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Chapter 1

Introduction

Public key encryption was first proposed by Diffie and Hellman [16], and widely
popularised with the RSA cryptosystem [37]. Over the years, the security goals
of public key encryption have been studied [17, 22], as have adversary models
[30, 36], and many public key cryptosystems have been proposed and analysed.

It turns out that the security of many of those cryptosystems [16, 18, 22, 29,
34, 35] are based on a common class of mathematical problems, called subgroup
membership problems. Cramer and Shoup [10] designed a chosen-ciphertext-
secure cryptosystem based on a general subgroup membership problem (gener-
alising their previous work [9]), and provided two new instances. Yamamura
and Saito [41] defined a general subgroup membership problem, catalogued sev-
eral known subgroup membership problems, and designed a private information
retrieval system based on a subgroup membership problem. Nieto, Boyd and
Dawson [31] designed a cryptosystem based on essentially a symmetric subgroup
membership problem (see Section 4.4 and Section 6.1).

Chapter 2 and 3 contain certain preliminary discussions necessary for the later
work.

In Chapter 4, we discuss subgroup membership problems, both abstractly and
concrete families. For all of the concrete examples, there is a related problem
called the splitting problem. We discuss various elementary reductions, both
abstract and for concrete families. In cryptographic applications, a third related
problem, called the subgroup discrete logarithm problem, is also interesting, and
we discuss this in some detail.

We also discuss a variant of the subgroup membership problem where there
are two subgroups that are simultaneously hard to distinguish. We prove a useful
reduction (Theorem 4.11) for this case. The technique used in the proof is reused
throughout the thesis.

In Chapter 5, we discuss two homomorphic cryptosystems, based on trapdoor
splitting problems. This gives us a uniform description of a number of homomor-
phic cryptosystems, and allows us to apply the theory and results of Chapter 4
to the security of those cryptosystems.

1



2 CHAPTER 1. INTRODUCTION

Using the technique of Theorem 4.11, we develop a homomorphic cryptosys-
tem that is not based on a trapdoor problem. This gives us a fairly efficient
cryptosystem, with potentially useful properties.

We also discuss the security of a homomorphic cryptosystem under a non-
standard assumption. While these results are very weak, they are stronger than
results obtained in the generic model.

In Chapter 6, we develop two key encapsulation methods. The first can be
proven secure against passive attacks, using the same technique as in the proof of
Theorem 4.11. The second method can be proven secure against active attacks
in the random oracle model, but to do this, we need a certain non-standard
assumption.

Finally, in Chapter 7 we discuss a small extension to the framework devel-
oped by Cramer and Shoup [10], again by essentially reusing the technique used
to prove Theorem 4.11. This gives us a cryptosystem that is secure against
chosen ciphertext attacks, without recourse to the random oracle model or non-
standard assumptions. The cryptosystem is quite practical, and performs quite
well compared to other variants of the Cramer-Shoup cryptosystem.



Chapter 2

Preliminaries

We discuss the notation and computational model used throughout this text. We
shall also discuss certain computational problems common in cryptography. To
simplify the main exposition, we have included a number of elementary results
in this chapter.

2.1 Notation

The symbols N, Z, Q and R represent the natural numbers, the integers, the
rational numbers and the real numbers, respectively. A k-bit integer is an integer
n such that 2k−1 ≤ n < 2k. For an integer n > 1, we use the notation x mod n to
denote the remainder of x divided by n. We denote the ring of integers modulo
n by Zn, and the field with p elements by Fp. We use the notation [a] and [a]n
to denote the residue class in Zn represented by the integer a. The map a 7→ [a]n
is a ring homomorphism from Z onto Zn.

A smooth integer is an integer whose prime factors are small. Sometimes, we
say B-smooth to mean that all the prime factors are below the integer bound B,
or S-smooth to mean that all the prime factors are in the set S.

Let n > 0 be an integer. The Euler phi-function φ(n) is the number of
non-negative integers less than n that are relatively prime to n.

If G is a group and g ∈ G, 〈g〉 denotes the cyclic subgroup of G generated by
g.

We say that a function f : N→ R is negligible if for any polynomial function
p(τ), there exists a constant τ0 ≥ 0 such that

|f(τ)| ≤ 1
p(τ)

for τ > τ0.

Any function f that is not negligible is significant. We also say that f(τ) is
negligible in τ .

A distribution on a countable set S is a function µ : S → [0, 1] such that∑
s∈S µ(s) = 1. A pair (S, µ) is called a probability space. Let X = (S, µ) be a

3



4 CHAPTER 2. PRELIMINARIES

probability space. For a subset S′ of S use the notation

Pr[X ∈ S′] =
∑
s∈S′

µ(s).

We also use the notation Pr[X = s] = Pr[X ∈ {s}]. If X = (S, µ) is a probability
space, we shall say that X is a probability space on S. When we say that X
is distributed according to some distribution µ on S, we mean that X is the
probability space (S, µ).

If X = (S, µ) is a probability space, then x ← X means that x is sampled
from S according to the distribution µ, or Pr[x = s | x← X ] = Pr[X = s] = µ(s)
for all s ∈ S. If S is a finite set, the notation x ← S means that x is sampled
uniformly at random from S.

If S, S′ are countable sets and f : S → S′ is a function, then f induces a map
f∗ from the set of distributions on S to the set of distributions on S′. If µ is a
distribution on S, then the distribution f∗(µ) = µ′ on S′ is given by

µ′(s′) =
∑

s∈f−1(s′)

µ(s).

If X = (S, µ) is a probability space and f : S → S′ is a function, then we denote
the probability space (S′, µ′) by f(X).

A triple (S, µ, f : S → S′), where (S, µ) is a probability space and f is a
function, is called a random variable on the probability space (S, µ) with values
in S′. If we have random variables X1, X2, . . . , Xl and a function f : S′

1 × S′
2 ×

· · ·×S′
l → S′′, we get a random variable f(X1, X2, . . . , Xl) on the joint probability

space (S1, µ1)× · · · × (Sl, µl) with values in S′′.
In general, we shall identify the random variable with the resulting probability

space.
Let X and Y be probability spaces on some finite set S. The statistical

distance between X and Y is defined to be

Dist(X,Y ) =
1
2

∑
s∈S

|Pr[X = s]− Pr[Y = s]|.

We note that Dist(·, ·) is a metric on the set of probability spaces on S, and that
0 ≤ Dist(X,Y ) ≤ 1. We say that two probability spaces X and Y are ε-close
if Dist(X,Y ) ≤ ε. If two probability spaces X and Y are ε-close to each other
for some small ε, we say that X is almost equal to Y , and vice versa. Two
families of probability spaces X(τ) and Y (τ) are statistically indistinguishable if
Dist(X(τ), Y (τ)) is negligible in τ .

If X is a probability space on some finite subset S of the real numbers, then
the expected value of X is

E[X ] =
∑
s∈S

Pr[X = s]s.



2.2. COMPUTATIONAL MODEL 5

The projective plane over a field F is the set of triples (x : y : z), where x, y
and z are in the algebraic closure of F, and at least one of x, y and z are non-
zero, subject to the equivalence relation that (x, y, z) ∼ (x′, y′, z′) if there exists
λ ∈ F∗ such that (x, y, z) = (λx′, λy′, λz′). We denote the equivalence classes by
(x : y : z) and call them points.

An elliptic curve [40] defined over a field F of characteristic different from 2
and 3 is the set of points in the projective plane satisfying

y2z = x3 + axz2 + bz3,

where a, b ∈ F and 4a3 − 27b2 6= 0. The point (0 : 1 : 0) is called the point at
infinity, and it is the only point with z-coordinate equal to 0. The elliptic curve is
a group under a geometrically defined operation, where (0 : 1 : 0) is the identity.
The set of F-rational points (points that can be represented by a triple (x : y : z),
with x, y, z ∈ F) is a subgroup.

If F is a finite field with pk elements, it can be shown that the map (x : y : z) 7→
(xpk

: ypk

: zpk

) is an endomorphism. It is called the Frobenius endomorphism.
If n is a composite number, we can define an elliptic curve over the ring Zn

to be the set of points

E(Zn) = {(x, y, z) ∈ Z3 \ nZ3 | y2z ≡ x3 + axz2 + bz3 (mod n)},

subject to the equivalence relation that (x, y, z) ∼ (x′, y′, z′) if there exists λ ∈ Z
such that gcd(λ, n) = 1 and

(x, y, z) ≡ (λx′, λy′, λz′) (mod n),

and where a, b are integers such that 4a3 − 27b2 6≡ 0 (mod n). We denote the
equivalence classes by (x : y : z) and call them points. The special point (0 : 1 : 0)
is on the curve.

It can be shown ([20, 25] and the references therein) that the usual formulae for
the elliptic curve group operation over fields, suitably modified for operations in
rings, actually gives a group operation on the set E(Zn), and the point (0 : 1 : 0)
is the identity for this group operation.

If n = pq, we can of course consider E to be an elliptic curve over the fields Fp

and Fq, and using the Chinese remainder theorem, it is easy to show that there
is a group isomorphism such that

E(Zn) ' E(Fp)× E(Fq).

2.2 Computational model

An algorithm is a Turing machine that halts after a finite number of steps, regard-
less of input. It has an input tape and an output tape. The algorithm may have
access to a random tape, in which case we call the algorithm probabilistic. The
random tape is just a tape containing random zeros and ones, and is sometimes
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called the coin tosses of the algorithm. We usually consider the random tape
to be infinitely long. A probabilistic algorithm should terminate after a finite
number of steps, regardless of input and random tape.

Sometimes, we want to fix the random tape, and we denote by A(x; r) the
function computed by A when given the fixed random tape r. Running an algo-
rithm twice with the same random tape is sometimes called rewinding the random
tape.

For a fixed input x, we can assume that the random tape is of finite length.
The uniform distribution on the set of fixed-length random tapes is then a prob-
ability space, and the algorithm A and the fixed input x gives a function on this
probability space. We denote this random variable by A(x). If X is a probability
space on a finite set of possible inputs, we denote by A(X) the random variable
given by applying the function A(x; r) to the joint probability space of X and
algorithm’s coin tosses.

An algorithm may have access to one or more oracles. While the word oracle
suggests divine origin, our oracles are devices we use to give our algorithms
certain well-defined powers of computation. The algorithm may ask a question,
and the oracle answers the question in some well-defined way.

The idea is that the oracle performs some computation that the algorithm
cannot do on its own, perhaps because we want to allow an algorithm to perform
some computation based upon some knowledge1 (such as a secret key), without
giving that knowledge to the algorithm.

An oracle is modelled as a pair of tapes. The algorithm writes queries to one
tape (the query-tape) and reads answers from the other tape (the answer-tape).
From the algorithm’s point of view, the answer to a query is available immediately
after the query was written. Except for the answer, the oracle’s computations
are hidden from the algorithm.

Every oracle has access to its own random tape which is independent of all
other random tapes in the experiment, and the algorithm is not allowed access to
the random tape, neither to look at it or to manipulate it. We also allow oracles
to preserve state information between queries (that is, the oracle’s answer may
depend on previous queries to the oracle).

The cost of an algorithm is the number of steps the algorithm needs to run. If
the algorithm has access to any oracles, the cost should include the number of
queries to each oracle. If the cost is relatively small, we say that the algorithm
is efficient.

We say that a function f : S1 → S2 is easy to compute if some deterministic
and efficient algorithm for computing f can easily be derived from the description
of f . We identify f with this algorithm.

1We follow Goldreich [21] and distinguish between information and knowledge. We have
information about some value if we can compute the value given unbounded computational
resources. We have knowledge about some value if we can compute it given bounded computa-
tional resources.
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These definition are rather vague and informal. Asymptotically, there is a
more precise definition of relatively small cost. An algorithm is polynomial-time
if the Turing machine halts after a number of steps polynomial in the length of
its input. This also implies that the number of queries to any oracles is bounded
by a polynomial in the length of the input. A probabilistic algorithm that is
polynomial-time is called efficient.

A problem P = (P,X, S, f) consists of a set P of problem instances, a probability
space X on that set, a finite set S of possible answers, and a function f : P → S
that gives the answer to every problem instance. To simplify the exposition, we
denote sampling a problem instance according to X by x ← P . The correct
answer to instance x is denoted by P(x).

A subproblem P ′ ⊆ P is a tuple (P ′, X ′, S′, f ′) where P ′ ⊆ P , X ′ is the
probability space X restricted to P ′, f ′ is f restricted to P ′ and S′ = S.

The success probability of an algorithm A in solving a problem P is

SuccPA = Pr[A(x) = P(x) | x← P ].

The probability is computed over the joint probability space of the algorithm’s
random tape (if it is probabilistic) and the input.

Since the set of possible answers to a problem is finite, there is always a
probability that an algorithm will answer correctly by guessing. The advantage
of an algorithm measures how much better it is at answering the problem than
an algorithm that guesses an answer according to some fixed distribution. The
definition is

AdvP
A = inf

Y
|Pr[A(x) = P(x) | x← P ]−

Pr[y = P(x) | x← P ∧ y ← Y ]|,

where the distribution Y ranges over all possible distributions on the set of pos-
sible answers to P . Note that this definition of advantage may not always be
appropriate.

A reduction from a problem P to a problem P ′ is an algorithm A that uses an
oracle for solving P ′ to solve P . The cost of the reduction is the cost of running
A. A reduction A is only interesting if its cost is relatively small, and the success
probability of A is not small compared to the success probability of the oracle.

A problem P = (P,X, S, f) is self-reducible if there is an algorithm A (with a
small cost) that takes as input an instance x of P and outputs an instance x′

of P along with a function g : S → S, such that g(f(x′)) = f(x), and A(x) is,
except with small probability, independent of x and ε-close to X for some small
ε.

Any self-reducible problem that is easy to solve on some significant subset
(probability-wise) of its problem instances is easy to solve for almost all of its
instances.
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A parameterised problem P is a family {Pτ} of problems indexed by integers
τ > 0. For an algorithm A, we define success probability as

SuccPA(τ) = Pr[A(x) = Pτ (x) | x← Pτ ],

and advantage as

AdvP
A(τ) = inf

Y
|Pr[A(x) = Pτ (x) | x← Pτ ]−

Pr[y = Pτ (x) | x← Pτ ∧ y ← Y ]|,
(2.1)

where the distribution Y ranges over all possible distributions on the set of pos-
sible answers to Pτ .

We drop the word parameterised if it is clear from the context that the prob-
lem is parameterised.

Let P and P ′ be parameterised problems. A reduction from P to P ′ is an
algorithm A that reduces every problem in Pτ to the corresponding problem in
P ′

τ . A reduction is efficient if the algorithm A is efficient in τ , and if the oracle
for P ′ has significant advantage, then A has significant advantage.

If there is an efficient reduction from P to P ′, we say that P reduces to P ′.
If P reduces to P ′ and P ′ reduces to P , we say that P and P ′ are equivalent.

In general, we say that a problem P is (c, ε)-hard if there are no algorithms that
solve P with advantage greater than ε at a cost less than c. If we simply say hard,
we actually mean (c, ε)-hard for some large cost c and some small probability ε,
so that it is extremely unlikely that any adversary has the resources to solve the
problem.

We say that a parameterised problem P is hard if for any efficient algorithm,
its advantage is negligible in τ .

Let P be a parameterised problem and suppose that A is an algorithm that
solves P . A may have access to some oracles. Suppose A′ is another algorithm
that solves P , that it has access to the same oracles as A has, but that it not
only outputs the answer to P , but also outputs a trace tr that contains some
information about its calculations. We shall need an experiment in order to
define what a trace-variant is.

Experiment 1.
Input: P , A, A′, τ .

1. x← Pτ .

2. r ← {0, 1}∗.
3. y ← A(x; r).

4. (y′, tr)← A′(x; r).

5. If y = y′, then output 1, otherwise output 0.

Output: 0 or 1.
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We say that A′ is a trace-variant of A if

Pr[Exp1(P , A,A′, τ) = 0]

is negligible in τ . Note that A and A′ are run with the same random tape. If
A and A′ have access to any oracles, then the oracles’ random tapes are also
rewound.

Obviously, there are all kinds of trivial trace-variants of any algorithm.

A trapdoor problem P is a set of pairs (P ′, σ) along with a distribution on that
set, where P ′ is a problem and σ is a function that is easy to compute, such that
for any instance x of P ′, σ(x) = P ′(x).

The underlying problem is the problem given by first sampling (P ′, σ) from
P , forgetting σ, and then sampling a problem instance x from P ′.

A parameterised trapdoor problem P is a family {Pτ} of trapdoor problems
indexed by integers τ > 0. We say that a trapdoor problem is hard if the
underlying parameterised problem is hard.

2.3 Common problems

We shall briefly discuss several problems that are common in cryptography and
that are generally assumed to be hard. For a general discussion of these problems,
see [28].

2.3.1 Factoring

Definition. Let n > 1 be a composite integer. The factoring problem FACT n

is to find the prime factorisation of n.

It can be shown that anyone who can compute (a multiple) of φ(n) can factor.
Let n > 0 be a composite integer with two prime factors p and q, such that

both p and q are distinct τ -bit integers. Let Nτ be a probability space on the
set of all such integers, and let N = {Nτ}τ≥1. The distribution on Nτ is the
distribution given by some prime sampling algorithm. It is generally believed
that FACT N is a hard problem for most reasonable prime sampling algorithms.

Definition. Let n be a composite integer with two primes factors p and q. Let
e > 1 be an integer that is relatively prime to φ(n), and let f : Zn → Zn be the
function defined by f(m) = me.

The RSA [37] problem RSAn,e is the following: The instances are elements
of Zn chosen uniformly at random, and the answer to instance x is f−1(x).

To fully specify the RSA problem, we should not only say how n is chosen, but
also how e is chosen. Typically, this is the smallest prime e above some bound
that satisfies gcd(e, φ(n)) = 1. When we do not particularly care about e, we
ignore it.
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We derive the RSA problemRSAN fromN . It is obvious thatRSAN reduces
to FACT N . It is not known whether the RSA problem is easier than factoring,
but the best known method for computing the inverse function is by factoring
the modulus.

The RSA trapdoor problem associates with the problem RSAn,e the function
x 7→ xd, where d ≡ e−1 (mod φ(n)).

2.3.2 Discrete logarithms

Definition. Let G be a finite cyclic group, let g be a generator, and let y ∈ G.
The discrete logarithm of y to the base g is an integer 0 ≤ a < |G| such that
y = ga. We sometimes write logg y ≡ a (mod |G|).

The discrete logarithm problem DLG is the set of triples (G, g, y), where y is
sampled uniformly from G and the answer is logg y.

If |G| is a smooth integer, then the Pohlig-Hellman [28] algorithm shows us
that the discrete logarithm problem in |G| is not difficult.

It is easy to show that if one can compute discrete logarithms to some base
g, then one can compute the order of the group. It is also easy to show that
if one can compute discrete logarithms to one base, one can compute discrete
logarithms to any base.

Suppose the group order |G| is known. If X is distributed uniformly on
{0, . . . , |G| − 1}, then ygX is distributed uniformly on G, it is independent of y
and logg yg

X ≡ X + logg y (mod |G|). This means that the discrete logarithm
problem is self-reducible when the group order is known.

If Γ is a probability space on a set of groups the generalised discrete logarithm
problem DLΓ derived from Γ is a set of triples (G, g, y) where G is sampled from
Γ and g, y are sampled uniformly from G. If y is in the subgroup of G generated
by g, then the answer is logg y, otherwise the answer is the special symbol ⊥.

Let N = {Nτ} be as in Section 2.3.1. To Nτ we associate the groups Γτ =
{Z∗

n | n ∈ Nτ} and we get the family Γ = {Γτ} associated to N . It can be shown
that FACT N reduces to DLΓ.

2.3.3 The Diffie-Hellman problems

Definition. Let G be a cyclic group generated by g. The Computational Diffie-
Hellman [16] problem CDHG is the set of quadruples (G, g, x, y), where x and
y are sampled uniformly from G and the answer is z ∈ G such that logg z ≡
logg x logg y (mod |G|).

Suppose G has prime order. Let (G, g, x, y) be an instance of CDHG with
answer z. Let U , V and W be uniformly and independently distributed on
{0, . . . , |G| − 1}. Then (G, gU , xUV , yUW ) is the uniform distribution on the set
of problem instances for CDHG, it is independent of (G, g, x, y) (except when x
or y is 1), and the answer is zUV W . This means that CDHG is self-reducible.

It is clear that anyone who can compute discrete logarithms in G can also solve
the Computational Diffie-Hellman problem in G. As for discrete logarithms, we
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can define a generalised Computational Diffie-Hellman problem. If x or y is not
in 〈g〉, then the correct answer is ⊥.

Maurer [27] showed that, given a group of prime order p and an elliptic curve
defined over Fp with a smooth number of Fp-rational points, there is a reason-
ably efficient reduction from the Computational Diffie-Hellman problem to the
discrete logarithm problem. As a consequence, the Computational Diffie-Hellman
problem is widely believed to be as difficult as computing discrete logarithms.

A safe prime is a prime p such that (p− 1)/2 is also prime. Correspondingly,
p is a Sophie-Germain-prime if 2p + 1 is also prime. Let N = {Nτ} be as in
Section 2.3.1, except that we restrict the primes involved to be safe primes. Let
Qn be the subgroup of quadratic residues of Z∗

n, let Γτ be the set of groups
{Qn | n ∈ Nτ} with the derived distribution, and let Γ = {Γτ}. It can be shown
that FACT N reduces to CDHΓ.

In contrast to factoring and discrete logarithms, there seems to be no easy way
to decide if an algorithm returns the correct answer to a Computational Diffie-
Hellman problem. This gives rise to a decision problem.

Definition. Let G be a cyclic group generated by g. The Decision Diffie-
Hellman [7] problem DDHG in G is to distinguish the distribution defined by
(g, gX , gY , gXY ) from (g, gX , gY , gZ), where X,Y are independently and uni-
formly distributed on {0, . . . , |G| − 1}, and Z is uniformly distributed on {0, . . . ,
|G| − 1} \ {XY mod |G|}.

Suppose G has prime order. It is quite clear that if (g, x, y, z) is an in-
stance of DDHG, then with U, V,W uniformly and independently distributed
on {0, . . . , |G| − 1}, (gU , xUV , yUW , zUV W ) is uniformly distributed over the set
of problem instances for DDHG and it is independent (except when x or y is 1),
and the answer remains the same. Hence, the DDHG problem is self-reducible.

We can use the following experiment to measure the advantage of an attacker
against the Decision Diffie-Hellman problem.

Experiment 2.
Input: A, G, g; G = 〈g〉.

1. u, v ← {0, . . . , |G| − 1}.
2. b← {0, 1}.
3. If b = 1, then w← uv, otherwise w← {0, . . . , |G| − 1} \ {uv mod |G|}.
4. b′ ← A(G, g, gu, gv, gw).

5. If b = b′, output 1, otherwise output 0.

Output: 0 or 1.

It is easy to see that

AdvDDHG

A = |Pr[Exp2(A,G, g) = 1]− 1/2|.
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A nice survey on the Decision Diffie-Hellman problem is [7]. One interesting
result is that there does exist groups in which the Computational Diffie-Hellman
problem is believed to be difficult, but the Decision Diffie-Hellman problem is
easy [24]. We shall return to this in Chapter 6.

There is a trapdoor variant of CDHG. The problem is given by (G, g, ga), where
a is sampled uniformly from {0, . . . , |G|−1}, the problem instance is (G, g, ga, x),
where x is sampled uniformly from G, and σ is the function x 7→ xa.

2.4 Elementary results

We will need several elementary results later on, and to streamline the presenta-
tion, we list them here.

Lemma 2.1. Let S be a finite set and let T ⊆ S be a subset. Let X and Y be
two probability spaces on S that are ε-close. Then

|Pr[x ∈ T | x← X ]− Pr[y ∈ T | y ← Y ]| ≤ ε.

Proof. Computation.

Lemma 2.2. Let S′ be a proper, non-empty subset of the finite set S. Let X be
uniformly distributed on S, and let Y be uniformly distributed on S \ S′. Then

Dist(X,Y ) =
2|S′|
|S| .

Proof. Computation.

Lemma 2.3. Let n be a positive integer, and let t0 be an integer such n <
2t0 . Let X be uniformly distributed on Zn, let Yt be uniformly distributed on
{0, . . . , 2t0+t − 1} ⊆ Z and let Zt be the probability space [Yt]n. Then

Dist(X,Zt) ≤ 2−t.

Proof. From the definition, we have that

Dist(X,Zt) =
n−1∑
i=0

|Pr[X = [i]]− Pr[Zt = [i]]|.

Let r = 2t0+t/n and m = 2t0+t mod n. Reordering the sum and computing the
probabilities, we find that

Dist(X,Zt) =
m

n

∣∣1− r−1dre
∣∣ +

n−m
n

∣∣1− r−1brc
∣∣ .

Since r − 1 < brc ≤ r ≤ dre < r + 1, we find that

Dist(X,Zt) ≤
m

n

1
r

+
n−m
n

1
r

=
n

2t0+t
≤ 2−t,

which concludes the proof.
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Lemma 2.4. Let G be a finite cyclic group with generator g, and suppose t0 is an
integer such that |G| < 2t0 . Then for any integer t > 0 there is an algorithm that
samples elements of G from a probability space that is 2−t-close to the uniform
distribution, using O(t) exponentiations in the group.

Proof. The algorithm simply samples y uniformly at random from the set {0, . . . ,
2t0+t−1} and computes gy. It is clear that this requires the same amount of work
as O(t) exponentiations in the group, and the resulting distribution is 2−t-close
to uniform by Lemma 2.3.

Lemma 2.5. Let G be a finite cyclic group. The probability that an element x
sampled uniformly at random from G is a generator for G is

Pr[x is a generator | x← G] =
φ(|G|)
|G| .

Proof. G is isomorphic to Z|G|, and the claim follows from the definition of the
Euler phi-function.

Suppose we have an experiment that has a fixed number of possible outcomes,
numbered from 0 to d − 1, that we can repeat the experiment such that two
different outcomes are independent, and that outcome number i occurs with a
fixed probability αi. Let Xi count the number of times the outcome i occurs in a
collection of experiments. Then Xi is a random variable, and (X0, X1, . . . , Xd−1)
is multinomially distributed with parameters α0, . . . , αd−1.

Lemma 2.6. Let (X0, X1, . . . , Xd−1) be a multinomially distributed random vari-
able with parameters α0, α1, . . . , αd−1. Suppose that α0 ≥ αi+ε for i = 1, . . . , d−1
and ε > 0. Then after (d3(1− α0))/(ε3α2

0(1 − β)) experiments,

Pr[X0 = max{X0, . . . , Xd−1}] ≥ β.

Proof. Let l be the number of experiments, let T0 be the event that |X0/l−α0| ≤
(d− 1)ε/d, and let Ti be the event that |Xi/l− αi| ≤ ε/d, 1 ≤ i < d.

We have that

Pr[X0 = max{Xi}] ≥ Pr[T0 ∧ T1 ∧ · · · ∧ Td−1].

If we assume T1 ∧ · · · ∧ Td−1, then

|X0 − lα0| = |l −X1 −X2 − · · · −Xd−1 − l(1− α1 − · · · − αd−1)|
≤ |X1 − lα1|+ · · ·+ |Xd−1 − lαd−1|

≤ d− 1
d

lε.

So Pr[T0 | T1 ∧ · · · ∧ Td−1] = 1.
Now we consider Pr[Ti | Ti+1 ∧ · · · ∧ Td−1], and the marginal distribution of

Xi. It has parameter
α′

i =
αi

1−
∑d−1

j=i+1 αj

,
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so with Yi = l −
∑d−1

j=i+1Xj experiments, we get

Pr[Ti|Ti+1 ∧ . . . Td−1] = 1− α′
i(1− α′

i)
Yiε2/d2

= 1−
d2αi(1−

∑d−1
j=i αj)

ε2Yi(1−
∑d−1

j=i+1 αj)2

≥ 1−
d2αi(1−

∑d−1
j=i αj)

ε2Yiα2
0

.

Under the condition Ti+1 ∧ · · · ∧ Td−1, we get that

l −
d−1∑

j=k+1

(lαj + lε/d) ≤ Yi ≤ l −
d−1∑

j=k+1

(lαj − lε/d).

This means that

Pr[Ti|Ti+1 ∧ . . . Td−1] ≥ 1−
d2αi(1−

∑d−1
j=1 αj)

ε2α2
0l(1−

∑d−1
j=k+1(αj + ε/d))

≥ 1− d2αi

ε2α2
0l(α0 − (d− 1)ε/d)

≥ 1− d3αi

ε3α2
0l

,

since α0 > ε.
This gives us

Pr[T0 ∧ · · · ∧ Td−1] =
d−1∏
i=1

Pr[Ti|Ti+1 ∧ · · · ∧ Td−1]

≥
d−1∏
i=1

(
1− d3αi

ε3α2
0l

)

≥ 1− d3(1− α0)
α2

0ε
3l

.

So with β = 1− d3(1−α0)
α2

0ε3l
, the result follows.



Chapter 3

Provable security

We shall give a brief introduction to the setting in which we do our work. The
goal of provable security is to provide a reduction from the security of the cryp-
tosystem to some well-studied problem (the underlying problem). By itself, this
says nothing about the security of the cryptosystem. But if we make the as-
sumption that there are no algorithms that solve the underlying problem with
a significant probability and at a cost less than some bound, the reduction then
says something about the minimal cost for breaking the cryptosystem.

The main goal of this chapter is to explain what “breaking the cryptosystem”
may mean, that is, what the security requirements of public key cryptosystems
are, and what kind of attacks we allow. We shall also discuss the different models
in which we obtain our security proofs, and the assumptions underlying those
models.

3.1 Public key cryptosystems

The following definition of a public key cryptosystem is suitable for our purposes.

Definition. A public key cryptosystem Π consists of three algorithms, K, E and
D. The key generation algorithm K is an efficient algorithm that takes a security
parameter as input and outputs a public key pk and private key sk. The public
key specifies among other things a finite set of possible messages and a finite set
of possible ciphertexts, denoted by pkM and pkC .

The encryption algorithm E is an efficient algorithm that takes a public key
and a message as input and outputs a ciphertext. The decryption algorithm
D is a deterministic polynomial-time algorithm that takes a private key and a
ciphertext as input and outputs either a message or the special symbol ⊥. We
require that for any public-private key pair (pk, sk) and any message m in the
set of messages specified by pk, D(sk, E(pk,m)) = m.

Note that the security parameter input to K should be input as a string of 1’s
of length τ (denoted by 1τ ), not as (say) a binary encoding. Since we require the

15
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algorithm to be efficient, the number of steps must be bounded by a polynomial
in the input length. In the former case, this would be a polynomial in τ . In the
latter case, it would be a polynomial in log2 τ , which is wrong. We will henceforth
ignore this slightly subtle point, and use the notation K(τ) as a short-hand for
K(1τ ).

We shall also be interested in public key cryptosystems with a certain prop-
erty.

Definition. Let Π = (K, E ,D) be a public key cryptosystem and let (pk, sk) be a
public-private key pair for Π. Let ∗ : pkM×pkM → pkM and ∗′ : pkC×pkC → pkC

be binary operations such that for all c, c′ ∈ pkC , we have that

D(c ∗′ c′) = D(c) ∗ D(c′).

We then say that Π is homomorphic with respect to ∗ and ∗′.

3.2 Adversary models

In a public key cryptosystem, the adversary obviously knows the public key.
This means that he can always mount a chosen plaintext attack, wherein he can
encrypt any message of his choice with the given public key.

We can assume that the adversary observes exactly one ciphertext (the chal-
lenge ciphertext) that he does not know the decryption of. Observing more than
one unknown ciphertext does not help him, since he can create ciphertexts him-
self, and then forget about their decryptions.

We model the adversary as two separate stages. First, the adversary re-
ceives the public key and may do some arbitrary computations. He then outputs
some state information that is passed on to the second stage, and possibly some
information that influences the challenge ciphertext. This is often called the
“find”-stage.

After the first stage is complete, the challenge ciphertext is created outside
of the adversary’s control. It may, depending on the attack, be influenced by the
output of the first stage, but obviously not determined by it.

The second stage receives the public key, the state information output by the
first stage and the challenge ciphertext. It tries to determine some information
about the challenge ciphertext. This is often called the “guess”-stage.

The adversary A is then a pair of algorithms (A1, A2), where A1 carries out
the first stage, and A2 carries out the second.

It is conceivable that the adversary can do more than just computations based
on the public key and the ciphertext. If the adversary can somehow obtain de-
cryptions of ciphertexts he has created, he may be able to learn something about
the secret key. If the attacker can modify a ciphertext and somehow get some
information about the decryption of the modified ciphertext, it is possible that
he can recover some information about the decryption of the original ciphertext,
or the secret key.
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This suggests that the adversary should be allowed to do more than just
computations. To model this, we allow the adversary to decrypt ciphertexts using
the secret key. One variant is to give the adversary access to the decryption oracle
during the first stage [30]. This is called a non-adaptive chosen ciphertext attack.

While this may in certain situations be a realistic scenario, it is usually unre-
alistic to assume that the adversary does not have any additional powers during
the second stage. The adversary’s task is obviously trivial if we give him access
to a decryption oracle in the second stage. The solution [36] is to give him access
to a restricted decryption oracle, that refuses to decrypt the challenge ciphertext,
but decrypts any other ciphertext. This is called an adaptive chosen ciphertext
attack, or simply a chosen ciphertext attack.

In practice, this seems to give the adversary unreasonable advantages. But
it makes sense, since if a cryptosystem is secure against a (non-adaptive) chosen
ciphertext adversary, then it will certainly be secure against less powerful, realistic
adversaries.

3.3 Security goals

The decryption problem for Π and a fixed public-private key pair (pk, sk) is the
set of possible ciphertexts output by E when the message is sampled uniformly at
random from pkM . The adversary is given the public key pk and the ciphertext
c. The answer to each instance is the decryption of the ciphertext.

Definition. A public key cryptosystem Π is one-way if the corresponding de-
cryption problem is hard.

In many practical situations, one-way is not sufficient to guarantee security. Gold-
wasser and Micali [22] first proposed the notion of semantic security. This is a
variant of Shannon’s perfect secrecy [38] for adversaries with bounded computa-
tional power. The idea is that it should be difficult to decrypt a ciphertext even
when the message space is restricted, and that it should be difficult to recover
any information about the decryption of the ciphertext, beyond what is a-priori
known from the message distribution.

Let Π = (K, E ,D) be a public key cryptosystem. We shall allow the adversary
to influence the choice of message. We do this by allowing the adversary’s “find”-
stage to output an arbitrary function f : pkM → {0, 1} along with a probability
space X on pkM such that

|Pr[f(x) = 0 | x← X ]− 1/2|

is negligible. The message m to be encrypted is the sampled from X , and the
adversary’s “guess”-stage is given the challenge ciphertext. Its task is to guess
f(m).

We assume that there are efficient algorithms available for sampling X and
computing f .



18 CHAPTER 3. PROVABLE SECURITY

We use the following experiment to measure the adversary’s advantage.

Experiment 1.
Input: Π, A = (A1, A2), τ .

1. (pk, sk)← K(τ).

2. (X, f, o)← A1(pk).

3. m← X , c← E(pk,m).

4. b← A2(pk, c, o).

5. If f(m) = b, output 1, otherwise output 0.

Output: 0 or 1.

Here, o is some state information that A1 wants to pass on to A2. The
adversary’s advantage is then defined to be

AdvA(τ) = |Pr[Exp1(Π, A, τ) = 1]− 1/2|.

Definition. We say that Π is semantically secure if any efficient adversary as
above has negligible advantage.

We note that some definitions of semantic security require X to be uniformly
distributed. Also note that semantic security is not a problem in the sense of
Section 2.2, since the problem solver participates in an arbitrary way in sampling
the challenge ciphertext and the answer.

It is quite obvious that any system that is semantically secure is also one-way.

Working with semantic security is awkward, but there are simpler notions avail-
able. Suppose the adversary’s “find”-stage outputs a probability space X given
by

Pr[X = m] =

{
1
2 m = m0 or m = m1,
0 otherwise,

where m0,m1 are two distinct messages in pkM , and the function f is defined to
be f(mb) = b, and otherwise arbitrary.

The adversary’s “guess”-stage must then decide which of the two messages
the challenge ciphertext decrypts to.

Definition. We say that Π has indistinguishable encryptions if any efficient ad-
versary as described above has probability negligibly different from 1/2 in guess-
ing which message was encrypted.

Indistinguishable encryptions is often called polynomial security in the liter-
ature.

It is quite obvious that if Π is semantically secure, then Π has indistinguishable
encryptions. The converse is also true [22].
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Theorem 3.1. Let Π be a public key cryptosystem. If Π has indistinguishable
encryptions, then Π is semantically secure.

Proof. Suppose we have an adversary A = (A1, A2) against semantic security
with significant advantage. We shall turn it into an adversary A′ = (A′

1, A
′
2)

against indistinguishable encryptions. A′
1 runs A1 and receives (X, f). It samples

m0,m1 from X such that f(mb) = b. This can be done efficiently with arbitrarily
small probability of failure.

When A′
2 receives the challenge ciphertext c, which is an encryption of mb, it

runs A2 and receives its guess b′ for f(mb) = b. Since the message mb has been
sampled according to X , the input to A2 is exactly as it expects. It therefore
guesses f(mb) = b correctly with a significant advantage, hence A′

2 guesses b
correctly with significant advantage.

A second alternative security goal is the following. The “find”-stage outputs the
probability space X given by

Pr[X = m] =

{
1
2 m = m0,

1
|pkM |−1 otherwise,

where m0 ∈ pkM , and the function f is defined to be f(m0) = 1 and f(m) = 0,
when m 6= m0.

The adversary’s “guess”-stage must then decide if the challenge ciphertext
decrypts to m0 or not.

Definition. We say that Π has encryptions indistinguishable from random if any
efficient adversary as described above has probability negligibly different from 1/2
in guessing if the message m0 was encrypted.

It is quite obvious that if Π is semantically secure, then Π has encryptions
indistinguishable from random. The converse is also true.

Theorem 3.2. Let Π be a public key cryptosystem. If Π has encryptions indis-
tinguishable from random, then Π is semantically secure.

Proof. Suppose we have an adversary A = (A1, A2) against indistinguishable
encryptions with significant advantage ε. We shall turn it into an adversary
A′ = (A′

1, A
′
2) against encryptions indistinguishable from random. The result

will then follow by Theorem 3.1 if A′ has significant advantage.
A′

1 runs A1 and receives m0,m1 ∈ pkM . It flips a coin b and outputs mb. A′
2

runs A2 and receives b′. If b′ = b, A′
2 outputs 1, otherwise it outputs 0.

The ciphertext given to A′
2 is either an encryption of mb, or of some other

random message. If the challenge ciphertext decrypts to mb, it is clear that A2

guesses b correctly with probability 1/2 + ε.
If the challenge ciphertext does not decrypt to mb, we have two possibilities.

If it decrypts to m1−b (which happens with probability 1/(|pkM |−1)), A2 guesses
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b correctly with probability 1/2− ε. If the challenge ciphertext does not decrypt
to m1−b (which happens with probability (|pkM | − 2)/(|pkM | − 1), A2 has no
information about b and guesses correctly with probability 1/2.

Summing up, we get

AdvA′ =
1
2
|Pr[A′

2 = 1 | D(c) = mb]− Pr[A′
2 = 1 | D(c) 6= mb]|

=
1
2

∣∣∣∣12 + ε−
(

1
2
− ε

)
1

|pkM | − 1
− 1

2
|pkM | − 2
|pkM | − 1

∣∣∣∣
=

1
2
ε
|pkM |
|pkM | − 1

,

which concludes the proof.

From the proof, we see that if |pkM | = 2, the two notions indistinguish-
able encryptions and encryptions indistinguishable from random coincide, as they
should.

A different security goal is non-malleability. Briefly, it says that it is difficult to
modify a ciphertext in such a way that the decryption of the modified ciphertext
is predictably related to the original ciphertext. We shall not work with non-
malleability, and we only remark that no homomorphic cryptosystem can be
non-malleable.

3.4 Security notions

The security goals are independent of the adversary models, so we can mix them
freely to form security notions [3]. It is now interesting to ask if a cryptosystem
that satisfies some security notion also satisfies other security notions.

It is clear that if a cryptosystem achieves some security goal against some
adversary class, then it achieves the same security goal against weaker adver-
sary classes. It is also easy to show that any cryptosystem that achieves non-
malleability against some adversary class also achieves semantic security against
the same adversary class.

For a general-purpose public key cryptosystem, one wants both semantic se-
curity and non-malleability against adaptive chosen ciphertext adversaries. This
ensures that an adversary cannot learn anything about the message encrypted,
and he cannot tamper with the ciphertext (the ciphertext “envelope” containing
the message is both opaque and tamper-proof).

It has been shown [3] that any cryptosystem that is semantically secure against
chosen ciphertext adversaries also achieves non-malleability against chosen ci-
phertext adversaries. Since non-malleability is somewhat difficult to work with,
this result simplifies our work.

Since no homomorphic public key cryptosystem can be non-malleable, seman-
tic security against non-adaptive chosen ciphertext adversaries is the strongest
security notion a homomorphic cryptosystem can achieve.
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We shall use semantic security as a shorthand for semantic security against
chosen plaintext attack, and abbreviate this by IND. We shall say that a cryp-
tosystem is secure against (non-adaptive) chosen ciphertext attacks if it is seman-
tically secure against (non-adaptive) chosen ciphertext attacks, and abbreviate
this by CCA1 and CCA21 .

3.5 Key encapsulation methods

This presentation is based on [11].
While sending short messages has many applications, quite often one wants to

send a long message using public-key methods. Since public key cryptosystems
are quite slow, sending long messages would take a long time. Usually, symmetric
(or private key) cryptosystems are much faster than public key cryptosystems.
Hence, it could be interesting to combine a symmetric cryptosystem with a public
key cryptosystem.

One could do this by using the public key cryptosystem to encrypt a key for
a symmetric cryptosystem, and then encrypt the message using the symmetric
cryptosystem. But the keys used for a symmetric cryptosystem are in general
chosen uniformly at random from some key space. Because of this, there may be
better approaches to designing public key cryptosystems for long messages.

A (one-time) symmetric cryptosystem Σ consists of two algorithms SE and SD,
a set of symmetric keys ΣK , a set of messages ΣM and a set of ciphertexts ΣC .
The symmetric encryption algorithm SE takes as input a symmetric key and a
message, and outputs a ciphertext. The symmetric decryption algorithm SD is
deterministic, takes as input a symmetric key and a ciphertext, and outputs a
message or the special symbol ⊥. We require that for all message m ∈ ΣM and
k ∈ ΣK , Pr[SD(k,SE(k,m)) = m] = 1.

Note that the length of distinct messages may be different, and the length of
the ciphertexts may depend on the length of the message.

We say that a symmetric cryptosystem is secure against passive attacks if any
adversary that first selects two messages m0 and m1 (of equal length), receives
an encryption of either message under some secret key, and then tries to guess
which message was encrypted, guesses correctly with negligible advantage. Note
that the adversary only receives a single ciphertext under any one key, hence
“one-time”.

A symmetric cryptosystem is secure against active attacks if the advantage
of any adversary that is allowed to decrypt any ciphertext under the secret key
(except, of course, the challenge ciphertext), is negligible.

Typical symmetric cryptosystems include the one-time pad, block ciphers in a
secure mode of encryption, and general stream ciphers. To protect against active

1Historically, the non-adaptive attack was proposed first, and called chosen ciphertext attack,
denoted by CCA. Then the adaptive attack was proposed, and people took to denoting the non-
adaptive attack as CCA1 and the adaptive attack as CCA2.
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attacks, a message authentication code (MAC) is usually added, following the
encrypt-then-authenticate paradigm.

Definition. A key encapsulation method (KEM) Λ consists of three algorithms,
K, E and D. K is an efficient algorithm that takes a security parameter as input
and outputs a public key pk and private key sk. The public key specifies among
other things a finite set of possible symmetric keys and a finite set of possible
ciphertexts, denoted by pkK and pkC .
E is an efficient algorithm that takes a public key as input and outputs a sym-

metric key and a ciphertext encapsulating the symmetric key. D is a deterministic
polynomial-time algorithm that takes a private key and a ciphertext as input and
outputs either a symmetric key or the special symbol ⊥. We require that for any
public-private key pair (pk, sk), Pr[D(sk, c) = k | (k, c)← E(pk)] = 1.

The intuitive notion is that the key encapsulation method is secure if it is
impossible to distinguish the encapsulated symmetric key from a symmetric key
chosen uniformly at random. We use the following experiment to measure the
advantage of an adversary.

Experiment 2.
Input: Λ = (K, E ,D), A, τ .

1. (pk, sk)← K(τ).

2. (x, c)← E(pk).
3. b← {0, 1}.
4. If b = 1, then z ← x, otherwise z ← pkK .
5. b′ ← A(pk, c, z).

6. If b = b′, output 1, otherwise output 0.

Output: 0 or 1.

We define the advantage of an adversary A to be

AdvA(τ) = |Pr[Exp2(Λ, A, τ) = 1]− 1/2|.

In a chosen ciphertext attack, we give the adversary access to a restricted decryp-
tion oracle. (We do not distinguish between adaptive and non-adaptive chosen
ciphertext attacks.)

We say that a key encapsulation method is semantically secure if any efficient
passive adversary has negligible advantage, and it is secure against chosen cipher-
text attacks if any efficient chosen ciphertext adversary has negligible advantage.

A hybrid cryptosystem is a pair (Λ,Σ). The key generation algorithm takes as
input a security parameter, and outputs a public key for Λ such that pkK = ΣK .
The encryption and decryption algorithms are given in Figure 3.1. Depending
on the symmetric cryptosystem, the range of the security parameter for the key
generation algorithm may be restricted.

The security goals and adversary models for hybrid cryptosystems are as for
public key cryptosystems. It is possible to prove the following theorem.
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Encryption.
Input: pk, m ∈ ΣM .

1. (k, c)← E(pk).
2. c′ ← SE(k,m).

3. Output (c, c′).

Output: A hybrid ciphertext in
pkC × ΣC .

Decryption.
Input: sk, (c, c′) ∈ pkC × ΣC .

1. k← D(sk, c).

2. If k = ⊥, output ⊥.

3. m← SD(k, c′).

4. Output m.

Output: A message m ∈ ΣM or the
special symbol ⊥.

Figure 3.1: Encryption and decryption algorithms for hybrid cryptosystems.

Theorem 3.3. The hybrid cryptosystem (Λ,Σ) is semantically secure if Λ is
semantically secure and Σ is secure against passive attacks. (Λ,Σ) is secure
against chosen ciphertext attacks if Λ is secure against chosen ciphertext attacks
and Σ is secure against active attacks.

3.6 Models for provable security

In general, we want to prove the security of a cryptosystem using as few assump-
tions as possible. If we place no limitations on the adversary, except that imposed
by the computational model and certain bounds on computational power, we are
working in the real world, and we call this the standard model.

3.6.1 Random oracle model

A hash function is a function that takes as input arbitrary binary strings and
outputs a fixed-length bit string. We are interested in a special class of hash
functions with desirable cryptographic properties.

Definition. Let h : {0, 1}∗ → {0, 1}s be a hash function. If x0 and x1 are
distinct bit strings such that h(x0) = h(x1), we say that the pair (x0, x1) is a
collision for h. A collision resistant hash function is a hash function such that
the problem of finding collisions is hard.

There are families of hash functions that are provably collision resistant, but
they tend to be very inefficient and are not interesting in practice.

Several very efficient hash functions have been proposed, that seem to be
collision resistant, such as the SHA-i [19]. The interesting thing about these
hash functions is that they seem to behave as random functions. Informally, we
can say that the only way to get any information about the value of a random
function at some point is to evaluate the function.
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It seems difficult to capture this notion in the standard model, so the random
oracle model was formulated [5]. The idea is to prove security using random
functions, and then replace the random functions with hash functions like SHA-i.

Let S and S′ be two sets, and let H be the set of all functions from S to S′. A
random oracle from S to S′ is an oracle that is made available to all algorithms
and oracles that participate in an experiment. At the start of the experiment,
the oracle is initialised by choosing a function h from H uniformly at random.
Whenever the random oracle receives a query x, it computes h(x) and returns
the result. The other algorithms and oracles participating in the experiment can
only get information about h by querying the oracle.

An alternative formulation that is often convenient, is a description of a ran-
dom oracle in terms of an algorithm. The oracle algorithm accepts as queries
elements of the set S. For the first query x the oracle receives, the oracle samples
an element y of S′ uniformly at random. It then stores the pair (x, y) in a sorted
list, and returns the answer y.

For each subsequent query x′, the oracle checks if it has a pair (x′, y′) in its
list. If it does have such a pair, it returns the answer y′. If it does not have such
a pair, it samples an element y′ of S′ uniformly at random, stores the pair (x′, y′)
in the sorted list, and returns the answer y′.

It is quite clear that these two formulations are equivalent.
While the random oracle model is quite popular, a proof of security in the

random oracle model does not imply that the cryptosystem is secure when the
random oracle is replaced with a real hash function. While the security certainly
depends on what hash function is used, there are also schemes [2] that are prov-
ably secure in the random oracle model, but are insecure no matter what hash
function is used.

Therefore, a proof of security in the random oracle model should only be
taken as heuristic evidence for the security of the system, and great care should
be taken when instantiating the system.

3.6.2 Generic model

It is interesting to study algorithms that operate on arbitrary finite abelian
groups. These are often called generic algorithms. Abstractly, a finite abelian
group is isomorphic to a product of different Zpr , but for some groups, this iso-
morphism seems to be difficult to compute. Shoup [39] showed that no generic
algorithm can compute that isomorphism efficiently.

A consequence is that when the set Γτ is the set of abstract groups of prime
order p, where p is a τ -bit prime and τ > 1 and Γ = {Γτ}, then the discrete
logarithm problem DLΓ is provably hard. This shows that there can be no
generic attacks on the discrete logarithm problem, but it does not say anything
about how difficult the discrete logarithm problem is for real families of groups.

The generic model works as follows. Let Zn be the group structure, and let
H be the set of 1-1 functions from Zn into a finite set S, where |S| ≥ n. At the
start of the experiment, a group oracle is initialised with a function f ∈ H chosen
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uniformly at random.
The group oracle accepts three types of queries. The first query type consists

of the special symbol ⊥, and the oracle responds with f(0) and f(1). The second
query type consists of a single element s ∈ S. If s 6∈ f(Zn), then the group oracle
answers ⊥, otherwise it returns f(−f−1(s)) (note that f−1(s) is well-defined for
s ∈ f(Zn)). The third query type consists of a pair (s1, s2) ∈ S×S. If s1 6∈ f(Zn)
or s2 6∈ f(Zn), then the answer is ⊥, otherwise the answer is f(f−1(s1)+f−1(s2)).

Every algorithm and oracle in the experiment is given access to this group
oracle.

As for the random oracle model, we can also describe the group oracle in
terms of an algorithm.

The algorithm keeps two lists: one list of pairs {(s, l)} ⊆ S × Zn, sorted on
both coordinates, and one list of “forbidden” elements {s} ⊆ S. The first list
will be a partial definition of a 1-1 function f : Zn → S, so we call it the f -list.
The second list will contain a partial list of S \ f(Zn).

If s ∈ S is received in a query, and s is in the forbidden list, ⊥ is returned
immediately.

Whenever s ∈ S is received in a query, there is no pair (s, l) in the f -list, and
s is not in the “forbidden” list, the algorithm flips a biased coin. The coin is 0
with probability (n − N)/(|S| − N), where N is the number of elements in the
f -list. If the coin flip gives 0, s is stored in the “forbidden” list and ⊥ is returned.
If the coin flip gives 1, l is sampled uniformly at random from Zn such that there
is no pair (s′, l) in the f -list, and then (s, l) is added to the f -list, and the query
proceeds as usual.

Otherwise, the query is processed as usual, and the algorithm should return
f(l) for some l ∈ Zn. If there is no pair (s′, l) in the f -list, then s′ is sampled
uniformly from S such that there is no pair (s′, l′) in the f -list, and such that s′

is not in the forbidden list. Then (s′, l) is added to the f -list, and s′ is returned.
It is clear that the two descriptions of the group oracle are equivalent.

Quite often, cryptographic systems are formulated in terms of generic abelian
groups. In this case, it may make sense to prove that the system is secure against
generic algorithms. As for the random oracle model, this does not actually imply
that a concrete instantiation of the generic system is secure. But it does provide
some heuristic evidence (albeit weaker than a proof in the random oracle model)
for the security of concrete instantiations.

3.7 Plaintext aware encryption

We shall discuss one technique that is often used to prove security. The basic
idea is that if the adversary is unable to create ciphertexts without knowing their
decryption, a decryption oracle is useless and (non-adaptive) chosen ciphertext
attacks reduce to chosen plaintext attacks.

Let Π = (K, E ,D) be a public key cryptosystem. A forger for Π is an algorithm
B that takes as input a public key pk and outputs a ciphertext c. We giveB access
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to a special encryption oracle Epk. When it is first queried with a probability space
X on pkM , it samples a message m0 according to X , a ciphertext c0 according
to E(pk,m), and returns the answer c0. Any subsequent query is answered with
the special symbol ⊥.

It is quite clear that we can modify any such forger to also output c0 in
addition to c.

A knowledge extractor for Π is an algorithm D that on input of a public
key pk, a ciphertext c0, a trace and a challenge ciphertext c, outputs a message
m ∈ pkM or the special symbol ⊥. The idea is that the trace should be enough
for a knowledge extractor to decrypt the ciphertext.

Removing the oracle Epk and the ciphertext c0 from the above gives us defi-
nitions for weak forger and weak knowledge extractor.

We use the following experiment to measure the success probability of a knowl-
edge extractor. (The weak variant is obvious.)

Experiment 3.
Input: Π = (K, E ,D), B′, D, τ .

1. (pk, sk)← K(τ).

2. Initialise the Epk oracle.

3. (c, c0, tr)← B′Epk(pk).

4. If c = c0, output 0 and stop.

5. m← D(pk, c0, tr, c).

6. m′ ← D(sk, c).

7. If m = m′, output 1, otherwise output 0.

Output: 0 or 1.

Now we can say exactly what it means that a public key cryptosystem is
plaintext aware.

Definition. A public key cryptosystem Π is (weakly) plaintext aware if there
exists a (weak) knowledge extractor D such that for any (weak) forger B for Π,
there exists a trace-variant B′ of B such that

Pr[Exp3(Π, B′, D, τ) = 0]

is negligible in τ .

The following theorem can then be proven (as in [3]).

Theorem 3.4. Let Π be a public key cryptosystem that is semantically secure
and (weakly) plaintext aware. Then Π is secure against (non-adaptive) chosen
ciphertext attacks.
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The main idea of the proof is that every time the adversary queries its de-
cryption oracle, it is in effect a (weak) forger. This means that there exists a
trace-variant that makes the same query, but where the query includes the trace.
The decryption oracle can then use the trace along with the knowledge extractor
to do the decryption.

The requirement that Π is semantically secure is often included in the defini-
tion of plaintext awareness.

Plaintext awareness is especially interesting in the random oracle model. It
is quite obvious that we can modify any algorithm in the random oracle model
to output, in addition to its normal output, a complete list of any queries it has
made to any random oracles it has access to. So in the random oracle model, the
list of random oracle queries is a very interesting trace for a forger to output.
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Chapter 4

Subgroup membership
problems

As we have seen, the strongest security goals are formulated in terms of indistin-
guishability. There is a class of general mathematical problems, called subgroup
membership problems, that has a very natural indistinguishability-property.

4.1 Subgroup membership problems

Let Γτ be a probability space on a set of pairs (G,K), where G is a finite abelian
group and K is a subgroup of G. For each pair (G,K), define a probability space
XG on G such that XG when restricted to K or G \K is uniformly distributed,
and

Pr[x ∈ K | x← XG] = Pr[x ∈ G \K | x← XG] =
1
2
.

Let Γ = {Γτ}.
We assume that an efficient algorithm is available for Γ that samples K and

G\K (almost) uniformly at random, and we denote sampling x from the resulting
probability space by x ≈← K and x ≈← G \K.

Definition. The subgroup membership problem SMΓ derived from the family
Γ described above is the following problem: The instances are triples (G,K, x),
where (G,K) is sampled from Γτ and x is sampled according to XG. The answer
to the instance (G,K, x) is 1 if x ∈ K, otherwise 0.

We use the word distinguisher for an algorithm that solves a subgroup mem-
bership problem.

We denote by SM(G,K) the subproblem of SMΓ where the instances are
restricted to triples (G,K, x), with x ∈ G. It is clear that if we can show that
something holds for an arbitrary subproblem SM(G,K), then it also holds for
SMΓ. (Note that the subgroup membership problem is equivalent to deciding if
the residue of x is the neutral element in the factor group G/K.)

29
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It is easy to see that for SM(G,K), we have that

AdvSM(G,K)

A =
1
2
|Pr[A(G,K, x) = 1 | x← K]−

Pr[A(G,K, x) = 1 | x← G \K]|.

Proposition 4.1. Suppose SM(G,K) is a subgroup membership problem, that the
factor group G/K is cyclic and |G/K| has no small prime factors, or that |G/K|
has known, prime order. Then SM(G,K) is self-reducible.

Proof. If |G/K| has no small prime factors, let t0 be such that |G/K| < 2t0 . Let
U be uniformly distributed on the set {0, . . . , 2t0+t − 1}, for some t > 0. By
Lemma 2.3, U mod |G| is 2−t-close to uniformly distributed on {0, . . . , |G| − 1}.

Alternatively, if |G/K| has known, prime order `, then let U be uniformly
distributed on {1, . . . , `− 1}.

Let fu be the map x 7→ xu. Sampling u from U samples fu (almost) uniformly
from the set of automorphism on G/K. (With small probability, it could be
something other than an automorphism.)

The algorithm takes as input x ∈ G. It samples u from U and x′ from K,
and computes x′′ = x′xu, then it outputs x′′ and the identity function.

If the input x ∈ K, then it is clear that x′′ ∈ K and its distribution is (almost)
uniform and independent of x.

If x ∈ G \ K, then except with small probability, the residue class of x in
G/K is a generator, and so xU is (almost) uniformly distributed in G/K. It then
follows that xUx′ is (almost) uniformly distributed in G\K and it is independent
of x.

Proposition 4.2. Let G be a group and let K ′ ⊆ K ⊆ G be proper subgroups.
If A can distinguish K ′ from G with advantage ε, then either A can distinguish
K ′ from K with advantage greater than or equal to ε/2, or it can distinguish K
from G with advantage greater than or equal to ε/3. Alternatively,

Adv
SM(G,K′)
A ≤ AdvSM(G,K)

A +
3
2
Adv

SM(K,K′)
A .

Proof. SetX0 = K ′, X1 = K\K ′ andX2 = G\K. Letwt(X) = Pr[A(G,K ′, x) =
1 | x ∈ X ]. We may without loss of generality assume that ε > 0 and that

2ε = wt(X1 ∪X2)− wt(X0)

=
|X1|

|X1|+ |X2|
wt(X1) +

|X2|
|X1| − |X2|

wt(X2)− wt(X0).

Setting 2δ0 = wt(X1)−wt(X0) and 2δ1 = wt(X2)−wt(X0 ∪X1), and using the
fact that

wt(X0 ∪X1) =
|X0|

|X0|+ |X1|
wt(X0) +

|X1|
|X0|+ |X1|

wt(X1)



4.1. SUBGROUP MEMBERSHIP PROBLEMS 31

we get that

wt(X2) = 2δ1 +
|X1|

|X0|+ |X1|
2δ0 + wt(X0).

This becomes

ε =
|X2|

|X1|+ |X2|
δ1 +

(
|X2|

|X1|+ |X2|
|X1|

|X0|+ |X1|
+

|X1|
|X1|+ |X2|

)
δ0

≤ |δ1|+
3
2
|δ0|.

Finally, we note that |δ0| is A’s advantage in distinguishing K \ K ′ from K ′

and |δ1| is A’s advantage in distinguishing G \K from K ′, which concludes the
proof.

Proposition 4.3. Let SM(G,K) and SM(G′,K′) be subgroup membership prob-
lems, and let X,X ′, Y, Y ′ be the uniform distributions on K, K ′, G \ K and
G′ \K ′, respectively. Suppose there is some efficient algorithm B that takes el-
ements of G into elements of G′, such that B(X) and X ′ are ε-close and B(Y )
and Y ′ are ε-close.

Then any distinguisher A′ for SM(G′,K′) can be turned into a distinguisher
A for SM(G,K), and we have that

Adv
SM(G′,K′)
A′ ≤ AdvSM(G,K)

A + ε.

Proof. Let A′ be a distinguisher for SM(G′,K′). Let A be the algorithm that on
input of G, K and x simply samples y from B(x), runs A′ on input of G′, K ′

and y and returns the output of A′.
For brevity, we suppress the input G, K, G′ and K ′ to A and A′. Note that

by Lemma 2.1,

|Pr[A(x) = 1 | x← K]− Pr[A′(y) = 1 | y ← K ′]|
= |Pr[A′(y) = 1 | y ← B(K)]− Pr[A′(y) = 1 | y ← K ′]| ≤ ε.

The same holds for G \K and G′ \K ′. Hence we get

Adv
SM(G′,K′)
A′ =

1
2
|Pr[A′(y) = 1 | y ← K ′]− Pr[A(y) = 1 | y ← G′ \K ′]|

≤ 1
2
|Pr[A′(x) | x← K]− Pr[A(x) | x← G \K]|+ ε

= AdvSM(G,K)
A + ε,

which concludes the proof.
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4.2 Splitting problems

Let Γτ be a probability space on a set of triples (G,K,H), where G is a finite
abelian group, and K and H are subgroups of G such that G = KH and K∩H =
{1}. Let Γ = {Γτ}.

We assume that an efficient algorithm is available for Γ that samples G (al-
most) uniformly at random, and we denote sampling x from the resulting prob-
ability space by x ≈← G.

For any such triple (G,K,H) ∈ Γτ , any element x ∈ G can be written uniquely
as x = x1x2 with x1 ∈ K, x2 ∈ H . In other words, there is an isomorphism
G

∼→ K × H . The natural question to ask is if this isomorphism is easy to
compute. (The isomorphism K ×H ∼→ G is simply multiplication.)

Definition. The splitting problem SPΓ derived from the family Γ described
above is the following problem: The problem instances are tuples (G,K,H, x),
where x is sampled uniformly at random from G. The answer is a pair (x1, x2) ∈
K ×H such that x = x1x2.

If the required sampling algorithms for Γ are available, we can derive a sub-
group membership problem SMΓ from SPΓ, by forgetting H . It is obvious that
SMΓ reduces to SPΓ.

Let (G,K,H, x) be an instance of a splitting problem with answer (x1, x2).
We sometimes say that (x1, x2) is the splitting of x and that the projection of x
on K, respectively H is x1, respectively x2. We also use the notation πK(x) and
πH(x), for x1 and x2, respectively.

As for subgroup membership problems, SP(G,K,H) denotes a subproblem of
SPΓ.

The splitting problem has also been called projection problem [31].

Proposition 4.4. Let SP(G,K,H) be a splitting problem. If there are efficient
algorithms available to sample K and H (almost) uniformly at random, then the
splitting problem SP(G,K,H) is self-reducible.

Proof. Given an instance x, sample z1 (almost) uniformly fromK and z2 (almost)
uniformly from H and output the instance xz1z2 and the function (y1, y2) 7→
(y1z−1

1 , y2z
−1
2 ). The output is (almost) uniformly distributed in G, and indepen-

dent of the input.

Proposition 4.5. Let SP(G,K,H) be a splitting problem such that gcd(|K|, |H |) =
1. Then anyone who knows |K| and |H | can solve the splitting problem using a
deterministic and efficient algorithm.

Proof. If m = |H | and m′ ≡ |H |−1 (mod |K|), then x1 = xmm′
, and x2 =

xx−1
1 .

Definition. Let Γτ be a probability space on a set of tuples (G,K,H, σ), such
that SP(G,K,H) is a splitting problem and σ is an easy to compute function that
solves the splitting problem. Let Γ = {Γτ}. We get a trapdoor splitting problem
TSPΓ. We denote the underlying splitting problem by SPΓ.
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4.3 Subgroup discrete logarithm problems

For several of the splitting problems we discuss, it will be easy to compute discrete
logarithms in H . Because of applications to cryptography, we need to ask if it is
easier to compute the discrete logarithm of the projection than to compute the
projection itself.

Definition. Let SP(G,K,H) be a splitting problem, and let g ∈ G be such that
H ⊆ 〈g〉 (hence, H must be cyclic). The H-subgroup discrete logarithm of y ∈ G
to the base g is the discrete logarithm of πH(y) to the base πH(g).

Let Γτ be a probability space on a set of tuples (G,K,H, g), such that for
any tuple (G,K,H), SP(G,K,H) is a splitting problem. (Note that this implies
that there must be an algorithm available for sampling G (almost) uniformly at
random.) Let Γ = {Γτ}.

Definition. The subgroup discrete logarithm problem SDLΓ derived from the
family Γ described above is the following problem: The instances are tuples
(G,K,H, g, y), where (G,K,H, g) is sampled from Γ and y is sampled uniformly
from G. The answer is logπH (g) πH(y).

As usual, we shall discuss subproblems SDL(G,K,H,g). We shall write the
subgroup discrete logarithm of y ∈ G as log(H,g) y.

The subgroup discrete logarithm problem has appeared as the partial discrete
logarithm problem in the literature.

Definition. Let Γτ be a probability space on a set of tuples (G,K,H, g, σ, f ′),
such that SDL(G,K,H,g) is a subgroup discrete logarithm problem, σ is an easy to
compute function that solves the splitting problem, and f ′ is an easy to compute
function that solves the discrete logarithm problem inH . Let Γ = {Γτ}. We get a
trapdoor subgroup discrete logarithm problem TSDLΓ. We denote the underlying
subgroup discrete logarithm problem by SDLΓ.

It is quite obvious that if the element g is in H , and discrete logarithms are
easy to compute in H , then the subgroup discrete logarithm problem and the
splitting problem are essentially the same.

The subgroup discrete logarithm problem is clearly very similar to the discrete
logarithm problem.

It is easy to show that if one can compute subgroup discrete logarithms to
some base g, then one can compute |H |. It is also easy to show that if one
can compute subgroup discrete logarithms to one base, one can compute discrete
logarithms to any base.

Suppose the order |H | is known. If X is distributed uniformly on {0, . . . , |H |−
1} and Z is distributed uniformly on K, then ygXZ is distributed uniformly on
G, it is independent of y and log(H,g) yg

XZ ≡ X + log(H,g) y (mod |H |). This
means that the subgroup discrete logarithm problem is self-reducible when the
order of H is known.
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We shall prove two results about the subgroup discrete logarithm problem.
There are similar results for the discrete logarithm problem. Note that these
reductions may or may not be useful in practice, since there is a significant
increase in the work required. But since several of our bounds are quite weak,
much better results could perhaps be obtained in practice, depending on the
specific properties of the algorithm found.

Proposition 4.6. Let SDL(G,K,H,g) be a subgroup discrete logarithm problem,
and let H ′ be a prime-order subgroup of H, |H ′| = ` and `k the biggest power of
` that divides H. Given the order |H | and an oracle A that distinguishes K from
KH ′ \K with advantage ε, and such that

Pr[A(x) = 1 | x← KH ′ \K] = α,

we can for any 0 < β < 1 recover the subgroup discrete logarithm modulo `k with
probability 1− k`β making⌈

4k
βε2

max {α(1 − α), (α+ ε)(1 − α− ε)}
⌉

queries to A.

Proof. Let H ′ be a subgroup of H of prime order `, and let h = g|H|/`|. By
Proposition 4.1, SM(KH′,K) is self-reducible, so we may assume that Pr[A(x) =
1 | log(H′,h) = i] is independent of i when i = 1, . . . , ` − 1, and that Pr[A(x) =
1 | x← K] = Pr[A(x) = 1 | x← KH ′ \K] + ε.

Let x be an instance of the subgroup discrete logarithm problem. Raising
x to the |H |/`th power will turn x into an instance x′ of the subgroup discrete
logarithm problem SDL(KH′,K,H′,h). If the subgroup discrete logarithm of x′ is
m, then x′h−m ∈ K. This means that we can use A to test if log(H′,h) x ≡ m
(mod |H ′|).

Each test is a Bernoulli trial, so let α = Pr[A(x) = 1 | x ∈ KH ′ \ K]. We
repeating each trial s times and let X be the number of times 1 occurs. When
we test the wrong m, we expect the number of ones to be sα, while when we test
the correct m, we expect s(α+ ε) ones.

When we test the wrong m, we get that

Pr[|X/s− α| < ε/2] ≥ 1− α(1 − α)
sε2/4

.

If we fix some maximal failure probability β, we get that

s0 =
α(1− α)
βε2/4

.

This means that, except with probability β, after so many Bernoulli trials, the
proportion of ones will be within ε/2 of α.
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When we test the correct m, we get that

Pr[|X/s− α− ε| < ε/2] ≥ 1− (α+ ε)(1− α− ε)
sε2/4

.

Again, if we fix some maximal failure probability β, we get that

s1 =
(α+ ε)(1− α− ε)

βε2/4
.

So we make a total of s = max{s1, s2} tests for each possible value of the
subgroup discrete logarithm problem, and choose the value that gives the most
ones.

The total probability that this test is successful is at least (1−β)`−1(1−β) ≥
1− `β.

To conclude the proof, we note that an `-adic lift as used in the Pohlig-
Hellman algorithm can be used to recover the discrete logarithm modulo the
prime power.

Suppose |H | is smooth and square-free. Let H ′ be a prime-ordered subgroup
of H , and let H ′′ be the subgroup of H of order |H |/|H ′|. It is quite clear
that Proposition 4.3 applies. This means that if we can argue that all of the sub-
groups of H are equal, in the sense that either the subgroup membership problem
SM(G,KH′′) is difficult for all prime-order subgroups H ′ of H , or for none, the
subgroup discrete logarithm problem reduces to the subgroup membership prob-
lem SM(G,K).

Let SDL(G,K,H,g) be a subgroup discrete logarithm problem. Let d be an integer
relatively prime to |H |, and define the function

lsd(x) = (logH,g x) mod d.

It is quite clear that lsd has a limited self-reducibility property, in that for any
x ∈ G and x′ ∈ K, lsd(x) = lsd(xx′). But the success probability of an algorithm
for computing lsd may depend on the value of logH,g x, so we need to be a bit
more careful.

Let P = (P,X, S, f) be a problem, and suppose that the set of answers S has
a group structure (written additively). Let A be an algorithm that tries to solve
P . We say that A has systematic advantage

SAdvP
A = Pr[A(x) = P(x) | x← P ]−

max
s∈S\{0}

Pr[A(x) = P(x) + s | x← P ].

Let d be fixed. For a subgroup discrete logarithm problem SDL(G,K,H,g), we
get the problem of computing lsd. For SDLΓ, we define the systematic advantage
to be

SAdvSDLΓ
A (τ) = E[SAdvSDL(G,K,H,g)

A | (G,K,H, g)← Γτ ].
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Note that if d = 2, then systematic advantage reduces to advantage as defined
in (2.1).

We shall prove the following result.

Proposition 4.7. Let SDLΓ be a subgroup discrete logarithm problem, and let
d be a positive integer such that for every subproblem SDL(G,K,H,g) of SDLΓ, d
is relatively prime to |H | and it is easy to find some number e such that de ≡ 1
(mod |H |). If there is some efficient algorithm for computing lsd with significant
systematic advantage, then SDLΓ is not hard.

The case d = 2 was proved in [8]. We have a somewhat more general result,
so we include the proofs here. We first prove two lemmas. The first says that the
systematic advantage gives us a stronger property for a restricted problem.

We remark that even if we do not know the order |H |, but we know an integer
n such that gcd(n, d) = 1 and |H | divides n, then we can find e by computing
inverses modulo n instead of |H |.

Lemma 4.8. Let SDL(G,K,H,g) be a subgroup discrete logarithm problem, and
let A be an algorithm that computes lsd with systematic advantage ε > 0.

Then there is an algorithm A′ that computes lsd such that for all x ∈ G with
logH,g x ≤ b|H |ε/3c,

ε/3 ≤ Pr[T0(x)]− max
0<s<d

Pr[Ts(x)],

where Ts(x) is the event that A′(x) ≡ lsd(x) + s (mod d).

Proof. The algorithm A′ takes as input x, samples X uniformly from K and Y
uniformly from {0, . . . , |H | − 1} and outputs (A(XxgY )− Y ) mod d.

Let X be uniformly distributed in K, Y be uniformly distributed in {0, . . . ,
|H | − 1}, and let x ∈ G be such that logH,g x ≤ b|H |ε/3c. Then logH,g Xxg

Y =
Y +logH,g x with probability at least 1−ε/3, and logH,g Xxg

Y = Y +logH,g x−|H |
with probability at most ε/3.

Let Z = XxgY , and set α = max0<s<d Pr[Ts(x) | x← G]. We compute

Pr[T0(Z)] = Pr[T0(Z) | Y ≤ b|H |ε/3c](1− ε/3)
+ Pr[T0(Z) | Y > b|H |ε/3c]ε/3

≥ Pr[T0(Z) | Y ≤ b|H |ε/3](1− ε/3)

≥ α+ ε− ε/3
1− ε/3 (1 − ε/3) = α+ 2ε/3,

and

Pr[Ts(Z)] = Pr[Ts(Z) | Y ≤ b|H |ε/3c](1− ε/3)
+ Pr[Ts(Z) | Y > b|H |ε/3c]ε/3

≤ α

1− ε/3(1 − ε/3) + ε/3 = α+ ε/3.

The result follows.
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Now we show that a simple majority vote-type algorithm can amplify the
success probability of an oracle for lsd.

Lemma 4.9. Let A′ be the algorithm in Lemma 4.8. Then there is an algorithm
A′′ that computes lsd with success probability β using less than O(1/(ε8(1− β)))
(or O(1/(ε3(1− β))) if d is small) invocations of A′.

Proof. The algorithm A′′ takes as input x and runs A′ several times, counting
the different answers. Then it returns the most frequent answer.

First of all, we may suppose that 0 is the correct answer. Let Xi, 0 ≤ i < d,
count the number of times A′ returns the value i. Since different runs of A′

are independent, (X0, X1, . . . , Xd−1) will be a multinomially distributed random
variable with parameters (α0, α1, . . . , αd−1).

By assumption, α0 ≥ αi + ε/3 for 1 ≤ i < d. If d is smaller than O(1/ε), the
result follows immediately from Lemma 2.6.

So suppose d > 4/ε. Let {S1, S2, . . . , Sd′} be a partition of {1, 2, . . . , d − 1},
and let Zi =

∑
s∈Si

Xs and α′
i =

∑
s∈Si

αs. Let Z0 = X0 and α′
0 = α0. It is

possible to find a partition such that there is at most one α′
i < ε/4 and

α′
0 ≥ α′

i + ε/2, i = 1, . . . , d′ − 1.

It is clear that (Z0, . . . , Zd′−1) is a multinomially distributed random variable
with parameters (α′

0, . . . , α
′
d′−1), and d′ ≤ 4/ε. It is also clear that

Pr[X0 = max{X0, . . . , Xd−1}] ≥ Pr[Z0 = max{Z0, . . . , Zd′−1}],

and the result again follows from Lemma 2.6.

Proof of Proposition 4.7. Note that if we know lsd(x), then logH,g xg
−lsd(x) is

divisible by d. We can divide by d by computing the eth power. To recover every
d-adic digit of logH,g x in this way requires dlogd |H |e computations of lsd(x).

If every computation of lsd(x) fails with probability γ, then the entire com-
putation is correct with probability (1 − γ)dlogd |H|e ≈ 1 − dlogd |H |eγ, so the
maximal failure rate of the lsd computation is polynomial in logd |H |.

Lemma 4.8 and Lemma 4.9 say that we can compute lsd with sufficiently
small failure rate, keeping the number of invocations of A polynomial in 1/ε and
logd |H |, if the subgroup discrete logarithm is restricted.

Finally, since the probability that an instance sampled uniformly satisfies this
restriction is polynomial in 1/ε, the self-reducibility property of the subgroup
discrete logarithm problem allows us to lift the restriction. This concludes the
proof.

Given an integer d relatively prime to |H |, we can write

logH,g x =
∑

i

αid
i.

We can define lsdi(x) = αi.
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Proposition 4.10. Let SDL(G,K,H,g) be a subgroup discrete logarithm problem.
If there is some efficient algorithm A for computing lsdi with significant sys-
tematic advantage, then there is an algorithm for computing subgroup discrete
logarithms when the answers are restricted to be less than dblogd |H|c−i, using A a
polynomial (in log |H |) number of times.

Proof. If we know that logH,g x is less than dl, then for any i < blogd |H |c − l,
we have that logH,g x

di

= di logH,g x, so lsd(x) = lsdi(xdi

). In order to apply
Lemma 4.9 and proceed as in the proof of Proposition 4.7, we need to show how
to randomise the queries to the algorithm A.

Following Lemma 4.8, we assume that logH,g x ≤ b|H |ε/3c. Then we sample
r uniformly at random from {0, . . . , di − 1}, and r′ uniformly at random from
{di, . . . , |H |−1}. It is clear that with probability 1−ε/3, di logH,g x+r+r′ < |H |,
and that A has systematic advantage at least ε/3 on the reduced instance.

The interesting case is for d = 2. From the above proof, it is clear that we can
give the algorithm A that tries to compute the ith bit of the subgroup discrete
logarithm the lower order bits, since except with probability ε/3, they are exactly
r. This means that all of the bits are simultaneously hard to compute.

We can consider this informally as a limiting process. As the restriction on
the subgroup discrete logarithm decreases, the number of simultaneously hard
bits increases. In the limit, where it is difficult to prove that the subgroup
discrete logarithm is zero, given the knowledge that it is zero, we get the subgroup
membership problem.

4.4 Symmetric subgroup membership problems

Let Γ be defined as in Section 4.2, and suppose that there is an efficient algo-
rithm available that samples K and H (almost) uniformly at random. As usual,
sampling using this algorithm is denoted by x ≈← K and x ≈← H . It is clear that
we can derive two families Γ′ and Γ′′ from Γ by forgetting in turn H and K, and
that we can derive subgroup membership problems from these families.

Definition. The symmetric subgroup membership problem SSMΓ is the double
problem SMΓ′ and SMΓ′′ . We say that the SMΓ is hard if both SMΓ′ and
SMΓ′′ are hard.

Note that SSMΓ is not a problem in the sense defined in Section 2.2, but it
is convenient to borrow the terminology. As for subgroup membership problem,
we usually consider subproblems SSM(G,K,H).

Theorem 4.11. Let SSM(G,K,H) be a symmetric subgroup membership problem
such that G is cyclic, and let A be an algorithm that decides the Decision Diffie-
Hellman problem on G. Then for any δ′ > 0 and certain algorithms A1, A2,
A3, A′

1, A′
2 and A′

3 that use A once as an oracle and otherwise do O(log 1/δ′)
exponentiations in G, we have that

AdvDDHG

A ≤ AdvSM(G,K)
A1

+ AdvSM(G,K)
A2

+ AdvSM(G,H)
A3

+ f(|K|) +O(δ + δ′),
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and

AdvDDHG

A ≤ AdvSM(G,H)

A′
1

+ AdvSM(G,H)

A′
2

+ AdvSM(G,K)

A′
3

+ f(|H |) +O(δ + δ′),

where the sampling algorithms for K and H are δ-close to uniform, and

f(x) =
|G| − φ(|G|)
|G| +

4x
|G| +

x− φ(x)
x

.

We shall need the following result quite often, so we state it as a separate
lemma.

Lemma 4.12. Let G be a finite cyclic group, and let K and H be non-trivial
subgroup of G such that K ∩H = {1} and G = KH. Let g be a generator for
K. Let X be uniformly distributed on {0, . . . , |G|−1}, Y be uniformly distributed
on G, while Z is uniformly distributed on H. Let U = (gX , Y X) and let V =
(gX , Y XZ). Then

Dist(U, V ) ≤ 1− φ(|H |)
|H | .

Proof. Let X1 = X mod |K| and X2 = X mod |H |, and let Y = Y1Y2, where
Y1 ∈ K and Y2 ∈ H . It is clear that X1, X2, Y1 and Y2 are independently and
uniformly distributed, and that

U = (gX1 , Y X1
1 Y X2

2 ) and V = (gX1 , Y X1
1 Y X2

2 Z).

If we let U ′ = Y X2
2 and V ′ = Y X2

2 Z, it is clear that

Dist(U, V ) = Dist(U ′, V ′)

and that V ′ is uniformly distributed on H .
Now we condition on a fixed y2 ∈ H . If this y2 is a generator, then it is clear

that yX2
2 is uniformly distributed on H . By Lemma 2.5, it follows that

Dist(U ′, V ′) ≤ 1− φ(|H |)
|H | ,

which concludes the proof.

Proof of Theorem 4.11. A is an algorithm that takes as input G, c1, c2, c3, c4, and
returns 0 or 1. We shall need the experiments listed in Figure 4.1.

The idea is to make small changes to the input distribution of A, interleaved
with changes that correspond to the subgroup membership problems. Then we
shall show that in the end, A has no advantage against the final input distribu-
tion, and the only significant changes in advantage correspond to the subgroup
membership problems. Therefore, if A has significant advantage, at least one
of the derived algorithms must have significant advantage against a subgroup
membership problem.
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Experiment 1.
Input: A, G.

1. u, v, w ← {0, . . . , |G| − 1}.
2. x← G.

3. b← {0, 1}.
4. If b = 1, then z ← xuv,

otherwise z ← xw.

5. b′ ← A(x, xu, xv, z).

6. If b = b′, then output 1,
otherwise output 0.

Output: 0 or 1.

Experiment 2.
Input: A, G, x ∈ G.

1. u, v, w← {0, . . . , |G| − 1}.
2. b← {0, 1}.
3. If b = 1, then z ← xuv,

otherwise z ← xw.

4. b′ ← A(x, xu, xv, z).

5. If b = b′, then output 1,
otherwise output 0.

Output: 0 or 1.

Experiment 3.
Input: A, G, y ∈ G.

1. u, v, w ← {0, . . . , |G| − 1}.
2. x← K.

3. b← {0, 1}.
4. If b = 1, then z ← yv,

otherwise z ← yw.

5. b′ ← A(x, xv, y, z).

6. If b = b′, then output 1,
otherwise output 0.

Output: 0 or 1.

Experiment 4.
Input: A, G, h ∈ G.

1. u, v, w← {0, . . . , |G| − 1}.
2. x← K, y ← G.

3. b← {0, 1}.
4. If b = 1, then z ← hyv,

otherwise z ← yw.

5. b′ ← A(x, xv, y, z).

6. If b = b′, then output 1,
otherwise output 0.

Output: 0 or 1.

Figure 4.1: Experiments for the proof of Theorem 4.11.
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First of all, we note that by using the sampling algorithms of the symmetric
subgroup membership problem, and by Lemma 2.3, even if we do not know |G|,
we can implement modified experiments whose underlying probability spaces are
O(δ+ δ′)-close to the original experiment, for any δ′ > 0. The extra work needed
is O(log 1/δ′) exponentiations in G.

Consider first Experiment 1. Let T1 denote the event that the experiment
returns 1. If the x chosen at random is a generator, then it is clear that the
experiment runs exactly as Experiment 2 in Section 2.3. By Lemma 2.5, we get
that

AdvDDHG

A ≤ |Pr[T1]− 1/2|+ |G| − φ(|G|)
|G| . (4.1)

Next we consider Experiment 2. Suppose the input x to Experiment 2 is
sampled uniformly from G \K. Let T2 be the event that the experiment returns
1 in this case. The only difference now between Experiment 1 and Experiment 2
is that Experiment 1 samples x uniformly from G, not G \ K. By Lemma 2.2,
we see that

|Pr[T1]− Pr[T2]| ≤
2|K|
|G| . (4.2)

Now consider the case when the input x to Experiment 2 is sampled uniformly
from K, and let T ′

2 be the event that the experiment returns 1 in this case.
It is clear that we can construct an algorithm A1 for deciding SM(G,K) from
Experiment 2 such that

AdvSM(G,K)

A1
= |Pr[T2]− Pr[T ′

2]|. (4.3)

Next, we consider Experiment 3. Suppose the input y to Experiment 3 is
sampled uniformly from K. Let T ′

3 be the event that the experiment returns 1 in
this case. It is clear that if the x sampled is a generator for K, then Experiment 2
and Experiment 3 proceed identically. So

|Pr[T ′
3]− Pr[T ′

2]| ≤
|K| − φ(|K|)

|K| . (4.4)

Let T3 be the event that the experiment returns 1 when the input y to Exper-
iment 3 is sampled uniformly from G\K. Again, it is clear that we can construct
an algorithm A2 for deciding SM(G,K) from Experiment 3 such that

AdvSM(G,K)

A2
= |Pr[T3]− Pr[T ′

3]|. (4.5)

Finally, we consider Experiment 4. Suppose the input h to Experiment 4 is
sampled uniformly from H . Let T4 be the event that Experiment 4 returns 1 in
this case. The only difference between T4 and T3 is that in Experiment 3, y is
sampled uniformly from G \ K, while in Experiment 4 it is sampled uniformly
from G, and the final result is multiplied by h. By Lemma 2.2 and Lemma 4.12,
we have that

|Pr[T3]− Pr[T4]| ≤
2|K|
|G| +

|H | − φ(|H |)
|H | . (4.6)
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Again, we can construct an algorithm A3 for deciding SM(G,H) from Exper-
iment 4 such that

AdvSM(G,H)
A3

= |Pr[T4]− Pr[T ′
4]|. (4.7)

If the input h to Experiment 4 is sampled uniformly from G \ H , then it is
clear that the input z to A in Experiment 4 is uniformly distributed in G, no
matter what the value of b is. So if T ′

4 is the event that Experiment 4 returns 1
when h is sampled uniformly from G \H , we know that

Pr[T ′
4] =

1
2
. (4.8)

Combining equations (4.1)–(4.8) proves the first claim, and the second claim
follows by symmetry.

4.5 A catalogue

We shall discuss several subgroup membership problems that have appeared in
the literature, and some new variations on those problems.

All of these subgroup membership problems have corresponding splitting
problems. Some of them are interesting subgroup discrete logarithm problems,
and some are possibly hard symmetric subgroup membership problems. The
splitting problems and subgroup discrete logarithm problems can also be turned
into trapdoor problems, and in general Proposition 4.5 allows for efficient split-
ting.

For every problem, we also discuss how we can sample elements from the
relevant subgroups/subsets. We also discuss briefly the relationship with other
problems.

4.5.1 Quadratic Residue problem

Let p and q be primes congruent to 3 modulo 4, and let n = pq. Let

Jn = {x ∈ Z∗
n |

(x
n

)
= 1}.

Let Qn be the subgroup of quadratic residues of Jn. Then we have a subgroup
membership problem SM(Jn,Qn) and a splitting problem SP(Jn,Qn,〈−1〉). This is
the Quadratic Residue problem QRn, which first appeared in [22].

Since 〈−1〉 has order 2, the subgroup membership problem and the splitting
problem are equivalent.

While anyone who knows the order of Qn can solve the splitting problem, it
is quicker to compute the Legendre symbol modulo either p or q.

We can sample elements uniformly from K by sampling elements uniformly from
Z∗

n and squaring them. H consists of 1 and −1, so we can sample uniformly from
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H too. Note that if one can sample uniformly and independently from K and H ,
then one can sample uniformly from both G and G \K.

If is obvious that anyone who can factor the modulus n can solve QRn. It is not
known if these are equivalent, but the best known general attack against QRn is
to factor the modulus.

4.5.2 Higher Residue problem

Let p and q be primes congruent to 3 modulo 4, and let n = pq. Suppose c is an
odd prime such that c|p− 1, and c - q− 1. Then, in an analogue of the quadratic
residue problem, we have the Higher Residue problem, where H is a subgroup
of Qn of order c. This was first investigated by Cohen Benaloh for non-prime
but smooth c ([6] and the references therein). We get a subgroup membership
problem and a splitting problem. If c is small, we also get a natural subgroup
discrete logarithm problem.

The natural generalisation is to let p = 2ac + 1, q = 2bd + 1 and n = pq,
a, b prime, such that gcd(ac, bd) = gcd(ab, cd) = 1. This was investigated by
Naccache and Stern [29]. We let G = Qn, K be the unique subgroup of order ab
and H be the subgroup of order cd. To get a natural subgroup discrete logarithm
problem, we let c and d be smooth integers. Discrete logarithms in H can then
be computed using the Pohlig-Hellman algorithm. It is natural to assume that
cd is known. We denote the subgroup membership problem SM(G,K) by HRn.

To sample elements of K, we can sample elements uniformly at random from Z∗
n,

and then apply the map x 7→ x2cd. Note that this map is an automorphism on
K, but on H it is the zero homomorphism.

Suppose we are given an element x ∈ H . Knowing the integer cd and its prime
factorisation, finding the order k of x is easy. For any prime ` dividing k and any
representative m for the residue class x, it is clear that mk/` is congruent to 1
modulo either p or q, but not both, so gcd(mk/`− 1, n) gives us the factorisation
of n.

Therefore, we cannot give away elements of H . In order to sample elements of
G\K, we publish a generator g for G. By sampling u uniformly from {1, . . . , cd−
1} and r uniformly from K, rgu is uniformly distributed in G \K.

Under the assumption that c and d are known (not only cd), Naccache and Stern
[29] proposed an attack that required approximately

O(n1/2/(cd)2) (4.9)

work. This means that if cd is too large, there are better algorithms for factoring
the modulus than the general algorithms.

The basic idea of the attack is as follows. We have that n = 4abcd+ 2(ac+
bd) + 1. Then we get that

n− 1 ≡ 2ac (mod d) and n− 1 ≡ 2bd (mod c).
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In other words, knowledge of c and d gives us some knowledge about a and b that
speeds up the search. If c and d are sufficiently small, factoring n seems to be
the best attack on the subgroup membership problem SM(G,K).

Having a generator for H is sometimes desirable. Instead of having c and d be
relatively prime, as above, we can let c = d, so that p = 2ac+ 1, q = 2bc+ 1, and
n = 4abc2 + 2c(a+ b) + 1. Note that c|(n− 1), so we may as well assume that c
is known.

The interesting thing about the subgroup of order c2 is that it is non-cyclic.
If an element [w] of H is made public, and w 6= 1 (mod p) and w 6= 1 (mod q),
then no matter what group operations are performed on [w], the result will never
yield a factor of n. It therefore seems safe to make elements of order c public.

Every element of order c generates a subgroup. If we have two elements x
and y that generate distinct subgroups, we can use a Pollard ρ-type attack to
generate a collision modulo p and not modulo q. This means that we should not
publish elements from more than one subgroup.

In general, we will be interested in the modified group structure whereK is the
subgroup of order ab, H is a cyclic subgroup of order c generated by an element
g, and G = KH . We denote the subgroup membership problem SM(G,K) by
HR′

n.

As above, we can sample uniformly at random from K by sampling uniformly at
random from Z∗

n, then applying the map x 7→ x2c. We publish a generator g for
H , so sampling uniformly at random from H is possible.

If we can recover the product ab, then we can factor n given any element m with
Jacobi symbol −1 modulo n, because mabc is congruent to 1 modulo one of the
prime factors, and −1 modulo the other. Therefore, gcd(mabc − 1, n) gives the
factorisation of n.

First of all, n−1 ≡ 0 (mod c), so the attack of Naccache and Stern described
above does not work. We get that

n− 1
4c2

= ab+
a+ b

2c
.

This means that ab is relatively close to (n− 1)/(4c2). Note that ac ≈ bc ≈
√
n.

We can use a Baby-step Giant-step type algorithm to recover ab in

O(
√

(a+ b)/c) = O(
√√

n/c2) = O(n1/4/c)

steps. This is not bad compared with (4.9).

There are obvious elliptic curve analogues of the above group structures, based
on elliptic curves modulo composite integers. Let n be a product of two primes
p and q. Find elliptic curves E′ and E′′ defined over Fp and Fq, respectively,
such that #E(Fp) = ac and #E(Fq) = bd. Then we use the Chinese remainder
theorem to derive an elliptic curve E defined over Zn such that #E(Zn) = abcd.
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Hasse’s theorem says that #E(Fp) = p+1−tp (tp is the trace of the Frobenius
endomorphism), and that −2

√
p ≤ tp ≤ 2

√
p (the same holds for q). The trace

is distributed roughly uniformly in this range. We get that

#E(Zn) = #E′(Fp)#E′′(Fq) = abcd

= (p+ 1− tp)(q + 1− tq)
= n− (ptp + qtq) + (p+ q)− (tp + tq) + 1

= n+O(n3/4).

This means that when cd is known, the product ab can be recovered with a
Baby-step Giant-step type algorithm using O(n3/8/

√
cd) steps.

When c = d, we repeat the above analysis, and we find that we can recover
ab using O(n3/8/c) steps.

4.5.3 Decision Diffie-Hellman problem

The Decision Diffie-Hellman Problem was discussed in Section 2.3. We shall show
that the Decision Diffie-Hellman problem is equivalent to a subgroup membership
problem [10, 41], and the Computational Diffie-Hellman problem is equivalent to
a splitting problem.

Let G′ be a cyclic group with generator g1. Let G = G′ ×G′. Let g2 be any
element in G′. Then the pair (g1, g2) generates a non-trivial, proper subgroup K
of G. Let H = 〈(1, g1)〉.

If Γ′ is a family of groups, we can derive a family of group structures Γ as
above. For each groupG = G′×G′, there are |G′| different subgroups of the above
form, and we sample from them with uniform probability. We get a subgroup
membership problem SMΓ and splitting problem SPΓ.

Suppose we have a problem instance (G,K,w). NowK is defined by two elements
(g1, g2), and w is defined by a pair (x, y). This gives us a quadruple (g1, g2, x, y).
It is clear that (x, y) ∈ K if an only if logg1

g2 logg x ≡ logg y (mod |G′|). The
quadruple (g1, g2, x, y) is a problem instance for the Decision Diffie-Hellman prob-
lem DDHG′ , and it is sampled with exactly the same probability. This means
that SMΓ is simply a reformulation of DDHΓ′ .

In the same way, if (G,K,H,w) is an instance of SPG, we get a quadruple
(g1, g2, x, y). The answer is two pairs (x, z) and (1, z′), such that logg1

g2 logg1
x ≡

logg1
z (mod |G′|). An instance of CDHG′ is a triple (g1, g2, x), and the answer

is z as described.
It is clear that we can transform an instance of SP(G,K,H) into an instance of

CDHG′ by discarding y. We can transform an instance of CDHG′ into an instance
of SP(G,K,H) (where K may vary) by sampling y uniformly at random from G′.

We see that SPΓ is simply a reformulation of CDHΓ′ .
It is worth noting that if K is a subgroup of G generated by (g1, g2), and

K ′ is generated by (ga
1 , g

b
1), the map (x, y) 7→ (xa, yb) takes K into K ′. The
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map is an automorphism on H when b 6≡ 0 (mod |G′|). This corresponds to the
self-reducibility property of the Diffie-Hellman problems.

Sampling from K = 〈(g1, g2)〉 can be done by sampling k uniformly at random
from {0, . . . , |G′| − 1} and computing (g1, g2)k. Sampling uniformly from H can
obviously be done by sampling uniformly from G′.

Since G is non-cyclic, Proposition 4.5 cannot be used to solve the splitting prob-
lem. But anyone who knows the discrete logarithm logg1

g2 can compute the
splitting, and this shows how to derive a trapdoor splitting problem.

4.5.4 Decision Composite Residuosity problem

This subgroup membership problem was first proposed by Paillier [35]. Our
description also incorporates several later simplifications [14].

Let n = pq be such that gcd(n, φ(n)) = 1. We shall consider the group
G = Z∗

n2 . It is clear that |G| = φ(n)n.
Let d ≡ n−1 (mod φ(n)). Then we can define a map from Z∗

n into G by
[a]n 7→ [adn]n2 . It is clear that a ≡ adn (mod n), so this map is one-to-one. It is
also an homomorphism. We let the image of Z∗

n under this map be K.
Its inverse map G → Z∗

n is the map [a]n2 7→ [a]n, often called reduction
modulo n. It is clear that the elements [1 + an]n2 map to [1]n, and that any
element that maps to [1]n is of this form. We let H be this kernel of reduction
modulo n.

It is quite clear that K ∩H = {1} and that KH = G.
Now we note that

(1 + n)a ≡ 1 +
(
a

1

)
n+

(
a

2

)
n2 · · · ≡ 1 + an (mod n2).

From this, we see that discrete logarithms are easy to compute in H . One group
isomorphism Zn → H is the map [a]n 7→ [1+n]an2 . Since for any [b]n2 ∈ H , b ≡ 1
(mod n), the reverse isomorphism is [b]n2 7→ [(b− 1)/n]n.

The subgroup membership problem SM(G,K) is called the Decision Composite
Residuosity problem (DCRn). The corresponding splitting problem SP(G,K,H)

is called the Computational Composite Residuosity problem (CCRn). This is
equivalent to the subgroup discrete logarithm problem SDL(G,K,H,[1+n]).

We can sample elements uniformly fromK andH by sampling elements uniformly
in Z∗

n and Zn, and then using the corresponding homomorphisms.

It is quite clear that anyone who can solve FACT n can solve CCRn. Likewise,
anyone who can solve RSAn with encryption exponent n can solve CCRn. It is
not known if CCRn is equivalent to either of these, but the best known method
for solving the CCRn and DCRn is to factor the modulus n.
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Damg̊ard and Jurik [14] describe a generalised group structure, using Z∗
ns+1 for

some s ≥ 1. As above, they show that G = Z∗
ns+1 ' Z∗

n × Zns ' K ×H . They
get a subgroup membership problem SM(G,K), and they show that it does not
get much easier as s increases. We sketch the proof.

Let Ks and Hs be the subgroups of Z∗
ns+1 isomorphic to Z∗

n and Zns , respec-
tively. Note that [1+n]ns+1 is a generator for Hs. We shall proceed by induction,
using the following diagram:

KsHs

Ks−1Hs−1 KsH
ns−1

s
K1H1

Ks−1 Ks K1

Consider the map f : Z∗
n2 → Zns+1 given by f([w]n2) = [wns−1

]ns+1 . Since
for any a, b ∈ Z, (a + bnt)ns+1−t ≡ ans+1−t

(mod ns+1−t), and composition with
reduction modulo n shows that f(Zn2) ⊆ Zns+1 , it is clear that f is a well-defined
group homomorphism.

So suppose x ∈ H1. Then for some a ∈ {0, . . . , n − 1}, x = [(1 + n)a]n2

and f(x) = [((1 + n)a)ns−1
]ns+1 = [(1 + n)ans−1

]ns+1 ∈ Hns−1

s . This means that
f(H1) = Hns−1

s .
For any element x ∈ K1, there must be an integer w such that x = [wn]n2 .

But then f(x) = [(wn)ns−1
]ns+1 = [wns

]ns+1 , so f(K1) ⊆ Ks. It is clear that f is
a group homomorphism. Composing with reduction modulo n, and noting that
x 7→ xn is an automorphism of Z∗

n, we see that the kernel of f restricted to K1

is trivial, so f(K1) = Ks.
By Proposition 4.3, this means that if we can distinguish SM(KsHns−1

s ,Ks)
,

then we can distinguish SM(K1H1,Ka).
Next, we consider the homomorphism f ′ : KsHs → Ks−1Hs−1 given by

f ′([w]ns+1) = [w]ns . It is clear that the kernel of f ′ is Hns−1

s . Also, if w ≡ w′

(mod ns) (and gcd(w, n) = gcd(w′, n) = 1), then w ≡ w′(1+n)rns−1
(mod ns+1)

for some r ∈ Z.
Let A be an algorithm that takes as input [w]ns ∈ Ks−1Hs−1, samples r

uniformly from {0, . . . , n− 1}, and outputs [w(1 + n)rns−1
]ns+1 . It is quite clear

that if the input is uniformly distributed in Ks−1, then the output is uniformly
distributed in KsH

ns−1

s . Likewise, if x ∈ Hs−1 is uniformly distributed in Hs−1,
then the output is almost uniformly distributed in Hs.

Again, by Proposition 4.3, if we can distinguish SM(KsHs,KsHns−1
s ), then we

can distinguish SM(Ks−1Hs−1,Ks−1).
Now we consider only distinguishing algorithms up to a certain fixed cost.

Let εi be the maximal advantage of these algorithms against the subgroup mem-
bership problem SM(KiHi,Ki). By Proposition 4.2 and the above discussion, we
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get that εi ≤ εi−1 + 3ε1/2, or εs ≤ (3s − 1)ε1/2. In other words, the advantage
increases at most linearly as s increases.

Galbraith [20] gave an elliptic curve generalisation of this group structure. The
basic idea is that modulo n2, the projective point (n : 1 : 0) has order n, but
modulo n, it reduces to the point at infinity. So just as for Z∗

n2 , E(Zn2) '
E(Zn)× Zn, with Zn taken additively.

It is easy to sample elements uniformly at random from the part isomorphic
to Zn, but to sample from the part isomorphic to E(Zn), we need a generator for
E(Zn) (or a subgroup, if E(Zn) is non-cyclic).

4.5.5 Okamoto-Uchiyama

A precursor to the Composite Residuosity group structure was described by
Okamoto and Uchiyama [34].

Let p and q be primes such that gcd(pq, φ(pq)) = 1, and let n = p2q. As above,
we find that Z∗

n ' Z∗
p × Z∗

q × Zp, where Zp is taken to be an additive group. K
is the subgroup isomorphic to Z∗

p ×Z∗
q , and H is the subgroup isomorphic to Zp.

We can sample elements uniformly from K by sampling uniformly from Z∗
n, and

then computing the nth power. Since gcd(pq, φ(pq)) = 1, raising to the nth power
is an automorphism on K, while it is the zero homomorphism on H .

Sampling elements from H is a bit more tricky. Any integer representing a
residue class in H is congruent to 1 modulo p. This means that anyone who
knows a non-trivial element [a] in H can factor n by computing gcd(a− 1, n).

But given an element g whose order is divisible by abp, we can sample elements
almost uniformly at random fromG\K by sampling u from {0, . . . , n−1}, subject
to gcd(u, n) = 1. Then we sample r ∈ Z∗

n uniformly at random and compute rngu.

Anyone who can solve the subgroup discrete logarithm problem, can recover the
order of H , which is p, so he can factor n. Anyone who can factor n can solve
the splitting problem. As discussed, anyone who can solve the subgroup splitting
problem can factor n and then solve the discrete logarithm problem in H . So the
subgroup discrete logarithm problem and the splitting problem are equivalent,
and both are equivalent to factoring the underlying modulus.

4.5.6 Groups of known order

Let p and q be primes, and let n = pq. Let G be an abelian group of order n.
Then G has unique subgroups K, H of order p and q, respectively. If the order
of G is easily computable, but the orders of K and H are hard to find, then we
have a potential candidate for a subgroup membership problem.

We shall describe two families of such groups. Note that for both families, the
two subgroups K and H are essentially the same, so we get symmetric subgroup
membership problems.
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Let n be a composite number with two prime factors such that 2n+ 1 is also
prime. Then the multiplicative group F∗

2n+1 has order 2n, and we have a unique
subgroup of order n. This group structure was suggested in [31]. A related topic
was discussed in [26]. We denote the derived symmetric subgroup membership
problem by SOUn.

Let n be a composite number with two prime factors, let p′ be a prime such
that |p′ +1−n| < 2

√
p′, and let E be an elliptic curve defined over Fp′ such that

#E(Fp′) = n. We derive a symmetric subgroup membership problem SOUE/Fp′ .
(One would probably resort to complex multiplication techniques to find E.)

To sample elements almost uniformly from the subgroups K and H , generators
for K and H must be made available.

It seems plausible that SOUn and SOUE/Fp′ both are hard. Deciding if an
element is in one of the subgroups is equivalent to deciding if its order is small
or large. It is clear that anyone who can factor the modulus n can also break the
system. Likewise, anyone who can compute discrete logarithms in the subgroups
K and H can factor the modulus and hence break the system. Anyone who can
compute discrete logarithms in G, but not in K and H , can decide the subgroup
membership problems. Also, anyone who can decide if an element is a generator
for the whole group, can decide the subgroup membership problems.

It is possible for n to have more than two prime factors, or for the two prime
factors to be of different size. While factoring algorithms like the number field
sieve does not seem able to take advantage of such a structure, the elliptic curve
method [25] does, and this gives a fairly large lower bound on the size of the
smallest prime factor.

4.5.7 Groups of unknown order

Let p = 2ac + 1 and q = 2bd + 1 be τ -bit primes such that a, b, c and d are
pairwise relatively prime, and let n = pq. Let G = Qn, let K be the unique
subgroup of order 2ab, and let H be the unique subgroup of order cd. Then
we get a splitting problem SP(G,K,H) and a symmetric subgroup membership
problem SSM(G,K,H) which we denote by GOUn.

In order to sample elements almost uniformly from K and H , generators for both
groups must be made public and Lemma 2.4 applied.

In general, the factors a, b, c and d should be large. Almost certainly, |K| is
significantly smaller than n, so if the product ab = |K| is known, it will be
feasible to find a and b via factorisation, and then factor n. Therefore, it should
be difficult to compute |K|, even when a generator for K is known. The same
holds for H .

This means that a, b, c and d should each contain at least one big prime factor.
This prevents anyone from finding the order of K and H by computing discrete
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logarithms. Also, it blocks Pollard ρ-type attacks on the subgroup, which would
have been feasible if |K| or |H | were small.

Note that unlike in the previous section, the order of G is not known, so the
prime factors in a, b, c and d can still be quite small.

As in Section 4.5.2, we can let c = d. Then K is the subgroup of order ab and H
is some subgroup of order c. Since c|(n − 1), c becomes known, but it does not
seem to matter, even if an element of order c is made public. c should not be
too large, however, as the analysis in Section 4.5.2 also applies to this case. And
since c is known, the subgroup membership problem SM(G,H) is trivial.

We denote this subgroup membership problem by GOU ′
n.

4.6 Further reductions

Let p = 2ac + 1, q = 2bd + 1, p ≡ q ≡ 3 (mod 4), and n = pq, just as in
Sections 4.5.1 and 4.5.7. Let Jn be the subgroup Z∗

n of elements with Jacobi
symbol 1, Qn be the subgroup of quadratic residues, K be the subgroup of order
ab and H the subgroup of order cd. We denote the subgroup of order 2 generated
by −1 by T . We get the following subgroup lattice:

Jn

TK Qn TH

K T H

We have already discussed the subgroup membership problems SM(Jn,Qn),
SM(Qn,K) and SM(Qn,H). We first discuss some combinations of these problems.

Proposition 4.13. Suppose there is a distinguisher for SM(Jn,K) with advan-
tage ε. Then either there is a distinguisher for SM(Jn,Qn) with advantage at least
ε/3, or there is a distinguisher for SM(Qn,K) with advantage at least ε/3.

Proof. Apply Proposition 4.2.

Proposition 4.14. For any distinguisher for SM(Jn,TK) with advantage ε, there
is a corresponding distinguisher for SM(Qn,K) with the same advantage, and vice
versa.

Proof. We shall show how to apply Proposition 4.3 to both directions.
First, we note that the map from Jn to Qn given by x 7→ x2 is an automor-

phism on the groups Qn, K and H . If X is uniformly distributed on Jn \ TK,
then the projection ofX on H is uniformly distributed onH \{1}. Since squaring
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is an automorphism, the projection of X2 on H is also uniformly distributed on
H \ {1}.

If X is uniformly distributed on TK, then X2 is clearly uniformly distributed
on K. So by Proposition 4.3 we have shown that SM(Jn,TK) is not more difficult
than SM(Qn,K).

Second, let Y be uniformly distributed on {0, 1}. If X is uniformly dis-
tributed on Qn \K, then X(−1)Y is uniformly distributed on Jn \ TK. If X is
uniformly distributed on K, then X(−1)Y is uniformly distributed on TK. So
again by Proposition 4.3 we have shown that SM(Qn,K) is not more difficult than
SM(Jn,TK).

We shall now combine the above group structure with the group structure of
Section 4.5.4. Let Jn2 be the elements of Z∗

n2 with Jacobi symbol 1, and let Qn2

be the quadratic residues of Z∗
n2 .

Recall that we have a homomorphism Z∗
n2 → Z∗

n given by taking the residue
class of Zn2 represented by the integer w to the residue class of Zn represented
by w. Let H ′ be the kernel of this homomorphism.

We also have a homomorphism Z∗
n → Z∗

n2 given by taking the residue class of
Z∗

n represented by the integer w to the residue class of Z∗
n2 represented by wn.

Let K ′ be the image of Z∗
n under this homomorphism. We identify the subgroups

of Z∗
n with the corresponding subgroups of K ′.
We get the following subgroup lattice:

Z∗
n2

K ′ Jn2

Jn Qn2

Qn H ′

K H

Proposition 4.15. For any distinguisher for SM(Qn2 ,Qn) with advantage ε,
there is a corresponding distinguisher SM(Z∗

n2 ,K′) with the same advantage.
Suppose an element j ∈ Z∗

n2 \ Jn2 is known. Then for any distinguisher for
SM(Z∗

n2 ,K′) with advantage ε, there is a corresponding distinguisher SM(Qn2 ,Qn)

with the same advantage.

Proof. Obviously, the map x 7→ x2 takes the uniform distributions on Z∗
n2 \K ′

andK ′ to the uniform distributions on Qn2\Qn and Qn, respectively. This means
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that SM(Z∗
n2 ,K′) cannot be more difficult than SM(Qn2 ,Qn), by Proposition 4.3,

and the first claim follows.
Let Y and Z be uniformly distributed on {0, 1}. If X is uniformly distributed

on Qn, then X(−1)Y jnZ is uniformly distributed on K ′. If X is uniformly
distributed on Qn2 \Qn, then X(−1)Y jnZ is uniformly distributed on Z∗

n2 \K ′.
As above, we find that SM(Qn2 ,Qn) cannot be more difficult than SM(Z∗

n2 ,K′),
by Proposition 4.3, and the second claim follows.

Proposition 4.16. Suppose there is a distinguisher for SM(Qn2 ,K) with advan-
tage ε. Then either there is a distinguisher for SM(Qn2 ,Qn) with advantage ε/3,
or there is a distinguisher for SM(Qn,K) with advantage ε/3.

Proof. Apply Proposition 4.2.



Chapter 5

Homomorphic
cryptosystems

In this section, we shall study three different homomorphic cryptosystems. We
shall prove all three systems semantically secure against chosen plaintext attacks
based on subgroup membership problems. All three cryptosystems are homo-
morphic with respect to a group operation. For several of the cryptosystems, the
group operation can be regarded as addition modulo an integer, which may be
very convenient.

We shall also discuss the security of some of the cryptosystems against a
non-adaptive chosen ciphertext attack, under a non-standard assumption.

5.1 The general cryptosystem

Let TSPΓ be a trapdoor splitting problem, and suppose that to every tuple
(G,K,H, σ), there is an algorithm for sampling K (almost) uniformly at random,
an associated group G′, and a probability space F on a set of easy to compute
maps {f : G′ → G}. We require that for every map f in F , the composition
πH ◦ f : G′ → H is a group isomorphism, and it is easy to derive a group
isomorphism f ′ : H → G′ such that f ′ = (πH ◦ f)−1.

The basic idea is that H carries the message, and K contains “noise” that
hides the message. f is used to insert the message in H . The splitting algorithm
can be used to remove the noise, and f ′ can be used to recover the message. The
exact construction of Π1 from TSPΓ is described in Figure 5.1.

Proposition 5.1. The cryptosystem Π1 is an homomorphic public key system.

Proof. It is quite obvious that K, E and D are efficient, and that D is deter-
ministic. It is also clear that if rf(m) is the ciphertext output by E , then the
projection on H is πH(f(m)), so D will output m. Therefore, Π1 is a public key
system.

53
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Key generation.
Input: TSPΓ, τ .

1. (G,K,H, σ, F )← Γτ .

2. f ← F .

3. pk← (G,K,H,G′, f).

4. sk← (G, σ,G′, f ′).

5. Output (pk, sk).

Output: A public-private key pair (pk, sk).

Encryption.
Input: pk = (G,K,H,G′, f), m ∈ G′.

1. x← f(m), r ≈← K.

2. c← rx.

3. Output c.

Output: A ciphertext c ∈ G.

Decryption.
Input: sk = (G, σ,G′, f ′), c ∈ G.

1. (c1, c2)← σ(c).

2. m← f ′(c2).

3. Output m.

Output: A message m ∈ G′.

Figure 5.1: The cryptosystem Π1.
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Finally, if rf(m) and r′f(m′) are two ciphertexts, then the decryption of
rf(m)r′f(m′) is clearly f ′(πH(rr′f(m)f(m′))) = f ′(πH(f(m)))f ′(πH(f(m′))) =
mm′, and the cryptosystem is homomorphic.

Proposition 5.2. Suppose that for any map f ∈ F , we have that for all m ∈ G′,
f(m) = πH(f(m)). Then the public key cryptosystem Π1 is one-way if and only
if the splitting problem SPΓ is hard.

Proof. We prove the statements by giving reductions.
It is clear that any algorithm that solves the splitting problem can be used

instead of the trapdoor function σ used in D.
Now suppose that (G,K,H, x) is an instance of a splitting problem. The

group G′ is given, and we can sample f from F , to construct a public key
(G,K,H,G′, f), which has been sampled just as K would have done it.

Note that when messages are sampled uniformly from G′, E samples cipher-
texts uniformly from G. Therefore, x is a ciphertext for pk sampled exactly as
normal ciphertexts, and if m is the decryption of x, then f(m) is the projection
on H of x, and (x(f(m))−1, f(m)) is the splitting of x.

Let SP(G,K,H) be a splitting problem such thatH is cyclic. Suppose there is some
efficient, deterministic algorithm to compute discrete logarithms in H . There is
a natural map Z→ G given by m 7→ gm, where g ∈ G is such that its projection
on H is a generator for H . If we decide on some fixed map κ : Z|H| → Z to
choose representatives for the residue classes of Z|H|, we get a map f : Z|H| → G

given by [m] 7→ gκ(m).
It is quite clear that if we have a trapdoor subgroup discrete logarithm prob-

lem TSDLΓ, then we can use this map to get a variant cryptosystem Π1′ . It is
described in Figure 5.2.

For Π1′ , Proposition 5.2 is not true unless the element g is a generator H . We
can recover the following, slightly weaker result.

Proposition 5.3. The public key cryptosystem Π1′ is one-way if and only if the
subgroup discrete logarithm problem SDLΓ is hard.

Proof. We prove the statements by giving reductions.
It is clear that any algorithm that solves the subgroup discrete logarithm

problem can be used instead of the trapdoor function σ and the logarithm com-
putation used in D.

Let (G,K,H, g, y) be a problem instance sampled from a subgroup discrete
logarithm problem SDLΓ. We get the public key pk = (G,K,H, g), and this has
been sampled exactly according to K(τ). y is a ciphertext under the public key
pk, and it has been sampled exactly as ciphertexts are sampled. Its decryption m
is congruent to log(H,g) y modulo |H |, so anyone who can decrypt the ciphertext
can solve the subgroup discrete logarithm problem.
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Key generation.
Input: TSDLΓ, τ .

1. (G,K,H, σ, g)← Γτ .

2. pk← (G,K,H, g).

3. (g1, g2)← σ(g).

4. sk← (G, σ, g2).

5. Output (pk, sk).

Output: A public-private key pair (pk, sk).

Encryption.
Input: pk = (G,K,H, g), [m] ∈ Z|H|.

1. x← gm, r ≈← K.

2. c← rx.

3. Output c.

Output: A ciphertext c ∈ G.

Decryption.
Input: sk = (G, σ,G′, f ′), c ∈ G.

1. (c1, c2)← σ(c).

2. m← logg2
c2.

3. Output m.

Output: A message m ∈ Z|H|.

Figure 5.2: The cryptosystem Π1′ .
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Now we use the indistinguishability property of the subgroup membership prob-
lem to prove a stronger security result for the cryptosystems Π1 and Π1′ .

Theorem 5.4. The public key cryptosystems Π1 and Π1′ are semantically secure
if and only if the subgroup membership problem SMΓ is hard.

Proof. Again, we give reductions.
Let (G,K,H,G′, f) be a public key. Suppose we have a ciphertext and want

to decide if c decrypts to a message m or to some other, random message. First,
we set x = f(m). If D(sk, c) = m, then cx−1 is uniformly distributed in K.
If D(sk, c) 6= m, then cx−1 is uniformly distributed in G \ K. Hence, we can
decide if c decrypts to m or not with the same advantage that we can decide the
subgroup membership problem SM(G,K).

Next, suppose we have a subgroup membership problem SM(G,K) and an
instance x. As in the proof of Proposition 5.2, we first sample a public key.
Let m ∈ pkM be a message, and sample x′ uniformly from K. If x ∈ K, then
xx′f(m) is an encryption of m. If x ∈ G \K, then xx′f(m) is not an encryption
of m, but of some other, random message. In both cases, the distribution of
the ciphertexts are exactly as E would produce, so we can decide the subgroup
membership problem SM(G,K) with the same advantage that we can distinguish
encryptions of m from other encryptions of other messages.

We briefly describe various concrete instances of Π1 and Π1′ .

Goldwasser-Micali We can instantiate Π1 with the Quadratic Residue prob-
lem from Section 4.5.1 (using a suitable family of moduli), and we get the
Goldwasser-Micali cryptosystem [22].

In this case, the public key is pk = (n). Sampling an element uniformly at
random is done by first sampling an element uniformly at random from Z∗

n, then
squaring it. The message space is {1,−1}, which is a subgroup of Jn, and f = f ′

is the identity.
The secret key is one of the prime factors of n, say sk = (p). To decrypt a

ciphertext c, one simply computes the Legendre symbol of c with respect to p.
If we let the message space be {0, 1} with the mapping 0 7→ 1 and 1 7→ −1,

then the cryptosystem becomes additive and we get an instance of Π1′ .

ElGamal We can instantiate Π1 with the Computational Diffie-Hellman prob-
lem from Section 4.5.3 (using a suitable family of groups), we get the classical
ElGamal cryptosystem [18].

In this case, the public key is pk = (G′, g, y) where G′ is the underlying group
structure, g is a generator, and (g, y) defines the subgroup K. The subgroup
H is then trivially isomorphic to G′, which is the message space. Sampling
uniformly in K is simply a matter of sampling k uniformly from {0, . . . , |G′|− 1}
and computing (g, y)k = (gk, yk).

The secret key is sk = (G′, a), where a is an integer such that y = ga. Then
the splitting of (z, z′) can be computed as ((z, za), (1, z′z−a)).
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Paillier The Computational Composite Residuosity problem in Section 4.5.4,
CCRn, can be considered either as a splitting problem or as a subgroup discrete
logarithm problem. We take it to be the latter, so the Paillier cryptosystem [35]
is an instance of Π1′ .

The public key will be pk = (n), and the secret key sk = (d), where d is the
order of K, and the splitting is computed using Proposition 4.5.

Paillier [35] also suggested a subgroup variant. This is essentially the same sys-
tem, but the modulus is chosen as in Section 4.5.7 and K is taken to be a suitable
subgroup of the nth powers (which are isomorphic to Z∗

n). Propositions 4.15 and
4.16 say that the subgroup variant is secure if both DCRn and GOUn are hard.

Okamoto-Uchiyama The construction in Section 4.5.5 is a subgroup discrete
logarithm problem, and we get an instance of Π1′ [34].

Let p = 2a+ 1, q = 2b+ 1 be primes and n = p2q. The public key consists of
(n, g), where g ∈ Z∗

n has order divisible by p.
An interesting point is that given only the modulus n, we can sample a public

key with almost the same distribution as the key generation algorithm. To see
this, note that a random element in Z∗

n has order divisible by p with probability
approximately 1− 1/p.

Now suppose that we know that p is a t-bit integer, that is, 2t−1 ≤ p < 2t. If
we sample a from {2t, . . . , 2t+1 − 1}, then p < a < 4p. We sample r uniformly
at random from Z∗

n and create the ciphertext rnga. This is a valid ciphertext
with decryption m. So we know that a ≡ m (mod p), or that a−m = kp. Since
0 ≤ m < p, k must be 1, 2 or 3. In other words, if we can decrypt ciphertexts for
this instance of the cryptosystem, we can factor the underlying modulus.

Naccache-Stern If we instantiate Π1′ with HRn, we get the Naccache-Stern
cryptosystem [29]. By instantiating Π1′ with HR′

n, we get a similar variant,
which fits into both Π1 and Π1′ , but the latter is most natural.

Let p = 2ac+ 1, q = 2bd+ 1 be primes, such that a, b are primes and c, d are
smooth integers (either equal, or relatively prime). Let n = pq. The public key is
(n, g), where g ∈ G defines the function f by f(m) = gm. If gcd(c, d) = 1, then
g should be an element of order divisible by abcd. If c = d, then g should be an
element of order c that is not congruent to 1 modulo either p or q.

Combinations It is possible to combine HRn (or HR′
n) with CCRn to get

an instance of Π1′ . Proposition 4.15 and Proposition 4.16 say that the resulting
instance of Π1′ is secure if both HRn (or HR′

n) and CCRn are hard. Such a
cryptosystem would have somewhat higher bandwidth. The disadvantages would
include a larger public key (one would need to store generators for K and G) and
slower decryption.
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5.2 Non-standard assumptions

To motivate the work in this section, we briefly describe a non-adaptive chosen
ciphertext attack against the Paillier cryptosystem which may be faster than
factoring the modulus. This is basically a variant of the attacks in [15], but using
a trick of looking for smooth numbers in Zn, not in Zn2 .

So let B be a set of small primes (possibly also including −1). Note that
every number in B gives us a valid ciphertext for the Paillier cryptosystem. We
use the decryption oracle to obtain a decryption of every number in B, and store
them in a table.

When we get the challenge ciphertext c, we choose random nth powers c′,
which decrypt to 0, until cc′ mod n is B-smooth. If the factorisation of cc′ is∏

`i∈B `
αi

i , we can create a ciphertext c′′ = cc′
∏

`i∈B `
−αi

i , and we know that

c′′ = cc′
∏

`i∈B

`−αi

i ≡ 1 (mod n).

Because of the homomorphic property and the decryptions of the elements in B,
we know how the decryption has been changed. And because c′′ = [(1 + n)m′

]n2

for some m′, we know its decryption, and therefore the decryption of the original
ciphertext c.

While this attack is of limited practical interest, it does provide some moti-
vation to look at non-adaptive chosen ciphertext security for homomorphic cryp-
tosystems.

5.2.1 Knowledge-of-exponent

Let G be a group. For some groups, it seems difficult to find elements of the
group, except by using the group operation to compute combinations of previously
known elements. We formalise this in the following definition.

Definition. We say that a family of groups Γ = {Γτ} satisfies the knowledge-of-
exponents assumption, if for any efficient algorithm A that takes as input a group
G sampled from Γτ and a tuple of group elements (g1, . . . , gm), and outputs an
element x of G with significant (in τ) probability, there is a trace-variant A′ of
A that also outputs a tuple of integers (k1, . . . , km) such that x = gk1

1 . . . gkm
m .

This concept was first proposed by Damg̊ard [12]. Other work on the subject
is [4, 23]. Given the subgroup membership problem DDHG′ = SM(G,K), they
hypothesise that the subgroup K has this property. That is, given a subgroup of
G′ ×G′ generated by (g1, g2), the only way to find an element in this subgroup
is to compute powers (gk

1 , g
k
2 ), for various k.

We note that in the generic model described in Section 3.6.2, if the represen-
tation set S is much larger than the group size, then the knowledge-of-exponents
assumption holds.
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We shall propose three new groups for which it is plausible that this property
holds. The two first structures come from the subgroups of the symmetric sub-
group membership problems SOUn and GOUn. As for the Diffie-Hellman-based
example, it simply seems difficult to generate elements in any other way than by
computing powers of a given generator.

The third group structure that we shall propose is qualitatively different. Let
n = pq be an RSA modulus, and let E be an elliptic curve defined over Zn, given
by the equation

y2z ≡ x3 + axz2 + bz3 (mod n).

For an elliptic curve defined over a finite field Fp, it is easy to find points
on the curve. Simply choose an x-coordinate uniformly at random, and with
probability approximately 1/2, x3 + ax+ b will be a quadratic residue modulo p.
Computing a square root y of x3 + ax+ b modulo p is easy, and (x : y : 1) is an
Fp-rational point on E.

When we move to the ring Zn, the situation changes. Of course, we have the
trivial point (0 : 1 : 0), but it seems difficult to find any other point. Choosing an
x-coordinate does not lead to a point, since computing square roots modulo n is
equivalent to factoring, and factoring seems hard. Starting with a y-coordinate,
we get a cubic equation for the x-coordinate, but solving cubic equations seems
to be hard.

If we are given a set of points, we can obviously use the group operation to
find new points on the curve. We can also try to intersect the curve with other
curves. One possibility is the quadratic curve

C : yz ≡ ax2 + bxz + cz2 (mod n).

If we are given three distinct, non-trivial points P1, P2, P3 ∈ E(Zn) that are not
collinear, we can find such a quadratic curve through those points. Inserting the
quadratic curve equation into the elliptic curve equation, we get a polynomial of
degree 4 where we know three of the solutions, hence we can find the fourth and
from that a point P4 in E(Zn).

To analyse this, we consider the situation modulo the prime factor p. By Be-
zout’s theorem, C andE intersect in exactly 6 points when counting multiplicities.
The four points P1, . . . , P4 are given, and it is clear that a fifth intersection point
is O = (0 : 1 : 0). Since the line z = 0 is tangent to both E and C in O, their
intersection number at O is greater than 1. This means that there are five points
of intersection, and the divisor of C is div(C) = (P1) + · · ·+ (P4) + 2(O).

If C′ is the plane curve given by z2 = 0, then div(C′) = 6(O). Let f in the
function field of E be defined by f(x, y, z) = (yz−ax2− bxz− cz2)/z2. It is then
clear that

div(f) = div(C)− div(C′) = 0,

which gives us

(P1)− (O) + (P2)− (O) + (P3)− (O) + (P4)− (O) = 0,
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or P1 + P2 + P3 + P4 = O. The four points sum to zero.
It seems as if most approaches to finding points in E(Zn) either lead to poly-

nomial equations modulo n, which seem to be hard to solve, or to trivial relations
among points. It therefore seems plausible that the an elliptic curve modulo n
satisfies the knowledge-of-exponent assumption.

The qualitative difference between this group and the other group structures
is that it is trivial to determine if a point (x : y : z) is in E(Zn) or not.

5.2.2 A security proof

We shall consider the cryptosystem Π1 derived from a splitting problem SPΓ, but
let us suppose additionally that for every triple (G,K,H) ∈ Γτ , G is cyclic, and
there is some group K̃ along with easily computable homomorphisms φ : G→ K̃
and ψ : K̃ → K, such that φ ◦ ψ is the map x 7→ x|H|, and φ restricted to K is
an isomorphism.

We shall assume that a description of K̃ is easy to recover from a description
of (G,K,H), and vice versa. We denote by Γ̃ the family of groups derived from
Γ.

We shall also assume that a generator g for K is available for sampling ele-
ments. The public key for Π1 is therefore (G, g, f).

Theorem 5.5. Let Π1 be derived from a splitting problem SPΓ as described
above. If the knowledge-of-exponent assumption holds for Γ̃, then Π1 is weakly
plaintext aware.

Proof. First of all, we note that if pk = (G, g, f) is a valid public key for Π1, then
pk′ = (G, g|H|, f) is also a valid public key, and the two are interchangeable.

So assume that B is a weak forger for Π1, that is, B takes as input a public
key pk, and outputs a ciphertext c ∈ G. We use B to construct an algorithm A
that takes as input a group K̃ along with a generator g̃, and outputs an element
of K̃.

Given K̃, A recovers (G,K,H). It sets g = ψ(g̃), samples f and runs B on
input (G, g, f). B outputs c ∈ G, and A outputs φ(c).

Now it is clear that A is an algorithm that takes as input the group K̃ and
a generator for K̃, and outputs an element c̃ of K̃, so by the knowledge-of-
exponent assumption, there exists some trace-variant A′ that on the same input
and random tape outputs the same element c̃ and an integer k such that c̃ = g̃k.

Now it is quite clear that if B is a forger, we can create a trace-variant B′ of
B that outputs not only a ciphertext, but also the decryption of the ciphertext.

B′ takes as input a public key (G, g, f). It first runs B on input (G, g|H|, f),
and gets a ciphertext c as output. Then it rewinds the random tape and runs
A′ on input of (K̃, φ(g)). It is then quite clear that A′, except with negligible
probability, outputs c̃ and k such that c̃ = φ(c).

But then we have that

φ(cg−k|H|) = φ(c)g̃−k = c̃(c̃−1) = 1,
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which means that cg−k|H| must be in H , and since g−k|H| is in K, we can recover
the decryption using f−1. This also shows us how the weak knowledge extractor
works.

It is now quite clear that by Theorem 3.4, we can conclude that Π1 is secure
against non-adaptive chosen ciphertext attacks, assuming that the derived sub-
group membership problem is hard and that the knowledge-of-exponent assump-
tion for Γ̃ holds. As a corollary, we get that Π1 is secure against non-adaptive
chosen ciphertext attacks in the generic model.

The two most interesting instantiations of this problem is for the subgroup
variant of the Paillier cryptosystem, and the elliptic curve variant of the Paillier
cryptosystem described by Galbraith [20].

5.3 A second homomorphic cryptosystem

Let Γτ be a set of tuples (G,K,H, g) such that SP(G,K,H) is a splitting problem,
g is a generator for K, and |H | has no small prime divisors. Let Γ = {Γτ}. We
shall be interested in the derived subgroup membership problem SMΓ, or the
symmetric subgroup membership problem SSMΓ.

The basic idea is that we shall do as for the ElGamal cryptosystem, but
that the Diffie-Hellman key exchange part should be done in K and the message
should be either in G, or restricted to H . The exact construction of Π2 from Γ
is described in Figure 5.3.

Proposition 5.6. The cryptosystem Π2 is an homomorphic public key system.

Proof. Clear.

Theorem 5.7. The public key cryptosystem Π2 is semantically secure for mes-
sages in H if the subgroup membership problem SMΓ is hard, and semantically
secure for messages in G if the symmetric subgroup membership problem SSMΓ

is hard.

Proof. We assume that A = (A1, A2) is a chosen plaintext adversary against
indistinguishability for Π2 with advantage ε.

Experiment 1.
Input: (G,K,H, g), x ∈ G.

1. k ← {0, . . . , |G| − 1}, y ← gk.

2. (m0,m1, o)← A1(G,K,H, g, k).

3. b← {0, 1}.
4. e← xkm.

5. b′ ← A2(m0,m1, x, e, o).

6. If b = b′, output 1, otherwise output 0.

Output: 0 or 1.
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Key generation.
Input: Γ, τ .

1. (G,K,H, g)← Γτ .

2. k ≈← {0, . . . , |G| − 1}.
3. y ← gk.

4. pk ← (G,K,H, g, y).

5. sk ← (G, k).

6. Output (pk, sk).

Output: A public-private key pair (pk, sk).

Encryption.
Input: pk = (G,K,H, g, y), m ∈ G.

1. w ≈← {0, . . . , |K| − 1}.
2. x← gw, z ← yw, e← zm.

3. Output (x, e).

Output: A ciphertext c ∈ G×G.

Decryption.
Input: sk = (G, k), (x, e) ∈ G×G.

1. z ← xk.

2. m← ez−1.

3. Output m.

Output: A message m ∈ G.

Figure 5.3: The cryptosystem Π2 derived from a (symmetric) subgroup member-
ship problem. The message is restricted to H if SM(G,H) is not hard.
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In a realisation of Experiment 1, we could perhaps not sample k uniformly at
random, but δ-close to uniform (Lemma 2.3), where δ can be made arbitrarily
small at little cost.

Note that Step 1 does exactly as K would do, and Step 4 does exactly as E
would do, if it had first sampled x. (They would of course not know k, but would
have sampled x as gw and computed yw.)

Let T ′ be the event that Experiment 1 outputs 1 when its input x is in K.
We note that if x ∈ K, then Experiment 1 proceeds exactly as a real attack, so

AdvIND
A ≤ |Pr[T ′]− 1/2|. (5.1)

Let T be the event that Experiment 1 outputs 1 when its input x is in G \K.
We note that we can obviously derive an algorithm A′ from Experiment 1 that
distinguishes K from G \K such that

|Pr[T ′]− Pr[T ]| ≤ AdvSM(G,K)
A′ + δ. (5.2)

Now we modify Experiment 1 as follows to get Experiment 1′: We replace
Step 4 with the following step:

4. z ← H , c← xkmz.

Let T1 be the event that Experiment 1′ outputs 1 when its input x is in G \K.
By Lemma 4.12, the distributions of (x, y, xk) and (x, y, xkz) are (|H | −

φ(|H |))/|H |-close, and otherwise the two algorithms are identical, so

|Pr[T ]− Pr[T1]| ≤
|H | − φ(|H |)

|H | . (5.3)

It is clear that if the message space is H , then the input to A2 is independent of
the bit b chosen, so no matter what A2 does, it guesses correctly with probability
1/2, and

Pr[T1] = 1/2. (5.4)

By combining (5.1)–(5.4), we immediately get that

AdvIND
A ≤ AdvSM(G,K)

A′ +
|H | − φ(|H |)

|H | + δ.

Under the assumption that SM(G,K) is hard, this proves the first claim.
To prove the second claim, we first make a modification to Experiment 1′ to

get Experiment 1′′: We replace Step 4 with the following step:

4. z ← G \H , c← xkmz.

Let T2 be the event that Experiment 1′′ outputs 1 when its input x is in G \K.
It is clear that if z was sampled uniformly at random, then the input to A2 would
be independent of the bit b chosen, so no matter what A2 does, it would guess
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correctly with probability 1/2. By Lemma 2.2, the uniform distribution on G\H
is 2|H |/|G|-close to the uniform distribution on G, so we have that

|Pr[T2]− 1/2| ≤ 2|H |
|G| . (5.5)

To bound the difference in probability between T1 and T2, we introduce the
following experiment:

Experiment 2.
Input: (G,K,H, g), z ∈ G.

1. k ← {0, . . . , |G| − 1}, y ← gk.

2. (m0,m1, o)← A1(G,K,H, g, k).

3. b← {0, 1}.
4. x← G \K, e← xkmz.

5. b′ ← A2(m0,m1, x, e, o).

6. If b = b′, output 1, otherwise output 0.

Output: 0 or 1.

Let R′ be the event that Experiment 2 outputs 1 when its input z is in H ,
and let R be the corresponding event with the input z is in G \H .

It is quite clear that if the input z to Experiment 2 is in H , then Experiment 2
behaves exactly as Experiment 1′ behaves when its input x is in G\K. Likewise,
if z ∈ G\H , then Experiment 2 behaves exactly as Experiment 1′′ behaves when
its input x is in G \ K. So we can derive an algorithm A′′ from Experiment 2
such that

|Pr[T1]− Pr[T2] = |Pr[R′]− Pr[R]| ≤ AdvSM(G,H)

A′′ + δ. (5.6)

Combining (5.1)–(5.3), (5.5), and (5.6), we get that

AdvIND
A ≤ AdvSM(G,K)

A′ + AdvSM(G,K)
A′′ +

|H | − φ(|H |)
|H | + 2δ,

which proves the second claim.

Note that this cryptosystem does not require a trapdoor problem, unlike Π1

and Π1′ . We shall see more of the advantages of this approach in Section 7.
This variant of ElGamal can usefully be instantiated with the Decision Com-

posite Residuosity problem (Section 4.5.4), to get an additively homomorphic
cryptosystem. Various technical1 benefits of such an approach was discussed in
[13].

It can also be usefully instantiated with the symmetric subgroup membership
problems discussed in Section 4.5.6 and Section 4.5.7.

1A non-technical benefit is apparently avoiding a patent on the Paillier cryptosystem.
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Chapter 6

Key encapsulation methods

A key encapsulation method is a public key cryptosystem whose only job is to
encapsulate keys for symmetric cryptosystems. The idea is that the weaker goal
of transporting a random key could be easier to do than the more complicated
task of transporting messages with an unknown distribution.

6.1 Security against passive attacks

Let SP(G,K,H) be a splitting problem. The basic idea is that we can sample
elements uniformly from K and H to be the random key, and hide them by
multiplying. We recover the random key with the splitting algorithm. The key
encapsulation method is described in Figure 6.1.

It is quite clear that the key encapsulation method Λ1 is secure against key
recovery if the splitting problem is hard. As we shall see, deciding if the correct
key has been recovered is possible if either K can be distinguished from G \K
or if H can be distinguished from G \H .

Theorem 6.1. Let TSPΓ be a trapdoor splitting problem, such that for every
tuple (G,K,H), the group order |G| has no small prime factors. The key encap-
sulation method Λ1 is semantically secure if and only if the symmetric subgroup
membership problem SSMΓ is hard.

Proof. Given a key-ciphertext pair ((x, y), c) ∈ G ×G ×G, it is quite clear that
if x ∈ K or y ∈ H , then (x, y) is with overwhelming probability the correct key.

Now we show that an algorithm for distinguishing the keys output by Λ1 from
random keys must lead to an algorithm for distinguishing either K or H .

Suppose the sampling algorithm given by the symmetric subgroup member-
ship problem samples elements δ-close to the uniform distribution. We note that
by using the sampling algorithms of the symmetric subgroup membership prob-
lem, and by Lemma 2.3, even if we do not know |G|, we can implement modified
experiments whose underlying probability spaces areO(δ+δ′)-close to the original
experiments. The extra work needed is O(log 1/δ′) exponentiations in G.

67
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Key generation.
Input: TSPΓ, τ .

1. (G,K,H, σ)← Γτ .

2. pk← (G,K,H).

3. sk← (G, σ).

4. Output (pk, sk).

Output: A public-private key pair (pk, sk).

Encryption.
Input: pk = (G,K,H).

1. x ≈← K, y ≈← H .

2. Output ((x, y), xy).

Output: A key-ciphertext pair in
G×G×G.

Decryption.
Input: sk = (G, σ), c ∈ G.

1. (x, y)← σ(c).

2. Output (x, y).

Output: A key in G×G.

Figure 6.1: The key encapsulation method Λ1.

Experiment 1.
Input: (G,K,H), A, x ∈ G.

1. x′ ← K.

2. r ← {0, . . . , |G| − 1}.
3. y ← H .

4. b← {0, 1}.
5. If b = 1, then

(c, c′, c′′)← (xrx′, y, xrx′y),
otherwise (c, c′)← G×G and
c′′ ← cc′.

6. b′ ← A((c, c′), c′′).

7. If b = b′, then output 1,
otherwise output 0.

Output: 0 or 1.

Experiment 2.
Input: (G,K,H), A, y ∈ G.

1. x← G.

2. y′ ← H .

3. r ← {0, . . . , |G| − 1}.
4. b← {0, 1}.
5. If b = 1, then

(c, c′, c′′)← (x, yry′, xyry′),
otherwise (c, c′)← G×G and
c′′ ← cc′.

6. b′ ← A((c, c′), c′′).

7. If b = b′, then output 1,
otherwise output 0.

Output: 0 or 1.

Figure 6.2: Experiments for the proof of Theorem 6.1.
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Let T1 be the event that Experiment 1 returns 1 when the input x is in K.
Let T ′

1 be the event that Experiment 1 returns 1 when the input x is in G \K.
Let T2 be the event that Experiment 2 returns 1 when the input y is in H . Let
T ′

2 be the event that Experiment 2 returns 1 when the input y is in G \H .
It is clear that if the input to Experiment 1 is in K, then the experiment

proceeds exactly as an attack against the cryptosystem would do, except that
in a real attack, x would not be sampled uniformly but δ-close to uniformly. In
other words,

ε ≤ |Pr[T1]− 1/2|+ δ.

Next, we see that if the input to Experiment 1 is in G \ K, then when x
is a generator for G, xr is uniformly distributed in G, so (xrx′, y) is uniformly
distributed in G × H . By Lemma 2.5, the probability that x is a generator is
larger than φ(|G|)/|G|.

If the input to Experiment 2 is in H , then no matter what r is, (x, yry′) is
uniformly distributed in G×H . This means that

|Pr[T ′
1]− Pr[T2]| ≤

|G| − φ(|G|)
|G| .

Finally, suppose that the input y to Experiment 2 is in G \H , and that it is
a generator for G. Then (x, yry′) is distributed uniformly in G × G. It is then
clear that

|Pr[T ′
2]− 1/2| ≤ |G| − φ(|G|)

|G| .

Putting it all together, we get that

ε ≤ |Pr[T1]− Pr[T ′
1] + Pr[T ′

1]− Pr[T2]+
Pr[T2]− Pr[T ′

2] + Pr[T ′
2]− 1/2|+ δ

≤ |Pr[T1]− Pr[T ′
1]|+

|G| − φ(|G|)
|G| +

|Pr[T2]− Pr[T ′
2]|+

|G| − φ(|G|)
|G| + δ.

Since (up to O(δ′)) |Pr[T1]− Pr[T ′
1]| and |Pr[T2]− Pr[T ′

2]| are the advantages of
some algorithms distinguishing K from G\K and H from G\H , respectively, the
assumption that the symmetric subgroup membership problem was hard means
that ε must be negligible.

We can create a simple ElGamal-like cryptosystem using this key encapsula-
tion method and the shift cipher in G. The symmetric cryptosystem has message
space G, ciphertext space G and key space G ×G. The encryption algorithm is
SE((x, y),m) = xm, and the decryption algorithm is SD((x, y), c) = cx−1.

When this cryptosystem is instantiated with the symmetric subgroup mem-
bership problem SSM(G,K,H) = SOUn described in Section 4.5.6, we see that
encryption requires one exponentiation in K and one in H , while decryption
requires essentially the same work.
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Compared to ElGamal over G, which requires two exponentiations in G for
encryption and one for decryption, this is quite efficient. But Π2 in Section 5.3
requires two exponentiations in K for encryption, and only one exponentiation
in K for decryption. This is rather more efficient than the above system, and
just as secure.

We conclude that the key encapsulation method Λ1, while secure, is not very
useful.

6.2 Security against active attacks

The key encapsulation method proposed in the previous section seems difficult
to harden against adaptive attacks. We shall introduce a new assumption, and
design a key encapsulation method secure against adaptive attacks in the random
oracle model.

The basic idea is that if we pass the key in Λ1 through a hash function and use
the hash output as a key, it will be very difficult to recover the splitting from the
key, and the decryption of other ciphertexts would not give any information about
the challenge ciphertext. The reason this is not trivial, is that the adversary can
use the decryption oracle to check if a group element is in one of the subgroups
or not.

Definition. A gap splitting problem is a splitting problem SP(G,K,H), but any
algorithm that tries to solve the splitting problem has access to a splitting oracle
that on input of (x, y) and c returns 1 if (x, y) is the splitting of c, and 0 otherwise.

Gap problems were first defined by Okamoto and Pointcheval [32], and they
use it to prove that their REACT conversion scheme [33] can be applied to e.g.
ElGamal.

The gap problems are somewhat artificial, since the presence of an oracle is
assumed. Therefore, any algorithm that solves the the gap problem is just a
reduction from the splitting problem to the corresponding subgroup membership
problems. If the subgroup membership problems are both easy, we get a real gap
splitting problem.

The first real gap splitting problem appeared in [24]. The only known exam-
ples of such problems derive from certain elliptic curves with bilinear pairings. A
bilinear pairing e on a group G is a map from G×G into a group G′ such that for
any x ∈ G, e(x, x) 6= 1, and for any x, y ∈ G and a, b ∈ Z, e(xa, yb) = e(x, y)ab.

The most interesting variant is the one derived from the Computational Diffie-
Hellman problem in G. It is clear that the pairing e can give the solution to the
Decision Diffie-Hellman. Given a tuple (g, gx, gy, gz), it is clear that e(gx, gy) =
e(g, g)xy and e(g, gz) = e(g, g)z. If z ≡ xy (mod |G|), then the two pairings are
equal, otherwise they are not.

We can also derive a real gap splitting problem from SOUE/Fp′ discussed
in Section 4.5.6, when the elliptic curve E is chosen such that it is possible to
compute a pairing on E. Suppose #E(Fp′) = n = pq, and P1 and P2 are points
of order p and q, respectively. Then P = P1 + P2 is a generator for E(Fp′), and
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for some a, b ∈ Z, P1 = aqP and P2 = bpP . It is then clear that we can use the
pairing to decide subgroup membership. If a point Q is in 〈P1〉, then Q = a′qP
for some a′ ∈ Z, and we get that e(Q,P2) = e((a′q)P, bpP ) = e(P, P )a′bn = 1.

We describe the key encapsulation method Λ2 in Figure 6.3.

Key generation.
Input: TSPΓ, τ .

1. (G,K,H, σ)← Γτ .

2. Initialise random oracles h1 : G→ {0, 1}t and h2 : {0, 1}2t → {0, 1}t.
3. pk ← (G,K,H, h1, h2).

4. sk ← (G, σ, h1, h2).

5. Output (pk, sk).

Output: A public-private key pair (pk, sk).

Encryption.
Input: pk = (G,K,H, h1, h2).

1. x ≈← K, y ≈← H .

2. Output (h2(h1(x), h1(y)), xy).

Output: A key-ciphertext pair in
{0, 1}t ×G.

Decryption.
Input: sk = (G, σ, h1, h2), c ∈ G.

1. (x, y)← σ(c).

2. Output h2(h1(x), h1(y)).

Output: A key in {0, 1}t.

Figure 6.3: The key encapsulation method Λ2.

It is quite obvious that if the underlying splitting problem is hard, this KEM is
secure against passive attacks, because the adversary has to compute the splitting
of the ciphertext to get any information about the resulting hash value.

Theorem 6.2. The key encapsulation method Λ2 is secure against adaptive at-
tacks in the random oracle model if and only if the gap splitting problem is hard.

Proof. We are given an active adversary against the KEM, and also an oracle for
deciding if a splitting is correct or not. First, we assume that we actually know
the splitting algorithm σ, and we design an algorithm D that shall play the role
of the decryption oracle and the random oracles.

Then we create a modified algorithm D′ that answers the same queries, but
without recourse to the splitting algorithm σ, and such that this algorithm looks
like D from the adversary’s point of view.



72 CHAPTER 6. KEY ENCAPSULATION METHODS

D answers queries as follows. Queries to h1 and h2 are handled exactly
as a real random oracle would handle them (see Section 3.6.1), using a list L
of query-answer pairs for the oracle h1 and a list L′ of query-answer pairs for
h2. Decryption oracle queries are handled by using the σ algorithm to split the
ciphertext, then by querying itself for the relevant hash values.

This completes the description of the original algorithm, and it is clear that
it will work exactly as the real oracles would work.

Now we describe the modified algorithm D′. The list L is split into three lists,
LG, LK and LH . Whenever a h1-query x is received that has not previously been
answered, the splitting oracle is used to check if x is in K or H . If it is in K, the
response is recorded in LK , likewise for H , and if it is not in K ∪H , then it is
recorded in LG.

The list L′ remains the same.
We also need a third list L′′ containing decryption oracle query-answer pairs.

Whenever a new query c is received by the decryption oracle, it first checks to
see if the lists LK and LH contain queries (x, b) or (y, b′) such that (x, cx−1) or
(cy−1, y) is a splitting of c. This can be done using the splitting oracle.

If there are two queries (x, b) and (y, b′), the algorithm makes the h2-query
(b, b′) to itself, receiving an answer b′′. It adds the query (c, b′′) to L′′, and outputs
b′′.

If there is only one query, say (x, b) ∈ LK , but no query (y, b′) in LH , b′ is
sampled uniformly at random, the query (cx−1, b′) is inserted into LH , and the
algorithm makes the h2-query (b, b′) to itself, receiving an answer b′′. It then
adds the query (c, b′′) to L′′, and outputs b′′.

If there are no such queries, b′′ is sampled uniformly at random the query
(c, b′′) is added to L′′, and b′′ is output.

To preserve consistency, we now have to check when receiving a new h1-query
x ∈ K if for any (c, b′′) ∈ L′′, (x, cx−1) is a splitting. If not, we proceed normally,
otherwise, we need to sample b uniformly at random and b′ uniformly at random,
subject to the restriction that there be no query (b, b′, b′′′) ∈ L′, for some b′′′ 6= b′′.
Then we add (x, b) to LK , (cx−1, b′) to LH , (b, b′, b′′) to L′.

It is quite clear that the algorithm D′ behaves consistently and is indistin-
guishable from D. Since it does not use the splitting algorithm σ, it is also clear
that the adversary can run D′ for himself. The end result is that the decryption
oracle does not give the adversary anything he could not get from the splitting
oracle.

Now we prove the reverse direction, by showing how we can use the decryption
oracle to get a splitting oracle that is correct except with negligible error. So
suppose we receive a query c and a potential splitting (x, y). Obviously, c is a
valid ciphertext. If (x, y) really is the splitting, then h2(h1(x), h1(y)) is the correct
decryption of c. Otherwise, if (x′, y′) is the splitting of c, (h1(x), h1(y)) collides
with (h1(x′), h1(y′)) with probability ≈ 2−2t. If it is distinct, the output of h2

collides with probability ≈ 2−t. In other words, our simulated splitting oracle
never answers “no” incorrectly, and answers “yes” incorrectly with negligible
probability.
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We briefly consider the performance of this KEM, compared to Diffie-Hellman
key encapsulation method (DH-KEM) [1, 16]. It is possible to prove DH-KEM
secure in the random oracle model under a gap Diffie-Hellman problem, much as
in the above proof.

Note that it would be possible to do DH-KEM in one of the two subgroups.
The cost for DH-KEM is two subgroup exponentiations for encryption and one
for decryption.

Encryption with Λ2 costs the same as sampling one random element from
each subgroup. Typically, this is done by exponentiation, but in some cases there
are faster methods available. Decryption is done using one exponentiation in the
group. This will typically cost as much as one exponentiation in each subgroup.

So we see that we can gain an advantage in encryption speed if sampling
random elements in at least one group is faster than exponentiations in the sub-
groups.

When Λ2 is instantiated with a Computational Diffie-Hellman problem CDHG′ ,
where it is possible to quickly sample elements uniformly at random from G′, the
resulting scheme is is exactly as fast as DH-KEM in the subgroup H (which is
isomorphic to G′). The drawback is that the ciphertexts are twice as long.

We can consider DH-KEM to be a special case of our construction. First
we note that if (x, y) and (x′, y′) are in G = G′ × G′, it is clear that they have
the same projection on K if and only if x = x′. We consider two ciphertexts to
be equivalent if their first coordinates are the equal. Then we change the hash
function h2 so that it simply outputs the t first bits of its input. Finally, we
change the decryption oracle, so that it refuses to decrypt ciphertexts that are
equivalent to the challenge ciphertext.

It is now clear that the second coordinate of the ciphertext can be removed,
and the resulting scheme is exactly DH-KEM.

When Λ2 is instantiated with the Computational Composite Residuosity prob-
lem CCRn, sampling elements in H is essentially free, so encryption costs one
exponentiation in K. Decryption can be done using one exponentiation in K and
one in H (which is essentially free). This instantiation is therefore much faster
at encryption than DH-KEM in K, and marginally slower at decryption.

However, it is clear that DH-KEM in K is exactly as hard as DH-KEM in
a subgroup of Z∗

n, and then DH-KEM becomes about twice as fast as Λ2 for
encryption, and four times as fast for decryption, because the numbers it works
with are half the size. We also recall that FACT n cannot be hard unless CDHZ∗

n

is hard, and CCRn cannot be hard unless FACT n is hard. Therefore, DH-KEM
in Z∗

n is faster than, and most likely not less secure than, Λ2 instantiated with
CCRn.

The final interesting case is to instantiate Λ2 with the problem GOU ′
n described

in Section 4.5.7. Note that in this case, it would seem safe to make H fairly
small, say about one quarter of the size of K. Exponentiations in H are therefore
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much faster than in K, and splitting can be done with one exponentiation in H
and one in K. This means that Λ2 will be quite a lot faster at encryption than
DH-KEM in K, and it will be slightly slower at decryption.

If we compare with DH-KEM in a subgroup G′ of a finite field, however, it
seems clear that the subgroup K has to be twice as big as G′, and therefore that
exponentiations in K take double the time required for exponentiations in G′.
One may make the assumption that the splitting problem remains hard even if
exponents are restricted to a much smaller size, but that seems to be stretching
the security assumptions for GOU ′

n.

Our conclusion therefore seems to be that, even though we can find underly-
ing group structures where Λ2 will be faster than DH-KEM, there are group
structures available for DH-KEM that are not available for Λ2, and they make
DH-KEM a better choice.

Just as for DH-KEM [1], it is possible to formulate a decision problem based on
the gap splitting problem and a hash function.

Definition. Let (G,K,H, σ) be a trapdoor splitting problem, and let h : G×G→
{0, 1}t be a hash function.

The hash splitting problem is the following problem: The instances are pairs
(c, b) ∈ G×{0, 1}t, and the answer is 1 if h(σ(c)) = b, 0 otherwise. The instances
are sampled by sampling c uniformly at random, then letting b = h(c) with
probability 1, otherwise sampling b uniformly at random.

The oracle splitting problem is the same problem, but any adversary against
the problem gets access to a restricted oracle that computes h for all group
elements except the challenge element.

It is quite clear that Λ2 is secure against active attacks if the oracle splitting
problem is hard for h. Indeed, it is just a reformulation of what must be true for
the key encapsulation mechanism to be secure, and we may as well assume that
our particular instantiation of Λ2 is secure.



Chapter 7

A secure cryptosystem

The goal of this chapter is to describe a practical public key cryptosystem that is
secure against adaptive attacks in the standard model. To get the cryptosystem,
we shall extend the construction of Cramer and Shoup [10] slightly.

7.1 Hash proof systems

The basic idea of Cramer and Shoup [10] is that if it is possible to define a
function on some set G, but only give away a description of the function on a
subset K, this is a useful primitive for designing cryptosystems. Our discussion
follows [10] closely, even though it is superficially different.

Let G be a set, and let K be a subset of G. We say that W is a witness
set for K if there is an easily computable bijection ρ : W → K. This bijection
allows one to prove that an element x ∈ G really is in K by presenting an element
w ∈ W such that ρ(w) = x. (This obviously assumes that it is easy to recognise
elements of W .)

For arbitrary sets S, S′, denote by Map(S, S′) the set of maps from S to S′.
Let L be a group. We are interested in looking at maps from G to L. There is a
natural map Map(G,L)→ Map(K,L) given by restriction. The bijection ρ gives
us a bijection ρ∗ : Map(K,L) → Map(W,L). We also denote the natural map
Map(G,L)→ Map(W,L) as ρ∗. It is clear that the following diagram commutes:

G

f

K Wρ

ρ∗(f)

L

A projective hash family is a tuple (G,K,L,W, ρ,M), where G is a set, K is
a subset of G, L is a group, W is a witness set for K with isomorphism ρ, M is a
subset of Map(G,K), and for any f ∈M , the image of K under f is a subgroup
of L. We also suppose that L has a subgroup L′, such that L′ ∩ f(K) = {1} and

75
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L = L′f(K). This gives us a subgroup membership problem SM(L,L′). We say
that SM(L,L′) is the subgroup membership problem associated to (G,K) by the
projective hash family.

Let (G,K,L,W, ρ,M) be a projective hash family, and let F be uniformly
distributed in M . The projective hash family is ε-universal if for any f ∈ ρ∗(M),
x ∈ G \K and y ∈ L, we have that

Pr[F (x) = y | ρ∗(F ) = f ] ≤ ε.

The projective hash family is ε-universal-2 if for any f ∈ ρ∗(M), x0 ∈ G \ K,
x ∈ G \ (K ∪ {x0}) and y, y0 ∈ L, we have that

Pr[F (x) = y | F (x0) = y0 ∧ ρ∗(F ) = f ] ≤ ε. (7.1)

It is clear that ε-universal follows from ε-universal-2.
Let (G,K,L,W, ρ,M) be a projective hash family. Let F be uniformly dis-

tributed on M , let X be uniformly distributed in G \K, and let Y be uniformly
distributed in L′. Define the two random variables U = (X, ρ∗(F ), F (X)) and
V = (X, ρ∗(F ), F (X)Y ). We say that the projective hash family is ε-smooth if

Dist(U, V ) ≤ ε.

Let SMΓ be a subgroup membership problem. A hash proof system P for SMΓ

is a function that to each pair (G,K) ∈ Γ assigns a tuple (L,W, ρ,M) such that
(G,K,L,W, ρ,M) is a projective hash family.

An extended hash proof system P̂ for SMΓ is a function that to each pair
(G,K) ∈ Γ assigns a tuple (S, L̂,W, ρ̂, M̂) such that (G × S,K × S, L̂,W, ρ̂, M̂),
where S is some set depending on G, is a projective hash family.

A hash proof system P is ε(τ)-smooth if the projective hash families derived
using P are ε(τ)-smooth except with negligible (in τ) probability.

An extended hash proof system P̂ is ε(τ)-universal-2 if the projective hash
families derived using P̂ are ε(τ)-universal-2 except with negligible (in τ) proba-
bility.

A hash proof system also has to provide algorithms to sample the sets W ,
M and M̂ . These algorithms should sample the sets δ-close to uniform, and we
denote sampling using these algorithms by w ≈←W , f ≈←M , and f̂ ≈← M̂ .

7.2 The general construction

Suppose we have a subgroup membership problem SMΓ, a hash proof system P
for SMΓ, and an extended hash proof system P̂ for SMΓ such that if (L,W, ρ,M)
is the tuple assigned to (G,K) by P , then the tuple assigned to (G,K) by P̂ is
(L, L̂,W, ρ̂, M̂).

We can derive a cryptosystem from the two hash proof systems. It is described
in Figure 7.1.
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Key generation.
Input: SMΓ, P , P̂ , τ .

1. (G,K)← Γτ .

2. (L,W, ρ,M)← P (G,K).

3. (L, L̂,W, ρ̂, M̂)← P̂ (G,K).

4. f ≈←M .

5. f̂ ≈← M̂ .

6. sk ← (G,L, L̂, f, f̂).

7. pk ← (G,W,L, L̂, ρ, ρ∗(f), ρ̂∗(f̂)).

Output: (pk, sk).

Encryption.
Input: pk = (G,W,L, L̂, ρ∗(f), ρ̂∗(f̂)),
m ∈ L.

1. w ≈←W .

2. x← ρ(w).

3. y ← ρ∗(f)(w).

4. e← ym.

5. ŷ ← ρ∗(f̂)(w, e).

Output: (x, e, ŷ).

Decryption.
Input: sk = (G,L, L̂, f, f̂), (x, e, ŷ).

1. ŷ′ ← f̂(x, e).

2. If ŷ′ 6= ŷ, output ⊥.

3. y ← f(x).

4. m← ey−1.

5. Output m.

Output: A message m or ⊥.

Figure 7.1: The cryptosystem Π3 derived from the hash proof systems P and P̂ ,
and the subgroup membership problem SMΓ.
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The security analysis closely follows the analysis in [10].
Suppose that P is ε-smooth, that P̂ is ε′-universal-2, that the sampling algo-

rithms for P and P̂ are δ-close to uniform, and that the sampling algorithms for
the subgroup membership problem are δ′-close to uniform.

Suppose A = (A1, A2) is a chosen ciphertext adversary against Π3. We shall
use the following experiment to construct a distinguisher A′ for (G,K).

Experiment 1.
Input: A = (A1, A2), (G,K), P , P̂ , x0 ∈ G.

1. (L,W, ρ,M)← P (G,K).

2. (L, L̂,W, ρ̂, M̂)← P̂ (G,K).

3. f ≈←M , f̂ ≈← M̂ .

4. sk ← (G,L, L̂, f, f̂).

5. pk ← (G,W,L, L̂, ρ, ρ∗(f), ρ̂∗(f̂)).

6. Initialise decryption oracle Dsk.

7. (m0,m1, s)← A1(pk), giving A1 access to Dsk.

8. b← {0, 1}.
9. y0 ← f(x0), e0 ← y0mb, ŷ0 ← f̂(x0, e0).

10. Initialise restricted decryption oracle D′
sk.

11. b′ ← A2(pk,m0,m1, s, x0, e0, ŷ0), giving A2 access to D′
sk.

12. If b = b′, output 1, otherwise output 0.

Output: 0 or 1.

Note that Steps 1–5 do exactly as the key generation algorithm would do.
Let T ′ be the event that Experiment 1 outputs 1 when the input x0 is in K.

Since Step 9 produces exactly the same result as the encryption algorithm when
the input x0 ∈ K, it is clear that the only difference between Experiment 1 and
a real attack is that x0 has been sampled uniformly from K, and not via the
sampling algorithm for W . Since Experiment 1 outputs 1 when the adversary
wins, we have that

AdvCCA2
A ≤ |Pr[T ′]− 1/2|+ δ, (7.2)

since the sampling algorithm for W is δ-close to uniform.
Let T be the event that Experiment 1 outputs 1 when the input x0 is in

G \K. It is quite clear that from Experiment 1 we can derive an algorithm A′

for distinguishing K from G \K such that

|Pr[T ′]− Pr[T ]| ≤ AdvSM(G,K)

A′ . (7.3)

To analyse the event T , we shall make a series of modifications to Experiment 1.
We number the modified experiments as 1′, 1′′, etc. Note that these modifications
need not be efficiently implementable.
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First modification We change Step 3 so that f and f̂ are sampled from the
uniform distribution, and not using the algorithms provided by the hash proof
systems.

Let T1 be the event that Experiment 1′ outputs 1 when the input x0 is in
G \K. Since the algorithms provided by the hash proof systems were δ-close to
uniform, we obviously have that

|Pr[T ]− Pr[T1]| ≤ 2δ. (7.4)

Second modification We change the decryption oracles so that they refuse to
decrypt a ciphertext (x, e, ŷ) if x 6∈ K. Let T2 be the event that Experiment 1′′

outputs 1 when the input x0 is in G \K.
It is clear that this modification only affects the outcome if the adversary

produces a valid ciphertext (x′, e′, ŷ′) with x 6∈ K, so |Pr[T2] − Pr[T1]| is upper-
bounded by the probability of this happening.

We first consider the decryption queries made by A1. We condition on a
fixed input ρ∗(f) and ρ̂∗(f̂), and a fixed random tape. Note that this completely
determines the output of A1. If A1 makes any decryption query (x, e, ŷ), with
x 6∈ K, then since P̂ is ε′-universal, we have that (x, e, ŷ) is valid with probability
at most ε′.

Next we consider the decryption queries made by A2. We additionally con-
dition on a fixed value of b, the input x0, the ŷ0 computed in Step 9, along with
the random tape of A2. If A2 makes any decryption query (x, e, ŷ), with x 6∈ K,
we have two possibilities. If (x, e) = (x0, e0), then we must have ŷ 6= ŷ0, hence
the ciphertext must be invalid. If (x, e) 6= (x0, e0), then since P̂ is ε′-universal-2,
we have that (x, e, ŷ) is valid with probability at most ε′.

If A1 and A2 make Q decryption queries in total, we get that

|Pr[T2]− Pr[T1]| ≤ Qε′. (7.5)

Third modification We change Step 9 to be

9. y′ ← L′, y0 ← f(x0), e0 ← y0mby
′, ŷ0 ← f̂(x0, e0).

Let T3 be the event that Experiment 1′′′ outputs 1 when the input x0 is in G\K.
Since A1 and A2 cannot query the decryption oracle with ciphertexts (x, e, ŷ)

where x 6∈ K, their only information about f is ρ∗(f). Since P is ε-smooth, we
get that

|Pr[T3]− Pr[T2]| ≤ ε. (7.6)

Fourth modification We change Step 9 to be

9. y′ ← L \ L′, y0 ← f(x0), e0 ← y0mby
′, ŷ0 ← f̂(x0, e0).

Let T4 be the event that Experiment 1′′′′ outputs 1 when the input x0 is in G\K.
It is quite clear that if y′ had been sampled uniformly from L, then there

would be no information about mb present in the ciphertext, and the probability
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that Experiment 1′′′′ output 1 when the input x0 was in G \ K would be 1/2.
Since Experiment 1′′′′ samples from L \ L′, we get that

|Pr[T4]− 1/2| ≤ 2|L′|
|L| (7.7)

by Lemma 2.2.
We need to bound |Pr[T4]− Pr[T3|. To do this, we introduce another experi-

ment.

Experiment 2.
Input: A = (A1, A2), (G,K), P , P̂ , y′ ∈ L.

Steps 1–8 are as in Experiment 1.

9. x0 ← G \K, y0 ← f(x0), e0 ← y0mby
′, ŷ0 ← f̂(x0, e0).

Steps 10–12 are as in Experiment 1.

Output: 0 or 1.

It is quite clear that we can repeat the two first modifications to Experiment 1
on Experiment 2, and the analysis remains the same. Let R′ be the event that
Experiment 2′′ outputs 1 when the input y′ is in L′, and let R be the event that
Experiment 2′′ outputs 1 when the input y′ is in L \ L′.

If the input y′ to Experiment 2′′ is in L′, then it is quite clear that it behaves
exactly as Experiment 1′′′. Hence, Pr[R′] = Pr[T3].

If the input y′ to Experiment 2′′ is in L \ L′, then it is quite clear that it
behaves exactly as Experiment 1′′′′. Hence, Pr[R] = Pr[T4].

It is also quite clear that we from Experiment 2 can derive an algorithm A′′

to distinguish L′ from L \L′, by sampling x0 not uniformly from G \K, but via
the subgroup membership problem’s algorithms, and that

|Pr[T4]− Pr[T3]| = |Pr[R]− Pr[R′]| ≤ Adv
SM(L,L′)
A′′ + 2δ + δ′ +Qε′. (7.8)

Summing up Putting together (7.2)–(7.8), it is clear that we have proved the
following theorem.

Theorem 7.1. Let Π3 be the cryptosystem described in Figure 7.1, based on a
subgroup membership problem SM(G,K) and hash proof systems P and P̂ . Let
L be the group associated to G by P , and let L′ be the subgroup of L. Suppose
that P is ε-smooth, that P̂ is ε′-universal-2, that the sampling algorithms for P
and P̂ are δ-close to uniform, and that the sampling algorithms for the subgroup
membership problem are δ′-close to uniform. Then for any chosen ciphertext
adversary A against Π3, we have that

AdvCCA2
A (τ) ≤ Adv

SM(G,K)

A′ + Adv
SM(L,L′)
A′′ + 4δ + δ′ + 2Qε′ + ε+

2|L′|
|L| ,

where A′ and A′′ are algorithms that invoke each stage of A once, and Q is the
number of decryption queries made by A
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7.3 Concrete instances

We shall show how to construct hash proof systems for certain symmetric sub-
group membership problems. For completeness, we include proofs for this special
case, even though the general case was done in [10].

Let SSM(G,K,H) be a symmetric subgroup membership problem such that G
is cyclic, and suppose that a generator g is available for K.

We shall describe a hash proof system P and an extended hash proof system
P̂ for SSM(G,K,H). Let W = Z|K| and ρ([w]) = gw. Let L = G and let L′ = H .
Since G is cyclic, the homomorphism group Hom(G,G) is isomorphic to Z|G|,
and we let M = Hom(G,G). For any f ∈M , a useful description of the function
ρ∗(f) is the group element f(g), since for any [w] ∈ W , f(gw) = f(g)w. Then
P (G,K,H) = (G,Z|H|, ρ,Hom(G,G)).

Proposition 7.2. The hash proof system P described above is ε-smooth, for
ε ≤ |H|−φ(|H|)

|H| + δ, where the sampling algorithm for M is δ-close to uniform.

Proof. Apply Lemma 4.12.

The extended hash proof system P̂ is slightly more complicated. The basic
idea is to use the same construction as for P , but repeat it several times in parallel,
and then combine the output. Let ` be the smallest prime factor in |H |. We shall
suppose that for some sufficiently large l, a 1-1 function h : G×G→ {0, . . . , `−1}l
is available.

Suppose we have a tuple ~f = (f0, f1, . . . , fl) ∈ Hom(G,G)l+1. This tuple
acts on Gl+1 in the obvious way. h provides a 1-1 map G ×G → Zl

|G|. We can
extend this to a map G × G → Zl+1

|G| , given by (x, e) 7→ (1, γ1, . . . , γl). Since
Z|G| ' Hom(G,G), we can let h(x, e) act on Gl+1.

Now we compose the map G → Gl+1 given by x 7→ (x, x, . . . , x) first with
~f , then with the action of h(x, e), and finally with the l-fold multiplication map
(z0, z1, . . . , zl) 7→ z0z1 . . . zl. This will be our f̂ . In other words, we consider the
set of maps of the form

f̂(x, e) = f0(x)
l∏

i=1

fi(x)γi ,

where h(x, e) = (γ1, . . . , γl), and fi ∈ Hom(G,G).
The witness set for K ×G is Z|K| ×G, and the map ρ̂ is given by ρ̂([w], e) =

(gw, e), where g is a generator for K. It is clear that

ρ̂∗(f̂)([w], e) = f0(g)w
l∏

i=1

fi(g)wγi ,

where h(gw, e) = (γ1, . . . , γl). So a useful description of the function ρ̂∗(f̂) is the
tuple (s0, s1, . . . , sl) = (f0(g), f1(g), . . . , fl(g)).
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Proposition 7.3. The extended hash proof system P̂ described above is 1/`-
universal-2.

Proof. We work with the definition (7.1).
Let (x, e, ŷ), (x0, e0, ŷ0) ∈ G × G × G, (k0, . . . , kl) ∈ {0, . . . , l − 1}, h(x, e) =

(γ1, . . . , γl), and h(x0, e0) = (γ0,1, . . . , γ0,l).
Let (x′, x′′), (x′0, x

′′
0), (ŷ′, ŷ′′) and (ŷ′0, ŷ

′′
0 ) be the splittings of x, x0, ŷ and ŷ0,

respectively. Let k′i = ki mod |K| and k′′i = ki mod |H |, for 0 ≤ i ≤ l.
First of all, the knowledge of s0, . . . , sl fixes the values of (k′0, . . . , k

′
l). We

may assume that
ŷ′′0 = (x′′0 )k′′

0 +
Pl

i=1 k′′
i γ0,i , (7.9)

since otherwise, (7.1) is trivially true. We would like to count how many tuples
(k0, . . . , kl) satisfy this equation, and the proportion of those that satisfy

ŷ′′ = (x′′)k′′
0 +

Pl
i=1 k′′

i γi , (7.10)

or alternatively, for some integer a,

a ≡ k′′0 +
l∑

i=1

k′′i γi (mod m), (7.11)

where m is the order of x′′. This will give us an upper bound on ε.
It is clear that (k′0, . . . , k

′
l) and (k′′0 , . . . , k

′′
l ) are distributed uniformly and

independently when (k0, . . . , kl) is sampled uniformly. Therefore, the only infor-
mation about (k′′0 , . . . , k

′′
l ) available is in (7.9).

First of all, (7.9) just contains information about (k′′0 , . . . , k
′′
l ) modulo the

order of x′′0 . Let m0 be the order of x′′0 , and let m′ = gcd(m,m0) and m′′ =
m0/m

′.
Suppose m′′ > 1. (7.11) also holds modulo m′′, and it is quite clear that

for any tuple (k′′1 , . . . , k′′l ), there is exactly one value of k′′0 that satisfies the
congruence, so at most 1/m of all tuples work. Since ` was the smallest prime
dividing |H |, 1/m ≤ 1/`, and the result follows.

Suppose m′′ = 1, and let `′ be the smallest prime dividing m. For some
integer a0, we get from (7.9) that

a0 ≡ k′′0 +
l∑

i=1

k′′i γ0,i (mod `′). (7.12)

The tuple (k′′0 , . . . , k′′l ) modulo `′ is uniformly distributed in the affine space Fl+1
`′ .

(7.12) defines a hyperplane W0 in Fl+1
`′ , and (7.11) defines a hyperplane W .

Now each γi and γ0,i is in {0, . . . , ` − 1}, and since h is 1-1, for at least
one i, γi 6≡ γ0,i (mod `′). This means that the two vectors (1, γ1, . . . , γl) and
(1, γ0,1, . . . , γ0,l) are linearly independent modulo `′. Therefore, the two affine
spaces W and W0 do not coincide and have non-empty intersection, and their
intersection has codimension 1. Therefore, at most 1/`′ of all tuples (k′′0 , . . . , k

′′
l )

satisfy both (7.9) and (7.10). Since 1/`′ < 1/`, the result follows.
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Instantiating the cryptosystem Π3 with these hash proof systems and the
corresponding symmetric subgroup membership problem, we get the cryptosys-
tem described in Figure 7.2. It is quite clear that if the underlying symmetric
subgroup membership problem is hard, then by Theorem 7.1, this variant of Π3

is secure, because the subgroup membership problem SM(L,L′) that appears in
Section 7.2 is simply SM(G,H).

It is also possible to replace the 1-1 function h with a collision resistant hash
function, and take l = 1. In this case, P̂ is no longer ε-universal-2, so we need to
adapt the proof to show that P̂ satisfies a “computational” variant of ε-universal-
2. We do not do this.

Concretely, this cryptosystem can be instantiated with the symmetric subgroup
membership problems SOUn (Section 4.5.6) and GOUn (Section 4.5.7). Both
yield quite practical and efficient cryptosystems, especially if a collision resistant
hash function is used.

It is worth noting that if the extended hash proof system P̂ is removed, we
get the cryptosystem Π2 from Section 5.3.

We note that for SOUn, the group order |G| = n is known. Sampling uni-
formly from W = {0, . . . , |K| − 1} can be done using Lemma 2.3.

For GOUn, we know that the uniform distribution on {0, . . . , bn/2c} reduced
modulo |G| = φ(n)/2 is almost uniform. Sampling uniformly from W can be
done using Lemma 2.3. We note that 2 divides the group order, and because of
Proposition 7.2 and Proposition 7.3, K must be chosen such that 2 divides |K|.

If we consider performance, and compare Π3/SOUn with ElGamal over F∗
p, where

p is a safe prime, Π3 requires slightly more than 4 exponentiations inK to encrypt,
while ElGamal requires 2 exponentiations in F∗

p.
To decrypt, Π3/SOUn requires less than three exponentiations in K (under

the assumption that the factorisation of n is known to the secret key holder),
while ElGamal requires 1 exponentiation in F∗

p. If the factorisation of n is not
known, then decryption requires two exponentiations in G.

This means that Π3/SOUn requires roughly the same amount of work as
ElGamal to encrypt, and either 1.5 or 2 times as much work to decrypt. And it
gives us chosen ciphertext security, not just semantic security as ElGamal does.

When instantiating with GOUn, it is possible to makeK much smaller thanH .
This leads to an even faster system for encryption, but unless the factorisation of
n is known to the secret key holder, decryptions will cost between three and four
exponentiations in G. If the factorisation is known, however, Chinese remainder
theorem tricks are also available to speed up computations, giving a much faster
system, even for decryption.

Compared to the instantiations of the Cramer-Shoup construction given in
[10], our two instantiations are significantly faster, except for the elliptic curve
variants of Cramer-Shoup. Asymptotically, the elliptic curve variants are signifi-
cantly faster than our two variants.
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Key generation.
Input: SSMΓ, τ .

1. (G,K,H)← Γτ . A generator g for K is assumed given.

2. (k, k0, k1, . . . , kl)
≈← {0, . . . , |G| − 1}l+2.

3. (s, s0, s1, . . . , sl)← (gk, gk0 , gk1 , . . . , gkl).

4. pk← (G, g, s, s0, s1, . . . , sl, h).

5. sk← (G, k, k0, k1, . . . , kl, h).

Output: (pk, sk).

Encryption.
Input: pk, m ∈ G.

1. w ≈← {0, . . . , |K| − 1}.
2. x← gw.

3. y ← sw.

4. e← ym.

5. (γ1, . . . , γl)← h(x, e).

6. ŷ ← sw
0

∏l
i=1 s

wγi

i .

Output: (x, e, ŷ) ∈ G×G×G.

Decryption.
Input: sk, (x, e, ŷ) ∈ G×G×G.

1. (γ1, . . . , γl)← h(x, e).

2. ŷ′ ← xk
0

∏l
i=1 x

kiγi .

3. If ŷ 6= ŷ′, then output ⊥.

4. y ← xk.

5. m← ey−1.

Output: A message m ∈ G or ⊥.

Figure 7.2: An instantiation of the cryptosystem Π3.
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When a key encapsulation method is all that is required, the Cramer-Shoup
key encapsulation method [11] using a subgroup of a finite field will be signifi-
cantly faster than our two constructions.
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Chapter 8

Concluding remarks

Our presentation of subgroup membership problems, along with the related split-
ting and subgroup discrete logarithm problems, gives a uniform description and
security analysis of a large class of public key cryptosystems, showing that they
are all based on very similar principles.

Further, we have designed two key encapsulation mechanism based on a trap-
door splitting problem, and analysed their security in terms of the underlying
splitting problem. To get security against chosen ciphertext attacks, we need
the random oracle model and a strong assumption on the subgroup member-
ship problem. Unfortunately, the concrete instances of this cryptosystem are in
practice of moderate interest.

The most interesting part of this thesis is the study of symmetric subgroup
membership problems. Theorems 4.11, 5.7 and 6.1 show how such an indistin-
guishability structure gives us very useful results.

Following the construction of Cramer and Shoup [10], we have designed a
cryptosystem secure in the standard model against chosen ciphertext attacks.
If a collision resistant hash function is used, the resulting cryptosystem is quite
efficient when instantiated with a symmetric subgroup membership problem, and
can compete with other instances of the Cramer-Shoup framework.

One problem is that, except for the Decision Diffie-Hellman problems, all
of the subgroup membership problems we have presented depend crucially on
factoring. While factoring is in general expected to be a hard problem, this
dependency leads to relatively large groups when compared to cryptosystems
based on elliptic curves. Finding subgroup membership problems, and especially
subgroup discrete logarithm problems, that do not depend on factoring is a very
interesting open problem.

87
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