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Summary

Model predictive control (MPC) relies on the successful solution of an op-
timization problem at each sample. In the optimization problem, the state
of the controlled system comes in as a parameter on the right-hand side of
the constraints along with possible time-varying constraint limits. Thus,
due to modelling errors, disturbances, and operator intervention, one may
encounter a situation where no solution exists for the corresponding opti-
mization problem. In such situations the control input is not defined, and a
relaxation of the constraints in the MPC optimization problem is desirable
as an alternative to plani shutdown, aperator intervention, etc.

The thesis contributes to research on optimal infeasibility handling in linear
MPC when there is a prioritization to be made among the constraints,
with focus on computational efficiency. Prioritization is a way to specify
that some constraints are more important to satisfy than others. This
prioritization can be used to determine the order in which the constraints
should be relaxed when seeking an optimal relaxation which renders the
corresponding optimization problem feasible. By optimal it is here meant
that the violation of a lower prioritized constraint cannot be made less
without increasing the violation of a higher prioritized constramt.

The first part of the thesis is devoted to optimal infeasibility handlers which
are based on solving a sequence of optimization problems in order {o com-
pute an optimal constraint relaxation. Depending on the size of the op-
timization problem, computational capacity, and sampling time, optimal
sequential infeasibility handlers may be too time consuming in order to be
used in practise.

The main part of the thesis is concerned with the design of an infeasibility
handler which, according to a given prioritization among the constraints,
optimally relaxes an infeasible MPC optimization problem into a feasible
one by solving a single-objective linear program (LP) on-line in addition
to the standard on-line MPC optimization problem at each sample. By
extending known results from the theory of preemptive multi-objective LP,
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the existence of such a single-objective LP is proved, and by extending
results from the theory of parametric LP, an efficient algorithm is developed
for off-line computation of the parameters of this single-objective LP.

In the last part of the thesis, the proposed algorithm is applied to design an
infeasibility handler for an MPC controlling the top part of a fluid catalytic
cracker unit main fractionator. The results show that it is not intuitive
to determine the parameters of the infeasibility handler. Stability of the
proposed infeasibility handler combined with MPC is established. Further,
some modifications of the proposed infeasibility handler are discussed such
that it allows the same priority level to be shared among several constraints.
These modifications can also be a useful strategy if the MIPPC problem at
hand is so large that the computational load or the memory demands of
the proposed off-line algorithm become prohibitive. Other strategies which
reduce such problems are also discussed.
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Chapter 1

Introduction

1.1 Motivation

In all practical decision problems there will be constraints that limit the
possible decisions. For instance, in order to decide when to leave Trondheim
City by car to catch a plane which leaves Trondheim Anrport at 5.00 p.m.,
and at the same time minimize the waiting time at the airport, one has to
take the following constraints into consideration (among others}): scheduled
appointments on the day of departure, the latest check-in time, the speed
and acceleration limit on the car, the amount of fuel in the car, the driving
conditions, and the largest fine one is willing to pay. In addition, assume
that one has present a model of the covered distance as a function of the
speed. Also assume that one has an appointment scheduled from 3.00 p.m.
to 4.15 p.m. on the day of departure, that the latest check-in time is
4.40 p.m, that the distance to drive is 35 km, and that one has to drive
through the center of Trondheim on the way to the airport. Lastly, assume
that one does not want to pay any fine. Given these constraints, there is
no possibility to reach the airport and at the same time satisfy the given
constraints, i.e. the decision problem is infeasible. The only way to remedy
this situation is to modify (i.e. relax) one or more of the constraints. One
possible relaxation is to cancel the appointment scheduled from 3.00 p.m.
to 4.15 p.m., or to shorten the duration of the appointment. However, if
it is very important not to change this appointment, one might after all be
willing to pay a possible fine and thus modify this constraint, or even book
a later plane. Thus, in this case, the relaxation one finally decides on is
dependent on the relative importance of the different constraints. Later, it
will become clear that this is the core of this thesis.

Model predictive control (MPC) is a mathematically defined decision prob-
lem, where one repetitively minimizes a cost function that is subject to a
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set of constraints. In MPC, the set of constraints consists of a model of the
process to be controlled, physical limitations, constraints to ensure stabil-
ity, and constraints which are related to desirables, The decision made by
an MPC controlier is a set of control inputs to the given process, and a new
decision is recomputed at fixed instants (samples). If, at a given sample,
there is no control input which satisfies the set of constraints, the optimiza-
tion problem is infeasible and the corresponding control input is undefined.
Such a situation is usually not acceptable, and thus, in order to make the
MPC controller able to compute a control input, the constraints should
be sufficiently relaxed in order to obtain a feasible optimization problem.
Note that it is not always the case that there exists a relaxation which ren-
ders the corresponding optimization problem feasible. For instance, if there
does not exist a decision that satisfies the set of physical constraints, there
are no physically implementable relaxations which render the correspond-
ing optimization problem feasible. Such a situation can be illustrated by
using the above example: Assurme that you are not allowed to change the
ticket, that the appointment scheduled from 3.00 p.m. to 4.15 p.m. is so
important that it cannot be changed, and that the maximum speed of the
car is too low to reach the airport within 25 minutes. In such a situation,
no constraint relaxation can make the decision problem feasible.

One might ask whether the original decision problem is badly designed if
infeasibility problems occur. However, assume that the same cost function
is to be optimized subject to the same set of constraints, for a set of dif-
ferent conditions. This is the case in MPC, where the state (condition)
changes from one sample to the next. Moreover, due to modelling errors,
unknown disturbances, and operator intervention, the state does not change
exactly as predicted by the model inherent in the controller. Thus, during
the design stage of the MPC problem, it is generally not trivial to forecast
whether or not infeasibility problems will occur after an MPC controller is
commissioned, i.e. put into operation in a real plant. Moreover, if, dur-
ing the design stage of the MPC problem, the constraints were designed
with the goal of avoiding infeasibility problems under any possible circum-
stances, one right have to avoid designing constraints which, under normal
circumstances, would be natural to impose in order to obtain the desired
performance and which do not cause infeasibility problems under normal
circumstances. Thus, designing an MPC controller which does not, under
any circumstances, run into infeasibility problems restricts the set of pos-
sible constraints that can be implemented in the MPC. This feature can
be illustrated by returning to the transportation-to-the-airport problem:
Assume that there are no appointments scheduled on the day of departure.
Then there is no reason to violate the speed limits on the road, and thus
in this case, the speed limits should be present as constraints in the deci-
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sion problem. The presence of this constraint would probably also result
in a more comfortable drive (desired performance). However, if the same
constraints should be present under all conditions (i.e. regardless of any
appointment), in order to guarantee feasibility under all conditions, the
speed limit constraint on the road should be removed from the decision
problem, or at least modified.

A procedure/mechanism designed to recover from infeasibility is denoted
an infeasibility handler. The purpose of an infeasibility handler is, when
possible, to compute sufficiently large relaxations of the constraints such
that the modified optimization problem, obtained by replacing the original
set of constraints with the modified set of constraints, becomes feasible.
In order to obtain the best performance (in some manner), the computed
relaxations should be minimized (in some manner). Note that, with a
well designed infeasibility handler, one could design constraints which in
advance we know will cause infeasibility problems.

In MPC, as in many other problems, it is often the case that some con-
straints are more important to satisfy than others. One way to explicitly
express this difference in importance is to give the constraints different pri-
orities. Imposing priority levels on the constraints is a systematic way to
implement certain types of operational strategies of the type “ii is more
important to avoid emptying the separator, which may damage the down-
stream equipment, than to keep the pressure below a certain limit, since
high pressure is handled by some kind of relief equipment”. There are sev-
eral ways to interpret the meaning of priority, and this interpretation must
be reflected in the design of the corresponding infeasibility handler.

One strategy is to use a so-called soft constraint approach, where a term
which penalizes a weighted norm of the constraint violations is added to the
original cost function in the MPC optimization problem, where the weights
in this term reflect the priority levels. There exists no systematic method
for designing the weights in this penalty function, and in order to verify
that the weights are suitable selected, a huge number of simulations are
often required. In this approach, the priority levels are interpreted as soft
priorities since the degree of importance of a given constraint is determined
by the corresponding weight in the cost function.

As opposed to soft priorities, another strategy is to let the priority levels
be interpreted as hard priorities, that is, interpret a constraint with a given
priority level as being infinitely more important to satisfy than a lower pri-
oritized constraint. Note that in the rest of this thesis, unless otherwise
stated, prioritization means hard prioritization. Consequently, violation of
a constraint with a given priority level is minimized regardless of the result-
ing violations of the lower prioritized constraints. This strategy allows for
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Figure 1.1: Amn infeasible optimization problem. There is no so-
lution which satisfies all three constraints.

a systematic treatment of the constraints. By using hard prieritization, the
relation between the specification and the achieved prioritization is explicit,
and thus the design difficulties experienced by using soft prioritization are
not present.

The effect of the use of hard constraints is illustrated by the optimization
problem illustrated in Figure 1.1. In the figure, there are three constraints,
two of them can be relaxed in order to obtain & feasible solution, and one
cannot be relaxed. Fach constraint is represented by a solid line, and the
shaded area shows the half-plane where the corresponding constraint is in-
feasible. The ellipses represent contour lines of the cost function, and the
minimum is located at (0,0). Tt can be seen from the figure that the il
lustrated optimization problem is infeasible. Figure 1.2 shows where the
optimum is located along with the corresponding violations in the case when
both relaxable constraints are removed. Figure 1.3 shows the effect of us-
ing a hard prioritized approach in order to obtain a feasible optimization
problem. The prioritization is shown in Figure 1.3. The relaxed constraint
is illustrated by a solid line, and the corresponding original constraint is
illustrated by a dotted line. Figure 1.4 shows the effect of exchanging the
priority between the two relaxable constraints. It is observed that the opti-
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Figure 1.2: Effect of removing both relazable constraints.

mum depends on the prioritization between the relaxable hard constraints.
Note that in Pigures 1.3 and 1.4, the optimum is uniquely determined by
the constraints and the given prioritization. In other words the cost func-
tion has no influence on the optimum. Note that this is not generally the
case.

1.2 Previous work

Linear MPC, i.e. MPC schemes where the prediction model of the plant
is based on linear models, has been widely used in industry for more than
20 vears, see e.g. (Garcia and Morshedi, 1986) and (Richalet, 1993) for
industrial MPC applications. The main reason for its success is its ability
to handle constraints on both the outputs and control inputs. There is a
large number of theoretical contributions to this field, and in order to obtain
a thorough insight into the theory of linear MPC, see e.g. (Lee, 1996},
(Muske, 1995), (Zheng and Morari, 1995), (Rawlings and Muske, 1993), or
(Muske and Rawlings, 1993}, and in order to get an overview of industrial
MPC, see e.g. (Qin and Badgwell, 1997). In this thesis, it is assumed that
the reader knows the basics of linear MPC.
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Figure 1.3: Effect of relazation and prioritization. Note that only
the lowest prioritized constraint is relaxed.

In the last few years, the research community has also turned attention
to combining MPC with nonlinear models, see e.g. (Allgbwer, Badgwell,
Qin, Rawlings and Wright, 1999). Note that MPC can also be used on
plants with discrete and continuous control inputs and states as well, i.e.
on hybrid systems, see e.g. (Bemporad and Morari, 1999) and {Slupphaug,
Vada and Foss, 1997).

In this thesis, the focus is limited to infeasibility problems in linear MPC
with continuous states and control inputs and a discrete-time model of the
plant. A review of the contributions to this field is now presented. First,
the approaches which do not use hard prioritization among the constraints
are considered.

Defining some of the constraints as soft constraints will generally reduce
the number of situations where an MPC controller runs into infeasibility
problems compared to the case when all constraints are hard. One can
conclude from the overview of industrial MPC given in {Qin and Badg-
well, 1997) that most commercially available MPC technology includes soft
constraints in their products. Setpoint approximation is another industrial
strategy for handling constraints (Qin and Badgwell, 1997), where the idea
is to predict future violations of the constraints, and then minimize the vio-
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Figure 1.4: Effect of exchanging the prioritization of the two re-
lazable constraints in Figure 1.3.

lation of these constraints by introducing a setpoint that forces the output
to stick to the boundary.

Oliveira and Biegler (1994) discuss stability of soft constrained MPC and
investigates how the use of soft constraints affect the closed loop stability.
Zheng and Morari {1995) show that with hard constraints on the control
inputs and soft constraints on the outputs, linear MPC is globally asymp-
totic stabilizing if and only if the open loop system is stable. The use of
soft constraints are also discussed in (Scokaert and Rawlings, 1999). They
demonstrate that, by minimizing the square of the maximum violation over
the horizon, as proposed in (Zheng and Morari, 1995), severe tuning difficul-
ties caused by a mismatch in the open-loop and closed-loop predictions may
oceur. They also demonstrate that by minimizing the square of a weighted
2-norm of the constraint violations over the horizon, these problems do not
occur.

In (Scokaert and Rawlings, 1999) the so-called optimal minimal time ap-
proach, which is an extension of an approach presented in (Rawlings and
Muske, 1993), is presented. In this strategy, the minimal horizon, &, is
computed such that all constraints beyond & can be satisfied on an infinite
horizon. & is computed by solving a sequence of optimization problems
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(one quadratic programming (QP) problem followed by a sequence of lin-
ear programming (LP) problems). Note that « is dependent on the current
state. At each sample, after computing «, the constraint violations for the
first & samples are then minimized, and these violations are then used to
relax the constraints in the original MPC formulations in order to obtain
a feasible optimization problem. By using this strategy, minimizing the
duration of constraint violations has higher priority than minimizing the
gize of the constraint violations.

Scokaert and Rawlings (1999) and Oliveira and Biegler {(1994) also discuss
the use of exact soft constraints, which is a soft constraint strategy which
can be used in order to enforce fulfillment of the soft constraints whern-
ever possible. In the exact soft constraint approach, as in ordinary soft
constraint approaches, a term is added to the original cost function in the
MPC optimization problem. However, instead of penalizing the square of
the constraint violations in this term, a weighted {; norm of the constraint
violations over the horizon is penalized. In order {o obtain fulfillment of
the soft constraints whenever possible, the weights in this term have to be
large enough. Oliveira and Biegler (1994) show that MPC with exact soft
constraints has the same stabilizing properties as ordinary hard constrained
MPC.

In (Alvarez and de Prada, 1996), (Alvarez and de Prada, 1997), a heuristic
infeasibility handler is proposed which treats the constraints on the control
inputs and outputs in a separate manner. First, the input constraints are
considered: If, after an operator intervention (e.g. due to a manual change
of a limit or the value of a control input), the constraints on the control
inputs cannot be satisfied (with the output constraints currently removed),
the infeasibility handler either 7) relaxes the values set by the operator, or
ii) relaxes the constraints (within the physical limits), or uses a combination
of 4) and ¢). For each control input, the user specifies which of these three
methods is to be applied. If, after the relaxation of the constraints on the
control inputs, the MPC optimization problem is still infeasible, the output
constraints are the next candidates to be relaxed. The selections of which
outputs to be relaxed are determined by inspecting the free (unconstrained)
response of all outputs and then selecting the variables whose free responses
violate their respective constraints as candidates for relaxation. In order
to relax the output constraints, four strategies are proposed: 1} modify
the constraint horizon, i) relax the value of the constraint, %) relax the
constraints on the control input, and iv) use a combination of i) to #:). For
each of the outputs considered, one of the above strategies is to be selected.
The violations of all output constraints using strategy 1) to i) above are
then computed by solving an LP problem, which minimizes the sum of all
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constraint violations over the constraint horizon. (Note that the idea of
employing an LP in order to compute the constraint violation s also used
in this thesis. However, the difference is that we compute the weights of this
LP such that the resulting constraint violations are computed according to
a given prioritization among the constraints.)

As several authors have emphasized (see e.g. (Garcia and Prett, 1986),
{Meadowcroft, Stephanopoulos and Brosilow, 1992), (Qin and Badgwell,
1997), (Tyler and Morari, 1999)), it is often the case that some constraints
are more important to satisfy than others, and designing a single objective
function which reflects this difference in importance (as in the soft con-
straint approach) is difficult, if not impossible. Moreover, large weights
are often needed in order to reflect the difference in importance, and if the
difference in the weights becomes too large, numerical problems may occur
when solving the corresponding optimization problem. Qin and Badgwell
(1997) report a couple of commercial MPC vendors who include hard pri-
oritized constraints in their software. In these applications, the following
strategy is used: When the MPC optimization problem becomes infeasi-
ble, the lowest prioritized hard constraint is dropped, and the calculation
is repeated. Since the violation of the lower prioritized constraints are not
minimized in the presence of infeasibility, this strategy will generally re-
sult in unnecessarily large constraint violations. Moreover, a sequence of
optimization problems needs to be solved, and thus in some applications it
might be too time consuming.

Scokaert (1994) discusses several aspects of infeasibility handling, and he
proposes a number of strategies to recover from infeasibility problems in
cases when a prioritization is present among the constraints. One approach
is to use the priority levels to determine a sufficiently large subset of the
set of all constraints which, when discarded or relaxed, renders a feasible
optimization problem. For the purpose of determining this set, he suggests
two strategies. One strategy is to first compute the largest priority level
i (large priority level means low priority) such that all constraints with
priority level less than ¢ can be satisfied. Then there is a minimization of
the number of constraints with a priority level greater than or equal to ¢
that needs to be violated in order to obtain a feasible optimization problem.
The constraints in this set are then discarded. Another approach i1s fo
minimize the size of the set of constraints to be discarded, regardless of the
priority levels, and if there are several candidates to this set, the set which
maximizes the lowest priority level in this sef is selected. These, and similar
approaches can be very atiractive in many MPC implementations, but
the on-line computational load required will be prohibitively large in most
cases. (Scokaert (1994) does not discuss how to compute these sets, however
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it is likely to believe that the solution of a large number of optimization
problems is required.)

Meadoweroft et al. (1992) introduce the modular multivariable controller
(MMC). The motivation behind their approach is that the controller de-
sign problem is in fact muiti-objective, and that important design decisions
cannot be elucidated if a single-objective optimization problem is designed
in order to solve the original multi-objective problem. In their approach,
setpoints and constraints are considered as objectives. For instance in soft
constrained MPC, the design of the weights involves subjective judgments.
Moreover, validation of whether the resulting controller meets the speci-
fied performance criteria or not is very hard to untangle. In the design of
the MMC, the different objectives are given different priority levels, and a
sequential strategy is used to compute the control input. However, this al-
gorithm can be quite complicated for high dimensional systems with a high
number of objectives {Tyler and Morari, 1999). Note that in (Meadowcroft
et al., 1992) a detailed methodology is given just for the design of steady
state MMCs.

Tyler and Morari (1999) present an approach for solving infeasibility in
MPC problems with hard prioritized constraints. In their approach, logical
(1.e. integer) variables are used to handle the priority ordering. By using
their approach, only one mixed integer LP needs to be solved in order
to compute the largest 4 such that each constraint with priority level 1
to i can be satisfied. However, in order to minimize the violation of the
lower prioritized constraints according to the prioritization, a sequence of
mixed integer L.Ps needs to be solved. Tyler and Morari (1999) compare the
strategy they propose with a traditional strategy using a single cost function
which penalizes a weighted sum of the squares of the constraint violations.
With a given disturbance, they tuned the weights of the utility function
such that the responses obtained by using the two approaches became equal.
However, for another disturbance (equal in size), the traditional approach
did not work well. They claim that choosing the weights such that the
performance is satisfactory for both these disturbances is an unwieldy task.

Among the above cited works, only (Rawlings and Muske, 1993), (Scokaert,
1994), (Zheng and Morari, 1995), and (Scokaert and Rawlings, 1999) discuss
the stability of the MPC controller combined with infeasibility handlers.

1.3 Contributions

This thesis contributes to research on infeasibility handling in linear model
predictive control.
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The main contribution in Chapter 2 is the discussion about how prioriti-
zation can be used among the constraints to specify how the constraints
in an infeasible MPC optimization problem can be optimally relaxed in
order to obtain a feasible optimization problem. A general algorithm for
dealing with infeasibility problems is proposed. The algorithm is based on
solving a sequence of optimization problems, and the algorithm allows for
several strategies for minimizing the violations for each set of constraints
having the same priority level. Compared to the commercial MPC schemes
reported in (Qin and Badgwell, 1997) that use hard prioritized constraints,
this approach generally reduces the constraint violations, since the commer-
cial MPC schemes just drop the lower prioritized constraints in the case of
infeasibility.

In Chapter 3, the problem of computing optimal constraint violations ac-
cording 1o & given prioritization is formulated as a parametric preemptive
multi-objective LP (parametric PMOLP). It is parametric, since in linear
MPC, the right-hand side of the constraints is parameterized by the state
and possibly by user-defined bounds on the constraints, and these param-
eters may change from one MPC optimization problem to another. 1t is
preemptive due to the hard prioritization among the constraints. We prove
the existence of a parametric single-objective LP such that for any param-
eter contained in a predefined set of parameters, any solution to this LP is
also a solution to the parametric PMOLP. The key point is to select ap-
propriate weights in the cost function of this single-objective LP. Further,
we have developed an algorithm to compute these weights. Concerning lin-
ear MPC, a consequence of this result is that at each sample, in order to
compute an optimal set of constraint violations according to a hard priori-
tization, only one LP needs to be solved on-line at each sample. To the best
of my knowledge, all existing solution approaches to a parametric PMOLP
rely on solving a sequence of optimization problems on-line.

In Chapter 4, the algorithm from Chapter 3 is applied in oxder to compute
the parameters of the proposed infeasibility handler for a (simulated) re-
alistic MPC problem. The results are promising and verify the practical
viability of the algorithm. Moreover, it is shown that the proposed infeasi-
bility handler combined with the Rawlings-Muske MP C-controlier guaran-
tees asymptotical stability of the origin, with a larger region of attraction
than the Rawlings-Muske MPC-controller without an infeasibility handler.
Finally, it is shown how to allow for several constraints to share the same
priority level and how to combine the proposed infeasibility handler with a
soft constrained approach.

Chapter 3 also contains extensions to some of the resulis in (Sherali, 1983}
and (Gal, 1995): In (Sherali, 1983), it is proved that there exist weights to a
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single-objective LP problem (nonpreemptive problem) such that any opti-
mum of this problem is optimal to a corresponding multi-objective LP prob-
lem with a prioritized ordering among the objectives (preemptive problem).
In Chapter 3 this result is extended in that we consider problems where
the right-hand side of the constraints is not fixed. In (Gal, 1995), single-
objective LP problems with varying right-hand sides of the constrainis are
considered. In Chapter 3, some of the results in (Gal, 1995) on parametric
progranuning are extended to consider preemptive problems as well.

1.4 Outline

First a few words on the structure of this thesis. Chapters 2, 3, and 4
are reprints of (Vada, Slupphaug and Foss, 1999), (Vada, Slupphaug and
Johansen, 1999b), and (Vada, Slupphaug, Johansen and Foss, 2000) re-
spectively, and thus there is some redundancy in these chapters, mainly in
the introductions. Note that the papers occur as chapters in chronological
order. Since the papers have been written over a period of almost two
years, there might be some discrepancies in the choice of words and focus
in these chapters. As an example, in Chapter 4 and Section 1.1, the notion
of hard and soft prioritization is introduced, while in Chapters 2 and 3,
the word prioritization is used to mean hard prioritization. The notation
within each chapter is consistent, but there may be some minor inconsis-
tencies in notation between the various chapters. Instead of providing the
reader with a complete nomenclature list, the symbols are defined in the
respective chapters.

The present chapter has presented the motivation for the present work, a
literature review, and the main contributions in the thesis. The content of
the following chapters is given below:

Chapter 2 formally presents the infeasibility problem in linear MPC and
the use of priorities in order to obtain a clear specification of how to
relax the constraints in order to obtain a feasible MPC optimization
problem. A sequential solution approach is presented in order to
compute the constraint relaxations, and the algorithm is illustrated
by a simple example.

Chapter 3 presents an infeasibility handler which computes the optimal
constraint relaxations according to a given prioritization by solving
only one on-line LP at each sample. The existence of such an in-
feasibility handler is proved, and an algorithm is developed which
computes the parameters to this infeasibility handler such that opti-
mality according to the chosen prioritization is guaranteed.
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Chapter 4 contains an application of the theory developed in Chapter 3,
along with a stability result on the controller obtained by combin-
ing MPC with the proposed infeasibility handler. Some practical
enhancements of the proposed infeasibility handler is also suggested
in order to reduce the off-line computational complexity and simplify
the engineering design of the MPC.

Chapter 5 ends the thesis and provides the main conclusions.
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Introduction




Chapter 2

A sequential approach to
solve infeasibility problems

This chapter is a reprint of (Vada, Slupphaug and Foss, 1999), which was
presented at the 14" I[FAC World Congress, Beijing, China, 1999.

Abstract All practical MPC implementations should have a means to re-
cover from infeasibility. We propose an algorithm designed for linear state-
space MPC which transforms an infeasible MPC optimization problem into
a feasible one. The algorithm handles possible prioritizations among the
constraints explicitly. Prioritized constraints can be seen as an intuitive
and structural way to impose process knowledge and control objectives on
the controlled process. The algorithm minimizes the constraint violations
by solving a series of optimization problems, and the violation of a given
constraint is minimized without affecting the higher prioritized constraints.
An example shows the effect of implementing this algorithm on a simple
Process.

Keywords: Model based control, Constraints, PPriority, Linear systems.

2.1 Introduction

During the last years, model predictive control (MPC) see e.g. (Rawlings,
Meadows and Muske, 1994), has shown to become an attractive control
strategy within the process industry. Important stability results within the
area of linear MPC are given in (Rawlings and Muske, 1993). However, to
fully exploit this stabilizing property, a means to recover from infeasibility
of the associated optimization problem whenever possible is required, since
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generally, a practical MPC will sooner or later run into infeasibility prob-
lems. The infeasibility problems may e.g. be due to disturbances, operator
intervention, or actuator failure. If the input constraints represent physical
limitations {which is often the case) they must be enforced at all times.
The state constraints are often desirables and should hence be satisfied
whenever possible. Thus, usually, only the state constraints can be relaxed
in order to transform the optimization problem into a feasible one in the
case of infeasibility.

There exist techniques which transform an infeasible MPC-problem into
a feasible one. Rawlings and Muske (1993) proposed to remove the con-
straints at the beginning of the horizon, i.e. for samples up to some sample
number 7. This feature is also implemented in the QDMC algorithm re-
ported by Garcia and Morshedi (1986), who also proposed a soft constraint
solution which minimizes the square of the constraint violations. The use of
soft constraints is a way to avoid running into infeasibility problems. Zheng
and Morari (1995) show that global asymptotic stability can be guaranteed
for linear time-invariant discrete time systems with poles inside the closed
unit disc subject to hard input constraints and soft output constraints.
In (Scokaert and Rawlings, 1999) a method called optimal minimal time
approach is proposed, which first minimizes the value of j;, and then min-
imizes the size of the violation during the first j; samples of the prediction
horizon.

Often, the state constraints are not equally important. One way to explic-
itly express this difference in importance is to give the state constraints
different priorities. Imposing priority levels on the constraints is a system-
atic way to implement certain types of process knowledge, such as “avoiding
shut-down is more important than discarding the product for some time,
since start-up of the process is very expensive compared to discarding a
certain amount of the product”. The problem studied in this paper is how
to allow control to be continued in the presence of infeasibility of the state
constraints taking into account the information contained in the prioritiza-
tion.

There are some existing techniques which take the prioritization levels into
account when recovering from infeasibility. IDCOM-M from Setpoint Inc.
provides a means for recovery from infeasibilities which involves prioriti-
zation of the constraints {Qin and Badgwell, 1997). When the calculation
becomes infeasible, the lowest prioritized hard constraint is dropped, and
the calculation is repeated. PCT from Profimatics also uses constraint
prioritization when recovering from infeasibility (Qin and Badgwell, 1997).
Meadoweroft et al. (1992) have developed a modular multivariable con-
troller (MMC), which is based on the solution of a multiobjective optimiza-~
tion problem using the strategy of lexicographic goal programming where
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the objectives have different priorities. They proposed a detailed methodol-
ogy for the design of steady state MMCs (they have left the detailed design
of dynamic MMCs for a forthcoming publication).

In (Tyler and Morari, 1997) and (Tyler and Morari, 1999} it is presented an
approach using integer variables for solving infeasible linear MPC problems
where the constraints have different priorities. The mintmization of the size
of the viclation of the constraints is done by solving a sequence of mixed
integer optimization problems. They compare their methodology with con-
ventional MPC by using weights and slack-variables on an example with
4 prioritized constraints. By trial and errvor, they find weights which give
approximately the same performance for one specific disturbance. When
a different disturbance enters their example process, the simulation results
show that when using their approach, the two a highest prioritized con-
straints are fulfilled, while only the highest prioritized constraint is fulfilled
when the conventional approach is uged. This example supports the state-
ment in (Qin and Badgwell, 1997), that for large problems it is not easy to
translate control specifications into a consistent set of relative weights for
a single objective function.

The main difference between our approach and the one presented in (Tyler
and Morari, 1997) and (Tyler and Morari, 1999) (the so-called rigorous one)
is that the latter approach results in a sequence of mixed integer LP (or
mixed integer QP) problems in addition to the original MPC optimization
problem, while our approach results in a sequence of LP (QP) problems in
addition to the original MPC optimization problem. In both approaches,
whether each step in the resulting sequence of optimization problems is an
LP problem or QP problem depends on how the slackvariables associated
with the constraints are penalized.

The outline of the paper is as follows: The next section presents the prob-
lem definition and the MPC formulation used. Then the algorithm which
transfers an infeasible MPC optimization problem into a feasible one is
presented, followed by a simulation example. The last section contains a
discussion and some concluding remarks.

2.2 Problem definition

2.2.1 MPC formulation

The notation and MPC-formulation used here is adopted from (Scokaert
and Rawlings, 1998). Consider the time-invariant, linear, discrete time
system described by

Ty = Azy + Buy, {2.1)
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where ; € R™ and uwy € RB™ are the state and input vectors at discrete
time £. It is assumed that (A, B) is stabilizable. The control objective is
to regulate the state of the system optimally o the origin. The quadratic
objective is defined over an infinite horizon and is given by

o0

ay,7) = Z mﬂtQmﬂt + uﬁtRuﬂt, (2.2)
=t

where 2 0 and B > 0 are symmetric weighting matrices such that
(Q/%, A) is detectable, n = {ags wpagges- -+ 1 z!" is the transposed of =z,
and

Tjr1y = AGL‘J'“ —+ Bu_ﬂt, t<j (23)
with x4, = z4. The linear constraints are

Dujy, < d, t<j

where h € Ri" and d € R} (R, is the positive reals} define the constraint
levels, and H and D are the state and input constraint matrices respectively.
The MPC optimization problem can now be defined as follows:

ming ¢{xq, %)

suhject to:
Ty = Iy
Tipp = Azjp+ Bug,  t<j (2.4)
HfL‘ﬂi S }L, i <j
Dujft < 4, t<jg
Ujp = —I{Tﬂf t+ N <j

The constraints need only be satisfied on a finite horizon to guarantee sat-
isfaction on the infinite horizon (Rawlings and Muske, 1993). This form of
MPC has Nm decision variables, and can be solved with standard quadratic
programming solvers. K is discussed below. The performance index in the
above equation can be formulated as (Rawlings and Muske, 1993)

N—1
_ T T T A
d(@e,m) = Z (T QT + v e ligane) + T4 N W4 e
=0

where @ is the solution of the matrix Lyapunov equation

Q@=Q+K"'RK + (A~ BK)TQ(4 - BK).
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The feedback matrix K can be chosen in several ways. In the rest of this
paper, K = 0 is used. In order to obtain stability, the unstable modi of
the predictor, z}¥, v, are zeroed at the Nth predicted sample (end poing
constraint), i.e., '

Trpnie = 0. (2.5)

The feedback law is defined by receding horizon implementation of the
optimal open-loop control. Given the optimal open-loop control strategy
T (my) = {u:“(mt),ufﬂlt(osf_), ... }, the control law is thus given by

ur{ze) = U;]g,(ﬂ?f,)- (2.6)

2.2.2 Compact problem formulation

Assume that the system, performance index, and predictor are given by
(2.1), (2.2}, and (2.3), respectively, and that the MPC problem formulation
is given by (2.4) with K = 0 and the additional end point constraint (2.5).
The problem studied in this paper is how to relax the state constraints in
an optimal manner subject to their prioritization when the optimization
problem defined by the MPC formulation becomes infeasible {e.g. due to a
disturbance). The method solving this problem must be computationally
implementable, and must not interfere with the control law defined by (2.4)
and (2.6} when the optimization problem (2.4} is feasible.

2.3 Solution approach

2.3.1 The algorithm

When it is impossible to satisfy all state constraints simultaneously, if is
desirable to satisfy as many of the highest prioritized constraints as possible.
The violations of the other (infeasible) constraints should be minimized,
taking their relative prioritization into account. The method described
here is an eztension of the theory presented in (Scokaert and Rawlings,
1999}, such that the constraint violations are minimized according to their
priorities. Operating at Pareto-optimal points in the ”size of violation -
duration of violation” space is the goal. The MPC problem defined in (2.4)
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(with K = 0)), can be rewritten as!

ming ¢z, 7)

subject to: (2.7)
Ty = T
fiky = )
*hard” hard | TVt .
constraints |+ T A+ Bujy, ¢ < (2.8}
Dug < A, t<j
tp = 0, t4 N <j
o Hla:i;i < Rt
n,, f » } d o
soft” har ) (2.9)

constraints :

ne o H'myy < AT <

where the constraints marked as “hard” hard constraints cannot under
any circumstances be violated, since they are either physical limitations
on the process, or related to zeroing the unstable modi at the end of the
prediction horizon, or decided by the move horizon N which is assumed
to be fixed. The constraint sets {ci,...,cn, } are constructed such that
constraint set ¢; has higher priority than ¢;41. A constraint set is composed
of one or more scalar constraints having the same priority. H; € R™:i ™™ and
h; € Ri“f, where n., is the number of constraints in constraint set ¢;. An
algorithm solving the problem of infeasibility subject to the prioritization
among the constraints is presented next. In the algorithm, a sequence
defined as {¢;,... ,cm}, { > m, is interpreted as the empty set.

Step 1: Solve the optimization problem defined by (2.7), (2.8) and (2.9).
If a feasible solution exists, the optimal solution (7*) is found - ter-
minate. Lise, the problem infeasible. Go to step 2.

Step 2: Check existence of a solution to {2.8). If there does not exist any
solution, the process cannot be stabilived with the given controller.
Some kind of extraordinary action has to be taken. Else, if there exist
a solution, set k& < 1 and go to Step 3. Note that the integer k is
indexing the constraints, and is not related to time.

Step 3 Check existence of a solution to (2.8) and (2.9), but without con-
straint sets {cxs1,--- ,¢a, }. Go to Step 4.

Step 4 If a feasible solution is found, set k +— k+1, and go to Step 3. Else,
if no feasible solution is found, constraint set {c1,... ,cx} cannof be
satisfied simultaneously. Go to Siep 5.

"Detectability of {Q'/%, A), which is a general requirement in Section 2.2.1, is not
nescessary for stability here because of the end point constraint &, ), = 0.
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Step 5 Step 4 showed that constraint set e¢p cannot be satisfied when
{e1,. .. scp } are satisfied. Minimize the violation of constraint set
. . . o\ Tic,
¢k, 1.e. compute optimal slack variables (Ah'ﬁ‘-'ﬁ) f e Rfr ¥, such that
Cl: Hkrr,jEt < hF+ (Ah;t)*, i<y (2.10)
and {e1,... ,¢,.1} are satisfied. There are several ways to compute
the optimal slack variables, according to the control policy, see the
discussion at the end of this section. Set ng «— 1, where n; is number
of softencd “soft” hard constraints. If & < n., ie. there are more
slack variables to be computed, go to Step 6, else go to Step &.

Step 6: Minimize the violation of constraint set ¢y, , i.e. compute opti-
mal slack variables {Ah,;?"; sy using the same strategy as in Step 5,
such that {c1,... ,6x—1,Cs v+ Chym,..1 ) are satisfied. Go to Step 7.

Step 7 If k4 n, < n,, i.e. there are more slack variables to be computed,
set ng «- ng + 1 and go to Step 6, else go to Step 8.

Step 8 At this step, the status is as follows: Constraint sets {¢1,... ,¢e—1}
are not, violated, and {ex, ..., ¢y, } are replaced by {c,... , ¢ } such
that there exist a solution which fulfills {c1,... ,¢rat, €., 0, }-

Now, with the last degrees of freedom (if any), minimize the perfor-
mance index (2.7) subject to these constraints.

As stated in Step b above, there are several ways to compute the optimal
slack variables for a given constraint set. In Section 4 below, the optimal
minimal time approach (Scokaert and Rawlings, 1999) is used to compute
the slack variables within each constraint set. Considering constraint set
¢k, the computation can be described as follows: Let () denote the least
integer such that ¢z can be fulfilled when j > ¢+ ¥(z;). Given s¥(2), the
least (in some sense) Ak} € Ric*', i.e. (ARF)*, is computed such that ¢,
defined in (2.10) is feasible if{Ahﬁ?“)* = (AhF)* whent < j < t-+x%(2;) and
(/_\h‘;?u)* = 0 when ¢ + x*{(z;) < j. Another method is, for each constraint
set, to introduce different priorities for every sample. If, for example, the
constraints at predicted sample ¢ in constraint set & has higher priority
than the constraints at predicted sample ¢ — 1 in constraint set k, then the
minimal duration of the constraint violation is obtained, but the size of
the violations will generally differ from the corresponding size of violations
resulting from the optimal minimal time approach. Another method for
computing (Ah;?it)"‘ is to minimize Zf:!'.-f-](Ah’?it)TWjAh'?]E subject to ¢
to ¢,_1 and H’“;C}-Et < Bk 4 Ah?lv t < j <t+ P, where W; € R ™" js g
weighting matrix, and P is sufficiently large such that Ahf;jr. =0,7>t+P
is feasible.
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N i

Figure 2.1: An idealized mass-spring system.

2.3.2 Stability

The controller proposed in this paper is based on the controller given in
(Rawlings and Muske, 1993), which is shown to be exponentially stabi-
lizing in (Scokaert and Rawlings, 1998), and is essentially an add-on of
infeasibility handling in an optimal manner taking priorities into account.
This add-on does not interfere with any of the stabilizing properties of the
controller given in (Rawlings and Muske, 1893), hence stability is retained.

2.4 Example

2.4.1 Process

The proposed method described above will now be implemented on a simple
example, and compared, insofar it is possible, with the optimal minimal
time approach described in (Scokaert and Rawlings, 1999}. The process
used in this example is an idealized mass-spring system which is illustrated
in Figure 2.1. The spring is assumed to be linear, and the mass slides
without any friction. There is a force v directed horizontally on the mass.
It is assumed that both the position and the velocity of the mass are ideally
measured, and that the spring constant k& and the mass M both are equal
to 1.0. By using exact discretization with sample time equal to (.5 s, the
system is given by the following equations:

T+1 = Azy + Buy,
where

| osre0ara] o224
= | 04794 0.8776 | * T T | 0.4794 |
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The MPC problem is given by (2.4} and (2.2) with K =0, @ =1, R =1,

N =05 and
1 0 0.25
-1 0 0.25 1 0.6
H=\| 4 { k= 0.25*D“l—1}=d'[0.6]'
0 -1 0.25

The predictor is equal to the process. The input constraint has always to
be satisfied, and the prioritization of the staie constraints is as follows, in
descending order:

1. Constraints on the mass position, i.e. |2;:| < 0.25, 7> 1.

ii. Constraints on the mass velocity, {z;, 2] < 0.25, 7 > £

Using the notation in Section 2.3.1, the following constraint sets are defined:

e Hlmjit <ht, 5>t
exr Hzy < h%, j >t

1| 10 o 1011 .9 02D
H* = [_1 Ol,H ——[G -"]]’h = h° = [0‘25.

2.4.2 Simulation: Case 1 - applying the proposed approach

where

At time t = 0, a state disturbance of [0.8, ~0.4]7 enters the system and
the approach described in Section 2.3.1 is used to recover from infeasibility.
Step 1 to 4 in the algorithm show that only the *hard” hard constraints can
be satisfied at time £ = 0. In Step 5, the optimal minimal time approach
described in (Scokaert and Rawlings, 1999) is used to compute the minimal
violation of constraint set ¢;: First the minimal time, &'(x;), beyond which
the constraints ¢; can be satisfied is computed. Given xk!(z;), the following
LP is solved to compute the minimal size of the constraint violation of
constraint set ¢;:

min SAR}, subject to

we b
"hard” hard constraints
Hlzj, <hb+ Abf, t<j<t+s!(z) (2.11)
Hlzg, < bl t+wM ) <
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Sampis no.

Figure 2.2: The figure shows the stimulation results from Casel.
In the upper part, the solid line shows z1; and the dashed line
shows xq,. Dotted lines are the constraint limils.

where S = {1 1]. At time ¢ = 0, the optimal slack variables computed by this
LP, are (AR})* = [0.2944,0.0]7, and x!(zp) = 3. Let ¢} denote the two last
constraints in (2.11) when Akl = (Ah{)*. In Step 6, the minimal violation
of constraint set ¢ is computed by first computing the minimal time, £%(z;},
beyond which the constraints ¢ can be satisfied, subject to the "hard”
hard constraints and ¢}. Given x%(z;), the minimal size of the constraint
violation of constraint set ¢ is computed by a LP problem similar to (2.11),
but with ¢} added to the hard constraints. The optimal slack variables
computed by this LP at £ = 0 are (AR3Y* = [0.3509,0.0)7, and x*(zg) = 4.
Let ¢4 denote the relaxed constraint set ¢o. In Step 8, the performance index
(2.7} is minimized subject to the "hard” hard constraints, ¢ and ¢;. The
receding horizon implementation using this strategy on the example process
with the given disturbance resulis in the response shown in Figure 2.2. It
can be observed from the figure that the constraints in constraint set ¢
are satisfied when j > 2, while s!(z) = 3. This difference in open- and
closed-loop is due to the receding horizon nature of MPC and finite move
horizon (N).

2.4.3 Simulation: Case 2- the optimal minimal time ap-
proach

The same disturbance as in Case 1 enters the system at time ¢ = 0, but
now all slack variables are minimized upon simultaneously by using the op-
timal minimal time approach presented in (Scokaert and Rawlings, 1999},
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Figure 2.8: The figure shows the simulation results from Case 2.
In the upper part, the solid line shows 1 and the dashed line
shows xy .. Dotted lines are the consiraint limits.

# LP problems # QP problems
Case 1: 16 22
Case 2 13 16

Table 2.1: Computational load for the simulation examples Case
1 and Case 2

i.e. there are no prioritization among the constraints. This approach is
equal to the approach used in the previous section, but with all constraints
collected in constraint set c;, and gives the response shown in Figure 2.3.
It can be seen that the violations of constraint set ¢; are less, both in time
and size, when the approach used in this paper is applied, compared to the
plain optimal minimal time approach. The expense is larger violations of
constraint set ¢g, this is of course due to the prioritization. It can be ob-
served that in this case, the approach described in this work causes a longer
time period with constraint violations, compared to the plain optimal min-
imal time approach.Table 2.4.3 shows the number of LP and QP problems
needed to be solved in Case 1 and 2. It can be seen that, for the example
presented here, the total number of LP and QP problems generated by
the approach presented in this paper is about 30% greater than the opti-
mal minimal time approach presented in (Scokaert and Rawlings, 1999). It
should be noted that the number of constraints in the QP and LP prob-
lems generated by the two approaches are different. At a given sample,
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the number of constraints in the LP problems generated by our approach
are less than or equal to the number of constraints generated by the op-
timal minimal time approach, since only a subset of the state constraints
is present when computing «* in our priority handling approach, while all
state constraints are present when computing s in the optimal minimal
time approach.

2.5 Discussion/Conclusion

All practical MPC implementations should have a means to recover from
infeasibility, and this paper contains an algorithm which transforms an in-
feasible hard constrained MPC optimization problem into a feasible one by
relaxing those hard state constraints which do not affect the stability of the
controlled process. This is done taking into account priorities among the
state constraints and extending the work (Scokaert and Rawlings, 1999),
where priorities are not handled. The assignment of priorities is an intuitive
and natural means to state certain objectives on the controlled process, and
as shown in this paper, MPC is a suitable framework to impose such objec-
tives. When minimizing the violation of a given constraint, the violations
of the higher prioritized constraints are not affected.

If some of the input constraint are desirables rather than physical con-
straints, the infeasibility handling algorithm should also take these con-
straints into account. Extending the proposed algorithm to include input
constraints is trivial.

The example shows how the violations of a constraint are minimized upon
at the cxpense of larger violations of the lower prioritized constraint. In
the example, the optimal minimal time approach (Scokaert and Rawlings,
1999) is used to minimize the constraint violations of the constraints which
have the same priority. Other approaches may also be used. Consider,
for example, a process where large sizes of constraint violations are very
expensive. In some cases {such as in non-minimum-phase processes) it will
then often be more cost efficient to allow for longer duration of violations
at the benefit of smaller sizes of violations. Anyway, as mentioned earlier,
obtaining Pareto optimal operation in "the space of duration of violation
and size of violation” should always be the goal.

In the example, the number of optimization problems needed to be solved
when our approach is used, is about 30% larger than the number of op-
timization problems needed to be solved when the optimal minimal time
approach is used. In other examples, the difference in computational load
will probably be different. Whether the computational load required by our



2.5 Discussion/Conclusion 27

approach is acceptable in practise is dependent on the process dynamics and
the sampling period of the given process in addition to the computational
capacity of the computer where the MPC is installed.




28 A sequential approach to solve infeasibility problems




Chapter 3

A Parametric Preemptive
Multi-Objective Linear
Programming Approach

This chapter, except for Section 3.4.4, Section 3.C, and Section 3.D, 1s &
reprint. of (Vada, Slupphaug and Johansen, 1999b). (Vada, Slupphaug and
Johansen, 1999b) was submitied to Journal of Optimization Theory and
Applications in October 1999. Parts of the results in this are also given in
(Vada, Slupphaug and Johansen, 1999a).

Abstract All practical model based control (MPC) implementations should
have a means to recover from infeasibility. We propose a strategy designed
for linear state-space MPC with prioritized constraints. It optimally relaxes
an infeasible MPC optimization problem into a feasible one by solving a
single-objective linear program (LP) on-line in addition to the standard
on-line MPC optimization problem at each sample. By optimal it is meant
that the violation of a lower prioritized constraint cannot be made less
without increasing the violation of a higher prioritized constraint. The
problem of computing optimal constraint violations is naturally formulated
as a parametric preemptive multi-objective LP. By extending well known
results from parametric LP, the preemptive multi-objective LP is reformu-
lated into an equivalent standard single-objective LP. An efficient algorithm
for off-line design of this LP is given, and the algorithm is illustrated on an
example.

Keywords: Parametric programming, Preemptive programming, Infeasi-
bility, Linear model predictive control.
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3.1 Introduction

Model predictive control (MPC) (or, receding horizon control or moving
horizon control) (Muske and Rawlings, 1993), (Rawlings and Muske, 1993)
has become an attractive control strategy within the process industry. In
MPC, at each time step, an sequence of optimal predicted control inputs
is found by solving a constrained optimal control problem on some horizon
into the future. The first element of the optimal predicted input sequence
is used as present control input, and the same procedure is repeated at the
next time step. In practical MPC implementations, a means to recover from
infeasibility! of the associated optimization problem whenever possible is
required. Typically, some of the constraints, such as physical limitations,
must be enforced at all times, while other constraints can be relaxed in
order to transform the optimization problem into a feasible one in the case
of infeasibility.

There exist techniques which transform an infeasible MPC-problem into a
feasible one by treating equally all constraints which can be relaxed, see
e.g. (Garcia and Morshedi, 1986), (Rawlings and Muske, 1993), (Qin and
Badgwell, 1997) and (Scokaert and Rawlings, 1999). However, the con-
straints are often not equally important, e.g. a safety constraint is usually
more important to satisfy than a product quality constraint. One way to
explicitly express this difference in importance is to give the constraints
different priorities. Imposing priority levels on the constraints is a system-
atic way to implement certain types of operational strategies of the type
“it is more important to avoid emptying the separator, which may damage
the downstream equipment, than to keep the pressure below a certain limit,
since high pressure is handled by some kind of relief equipment”. There are
some existing techniques which take such prioritization levels into account
when recovering from infeasibility. IDCOM-M (Setpoint Inc.), HIECON
and PFC (both from Adersa) provide a means of recovering from infeasi-
bilities which involves prioritization of the constraints. When the on-line
optimization problem becomes infeasible, the lowest prioritized constraints
are dropped {Qin and Badgwell, 1997).

Scokaert (1994) discusses issues related to the problems of infeasibility in
constrained predictive control, and proposes several strategies to solve such
problems, including sirategies involving priority levels. The most rigorous
approach he proposes for infeasibility handling is to satisfy as many of
the highest prioritized coustraints as possible, and then compute a feasible
relaxation of the other constraints by treating them as soft constraints, that

!An optimization problem is said to be infeasible or inconsistent il the constraints
cannot be satisfied.
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is, a term is added to the cost funciion in the original MPC optimization
problem which penalizes the violations of these constraints. However, he
does not discuss how to compute the set of constraints which can be satisfied
without any violation.

In {Tyler and Morari, 1999) an approach is presented for solving infeasible
linear MPC problems where the constraints have different priorities. In
that approach, integer variables are introduced to cope optimally with the
prioritization. The minimization of the size of the violation of the con-
straints is performed according to their prioritization by solving a sequence
of mixed integer optimization problems.

In (Vada, Slupphaug and Foss, 1999} an algorithm is presented which,
in case of infeasibility of the MPC-problem, optimally takes the prioriti-
zation among the constraints into account when relaxing the constraints.
This algorithm includes a sequence of LP or QP problems to be solved
at every sample. The main difference between the approach described in
(Vada, Slupphaug and Foss, 1999) and the one presented in (Tyler and
Morari, 1999) is that the latter approach resuits in a sequence of mixed in-
teger LP {or mixed integer QP) problems in addition to the original MPC
optimization problem, while the former approach results in a sequence of
LP (or QP) problems in addition to the original MPC optimization prob-
lem. Note that the number of optimization problems needed to be solved
in the first approach is generally less than in the latter approach. How-
ever, if the sampling time is short compared to the number and size of the
optimization problems to be solved, both approaches may be prohibitively
time consuming.

An important difference between the algorithms presented in {Tyler and
Morari, 1999), (Scokaert, 1994), and (Vada, Slupphaug and Foss, 1999) and
the other approaches mentioned above which also take prioritization into
account, is that the algorithms in {Scokaert, 1994), (Vada, Slupphaug and
Foss, 1999) and (Tyler and Morari, 1999) minimize the violations of those
constraints which cannot be fulfilled. Just dropping a set of constraints
may result in unnecessary large constraint violations, and will in this sense
be suboptimal.

In (Meadowcroft et al., 1992) a modular multivariable controller (MMC) is
developed, which is based on the solution of a multi-objective optimization
problem using the strategy of lexicographic goal programming where the
objectives have different priorities. This solution strategy implies that the
optimization problem is solved sequentially, and thus suffers from the same
problems related to computational time as the approaches in (Tyler and
Morari, 1999) and (Vada, Slupphaug and Foss, 1999}. ((Meadowcroft et al.,
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1992) contains a detailed methodology for the design of steady state MMCs
only.)

The main contribution of this paper is that it is shown that the algorithm
presented in (Vada, Slupphaug and Foss, 1999}, in the case when all con-
straints have different priorities, can be reduced from a sequence of LP
problems to a single LP problem by properly selecting the weights (or,
cost vector) in this LP problem. These weights are computed off-line. The
main idea is to select sufficiently large weights on the higher prioritized con-
straints relative to the lower prioritized constraints in order to optimally
satisfy the given prioritization. A consequence of this is a great reduction
of the on-line computational demands of the infeasibility handler. Exis-
tence of such weights is proved under non-restrictive assumptions, and it is
shown how these weights can be computed in order to avoid unnecessarily
large weights.

This work is related to (Sherali, 1983} and (Gal, 1995). In (Sherali, 1983),
it is proved that there exist weights to a single-objective LP problem (non-
preemptive problem) such that any optimum of this problem is optimal
for a corresponding multi-objective LP problem with a prioritized ordering
among the objectives (preemptive problem). The present paper extends
this result in that we consider problems where the right hand side of the
constraints is not fixed. This is motivated by the fact that in the MPC
setting, the right hand side of the constraints depends on both the current
state and constraint limits. In (Gal, 1995), single-objective LP problems
with varying right hand sides of the constraints are considered. In the
present paper, some of the results in (Gal, 1995) on parametric program-
ming are extended to consider preemptive problems as well.

The existence results contained herein are based on the conference paper
(Vada, Slupphaug and Johansen, 1999a), while the algorithm presented for
solving the weight design problem has not been published elsewhere.

The outline of the paper is as follows: In the next section, the linear MPC
optimization problem with infeasibility handling is stated, followed by a
definition of the weight design problem. Then, in Section 3.3, the existence
of a solution to this problem is established, and in Section 3.4 we present an
algorithm which solves it. Finally, the theory is illustrated by an example
in Section 3.5.

The following notation is used throughout the paper: Let T,y ER* ¢ >
Gy & 2 > Gy, i = 1,... ,n. (z,y) is used to express (2T, 47]7.
Onxm is a matrix of dimension n x m with zeros, (1, is an m-dimensional
vector with zeros, and I, is the n x n identity matrix. A;; denotes the jth
element in the ith row of 4. ¢, is the kth unit vector. I, == {0,... ,n},
and I} := {1,... ,n}, where n > 1is an integer. |J| denotes the cardinality
of the set J.
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3.2 Problem definition

In Section 3.2.1, the constraints associated with prioritized MPC are for-
mulated. These constraints are based on the MPC-algorithm of (Rawlings
and Muske, 1993). Next, the algorithm presented in (Vada, Slupphaug
and Foss, 1999) is stated for the case when all constraints have different
priorities. This algorithm reguires the solution of a sequence of LPs. In
Section 3.2.2, a problem, whose solution can be used to reduce this sequence
of LP problems into a single LI problem, is stated.

3.2.1 Prioritized constraints in linear MPC
Let the system to be controlled be deseribed by

Zrpr = f{@0, M), (3.1)

where 2, € B*, u; € R™, and 7, € R"™ denote the state-, control- and
disturbance vector at time ¢, respectively. A linear predictor is given by

Tjpap = Azgy + Bugy, 724 (3.2)

where A € R, B € R, and x4, € R® and uy, € R™ are the predicted
state and input vector at future time j, respectively. Note that the system
(3.1) and predictor (3.2) are equal if f(x,u,n} = Az + Bu. This defines
the nominal case. The reason we let the "real” system be described by a
nonlinear disturbed system is to emphasize the fact that this will always
be the case in reality, and is one of the reasons why infeasibility handling is
needed. However, stability results are typically stated for the nominal case.
In this paper we do not consider stability analysis. The input constraints
are of the form

< >

where D ¢ R%X™ d € W% and N is the move horizon. Similarly, the
state constraints are of the form

Hzj, £ h>0,7=1+1,.. (3.4)

where H ¢ B™ X" and h € R™ . Note that the constraints are defined on an
infinite horizon. In (Rawlings and Muske, 1993) it is shown that for a given
(bounded) initial state zy, if (4, B) is stabilizable and IV is large enough,
there exists a (finite) integer jo > N such that satisfaction of Hz;, < b up



34 A Parametric Preemptive MOLP Approach

to and including time ¢ 4 j» guarantees satisfaction of the state constraints
on the infinite horizon. Thus, given such a 7, in the nominal case the total
number of scalar state constraints in the MPC optimization problem (to
be presented at the end of this section) is nyjs.

If the predictor is unstable, the unstable modi of the predictor are zeroed
at the end of the move horizon for stability reasons (Rawlings and Muske,
1993). This stability constraint can be expressed as

IV = vy, (3.5)

where U i35 (Uge, Upp1jes 0 UggpN—1pt)y 1 1= T;’H{AN_EB,AN"QB, -~ B,
v ~V, AV where V, is defined by partitioning the Jordan form of the A
matrix into stable and unstable parts

. . Ju 0] [V
A=VJV _.[Vum][ojs 7|

in which the unstable eigenvalues of A4 and the eigenvalues of J,, are equal
(Muske and Rawlings, 1993). The open-loop optimization problem (MPC
problem) is to minimize the following quadratic objective function on an
infinite horizon

oc

. T .
min Z(%HRQ%HH + e R yy2)
k=0

subject to zy; = 21, (3.2), (3.3), (3.4) and (3.5), where Q € R"*" is pos-
itive semidefinite and R € R™*™ is positive definite. Only the first move
is applied to the plant (3.1), i.e. u; = wuy, and at the next sample, the
procedure is repeated. In the nominal case, this control law is exponen-
tially stabilizing if and only if the corresponding optimization problem is
feasible (follows from (Scokaert and Rawlings, 1999}). However, for certain
states x;, this optimization problem may be infeasible (e.g. due to model
errors, disturbances, operator intervention or "narrow” constraints), and
this situation motivates the problem stated in the next section. To ease
the presentation, assume that only the state constraints (3.4} can be relaxed
when there is no feasible solution to the MPC problem. Relaxable input
constraints can be easily included. In addition, variable right hand sides
of the inequality constraints (3.3) and (3.4) can also be easily be included
in the same framework. However, if this is done, the above cited stability
result is no longer valid.

When relaxing the constraints, it is assumed that the constrainis have dif-
ferent priorities. With priority, we mean that minimizing the relaxation of
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a coustraint with priority level ¢ is infinitely more important than minimiz-
ing the relaxation of a constraint with priority level 4+ 1. Let H; and Ay
denote the ith row of H and the 7th element of h; respectively, and assume
that V 4, j,¢, Hizjy < h; has higher priority than Hipzi < higy, and that
Hiz;,1p0 < by has higher priority than Hjzjy < k. The latter is equivalent
to saying that, if possible, all violations of Hiz;;, < ks will occur during
the first part of the prediction horizon. Inserting the predictor (3.2) into
(3.4), all state inequality constraints can be collected into the inequality
OU < 0(xy), where 8{xy) == h+ Yz, and ©, 4,7 =

T H AR H ATRT?B o HARTNB 1 TRy T OH AT )
H AR2B H AR=3B ... H A-N-1p R Hy A1
HAN-'B HAN-*B ... H\B R H AN
HAN=2B H\AN-3p ... 0 hy HiAN-L

H\B 0 0 hi H 4

Hp, A%7'B Hy, A 2B ... H, AP™NB B, Hy,, A%
H,, A??B H, AR73B ... H, AR~N-1B b, H,, A7}
H, AN-'B H, AN—*B ... H,, B b, Hy, AN
H,, AY"?B H, AN3B ... 0 b, H,, AN=!
| H. B 0 0 ] Lhn, | Hp, A

Let ©; denote the ith row of ©, and 8;(x;) tbe ith element of O(z;). ©
and @(xz;) are constructed such that ©;U < #;{x;) has higher priority than
;410 < 0;41(xy). The constraints on the control inputs over the whole
prediction horizon can be described as AU < §, where A is block diagonal
and the N blocks on the diagonal are Ds, and é is a vector with composed
of N ds stacked over each other. To summarize, the constraints in the MPC
optimization problem are given by

U = yzy, AU <6, and OU < 8(zy).

Under the assumption that the set of non-relaxable constraints is consis-
tent (or, {U LU = yz; and AU < 6§} # 0), the algorithm presented in
(Vada, Slupphaug and Foss, 1999) minimizes the constraint violations ¢
in the following way: €* := (€],... >€;,h,j2)’ where €; is the optimal con-
straint violation corresponding to the state constraint with priority level &,

is computed according to the following algorithm:
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Algorithm 3.2.1
Step 1: Solve the LP problem ¢} = r(?in €1 subject to €; > O, — 81 (zy),
sE1

TU = vy, AU < 6,0 2 0. If npjs > 1 set k = 2 and go to Step 2,
clse stop.

Step 2: Solve the LP problem ¢} == rgrlin €r subject to e > OxU ~ (11},
2k

U =z, AU <6, 0,U < 8i(z))+¢€}, 1 € IE;_], e = 0. Go to Step 3.

Step 3: If k < npjo, set £ — & + 1, and go to Step 2, else stop.

Now, the following QP problem associated with the MPC is guaranteed to
be feasible and is subsequently solved:

U* = argmin UTFU + 2U7 G

subject to;
N

= YT
AU <6
®1U S 91 (’St) + 6’1k

OnizU < by (@0) + €5

_nfijZ
where
B'QB+R BTATQB ... BTAT"'QB BTQA
. BTQAB BTQB+R --- BYAT" OB BT A2
BTATY'QB BTATY QB ... BTQB+R BTQAN

and, for open loop stable predictors
Q=) AT'cTQrA,
=0

while, for open-loop unstable predictors

- ~ v ~ &0 : . .

Q:=V/2V, 2= JIvicTQov,J

i=0

(Muske and Rawlings, 1993).

We now turn our attention to a more efficient way of determining minimum
constraint violations than using Algorithm 3.2.1. Note that the result of
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Algorithm 3.2.1 is straightforwardly associated with the solution of a so-
called preemptive multi-objective linear program (Sherali, 1983}. This fact
will in Section 3.4 be exploited to design a single-objective LP problem such
that €* is part of the solution to this LP, and such that the same LI can
be used to compute ¢* for all z; where there exists a solution to the non-
relaxable constraints. This leads to significantly less on-line computational
complexity than solving the sequence of npjp LP problems required by
Algorithm 3.2.1.

3.2.2 Definition of the optimal weight design problem
(OWDP)

Consider the following LP problem:

£(p) = (" (0), 7" (p) i= argmin &2 (3.62)
sithject to:

Gly = g¢*'(p), g ) =g"+g'"p
Gy < g%(p),  g*(p) = g* +¢*p

Gy < g3(p) + 2, 3 (p) = ¢* +¢%p (3.6D)
y =0
z =20

where y € R, z ¢ B, & € R™, G! ¢ R™1 >y, G? e R Xy GB ¢
Rmaxny ol0 ¢ i it 2 Rmixne e [ and p € P C R, where P is the
set of all p such that there exists an optimal solution to (3.6) , i.e.

P = {pe R |Y2(p) # 8}, (3.7)
where
Y3 (p) = {y > 011Gy = ¢ (p) and G’y < ¢°(p)}- (3.8)

Note that it is not assuimed that P is bounded. Let Z(p) denote the set of
non-negative zs such that the set of ys satisfying (3.6b) is nonempty, i.e.

2(p) = {z 2 01Y"2(p) N Y3(p, 2) # 0}, (3.9)
where
Y3(p,2) == {y 2 0] Gy < ¢*(p) + 2}- (3.10)

The following assumptions are made throughout the rest of this paper:
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Al: P is nonempty.
A2: Gl has rank m;.

Note that under AL, Vp € P, Z(p) # @ (since ¥p € P, Y1%(p) # 0 and
¥p € P, 3z > 0 such that Y3(p, 2z} # (). The necessity of A2 will become
clear in Section 3.3.

Before presenting the problem definition, consider the following definition.
The relation between this definition and Algorithm 3.2.1 becomes clear in
Section 3.2.3.

DEFINITION 3.1

Given X C R, ¥ € X is its lexicographic minimum if 2} < 2; for all
2 € X such that z # 2%, where 1 € ;] is the index to the first element
where r and 2* are different.

Let z°(p) denote the lexicographic minimum of Z{p). Since Vp € P, Z(p) #
) and closed, and z > 0, 29(p) exists ¥p € P . The following problem can
now be stated:

Optimal weight design problem (OWDP) Design the weight vector &
in (8.6a) such that ¥p € P, 2*(p) = 2°(p), i.e. such that the z-part of any
optimal solution to the LP (3.6) is equal to the lexicographic minimum of
Z(p).

At this point, it is assumed that € exists. This will be proved later on. If, for
some reason, one only wants to consider ps which belong to a set M C P,
this can be incorporated in the OWDP by replacing P with PN M. Due to
the way we solve the OWDP in Section 3.4, it is necessary to assume that
M is polyhedral.

The LP problem defined by (3.6) can be rewritten into standard form:

min ¢!
X

5

‘:'E
Az = b(p)

subject to: >0

Gi Dm1 ?1ma O:m Xms3 0771.1 Kmy
A= G Img Omgxmg Omgxm3 y (3_1])
Gg Dm3 X1mag Im;g "Img

b(p) = (' (p), 6*(p), 6°(p) ) ,
Ci= Eony+mg+7n3; 6) )

Y, v, W, z) ; )

T =

where v € R™ and w € R™. Due to Assumption A2, A has full row rank.
From now on, 4, B and D are not related to their definitions in Section
3.2.1.
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3.2.3 Relation between the OWDP and the prioritized MPC
problem

By inspection of Algorithm 3.2.1, we observe that ¢ is the lexicographic

minimum of all possible ¢ = (€1, ,¢€n,4,) making the set of U which
satisfy the following set of equalities/inequalities
TV = vz
AU < §
- 3.1
OU < h+ Ty +e (3.12)
e >0

nonempty. Note that the only variables in (3.12) are U and e.

The constraints in (3.6b) includes the inequality ¥ > 0, but in (3.12}, a
corresponding inequality, 7 > 0, is not explicitly present. However, (3.12}
can easily be transformed to include such an inequality as follows: For
simplicity, assume that U is bounded from below?, i.e.

U o>y (3.13)

which, by the way, always will be the case in an MPC problem, since
each element of U is related to a physical quantity. Next, by defining
U7 .= U — U™", the constraints in (3.12) and (3.13) can be transformed to
the following set of constraints:

TU =%+ 7 1= [y

AU <646 § 1= —ALmin

OU < h-+h+Tx+eh:=—QUmn (3.14)
e >0

U 20

Now,letp=ay, z=6,y=U, G =1, G =4, G =0, g =7, ¢! =4,
g0 =846, g% = Oy nxns 90 =h+h and g* =T in (3.6b), then (3.6b)
and (3.12) are equivalent.

Note that since § > 6, assumption A1 holds if the pair (A, B) is stabilizable
and N > max(ny, 1), where n, is the number of unstable modi of (3.2) .
Further, note that Al implies that A2 holds due to the following: If T’
does not have full row rank, then there are repeated equalities among the
equalities I = 7 + yzy. Thus, full row rank of I' {i.e. agsumption A2) can
be obtained by removing such repeated equalities.

Finding a solution to the OWDP will, at each sample, reduce the sequence
of nyjo LP problems in Algorithm 3.2.1 into a single off-line designed LP
problem. This fact is the motivation behind stating the OWDP.

2This assumption does not reduce the degree of generality, since an unbounded vari-
able U; can in be substituted by U; = V; — Wy, ¥V; > 0, W; 2 (.



40 A Parametric Preemptive MOLP Approach

3.3 Existence of a solution to the OWDP

In this section, assume that the weights &; are defined via their consecutive
ratios r; as follows: given &n, > 0, & = réa, 7 > 0,4 € I} _|. The
rationale behind this definition is: Assume that corresponding to a fixed
p € P, aset of ratios r*(p} exists such that for all r; > r7(p), the associated
weights solve the OWDP for this particular p. Next, assume that such r}{p)s
exist for all p € P, and let 7] denote the maximum of r}(p) over P (existence
of this maximum is proved below). Let

C(F) = {é| ¢ = TiCit1: Cmy > 0,1 > 74,1 € 3;3-—1}' (3.15)

Thus, any & € C(#*) solves the OWDP.

At first glance, one might believe that it is sufficient only to find ratios
rip), 1 € ]If;mfl, such that the corresponding weights solve the OWDP for
this particalar p, and then maximize these ratios over P. However, this
is not generally sufficient, since the ratios have to be sufficiently large to
guarantee that such a maximization will work. Example 3.1 in Section 3.C
illustrates this. In this section it is shown that such ratios exist, and in
Section 3.4 we present a solution strategy to the OWDP.

Theorem 3.1 below states the existence of a solution to the OWDP. Tt is,
in the present setfing, an extension to the main result in (Sherali, 1983),
since it considers warying right hand sides of the constraints. This is of
vital importazce in the context of on-line prioritized infeasibility handling
in linear MPC.

THEOREM 3.1

Assume Al and A2. Then there exist ratios #* > 0 such that Vé € é(f*),
the following is true: Vp € P, z*(p) = (y*(p),v*(p),w*(p), 2*(p)) is an
optimal solution to (3.11) if and only if 2*(p) = 2°(p).

Before presenting the proof of Theorem 3.1, some useful results and defini-
tions which are used in the proof (directly or indirectly) are stated.

THEOREM 3.2
Assume Al and A2, and assume that p € P is fixed such that b = b(p) is

fixed. Then there exist ratios v*(p) > 0 such that ¥é € C(r*(p)), z*(p) is
optimal to (3.11) if and only if 2*(p) = 2%(p).

Proof: The proof follows directly from (Sherali, 1983, Theorem 2.1). [
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DEFINITION 3.2

A square matrix B consisting of m linearly independent columns of A €
R s called a basis for B™, If all n — m components of  not associated
with columns of B are set equal to zero, the solution to Az = b is called
a basic solution. If, in addition, = > 0, it is called a basic feasible solution
and a corresponding basis is called a feasible basis. The components of =
associated with columns of B are called basic variables.

A fundamental prerequisite for the way we follow to solve the OWDP is
existence of a basic solution z{p) = (y(p},v(p), w(p), 2(p)) such that z(p)
is equal to the lexicographic minimum of Z(p). This is the content of
Lemma 3.1.

LEMMA 3.1

Assume Al, A2, and that p € P is fixed such that b = b(p) is fixed. Then
x°, which denotes the lexicographic minimum of the set X = {z{z > 0,
Az = b}, is a basic solution to Az = b. Furthermore, let Z'(p}:={z€Z{p) |
3y, v,wsuchthat z = (y,v,w,z) > 0 is a basic solution to Az = b}. Then
the lexicographic minimum of Z'(p) is equal to z°(p).

Proof: The first part of the lemma follows from (Yu and Zeleny, 1975,
Theorem 2.3). Note that Al and A2 imply that 2% in Lemma 3.1 exists.
The second part of the lemma follows from the first part by reordering the
columns of A (and elements in z) such that the columns of A associated
with z become the first columns of A (elements in z). (L

Let Pg denote the set of all p € P where B is a feasible basis to (3.11), i.e.
Pp={p€P|B b+ B 'bip> 0}, (3.16)

where by = (g0, 920, ¢30, by 1= (¢, 9%, ¢°!). The following lemma states
that if, for a p € Pg, the corresponding basic solution z(p) has the property
that z(p) = 2°(p), then this property holds for all p € Pp.

Lemma 3.2

Assume Al and A2, let B be a basis to (3.11)}, and let x(p) =
(y(p), v(p), w(p), 2(p)) be the corresponding basic solution. Then the fol-
lowing implication holds:

(3pePg, z(p)=2"(p)) = (Vp€Pp, z(p)=2"(p)) (3.17)

Proof: Follows from (Gal, 1995, p. 179). O
Finally, we state the proof of Theorem 3.1:
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Proof of Theorem 3.1:

Consider the following candidates for the ratios #7 in the theorem

77 = supri{p), (€ H;;g*], {3.18)
peP

where the r}(p)s are associated with Theorem 3.2. First we show that 77,
1€ ]I;;S_] are finite. This is indeed the case since we only have to consider
a finite number of ps in order to compute the suprermum in (3.18). This
follows from the facts that i) there is only a finite number of bases, i) for
a given p € P, there will always be a basis B such that the corresponding
basic solution solves the problem (Lemma 3.1), and #1) the same r*(p)

H

{finite) solves the OWDP for all p € Pp (Lemma 3.2).

Now, let p € P be arbitrary, and let ¢ € C(#*), where #* is computed as
described above. Since & € C{#*) implies that & € C(r*(p)), where 7*(p) is
associated with Theorem 3.2, it follows from Theorem 3.2 that if this ¢ is
used in (3.11}, 2*(p) = 2°(p). O

3.4 A solution to the OWDP

In the previous section existence of a solution to the OWDP was proved. In
the following we will show how it can be solved. In the OWDP it is sufficient
only to consider ps in the set P\ P°, where PO := {p € P|(3.6) has a
solution with z*(p) = 0}, since ¥p € PY, clearly any & > 0 renders 2(p)* =
2°(p) = 0. The basic idea behind the solution approach is as follows: Given
a set of bases B such that P\ 'z C UperPp, where each basis B € B
has the following property: Vp € Pg, z{p) = (y(p),v(p), w(p),z(p)), the
basic solution to Az = b(p) corresponding to B, satisfies z(p) = 2°(p).
The weight vector ¢ in (3.11} is then designed such that the basic solutions
corresponding to each of the bases B € B are optimal when they are feasible.
This ensures that Vp € P, there always exists an optimal basic solution
z*(p) to (3.11) such that z*(p) = z°(p). Note that this does not imply
that the OWDP is solved, since for a given p there might exist alternative
optimal solutions to (3.11) that does not satisfy 2*(p) = 2°(p). Hence,
in order to solve the OWDP, ¢ must be designed such that ¥p € P, cach
optimal solution 2*{p) to (3.11) satisfies z*(p) = z°(p). In Section 3.4.1, this
solution approach to the OWDP is deseribed in detail, and in Section 3.4.2
we present an algorithm which can be used to compute B.
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3.4.1 Computing the weights

In this section, assume that the set of bases B {defined above) is given.
Before presenting the solution approach, we need some definitions:

DEFINITION 3.3

A vector z # 0 is said to be lexicographically positive if the first nonzero
component of z 15 positive. z is said to be lezicographically nonnegaiive
if it is lexicographically positive or = (. Similarly, = # 0 is said to be
lexicographically negative if the first nonzero component of z is negative. =
is said to be lezicographically nonpositive if it is lexicographically negative
or £ = 0. z € R" is said to be lexicographically less than z' € R* if z — o'
is lexicographically negative.

Consider the following parametric preemptive multi-objective linear pro-
gram (parametric PMOLP) defined by

mxin Wz
subject to x € X(p) = {z € RWwTmH27a | Az = b(p), = > 0} (3.19)

where W == [0, s (ny +mp+ma)s Im,], and where there exists a lexicographic
ordering among the objectives (i.e. elements of W), that is,
Z?l?mﬁ?ms W, jz; has higher priority than E?i';m”?me’ W1 ;25 Note

that the adjective “parametric” is associated with the parameter p.

DEFINITION 3.4

For a fixed p € P, an optimal solution to the associated PMOLP is called a
preemptive optimal solution. If the basic solution corresponding to a basis
B is a preemptive optimal solution, B is called a preemptive optimal basis.

Note that if 2*(p) = (y*(p), v* (p),w*(p), 2*(p)) is a preemptive optimal so-
lution to (3.19), then there does not exist any = € X(p) such that Wz is
lexicographically less than Wa*(p). Since Wz = z, due to the definition of
W, and due to the lexicographic ordering among the objectives in (3.19), it
follows that the z-part of a preemptive optimal solution to the parametric
PMOLP is equal to 2°(p). Thus, by using the relations described in Sec-
tion 3.2.3, for any p € P, the optimal cost of {and the z-part of any optimal
solution to) (3.19) is equal to the result of Algorithm 3.2.1.

Now, for a fixed p € P, let B be a preemptive optimal basis to the associ-
ated PMOLP, and let z(p) = (y(p), v(p),w(p), 2(p}) be the corresponding
basic solution, i.e. z(p) = 2°(p). Further, let zp(p) € R™ FM2Fms and
zp(p) € K™+ denote the basic and nonbasic variables of x(p), re-
spectively. Moreover, let cg € R +m24ms apd ¢ € Ry~ i denote
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the elements of ¢ {defined in (3.11)} corresponding to zg(p) and zp(p), re-
spectively. Based on the preemptive optimal basis B, sufficient conditions
on the weights €; > 0 to ensure nonnegativity of the relative cost vector
1, = ¢}, ~ ch B~'D will now be derived. (Nonnegativity of rp in addition
to feasibility of z(p) is equivalent to optimality of z(p) (Luenberger, 1989).)
One may write the expression for rp as

rp = [ Iny-mssmy ~DTBT] {Zg] : (3.20)

Since ¢; = 0,1 € ngmﬂms, the corresponding elements in ¢p and ¢g in
(3.20) can be removed along with the corresponding columns of [Iny —mitmas
~-DTB ‘T]. By exchanging the columns of the resulting matrix, the non-
negativity condition on rp is equivalent to

rp = Spé > 0, Sp € Rim —mi+ma)xma (3.21)

where the ith column of Sp is equal to the column of [T, .y 4mg, — DT BT
corresponding to the element of (cp,cp} where cn,1mytmari (= &) is lo-
cated. Note that the subscript B indicates that Sg is computed with re-
spect to the basis B, and that Sg is independent of p. If & satisfies (3.21),
the solution corresponding to the preemptive optimal basis B is also an
optimal solution to (3.11), since, for the given p € P, B is a feasible basis
to (3.19). In order to solve the OWDP, ¢ must be chosen such for all p € P,
each alternative solution to (3.11) is also a preemptive optimal solution to
the PMOLP. Lemma 3.4 below shows how such a ¢ can be computed, but
first we present Lemma 3.3 and Definition 3.5, which is used in the proof
of Lemma 3.4:

LEMMA 3.3

Assume Al and A2 and let p € P be fixed such that b = b(p) is fixed.
Further, let B be a preemptive optimal basis to the associated PMOLP,
Then each row of the corresponding Sp is lexicographically nonnegative,

Proof: Due to Al, A2 and Lemma 3.1, a B exists Vp € P. Let the ith
row of W be denoted é;. In (Sherali, 1983, Theorem 2.1.) it is shown (for
arbitrary W) that if there exists a solution to the associated PMOLP, then
there exists a real scalar My > 0 such that for any M > My, z*(p) is an
optimal solution to

min &z, G=Y9 Mt

subject to 2 € X := {z| Az = b, = > 0} (3.22)

if and only if it is an optimal solution to the associated PMOLP. Note
that & = en,4mptms+is ¢ € Lk, . Thus, for the particular p, if, in (3.11),
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c o= 22-31 Mﬂ?.p,mieny+mg+m3+i’ M > My (ie. ¢ = 2?1:31 Mm'suiez' =
(M™s, M™s=1 ... 1)), then these weights render z*(p) = 2°(p). Thus, let
&= (M™s, ML),

Assume that Lemma 3.3 is false, i.e. assume that there exist 4,7 € I[;;S such
that (Sp);,; < 0 is the first nonzero element in row i of Sp. Let z'(p) be the
basic solution to (3.11) corvesponding to B. Then it follows that there exists
an M’ > 0 such that if M > M’ then Spé # 0, i.e., 2'(p) will not be optimal
to {3.11) if the ratio between consecutive weights is large enough. This Is
due to the following: We have that (Sgpé¢); = E?ﬁj(Sf])i!ka'a_k. As M
increases, (Sp}; ;M™? —J dorninates this sum, and for some sufficiently large
M, say M', (5pé); becomes negative for all M > M', which contradicts the
result from (Sherali, 1983) stated above. g

DEFINITION 3.5
(Steuer, 1986, p. 216) Let the relative cost matriz corresponding to the
basis B be defined as

Rp = Wp— WgB™'D, {3.23)

where D consists of the columns of A not in B and Wg (Wp) consists of
the columns of W corresponding to the basic (nonbasic) variables.

Note that the ith row of Rp is the relative cost vector corresponding to the
Ny -Hrmy+2ms W,

cost function 32774 5405

LEMMA 3.4

Assume Al and A2, and assume given a set of preemptive optimal bases B
such that P\ PYC UpesPp. Then there exists an optimal solution (&, ")
to the following LF problem:

min ¢
&,e
subject to:
T3 . . + .
Z}(SB)i,jcj > 1py 1€ 8 pyim, \ 2, BEB (3.24)
JE
EE? Z &, ?‘ € E:};:s—l

where ¢rp € RY and Zp = {i € I} o my | ¥ € 15, (SB)iy 2 0}
i.e. Zp is the index set to all rows of Sp containing nonnegative elements
only. Moreover, & solves the OWDP, that is; if ¢ = & in (3.11), Vp € P,
z{p) = (y(p), v(p),w(p), z(p)) is an optimal solution to (3.11) if and only
if z(p) = 2°(p) (i.e. if and only if x(p) is a preemptive optimal solution to

(3.19)).
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Proof: See Section 3.A.1. 0

Since numerical problems when solving (3.11) may occur if the ratio be-
tween the largest and smallest element of ¢ is large, the cost function in
(3.24) is designed to minimize this ratio. The constants ¢ and rp can also
be tuned with the same objective in mind.

3.4.2 Finding a set of preemptive optimal bases

In this section we propose an algorithm (Algorithm 3.4.2) which computes
a finite set of bases B such that P C UpcpPp, where each basis B € B has
the following property: Vp € Pg, z(p) = (y(p), v{p), w(p), z(p)), the basic
solution to Az = b(p) corresponding to the basis B, satisfies 2(p) = 2°(p),
that is, for each basis B € B, ¥p € Pp, B is a preemptive optimal basis
to (3.19). Note that Algorithm 3.4.2 computes a set of preemptive optimal
bases B which covers 7, while in Section 3.4.1, it is required that B covers
P\ PY. However, this does not influence the resulting weights & computed
by solving (3.24), since Vp € P any & > 0 solves the OWDP.

Algorithm 3.4.2 is based on an algorithm stated in (Gal, 1995, Chapter I'V-
3-1), which solves the following problem: Given a general (single-objective)
parametric LP problem such as (3.11}. Find a set of polytopes Pg that
cover P such that ¥p € Pg, the corresponding basis B is optimal to (3.11).
The basic idea is to use a dual siinplex step to pass from one region Py 10 a
neighboring region Pp«, where Vp € Py (Pgr) B’ (B") is an optimal basis
to (3.11). This procedure is continued until all optimal bases are computed.

Note that in the problem considered in {Gal, 1995, Chapter 4), there is a
scalar cost function. Since we in the present problem considers a vectorial
cost function with a lexicographic ordering among the elements, a modifi-
cation of this algorithm is required. Before presenting Algorithm 3.4.2, we
need some results and definitions. The following lemma provides a charac-
terization of the relative cost matrix corresponding to a preemptive optimal
basis. A similar result is also stated in (Korhonen and Halme, 1996) (with-
out a proof).

LEMMA 3.5

Fix p € P and let B be a basis to (3.19). B is a preemptive optimal basis
to (3.19) if and only if B is feasible and each column of the corresponding
relative cost matrix Rp Is lexicographically nonnegative.

Proof: See Section 3.A.2. il
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Theorem 3.3 below presents the dual simplex step in the sense of PMOLP,
which can be used to pass from one preemptive optimal basis to other pre-
emptive optimal bases. The main point is to ensure that each column of
the relative cost matrix corresponding to each of these bases are lexico-
graphically nonnegative.

THEOREM 3.3

Given a p € P and a corresponding preemptive optimal basis B to (3.19)
(thus p € Py). Given a p° € Pp and an v € I} 0 0m, such that
(")) = 0 and Vi € I 4o vma \ {7} (28(0%)r > 0, ie. p® is on one
of the facets of Py (recall that xp(p®) = B~'b(p°)). Let p* be a normal
vector to this facet pointing out of Pp. Then, if there exists a preemptive
optimal basis to (3.19) for a p = p' 1= p® + ept, with ¢ € R" infinitesimal
small, the new basis computed by the following algorithn is a preemptive
optimal basis to (3.19):

Algorithm 3.4.1 (Dual simplex step in the sense of PMOLP)
Note that to be consistent with the common notation in the LP literature,
the symbols J,y, ¢, and z are redefined in this algorithm.

Step 1: Let y;; = (B~'A);; V) e H,tﬁmﬂ?ms, yr; = 0 there is no
feasible solution to (3.19) when p = p/, stop. Else, set k= 1, J§ =
{7 |yr; < 0} and go to Step 2.

Step 2: Let

: Zk"“Ck,‘ : zk,'—C»‘,‘
JLi=djeJdi_y | " = min St S
:UTQj 'LEJ;;—-I yﬁ",i
where z; ; = ¢y B™1 Ay, ¢ij = W;; and ¢l consists of the elements of
the ith row of W corresponding to the basic variables. Go to Step 3.

Step 3: If|J7| > 1, and k < mg set k « k+1, and go to Step 2. Else set ¢
equal to one of the elements in J]. Use y,, as pivot element, i.e. form
a new basis by replacing the rth column of B by the gth column of

A. Stop.

Proof: See Section 3.A.3. Note that this theorem is a slight extension of a
similar result stated in (Korhonen and Halme, 1996). However their proof
is not complete since they do not prove feasibility of the new basis and that
the optimality condition in Lemma 3.5 holds for all columns of Rp. O

Next, we define a measure for the distance between to bases (Gal, 1995,
Chapter 4):
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DEFINITION 3.6

Let p* denote the set of indices to basic variables in the basic solution
corresponding to B*, where B¥ is a basis to (3.11). p* and p’ have the
distance A = |p*\ p?].

The following two definitions are preemptive multi-objective extensions of
similar definitions in (Gal, 1995}:

DEFINITION 3.7

Given two bases B’ and B”, B' # B’ to (3.19), and assume that there
exist p',p" € P such that the basic solution corresponding to B’ (B") is a
preemptive optimal solution to (3.19) if p = p' (p = p"). B’ and B" are
said to be neighboring bases in the sense of PMOLP if i) there exists a p'
such that both B’ and B are preemptive optimal bases to (3.19) if p = p?,
and #1} it is possible to pass from B’ to B” by a dual simplex step in the
sense of PMOLP (see Algorithm 3.4.1), and vice versa.

Finally, we present Algorithm 3.4.2, which computes the set of preemptive
optimal bases B such that P\ po C UgepPp. Note that if one wants to
consider an M # R (see the comment after presenting the OWDP at
the end of Section 3.2.2), this must be explicitly accounted for in this algo-
rithm. However, if M = R™  in the following, just replace M by R . In
Algorithm 3.4.2, let ®{p*) be the set of all index sets to basis variables such
that o' € ®{p*) if and only if p! is an index set to a neighboring basis in the
sense of PMOLP to p* satisfying Py N M # ). Further, at the kth itera-
tion, let ), be the set of all index sets to bases for which all corresponding
neighboring basis in the sense of PMOLP have been computed, and let U,
be the set of all index sets to bases which are known to be neighboring
bases in the sense of PMOLP to a basis in T, but whaose corresponding set
of all neighboring bases in the sense of PMOLP is not yet computed.

Algorithm 3.4.2
(Gal, 1995, Chapter IV-3)

Step 1: Find an arbitrary feasible solution (z*, p*}€ {(z,p} | Az —bip = by,
p € M, z > 0}. If there is no feasible solution, P N M = 0. Stop.
Else, find a preemptive optimal basic solution to (3.19) with p = p*.
Such a solution can be computed using a sequential algorithm such
as Algorithm 3.2.1. Let B? denote the corresponding basis. Set Ty =
{°}, and let Up = ®(p"). If Uy = @, the algorithm is finished, stop.
FEise, set £ = 1, and go to Step 2.
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Step 2: Select a p* € Uy with the smallest possible distance from Pl
In particular, if ®(p*~1) N U, 5 0, select a pF e d(pF NN,

Set T = Tp—y U {p"} and Uy, = Uy U B(p*) \ T*.

Step 3: If U, = 0, T} contains a set of basis indices to preemptive optimal
bases B such that PN M C UpesPa, stop. Else, set k «— k+ 1, and
go to Step 2.

In Step 2 in Algorithm 3.4.2, one needs a procedure which computes the
set of all neighboring bases in the sense of PMOLP to a given basis. In
(Gal, 1995, Chapter 4), such a procedure is given for single-objective LPs.
Algorithm 3.4.3 below is preemptive multi-objective extension of this algo-
rithm:

Aigorithm 3.4.3

Step 1: Let B be a preemptive optimal basis to (3.19) for a fixed p €
PnM, and let T C I . 4m, be the set of indices to rows in B 1A
having at least one negative element.

Step 2: For each i € T, compute

8 = Igjuqn 5 (3.25a)

subject to

(p,s) € {{(p,s)|s 20, pe M, B g+ B oyp — 5= 0.
(3.25b)

Let I denote the set of all 1 C T such that s = 0. Note that each
i € T corresponds to a facet of Pyg. (An efficient algorithm for solving
(8.25), which exploits the nature of (3.25), is given in (Gal, 1995,
Chapter II-2-2).)

Step 8: Foreachi € T, determine a possible pivot element according to the
dual simplex step in the sense of PMOLP (Algorithm 3.4.1), and form
the corresponding basis. This set of bases is the set of all neighboring
bases in the sense of PMOLP to B.

The proof that Algorithm 3.4.2 solves the problem of computing a finite
set of bases B such that P N M C UpegPpr, where each basis B € Bisa
preemptive optimal basis to (3.19) is a trivial modification of the proof of
the corresponding algorithm in (Gal, 1995).
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As stated at the beginning of this section, Algorithm 3.4.2 computes a set
of preemptive optimal bases B which covers P rather than P\ P°. which
is required to solve the OWDP with the solution strategy we propose in
Section 3.4.1. {Recall that this difference does not influence the resulting
weights.) If, in advance, it is known that the set P\ P is connected, Al-
gorithm 3.4.2 can be modified such that it does not consider bases B such
that Pg and P? are overlapping. By definition, two overlapping regions
have at least one common interior point. This can be done in the following
way: In Step 2 in Algorithm 3.4.2, let &(p*) be the set of all index sets
ot satisfying the following two criteria: i) p* is an index set to a neighbor-
ing basis in the sense of PMOLP to p* satisfying Pp: N M # 0, and i)
5 € {ny +m1+mg+1,... ,ny+m; + 2m3} such that j € p*. Criteria 1)
is already present in Algorithm 3.4.2, while criteria @) is added to rule out
the basic solutions which do not have z;s as basic variables. The proof that
this modification does not violate any of the assumptions in (Gal, 1995)
is straightforward, thus, if (P N M\P? is connected, Algorithm 3.4.2 will
continue until (P N M)\P? is covered.

Note that B computed by Algorithm 3.4.2 is the set of all preemptive op-
timal bases, i.e. B € B if and only if B is a preemptive optimal basis
and Pg N M # §. Thus, some of the regions P will generally be over-
lapping, since, for a given p € P N M, there might exist more than one
preemptive optimal basis to (3.19). This is due to the fact that in Step 3 in
Algorithm 3.4.1, if |J},.| > 1, there are more than one neighboring basis in
the sense of PMOLP along the same facet. However, in order to solve the
OWDP {according to Lemma 3.4) only a set of preemptive optimal bases
such that P N M C UpcpPp is needed. In order to reduce the computa-
tional load when solving the OWDP, it suffices to find a subset 5 of B such
that the corresponding polytopes Py that cover PNM are non-overlapping
(note that there generally exists several such Bs). Existence of a B follows
from Theorem 3.3, since, if there exists an optimal solution outside a facet
of a given Pg, a corresponding optimal basis B’ (i.e. a neighboring basis
in the sense of PMOLP) can be computed by Algorithm 3.4.1. Note that,
in Step 3 in Algorithm 3.4.1, B’ is obtained from B by pivoting on the
yrgth element, which is negative, and thus, Pp and Pp: are separated by
a hyperplane. A B can be obtained from Algorithm 3.4.2 if the following
modification is done: When computing the set of all neighbors in the sense
of PMOLP to a given preemptive optimal basis (Algorithm 3.4.3), replace
the cost matrix W in Algorithm 3.4.1 with W= W7, =T and replace
mg in Step 3 in Algorithm 3.4.1 by mg -+ 1, where the auxiliary cost vector
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W ¢ RryFmetims hag the following property:

VB € B,?’ € H:L:;-p.},iaj € ‘]gai % j: (TaDum)i/yT':i # (T%RT)J/?J’T,';‘:
(3.26)

where (r$#%)T = ()T B~1D — (¢#*)T. The point is to ensure that the
pivot element y, 4 is uniquely determined in Step 3 in Algorithm 3.4.1. A
™ satisfying (3.26) with probability 1 is obtained by setting each element
of ¢™% equal to a randomly selected positive real number. Given a pre-
emptive optimal basis B and the corresponding Pg, then this modification
ensures that a neighbor along a certain facet of Pg is uniquely determined
if there exists one. It follows from Theorem 3.3 that with this modification
to Algorithm 3.4.3, PN A1 will still be covered by the resulting set of bases.

For the single-objective case, Gal (1995) proposes the following method
to compute a B: when, in the single objective version of Algorithm 3.4.1,
there are several possible neighboring bases along the same facet of a Py
corresponding to a given basis index set pF, arbitrarily select one of them
to enter U in Step 2 in Algorithm 3.4.2. However, experiments have shown
that this strategy does not always work, and in Section 3.B an imaginary
example is used to explain the reason for this. Moreover, according to
Professor Tomas Gal (personal communication), his algorithm is indeed not
worked out in all details for the cases when there are several optimal bases
for a given p € PN M. Since the single-objective case can be considered as
& special case of the PMOLP, the approach presented above will solve the
problem of overlapping polytopes in the single-objective case as well.

3.4.3 Algorithm to solve the OWDP

The following algorithm is a summary of the strategy we have proposed for
solving the OWDP:

Algorithm 3.4.4
Given the constraints to the LP problem defined by (3.6).

Step 1: Define the corresponding A4 and b(p) according to {3.11).

Step 2: Use Algorithm 3.4.2, with the above proposed modification, to
compute a set of preemptive optimal bases B such that 73\’/‘3G -
UpcgPr and such that VB, B" € B, B' # B", Py and Pg» are
non-overlapping.

Step 3: One solution to the OWDP is given by a solution to the LP (3.24).
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N -

Figure 8.1: An idealized mass-spring system.

3.4.4 An alternative approach to solve the OWDP

As a first step towards developing an algorithm to solve the OWDP, we
followed the same strategy of defining the weights & via their consecu-
tive ratios r; as used when establishing the existence of a solution to the
OWDP in Section 3.3. One such solution approach is presented in {Vada,
Slupphaug and Johansen, 1999a). In Section 3.C it is shown how to com-
pute ratios which will be less than or equal to the ratios obtained by using
the strategy in (Vada, Slupphaug and Johansen, 1999a). Note that small
ratios are desired in order to avoid numerical problems when solving the
LP problem (3.6}. However, the resulting ¢ obtained by using this solu-
tion approach generally gives larger ratios between the greatest and least
element of & than obtained by using Algorithm 3.4.4.

3.5 An example

In this section we solve the OWDP for an idealized mass-spring system
which is illustrated in Figure 3.1. The spring is assumed to be linear, and
the mass slides without any friction. There is a force u directed horizontally
on the mass. It is assumed that both the position and the velocity of the
mass are ideally measured, and that the spring constant & == 1 ;‘;‘ and the
mass M = 1 kg. By using exact discretization with sample time equal to
0.5 s, the system is given by the following equation:

Tey1 = Agxy + Baug, (3.27)

where

A, | osmeo04red] o T0.1224
a7 0.4794 0.8776 | 7% T |0.4794 |

71,1 and ;9 is the position and velocity of the mass at time t respectively.
Let N = j3 = 5. The input and state constraints are given by (3.3) and
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(3.4) respectively, where

10 0.25
~1 0 0.25 1 0.
H=\| o qh= 0.25’17“[—1}’4”[0.6}’
0 —1 0.25

ie. ny = 4. The prioritization of the state constraints is as follows, in
descending order:

i. Upper limit on the mass position, i.e. 25, €0.25, 7> 1.
ii. Lower limit on the mass position, i.e. zyy1 2 —0.25, 7 > 1.
iii. Upper limit on the mass velocity, i.e. 0 £0.25, j > ¢

iv. Lower limit on the mass velocity, i.e. z;0 2 —0.25, j > 1.

In addition to the above prioritization, Vi, j, ¢, Hz;y1e < hi has higher
priority than H;z;; < h;. Thus, m3 = npjz = 20, Le. in the MPC op-
timization problem (described in Section 3.2.1) there are 20 constraints
which can be relaxed in order to recover {rom infeasibility of (3.6), each
having different priority levels. In the following, for notational simplicity,
let p = x;. Since both eigenvalues of Ay are equal to 1, my = 2. Fur-
ther, ms = Nm = 5, and n, = N = §. Thus, in (3.11), & € R2Ox1,
A e RT3 pip) € R and z € R?0*!. Figure 3.2 shows one way to cover
P\ PY with a set of polytopes Py, where Vp € Pp, z(p) = 2°(p), wheze
z = (y(p),v(p),w(p), z(p)) > 0 is the basic solution to Az = b(p) corre-
sponding to the basis B. In the figure, there are 128 distinct Pgs. These
are computed by using Algorithm 3.4.2 in Section 3.4.2. The computation
time was about 40 seconds on a Pentium 266 MHz PC using MATLAB with
NAG Foundation Toolbox. The area within the outer (i.e. largest) poly-
tope shows the set of all initial states x, where there exists a solution to
(3.6), i.e. the set of all initial states P where the input constraints (3.3)
in addition to the end point constraints (3.5) can be met by the proposed
controller. The polytope enclosing the origin shows the set of all initial
states z, where there exists a solution to (3.6) with z = 0, ie. the set
of initial states P° which does not require constraint violations. The area
in-between those two polytopes, i.e. ’P\’PO, are covered with polytopes
having the following property: Vp€ Pp, z(p) = 2°(p), where p = z,.

The resulting weights computed by (3.24), with ¢=rp = 1.0, are shown in
Table 3.1. Note that the values of the resulting weights are non-intuitive
in that one might expect that & had to be significantly larger than g0 In
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1 12

Figure 8.2: A partition of the state space.

i |1 2 3 4 5 6 7

¢; | 1.000 1 1.000 | 1.000 | ¥8.160 | 78.160 | 1.000 | 1.000
i |8 9 10 11 12 13 14

¢ 1 1.000 | 78.160 | 78:160 | 1.000 | 5.747 | 2.086 | 2.086
1| 15 16 17 18 19 20

¢; | 2.086 0 1.000 | 5.747 | 2.086 | 2.086 | 2.086

Table 3.1: The weights solving the OWDP for the given ezample.
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order to solve the OWDP, and in general that & had to be much larger than
Zip1- Also note that the ratio between the largest and smallest clements of
& is only 78.16. To verify that & in Table 3.1 indeed solves the OWDDP,
(3.11) was solved using these weights for 250000 different initial states z;
picked randomly from P\ PY and the solutions were compared with the
corresponding solution computed by Algorithm 3.2.1. The solutions became
equal for each initial state z;.

3.6 Concluding remarks

Seeking an LP problem whose purpose is to minimize the violations of the
relaxable constraints according to some prioritization in order to obtain a
consistent set of constraints, we have shown that it is possible to design
the weights of this LP such that the optimum becomes equal to the lexico-
graphic minimum of the set of feasible constraint violations for all possible
right hand sides of the constraints. This result is an extension of the main
result in (Sherali, 1983) which considers the same mathematical problemn
when the right hand side of the constraints is fixed. Further, we present
an algorithm to compute these weights. The first part of this algorithm
computes a finite set of preemptive optimal bases such that all possible
right hand sides of the constraints are associated with one of these bases.
This part of the algorithm is an extension to a result in (Gal, 1995}, which
considers the same problem in the case when the weight vector to a scalar
LP problem is given. The second part of the algorithm computes sufficient
large weights corresponding to this set of bases.

Regarding MPC problems having different priority levels assigned to the
constraints, this result can be used to compute the optimal prioritized
constraint violations with only a small increase in on-line computational
overhead, compared to the computational load of an MPC implementation
without an infeasibility handler, and with a significant decrease in compu-
tational load compared to an infeasibility handler that sequentially removes
single constraints to achieve feasibility.

3.A Some proofs

3.A.1 Proof of Lemma 3.4

In this proof, if K is a matrix, K; denotes the ¢th column of K. First,
existence of an optimal solution to (3.24) is established. From Theorem 3.1
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it follows that there exists a feasible solution to (3.24) when rp = 0, and
by using the fact that each row of Sp are lexicographically nonnegative
(Lemma 3.3), it can be shown that there also exists a feasible solution for
an arbitrary rp > 0. An optimal solution to {3.24) exists since the &s are
bounded from below by non-strict inequalities.

Next, we prove the if and only if-part;: Take ap € P, and let B € B he a
basis such that p € Pg. (Then, for all p € Py, B is a preemptive optimal
basis to {3.19)). Note that due to Al, A2 and Lemma 3.1, such a B exists
for all p € P. Let 2*(p) = (y*(p), v*(p), w*{p), z*(p)) be the correspond-
ing basic solution, i.e. 2%(p) = 2%(p). Let Z5° := {i ¢ H;:y,mﬁm\? IV €
I (Sp)ij =0}, 1e. Zg‘) C Zp is the index set to all rows of Sp containing
zeros only. First, assume that Z§0 = (). Then by (3.24), the correspond-
ing relative cost vector Spc* > 0, and hence 2*(p) is a unique solution to
{3.11). Since z*(p) is a preemptive optimal solution to (3.19), this proves
the lemma when ZE“O = (). Next, assume that ZEU # @, i.e. some of the
elements of the relative cost vector Spé* corresponding to B are equal to
zero. Then z*(p) is not necessarily unique, and hence we have to prove
that, when ¢ = &, all alternative optimal solutions 2*(p) to (3.11) are also
preemptive optimal solutions to (3.19) and vice versa. The set of all op-
timal (basic as well as nonbasic) solutions to (3.11) consists of all feasible
solutions to (3.11) in which the (nonbasic) variables z}(p) corresponding
to non-zero relative cost coefficients, (rp); = (Spé*);, are equal to zero
(Murty, 1983, p. 139). Since rp > 0 in (3.24), then (Spé*); = 0 if and
only ifi € ZEO {i.e. the ith row of Sp contains zeros only). Let Ip and Ip
denote the vectors of indices to the basic and nonbasic variables in z*(p)
respectively. From the way Sg is composed (recall that Sp is composed of
cotumns of [T, —m, +mq, D7 B7T)), it follows that ¥j € Lt (Spliy = 0 if
and only if ¢;) and #1;) below hold:

1) (Ip)s € ny + mo + my, which follows from the fact that the ith column
of the identity matrix in (3.20) (e;) is not a column of Sp if and only
ifep; =0, and cp; = 0if and only if (Ip); < oy -+ My + 3.

i) Vj € ]Ijr‘n"%mz-!-mw (IB)j > Ny -+ My -+ g, (DTB__T)M' = 0.

In the following it is shown that since (Spé&*); = 0 if and only if 4;) and 44 ;)
holds, then all alternative optimal solutions (i.e. other than z*(p)) to (3.11)
also have the property that the z(p)-part of these solutions is equal to z°(p):
Consider the associated PMOLP in (3.19), and let Rp be the relative cost
matrix corresponding to B. Recall that, for the given p, B is a preemptive
optimal basis to (3.19), and that the ith row of Rp is the relative cost
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: . nyma+2m, Cs
vector corresponding to the cost function Y52} 24ems gy, sas. Combining

this with the above cited result from (Murty, 1983), it is straightforward to
establish that the set of all preemptive optimal solutions to (3.19) consists
of all feasible solutions to (3.19) in which the nonbasic variables z;(p) cor-
responding to (Rp); # Om, are equal to zero. Since W = [()?.,%X(nﬁm:2 +ma)s
I, the ith column of Rp = Wp — WaB ™' D is equal to O, if and only
if i9) and it4) below hold:

iy} (Wp)i = Opm,. Note that (Wp); = O,y if and only if (Ip)i < ng +ma +
3.

ito) Vi € I}, (WgB~'D);; = Om,. Since each column of Wpg are either
equal to Op, or equal to ey, k € I, and since there does not exist two
non-zero columns of Wy which are equal, then Vi € 17, o0 4., 3k €
I} such that (Wyg); = e; implies that Vj € 17 . oy (WeB~' D)y
= (B~1D);;, and if such a k does not exist, Vj € H;fymml s
(WpB~'D)y,; = 0. Note that (Wg); = e if and only if (I5); >
ny + mg + ma. Thus, ¥j € I, (WpB™'D);; = 0 if and only if

Vi € T smytmss (B)5 > 1y +ma +ma, (DTB7T);; = 0.

At a first glance, one might believe that ig) is not a necessary condition
to ensure (Rp); = Om,. However, this is the case due to the following: We
have that (Rp); = (Wp); — (WpB~1D);. Assume that (Wp); # Osmy. Then
3k € I, (Wp)i = ep, ie. (Wp)y;=1. This implies that A5 # i, (Wp); =
eg, i.e. the kth row of Wg is equal t0 On rmy+2ms. This implies that
Wi € LY i vmge (WBB™ D)y = 0. Thus, if (Wp)i # Omg, 3k, (Wp)k,i —

(WpB™'D)g; =14 (Rp)i # Oms-

Observe that i;)<¢>42) and 44;)<iig). Thus, since, if ¢ = &7, it holds that
(rp)i == (Spé); = 0 if and only if the corresponding (Rp); = Opm,, we have
shown that for the given p, the set of all optimal solutions to (3.11) is
equal to the set of all preemptive optimal solutions to (3.19). Since p was
arbitrary, the lemma is proved. U

3.A.2 Proof of Lemma 3.5

First the only if-part is proved by proving the contrapositive. First, nofe
that if B is not feasible, it is not a preemptive optimal basis. Assume
that there exists a column of Rp which is lexicographically negative, ie.
assume that there exists i € I}, and j € }If{y_erms such that (Rp)i; <0
and Yk € }Ij;]_, {Rp)g,; = 0. Then, introducing the jth nonbasic variable
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into the basis will reduce the value of the ith element of the cost vector in
(3.19), while the element 1 to i — 1 of the cost vector remain unchanged.
Thus, B cannct be a preemptive optimal basis.

Next, the if-part is proved: Assume that each column of the relative cost
matrix Rp corresponding to a feasible basis B to (3.19) is lexicographically
nonnegative. Furthermore, assume that the ith nonbasic variable enters the
basis. Since (Rp);, the ith column of Rp, is lexicographically nonnegative,
the elements of Wz corresponding to the leading zeros on (Rp); remains
unchanged after the basis exchange. However, the first nonzero element in
(Rp)i, say the kth element, is positive, and thus the kth element of Wz
increases due to this basis exchange, and thus the original cost vector is
lexicographically less than the cost vector obtained after the basis exchange.
C

3.A.3 Proof of Theorem 3.3

The outline of the proof is as follows: First, the claim in Step 1 in Al-
gorithm 3.4.1 is proved, then it is proved that each column of relative
cost matrix corresponding the new basis are lexicographically nonnegative,
and lastly we prove that this basis is also feasible. Then, according to
Lemma 3.5, the new basis is optimal to (3.19) when p = p'.

vy e ]I;L: tngatmgs Urg = 0, the dual problem to the single-objective LP
corresponding to the first objective in (3.19), i.e. the dual of

min E;me?“m?’ Wiz subject to z € X(p), is unbounded (Luenberger,
1989, p. 98), and thus the primal problem is infeasible. This implies that
(3.19) is infeasible when p = p’. This proves the claim in Step 1.

Next, we prove that the basis resulting from Algorithm 3.4.1 is a preemptive
optimal basis to (3.19) when p = p’: Assume that 3j € H:y+mg+2m3, Yrj <
0, and for simplicity assume that 4 = [B, D]. Note that due to this assump-
tion, the definition of 2; ; (see Step 2 in Algorithm 3.4.1), and Lemma 3.5,
we have the following relation: Let fﬁp == Qg x(myg +ma-+ms) —RD] (note
the minus sign), then z;; — ¢;; = (Rp); ;. Thus, since B is a preemptive
optimal basis to (3.19) when p € Pp, each column of Rp is lexicographi-
cally nonpositive (LNP). Let B’ be the basis obtained by replacing the rth
column of B by the gth column of A, and let 2] ; := (cf)'(B') ™ 4; and
(Rp)i = (21 — €ij) ==z} ; — cij, where (cly)’ consists of the clements of
the ith row of W corresponding to the new basis B’. Then, by pivoting on
element ¥, , in the tableau corresponding to B, the we obtain

(2 = cig) = (2 — €ig) = = aig = cig), 1€ Ly T ELT L om,-
" (3.28)
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In the following it will be shown that each column of B}, is LNP, and we
prove it separately for columns j of R}, corresponding to 47 < 0, yry =0,
and ¥, ; > 0 respectively.

First, consider the columns of R’D corresponding to yr; < 0, i.e. column
j € Jy. Due to the way r and ¢ are computed by Algorithm 3.4.1, Vj €
Jo,3k; € Ly, such that

C o Zig i Rig— Gi
((V@EHk 1 < ky, bl ] T‘q) and

mar "t — .
Yr4 Yrg

k415 T Oyl S Zhitlg ij+1,q))

ki <mg =
Yr.j Urg

By (3.28), we have (recall that y, 4 < 0):

. - Zig — Gl Zig — Ci
Vi Ly < by DT = BT (o - ) = 0

ma? .
Yr.g Yryg

. Zij — Cig _ g~ G

i=k;+1: S - s (#i, — ng,j)f <
y?",j yTaq

Thus, ¥§ € Jo, ((z15 — 1)+ (Bmaj = Cmayy)') 18 LNP.

Next, consider the columns j of R, corresponding to 1, ; = 0 : By (3.28), we
have (recall that Vj € ]I;lt'?,+m2+2m3’ ((z15=¢15)s -+ +(Zma,j—Cmay)) 18 LINP):
Vi e Hj;lg (zi;jﬁciuj)’ = (Zi,jmci,jL and thus Vj & {j € H:y—:—mg+2m3 [?jr,j = 0}1
{215 —c13) s o s (Zmgj — Cma,g)') 18 LNP.

Finally, consider the columns j of R}) corresponding to y,; > 0: We have
the following three cases: ) (z1; — ¢15) < 0, ) (215 — c1;) = 0 and
(214 —¢€1,4) <0, and 1) {21, —e15) = 0 and (21,4 —€1,4) = 0. Since g—j <0
and (214 ~ €1,4) < 0, it is easily seen from (3.28) that for case i) and ),
(Z]jj e C]J)r < U, and thus ((Z]_}j - Cl,j)!; ,(st?j - Cms,j)r) 18 LNP. For
case i), obviously, (21 — e1;)’ = 0. Thus, to establish that {(z,; — i)

o+ (Zma,j = Cmg,;)) is LNP, it is necessary to consider (zg,; — ca,;). For
this case, there are also three cases to consider, which are similar to case
7) to iif). Continuing this way, for a § € {f € I} ims4oms ¥y > Oh
we get the following: Vi € I, (z; — ¢i;) = 0 if and only if Vi € I,
{(#ip—cip) = (2 —ci;) = 0. For all other j € {j € H:ﬁmﬁzms lyr; > 0},
{(z15—c1,5)s- - s (Zma,j — Cmayy ) ) 15 lexicographically negative. Thus, since
each column R}, are LNP, each column of the corresponding relative cost
mafrix are LNN.

Finally, we show that B’ is a feasible basis to (3.19) when p = ¢, ie. that
z'p(p) = (B") 1b{(p') = 0 : By pivoting on element y, 4 in the tableau
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corresponding to B, the we obtain

zplp )
(ﬁlB(pf))ﬁ = (.Z‘B(p’))i - L_Ij(p_))iyi,(f’ tE R:?_‘.'i‘?ul+7712+m:; \ T
i (3.29)

(zp (')
Yryq

(5 (@) = (3.30)

By choosing ¢ small enough, (zg(p')); < 0 can be made arbitrarily close
to zero, and thus by (3.29), (%" > 0,1 € H,r"?'?_l+m2+m3 \ 7. Further,
since (zp(p'))r < 0 and g, < 0, by (3.30), (z5(»")), > 0. Thus B’ is a
feasible basis to (3.19) when p = p'. Thus, since, in addition, each column
of the corresponding relative cost matrix is lexicographically nonnegative,
according to Lemma 3.5, B is a preemptive optimal basis to (3.19) when

p=y. O

3.B A counter example

As described at the end of Section 3.4.2, for the single-objective case, Gal
(1995) proposes the following method to compute a B such that ¥B', B” €
B, B' # B", P and Ppg» are non-overlapping and such that P C Up.sPp:
When, in the single objective version of Algorithm 3.4.1, there are several
possible neighboring bases along the same facet of a Pgr corresponding to
a given basis index set p*, arbitrarily select one of them to enter U in
Step 2 in Algorithm 3.4.2. This section contains an explanation of why this
strategy may fail. Consider the imaginary example depicted in Figure 3.3.
In the figure, each polytope corresponds to a region Pgr, where B¥ is an
optimal® basis, and the integers denote the value of the ieration counter k
in Algorithm 3.4.2 when this basis was added to set 7). Thus, the upper
left polytope in Figure 3.3 illustrates the area where the optimal basis B?
computed in Step 1 in Algorithm 3.4.2 is feasible. Assume that, in Step 2
in Algorithm 3.4.2, p* (i.e. basis B*) are selected from Uj_; in the order
illustrated in Figure 3.3. According to the figure, the bases corresponding
to polytope 0a and 00 (i.e. B% and B%) are both neighbors to B along
the lower facet of Pgo. At k == 0, assume that p° is added to Uy (along
with a set of neighbors along the other facets of Pgo.) Thus, p% is not
considered further by the algorithm. Further, there are two neighboring
bases along the upper facet of Pps: B°% and B%®. At k = 5, assume that
B% is selected to enter Us. According to the figure, along the upper facet

*Note that we write optimal instead of preemptive optimal. This is because we here
consider a single-objective parametric LP such as (3.11}.
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Figure 38.3: An imaginary example dlustrating why Algo-
rithm 3.4.2 may fail.

of Pgss, there is a single neighbor B® which overlaps Pg«, where B? is the
only neighbor along the lower facet of Pgoa. Thus, in order to cover P when
these selections are made, overlapping regions are unavoidable. Note that,
if, at & = 5, B°® has been selected as the neighbor along the upper facet
of Pps instead of B, this situation would not have appeared. Also note
that at k = 5, there is no information available which could have been used
to determine the selection in order to guarantee non-overlapping regions.
However, if B, the set of all optimal bases were available, this situation could
have been avoided by using the theory in (Gal, 1995, Chapter 4). Note that
the modification proposed at the end of Section 3.4.2 solves this problem
without the need of calculating B. Although this example is imaginary, it
illustrates the main features of more complex examples encountered when
applying this algorithm on the MPC example in Section 3.5.

3.C Computing ratios

For completeness reasons, in this section we present how the ratios de-
scribed in Section 3.4.4 can be computed in a manner such that the ra-
ti0s obtained by using this strategy generally becomes less than the ratios
computed by using the strategy proposed in (Vada, Slupphaug and Jo-
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hansen, 1999a}. Note that small ratios is desired in order to avoid numerical
problems when solving the LP problem (3.6).

Before presenting the strategy, we present an example which shows that it
is not sufficient to find ratios r;{p), i € EI;;S_I, such that the corresponding
weights solve the QOWDP for this particular p, and then maximize these

ratios over P

Example 3.1
Assume that

G1=[5-4010] g (p) = 16

(100
G2= 010 f@n:[zzﬂ
001
(5 7T 6
G = 1§_é§:$ g%p)x:ﬁ3—20153].
-6 13 -2

Note that for simplicity, ¢*(p) are independent of p. The corresponding A
and b in (3.11), becomes

(5 101000000000 0 0 0] (16 ]
1 0 010000000 0 0 0 2
0 1 001000000 0 0 0 2
4- |0 0 100100000 0 0 0 oo | 2
5 7 60001000-10 0 0 0
~9 14 3 0000100 0 -1 0 0 ~20
19 -2319 0000010 0 0 —1 0 15
6 13 —20000001 0 0 0 —1 -3

The optimal basis variables are z3, 24, %5, Zg, £10. 211, T12, 713, and the cor-
responding Sp becomes

F 2 —10.5 9.5 07

13 —11 -4 0

1 0 00
Se=14 1 0o
0 0 10

0o 0 0 1]

Assume that ¢ = (%, 1,1, 1) (le. 7 = (% 1, 1)). Then Spé > 0, and

¢ solves the OWDP in this case. Define & where & = k(m3‘i)g_—5j:, i =
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1,...,3. Then Sp&’ < 0ifk € (1.246,3.304) . E.g.,if b = 2, & = (12,4, 2, 1),
and Spé = (~4.5385, 68.0, 9.2308, 4, 2, 1). Now, imagine that b is a func-
tion of p and assume that there is a & € (1.246,3.304) such that & solves the
OWDP for a p’' # p. Then, the weights associated with the ratios obtained
by maximizing the ratios solving the OWDP for p and p’ individually will
not solve the OWDP for both p and p/, showing that such a maximization
generally will not work. (Note that if & = (5.25, 1,1, 1), then S& > 0
Ve>1) B

The point is that the ratios have to be sufficiently large to guarantee that
such a maximization will work,

For a fixed p € P, we now derive ratios r}(p) such that V¢ € Cir(p)), z(p)
is optimal to (3.11) if z(p) = 2°(p). Then, after presenting the algorithm,
Lemma 3.6 states that this implication can also be reversed. Let B be
a preemptive optimal basis to (3.19) and let z*(p) be the corresponding
{(optimal) basic solution. Since B is a feasible basis to (3.11), V¢ € Clr*(p)),
Spé > 0 (i.e. positive relative cost vector associated with B) implies that
vé e C(r*(p)), #*(p) is an optimal solution to (3.11) (Luenberger, 1989, p.
43).

Assume that 3 € I3 . 0,V € I3,,(Sp)i; = 0. Then V& € R™,
(Spé); = 0. Next, assume that 3z € H:{y—mi-i-msvj € ﬁ;a_l,(SB)i’j = 0
A (SB)ims # 0. Then, due to Lemma 3.3, (Sp)im, > 0, and Vr*(p) =
0,¢é € C(r*(p)), (Spé); > 0. Thus, for simplicity, in the following assume
that each row of Sp has less than mg — 1 leading zeros. Let ¢ < my — 2
be the index to the first nonzero element of the ith row of Sp. Due to
Lemma 3.3, (Sp)ic > 0. Note that & € C(r*(p)) is equivalent to Swy > 1,
ke E{jns_l such that & = [[[=27 ' r ! Tr(piwilms, & € ng ;- Optimality of =
vé € C(r*{(p)) is equivalent to Vé € C(r*(p)), ¢ € L} _yn,mys (SBE: 2 0,

fe Vi €LY nibmgs 8 €4{G = 1 we > 1

ma—1 ma—1

(Sp&) =(SB)ictms ] weri(®) + -+ (SB)iijbmy ] wsrh(p) +
s={ s=(+]

'{"(Sﬂ)i,mgém;; =0

- 1 mg—1
& ri(p) 2 - (Sp)ic+ wsry(p) + -
¢ (SB)t,§WCHs C—;—} wST (}3) ( o ';]:(1+1

ma—1

(Sp)icwe ] wers (p) (3.31)

s=(+1



64 A Parametric Preemptive MOLP Approach

Define ()'E(wg, oy Wing 13101 (P)s o 7o 1 (P)) as the right hand side of
(3.31), Le.

THWe - Wingm 13Ty (B), o s Ty (9)) 1= — ((SBlic+1 + -+

(SB)icwe

(i1 ! mg~1 -t
+(SB); ,C+3 ( H Wst s(p) <+ {5B)im, ( H ngg(p)) (3.32)

g=(-+1 =(+1

[0/ (8 ; (&' —
= 2o MLy bmstl 0 (3.33)
W Wl - Wy Weldeg] * Winge 1

Sg)i. ' aron )
where ¢ ; 1= m%%))-&u (Hf:=<+1 ?‘s(p)) v j=1¢,...,mg—1. Let I, denote
the set of indices to rows of Sy having the {th element as the first nonzero
clement, and let J = {i € I {35 € ]Iny my+my Such that i is the
first nonzero element in the jth row of Sg}. In order to satisfy Vi €
Ef{y*mﬁmg & € C(r*(p)), (Sgé); > 0, a sufficiently large rz(p) is r}{p) =

7¢(pir), where

Fe(p;r) = max {L max 65 (Fear(mir), ... ,fmgul(p;f))} , Ve T,
e (3.34)

where r> 0 € R, and where

FEFer1 D)y Fmg—1 (1)) ==

sup TS, - s W13 F et (D7), -+ Fong 1 (B3 7))
wy >y i=(,...,m3—1

By using the nonlinear variable transformation . ; := —C%— 1€ H; g=(=D>

e
the nonlinear programming problem of maximizing

g(wg, e W13 Fer1(mir), o Fmg—1 (D7) with respect to w;, i =
— 1, is equivalent to the following LP problem:

65 Fear(Bi1)s - - Ty 1 (i 7)) =

max QG eXel + o Gang—-1X ma—(—1-
0< K0 ST 0N DXt T2 ymg (1 PORE 3m1ALms ‘5(3 35)

&E (Fer1 ()« -+ 5 Fmg—1(pir)) is bounded, since x¢ ;, ¢ € ]I;;S_C_] is bounded,
and a5, 7 = (,... ,m3 — 1 have finite values. (Note that there does not
necessarily exist w;, ¢ = (,...mg, such that ag(-; )= &f(-; ). However, in
the problem considered here, only the scalar o‘f (-;+) is needed.) Note that
7e(psr) in (3.34) is parameterized by 7i{p;z), i € {(+1,... ,m3 ~ 1} and 7.

In order to compute r}(p}, i € H:;? 1, the following algorithm may be used:
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Algorithm 3.C.1
Given a preemptive optimal basis B to (3.19).

Stepl: Sct:=rm3—1, and fix r> 0.

Step 2: If i € 7, compute 7;(p;r) by solving (3.34) and (3.35), else, set
Fi(pir) =r.

Step 3: 1f ¢ > 1, set i « ¢ — 1, and go to Step 2, else set r*(p) = 7(pir)
stop.

LemMa 3.6

Assume Al and A2, and assume that p € P is fixed. Then the ratios r*{p)
computed by Algorithm 3.C.1 has the following property: V¢ € Clr*(p)),
z(p) = (y(p), v(p), w(p), z(p)) is an optimal solution to (3.11) if and only if
2(p) = 2°(p) and x(p) is a feasible solution to (3.11).

Proof: The proof follows the same line as the proof of Lemma 3.4. i
Given a set of bases B as defined in Section 3.4. Due to the definition
of C(r) (see (3.15)), an #* such that V& € C(#*) ¥p € UpesPp z(p) is an
optimal solution to {3.11) if and only if z(p) = 2°(p) (i.e. if and only if
z(p) is a preemptive optimal solution to (3.19}) can be calculated as follows

77 = max(ry), i€l (3.36)

LR mz—1

where 7% is computed by using Algorithm 3.C.1.

3.D Influence of r in Algorithm 3.C.1

If 7*(p) are computed by Algorithm 3.C.1, the scalar parameter 7. de-
termines the least value of any ratio rf(p), ie. Vi € H;a_l, ri(p) 2r.
(Note that in Algorithm 3.C.1, 7;(p;r) is parameterized by r and #(p;1),
je{i+1,...,my~1}). Since numerical problems when solving (3.11)
may occur if the ratio between the greatest and least element of ¢ € C{#*)
becomes very large, r should be set to a value such that the resulting C(#)
contains &s do that not cause such numerical problems. In the following,
the influence of r on 7;(p;r) is discussed. Let

o = (SB)ign .

O g . . ,mg — 1.
1,7 (SB)';,C bl b
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Then (3.32) can be reformulated as (recall that x¢; = =zt
j=¢ wi
a1 ai

oi ()= Y
= - 41 7% (P)
Note that, due to (3.34), ri(p) in (3.37) (and in the rest of this section)
is dependent on 7. However, for notational ease, this dependency is not
explicitly shown. Assume that one or more rj(p) =r, i€ {{+1,... ,m3 —
1}, and let I— ={i€{j...,mg—1}|r} (p) =r}. Then (3.35) can be
reformulated ah

X¢.a

my-—} ; —ilr;—;E
NG - Qi el
a2 (. ) == 1ax ) X NE
i 0<xc1 <, 05x;.;~§x.;ﬂ-_1,z=2,...,m3—c—1§< II frh( )(3‘53}.7)

ke{(+1,...,ma~ 1}\1’

The constraints in (3.37) have the foliowing mg = ¢ — 1 extreme points:
xg= (L 1 xg =050, x T T = (10,00, =
(0,. ) In othu words, there exists a ¢ € " 1 such that x;, the
optlmum to (3.37), is equal to XC’ that is

ma—{~

id
o T—EI.?' !

q
— L,
- Z H

i=¢ ke{¢,... ,mgml}\l"}

) (3.38)

(3.38), (3.36), and (3.34) show how ¢ influences on 7. From a numerical
point of view, r should be chosen so as to obta,in a C{#*) which contains &s
having the property that the largest ratio - i 1,7 € IEmg is small. Since & €
CF) = ;{«ﬁ > 7%, and thus Vé € C(7*), i, § E]I,"i,‘m 2 1<, % :L >H"T lwk,m
follows that

~ i1
- & i1 5
n ECC{7* )maxjmi\z,jeﬁ,m 1 E_ = Inax, 4i€Eh "y Tk (3- 9)
k=i
and
inf max G H (f*)‘l

"EC(? j<2/\z,j€1ms e Jel!'f' k .

! (3.40)

Thus, r should be selected as a solution to m?m P8} where

i—1
Tma)c(t) = max{ max JH sﬁzn max H ( }
(3.41)

a]ekmg 1 k=i ;jeﬂmg 1 h=i—1
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(3.41) is generally a non-convex optimization problem, which, in general, is
very hard to solve. The non-convex nature has been established empirically.
Moreover, the number of functions to evaluate in order to solve (3.41) may
become large in real problems due to the following: There may be a large
number of bases, and for each Sp corresponding to a basis B, there can
be up to my — mq + mg different LP problems (3.35) which need to be
solved in order to compute 7(p,1), ¢ € I, _; (see (3.34)), and in (3.41),
there are 63 — 6 functions to maximize. To conclude, if #™#*(r) becomes
prohibitively large, it might be of help to change 7, and then compute r*(p)
again to check whether or not the value of (3.41) is less.
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Chapter 4

Application, Computational
Issues and Stability

This chapter is a reprint of {Vada et al., 2000), which was submitted to
Automatica in January 2000. Parts of the results in this paper are also
also given in {Vada, Slupphaug, Johansen and Foss, 1999).

Abstract In order to minimize the number of situations when a model
predictive controller (MPC) fails to compute a control input, all practical
MPC implementations should have a means to recover from infeasibility.
We discuss several aspects related to infeasibility handling, and we present a
recently developed infeasibility handler which computes optimal relaxations
of the relaxable constraints subject to a user-defined prioritization. This
infeasibility handler requires that only o single lincar program needs to be
solved on-line in addition to the standard quadratic programming problem.
A stability result for this infeasibility handler combined with the Rawlings-
Muske MPC controller is provided, and various practical and computational
issues are discussed. The method is illustrated on a simulated FCCU main
fractionator, and from the results we conclude that the proposed strategy
for designing the proposed infeasibility handler is applicable on problems
of realistic size.

Keywords: Model based control, infeasibility handling, linear program-
ming, linear systems.

4.1 Introduction

During the last years, model predictive control (MPC) has become an
attractive control strategy within the process industries. Important sta-
bility results within the area of linear MPC are given in (Rawlings and
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Muske, 1993) under the assumption of feasibility. In order to fully exploit
this stabilizing property, a means to recover from infeasibility of the associ-
ated optimization problem whenever possible is required. Note that in the
MPC controller proposed by Rawlings and Muske (1993), an approach for
handling infeasibilities caused by the state constraints is included. Infeasi-
bility problems may occur due to e.g. disturbances, operator intervention,
modelling errors, or plant failures.

Constraints representing physical limitations must be enforced at all times
(non-relaxable}. Other constraints should be satisfied whenever possible
(relaxable), but may be relaxed when necessary. In order to transform an
infeasible MPC optimization problem into a feasible one, there must exist
a solution to the non-relaxable constraints. If no such solution exists, some
alternative control strategy must be activated. Note that in a typical MPC
implementation, there is a large number of constraints. When infeasibility
oceurs, it is often not obvious which constraints to relax and the amount
that these constraints should be relaxed in order to render a consistent set
of constraints.

There exist techniques which transform an infeasible MPC-problem into a
feasible one by treating equally all constraints which can be relaxed, sec
e.g. (Garcia and Morshedi, 1986), (Rawlings and Muske, 1993}, (Qin and
Badgwell, 1997) and (Scokaert and Rawlings, 1999). However, the con-
straints are often not equally important, e.g. it is usually more important
to satisfy the safety constraints than a product quality constraint. One way
to explicitly express this difference in importance is to give the constraints
different priority levels, and then specify that minimizing the violation of a
constraint with a given priority level is ”infinitely more important” than it
is to minimize the violation of any of the constraints with a lower priority
level (hard prioritization). There are some existing techniques which take
such prioritization levels into account when recovering from infeasibility.
IDCOM-M (Setpoint Inc.), HIECON and PFC (both from Adersa) provide
a means of recovering from infeasibilities which involves prioritization of the
constraints. When the on-line optimization problem becomes infeasible, the
lowest prioritized constraints are dropped (Qin and Badgwell, 1997).

In {Alvarez and de Prada, 1997), a heuristic infeasibility handler which
treats the constraints on the control inputs and outputs in a separate man-
ner is proposed. Several strategies are proposed in order to relax the con-
straints, and different approaches may be assigned to the different con-
straints. However, these strategies does not use priority levels when com-
puting the constraint violations.

Scokaert (1994) proposes several strategies to solve infeasibility problems,
including strategies involving hard prioritization. The most rigorous ap-
proach is to satisfy as many of the highest prioritized constraints as possible,
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and then compute a feasible relaxation of the other constraints by treating
them as soft consiraints, that is, a term is added to the cost function in
the original MPC optimization problem which penalizes the violations of
these constraints (soft prioritization). However, he does not discuss how to
compute the set of constraints which can be satisfied without any violation.

Tyler and Morari {1999) presents an approach for infeasibility handling
with hard prioritized constraints. In their approach, integer variables are
introduced to cope optimally with the prioritization. The minimization of
the size of the violation of the constraints is performed according to their
prioritization by solving a sequence of optimization problems.

In (Vada, Slupphaug and Foss, 1999} an algorithm is presented which, n
case of infeasibility of the MPC-problem, optimally takes the hard priori-
tization among the constraints into account when relaxing the constraints.
This algorithm includes a sequence of linear programming {LP) or quadratic
programming (QP) problems to be solved at on-line every sample. The
main difference between the approach described in (Vada, Slapphaug and
Foss, 1999) and the one presented in (Tyler and Morari, 1999) is that the
latter approach results in a sequence of mixed integer LP (or mixed inte-
ger QP) problems in addition to the original MPC optimization problem,
while the former approach results in a sequence of LP (or QP) problems in
addition to the original MPC optimization problem. Note that the num-
ber of optimization problems needed to be solved in the first approach is
generally less than in the latter approach. However, if the sampling time
is short compared to the number and size of the optimization problems to
be solved, both approaches may be prohibitively time consuming.

In (Meadoweroft et al., 1992) a modular multivariable controller (MMC) is
developed, which is based on the solution of a multi-objective optimization
problem using the strategy of lexicographic goal programming where the
objectives have different priorities. This solution strategy implies that the
optimization problem is solved sequentially, and thus suffers from the same
problems related to computational time as the approaches in (Tyler and
Morari, 1999) and (Vada, Slupphaug and Foss, 1999). ((Meadowcroft et al.,
1992) contains a detailed methodology for the design of steady state MMCs
only.)

An important difference between the algorithms presented in (Tyler and
Morari, 1999), (Scokaert, 1994), (Meadowcroft et al., 1992) and (Vada,
Stupphaug and Foss, 1999), and the other approaches mentioned above
which also take prioritization into account, is that the algorithms presented
in these papers minimize the violations of those constraints which cannot
be fulfilled. Just dropping a set of constraints may result in unnecessary
large constraint violations, and will in this sense be suboptimal.
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In (Vada, Stupphaug and Johansen, 1999a), the problem of determining the
optimal constraint violations subject to hard prioritization is formulated as
a single LP problem, together with an existence proof and an outline of
an algorithm to design this LP. The full details of the design of this LP
problem are given in (Vada, Slupphaug and Johansen, 1999b). To the best
of the authors knowledge, this strategy is the only optimal infeasibility
handler which considers hard prioritized constraints without the use of a
sequential, computationally expensive solution approach.

While the focus in {Vada, Slupphaug and Johansen, 1999a) and (Vada,
Slupphaug and Johansen, 1999b) is on existence of the above described LP
problem and on how to compute its parameters, the focus in the present
paper is on the application of the proposed infeasibility handier. The use-
fulness of the method is illustrated on a simulated distillation column, and
some practical modifications of the problem formulation in (Vada, Slup-
phaug and Johansen, 1999a) and (Vada, Slupphaug and Johansen, 1999b)}
are suggested in order to allow for several constraints sharing the same pri-
ority level. These modifications also reduce the off-line computational load
or the memory requirements required to design the LP. Further, the present
paper provides a novel stability result for this infeasibility handler combined
with the Rawlings-Muske MPC controller (Rawlings and Muske, 1993).

The following notation is used throughout the paper: Let n > 1 be an
integer and 2,y € R*. Then I7 := {1,... ,n}, 2 > >y © = > (>,
i € I, and 0, is an n-dimensional vector with zeros. {z,y) is used to
express [z, 47|17 I, is the n x n identity matrix, fy = @, |.J| denotes the
cardinality of the set J, and e, is the nth unit vector. intX denotes the
interior of the set X.

4.2 Why infeasibility handling is needed

Let the system to be controlled be described by

21 = [ (@, ugy ), (4.1)

for some f: R" x R™ x R" — R", where z,, ug, and 7y denote the state-,
control,- and disturbance-vector at time ¢ respectively. The presentation is
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based on the well known linear MPC problem (Rawlings and Muske, 1993):

: - . T
ming, ¢(z, Ty} = Z?it mquwjlr. + uj“Ruj[f.
subject to:

Lt = I

iy = U (4.2)
Zipf = Anj+ Bujy, 1<

Hzy, < h, t<j< st

Duy, < d, 1<

where @ = 0, R > 0, &y = (Ugjy,- - »Upqpn-1pt)s A € R B e R,
and z;; € R, u;y € R™, are the predicted state and control input vector
at future time j, respectively, and a:;?lt ¢ B™ denote the unstable modi
of the predictor at future time j. The predictor is given by the third
constraint in {4.2). Further, H ¢ R™*" h > 0 € R™, D € R™™™, and
d > 0 € ’", Assume that (A, B) is stabilizable and N > max {n,, 1}. Due
to the constraint u;, = 0, t+N < j, there exists a constraint horizon jo > N
such that satisfaction of Ha; < h, £ <j < jo+1 implies Ha; < h, ¢ <j
(Rawlings and Muske, 1993). Note that the system (4.1) and the predictor
are equal if f(z,u,7) = Az + Bu. This defines the nominal case.

The (linear) inequality constraints in (4.2) may be restated as
S7ty < so + S1%¢, (4.3)

where § and $; are matrices, and sq is a vector. Note that the right hand
side of (4.3) is parameterized by the state z;. Thus, due to e.g. distur-
bances, operator interventions, modelling errors or plant failures, the state
may take a value such that (4.3) has no solution (i.e. the MPC optimiza-
tion problem is infeasible). If the operators are allowed use elements of A
and d as on-line tuning parameters, the corresponding elements of £ and
d appears as parameters in (4.3) similar to @,. In the following, for the
ease of presentation, we assume that h and d are constants. However, the
proposed infeasibility handler can be used for time-varying h and d as well
(operator intervention).

The constraints in an MPC optimization problem can be divided into the
following classes:

Non-relaxable hard constraints: Hard inequality constraints that are
absolute in the sense that they cannot under any circumstances be
violated. Constraints related to physical limitations belongs to this
class.
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Relaxable hard constraints: Hard inequality constraints related to de-
sirables. These constraints are relaxed only in cases when the whole
set of hard constraints (i.e. relaxable and non-relaxable) is inconsis-
tent.

Soft constraints: Inequality constraints related to desirables. Violation
of these constraints are allowed, but a term is included in the cost
function (4.2) which penalizes constraint violations (see e.g. (Zheng
and Morari, 1995), or {Scokaert and Rawlings, 1999)).

End point constraints: (Le. o i 01.) These are equality constraints
related to stability. If these constraints are violated, nominal stability
is not guaranteed (Rawlings and Muske, 1993).

Note that, generally, soft constraints, as opposed to relaxable hard con-
straints, can be violated even if this is not necessary in order to obtain a
feasible solution to the original MPC optimization problem. In (Scokaert
and Rawlings, 1999), the concept of exact soft constraints is introduced.
'This is a strategy to relax the soft constraints only when this is necessary
in order to obtain a feasible solution of the MPC optimization problem.
If this strategy is used, the soft constraints can be considered as relaxable
hard constrains.

In the rest of this paper, unless otherwise stated, we make the following
assumptions:

e There are no soft constraints.

¢ The MPC optimization problem is always feasible when all relaxable
hard constraints are removed. (If this assumption is violated, some
extraordinary action like shutdown, or switching to manual control,
is required).

o All necessary degrees of freedom are used to minimize the violation
of the constraints, and all, if any, remaining degrees of freedom are
used to minimize the cost function in {4.2).

4.3 How to recover from infeasibility

Given an initial state z; such that the MPC optimization problem (4.2) is
infeasible, and assume that there exists a 7; such that the non-relaxable
hard constraints in (4.2) can be satisfied. One strategy to obtain a feasible
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optimization problem is simply to treat all relaxable hard constraints in
an equal manner and remove all of them (Scokaert, 1994). This strategy
is computationally cheap. It may, however, lead to unnecessary and un-
acceptable large constraint violations. A refinement of this strategy is to
relax all relaxable hard constraints with the same amount, i.e. an amount
sufficiently large to guarantee feasibility. This refinement also has the dis-
advantage that it may result in unnecessary large constraint violations. In
neither of these strategies it is possible to impose that some relaxable con-
straints are more important to fulfill than others. All other strategies use
some kind of discrimination of the constraints, i.e. they use some kind of
prioritization among the constraints. Such strategies is a natural way to
jmplement certain types of operational objectives of the type "it is more
important to avoid triggering an alarm than it is to keep the engine speed
within its optimal interval”. We divide the infeasibility handling strategies
involving prioritization into two classes:

Hard prioritization: The prioritization among the constraints is abso-
lute, i.e. a higher prioritized constraint is “infinitely” more impor-
tant to fulfill than a lower prioritized constraint. One way to recover
from infeasibility is simply to remove a sufficiently large subset of
the constraints, where the members of this subset are determined
by the prioritization (Scokaert, 1994). However, this strategy has the
drawback that it generally leads to unnecessary large constraint viola-
tions. A rigorous extension to this strategy is to compute the minimal
relaxation of the constraints in this subset according to the prioritiza-
tion among the constraints in this subset, (Tyler and Morari, 1999),
(Scokaert, 1994), (Meadowcroft et al., 1992), (Vada, Slupphaug and
Foss, 1099) and (Vada, Slupphaug and Johansen, 1999b).

Soft prioritization: The prioritization among the constraints is not ab-
solute. When the MPC optimization problem becomes infeasible,
the original MPC cost function is extended with a penalty function
which penalizes the constraint violations. The individual weights on
the different violations determine the relative importance of each con-
straint. (See e.g. (Zheng and Morari, 1995), or (Scokaert and Rawl-
ings, 1999)).

Compared to hard prioritization, an advantage obtained by using soft prior-
itization is that it is straightforward to implement and it gives only a small
increase in the on-line computational load. However, it is not straightfor-
ward to choose the weights so as to obtain the desired prioritization. In
(Tyler and Morari, 1999) this problem is illustrated by an example, where a
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penalty function is designed to give a certain prioritization for a given dis-
turbance. However, for another disturbance (of similar size), the constraint
violations obtained by using this is not optimal according to this prioritiza-
tion. Such design difficulties is one of the reasons why we in the following
concentrate on hard prioritization. Moreover, using hard prioritization, the
relation between the specification and the achieved prioritization is explicit,
and thus the design difficulties experienced by using soft prioritizations are
not present.

According to (Meadowcroft et al., 1992), “if a designer can capture the
desired performance in a utility (single-objective) function, then automati-
cally he/she has also assigned priority levels to the various objectives, but
the reverse is not always true”. In the next section, we show that for the
linear case, the reverse is in fact true. The on-line computational complex-
ity of the approach we follow is comparable to the on-line computational
complexity of a similar soft prioritization approach.

4.4 Optimal weight design problem (OWDP)

In this section we formulate the problem of computing optimal constraint
violations subject to hard prioritization as a single L.P problem to be solved
on-line at each sample. It is non-trivial to see that this is indeed possible,
but this question was indeed solved in (Vada, Slupphaug and Johansen,
1999a).

The constraints in the MPC optimization problem (4.2) can be transformed
into the following three constraint sets:

Grmy = g(ay), o' (21) = g*0 + gy

G?m, < g%z), 93 (me) i= g% + gM 44

G, < Plaeh ¢ () = ¢ + ¢z, (4.4)
e} 2 {}

where Gl c Rnu><m-}\’1 G2 c ngxm-N’ GB c R xm,-N’ 910 € Rn“, (]11 c
]Rm.txn1 ‘920 € Rmz, gll c R Xn’ 930 c }ng, 931 c s ><'n7 and Ty 1= Ty —
i ¢ RPN g a4 modified vector of control inputs, where ™2 is the lower
limit on each control input. Such a limit will always be present in a practical
MPC problem, since each element of #; is related to a physical quantity.
{However, if for some reason, m™" does not exist, just replace m; with
u; — v; in (4.4), with uf® = ¢[00 = () In (4.4), Gl = ¢' () corresponds
to the stability constraint zj, Nt = 0 in (4.2). Purther, the inequality
constraints in (4.2) are partitioned into the following two sets of constraints:
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G, < g%(a), which is the set of all non-relaxable hard constraints, and
(3r, < g*(xi), which is the set of all relaxable hard constraints. The
total number of inequality constraints in {4.2) is ng+ N 4+ ny - J2, and thus
my 4+ ma = ng - N + ny - jo. The relation between (4.4) and (4.2) is easy
established by, in (4.2), inserting the 1st, 3rd, and 6th constraint into the
ond, 4th, and 5th constraint and by replacing 7, with m + 7™ This is
detailed in (Vada, Slupphaug and Johansen, 1999a). Further, assume that
there exists a hard prioritization among the inequalities in Gy < g% (xy),
and that G° and ¢° are constructed such that the ith row of GPmy < g%(zy)
have higher priority than the (¢ + 1)th row. This implies that minimizing
the violations of the ith row of G371, < ¢*(z4) is “infinitely” more important
than minhmizing the violations of the {7 + 1)th row.

Assume that, at a given sample, the optimization problem in (4.2} is infea-
sible, that is, there is no feasible solution to (4.4). Since the 3rd constraint
in (4.4) is the only relaxable hard constraint, in order to transform (4.2)
into a feasible optimization problem, we introduce a vector of constraint
violations z; € B™S as follows

Gl?ﬁ: = 9](331)
G?my < g% ()
B < gz + 2
Tty 2L 2 (}»

(4.5)

Next we introduce the notion of lexicographic minimum: y° € ¥ C R" s
the lexicographic minimum of ¥ if it is not possible to find another y € ¥
and an ¢ € I} such that y; < yf and y; = 97, j € }E,?“_]. As an example
(0.10,0.01, 10000] is lexicographically less thaxn [0.10, 0.011, 0], since the first
element of both vectors are equal, while minimizing the second element is
"infinitely” more important than minimizing the third.

Now we are ready to state a problem whose solution can be used to compute
optimal constraint violations (according to the given hard prioritization) by
solving only one LP problem on-line in addition to the original MPC QP
problem:

Optimal weight design problem (OWDP)

Let X # § denote the set of all z, such that there exists (my, 2} satisfying
(4.5). Given an z; € X, let Z(z;) denote the set of all z > 0 such that
there exists a m sotisfying the inequalities (4.5). Design the weight vector
#in (4.6) such that Vo, € X, 2} defined by

(7}, 27) == argmin &z subject to (4.5), (4.6)

is equal to the lexicographic minimum of Z(x).
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Note that in the OWDP, for a given x;, 2, the optimum of (4.6), represents
the optimal constraint violations of the constraints in (4.2) with respect to
the given hard prioritization. That is, there does not exist any 2 € Z(z,;}
which violates these constrainis less with respect to the given hard pri-
oritization. Also note that since we have assumed that d,h > 0, (4, B)
stabilizable, and N > max {n,,1}, we have that X # () and 0 €intX.
In (Vada, Slupphaug and Johansen, 1999a), existence of a solution to the
OWDP under these assumptions is established, and in (Vada, Slupphaug
and Johansen, 1999b) it is shown how the OWDP may be solved. A con-
sequence of this result is: At each sample, if i) the state z; has a value
making (4.2) infeasible, and ) z; € X, that is, with the given z; there ex-
ists a relaxation of the relaxable hard constraints such that (4.2) becomes
feasible, then an optimal relaxation 2} can be computed by solving the LP
problem in (4.6).

Note the similarity between the proposed infeasibility handler and the op-
timal minimal time approach (Scokaert and Rawlings, 1999), where the
minimal horizon x{z;) beyond which all hard state constraints can be sat-
isfied is first computed (only the state constraints can be relaxed). Next,
the constraint relaxation on the first x(z;) samples on the horizon is mini-
mized by solving an LP problem similar to (4.6). The similarity is that in
both approaches the optimal constraint relaxations are computed by solv-
ing a separate problem, and next, the original cost function in the MPC
problem is solved subject to the corresponding modified constraints. How-
ever, there are three important differences between this approach and the
one we propose.

¢ In the optimal minimal time approach, there is no way to implement
hard prioritization between the different rows of Hzj;y < h, since
k(z:) is common to all rows,

e In the optimal minimal time approach, in order to compute the opti-
mal constraint relaxations, at each sample a sequence of optimization
problems is first solved in order to compute x(z;). Then, in order to
compute the optimal constraint relaxations on the first x(x;) samples,
a single LP problem (similar to (4.6)) is solved. In the approach we
propose, only one LP problem is solved at each sample.

» In the optimal minimal time approach, there is an LP which mini-
mizes a weighted oc-norm of the constraint relaxations on the first
r(x;) samples, while in the present approach, a weighted {;-norm of
all constraint relaxations on the whole constraint horizon is mini-
mized. Thus, the optimal minimal time approach can be classified
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as an approach with two hard priority levels: All constraint on sam-
ples beyond x(z;) are collected in the highest priority level, and all
other constraints are collected in the lowest priority level. However,
within the lowest priority level, there is a soft prioritization among
the constraint violations.

4.5 Stability

In this section we show that by combining the proposed infeasibility han-
dler with the MPC controller defined in Section 4.2, the region of attraction
of the original MPC controller without an infeasibility handier is increased.
For a certain prioritization, Theorem 4.1 below establishes nominal asymp-
totic stability for the receding horizon implementation of (4.2) if the con-
straints in (4.2) are replaced by (4.5) with z = z, where the weights ¢
in (4.6) is a solution to the OWDP. First, we present Lemma 4.1 which is
needed in the proof of Theorem 4.1:

LemMMA 4.1

Assume that the constrainis Ty, € X,Vj > 1, are hard non-relaxable
constraints in (4.2), where X cRrRY, 0 cintX, is an arbitrary bounded
subset of X. Then, in (4.2), there exists a sufficiently large jo > N such
that Yz, € ji’r, H(Et+j2“ <h= Hmt-{—jg-&-i]t <h i=1,2,....

Proof: Follows from (Rawlings and Muske, 1993} and boundedness of X.
]

Next, we define a prioritization among the constraints which is used in
Theorem 4.1:

Priority Assumption

Assume that o unique priority level is assigned to each relazable row of
Hzjy < hoand Dugy < din (4.2), such that all constraints on the horizon
related to a certain relazable row of Hxyy <h or Dugy < d with o given
priority level have higher priority than any constreint on the horizon related
to rows with o lower priority level . Let H; (D;) denote the ith row of H
(D), and assume that Vi € ﬁ;;_l,i € E;,fh,t >0, Hiypjpp < hi has higher
priority than Hyzypn < hi, and that Vi € HK,,%' £ H:d,t > 0, Divgygp < hi
has higher priovity than Dyjuy, ;. < di

THEOREM 4.1
Assume that the constraints x4, € X, Vj > 1 are hard non-relaxable
constraints in (4.2), and let jy be given as in Lemma 4.1. Let G® and ¢’ in
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(4.5) be constructed according to the Priority Assumption. Assume further
that i) f(z,u,n) = Az+ Bu,ii)Vt > 0, 2, = zi, the solution to (4.6), where
¢ is a solution to the OWDP, and iii) Vt > 0, 4, = uj‘lt, where u’:ﬁ is the
first m elements of the solution of (4.2) where the constraints are replaced
by (4.5). Then, Yxy € X, {2,}82, becomes zero within finite time, and the
origin is an asymptotically stable equilibrium point with X contained in
the region of attraction.

Proof: First we prove that 2] becomes zero in finite time: Given any zp €
X, let z} denote the constraint violations obtained by shifting the constraint
violations in zj one step ahead and filling up with zeros in the locations
corresponding fo prediction j + 1|1 (N]1) for the state (control input)
constraints. Thus, since z1 = 21y (nominal case}, at time t = 1, 2z, = 2 1s
feasible, and hence zero violation of the constraint at the end of the horizon
of the highest prioritized constraint is feasible. Then, due to the choice of
¢ in (4.6), the corresponding element of 27 is equal to zero. Continuing this
argument, due to the prioritization along the horizon, we obtain that in
z;, all violations of Hz;; < h (or Dujy, < d) corresponding to the highest
priority level, becomes zero after at least j {or N) samples. Continuing
this for the row of H Zie < hor Duy, < d corresponding with the next
priority level, and so on, we obtain that 2 = 0pg, t =mg,ma+1,....

Finally we prove asymptotic stability with X contained in the region of
attraction: Let X’ be the set of all ; such that there exists a 7y satisfying
(4.5) with z; = 0. It follows from (Rawlings and Muske, 1993) that V2 € X',
by using the control law defined by receding-horizon implementation of the
solution of (4.2), the origin is an asymptotically stable solution. Combining
this with the fact that zf = O, £ = mgz,ms + 1,. .., the result follows. O

Note that we need to assume that Vi > 0, 7, is contained in a bounded
region X. This is done to obtain a fixed J2 which is sufficiently large to
be valid for all z; € X. Also note that a result similar to Theorem 4.1 is
stated in (Rawlings and Muske, 1993) and (Scokaert and Rawlings, 1999)
for the case when only the state constraints can be relaxed, and when all
rows of Hzy), have equal priority. Recall that the strategy in (Scokaert and
Rawlings, 1999) is based on solving a sequence of optimization problems.
An important consequence of Theorem 4.1 is that by using the proposed
controller, the region of attraction of the MPC controller (4.2} without
infeasibility handling is at least emlarged from X' to X (cf. the proof
of Theorem 4.1 for X’). Finally note that, in the case when all state
constraints and none of the input constraints are relaxable, the region of
attraction of the approaches proposed in (Rawlings and Muske, 1993) and
(Scokaert and Rawlings, 1999) (the optimal minimal time approach) are
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equal to the region of attraction obtained by using the infeasibility handler
we propose.

4.6 Solving the OWDP

In {Vada, Slupphaug and Johansen, 1999b), an algorithm which solves the
OWDP is presented, along with some new contributions to field of paramet-
ric programming and multi-objective linear programming (MOLP) used in
the algorithm. In order to give an intuitive understanding of this algorithm,
we give in the following an outline of the main ideas behind the algorithm.

The constraints in the OWDP, i.e. (4.5), can be restated as a set of equality
constraints by introducing nonnegative auxiliary variables v, and w;

Glmy = Ql(fﬂt)
Gl + vy = g*(z¢)

: 4.7
G3my+ wy ~ 2z = g>(x¢) (47)
T, Uty Wiy 2 2 07

and by defining £** := (my, vy, wy, 7), (4.6) can be transformed into an LP
problem on standard form

min ¢f 2 k¥

oLP

LP_LP _ 4.8)
o ot = b(ry) (
subject to: { Y

where b(zr) = (g"(51), 62(21), 6% (20)), € = (ONm-tms +mas €) and

1
G 0m1 X1ty O’ml X3 {]m1 Xm3
ALP = G2 Img Omg s Omo s c R(m;\ +mg+m3)x(1\’m+mg +2m3)‘

G3 Om,gxmg I’m.g ""Ims (49)

The problem (4.8) is called a parametric LP (Gal, 1995), since the right
hand side of the equality-constraints in (4.8) is parameterized by z;. Recall
that the problem stated in the OWDP is to design ¢ in (4.8) (or, more
precisely é, since ¢, = 0,1 € 1 Rﬁm +m2-l-ﬂ13) such that for cach z; € X, any
optimal solution to (4.8) has the property that the z-part of this solution
is equal to the lexicographically least feasible z, > 0.

By using theory from parametric programming, it can be shown that X can
be covered by a set of polytopes, where each of the polytopes is uniquely

-1
defined as Xpep 1= {2y € X | (BLP) (9" (1), ¢*(24), 9% (7)) = 0}, where




82 Application, Computational Issues and Stability

T2

EHl

L1

Figure 4.1: A partition of a two-dimensional state space. Each
of the polytopes in the partition corresponds to a separate basis.

BLE ¢ Rlmi+matma)x(mitmatms) iq o hasig for R™ +m2+73 that consists of
m1 +my + mgy linearly independent columns of A", Each of the polytopes
Xpgrr is associated with a separate basis BT see Figure 4.1. Further, each
of the bases considered has the property that if z; € Xp.p, the non-zero
elements of 2°(z;), the lexicographically minimum of Z(z;), are equal to

corresponding elements of the vector (BLP ) : (6" (z4), g*(z1), 9 (21)) . Let
B denote the set of bases such that X is covered by the corresponding set
of Xpirs. In (Vada, Slupphaug and Johansen, 1999b) it is shown that each
basis in B defines a set of linear constraints on ¢ in (4.6) in order for é to
solve the OWDP. The main idea is to compute a & which satisfies the set
of constraints defined by all bases in B. B is computed by an sequential
algorithm that finds a new basis B in B by moving into a new region
of X defined by neighbors of already computed regions. This algorithm
is continued until X is covered. Note that B is finite. In order to get
more insight into this algorithm, see Section 4.A, where a summary of the
algorithm is given. Full details can be found in (Vada, Slupphaug and
Johansen, 1999b).
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4.7 Practical modifications and computational is-
sues

4.7.1 Sharing a priority level

In some MPC implementations it might not be desirable or natural to
distinguish between each {scalar) constraint by assigning different priority
levels to each of them. In such cases, two or more constraints can be
collected into the same priority level and thus share the same element of
z. Note that by this, the size of the OWDP is also reduced (fewer elements
in & at the cost of a possibly increased number of constraint violations.
Hence, collecting several constraints into the same priority level can also be
useful in cases when the computational load and memory capacity needed
in order to solve the OWDP becomes prohibitively large. In order to allow
for several constraints having the same priority level, consider the following
modification of the original constraints, i.e. (4.5}):

Glny = g'(my)

Gy < g (my)

G37‘"t < 93(3}.?’)_*_ Gzz{e“! (4-10)
WtazIEd 2 0:

where G# € Rmaxm™ and 7ed ¢ R where mje? < mg is the total
number of priority levels in the modified formulation. Note that in (4.5),
G* = Iy, and z, € R™. Let T; denote the set of indices to the rows of
G3x, < g°(x,) having the priority level j. Constraint violation z; is shared
by all these constraints if Vi € Iy, row ¢ of G* is equal to r;e;, where
r; > 0 € R is present to allow for individual scaling of ;. This can be
useful if the constraints within the same priority level have different units.
In order to solve the OWDP with respect to this modification, in (4.8},
replace ALY with

1
G O?TL;XTTLQ 0?711 Xma 0.m] Xmé'e(l

ALPred o | GY Lyt Oy Ormg s | - (4.11)
G3 Omaxmg Img ..._Gz

Note that by this, there are mj% weights (i.e. elements of €) to be de-
termined in the OWDP, and the upper bound on the number of inequality
constraints in the LP problem which computes & (see Lemma 3.4) is changed
from |B|(Nm—my+m3)+ms+1to |B"Y(Nm—m; et +mied+1, where
Bred is the set of optimal bases (according to the prioritization) correspond-
ing to the modified OWDP, and the number of variables in this LP problem
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is reduced from mg+ 1 to mj*+ 1. Note that |B7*%| will generally be differ-
ent from |B|. It is however difficult to determine whether or not |B7¢%| < |B]
since the number of inequalities defining Xprr = {7 € X {(B2F) 8(z,) >
0} is 3 in both cases. Asymptotic stability of the MPC controller (4.2)
combined with this infeasibility handler can be shown in the same way as
in the proof of Theorem 4.1 if the prioritization along the horizon is the
same as in Theorem 4.1.

Another modification of the proposed infeasibility handler which also al-
lows for more than one constraint having the same priority level and which
also reduces the size of the OWDP, is to divide the relaxable constraints
into two parts: hard prioritized constraints and soft prioritized constraints.
This can be done by classifying the m5®? most important relaxable con-
straints as hard prioritized constraints and the mz — m3%¢ other relaxable
hard counstraints as soft prioritized constraints. The OWDP is then solved
without the set of the soft prioritized constraints, and by this the size of
the corresponding LI which computes ¢ is reduced equivalently as with the
modification proposed above. However, note that in this case, we expect
that [B87¢| will be less than |B|, since the number of inequalities defining
Xprr = {2z € X [(B"F)"'b(z;) > 0} is reduced from m3 to mje?, and this
is expected to give larger polytopes. The proposed infeasibility handler
now becomes as follows: At each sample, compute the optimal relaxation
of the m5°? highest prioritized constraints by solving the reduced version
of (4.6}, and then compute the optimal relaxation {in some manner) of the
other lower prioritized constraints by either solving a separate optimization
problem minimizing some norm of the violation of these constraints, or by
adding a corresponding penalty term to the cost function in (4.2). Both
these optimization problems have the hard prioritized constraints and their
corresponding optimal relaxations as hard non-relaxable constraints. Note
that the first of these two approaches implies that more effort is used to
minimize the relaxation of the constraints than in the last one. In order
to establish stability for these two approaches, further investigation is re-
quired. (For stability of MPC with soft prioritization only, see e.g. (Zheng
and Morari, 1995).)

Whether or not each constraint should have a separatc priority level, or
whether or not the lower prioritized constraints can be treated as soft con-
straints, is of course dependent on the application. However, it is important
to note that it is not straightforward (if possible at all) to choose the weights
in a soft constrained approach so as to obtain the desired hard prioritization
for all possible initial states. Thus, in order to ensure that the violation
of the most important relaxable constraints, such as shut-down and alarm
limits (if they are relaxable), are minimized according to a given priori-
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tization, the violation of these constraints should be computed by a hard
prioritized infeasibility handler.

4.7.2 Computational issues

For some MPC applications, the (off-line) computational load and memory
storage capacity required by the proposed solution strategy of the OWDP
may become prohibitively large. The computational- and memory storage
demands are dependent on e.g. the dynamics of the predictor, the number
of states, the number of priority levels, and the hard constraints. Hence it
is hard to state some general considerations about the class of prioritized
infeasibility problems which can be solved by the proposed solution strat-
egy. In this section we discuss strategies which can be used to reduce the
computational demands.

The computational load and memory capacity required for computing and
storing the index set to each basis is proportional to |B}. The computational
load can only be reduced by reducing the size of the original OWDP, or
by designing a more efficient algorithm to compute B. The latter issue
is discussed in (Vada, Slupphaug and Johansen, 1999b), while we here
focus on the first. Recall that the suggested modifications of the proposed
infeasibility handler described in Section 4.7.1, which allows for several
constraints having the same priority level, reduces the size of the OWDP.
Another modification which also reduces the size of the OWDP is to reduce
the horizon of the state constraints {(i.e. jo). Note that if §5 is less than the
minimal j5 satisfying the condition given in Lemma 4.1, nominal stability
of the controller is no longer guaranteed. Simulations indicate that the
method we have used for computing j give a very conservative estimate
(see Section 4.8), thus much can be gained by improving the procedure for
computing js.

Limited storage capacity can be remedied by partitioning X into several
subsets X? such that X = U+ X*, where Nx is the number of subsets,
€15

and then compute an individual B! for each subset X. In order to compute
& then, we propose two strategies: One strategy is to compute an individ-
ual vector of weights & for each B by using the algorithm described in
Section 4.6. Note that this strategy implies that the infeasibility handler
must on-line detect the subset containing z; in order to select the right
& to be used in (4.6). Another strategy, which results in a ¢ valid for all

Xt i€ IE“K,X, is to let the & be defined via consecutive ratios 7y as follows:

+

Given &,, > 0, &, = 181, 7 > 0, K € Sy
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Figure 4.2: Top part of a FCCU fractionator.

In (Vada, Slupphaug and Johansen, 1999a), existence of such ratios is es-
tablished, and it is shown how such ratios can be computed for a given
B,

4.8 Simulation example

In this section, we illustrate the use of the proposed infeasibility handler for
a linear model of the top section of a fluid catalytic cracker unit (FCCU)
main fractionator, see Figure 4.2, which is a critical unit for separating
gasoline and LCO (diesel) from the feedstock from an upstream riser reac-
tor.

A rigorous model of the fractionator has been developed and fitted to real
plant data {Cong, Yuan and Shen, 1998), and a linear model has been
derived by linearization of this model around a nominal operating point:

Tyv1 = Axy + Buy, (4.12)
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| Var. | Deseription | Unit |
(z); | Top vapor temperature. °C
(x1)2 | Middle vapor temperature. °C
(2;)3 | Top heat exchanger outlet temperature. °C
(z)q | Middle heat exchanger outlet temp. °C
(u); | Top pump-around tee valve position %
(ug)y | Top reflux valve position. %
(u)3 | Top pump-around valve position. %
(u¢)s | Middle pump-around tee valve position. %
{ug)s | Middle pump-around valve position. %

Table 4.1: States and control inputs.

where

90.9028 —6.4632 5.7545 1.5616
—1.2803 92.1012 1.5499 3.3564

A=001% 213 —49520 85.3340 3.4314 |
0.2413 —0.7122 ~0.1415 85.6537
36674 —12.4077 —0.0648 ~5.7626  0.1049
o ogq|-20582 ~0.5071 0.1088 ~7.2823 0.2324

~1.3759 —1.669% 1.5177 —1.8955 —0.1224
0.1182 —0.0777 —0.0002 —0.3235 1.4456

and z; = 2% —z"™, and ug := ufs "o where g™ = (277, ..., o)

and w"OM = {(whOT L ulOM) (@™, u™™) s the nominal operating
point. The sampling time is 30 s. The legend for the states and control in-
puts is given in Table 4.1, and the nominal operating point in addition
to the absolute upper and lower bounds are given in Table 4.2. Non-
relaxable hard constraints are defined as gebslh < g 4 g™ < pabsub
and uoPl < gy "M < u®sub Purther, the relaxable hard constraints
and their corresponding priority levels are given in Table 4.3,  The pri-
oritizations are based on assumptions such as: gasoline is assumed to be
more valuable than T.CO (this assumption determines the prioritization
between priority level 1 and 2, which are related to product quality, and
between priority level 3 and 4, which are related to minimizing the content
of a valuable product in a less valuable product), and high production rate
has higher priority than minimizing the energy use {this assumption de-
termines the prioritization between priority level 5 and the other relaxable
input constraints). Note that since the constraint horizon in (4.2) is ja,
there arc js constraints corresponding to each of the above defined state
constraints (both relaxable and non-relaxable), and that due to the move
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m?om 107.0 °C mrllbs,lb 106 m?bs,ub 108
25" 1 219.0 °C | 23" | 218 || g@50 997
:E?s?,am 87.0 °C mgbs,lb 83 :Ecazbs,ub 91

mgom 189.0 °C mflmbs,lb 195 xgbs,ub 203

up”™ 1623 % | i 0 | W 10
qumm 0 % u;bs,ib 0 ugbs b 100
ugmm 50 % ugbs,lb 40 ugbs ub 20
up”™ | 67.9 % N ug>® o [ W55 10
uf?™ ¢ 50 % ugbs’ib 40 ugbs’“b 80

Table {.2: Nominal operating point, lower, and upper bounds.

| Pri. level | Constraint || Pri. level | Constraint—]
1 (2%, < 107.5 6 (ugP®)y < 55
2 (z9)9 < 219.5 7 (ufs)s <55
3 (:t:"“bs) > 106.5 8 (uf$); < 67
4 (z8%%)y > 218 5 9 (ug®®), <75
5 ( abs‘) <5

Toble 4.3: Relazable hard constraints.
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[ i | & | Corresponds to: [ 7 | & | Corresponds to: |
79 | 2570 | (a5, )2 < 2105 [[ 120 [ 6291 | (232))1 = 1065
80 | 113.9 | (2%5,)2 < 219.5 [ 165 | 1.070 (ugi)2 <5
110 [ T4.86 | («0%,)1 = 106.5 | 180 | 1283 | (up')r < 67

Table 4.4: Weights solving the OWDFP with 72 = 40. All other ¢;
are equal to 1.0.

horizon, there are N constraints corresponding to each of the above defined
control input constraints (both relaxable and non-relaxable). Hence, there
are several constraints related to a given priority level. The prioritization
implies that minimizing the violation of any of the constraints related to
priovity level 4 has higher priority than minimizing any of the constraints
related to priority level ¢ + 1. Assume that within a given priority level,
minimizing the constraint violation at prediction % <+ 1 has higher priority
than at prediction k. That is, we assume the same prioritization as in the
Priority Assumption (defined in Section 4.5). We have chosen N =5, and
by using a slight modification of (Gilbert and Tan, 1991, Algorithm 3.2)
to calculate jy, assuming that the non-relaxable hard state constraints are
always satisfied, we get jo = 40. Thus, for the given example, there are
mg = 185 distinct priority levels, and in the QWDP, the dimension of ¢ is
thus 185.

In order to solve the OWDP we used Algorithm 4.4 in (Vada, Slupphaug
and Johansen, 1999h), which is briefly described in Section 4.6. In the
algorithm, the parameter determining the lower bound on the weights is
set equal to 1.0. The number of bases in the resulting set B is 167, and the
elements of the resulting & which are greater than 1.0 are shown in Table 4.4.
The algorithm is implemented in MATLAB with NAG Foundation Toolbox,
and the computation time was about 76 minutes on a Pentium 450MHz
PC with 256MB RAM. Note, however, that the computation of ¢ is done
off-line. The on-line computational effort associated with the infeasibility
handler {the LP problem in (4.6)) is typically smaller than the QP (4.2).

Note that only six of the weights are greater than their minimum value.
At a first glance, since the weights related to the 78 highest prioritized
constraints are all equal to the predetermined minimum value, one might
think that it is remarkable that these weights solve the OWDP. However,
note that all weights in Table 4.4 are related to the first or second sam-
ples on the horizon for a given priority level. Thus, for the given process,
minimizing the constraint violations at the beginning of the horizon im-
plies that the constraint violations at the end of the horizon are minimized.
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e | Corresponds to: il & | Corresponds to: |
2 | 1189 | (20")2 <2195 [[5[1.070 | (u), <5.0
316291 [ (), > 1065 |[ 8| 1.282 | (uf®); < 67

Table 4.5: Weights solving the modified OWDP with ¢ priority
levels and jo = 40. All other & are equal to 1.0.

(Recall that within a given priority level, the constraints corresponding to
the first samples of the horizon have lower priority than the samples at the
end of the horizon.) Note that this might not be the case for a different
process. Further note that it is by far not intuitive to determine how large
the weights should to be in order to guarantee the fulfillment of the hard
prioritization. The largest weight produced by this algorithm is only two
orders of magnitude larger than the smallest weights. This is in strong con-
trast to a heuristic approach that might rely on using a sufficiently large
weight ratio between each priority level. The latter approach could lead to
a numerically ill-conditioned LP problem.

‘The simulation result obtain by combining the proposed infeasibility han-
dler with the closed-loop implementation of (4.2) when a state disturbance
of [-1,2, —4, 4]7 enters the system at £ = 0 is shown in Figure 4.3. In (4.2),
¢} = 1001, and R = I,,,. Observe that all relaxable constraints are satisfied
for all £ > 2. At ¢ = 0, there are 4 relaxable constraints which are violated,
Two of them corresponds to the first sample of the constraints with prior-
ity level 2 and 3, and the other two corresponds to the first two samples of
the constraint with priority level 9. At £ = 1, the only constraint violation
corresponds to the first sample of the constraint with priority level 9.

Table 4.5 shows the weights when, within each of the priority levels given in
Table 4.3, all constraints along the horizon have the same priority. In this
case, there are only 9 priority levels, i.e. m%°? == 9. The number of bases in
the resulting B¢ is 243, i.c. iB7¢4| is almost 50% larger than obtained by
using the same prioritization as in the Priority Assumption. Note that for
each priority level, the weights obtained by solving this modified QWDP are
equal to the largest weights over the horizon in Table 4.4. Hence, reducing
the number of priority levels does not imply reduced off-line computational
load. The simulation results obtained with the same disturbance as above is
equal to the one obtained by using the prioritization defined by the Priority
Assumption, see Figure 4.3.

Table 4.6 shows the weights when 7, = 5. With this choice of Ja, the
corresponding mga becomes 45. The number of bases in the resulting 5
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Figure 4.3: Simulation results using the proposed infeasibility
handler combined with linear MPC. All values are deviations from
the nominal operating point. Solid lines: states and control in-
puts, dash-dotted lines: non-relazable constraints, dotted lines:
relazable constraints. Note that in the upper part, only the haerd
constraint on x, are shown, since the other hard constraints are
active only at t = (.

is 45, and the computation time was less than one minute. Alse in this
case, the simulation results obtained are equal to the one Figure 4.3, where
42 = 40. This shows that for the given disturbance, the original choice of
49 is rather conservative, and by reducing 4o to a more realistic value, the
computational load is greatly reduced. However, the first example, with
g = 40, illustrates that the the proposed solution approach can be applied
on quite big problems as well.



92 Application, Computational Issues and Stability

| i | & | Corresponds to: i [ & | Corresponds to: I
9 [ 2570 | (2 )e < 219.5 [ 16576291 | (7%, ), = 106.5
10 | 113.9 | (2(79,)2 < 2195 || 25 | 1.070 (uf)*)2 <5
14 | 14.86 | (#1%,)1 21065 [ 40 [ T.283 | (ul); < 67

Table 4.6: Weights solving the OWDP with j» = 5. All other &
are equal fo 1.0.

4.9 Discussion/Conclusions

MPC relies on the successful solution of an optimization problem at each
sample. Due to e.g. unknown disturbances, modelling errors, equipment
failures, or operator interventions, this optimization problem may become
infeasible. In such cases, in order to ensure that the control input can be
computed, some action should be taken in order to relax the consiraints
- of this optimization problem such that the relaxed optimization problem
becomes feasible. In the present paper we consider how to optimally handle
infeasibility problems caused by disturbances and operator interventions.
"The proposed approach can be applied in the presence of modelling errors,
however, optimality is guaranteed only in the nominal case.

It is normally the case that some constraints are more important to fulfill
than others. In such cases, this information defines a restriction on how
the constraints should be relaxed in order o recover from infeasibility.
We assume that the difference in importance can be described by the use
of priority levels and we focus on how to relax the constraints when a
constraint with a certain priority level is infinitely more important to satisfy
than a constraint with a lower priority level. Furthermore, we assume that
if a certain constraint must be violated, it is desirable to minimize the
violation of this constraint.

In (Vada, Slupphaug and Johansen, 1999a), we have shown existence of a
single LP problem which computes the optimal constraint violation subject
to a given hard prioritization. In order to use this strategy, the cost func-
tion in this LP problem has to satisfy certain properties, and in the present,
paper we have given a summary of an algorithm, whose details are stated in
(Vada, Slupphaug and Johansen, 1999b}, which can be used to compute a
cost function satisfying these properties. Further, this algorithm is applied
in simulations of a realistic MPC problem, and for this problem, the com-
putational load of the algorithm is not prohibitively large, The elements
of the resulting cost function computed by the algorithm are nonintuitive,
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implying that designing such a cost function by trial and error might be
time consuming.

There exist alternative approaches which handle infeasible MPC optimiza-
tion problems with a hard prioritization among the constraints. However,
to the best of the authors knowledge, in these approaches a sequence of op-
timization problems (LP or QP) needs to be solved at each sample. Clearly,
a sequential approach is significantly more time consuming than the pro-
posed approach where only a single LP problem needs to be solved at each
sample.

In some MPC implementations it might not be desirable or natural to dis-
tinguish between each (scalar) constraint by giving them different priority
levels. Hence, we propose two modifications of the infeasibility, handler
which assigns the same priority level to several constraints. One approach
is based on hard prioritizations only, and one approach combines hard pri-
oritization and soft prioritization. This leads to an LP with less variables,
which is desirable in large-scale practical applications.

Traditionally, when designing constraints which are desirables (not related
to physical limitations), one needs to consider whether or not such con-
straints may cause the controller to run into feasibility problems. By using
the proposed approach for infeasibility handling, such considerations be-
come less important. Actually, one might design relaxable hard constraints
which one knows can be satisfied in only smali regions of the state space.

The paper also proves that the proposed strategy guarantees nominal asymp
totic stability if avoiding constraint violations at the end of the horizon has
the highest priority. This result implies that the region of attraction of the
controller without infeasibility handling is at least enlarged by using the
proposed infeasibility handler.

4.A A detailed summary of the algorithm solving
the OWDP

In Section 4.6, we briefly summarized the algorithm presented in (Vada,
Slupphaug and Johansen, 1999b) which solves the OWDP. In the following,
in order to get some more insight into this algorithm, we give a more
detailed summary of this algorithm.

For a given xy, let A (z;) denote the set of all 2, > 0 such that there exists a
4, Uy, wy satisfying (4.7). Note that Z(xy) = Z(xs) (Z(x,} is defined in the
OWDP) and thus the lexicographic minimum of these two sets are equal.
Let z¢(z;) denote the lexicographic minimum of £ ().
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As may be inferred from Section 4.6, the algorithm presented in (Vada,
Slupphaug and Johansen, 1999b) is based on the use of basic solutions. For
completeness, we state the following definitions, which will be used in the
description. A square matrix BLT consisting of mZ? linearly independent
columns of AFP € R xn™" i called a basis for R If all nbP — mbP
components of z%% not associated with columns of BYT are set equal to
zero, the solution to A 2LP = b is called a basic solution. If, in addition,
2P > 0, it is called a basic feasible solution and a corresponding basis is
called a feasible basis. The components of z”F associated with columns of
B"F are called basic variables. A basis whose corresponding basic solu-
tion is optimal to (4.8) is called an optimal basis. Let DLF be defined as
the columns of A*” not in BLF. Further, let 57 (z;) € I tmatms 5n4
zhP (zy) € RMYM=m14m3 denote the basic and nonbasic variables of zEP (),
respectively, and let eg € R™ *M2ts and op € RV™-m1+m3 danote the
elements of ¢ corresponding to :cf;P (r:) and m%‘p (z¢), respectively, Further,
the relative cost vector rp is defined as r} := ¢f, — cL(BYP)-1 DL,

From the theory of LP it is known that nonnegativity of rp in addition
to feasibility of #L¥(z,) is equivalent to optimality of L () (see e.g.
(Luenberger, 1989)). Note that rp is independent on z,. Thus, given a ¢ and
a BLT guch that the corresponding rp > 0, the basic solution corresponding
to BEP is optimal to (4.8) Va, € Xprr := {z¢ € X[(BEDY 1b(zy) >
0} (note that Xpzor is the region where B*¥ is a feasible basis). From
Lemma 3.1 it follows that Vz; € X, there exists a basis BYY such that the
corresponding basic solution has the property that the z/(z;)-part is equal
to 27 (z).

Let B be a set of bases to (4.9) such that Yz, € X, 3BT ¢ B such that the
corresponding basic solution 2" (x;) is feasible and has the property that
the 2 (z¢)-part is equal to z°(z;). B is finite since there is a finite number
of bases. Note that this implies that X C UprLregXpger (see Figure 4.1).
Moreover, given a ¢ such that VBLY € B, rjp > 0. Then, Vx, € X, there
exists an optimal basic solution to (4.8) such that the z{z;)-part of this
solution is equal to z/(z;). However, since an LP problem may have more
than one optimal solution, in order to solve the OWDP, ¢ must be selected
such the that z(x)-part of ol optimal solutions to (4.8) are equal to 2 (x4).
In Lemma 3.4 it is shown how such a ¢ can be computed by solving one LP
problem with mj -+ 1 variables (the elements of & in addition to an auxiliary
variable) and at most {B|(Nm — m +my) inequality constraints related to
nonnegativity of rp in addition to mz + 1 constraints related to upper and
lower bounds on ¢. In order to avoid numerical problems when solving the
LP problem (4.6), the ratio between the largest and smallest weight in & is
minimized by this algorithm.
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Now it remains to show how a candidate to the set of bases B can be com-
puted. The most obvious way is perhaps to compute the set of all bases to
(4.9) and then check each of these bases whether or not the corresponding
X prr is nonempty and then whether or not the corresponding basic solu-
tion has the property that the z{w)-part is equal to z{(zy). However, the
number of possible bases to (4.9) is (ﬂﬂiﬁiﬁ?) which is a huge num-
ber except for some very simple problems. Further, note that for a given
z; € X, there might be more than one feasible basis which have the prop-
erty that the z/(m)-part is equal to 2zf(z¢). Thus, in order to reduce the
computational load needed in order to solve the OWDP, it suffices to com-~
pute a subset of B such that X is covered by the union of the corresponding
regions X prr (note that there may exist several sach subsets).

In the case when ¢ in (4.8) is given, Gal (1995) has developed an algorithm
which, given an initial z) € X and a corresponding optimal basis BT,
computes a set of other optimal bases BY such that: i) VB € BY, Xpur
and Xpue are non-overlapping, ie. Xpgip and Xpgie have no common
interior points, and i) VB € B, Xpup and X BLT have one common facet,
see Figure 4.4. In the figure, each polytope is marked by an integer, and
the polytope marked by k corresponds to the region X BLP where B,I;P is an
optimal basis. Note that X BLF and X pLr are overlapping, and thus, in this
example, there are two candidates to B% {B", B{¥', By¥', B{”, BFTY and
{BLF, BQLP,BQLP,B,fP,B{;p}. Each of the bases in B? is called a neighbor
to Bf*. The neighbors are computed by using the same ideas as in the dual
simplex method (see e.g. (Luenberger, 1989)). The same principle is used
in Section 3.4.2 in order to develop an algorithm which computes a set of
bases B ¢ B such that ¥z, € X, 3BLP ¢ B such that the corresponding
basic solution has the property that the z;(x¢)-part is equal to 2] (x1), and
such that the corresponding X grrs are non-overlapping. Note that in (Gal,
1995), the weights in the cost function are given, as opposed to in the
OWDP, where the weights are the unknown parameters to be computed.
The algorithm is sequential and adds one polyhedral region Xprp with a
corresponding basis BFF at a time until the region X is covered.

Consider the following parametric preemptive multi-objective linear pro-
gram defined by

min WaltP

o L P

oo
subiect to 2P € {zhP e RNmtma+2ms | ALPGLP o p(z)), otF > 0
: (4.13)

where W == [Un, x(Wm-ma-+ms)» Ims ), and where there exists a lexicographic
ordering among the objectives (i.e. elements of WzLT), that is,

Z;_\’:”ﬁmﬂ'szi Wi’jxfp (= z;) has  higher  priority  than
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Tok

Figure {.4: An illustration of the region where a basis is feasible.

Zﬁ?’"’"mzﬁm Wi.{.l,jm;’}j(: zt4+1). An optimal solution to (4.13) is ob-

tained by first minimizing 21, then minimizing 2, while holding z; fixed at
its minimum, and so on. Note that, given a set of weights ¢ (or &) solving
the OWDP and a z; € X, then any optimum of (4.8) is also an optimum
of (4.13). Also note that each of the s objectives in (4.13) have a corre-
sponding relative cost vector rp. Let Rp be defined as the matrix obtained
by stacking the rps above each other in the same order as the corresponding
objectives appear in (4.13). In Lemma 3.5 it is shown that, given a basis
such that the corresponding basic solution is optimal to (4.13), i.c. such
that the z(z)-part of the corresponding basic solution is equal to 20 (my),
then each column of the corresponding Rp have the following property: the
first non-zero element in each column is positive. In Theorem 3.3 this fact
is used to extend the definition of a neighbor used in ((Gal, 1995) to include
preemptive MOLPs as well, along with an algorithm for computing a set
of bases such that the corresponding Xpirs are non-overlapping. Finally,
this algorithm can be used to compute a set of bases B as follows: Compute
the set of all neighbors to the bases already detected as neighbors as long
as there are unexplored neighbors left.



4.A An algorithm solving the OWDP 97

Acknowledgment

The financial support of the Research Council of Norway, project number
107620/420, is gratefully acknowledged. Dr. Songbo Cong is also gratefully
acknowledged for providing us with the linear model of the top section of
the fluid catalytic cracker unit he has developed, and for giving us insight
into this process.




08

Application, Computational Issues and Stability




Chapter 5

Conclusions and further
work

5.1 Conclusions

In MPC, it is normally the case that some constraints are more important
to fulfill than others. In such cases, this information defines a restriction on
how the constraints should be relaxed in order to recover from infeasibility.
Tt was assumed that the difference in importance can be described by the
use of priority levels and focus was placed on how to relax the constraints
when a constraint with a certain priority level is infinitely more important
to satisfy than a constraint with a lower priority level. Furthermore, it
was assumed that if a certain constraint must be violated, it is desirable to
minimize the violation of this constraint.

The most obvious way to compute the optimal constraint relaxations sub-
ject to a given hard prioritization is to solve a sequence of optimization
problems, where a single constraint (or a set of constraints) is relaxed at
cach step until feasibility is achieved. Sequential approaches are considered
in Chapter 2. However, sequential approaches may be very time consuming
on-line, and in many applications, only a short period of time is available
to compute the control input. This is the main motivation behind the
problem formulation in Chapter 3, where a rigorous method is provided for
designing efficient optimal infeasibility handlers for optimization problems
where there exists a hard prioritization among the constraints. The case
where all constraints are linear is considered and the existence of a single
LP problem is revealed which can replace the sequential solution approach,
and consequently, the on-line computational load is significantly reduced.
The main issue is to compute the weights in this LP problem such that
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its optimal solution is equal to the optimal constraint violation according
to the given prioritization, and such that the same weights are valid for a
user-defined set of states and constraint limits. An (off-line) algorithm for
computing these weights is proposed, and thus, the only on-line computa~
tional load required by this infeasibility handler is the solution of a single
LP problem. To the best of my knowledge, this is the only infeasibility han-
dler which optimally handles hard prioritized constraints without the nse
of a sequential solution approach. Thus, a conclusion is that optimal infea-
sibility handling under prioritized constraints is efficiently solved provided
the off-line computational load is not prohibitively large.

The practical viability of the proposed infeasibility handler is established in
Chapter 4, where it is applied to a realistic MPC problem. For this problem,
the off-line computational load is not prohibitively large. Further, the re-
sulting weights computed by the proposed algorithm are non-trivial, hence
they cannot be chosen in a direct manner. The Iargest weight produced
by the algorithm is only two orders of magnitude larger than the small-
est weights, which is remarkably small given the fact that these weights
represents the relative hard prioritization between 185 constraints. An al-
ternative to using the proposed algorithm is to compute the weights by
trial and error. However, such a strategy is time consuming, and it cannot
guarantee that the hard prioritization is satisfied. Typically, such a heuris-
tic approach relies on using a sufficiently large weight ratio between each
priority level, with the drawback that the resulting weights could lead to a
numerically ill-conditioned LP problem.

The MPC example in Chapter 4 also illustrates that the off-line COmMpU-
tational load required by the algorithm that is proposed to compute the
welghts can be significantly reduced by reducing the length of the horizon
for the state constraints. Further, this example shows that assigning several
constraints to the same priority level does not necessarily imply reduced
off-line computational load.

9.2 Further work

There is probably a great potential for improving certain parts of the off-
line algorithm proposed in Chapter 3 in order o reduce the computational
load of this algorithm. Further, in order to reveal possible limitations of
this algorithm, and further evaluate the proposed enhancements in Chap-
ter 4, the proposed infeasibility handler should be applied to various MPC
problems.
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Compared to soft prioritization, the advantage of using hard prioritization
is that it provides an explicit way of how to compute the constraint relax-
ations in order to obtain a feasible MPC optimization problem. It might
be that it is relevant to ask the question of the desired “hardness™ of the
given prioritization. However, such issues are not considered in this thesis,

The proposed approach can be applied in the presence of modelling er-
rors, however, optimality is guaranteed only in the nominal case. A topic
for future work is to investigate different aspects related to robustness,
in particular methods for designing weights that take into account model
uncertainty.

The present work does not consider infeasibility handlers for nonlinear
MPC. It should be investigated whether or not parts of the theory pre-
sented this thesis can be extended in order to design efficient infeasibility
handlers for nonlinear MPC as well.
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