered as an extension of conventional predictive deconvolu-
tion (Zhou and Greenhalgh, 1994), and these two operations therefore interfere
gimilarly on the compression noise.

4.7.1.2 Radon multiple rejection

The compression noise is further increased after Radon demultiple for all levels
of compression noise (see the column marked with “2.” in Table 4.1). Like a
frequency-wavenumber filter, Radon demultiple acts as a smoothening filter,
removing coherent multiples and other noise components with high spatial
frequencies (Russell et al., 1990a,b; Mosher et al., 1996). Unfortunately, the
Radon transform itself is highly data dependent and performs on decompressed
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Table 4.1: Mean value of the SQNR results for corrected CMP gathers in the
case of pre-decon compression at four overall compression ratios.

SQNR. (dB); pre-decon compression

Before proc. After proc, Stack
“1.” tt2_13 “3.1) ££4.7?
CR
75:1 31 26 24 27 33
5:1 18 14 13 16 23
301 10 6 5 8 14
45:1 7 4 3 5 11

Table 4.2: Mean value of the SQNR. results for corrected CMP gathers in the
case of post-decon compression at four overall compression ratios.

SQNR (dB); post-decon compression

Before proc. After proc. Stack
@y e
CR
7.5:1 42 53 60
15:1 32 36 46
30:1 17 19 29
451 11 13 22

seismic data in the same manner as the two other applied multiple rejection
methods.

4.7.2 Migration

The mean SQNR values after migration are tabulated in the columns marked
with “3.” in Tables 4.1 and 4.2 for pre-decon and post-decon compression,
respectively. The mean SQNR value is higher after migration than before mi-
gration for all levels of compression. In other words, the migration process
reduces, as expected, the amount of compression noise. This is due to the fact
that the migration is a weighted summation process and therefore the noise
components become somewhat weakened. The amount of noise removed by the
migration is dependent on the compression ratio: the higher the compression
ratio is, the more coherent will the compression noise appear, and consequently
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Figure 4.9: SQNR between the original and decompressed CMP gathers versus
CMP number after the complete processing flow; pre-decon (red lines) and post-
decon (blue lines) compression.

less compression noise will be removed by the summation process. The migra-
tion gain improvement is higher for the post-decon compression case since the
compression noise is less coherent compared to the pre-decon compression case.

Finally, we plot the SQNR measurements for the migrated CMP gathers
(see Figure 4.9). The SQNR is fairly flat as a function of CMP number,
indicating a regular reconstruction for all CMP gathers. At 30:1 and 45 : 1,
the SQNR results for pre-decon and post-decon compression have diverged from
each other (compare with Figure 4.7) despite that identical processing flows are
employed. For pre-decon compression, a compression ratio somewhere between
7.5 :1 and 15 : 1 gives acceptable level of compression noise, while for post-
decon compression, the compression noise is hardly noticeable at 7.5: 1 and
15 1. Even compression ratios of 30 : I and 45 : T will provide CMP gathers
with small visual appearance of compression noise in this latter case.

4.7.3 Stacking

Stacking has long been recognized as the most effective way of dealing with
incoherent noise. Our stacking is done by taking averages of the sample values
over corrected CMP gathers along the offset axis, using a scaling equal to the



126

Part III: Its influence on processing and interpretation

Table 4.3: Mean value of the SQNR results for corrected CMP gathers in the
case of pre-decon compression, but without WEMR, predictive deconvolution,
and Radon multiple rejection.

SQNR (dB); pre-decon compression

Before proc. After proc. Stack
“1.r .o “3.7 w4
CR
751 31 32 33 38 44
151 18 19 20 25 31
30:1 10 10 11 15 20
451 7 7 8 11 15

square-root of the number of trace data samples. Therefore, stacking is also
a form of compression. The SQNR values after stacking are given in the last
columns of Tables 4.1 and 4.2. As can be seen, the mean SQNR is lower before
stacking than after stacking for all evaluated compression ratios. For pre-decon
compression, the SQNR is increased by approximately 5 dB. For post-decon
compression, however, the stacking procedure increases the SQNR in the order
of 9 to 10 dB, except at 7.5 : 1 where the SQNR is increased by approximately
7.5 dB3; this very high reconstruction quality possibly leads to a saturation in
the stacking gain improvement.

4.7.4 Neither multiple rejection nor predictive deconvolution

We end this section by showing what happens to the original and decompressed
seismic data in the case of pre-decon compression, if we do not incorporate
WEMR, predictive deconvolution, and Radon multiple rejection in the pro-
cessing flow (see Table 4.3). Most importantly, the SQNR increases (or at
least does not decrease) at a cost of decreased SNR, e.g., remaining multiple
reflections, for all evaluated compression ratios after all processing elements.
“1.” consists mainly of TAR, while “2.” contains of forward and inverse NMO
corrections in addition to bandpass filtering; the top mute operations remove
dominant NMO stretch, but also eliminate compression noise which appears
at large offsets.
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4.8 Amplitude analysis

In this section we present some common seismic attributes derived from the
data without any attempt to lithologic interpret or discuss the strengths and
weaknesses of these attributes. The amplitude analysis is only done in the
context of looking for deviations from original seismic data attributes. We
assume that the acquisition and processing stages are done optimally, and
apply the complete processing flow, including migration, described earlier. The
reliability of the results from all kind of amplitude analysis depends on the
quality of the acquisition and processing of seismic data (Russell, 1993; Buland,
1998), but also on the amount of inherent noise in the seismic data (Ross, 1993).

Table 4.4: SQNR results for conventional stack, intercept and gradient sections,
and angle stacks in the case of pre-decon compression.

SQNR (dB); pre-decon compression

Stack AVO stacks Angle stacks
Ry Ry 0°-12°  12°-24°  24°.36°
CR
75:1 33 28 26 31 32 33
51 23 19 18 20 21 22
30:1 14 11 10 12 13 13
451 11 8 7 8 10 10

Table 4.5: SQNR results for conventional stack, intercept and gradient sections,
and angle stacks in the case of post-decon compression.

SQNR (dB); post-decon compression

Stack AV stacks Angle stacks
Ry R 0°.12°  12°-24° 24°-36°
CR
7.5:1 60 54 50 39 58 58
15:1 46 38 35 45 43 43
30:1 29 24 22 28 27 27

45:1 22 19 17 22 20 20
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Relative reflection coefficient, R(©)

0'40" 3I° 6]" 9I° lé"‘ lé“ 18°¢
Angle of incidence, ©

Figure 4.10: Shuey’s approximation for the P-wave reflection coefficient, R(©),

at two overall compression ratios; original data (black line), pre-decon compres-

sion (red lines), and post-decon compression (blue lines). R(®) is called relative

and is higher than 1.0 since the intercept reflection coefficients are normalized.

4.8.1 Prestack amplitude analysis

Prestack amplitudes are used in analysis of amplitude variation with offset
(AVO), where intercept, Ry, and gradient, R, stacks are extracted from the
prestack data based on the two-term Shuey’s approximation of the Zoeppritz
equations for the P-wave reflection coefficient, R(©) = Ry + R; x sin?(®),
where © is the angle of incidence (Shuey, 1985; Castagna and Swan, 1997).
Figure 4.10 shows the relative reflection coefficient as a function of incident
angle, in the range from 0° to 18°, for original and decompressed data with CR.
of 15: 1 and 30 : 1. The values of Ry and R, are taken at the BL reflector for
CMP location 2275. Ry for the original data is normalized, and the intercept
reflection coefficients for the decompressed data are scaled accordingly to the
normalized one. A CR of 15 : 1 gives a well reconstructed R(©) for both pre-
decon and post-decon compression.

The so-called angle stacks are based on partially stacking of angle limited
CMP gathers; we use angles ranging from 0-12 degrees, 12-24 degrees, and 24-
36 degrees. Figure 4.11 shows the original and the 30 : 1 decompressed 12-24
degrees angle limited CMP gathers for location 2275 in the time window from
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1700 to 2100 ms. The difference sections [see Figure 4.11 (c) and (e)] resemble
smali amount of, and “uncorrelated”, compression noise. SQNR results for
the intercept, gradient, and angle stacks are presented in Tables 4.4 and 4.5.
The intercept and gradient sections have lower SQNR results than the angle
stacks, but Rp has higher SQNR than R;. The angle stacks have more or
less similar SQNR results as conventional stack sections for the case of post-
decon compression, but the SQNR slightly decreases as a function of increasing
angles. For the case of pre-decon compression, however, the SQNR results for
the angle stacks are significantly lower than ordinary stack sections, but now
the SQNR becomes larger as a function of increasing angles. It is, thus, difficult
to predict universal tendencies for these fluctuating results.

More interesting than SQNR results of AVO and angle stacks are prestack
amplitude maps of a single reflector. Figure 4.12 displays the original and
the 30: 1 decompressed CMP gathers for location 2275 in the time window
from 1700 to 2100 ms (around the BL horizon). In Figures 4.13 and 4.14, the
amplitude as a function of offset (i.e., the AVO response) for the BL reflec-
tor is displayed for pre-decon and post-decon compression, respectively; the
horizorn is muted above offset 1771.0 m. The reconstructed amplitudes differ
significantly from the original amplitude at 45 T for both instances. For pre-
decon compression, the amplitude is well reconstructed at 7.5: 1 and 15: 1,
while for post-decon compression, the reconstructed amplitude is very close (or
almost identical) to the original response at 7.5 : 1 and 15 : land it deviates
insignificantly at 30: 1. Fortunately, the quality of the decompressed AVO
responses seems to be more or less independent of offset as deduced from the
applied compression algorithm [see also Figure 4.12 {c) and (e)], having a uni-
form scalar quantizer with a constant step-size for the different common offset
gathers,
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Figure 4.13: AVO along BL for CMP location 2275 in the case of pre-decon
compression; decompressed (solid lines) and original data (dashed line).
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Figure 4.14: AVO along BL for CMP location 2275 in the case of post-decon
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(a) Original stack section; the BL reflector is indicated by the yellow line.

CMP number

{b) Decompressed stack section; CR is 3077 1.

CMP number
17&?0() 2600 2560 2416) 2300 2200 2100 2000 1900 1
N ‘-;:'v },71' ] ';l - [ | . ” T | - 1 B
18005
1900 . ¥
2000 TV- : ) : B ¢ B
2100 "’ i l o 1 1 t r - 1

Figure 4.15:

(¢) Difference between (a) and (b).

Closeup views of stack sections; pre-decon compression.
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Figure 4.16: Closeup views of stack sections; post-decon compression.
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Figure 4.17: Stack-section amplitudes along BL; pre-decon compression.
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Figure 4.18: Stack-section amplitudes along BL; post-decon compression.
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4.8.2 Poststack amplitude analysis

For several kinds of attribute mapping and for poststack inversion, information
of amplitudes in stack sections is used. Figure 4.3 displays the migrated stack
image from 0 to 3000 ms. Closeup views in CMP interval from 1800 to 2700
and time window from 1700 to 2100 ms for the 30 1 decompressed sections
are given in Figures 4.15 and 4.16. The original stack is given in panel (a) of
both figures.

We analyze the stack-section amplitude along the BL reflector [see Fig-
ure 4.15 (a) or Figure 4.16 (a)]. The resulting amplitudes are shown in Fig-
ures 4.17 and 4.18 for pre-decon and post-decon compression, respectively. The
original stack-section amplitude is given in panel (a) of both figures. The am-
plitude curves are highly oscillating, but all responses have similar trends and
the differences between the original and the reconstructed amplitudes (marked
with red lines) are small. To better discriminate the five amplitude curves from
each other, the CMP locations having the largest absolute-deviation from the
original amplitude response are indicated by green circles. The stacking pro-
cedure removes compression noise so well that the difference is negligible up
to 15 T and up to 30 : T in the case of pre-decon and post-decon compression,
respectively.

4.9 Poststack inversion

Poststack inversion provides the ability to derive estimates of acoustic imped-
ance (Al). Al is defined as density times P-wave velocity, and among others,
Al can be used to estimate porosity.

We utilize a so-called sparse spiking model-based inversion algorithm (see
e.g., Latimer et al., 2000). This Al estimation method includes well log calibra-
tion against the seismic data: we create the low-frequency acoustic impedance
section based on the calibrated well log using three interpreted horizons {one of
which is the “Base Lysing” reflector). The relative acoustic impedance (RAT)
sections, i.e., Al without the low-frequency background model, are estimated
for all four compression ratios in the case of both pre-decon and post-decon
compression. The optimum seismic wavelet used in the RAI estimation is cal-
culated separately for all input full-fold stack sections. We calculate the per-
turbation of Al only where well log information of density and P-wave velocity
is available, i.e., in the time window from 1848 to 2408 ms. The estimation of
the (absolute) Al is at the end given by addition of the low-frequency acoustic
impedance section to the RAL
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Absolute Al sections for original and decompressed date, in a target zone
of CMP locations from 2200 to 2400 and time window from 1848 to 2148 ms,
are shown in Figures 4.19 and 4.20. The CR is 45 : 1, and the original Al is
given in panel (a) of both figures. The AI well log information is additionally
inserted for quality control. Ideally, we should compare with well logs not
used in the inversion, but no other well logs are available. The well log is not
directly placed on the seismic line, but is located in a distance about 500 m
off the seismic line. Therefore, as an approximation, the well log is projected
to the nearest CMP location {2334). The match between the Al well log and
the estimated Al is nevertheless satisfactorily. The main issue, however, is to
compare the Al sections estimated from original and decompressed seismic data
with each other. The compression noise is significant at high compression ratios
{see Figure 4.19 (c¢) and Figure 4.20 {c)]. The SQNR results for absclute and
perturbationed acoustic impedance sections are given in Table 4.6. Al has only
positive values, the only difference to the zero-mean RAI is the low-frequency
background model. Thus, the rms (and the SQNR) value of absolute Al is
higher than for RAI, but the rmse values between original and decompressed
absolute and relative acoustic impedance sections are identical. For pre-decon
compression, a CR of 7.5: 1 provides a good reconstruction quality of Al,
while a CR of 15:1 gives acceptable Al results for the case of post-decon
compression.

Table 4.6: SQNR results for relative and absolute acoustic impedance sections.

SQNR {dB)
Pre-decon compression Post-decon compression

RAI Al RAI Al
CR
75:1 24 48 29 53
151 18 42 26 50
301 13 36 21 45
45:1 8 32 14 38
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Figure 4.19: Acoustic impedance sections; pre-decon compression.
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Figure 4.20: Acoustic impedance sections; post-decon compression;
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4.10 Discussion

Common offset gathers are convenient to compress for several reasons. First,
common offset gathers have higher redundancy and are therefore better suited
for compression than common shot gathers. Second, the direct wave and/or
the sea-floor reflection (at small offsets) and the P-wave refractions (at large
offsets) are easily detected on COGs. Thus, the TWT of the water delay
containing mostly ambient noise can be isolated and compressed separately
from the rest of the seismic data. Nevertheless, a common offset gather consists
of traces from all common shot gathers, a single trace at a particular offset for
each common shot gather. All common shot gathers have to be acquired before
they eventually can be resorted into common offset gathers. Consequently, the
compression of common offset gathers is primarily applicable for the purpose
of storage rather than transmission.

Specifically, we have detected the main part of the TWT delay of the
water layer by simple visual inspection of the seismic data, making a heuristic
model of the TWT delay. Alternatively, one can find this TWT delay by
first-break-arrival detection methods (e.g., using neural networks), or simply
as the traveltime of the direct wave having knowledge about the offset and
using the average velocity of water (e.g., 1500 m/s). This last approach can,
however, remove P-wave refractions at large offsets. In our case, the TWT
delay is compressed by RLC, totally removing the original inherent information
in this time range of the seismic data. The pre-first-break arrivals, however,
are sometimes used to estimate the level of, and the characteristics of, the
ambient noise. Hence, such an analysis of the ambient noise properties has to
be performed before an eventual compression of the TWT delay by RLC.

In general, at low compression ratios, quantization noise can be seen as ad-
ditive white uniform noise (Gersho and Gray, 1991). The seismic data, on the
other hand, tend to be “Gaussian” distributed. Thus, the error introduced into
the seismic data during compression also tends to be additive white “Gaussian™
noise. The effect of additive (colored or white) noise on traditional predictive
deconvelution is strongly dependent on how the power spectrum of the noise
compares to that of the seismic data. A very favorable condition is when the
additive noise has a power spectrum similar to that of the seismic data (Duarte,
1992). In the case of additive white Gaussian compression noise, the level of
the noise’s power spectrum should preferably be below the level of the power
spectrum of the seismic data. This observation has been stressed by Polzer
et al. (1997), who conclude that amplitude balancing and emphasis filtering
can counter the effect of compression noise on deconvelution. Guo and Burrus
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{1996) focus, on the other hand, on the use of seismic data compression tech-
niques that preserve the phase information as much as possible. They argue
that the seismic wavelet can be transformed from minimum-phase to mixed-
phase during compression, causing wrongness in the predictive deconvolition
result. Of these two solutions, the first suggestion simply needs the use of some
kind of filtering routines, while the second proposal requires a more complex
compression algorithm.

Chen (1995) argues that predictive deconvolution is betier to utilize af-
ter compression and decompression, in direct opposition to cur experience.
Chen reasons that deconvolution broadens the power spectrum of the seismic
data, making the seismic data more difficult to compress. This reduced cod-
ing efficiency, if deconvolution is applied before compression and decompres-
sion, is considered by Chen to be more important than the SQNR degradation
achieved if deconvolution is applied after compression and decompression. In
our post-decon compression case, however, predictive deconvolution is followed
by different forms of filtering operations, among others multiple attenuation
and bandpass filtering. At the same time, these filtering operations are applied
prior to compression and decompression. Thus, the common offset gathers ap-
pear smoother and become much more suited for compression. Therefore, we
prefer to employ predictive deconvolution before compression and subsequently
decompression of the seismic data.

4.11 Conclusions

Lossy data compression makes the storage of seismic data more efficient, and
has a potential of reducing the time for network and satellite transmission of
seismic data typically from hours to minutes.

The higher the compression ratio is, the more coherent will the compres-
sion error appear, consequently implying a stronger influence of compression
noise on processing and interpretation. Compression error can be harmful to
highly data adaptive processing approaches such as for example predictive de-
convolution and common multiple rejection methods (i.e., the parabolic Radon
transform). On the other hand, processing steps which reduce ambient noise
components by different summation techniques (e.g., migration and stacking)
diminish the compression noise.

Important seismic data attributes, including amplitude variation with offset
and poststack inversion, for the North Sea data set, are well preserved by the
lossy compression method at moderate compression ratios {approximately 7.5:1
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for pre-decon compression and 15:1 for post-decon compression).

The seismic industry is careful not to use procedures that introduce noise
into the original seismic data set. Nevertheless, speaking about digital seismic
data without noise is meaningless due to the sampling of a non-band-limited
seismic signal in time and space and subsequently quantization of the ampli-
tudes. Lossy seismic data compression can be seen as just one out of several mi-
nor noise sources in the acquisition and processing of seismic data. In best case,
seismic data quality can even be increased by correct use of lossy compression
since ambient noise components at high frequencies and high wavenumbers are
effectively reduced while the dynamic range is well preserved. Given a certain
limited resource of storage capacity or transmission bandwidth, lossy seismic
data compression is without question a much better alternative than non-
sophisticated data reduction methods such as decreasing the temporal range
and/or resampling in time, decreasing the spatial range and/or resampling in
space, and clipping of the amplitudes.

With an understanding of the associated drawbacks we expect that the
need for reduced turnaround times, from seismic data acquisition to processing
and interpretation, will push the use of seismic data compression as a routine
component of standard survey operations.

4.12 Acknowledgments

We appreciate helpful discussions with our colleagues Andy Morton and Mark
Thompson regarding the utilized processing sequence, and we thank Kenneth
Duffaut for helping us with the poststack inversion example. Tage Rgsten
kindly thanks Den norske stats oljeselskap a.s (Statoil) and Petroleum-Geo
Services (PGS) for financial support. We also acknowledge Statoil and partners
for providing us the North Sea data set and giving us the permission to publish
this work.



References

Aase, S. O., 1993, Image subband coding artifacts: Analysis and remedies:
Ph.D. thesis, The Norwegian Institute of Technology.

Balasingham, 1., 1998, On optimal perfect reconstruction filter banks for image
compression: Ph.D. thesis, Norwegian University of Science and Technology.

Barry, K. M., Cavers, D. A., and Kneale, C. W., 1975, Report on recommended
standards for digital tape formats: Geophysics, 40, no. 2, 344-352.

Bosman, C., and Reiter, E. C., 1993, Seismic data compression using wavelet
transforms: SEG, 63rd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, Washington, D.C., USA, 1261-1264.

Bradley, J., Fei, T., and Hildebrand, 8., 1996, Wavelet compression for 3D
depth migration: SEG, 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Ex-
panded Abstracts, Denver, USA, 16271629,

Brislawn, C. M., 1996, Classification of nonexpansive symmetric extension
transforms for multirate filter banks: Appl. Comp. Harm. Anal., 3, no. 4,
337-357.

Buland, A., 1998, Relative amplitude processing — A contractor evaluation:
EAGE, 60th Mtg. Eur. Assoc. Expl Geophys., Extended Abstracts, Leipzig,
Germany, Session:P004.

Castagna, J. P., and Swan, H. W., 1997, Principles of AVO crossplotting: The
Leading Edge, 16, no. 4, 337-342.

Chen, T., 1995, Seismic data compression: Master’s thesis, Center for Wave
Phenomena, Colorado School of Mines.

145



146

REFERENCES

Claypoole, R. L., and Baraniuk, R. G., 1998, Flexible wavelet transforms using
lifting: SEG, 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, New Orleans, USA, 1979-1982.

Crochiere, R. E., Webber, S. A., and Flanagan, J. L., 1976, Digital coding of
speech in sub-bands: Bell Syst. Tech. J., 55, no. 8, 1069-1085.

Dessing, F. J., and Hoekstra, E. V., 1997, Multiscale tools for seismic data
compression:, in DELPHI Delft University of Technolog, 8.

Dessing, F. J., and Wapenaar, C. P. A., 1994, Wavefield extrapolation using
the wavelet transform: SEG, 64th Ann. Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, Los Angeles, USA, 1355-1358.

Dessing, F. J., and Wapenaar, C. P. A, 1995, Efficient migration with one-way
operators in the wavelet transform domain: SEG, 65th Ann. Internat. Mtg.,
Soc. Expl. Geophys., Expanded Abstracts, Houston, USA, 1240-1243.

Diller, D. E., Hale, D., and Foy, R. D., 1996, Seismic compression exchange
standardization via the self-extracting archive model: SEG, 66th Ann. Inter-
nat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, Denver, USA, 2039~
2040.

Donoho, P. L., Ergas, R. A., and Villasenor, J. D., 1995, High-performance
seismic trace compression: SEG, 65th Ann. Internat. Mtg., Soc. Expl. Geo-
phys., Expanded Abstracts, Houston, USA, 160-163.

Doncho, P. L., Ergas, R. A., and Polzer, R. S., 1998, Improved data manage-
ment for interpretation systems using compression: EAGE, 60th Mtg. Eur.
Assoc. Expl Geophys., Extended Abstracts, Leipzig, Germany, Session:1--36.

Donoho, P. L., Ergas, R. A., and Polzer, R. S., 1999a, Development of seismic
data compression diagnostics: EAGE, 61st Mtg. Eur. Assoc. Expl Geophys.,
Extended Abstracts, Helsinki, Finland, Session:P104.

~— 1999b, Development of seismic data compression methods for reliable,
low-noise, performance: SEG, 69th Ann. Internat. Mtg., Soc. Expl. Geo-
phys., Expanded Abstracts, Houston, USA, 1903-1906.

Donoho, P. L., Ergas, R. A., and Polzer, R. S., 2000, Diagnostic procedures
for safe seismic data compression: EAGE, 62nd Mig. Eur. Assoc. Expl Geo-
phys., Extended Abstracts, Glasgow, Scotland, Session:B39.



REFERENCES

147

Duarte, O. d. O., 1992, Predictive deconvolution with additive noise: SEG,
62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, New
Orleans, USA, 1149-1151.

Duval, L. C., and Rgsten, T., 2000, Filter bank decomposition of seismic data
with application to compression and denoising: SEG, 70th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, Calgary, Canada, 2055~
2058.

Duval, L. C., Nguyen, T. Q., and Tran, T. D., 1999a, Seismic data compres-
sion and QC using GenLQOT: EAGE, 61st Mtg. Eur. Assoc. Expl Geophys.,
Extended Abstracts, Helsinki, Finland, Session:P103.

Duval, L. C., Oksman, J., and Nguyen, T. Q., 1999b, A new class of filter
banks for seismic data compression: SEG, 69th Ann. Internat. Mtg., Soc.
Expl. Geophys., Expanded Abstracts, Houston, USA, 1907-1910.

Ergas, R. A., Polzer, R. 8., Donoho, P. L., and Galibert, P.-Y., 1996, Pitfalls
in compressing land seismic trace data: EAGE, 58th Mtg. Eur. Assoc. Expl
Geophys., Extended Abstracts, Amsterdam, The Netherlands, Session:P156.

Farvardin, N., and Modestino, J. W., 1984, Optimum quantizer performance
for a class of non-Gaussian memoryless sources: IEEE Trans. Inform. Theory,
30, no. 3, 485-497.

Foster, D. J., and Mosher, C. C., 1992, Suppression of multiple reflections
using the Radon transform: Geophysics, 57, no. 3, 386-395.

Foster, D. J., Lane, F. D., Mosher, C. C., and Wu, R.-5., 1997, Wavelet trans-
forms for seismic data processing: SEG, 67th Ann. Internat. Mtg., Soc. Expl.
Geophys., Expanded Abstracts, Dallas, USA, 1318-1321.

Gersho, A., and Gray, R. M., 1991, Vector quantization and signal compression:
Kluwer Academic Publishers.

Guo, H., and Burrus, C. S., 1996, Phase-preserving compression of seismic
data using the self-adjusting wavelet transforrn: NASA, Combined Industry,
Space and Farth Science Data Compression Workshop, Snowbird, USA, 101~
109.

Hall, M., Monk, D., and Reiter, E. C., 1995, An evaluation of seismic data
compression on the interpretability of the final product: EAGE, 57th Mig.



148

REFERENCES

Eur. Assoc. Expl Geophys., Extended Abstracts, Glasgow, Scotland, Ses-
sion:B0O35.

Hampson, D., 1986, Inverse velocity stacking for multiple elimination: J. Can.
Soc. Expl. Geophys., 22, no. 1, 44-55.

Hjsrungnes, A., and Lervik, J. M., 1997, Jointly optimal classification and
uniform threshold quantization in entropy constrained subband image cod-
ing: ICASSP, IEEE Proc. Int. Conf. on Acoustics, Speech, and Signal Proc.,
Munich, USA, 3109-3112.

Hjgrungnes, A., Coward, I1., and Ramstad, T. A., 1999, Minimum mean square
error FIR filter banks with arbitrary filter lengths: ICIP, IEEE Proc. Int.
Conf. on Image Proc., Kobe, Japan, 619-623.

Hugonnet, P., and Canadas, G., 1995, Aliasing in the parabolic Radon trans-
form: SEG, 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Ab-
stracts, Houston, USA, 1366-1369.

loup, J. W., and Ioup, G. E., 1998, Noise removal and compression using a
wavelet transform: SEG, 68th Ann. Internat. Mtg., Soc. Expl. Geophys.,
Expanded Abstracts, New Orleans, USA, 1076-1079.

Jain, A. K., 1989, Fundamentals of digital image processing: Prentice Hall.
Jayant, N. S., and Noll, P., 1984, Digital coding of waveforms: Prentice Hall.

Junger, A., 1964, Signal-to-noise ratio and record quality: Geophysics, 29, no.
6, 922-925.

Katto, J., and Yasuda, Y., 1991, Performance evaluation of subband coding
and optimization of its filter coefficients: VCIP, Proc. SPIE’s Visual Com-
munications and Image Processing, 95-106.

Khéne, M. F., and Abdul-Jauwad, S. H., 2000, Efficient seismic compression
using the lifting scheme: SEG, 70th Apn. Internat. Mtg., Soc. Expl. Geo-
phys., Expanded Abstracts, Calgary, Canada, 2052-2054.

Latimer, R. B., Davison, R., and Riel, P. v., 2000, An interpreter’s guide to
understanding and working with seismic-derived acoustic impedance data:
The Leading Edge, 19, no. 3, 242-256.



REFERENCES

149

Lervik, J. M., and Ramstad, T. A., 1996, Optimality of multiple entropy
coder systems for nonstationary sources modelled by a mixture distribution:
ICASSP, IEEE Proc. Int. Conf. on Acoustics, Speech, and Signal Proc.,
Atlanta, USA, 1874-1877.

Lervik, J. M., Rgsten, T., and Ramstad, T. A., 1996, Subband seismic data
compression: Optimization and evaluation: DSPWS, IEEE Proc. DSP
Workshop, Loen, Norway, 65-68.

Lervik, J. M., 1996, Subband image communication over digital {ransparent
and analog waveform channels: Ph.D. thesis, Norwegian University of Sci-
ence and Technology.

Liner, C. L., 1999, Concepts of normal and dip moveout: Geophysics, 64, no.
5, 1637-1647.

Luo, Y., and Schuster, G. T., 1992, Wave packet transform and data com-
pression: SEG, 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, New Orleans, USA, 1187-1190.

Malvar, H. S., and Staekin, D. H., 1989, The LOT: Transform coding without
blocking effects: IREE Trans. Acoust., Speech, and Signal Proc., 37, no. 4,
553-559.

Martucci, S. A., 1991, Signal extension and noncausal filtering for subband
coding of images: VCIP, Proc. SPIE’s Visual Communications and Image
Processing, 137-148.

Meiners, E. P, Lenz, L. L., Dalby, A. E., and Hornsby, J. M., 1972, Recom-
mended standards for digital tape formats: Geophysics, 37, no. 1, 36-44.

Miao, X., and Cheadle, S., 1998, Noise attenuation with wavelet transforms:
SEG, 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
New Orleans, USA, 1072-1075.

Mosher, C. C., Keho, T. H., Weglein, A. B., and Foster, D. J., 1996, The
impact of migration on AVO: Geophysics, 61, no. 6, 1603-1615.

Nayebi, K., Barnwell, T. P., and Smith, M. J. T., 1990, The time domain
analysis and design of exactly reconstructing FIR analysis/synthesis filter
banks: ICASSP, IEEE Proc. Int. Conf. on Acoustics, Speech, and Signal
Proc., Albuquerque, USA, 1735-1738.



150

REFERENCES

Nelson, M., and Gailly, J.-L., 1996, The data compression book: M&T Books,
second edition.

Northwood, E. J., Weisinger, R. C., and Bradley, J. J., 1967, Recommended
standards for digital tape formats: Geophysics, 82, no. 6, 1073-1084.

Polzer, R. S., Ergas, R. A., Donoho, P. L., and Edmonson, A. L., 1997, Dy-
namic range characteristics of wavelet data compression - Implications for
deconvolution: EAGE, 59th Mtg. Eur. Assoc. Expl Geophys., Extended Ab-
stracts, Geneva, Switzerland, Session:A039.

Porsani, M. J., and Ursin, B., 1998, Mixed-phase deconvolution: Geophysics,
63, no. 2, 637647,

Queiroz, R. L. d., Nguven, T. Q., and Rao, K. R., 1996, The GenLOT: Gener-
alized linear-phase lapped orthogonal transform: IEEE Trans. Signal Proc.,
44, no. 3, 497-507.

Ramstad, T. A., Aase, S. O., and Husgy, J. H., 1995, Subband compression of
images: Principles and examples: Elsevier Science B.V.

Reiter, E. C., and Heller, P. N., 1994, Wavelet transform-based compression
of NMO-corrected CDP gathers: SEG, 64th Ann. Internat. Mtg., Soc. Expl.
Geophys., Expanded Abstracts, Los Angeles, USA, 731-734.

Reiter, E. C., 1996, A quantitative comparison of 1, 2 and 3 dimensional
wavelet compression methods for seismic data: SEG, 66th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, Denver, USA, 1630-1633.

Rissanen, J., and Langdon, G. G., 1981, Universal modeling and coding: IEEE
Trans. Inform. Theory, 27, no. 1, 12-23.

Ross, C. P., 1993, AVQ in the presence of ¢oherent noise: The Leading Edge,
12, no. 3, 196-201.

Regsten, T., and Ramstad, T. A., 1998, Kirchhoff migration of 2-D post-stack
seismic data after subband decomposition: ICIP, IEEE Proc. Int. Conf. on
Image Proc., Chicago, USA, 353-357.

Rgsten, T., and Ramstad, T. A., 1999, Efficient lossless compression of seismic
trace headers using conditional adaptive arithmetic coding: NORSIG, Proc.
IEEE 1999 Norwegian Sign. Proc. Symposium, Asker, Norway, 86-90.



REFERENCES

151

Rgsten, T., and Waldemar, P., 1998, On the performance of 2-D pre-stack
seismic data compression after NMO correction: NORSIG, Proc. 3rd IEEE
Nordic Sign. Proc. Symposium, Vigss, Denmark, 261-264.

Rgsten, T., Lervik, J. M., Ramstad, T. A., and Amundsen, L., 1996, Subband
compression of seismic stack sections: SEG, 66th Ann. Internat. Mtg., Soc.
Expl. Geophys., Expanded Abstracts, Denver, USA, 1623-1626.

Rasten, T., Lervik, J. M., Balasingham, 1., and Ramstad, T. A., 1997a, On the
optimality of filter banks in subband compression of seismic stack sections:
SEG, 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
Dallas, USA, 1338-1341.

Rgsten, T., Waldemar, P., Balasingham, 1., and Ramstad, T. A., 1997b, A
review of subband coding of seismic data: NORSIG, Proc. IEEE 1997 Nor-
wegian Sign. Proc. Symposium, Tromsg, Norway, 69-74.

Rgsten, T., Fevang, T., and Ramstad, T. A., 1998a, 2-D post-stack seismic
data migration in the subband domain: NORSIG, Proc. 3rd IEEE Nordic
Sign. Proc. Symposium, Vigsg, Denmark, 265-268.

Rgsten, T., Tegdan, J., and Ramstad, T. A., 1998b, Seismic imaging in the
subband domain: ICSPC, TASTED Proc. Int. Conf. on Sign. Proc. and
Comm., Las Palmas, Spain, 165-168.

Rgsten, T., Marthinussen, V. A., Ramstad, T. A., and Perkis, A., 1999a,
Filter bank optimization for high-dimensional compression of pre-stack seis-
mic data: ICASSP, IEEE Proc. Int. Conf. on Acoustics, Speech, and Signal
Proc., Phoenix, USA, 3153-3156.

Rasten, T., Ramstad, T. A., and Amundsen, L., 1999b, Seismic data com-
pression, Part I: Subband coding of common offset gathers: Submitted to
Geophysics.

1999¢, Seismic data compression, Part 11: Lossless coding of trace iden-
tification headers: Submitted to Geophysics.

Resten, T., Ramstad, T. A., and Amundsen, L., 2000a, Lossless compression
of seismic trace headers: EAGE, 62nd Mtg. Bur. Assoc. Expl Geophys.,
Extended Abstracts, Glasgow, Scotland, Session:B40.




152

REFERENCES

Rasten, T., Waldemar, P., Buland, A., and Amundsen, L., 2000b, Seismic
data compression, Part [1l: Its influence on processing and interpretation:
Submitted to Geophysics.

Russell, B., Hampson, D., and Chun, J., 1990a, Noise elimination and the
Radon transform, part 1: The Leading Edge, 9, no. 10, 18-23,

- 1990b, Noise elimination and the Radon transform, part 2: The Leading
Edge, 9, no. 11, 31-37.

Russell, B., 1993, Introduction to AVO and this special issue: The Leading
Edge, 12, no. 4, 161.

SEG Tech. Std. Comm., 1997, Digital tape standards - SEG-A, SEG-B, SEG-
C, SEG-Y, and SEG-D formats, plus SEG-D revisions 1 and 2: Soc. Expl.
Geophys.

Shapiro, J. M., 1993, Embedded image coding using zerotrees of wavelet coef-
ficients: TEEE Trans. Signal Proc., 41, no. 12, 3445-3462.

Sheriff, R. E., and Geldart, L. P., 1995, Exploration seismology: Cambridge
University Press, second edition.

Sheriff, R. E., 1991, Encyclopedic dictionary of exploration geophysics: Soc.
Expl. Geophys., third edition.

Shuey, R. T., 1985, A simplification of the Zoeppritz equations: Geophysics,
50, no. 4, 609-614.

Spanias, A. S., Jonsson, S. B., and Stearns, S. D., 1991, Transform methods
for seismic data compression: IREE Trans. Geosci. Remote Sensing, 29, no.
3, 407-416.

Stigant, J. P., Ergas, R. A., Donoho, P. L., Minchella, A. S., and Galibert,
P-Y., 1995, Field trial of seismic compression for real-time transmission:
SEG, 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
Houston, USA, 960-962.

Stockwell, J. W., 1997, Free software in education: A case study of CWP/SU
— Seismic Unix: The Leading Edge, 16, no. 7, 1045-1049.

Strang, (., and Nguyen, T. Q., 1996, Wavelets and filter banks: Wellesley-
Cambridge Press.



REFERENCES

153

Therrien, C. W., 1992, Discrete random signals and statistical signal process-
ing: Prentice Hall.

Ursin, B., and Porsani, M. J., 2000, Estimation of an optimal mixed-phase
inverse filter: Geophysical Prospecting, 48, no. 4, 663-676.

Vasgsiliou, A., and Wickerhauser, M. V., 1997, Comparison of wavelet image
coding schemes for seismic data compression: SEG, 67th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, Dallas, USA, 1334-1337.

Vermeer, P., Bragstad, H., and Orr, C., 1996, Aspects of seismic data com-
pression: SEG, 66th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded
Abstracts, Denver, USA, 2031-2034.

Vermeer, P., 1999, Compression of field data within system specifications:
SEG, 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,
Houston, USA, 1911-1913.

Vetterli, M., and Herley, C., 1992, Wavelets and filter banks: Theory and
design: IEEE Trans. Signal Proc., 40, no. 9, 2207-2232.

Villasenor, J. D., Belzer, B., and Liao, J., 1995, Wavelet filter evaluation for
mmage compression: IEEE Trans. Image Proc., 4, no. 8, 1053-1060.

Villasenor, J. D., Ergas, R. A., and Donoho, P. L., 1996, Seismic data com-
pression using high-dimensional wavelet transforms: DCC, IEEE Data Com-
pression Conference, Snowbird, USA, 396-405.

Waldemar, P., Rgsten, T., and Ramstad, T. A., 1997, Compression of seismic
stack sections using singular value decomposition: SEG, 67th Ann. Internat.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, Dallas, USA, 1342-1345.

Wang, Y., and Wu, R.-S., 1999, 2-.D> semi-adapted local cosine/sine transform
applied to seismic data compression and its effects on migration: SEG, 69th
Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, Houston,
USA, 1918-1921.

Wiggins, J. W., 1988, Attenuation of complex water-bottom multiples by wave-
equation-based prediction and subtraction: Geophysics, 53, no. 12, 1527~
1539.

Witten, I. H., Neal, R. M., and Cleary, J. G., 1987, Arithmetic coding for data
compression: Cornm. of the ACM, 30, no. 6, 520-540.



154 REFERENCES

Wood, L. C., 1974, Seismic data compression methods: Geophysics, 39, no. 4,
499-525.

Woods, J. W., and O’Neil, S. D)., 1986, Subband coding of images: IEEE
Trans. Acoust., Speech, and Signal Proc., 34, no. 5, 1278-1288.

Wu, Y., and McMechan, G. A., 1998, Wave extrapolation in the spatial wavelet
domain with application to poststack reverse-time migration: Geophysics,
63, no. 2, 539-600.

Yilmaz, O., 1987, Seismic data processing: Soc. Expl. Geophys.

Zhou, B., and Greenhalgh, S. A., 1994, Wave-equation extrapolation-based
multiple attenuation: 2-D filtering in the f-k domain: Geophysics, 59, no.
9, 1377-1391.



Index

Symbols
M-channel, see filter bank
P-wave, b
reflection coefficient, 128
refractions, 12, 34, 111, 116,
142 ‘
velocity, 16, 111, 138
S-wave, 12
BL, 114, 128, 130, 138
2-channel, see filter bank
8-channel, see filter bank

A
absorption, 110
AC, see entropy coding
ACF, 47-49, 72
of AR(1), 70
of AR(2), 70
acoustic impedance, 138, 140, 141
acoustic wave, see P-wave
acquisition, see seismic data
adaptive entropy coding, see entropy
coding
additive white Gaussian noise, see
noise
AGC, 34, 116, 117
block size of input samples, 34
piecewise-linear interpolation, 35
air gui, see SOUTCE
aliasing in fitter bank, see filter bank
ambient noise, see noise

amplitude analysis, 127138
angle stacks, 128
AVO, 128, 132, 133
gradient stack, 128
intercept stack, 128
poststack, 136, 137, 138
prestack, 112, 128
reflection coefficient, 128
analysis filter bank, see filter bank

angle limited CMP gather, see CMP
gather

angle of incidence, 128
angle stacks, see amplitude analysis
anisotropic, see isotropic
anti-alias filtering, see filtering
aperture, 112
AR process, 47, 58
ACFs of, 70
AR{1), 63, 70, 72
AR{(2), 70, T2
arithmetic coder allocation, see clas-
sification
artifacts
blocking, 31, 41, 63, 71
edge effects, 21, 41, 42, 117
ringing, 41
audio coding, see coding
average length, see entropy
AVO, see amplitude analysis
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B
background noise, see noise, ambi-
ent
bandpass filtering, see processing
“Base Lysing”, see BL
biorthogonal, see filter bank
biorthogonality, 39
bit rate, 29
bits, 96
bits per sample, 58
block size of input samples, see AGC
block size of subband samples, see
classification
block variance, see classification
blocking, see artifacts
borehole, see well
brute NMO, see processing, NMO

C
cable, see streamer
CDP, 15
centroid, 44, 52
channel, see filter bank
circular extension, see signal, exten-
sion
classification
block size for, 50
block variance, bl
Gaussian mixture distribution,
51
number of classes, 50
optimization of, 50-54
proportionality constants, 53
stop-criterion, 52
variance decision levels, 51
variance representation levels, 51
closeup views, 66-69, 134, 135, 140,
141
CMP gather, 8, 110, 111, 131

angle limited, 129
coarse approximation, a, of signal,
see signal
coding
DC, 88, 118
configuration of, 89
distortion, see compression, noise
DPCM, 34, 117

BZC, 58
fixed-rate, 34, 46, 96
of audio, 36

of image, 36, 49, 105
of speech, 36, 105
of text, 2, 28, 104
of video, 36
RLC, 33, 58, 88, 118
variable-rate, 44, 46, 118
coding gain, see SBC
coefficients, see filter bank
COG, 8, 33, 84, 112
coherent or colored noise, see noise,
coherent,
comparison, 57, 90, 122-126
compression
lossless, 2, 28, 82, 104
lossy, 2, 28, 82, 104
noise, see noise
of poststack data, 30
of prestack data, 30
post-decon, 107, 143
pre-decon, 167, 143
preprocessing, 33-36, 58, 107
ratio, 59, 118
results (lossless), 90-92, 121
results (lossy), 57-62, 119-121
seismic data, 29-31
compression ratio, see compression
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conditional probability model, see
pdf

convex, 46

correlation coefficient, 48, 70

cost, 1, 104

CPU, 93

CR, see compression, ratio

CRG, 8

CSG, 6, 33, 110

cube, 7, 109

D

data, see signal

data dependent processing, 110, 123

data set, see seismic data

DC, see coding

DCT, see transform

decimal digits, 98

decimation, see sampling, down-

decomposition of signal, see subband
decomposition

deconvolution, see processing, pre-
dictive deconvolution

delay, see filter bank

demultiple, see processing, multiple
attenuation

demultiplexing, 5, 115

denocising, 4, 20, 22

density, 138

detail, b, of signal, see signal

diagnostic metric, 61

diffractions, 12, 112

digital filter, see filter

dip, 5, 15

direct wave, 12, 34, 111, 116, 142

discrete wavelets, see filter bank

dispersion, 16

distinet symbol, 95

DKLT, see transform

DMO, see processing

domains of seismic data, see seismic
data

DPCM, see coding

DWHT, see transform

DWPT, see filter bank, discrete wavelets
DWT, see filter bank, discrete wavelets

DWTC, see SBC, special case of
dyadic, see filter bank
dynamic range, 29, 35, 44

E
EBCDIC, 85
edge effects, see artifacts
efficiency of entropy coding, see en-
tropy coding, efficiency
embedded zero-tree coding, see cod-

ing, EZC
energy, 32, 60
entropy, 3

average length, 96, 98
first-order, 45, 96, 98
entropy coder allocation, see classi-
fication
entropy coding, 44-46, 89
AC, 44, b8, 83, 89, 97100
end-of-file, 45, 99
probability range, 98
adaptive, b5, 83
class-wise, 50, 89
eficiency, 96, 99, 100
examples, 95-100
HC, 44, 58, 82, 89, 95-97
multi-alphabet, 55, 95
non-adaptive, 55
semi-adaptive, 50, 83
error function, see filter bank
estimation
ambient noise, 60, 142



158

INDEX

block variance, 50

first break, 142

velocity, see velocity, analysis
extension of signal, see signal
EZC, see coding

F
filter
coeflicients, see filter bank
FIR, 13, 34
1R, 13
linear-phase, 20, 42
minimum-phase, 111
smoothening, 123
zero-phase, 111, 112
filter bank, 17
M-channel, 21, 41
2-channel, 17, 21, 41
8-channel, 42, 72
aliasing in, 17, 21, 39
analysis, 36, 74, 76
biorthogonal, 20, 39, 40, 42, 58
coefficients, 71-78
delay, 39
discrete wavelets, 3
DWPT, 3, 58
DWT, 3, 17
dyadic, 58
error function, 71
full-split, 58
linear-phase, see filter
maximally decimated, 40
non-PR property, 40
non-unitary, 20, 42, 63
optimization of, 47-50
orthogonal, 20, 39, 40, 42, 58
parallel-structured, 38, 58
PR property, 17, 39, 40, 71
separable, 32, 39

spatially, 19, 49, 71, 76, 77
synthesis, 36, 75, 77
taps, 42, 71, 72
temporally, 19, 49, 71, 74, 75
tree-structured, 17, 58
Venn-diagram of, 40
weight factors, 71
filtering
anti-alias, 6, 11, 108
bandpass, 112, 126, 143
highpass, 3, 17
lowpasgs, 3, 17
FIR filter, see filter
first-break arrivals, 60, 142
first-order entropy, see entropy
fixed-point, 58, 105
fixed-rate coding, see coding
floating-point, 28, 29, 58, 85, 105
fold, 11, 15, 111, 138
frequency, 9, 105, 112, 123
frequency domain coders, 41, 106
frequency-wavenumber domain, 9

G

Gauss-Markov process, see AR pro-
cess

Gaussian, see pdf

(Gaussian mixture distribution, see
classification

GenL.OT, see transform

geometrical spreading, 110

gradient stack, see amplitude anal-
ysis

H
HC, see entropy coding
headers, see SEG-Y
histogram, 51, 55, 60, 61
hydrophone, see receiver
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I
iid., 45, 51
IBM, 85
IEEE, 85

image coding, see coding

incoherent noise, see noise, ambient

infinite, 51

information, see signal

intercept stack, see amplitude anal-
ysis

interpretation, see seismic data

inversion, 138

irrelevancy, see signal

isofropic, 16

J
JPEG, 63

K
Karhunen-Loéve transform, see DKLT

L

land data, see seismic data
Laplacian, see pdf
lifting schemes, 23
linear time-invariant, 21
linear-phase filter, see filter
Lioyd-Max scalar quantization, see

SQ
lossless, see compression
lossy, see compression
LOT, see transform

M
marine data, see seismic data
maximally decimated filter bank, see
filter bank
maximum-phase filter, see filter
mean, 34, 35, 70, 123
memoryless, 51

message, 95

mid-point, 44, 52

migration, see processing

minimum-phase filter, see filter

mirror extension, see signal, exten-
sion

mse, 40, 44

multi-alphabet entropy coding, see
entropy coding

multiple attenuation, see process-
ing

multiple reflections, 11, 13, 111

multiplexing, 115

multiplicity, see fold

mute, see processing, top mute

N
near offset, 6, 46, 108
NMOQ), see processing
noise, 11-12
additive white Gaussian, 61, 105,
111, 125, 142
ambient, 29, 33, 60, 116
coherent, 2, 104, 107, 124, 142
compression, 2, 29, 60, 104
non-adaptive entropy coding, see en-
tropy coding
non-conditional probability model,
see pdf
non-expansive, 17, 19, 40
non-PR property, see filter bank
non-stationary, 33
non-unitary, see filter bank
non-white noise, see noise, coherent
normalized correlation coefficient, see
correlation coefficient
number of classes, see classification
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O

offset, 8, 119, 126, 130

optimization of entropy coder allo-
cation, see classification, op-
timization of

optimization of filter banks, see fil-
ter bank, optimization of

organization of seismic data, see seis-
mic data

orthogonal, see filter bank

overlapped basis functions, 30

P
parallel-structured, see filter bank
pdf, 51
conditional probability model,
55, 83, 90
order, b6, 84, 92
Gaussian, 53
Gaussian mixture distribution,
see classification
Laplacian, 35
non-conditional probability model,
55, 83, 90
PGS, 64, 94, 144
piecewise-linear interpolation, see AGC
plane, 6, 9
porosity, 138
post-decon compression, see com-
pression
poststack amplitudes, see amplitude
analysis
poststack data, see seismic data
poststack inversion, 138
power spectrum, 142, 143
PR property, see filter bank
pre-decon compression, see compres-
ston

predictive deconvolution, see pro-
cessing
preprocessing, 5, 6, 108
pressure wave, see P-wave
prestack amplitudes, see amplitude
analysis
prestack data, see selsmic data
prestack Kirchhoff time migration,
see processing, migration
primary reflections, see reflections
probability of occurrence, see pdf,
non-conditional probability
model
probability range, see entropy cod-
ing, AC
processing, 110-114
bandpass filtering, 112, 126, 143
DMO, 15, 17
migration, 29, 112, 124
multiple attenuation, 112, 143
NMO, 13, 16, 111
brute, 32
predictive deconvolution, 29, 110,
111, 123
Radon demultiple, 13, 111, 123
stacking, 14, 29, 114, 125
TAR, 110, 117
top mute, 111, 112
WEMR, 13, 110, 123
ProMAX, 58
proportionality constants, see clas-
sification

Q
QMF, see filter bank

quantization, see SQ
quantization error, see compression,
noise
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R
Radon demultiple, see processing
rate-distortion function, 29, 46
receiver, b, 8, 108
redundancy, see signal
reflection coefficient, see amplitude
analysis
reflections, 5, 12
refractions, see P-wave refractions
relative acoustic impedance, 138
resolution, 13, 22, 112
RIH, see SEG-Y
ringing, see artifacts
RLC, see coding
rms, 16, 59, 61
rmse, 59

S
sampling
coefficient, 19
down-sampling, 17, 18, 38, 105,
115
over-sampling, 23
up-sampling, 17, 18, 38, 116
sampling interval, see seismic data
SBC, 30, 36-46, 105
algorithm, 55-57, 115-118
coding gain, 71
definition of, 47
results, 72

compression results, 5762, 119

121
decoder, 36, b6-57
encoder, 36, 55-56
filters, see filter bank
special case of
DWTC, 30, 41, 105
TC, 30, 41, 105
scanning, 88

SCDI, 106
sea floor, see water bottom
sea surface, see water surface
SEG, 84
SEG-Y, 85-87
compression algorithm, 88--90,
118
compression results, 90-92, 121
RIH, 85, 90
TIH, 6, 85
characteristics of, 87
seismic data
acquisition, 2, 5, 82, 104
parameters, 6, 108
CDP, gsee CDP
CMP gather, see CMP gather
COG, see COG
CRG, see CRG
CSG, see CSG
data set, 6, 57, 90, 108
domaing of, 6-9
interpretation, 2, 104
tand, 31, 107
marine, 31, 107
organization, 30, 106
poststack, 14, 30
prestack, 14, 30
sampling interval, 8, 57, 105,
108
sorting, 5, 4, 30, 106
geismic data compression, see¢ com-
pression
seismic data format standards, see
SEG-Y
Seismic Unix, 58
seismic wavelet, 13, 111, 138, 143
semi-adaptive entropy coding, see
entropy coding
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separable, see filter bank
SGI, 85
Shannon entropy, see entropy, first-
order
shear wave, see S-wave
shot, see source
Shuey’s approximation, see ampli-
tude analysis, reflection co-
efficient
side information, 50, 55, 95
signal, 11
coarse approximation of, a, 17
decomposition of, see subband
decomposition
detail of, d, 17
extension of
circular, 41
mirror, 41
zero, 41
information, 11, 28, 32
tolerance level, 28
irrelevancy, 28, 37
redundancy, 3, 4, 28, 115
smoothening filter, see filter
SNR, 11, 15, 58, 126
sorting, see seismic data
source, 5, 8, 108
source-generated noise, see noise, co-
herent,
space, 9, 57, 105
speech coding, see coding
5Q), 42-44
decision levels, 42
index, 42
Lloyd-Max, 34, 52
mid-tread, 42, 43
representation levels, 42
step-size, 42, 53, 118

uniform, 42, 58
width of dead-zone, 43
SQNR
definition of, 59, 119
stack section, 113
stacking, see processing
stacking chart, 9
stacking velocity, see velocity
standard deviation, 35
static corrections, 13
Statoil, 64, 94, 144
stochastic variable, 45, 51, 70
stop-criterion, see classification
storage, 1, 104, 142
streamer, b, 6, 108
subband
bhandpass, 49
domain, 22
lowpass, 49
subband decomposition
dyadic, 17, 58
full-split, 58
parallel-structured, 58
tree-structured, 58
uniform, 38
SUN, 85
SVD, see transform
symbol, see digtinet symbol
symmetric filter, see filter, linear-
phase
synthesis filter bank, see filter bank

T
taps, see filter bank
TAR, see processing
TC, see SBC, special case of
thresholding, 22, 35
TIH, see SEG-Y
time, 6, 9, 57, 60, 105, 108, 111, 112
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range, 105, 142

window, 61, 114, 128, 130, 138
time-power constant, 62
tolerance level, see signal, informa-

tion

top mute, see processing
trace, 5, 30
trace data samples, see seismic data
trace headers, see SEG-Y
transform

DCT, 41, 71

DKLT, 20, 72

DWHT, 30

GenLOT, 41, 49, 57, 63

LOT, 41

SVD, 30
transmission, 1, 104, 142
tree-structured, see filter bank
TWT, 6

delay of water layer, 33, 55, 119

model of, 34, 117, 142

U
uriform filter bank, see filter bank
uniform scalar quantization, see SQ
unsigned-long-integer, 58

v
variance, 51, 70
velocity, 105, 110

analysis, 16

stacking, 17
Venn-diagram, see filter bank
video coding, see coding
VQ), 36

%%
water bottom, 11, 62, 112, 142
water layer, 11, 33
water surface, 11

wavelet coding, see SBC, special case
of, DWTC

wavelets, see filter bank, discrete wavelets

wavenumber, 9, 105, 123

weight factors, see filter bank

well, 138

WEMR, see processing

white noise, see noise, additive white
Gaussian

X,Y,and Z
zero extension, see signal, extension
zero-order probability model, see pdf,
non-conditional probahility
model
zero-phase filter, see filter
Zoeppritz equations, 128
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