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Summary

The main objective of this thesis is to use available knowledge about a process
and combine this with measurement data from the same process to extract
more information about the process. The combination of knowledge and
measurement data is referred to as Multi Sensor Data Fusion, MSDF. This
added information is then used to control the process towards a specified
goal.

The process studied in this thesis is the process of drilling wells in a
petroleum reservoir, while the oil is flowing from the reservoir. In the
petroleum industry, this is defined as underbalanced drilling (UBD), where
the bottom hole pressure (BHP) in the well is below the pore pressure in the
reservoir.

Detailed knowledge of the process is of paramount importance when us-
ing multi sensor data fusion. Due to this, various process modelling efforts
are examined and evaluated, from simple relations between parameters to a
finite-element approach of modelling the fluid flow in the well during drilling.

Several sensors are used in the various cases, and existing sensors such
as pressure sensors and flow sensors are the main data source in the analy-
sis. Future scenario with sensors such as pressure arrays and non-intrusive
multiphase flow meters are evaluated. In addition, new positions of existing
sensor systems are discussed.

The methods available for fusing the knowledge of the process represented
as models together with the available data is ranging from artificial intelli-
gent methods such as neural networks, to methods incorporating statistical
analysis such as various Kalman filters. History matching techniques using
gradient techniques are also examined.

The migration of reservoir fluids into the well during UBD influences the
BHP of the well. The results in the thesis show that this reservoir influx
can be calculated by estimating some of the important reservoir parameters
such as reservoir pore pressure or reservoir permeability. These reservoir pa-
rameters can be estimated most efficiently by performing an MSDF using
a detailed nonlinear model of the well and reservoir dynamic behaviour to-
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gether with real-time measurements of the fluid flow parameters such as fluid
temperature, fluid pressure and fluid flow rates. The unscented Kalman filter
shows the best performance when evaluating both estimation accuracy and
computational requirements.

Regarding available instrumentation for use during UBD, the analysis
shows that there is a major potential in introducing new sensors. As new data
transmission methods are emerging and making data from sensors distributed
along the drillstring available, this can generate a shift in paradigm regarding
real-time analysis of reservoir properties during drilling.

Controlling the process is an important usage of the information gained
from the MSDF analysis. Various control methods for controlling the most
important process variables are examined and evaluated. The results show
that acceptable pressure control can be obtained when using the choke valve
opening as the primary control parameter. However, the choke valve opera-
tion has to be closely coordinated with drilling fluid flow rate adjustments.
The choke valve opening control is able to compensate for pressure variations
during the whole drilling operation.

A suggested nonlinear model predictive control algorithm gives best re-
sults when looking at the control accuracy, and can easily be expanded to
handle multiple control inputs and system constraints. This control al-
gorithm uses a detailed model of the well and reservoir dynamics. The
Levenberg-Marquardt algorithm is used to calculate the optimal future con-
trol variables. The main drawback of the control algorithm is computational
burden. A linear control algorithm, which also is evaluated, uses less com-
putational resources, but has less control accuracy and is more difficult to
expand into a multivariable control system.

Recommendations for further work are to expand the suggested model
predictive control algorithm to handle more control inputs, while reducing
the computational burden by incorporating low-order models for describing
the future behaviour of the well.
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Chapter 1

Background

During the drilling of wells in petroleum reservoirs, a drilling fluid is used
to transport the cuttings and particles from the drilling process at the drill
bit to the surface. The pressure in the well during drilling is a function
of the hydrostatic and dynamic pressure in the well. During conventional
drilling, the well pressure is kept higher than the reservoir pressure using
the drilling fluid density as the main adjustable parameter. This pressure
overbalance is due to safety considerations, since the main reason for having
higher pressure in the well than the reservoir is to avoid situations where
the reservoir fluid is flowing uncontrolled into the well and further up to
the surface. Conventional drilling has some drawbacks since the pressure
overbalance causes the drilling fluid which contains particles to penetrate
into the porous sections of the formation. These particles obstruct the flow
from the reservoir when the well is set into production.

To enhance the production from a petroleum reservoir, new drilling tech-
niques have been developed during the last decade. A drilling technique that
has shown to give better drainage of the reservoir during production, is the
method of underbalanced drilling (UBD) [48]. During UBD the well pressure
is kept below the reservoir pore pressure. Knowledge of the pore pressure in
the reservoir formation can be gathered from the well tests performed during
the exploration drilling.

However, the reservoir formation has variations in the pore pressure that
is difficult to estimate prior and during the drilling operation. This is es-
pecially difficult if the reservoir consists of several different layers including
formation faults. In addition, the bottomhole well pressure is difficult to
keep within defined margins. The well pressure is influenced by several fac-
tors such as variations in the drilling fluid properties. Also, the fluid viscosity
and the flow rate cause a pressure loss along the well. There is a possibility
of measuring the pressure, but a low data transfer rate between the drill
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bit and the surface makes it difficult to obtain information about pressure
transients.

There is a need for improving the methods for estimating the reservoir
pore pressure during drilling. In addition, the various factors that influence
the well pressure during drilling operations should be further understood
and analysed. Methods for automating the control of the pressure balance
between the pore pressure and the well pressure should be developed and
evaluated.
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Chapter 2

Scope of Thesis

The scope of this thesis is to develop and evaluate methods for performing
multivariable process control in high temperature and high pressure envi-
ronment using non-intrusive multi sensor data fusion (MSDF). MSDF is the
process to combine available data regarding a system to estimate unknown
properties of the system.

In UBD, there is a need for controlling the pressure balance between the
reservoir pore pressure and the well pressure. This pressure balance is in-
fluenced by several variables such as the drilling fluid density, drilling fluid
pump rate and well choke opening area. The high temperature and high
pressure environment in the well gives severe restrictions on the use of sen-
sors and signal transmission technologies. Direct measurements of important
reservoir parameters such as reservoir pressure are not available, and estima-
tion of these parameters has to be performed by combining data from several
sensors, including non-intrusive sensors. The use of MSDF is required to
evaluate the sensor data originating from several different sources, including
time and space variations. MSDF makes it possible to extract more informa-
tion from the sensors compared to the information gathered when looking at
each sensor individually.

In this thesis, MSDF methods for estimating both pore pressure and well
pressure during drilling operations are presented. Several sensor systems
are evaluated, and suggestions for future non-intrusive sensor designs have
been included. Investigations on implementing non-intrusive sensors have
also been discussed. The main focus has been to fuse flow related data
typically available from the drilling system. This flow related data includes
flow rate, flow composition, pressures and temperature at various positions
of the drilling system.

In addition, different control methods are developed and tested in various
cases where the focus is to maintain the UBD conditions during the whole
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drilling operation.

The bottomhole pressure and the reservoir pore pressure are difficult both
to measure and to estimate. Other data about the system must be included to
extract additional information about the drilling process. The data from var-
ious sensors and sources are combined both in time and space such that more
detailed information about the whole process is revealed. Several methods
for making use of the data are used in this thesis, such as dynamic modelling
and least-squares parameter estimation methods.

Having developed methods for estimating the pore pressure and the bot-
tomhole well pressure, various methods for controlling the well pressures ac-
cording to the reference values are described and evaluated. Multiple control
inputs can be used, such as drilling fluid flow rate, drilling fluid density1 and
also choke valve opening area. Simple control methods based on previous
experience and linear control laws are examined, as well as more advanced
non-linear model predictive control methods. By combining the parameter
estimation methods and the control methods, underbalanced conditions can
be achieved in the well during the whole drilling operation.

The thesis is divided into two main parts. Part I is divided into nine
chapters. Chapter 1 gives some background information regarding petroleum
well drilling and discusses the current challenges. Chapter 2 presents the
scope of the thesis and the thesis contributions. Chapter 3 focuses on the
process of UBD in more detail. Chapter 4 presents MSDF, with details on
sensors, models, and fusion methods, and in Chapter 5 examples of using
MSDF are given. Chapter 6 presents the process control methods used for
controlling the well pressure during UBD. In Chapter 7, a short description of
the research project progression and a presentation of the papers included in
the thesis are given. Chapter 8 discusses possible future research directions,
and Chapter 9 presents the conclusions of the thesis.

In Part II, five papers published in conjunction with this thesis are given.

In Paper A, Reservoir Characterization during Underbalanced Drilling:
Methodology, Accuracy, and Necessary Data an existing two-phase well fluid
flow model is expanded to include fluid flow from the reservoir. The reser-
voir permeability or reservoir pressure is estimated by minimizing the differ-
ence between the model states and the synthetically generated measurement
data, using a post-drilling analysis solving a least-squares problem using the
Levenberg-Marquardt algorithm.

In Paper B, Reservoir Characterization during Underbalanced Drilling
(UBD): Methodology and Active Tests, perturbations of the well pressure

1The fluid density can be adjusted by changing the fluid mixing ratio of two drilling
fluids where one fluid has higher density than the other [88].
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were applied to examine if this made the parameter estimation introduced
in Paper A easier. The results show that the reservoir pore pressure and the
reservoir permeability are simultaneously estimated based on synthetically
generated measurement data. In addition to parameter estimation where
the Levenberg-Marquardt algorithm is used in solving a least squares prob-
lem, the ensemble Kalman filter algorithm has also been examined, enabling
the possibility of performing parameter estimation during the actual drilling
operation.

In Paper C, Underbalanced Drilling: Improving Pipe Connection Proce-
dures Using Automatic Control, the performance of the unscented Kalman
filter algorithm is examined, estimating the reservoir permeability. The anal-
ysis is performed using synthetically generated measurement data. In addi-
tion, a model predictive control algorithm is presented and used to maintain
correct well pressure during a pipe connection procedure.

In Paper D, Bottomhole Pressure Control During Pipe Connection in
Gas Dominant Wells, the validity of the two-phase flow model is examined
by comparing model data with measurement data from a full-scale test well
facility. In addition, the model predictive control algorithm including the
unscented Kalman filter parameter estimation algorithm is evaluated when
simulating a drilling scenario in a multi-layer reservoir having a complex two-
phase flow regime in the well. The control system simulations perform well
applied to synthetically generated measurement data.

In Paper E, Non-linear model predictive control scheme for stabilizing
annulus pressure during oil well drilling, the model predictive control algo-
rithm is compared with a linear control algorithm. A low-order state model
is developed and compared with the existing detailed model. The low-order
state model is used for defining the linear control parameters. The linear
control algorithm is compared with both manual control and the model pre-
dictive control algorithm. The results show that the linear control algorithm
gives less fluctuations compared with manual control. When comparing the
results using the linear control algorithm and the model predictive control al-
gorithm, the model predictive control algorithm gives the least fluctuations.
This indicates that the model predictive control algorithm is superior to the
linear control algorithm when focusing on accuracy performance.

The published works in this thesis are done in collaboration with other
researchers, where I have written the major parts of the papers. The main
contributions of this thesis are:
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Modelling

• Development and implementation of a dynamic reservoir model for use
together with a dynamic, multiphase flow model.

• Updating the detailed dynamic flow model to allow for active choke
control.

• Development and implementation of a low-order state model for two
phase fluid flow designed for UBD operations.

Sensors

• Evaluation of various types of sensor arrays based on pressure and
temperature measurements for estimation of inflow in UBD operations.

• Evaluation of the use of downhole flow sensors during underbalanced
operations.

Data Fusion

• Comparison of a neural net classification method and a history match-
ing method for estimating pipe inflow in a laboratory test rig.

• Comparison of history matching methods versus the ensemble Kalman
filter for estimation of multiple reservoir parameters using fluid flow
measurements and detailed fluid flow model of well-reservoir interac-
tion.

• Describing and evaluating a methodology for real-time reservoir char-
acterization during UBD operations using the unscented Kalman filter.

Process Control

• Design, implementation and evaluation of an MPC algorithm using a
non-linear optimization algorithm and a detailed well-reservoir model.

The implementation of the detailed dynamic multiphase flow model was
performed by other researches. The Levenberg-Marquardt optimization al-
gorithm and the Kalman filters were implemented by other researches.
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Chapter 3

Underbalanced Drilling

When drilling into a formation, the pressure in the well is critical for the
success of the drilling process. The pressure in the well pwell must be within
the operating pressure range of the formation. The upper bound of the
pressure range is the formation fracturing pressure pfrac, the lower bound is
the formation collapse pressure pcoll, that is

pcoll(t, x) < pwell(t, x) < pfrac(t, x), (3.1)

where x is the position along the well trajectory and t is the time.
When drilling into a reservoir formation, the difference between the reser-

voir pore pressure and the well pressure represent the primary safety barrier
for avoiding uncontrolled influx of reservoir fluids into the well, such as a
blow-out situation. During conventional drilling, the well pressure is main-
tained above the reservoir pore pressure, referred to as overbalanced drilling.
UBD is defined as having the well pressure below the reservoir pore pressure
pres during the whole drilling operation, i.e.

pcoll(t, x) < pwell(t, x) < pres(t, x) < pfrac(t, x). (3.2)

where the reservoir pore pressure pres is a function of both time and position
along the well trajectory. All these pressures are unknown before drilling the
well.

UBD reduces the skin damage, which is caused by penetration of drilling
fluids and cuttings into the reservoir. The drilling fluids that penetrate into
the reservoir near the well, is referred to as ”mud cake”. This mud cake
results in poor drainage of the reservoir when the well is set into production
after the well has been completed. The removal of cuttings (hole cleaning) is
also better, and this leads again to faster drill rate. However, the drawback
of UBD is that the primary pressure barrier against a blow-out situation has
to be replaced by some other system than the drilling fluid density.
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Figure 3.1: Schematic layout of an oil well drilling system prior to drilling
into the reservoir.

During drilling, a drilling fluid is circulated through the drillstring and
drill bit. The drill bit is equipped with a check valve, which prevents the
drilling fluid in the annulus to return into the drillstring. The drilling fluid
flows through the annulus between the drillstring and the walls of the well.
The hydrostatic pressure in the well depends on the fluid density. The hy-
drostatic pressure in the well ph can be modelled as

ph = ρmixgh, (3.3)

where ρmix is the density of the fluid mixture in the annulus, g is the gravity
and h is the true vertical depth (TVD) of the well. In Fig. 3.1 an example
of a well system is shown. The drilling fluid pump circulates the drilling
fluid at the specified mass rate win and exits through the choke valve with
the mass rate wout. The pressure is measured at the bottom hole pressure
(BHP) gauge. The fluid mixture in the annulus consists of several compo-
nents. Primarily, it consists of the drilling fluid that was injected into the
drillstring. In addition there will be cuttings from the drilling process that
are transported away along with the drilling fluid. Also, if the well pressure
is lower than the pore pressure in the reservoir section of the well, then the
reservoir fluids will migrate into the well annulus.

The fluid friction inside the drillstring and the annulus influence the re-
sulting pressure. The friction pressure loss, pf , in a pipe can be modelled
by

pf =
2ρmixfmixLv2

mix

D
, (3.4)

where fmix is the friction factor which is related to the Reynolds number of
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the mixture, L the total length of the well, D is the hydraulic diameter and
vmix is the mixture fluid velocity.

It is a challenge to control the well pressure gradient at all times during the
drilling operation, since the pressure loss caused by fluid friction might have
a dominant effect. The drillstring consists of several segments of pipe joined
together, and the fluid flow must be stopped at distinct time intervals to be
able to connect the pipe segments together, as the drillstring is penetrating
deeper into the formation. The fluid flow fluctuation causes variations in
the well pressure. Other operations during drilling, such as inserting the
drillstring into the well and pulling the drillstring out of the well, also cause
pressure variations in the well annulus.

One special concern while drilling a well in underbalanced conditions
is when the drilling fluid density has to be lower than what is typical for
drilling fluids consisting of liquid only. In such cases, gas is injected into the
drillstring. The low density of the gas reduces the hydrostatic pressure, but
results in additional complexity of the well fluid behaviour as it introduces
two-phase fluid flow in the well. The gas will be compressed along the well
trajectory, depending on the friction pressure and hydrostatic pressure.

When drilling in the reservoir zone, the pore pressure and other reservoir
parameters might vary. Such parameter variations lead to changes in influx
of reservoir fluids into the well annulus, which causes changes in the pressures
in the well annulus.

3.1 Pressure management

The operator typically manipulates the pressures in the well manually by
adjusting the pump rates and the choke valve. Also, the composition of
the drilling fluid can be adjusted, by adding different fluid components such
as various weight materials and other additives. These three methods for
manipulation of the well pressures can be listed as the main control variables
for a pressure control system:

• Fluid composition

• Fluid flow rate

• Choke valve position

Since all of these three control variables influence the BHP, the operator
typically keeps the fluid composition and fluid flow rate constant, and uses
the choke valve position to control the well pressure. In some cases, it is not
sufficient to manipulate the choke valve during the drilling operation. One
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possible problem is choke plugging, which is caused by particles from the
drilling process that temporarily plugs the choke valve, due to small choke
valve opening. A more automatic control system where all three control
variables are used for active multivariable control is likely to improve the
management of the well pressures.

This section describes how these three control variables, the fluid com-
position, the fluid flow rate and the choke valve position, influence the well
pressure in different ways.

3.1.1 Drilling fluid composition

The composition of the drilling fluid is carefully chosen to achieve the cor-
rect properties needed for a successful drilling operation. The density of the
drilling fluid is the most important property for obtaining the required pres-
sure in the well. The drilling fluid density is adjusted by changing the com-
position of the drilling fluid, such as the amount of weight material (baryte)
in the mixture. In addition, the density in the annulus part of the well is
also influenced by particles from the drilling process and reservoir fluids that
migrate into the well. When gas is injected into the well, the mixture flow
becomes two-phase. Two-phase fluid flow has a rather complex behaviour
including varying compressibility of the mixture.

The viscosity of the drilling fluid can also be adjusted by adding special
components to the drilling fluid. Since one of the purposes of the drilling
fluid is to transport the cuttings and particles from the well, the viscosity
has to be within certain limits. Gelling effects of the drilling fluid have to be
taken into account, especially during circulation start-up. Since the drilling
fluid is generally strongly non-Newtonian, it does not have a well-defined
viscosity. The viscosity also influence the Reynolds number of the mixture
Remix, given by, [91]

Remix =
ρmixvmixD

µmix

, (3.5)

where µmix is the viscosity of the fluid. The Reynolds number again affects
the mixture friction factor fmix which in laminar flow can be represented
by, [91]

fmix =
64

Remix

, (3.6)

and in turbulent flow it can be modelled by the implicit Colebrook equation,
defined by, [91]

1√
fmix

= −2.0 log

(
ε/d

3.7
+

2.51

Remix

√
fmix

)
, (3.7)
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where ε/d is the relative roughness of the pipe.
Viscosity affects the friction pressure loss in the well, indicating that vis-

cosity can be a parameter for managing the pressure. However, viscosity does
not have useful influence when the fluid flow is turbulent. The viscosity of
the drilling fluid depends on the fluid temperature [91]. Systems for adjust-
ing the drilling fluid temperature could be considered in some applications.
If some of the fluid parameters are modified, then the new drilling fluid will
have to displace the original drilling fluid before the parameter changes are
fully effective. This requires that the fluid flow rate or choke valve opening
is used to compensate for transient effects during fluid displacement.

3.1.2 Drilling fluid flow rate

The velocity of the drilling fluid in the annulus and the drillstring affects the
friction pressure loss, resulting in a change in annulus or drillstring pressure.
When the drilling fluid is mixed with gas, the drilling fluid becomes com-
pressible, and the fluid flow velocity can be different in various positions in
the well.

The fluid flow rate is typically adjusted using the pump at the drillstring,
but other pump system can be used. One suggested design is the dual gradi-
ent method, where the annulus section of the well is split into an upper and a
lower compartment. A pump system is then used to pump the annulus fluid
to the top. A typical application for offshore wells, is to split the annulus at
the seabed [72].

Another method to manipulate the pressure locally is to increase the
annulus pressure by placing a pump in front of the choke valve. Adding
this kind of additional complexity might require the use of automatic control
methods [67, 84].

Special systems for maintaining the fluid flow during pipe connection
has been developed [31]. This reduces the transient effects due to starting
and stopping of the fluid circulation during such operations. However, such
systems are quite complex.

3.1.3 Choke valve

The flow through a choke valve may be modelled by a simple valve equa-
tion, [51]

wmix = Cz
√

ρmix∆p, (3.8)

where wmix is the mass flow rate, C is the discharge coefficient of the valve,
z is the area of the valve opening, and ∆p is the differential pressure across
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the valve. Eq. (3.8) can be re-arranged to

∆p =
1

ρmix

(
wmix

Cz

)2

. (3.9)

By varying the valve opening, the pressure in the well can be managed.

3.2 Pressure Disturbances

During UBD there are several situations causing disturbances of the annu-
lus pressure. This section describes some of the most important causes to
pressure fluctuations, and discusses some of the efforts that can be made to
reduce such fluctuations.

3.2.1 Reservoir fluid inflow

During UBD, there will be influx from the reservoir. A simple relation that
may be used to model the influx, is the Production Index, referred to as
PI. This is used to model the relation between the fluid flow and differential
pressure between the well pressure and the reservoir pressure. The influx is
calculated using the relation, [11]

qres = PI (pres − pwell) , (3.10)

where pwell is the well pressure, pres is the initial pressure, qres is the volume
flow rate from the reservoir.

The parameter PI assumes semi-steady state conditions of a reservoir.
However, during drilling, the interaction between the well and the reservoir
is transient. Therefore, to model the influx during drilling, the analytical
solution of the constant terminal rate formulation may be used, [11]

qres =
4πKh (pres − pwell)

µ
(
2S + ln

(
4Kt

eγφµcr2
w

)) , (3.11)

where K is the permeability of the reservoir, S is the skin factor, h is the
height of the well section that has contact with the reservoir, t is the time
since the reservoir section were influenced by the well pressure, φ is the
porosity of the reservoir, µ is the viscosity, c is the compressibility of the
reservoir fluid and rw is the well radius.

When drilling into a reservoir, some of the parameters in the formation
are known from geophysical surveys and from the exploration drilling phase.
Information such as the layer orientation and porosity of the formation might
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be known from seismic data. Other information like the local variations
of permeability and pore pressure are typically unknown. Since inflow of
reservoir fluids influence the pressure gradient of the well, these parameters
should be estimated during drilling.

3.2.2 Pipe connection procedure

In drilling operations, two different types of drilling equipment referred to
as coiled tubing and jointed pipe, are used. When using coiled tubing, the
hydraulic drilling motor is mounted at the end of a long tubing. The tubing
is coiled on a large drum unit. The diameter of the coiled tubing is typically
0.1 m or less. When using coiled tubing, signal cables can be placed inside
the tubing, giving continuous data to the top. However, since the diameter
is small, buckling of the drillstring can occur.

The other type of drillstring is the jointed pipe. The drillstring consists
of pipe segments of about 30 m that are jointed together. The diameter of
the pipe is larger than the coiled tubing, typically about 0.25 m. The whole
drillstring is rotating when drilling. Jointed pipe is the most used type of
drilling equipment.

One drawback of the jointed pipe is that the drilling operation has to
be interrupted when a new pipe segment is added to the drillstring. The
circulation of the drilling fluid also has to be stopped, which causes variations
in the BHP. These variations are due to the loss of friction pressure as the
circulation stops. Fig. 3.2 shows the four operational steps required when
the pipe connection is performed. During the first step the rotation of the
drillstring is stopped, and the pumps circulating the drilling fluid is stopped.
At step two, the pump is disconnected from the drillstring. At step three a
new pipe segment is added to the drillstring, and at the last step the pump
is reconnected, and the pumps starts to circulate drilling fluid. Then the
rotation of the drillstring is re-started.

Another drawback of jointed pipe is the challenge to transport informa-
tion from the downhole sensors up through the drillstring. Today, typically
a mud pulse telemetry system is used to send information from the drill bit
to the surface. However, during pipe connections, the mud pulse teleme-
try system is not in operation. Other systems might be used, such as a
system sending electromagnetic signals through the formation. A new type
of drillstring is emerging, which integrates a signal cable into a drillstring.
This gives new possibilities for transferring signals from the bottom during
drilling, but the signal cable is disconnected during pipe connections [30, 66].
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Figure 3.2: The four operational steps performed during the pipe connection
procedure.

3.2.3 Other well operations

In addition to the pipe connection procedure, there are other operations caus-
ing pressure fluctuations during drilling. Rotation of the drillstring changes
the flow pattern between the drillstring and the fluid in the annulus. The
cuttings from the drilling process are transported along the annulus flow,
and cause changes in the annulus fluid density. An increased density gives
increase in the hydrostatic pressure in the annulus.

The drill bit and instrumentation at the end of the drillstring must occa-
sionally be maintained. While the drillstring is moved, the velocity between
the annulus fluid and the drillstring is changed. This velocity change leads
also to pressure fluctuations [29].
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Chapter 4

Multi Sensor Data Fusion in
Drilling Applications

Multi Sensor Data Fusion (MSDF) is a term for using various kinds of data
sources to extract more information about a process or a system. Non-
intrusive sensors can also be included in the data fusion algorithms. Data
fusion was defined in 1985 by the U.S. Joint Directors of Laboratories (JDL)
and the model has been subject to later revisions. In this thesis MSDF will
be defined identical to JDL’s terminology of data fusion:

Data fusion is the process of combining data or information to
estimate or predict entity states [78].

This definition is rather general and is not limited only to the sensor
systems available, but also to additional information and knowledge of the
system evaluated together with the sensor data [7]. However, the idea of
using several sources of information to define the current situation and the
future prospects is not new. For centuries in medical science, using available
information about the patient’s current health status, the patient’s health
history and knowledge gained from other patients with similar symptoms
are used to define a diagnosis of the condition of the patient and to predict
the patient’s future health condition. In physics, several data sources have
been used to describe the behaviour of various systems, resulting in new
knowledge about the system, and this knowledge is typically formulated as
mathematical models. One such example is Newton’s second law, relating the
force F applied to an object to the mass m of the object and the acceleration
a, giving the relation F = ma.

In petroleum well drilling there is a large amount of data gathered from
sensors prior to the drilling phase, during the actual drilling phase and after
the drilling phase. Typically, all these data are presented to the operator and
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the operator has to analyse the data manually. Since the amount of data is
increasing as more sensor systems are developed and put into use, there is
a need for a more automatic method to analyse and eventually evaluate the
available data. If such a method is developed, then only the resulting analysis
containing the required qualified information is presented to the operator.
The operator can then use this qualified information as a basis for decision
taking.

This chapter is divided into three sections. First the various sensor sys-
tems are described, the next section describes the knowledge gathered about
drilling system contained in various kinds of systems models, and the last
section presents some parameter estimation methods.

4.1 Sensors in drilling applications

During drilling operations it is important to measure various parameters
that can be used to improve the understanding of the drilling process. This
section presents some of the sensor systems and sensor transmission methods
that are currently available. In addition new sensor technologies and sensor
locations are suggested.

4.1.1 Sensor system terminology

The drilling industry has two different main terms that are used for data
acquisition during the drilling operation. The term Logging-While-Drilling
(LWD) was used to record and store the sensor data locally, and retrieve
the data when the drilling tool has been pulled out from the well. The
term Measurement-While-Drilling (MWD) was used for sensor data that are
measured and sent to the surface systems for analysis while the drill bit is
still in the well.

In the later years, as the data transmission technology has improved, the
main difference between these two terminologies is now that the LWD is
used for instruments that are used for estimation of the reservoir conditions
and MWD is used for instruments that are closely related to the directional
drilling operations [49].

Data acquisition for directional drilling

While drilling a well, it is important to know exactly where the drill bit is
located. Therefore several sensors are placed at the drill bit to ensure that
the planned well trajectory is followed. Several parameters are measured to
ensure a correct drilling direction:
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• wellbore geometry (inclination, azimuth),

• drilling system orientation (toolface),

• mechanical properties of the drilling process (rate of penetration).

The wellbore inclination and azimuth parameters are transferred to the
surface in order to maintain directional control in real-time.

Data acquisition for reservoir characterization

Various methods have been examined for evaluation of reservoir properties
based on information from sensors placed in the well. The physical mea-
surement principles for reservoir characterization sensors are similar for both
standard logging tools and LWD systems, and has been developed for con-
ventional drilling [65].

In UBD, there is a need for new technologies. This includes both the
physical measurement principles of the sensors and new sensor positions for
estimating reservoir parameters. Several methods are based upon mud cake
build-up, which is penetration of drilling fluid into the reservoir section of
the well. One of the main targets in UBD is to avoid this mud cake build-up.
Hence, currently available sensors are not necessarily capable of providing
suitable data for reservoir characterization.

4.1.2 Data transmission methods

The data from the drilling sensors can be transferred to the surface using
different telemetry principles [18]:

• Positive Pressure Pulse in Mud

• Continuous Pressure Wave in Mud

• Fluidic Vortex in Mud

• Acoustic Pulse along Drillstring

• Electromagnetic Signal using Drillstring as dipole

• Signal cable integrated in drillstring

The first four of these methods are based on using the drilling fluid as
a medium for sending either pressure pulses or acoustic pulses. If there
are compressible fluids in the well at a high gas/oil-ratio, such as during
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UBD, then the electromagnetic signal telemetry method have been the only
commercial method available. However, this method may experience some
difficulties when used in deep wells.

Recently, a new approach for transmission of down-hole data has been
tested and is becoming commercially available [30, 66]. A data cable is
integrated into each pipe joint and has the possibility of transferring data
not only from the bit but also from sensors mounted along the drillstring.

4.1.3 Currently available sensors

Several sensors are used to estimate the reservoir properties both during the
drilling phase and after the drilling phase. The sensor systems are measuring
different physical properties, and descriptions of various sensor systems can
be found in [18, 68, 74]. Many of the sensing methods described in this
section are based on penetration of drilling fluid into the reservoir section
near the well, often referred to as mud cake build-up or skin damage [20].

The area of reservoir characterization while drilling is a huge area cov-
ering several disciplines from mechanical packaging of electronic circuits for
high temperature and high pressure, to graphical presentation of computer
generated images. Still, the same main physical properties are measured,
such as the spontaneous-potential and the resistivity.

Since some of these measurements are based upon penetration of drilling
fluid into the formation, problems will arise when analysing logging data
from a well that has been drilled using UBD technology. Other and newer
measuring techniques such as the NMR logging may be useful for UBD op-
erations. This leads to a search for new methods when dealing with reservoir
characterization during UBD.

Pressure and temperature

A key parameter during drilling operations is the BHP. The BHP data is
transmitted to the surface, and is critical since the difference in pressure
between the reservoir pore pressure and annulus BHP is relevant for the flow
interaction between the well and the reservoir.

Temperature measurements are also available at the drill bit. The use
of this parameter is mainly limited to monitor the operating condition of
the drill bit, verifying that the drill bit temperature is within acceptable
limits. The temperature is also an important parameter of the drilling fluid,
since the viscosity and other fluid parameters are influenced by temperature.
The temperatures of the drill bit and drilling fluid are mainly influenced by
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the geothermal temperature, but the temperature may also increase due to
friction when drilling in hard formations.

Multi-phase flow meters

Measuring the flow composition out of the well is important. This can either
be done by measuring the levels in the separator which is placed after the
choke, or by measuring the fluid components while the fluid is flowing in the
pipe. Current research is now improving the physical measurement principles
in separator systems [25]. There are commercially available flow meters for
measuring the fluid components in a pipe, using a dual sensor system mea-
suring the density and dielectric properties [69]. Methods for estimating the
flow patterns are also emerging [24]. Mass flow meters such as the Coriolis
mass flow meter can be used for measuring the total mass flow rate out of
the well.

Acoustic emission

During drilling, particles are transported along the annulus. These particles
coming in contact with the drillstring and the casing, will emit acoustic
noise. Acoustic emission sensors can be placed downstream the choke valve,
directly mounted on a pipe section [10]. Using cross-correlation analysis, the
data from two acoustic emission sensors placed at two positions along a pipe
can be used for calculating the flow rate of the particles.

Acoustic log

The acoustic log is based on measuring the transit time from an acoustic
source to an acoustic receiver. The speed of sound is faster in the formation
than in the drilling fluid. The transit time for the actual formation is com-
pared with the transit time for a rock with no porosity and the transit time
of the pore fluid. From these comparisons of transit times an indication of
the porosity of the formation can be found.

Mud Log

The cuttings from the drilling process are transported to the surface together
with the drilling fluid. The cuttings are analysed manually by geologists while
drilling is performed. Several parameters are recorded, such as cuttings type
and cuttings density. The mud is also analysed using gas chromatographs to
examine if hydrocarbon gases are present.
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Spontaneous-Potential log

The Spontaneous-Potential log (SP-log) is a method that can be used during
standard overbalanced drilling. The principle is based on measuring the
electric potential between an electrode at the surface and an electrode that
is placed into the well. The SP-log gives different electric potential due to the
difference in salinity between the drilling fluid and the reservoir fluid. The
electric potential is due to the flow of ions from the more concentrated liquids
to the less concentrated liquids. The potential is related to the permeability
of the formation, since the drilling fluid has penetrated into the formation.

The measurements are measured relative to a baseline. When the mea-
surements show negative recordings relative to the baseline, then this indi-
cates a permeable formation. A positive measurement relative to the baseline
occurs when the liquids in the reservoir has lower salinity than the drilling
mud.

Resistivity log

A resistivity log gives the electrical resistivity of the formation. An oil filled
reservoir has higher resistivity than an high-salinity water filled reservoir.
Generally, three different types of resistivity logs exists:

• normal (conventional) log

• laterolog

• induction log

The normal log is measuring resistivity by setting up a potential between
an electrode at the surface and an electrode at the end of the measuring
device. The resistivity is measured between two other electrodes placed be-
tween the main electrodes. By changing the distance between the measuring
electrodes, the resistivity at difference depth in the reservoir can be measured.

The laterolog uses a single current electrode, and two guard electrodes
below and above the main electrode. The laterologs can measure the resis-
tivity at different depths into the reservoir by changing the geometry of the
central electrode and the guard electrodes.

The induction log has transmitter and receiver coils at each end of the
measuring device. A signal is transmitted from the transmitter, and the re-
ceiver measures this signal. The distance between the transmitter and the
receiver coils determines how far into the reservoir the resistivity is mea-
sured [1].
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If the well is being drilled in overbalanced conditions, then some of the
drilling mud penetrates into the permeable zones of the reservoir. Depending
on the permeability and other reservoir parameters of the reservoir zone, the
drilling mud continues to migrate further into the reservoir zone. Since the
drilling mud has different electrical properties than the reservoir fluids, then
the resistivity close to the well is different to the resistivity further away from
the well where there are only reservoir fluids. If deep and shallow resistivity
measurements were performed, then combination of the measurements could
be used to locate a permeable zone.

Natural radioactivity log

The natural radioactivity log is used to measure the natural radioactivity
of the sediments in the reservoir. The different sediments emit different
radioactivity. Since this type of measurement is not dependent on mud cake
build-up, it could be used in UBD.

Neutron log

A neutron source is emitting neutrons into the formation, releasing gamma
rays that are emitted from the reservoir relative to the hydrogen content.
There is hydrogen in all formation fluids such as oil and water, but not in
the formation stone itself. The neutron log contains information about the
porosity of the formation.

Density log

The density log is based on measurements of gamma rays from the formation.
A gamma ray source emits gamma rays into the formation. Gamma rays
returning from the reservoir give an indication of the electron density of the
atoms in the reservoir, leading to information about the formation density.

The density log only registers the density of the formation close to the
well. In a porous part of the formation, the drilling fluid is penetrating into
the formation, and the porosity of the formation is a relationship between
the formation density, the recorded density and the drilling fluid density.

Nuclear Magnetic Resonance log

An NMR log can be used for measuring porosity in the formation. The mea-
suring principle is based on applying magnetic field oscillations in the well.
A strong magnetic field is applied to the sides of the well, and the hydrogen
nucleus reacts with this field. The time used for the hydrogen atom to align
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to the magnetic field is measured, in addition to the relaxation time when
the magnetic field is turned off. Fast relaxation indicates large pores, and
slow relaxation time indicates small pores. The NMR measurements can be
combined with the neutron density log to evaluate the reservoir permeabil-
ity [49]. Application for UBD could be useful since the technology is not
dependent on penetration of drilling fluids into the reservoir.

Dielectric log

The dielectric constant is different for water (50-80), for oil (2.0-2.3) and gas
(1.0). When the dielectric constant is measured along the side of the well,
this gives an indication of the type of reservoir fluid.

4.1.4 Suggested sensor designs

Since several of existing sensor systems for analysing the reservoir pressure
are based on invasion of drilling fluid into the formation, new sensor sys-
tems should be evaluated. Both UBD operations and well pressure testing
operations result in influx of reservoir fluid from the formation. It should
be evaluated if methods used in well pressure testing can be used in UBD.
Bear in mind that the sensors also have to sustain the environment with
pressures typically between 100-300 bar and temperatures typically between
80 ◦C-200 ◦C.

Non-intrusive annulus flowmeter

One major data source when estimating reservoir parameters is the flow rate
of reservoir fluids. In a production well the influx from the reservoir can
be measured using down-hole flow measurement equipment placed in the
production liner [17]. During UBD operation it is difficult to measure the
flow rate directly, but indirect methods could be used.

The local flow rate along the annulus outside the drillstring may vary.
This is because the reservoir influx has a transient decaying flow rate depen-
dent on the time since the reservoir were drilled into. In addition, changes
in the well pressure also influence the reservoir influx. Hence, the flow rate
has to be measured on several locations. Installing several flow sensors for
measuring annulus flow might not be technically or economically feasible.
However, measuring the local flow at the casing shoe could be a possible
future sensor location. Fig. 4.1 presents a suggested design for such a flow
sensor system.
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Figure 4.1: Suggested design of the non-intrusive annulus flowmeter using
both capacitance electrodes and acoustic emission sensors
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When estimating flow based upon measuring another physical parameter,
several methods can be used. For measuring local flow, an acoustic emission
sensor can be placed at two locations close to each other, and a cross cor-
relation algorithm can be used to estimate the time lag between the signals
measured. The time lag and the distance between the sensors and the flow
area can then be used to calculate the local fluid volume flow rate [54]. Ca-
pacitance electrodes could also be used for measuring the oil ratio in the total
flow, adapting to existing capacitance flow sensors [25].

Sensor arrays

The influx of reservoir fluids will affect the annulus pressure. The pressure
measured in annulus can be used to estimate the reservoir parameters [85,
86, 87]. Introducing temperature measurements could in the future be useful
for estimating reservoir parameters while drilling.

A temperature array could measure the thermal difference between the
circulation fluid and the reservoir fluid. The temperature after mixing of the
fluids is dependent on the mass flow rate, and will therefore contain informa-
tion about the volume flow rate, when the densities of the fluids are known.
The temperatures of the reservoir fluids have geothermal temperature, and
the drilling fluid is circulated from the surface system. The temperature of
the drilling fluid is increased while flowing down to the drill bit, but the
drilling fluid has still lower temperature than the reservoir fluids coming into
the well annulus. In the annulus the drilling fluids and the reservoir fluids
are mixed, and transported together up to the surface.

The temperature gradient along the annulus could be measured along
the outside of the drillstring using single temperature sensitive fibre optical
cable with Bragg-grating [38]. Such temperature sensors arrays are currently
developed for production wells [90].

In Fig. 4.2 a future sensor array layout is shown. The temperature and
pressure sensors could be placed along the drillstring, and measure the pres-
sure and temperature variations at positions within the reservoir zone of the
well.

4.2 Modelling fluids

Knowledge about how various parameters such as pressure, temperature and
flow rate interact in various fluid systems has been implemented in several
mathematical models. For simple model approach the buoyancy laws can
be used, whereas the Navier-Stokes equations (see e.g. [91]) can be used to
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Figure 4.2: Suggested design of the temperature and pressure sensor array
placed along the drillstring.
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describe the non-linear behaviour of dynamic fluid flow. Still with today’s
computing power it takes a long time to calculate the behaviour of a dynamic
fluid system using the Navier-Stokes equations. However, between these two
modelling efforts of describing fluid effects, several methods exist that are able
to describe the behaviour of a dynamic fluid system sufficiently accurately
in real-time.

As an alternative to the standard modelling efforts, using neural networks
as a function approximation could be implemented and used to describe
various parameters. Using a given set of pressures, temperatures and flow
rates, a neural network could be trained to calculate the behaviour of the
dynamic fluid.

However, in an MSDF perspective, to include the knowledge from process
models is crucial for the fusion of the available data from the various sen-
sors [7]. When modelling UBD, the BHP is the most important parameter
to be estimated correctly. But, since this parameter is very dependent on
other parameters such as the density and friction pressure loss, these mod-
elling efforts can be complex. This is especially true when the underbalanced
conditions in the well are achieved by injecting gas. This results in two-phase
flow conditions, which add even more to the complexity of dynamic models
of the well fluid flow.

The well and reservoir system can be represented by a discrete explicit
scheme given by

xk = f [xk−1, θ] (4.1)

yk = h [xk] (4.2)

where f [·] is the function for calculating the current state vector xk based
on the previous state vector xk−1, θ is some uncertain model parameters,
typically reservoir pressure or reservoir permeability. h[·] is the function for
calculating the current sensor values yk based on the current state vector.

This section presents three different modelling efforts for describing the
dynamic pressure variations in UBD. First section describes a model with
ordinary differential equations with time as the differential operator. The
second section describes a more detailed model where the spatial dynamics
in the well are calculated using partial differential equations using both the
depth of the well and the time as differential operators. In the third section
a neural network approach is discussed.

4.2.1 Low-order dynamic state models

When modelling fluid flow during drilling, it is assumed that the flow pattern
in the drillstring is uniform along the whole length of the drillstring, and that
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Figure 4.3: The mass balance of the well (a), and the pressure balance of the
well (b).

the flow pattern in the annulus is uniform in the whole length of the annu-
lus. Therefore, the well can be divided into two compartments with different
dynamics, the drillstring and the annulus [58]. The interconnection between
these two compartments is modelled using mass balances and pressure bal-
ances. Fig. 4.3 shows the diagrams of the mass flows and the pressures in
the well.

Due to the two-phase flow, a separate mass balance for the gas and the
liquid are defined. The mass balances for the fluids in the drillstring are
given by:

d

dt
mg,d = wg,pump − wg,bit, mg,d(0) = m0,g,d (4.3)

d

dt
ml,d = wl,pump − wl,bit, ml,d(0) = m0,l,d (4.4)

where w?,bit is the mass flow of gas and liquid at the drill bit, respectively.
The mass balance equations for the annulus are given by:

d

dt
mg,a = wg,bit + wg,res − wg,choke, mg,a(0) = m0,g,a (4.5)

d

dt
ml,a = wl,bit + wl,res − wl,choke, ml,a(0) = m0,l,a (4.6)
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where w?,res is the mass flow of gas or liquid at the reservoir, and w?,choke is
the mass flow of gas or liquid at the exiting choke valve.

In addition to the mass balances, a pressure balance needs to be set up.
This is because the friction pressure in the well is strongly related to the flow
rates in the well, causing unsteady flow conditions [51]. The pressure balance
is set up at the drill bit at the bottom of the well, and at the choke valve at
the exit of the well. The pressure balance equations are given by

d

dt
vmix,bit =

1

ρmix,dL
(pd,c + pd,g − pd,f −∆pbit − pa,c − pa,g − pa,f ) ,(4.7)

vmix,bit(0) = 0

d

dt
vmix,choke =

1

ρmix,aL
(pa,c −∆pchoke − patm) , (4.8)

vmix,choke(0) = 0

where ρmix,? is the mixture density of the fluid in the drillstring or annulus
and p?,? is pressure and L is well length. The subscript d denotes param-
eters related to the drillstring, and subscript a denotes parameters related
to the annulus. The subscript c denotes the compression pressure, subscript
g denotes the gravitational pressure and subscript f denotes the frictional
pressure loss. Further, ∆pbit is the pressure loss over the bit, and ∆pchoke is
the pressure loss over the choke. vmix,bit is the mixture flow velocity before
the drill bit flow restriction and vmix,choke is the mixture flow velocity before
the choke valve. patm is the atmospheric pressure.

In addition the mass balance and the pressure balance, the length of the
well is also increasing as a function of time. The depth of the well also
influences the well pressure, and therefore the well length L is chosen as a
state in the dynamical system, given by

d

dt
L = vd L(0) = L0 (4.9)

where vd is the vertical drilling rate, and L0 is the initial well length.

A total of 7 states are therefore defining the dynamics of the well during
drilling. The closure relations between masses, flow rates and pressures are
further described in [59]. This type of simple modelling methodology can
be used for design and analysis of a control system for the pressure in the
well. For a more accurate prediction of the mass flow along the well, a more
detailed model should be used.
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Figure 4.4: Spatial discretization of the drillstring, the annulus and the
annulus-reservoir interaction

4.2.2 Detailed flow modelling

The research within dynamic well modelling focuses on methods for accu-
rately describing the fluid flow along a well. The Navier-Stokes equations are
used as a basis for the description, where the well is divided into small boxes
along the drillstring and the annulus. Fig. 4.4 shows the discretization along
the well and reservoir.

In the conservation equations for the mass balances for gas and liquid,
the mass transfer between the phases are neglected. The mass balance for
each phase is

∂

∂t
(ρgαg) +

∂

∂z
(ρgαgvg) = 0 (4.10)

∂

∂t
(ρlαl) +

∂

∂z
(ρlαlvl) = 0 (4.11)

where ρ? is the fluid density, v? is the phase velocity and α? is the void
fraction.

The momentum equations for each phase are added together, which re-
sults in the drift-flux formulation. The drift-flux formulation is a simplified
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momentum balance equation for the mixture, given by

∂

∂t
(ρlαlvl + ρgαgvg)

+
∂

∂z

(
ρlαlv

2
l + ρgαgv

2
g + p

)
= − d

dz
pf

− (ρlαl + ρgαg) g sin θ (4.12)

where p is the pressure, pf is the frictional pressure component caused by
both the viscous effects of the fluid and the wall shear stress factor and θ
is the angle between the gravity direction and the well trajectory direction.
The closure relations are further described in [41].

A numerical scheme has been developed over several years [28, 82, 92],
and verified with several experimental tests [42, 43]. The well inflow from the
reservoir is defined using the equations from the well pressure test at constant
rate given in [11]. The reservoir model and the well model are combined by
dividing the reservoir into several small segments, each having contact with
the well [85].

Since this type of model calculates the behaviour of the fluids in more
detail, the model will be more accurate. The mass balance for each box is
calculated along with the pressure balance, giving mass for each phase and
velocity of the mixture as well as the pressure in the box. This results in a
high-order state vector for a model with several boxes. Nevertheless, due to
increased computational power, the model state can be calculated about 100
times faster than real-time on a standard Intel Pentium(III) 1GHz CPU.

4.2.3 Model approximation using neural nets

An artificial neural network is a calculation scheme based on the behaviour
of real neurons in the human brain [39]. An artificial neural network can
have various structures depending on the applications. A feed-forward neural
network can be calculated very fast. In the effort of modelling a physical
system, a feed-forward neural network can be used as a model approximation.
Initially the feed-forward neural network is trained using data from the model
that is to be approximated. When the training is completed, the neural
network can be used instead of the model, as a fairly good approximation
and at a lower computational cost. According to [21], most functions can
be approximated using a two-layer network using neurons with a sigmoid
function in the first layer and neurons with a linear function in the second
layer.
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Feed-forward Neural network

The output a of a single artificial neuron can be described as

a = f (n) , n = Wp + b (4.13)

where f is the neuron transfer function, n is the input of the neuron transfer
function, W is the weight matrix, p as the input vector and b as the bias.
The neuron can be organised in layers, and each layer can consist of several
neurons. The total neural network consists of several layers. The neuron
transfer function can be of different types, such as log-sigmoid function given
by

a =
1

1 + e−n
(4.14)

or the saturating linear function given by

a = 0, n < 0

a = n, 0 ≤ n ≤ 1 (4.15)

a = 1, n > 1

The weight matrix, W, can be adjusted according to the function or data
that is to be approximated. This adjustment process of the weights is called
training. A feed-forward network can be trained using the back-propagation
algorithm or other algorithms. A data set with a certain amount of inputs
with known outputs is used as a training set.

Examples

A simple example for function approximation is given below, and the example
is implemented using MATLAB [21, 22]. The inflow from the reservoir during
UBD can be described using Eq. (3.11), which is used to generate the ”true”
measurements. A three layer neural network is used. The first layer has 6
neurons and a log-sigmoid transfer function. The second layer has 3 neurons
and a log-sigmoid transfer function. The output layer is a single neuron with
a linear transfer function. The training is done using the MATLAB function
trainbr, which is using a implementation of the Levenberg-Marquardt opti-
misation algorithm. The results from the simulations are shown in Fig. 4.5.

The network gives a good approximation of the function, and this corre-
sponds to the results found in literature [21]. During UBD, the real inflow
from the reservoir is unknown, and models must be used to train the network.
However, both flow models described in the previous sections are calculated
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Figure 4.5: Feed-forward neural network as a function approximation of the
transient reservoir inflow function trained using the Levenberg-Marquardt
optimization algorithm.

faster than real-time, so the need for improving the calculation time is not
critical.

Neural networks has been used with success within other fields of petroleum
engineering. In [12] the aim is to define well trajectories in a reservoir. A
complex reservoir model is used to calculate the reservoir utilization using
different positions and lengths of the wells. The results are used to train
a feed-forward neural network, since the neural network is faster than the
reservoir model. The neural network is then used in an optimisation algo-
rithm to search for the best selection of wells in the effort of optimising the
reservoir utilization.

4.3 Data fusion methods

This section focuses on how to use and combine the various data from the
sensors together with the knowledge gained from the models, resulting in
more qualified information.

The most intuitive method when trying to estimate parameters is to com-
bine data from different sensors using simple relations between the actual
parameters that are measured. This method is described in the first section.
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History matching is based on using historical measured sensor data sets
and trying to fit simulated data sets generated by a model of the system to
these sensor data sets. The model and the data can be fitted by searching
for the minimum error between the measured data and the equivalent data
calculated using the model. When using history matching, all the measure-
ments are processed in the algorithm after the operation is finished. To search
for the minimum solution of the least squares problem then the Levenberg-
Marquardt algorithm [53] is used, which is a variation of the Newton search
algorithm.

However, during control of a process, there is a need for estimating the
parameters while the process is actually running. In such cases, data assimi-
lation algorithms can be used. Such algorithms can update the model param-
eters when the measurements are available for processing. The synchronising
of data sources when evaluating sensor data received at different points in
time should be take into account when implementing the algorithms [5].

The model will contain model errors and the measurements will have mea-
surement noise, which should be accounted for when comparing the model
calculations with the measurement data from the sensors. An extended
Kalman filter (EKF) could be used, but the method is time consuming when
having high-order state-vectors since the EKF requires numerical differenti-
ation. Instead, two variations of the Kalman-filter are tested, the ensemble
Kalman filter (EnKF) and the unscented Kalman-filter (UKF) [16, 33].

This section presents various methods for estimating unknown parameters
using simple sensor data combination techniques, neural net classification,
history matching and data assimilation.

4.3.1 Combining sensor information

All the various logs used for reservoir characterization described in Sec-
tion 4.1.3 give some information if they are used separately. However, if
the data logs are used together, additional information can be extracted.

Combining SP-log and Resistivity log

By combining the SP-log and the resistivity log, the water saturation of
the porous parts for the formation can be found (see e.g. [74]). The water
saturation Sw is calculated using

Sw =
(Rxo/Rt)

5/8

Rmf/Rw

(4.16)
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where Rxo is resistivity measured using a shallow resistivity log, Rt is the
resistivity measured using a deep resistivity log, Rmf is the resistivity of the
drilling mud, and Rw is found from the SP log.

Combining porosity logs

By combining the porosity logs, more accurate values of the porosity can be
found, and useful additional information can be extracted. As an example,
when measuring the porosity using a neutron log and a density log, then the
content of gas in the formation will influence the measurements. This leads
to a method to decide if there are gas zones in a limestone reservoir [49].

Methods used for well testing

When an oil well is being drilled, and later during the production phase of
the oil well, the properties of the reservoir are evaluated using a well testing
procedure. When performing a well test, the well is being shut in, and
the well pressure at the reservoir section is increased until a steady state is
reached. Then the well is opened, and the volume rate from the well is being
kept constant while the pressure is measured. This is called the constant
terminal rate test, and the relation between the differential pressure and the
flow rates is found by solving Eq. (3.11).

4.3.2 Classification using neural nets

A neural net has a good capability to be used as classifier for a pattern
recognition problem. The main problem for the neural net, is that it needs
information to be able to train the network. To train the network, a model
can be used. An inverse model of the system can then be designed by training
the neural net using the output of the forward model as input, and the input
of the forward model as output. An example for using a neural net as a
classifier is given in Chapter 5.

4.3.3 History matching

The idea of history matching is to tune a model such that the state and
parameters of the model match with previous measured data. One effort is
to focus on the unknown parameters of the model. The minimization problem
for the time series can be defined as a least squares problem presented as

S (θ) =
n∑

k=1

[rk (θ)]2 (4.17)
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rk (θ) = ym
k − yc

k (4.18)

where the cost criterion S is defined by a squared sum of differences rk.
The array of parameters θ is selected as unknowns to the model, ym

k is the
measured sensor data from the process and yc

k is the calculated sensor value
based on a model derived from (4.1)-(4.2), k is the current timestep and n is
the total number of time steps.

History matching using Levenberg-Marquardt algorithm (LM)

When solving linear least squares problems such as given by Eq.(4.17) then
the Newton algorithm can be used [73]. The Newton algorithm is an iterative
scheme which uses an initial guess of the parameter vector θi, to search for
the true parameter vector θ∗. The Newton algorithm is given by

θi+1 = θi + δi (4.19)

δi = −
(
JiTJi + Ai

)−1
JiT ri (4.20)

Ji =
∂ri

∂θiT
(4.21)

Ai =
p∑

j=1

rj
i (θ)

∂2rj
i (θ)

∂θi∂θiT
(4.22)

where i is the search step, j is the measurement index and p is the number
of measurements.

Since calculating the Hessian matrix A is computationally intensive, then
the Gauss-Newton algorithm can be used if A is small compared with JTJ.
The Gauss-Newton algorithm is equivalent to the Newton algorithm when A
is ignored, giving

δi = −
(
JiTJi

)−1
JiT ri (4.23)

For nonlinear problems, where JiTJi can be singular or ill-conditioned, then
Eq. (4.23) can be modified to

δi = −
(
JiTJi + λiDi

)−1
JiT ri (4.24)

where λi is a scalar value known as the Levenberg-Marquardt parameter,
and Di is a diagonal matrix with positive elements along the diagonal. In
the implementation of the Levenberg-Marquardt algorithm, the calculation
of the inverse of JiTJi + ηiDi is not performed, but the step δi is found by
solving the least squares problem
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min
δ

∥∥∥∥∥
(

ri

0

)
+

(
Ji

(λiDi)
1/2

)
δ

∥∥∥∥∥
2

(4.25)

If λi is close to zero, the algorithm will have a step nearly in the Gauss-
Newton direction. If λi → ∞, then the steepest-descent direction is chosen
(see e.g. [47]), but the step length will tend to zero.

A modification of the Levenberg-Marquardt algorithm to include con-
straints of the parameters θi such as

θmin < θi < θmax (4.26)

has been implemented as suggested in [19].

History matching using genetic algorithms (GA)

Genetic algorithms is an optimization method that origins from the evolution
theory of survival of the fittest. A cost criterion such as given in (4.17) is
minimized using a special search algorithm [7, 9, 39].

The parameter set θ is converted to a binary representation θb represented
as

θb = B (θ) (4.27)

θ = B−1 (θb) (4.28)

where B(·) is used for generating the binary representation, and B(·)−1 is
generating the parameter based on the binary representation. The termi-
nology in the genetic algorithm is also adopted from the biology, and θb is
denoted as the gene representation of the θ. Genetic algorithms have the
ability of finding a global maximum in a search environment where there are
several local maximum values. In [6] a genetic algorithm was used to estimate
the reservoir parameters. However, if the number of generations is too high,
then the algorithm can be computationally costly, close to a Monte-Carlo
approach.

History matching using simulated annealing algorithm (SA)

A third approach for finding the optimal value in (4.17) is to use the method
of simulated annealing [7]. The algorithm simulates the annealing of a ma-
terial. If a material is cooled slowly, then the material will form crystals,
and then settle at a minimum energy state. The terminology used in the
algorithm is taken from this annealing process.
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In [52, 63] the simulated annealing was compared with gradient based
methods such as the Levenberg-Marquardt algorithm, and the simulated an-
nealing method was found to be too slow.

In the current work, focus have been on using the Levenberg-Marquardt
algorithm for history matching.

4.3.4 Data assimilation using Kalman-filters

There is a need for estimating unknown parameters such as reservoir pres-
sure and permeability during the drilling operations. The various Kalman
filters give the possibility to estimate these with the minimum variance of
the estimation error, by augmenting the state vector with a Markov process
description of the parameters [8]. Based on Eqs. (4.1)-(4.2) a revised model
can be defined by

xk = f [xk−1, θ] + vk (4.29)

yk = h [xk] + wk (4.30)

where vk is the process noise and model error, and wk is the measurement
noise. For estimating the unknown process parameters in the model, the mea-
surements can be used to update the model parameters in real-time. When
estimating model parameters, then the model state is augmented with the
model parameters. The original Kalman filter was developed for linear mod-
els. For nonlinear models there have been developed various alternatives [8].
This section will describe the extended Kalman Filter, the ensemble Kalman
Filter and the unscented Kalman Filter.

The extended Kalman-filter (EKF)

The discrete extended Kalman filter with an augmented state vector χ =
[x, θ] consisting of the original state vector x and the unknown model pa-
rameters θ, uses a linearization of the state function f [·] and the measurement
function h[·] given by

Fk =
∂f [χ]

∂χ
|χk

(4.31)

Hk =
∂h[χ]

∂χ
|χk

(4.32)

where k is the current time step.
The extended Kalman filter uses the augmented linearized model to cal-

culate the estimation error covariance matrix Pk. The current time step
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is denoted using subscript k and the next time step is denoted using sub-
script k + 1. The covariance matrix for the model error is Qk, giving
vk ∼ N(0,Qk) and the covariance matrix for the measurement noise is Rk,
giving vk ∼ N(0,Rk), and N(µ, σ2) is the normal probability distribution
with mean µ and variance σ2. The covariance matrixes are assumed to be
non-correlated.

The notation used here is based on the notation in [16], but is slightly
modified with reference to the control system literature (see e.g. [2, 3, 23,
33, 76]). The term forecast with superscript f is used instead of the term
apriori for the calculations at the current time step before the measurements
are included in the filter, and the term analyzed with superscript a is used
instead of the term aposteriori for the calculations at the current time step
after the measurements are included in the filter. The following equations
shows the extended Kalman filter

χf
k = f [χa

k−1] (4.33)

Pf
k = Fk−1P

a
k−1Fk−1 + Qk (4.34)

Kk = Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1
(4.35)

χa
k = χf

k + Kk

(
ym

k −Hkχ
f
k

)
(4.36)

Pa
k = Pf

k −KkHkP
f
k (4.37)

where ym
k is the measurement which is equivalent to

ym
k = h[χt

k] + wk (4.38)

where χt
k is the unknown true state.

The gradient matrix found in (4.31)-(4.32) are computational costly, and
especial for models with a large number of states. Other Kalman filter meth-
ods are therefore investigated.

The ensemble Kalman filter (EnKF)

The ensemble Kalman Filter was introduced in [15]. The main idea behind
the method is that an ensemble of n model instances is calculated at each
time step and the result from the n forecasts is used to calculate the estima-
tion error statistics. The description of the ensemble Kalman Filter follows
the presentation given in [16], however with some changes in the notation.

The initial ensemble χ
(j)
initial is randomly selected using a normal probability
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distribution with an assumed initial covariance Q0, giving v0 ∼ N(0,Q0),
using

χ
(j)
initial = χinitial + v

(j)
0 (4.39)

where χinitial is the assumed initial mean when the filter is started, and the
notation using (j) as upper index is a term for ensemble member j. In the
following notation the measurement function in (4.30) is replaced by the
linear operator H using

yk = Hχk + wk (4.40)

The ensemble of model states is represented by

χ
f(0)
k = f [χ

a(0)
k−1], χ

a(0)
0 = χ

(0)
initial

χ
f(1)
k = f [χ

a(1)
k−1], χ

a(1)
0 = χ

(1)
initial

...
...

...
...

...
...

χ
f(n)
k = f [χ

a(n)
k−1 ], χ

a(n)
0 = χ

(n)
initial

(4.41)

where n is the number of ensemble members, k is the time index, a is the
analysed state and f is the forecasted state. The forecasted ensemble state
is used to calculate the mean of the forecasted state vector using

χf
k =

1

n

n∑
j=0

χ
f(j)
k (4.42)

The forecasted covariance of the model error Pf
k , is found using the definition

of covariance, based on the forecasted model states of the ensemble members
using

Pf
k = (χf

k − χf
k)(χ

f
k − χf

k)
T

(4.43)

The measurement vector ym
k is perturbed for each ensemble member with the

measurement error wk to ensure that the measurement has the covariance
Rk using

y
m(j)
k = ym

k + w
(j)
k (4.44)

Rk = wkwk
T (4.45)

The analysis equations for the ensemble Kalman Filter is then

Kk = Pf
kH

T
(
HPf

kH
T + Rk

)−1
(4.46)

χ
a(j)
k = χ

f(j)
k + Kk

(
y

m(j)
k −Hχ

f(j)
k

)
(4.47)

χa
k =

1

n

n∑
j=0

χ
a(j)
k (4.48)

Pa
k = Pf

k −KkHPf
k . (4.49)
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Figure 4.6: Distribution of the reservoir pore pressure and permeability in
an ensemble at various time steps when estimating the reservoir parameters
during drilling.

The ensemble Kalman Filter algorithm is equivalent to the Kalman Filter
for linear system. For nonlinear systems, the extended Kalman filter uses a
linear approximation for the nonlinear terms, using the gradient operation,
and neglecting the higher order terms. The ensemble Kalman filter include
these terms using the nonlinear model directly, and no need for linearization
are needed [16].

In the current work, the ensemble Kalman Filter has been used for es-
timation of the reservoir parameters in a detailed well-reservoir model. To
illustrate how the ensemble Kalman Filter converges, the reservoir parameter
distribution from Example 3 in [59] is shown in Fig. 4.6. The two parameters,
pore pressure and permeability, are plotted after 1 minute, after 25 minutes,
after 75 minutes and after 250 minutes.

The unscented Kalman-filter (UKF)

The unscented Kalman Filter (UKF) is another derivative-free Kalman filter
for nonlinear estimation [32, 33, 34, 35]. Similar to the EnKF, the UKF
does not use a linearization of the model to calculate the estimation error
covariance matrix, but instead it tries to approximate this matrix by in-
troducing sample points. The nonlinear model is applied to a set of state
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vectors points, called sigma points. These sigma points are used to calcu-
late the probability distribution of the estimation error. This description of
the unscented Kalman filter follows the presentation in [83, 89], where the
unscented Kalman filter is used for parameter estimation. The notation has
been changed slightly for comparison with the other Kalman filters in this
section.

Initially, the augmented state vector is assumed to be χa
0 = [xa

0, θ
a
0 ] , with

an estimation error covariance matrix Pa
0. The sigma points are calculated

using a design parameter λ. The design parameter can be defined by

λ = α2(L + κ)− L (4.50)

where the constant α defines the spread of the sigma points around the
current state vector, κ is a secondary scaling parameter usually set to zero.
For parameter estimation, L is the dimension of the parameter vector θ,
which reduces the number of required sigma points when compared with
state estimation [89].

The augmented state vector is updated with the parameters from the
previous time step, given by

χf
k = χa

k−1 (4.51)

The forecasted model error covariance matrix,Pf
k , is updated using

Pf
k = Pa

k−1 + Qk−1 (4.52)

where Qk−1 is the parameter error covariance at the previous time step.
A number of 2L + 1 sigma points is defined as

χ
σ(0)
k = χf

k (4.53)

χ
σ(j)
k = χf

k +
(√

(L + λ)Pf
k

)
j
, j = 1, . . . , L, (4.54)

χ
σ(j)
k = χf

k −
(√

(L + λ)Pf
k

)
j
, j = L + 1, . . . , 2L, (4.55)

where
(√

(L + λ)Pf
k

)
j

is column j of the matrix square root of (L + λ)Pf
k .

Only the parameter vector is spanned out by the sigma points.
Each sigma point is used for calculating a forecast of the augmented state

vector χ
f(j)
k using the nonlinear function f [·], giving

χ
f(0)
k = f [χ

σ(0)
k ]

χ
f(1)
k = f [χ

σ(1)
k ]

...
...

...

χ
f(2L)
k = f [χ

σ(2L)
k ]

(4.56)
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Each forecast of the augmented state vector is used for calculating a
forecast of the measurement vector y

f(j)
k using the nonlinear function h[·],

giving

y
f(0)
k = h[χ

f(0)
k ]

y
f(1)
k = h[χ

f(1)
k ]

...
...

...

y
f(2L)
k = h[χ

f(2L)
k ]

(4.57)

A weighted mean,yf
k for the forecasted measurement vectors is calculated

using

yf
k =

2L∑
j=0

W (j)
m y

f(j)
k , (4.58)

W (0)
m =

λ

L + λ
, (4.59)

W (j)
m =

1

2 (L + λ)
, j = 1, . . . , 2L, (4.60)

where W (j)
m is a weighting matrix for the mean calculation. The weight for

the centre sigma points is twice the weight for the surrounding sigma points.

A weighted covariance,yf
k for the forecasted measurement vectors is cal-

culated using

Pf,yy
k =

2L∑
j=0

W (j)
c

(
y

f(j)
k − yf

k

)(
y

f(j)
k − yf

k

)T

+ Rk, (4.61)

Pf,xy
k =

2L∑
j=0

W (j)
c

(
χ

σ(j)
k − χf

k

) (
y

f(j)
k − yf

k

)T

, (4.62)

W (0)
c =

λ

L + λ
+ (1− α2 + β), (4.63)

W (j)
c =

1

2 (L + λ)
, j = 1, . . . , 2L, (4.64)

where W (j)
c is a weighting matrix for the covariance. The scaling parame-

ter β is used to include information about the distribution. For Gaussian
distribution, β = 2.

The Kalman gain, Kk and the analyzed parameter update χa
k, and the

analyzed parameter error covariance update Pa
k is given by

Kk = Pf,xy
k (Pf,yy

k )−1 (4.65)
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χa
k = χf

k + Kk

(
ym

k − yf
k

)
(4.66)

Pa
k = Pf

k −KkP
f,yy
k Kk

T (4.67)

The UKF has shown to give smaller error estimate than the EKF [89].
In the current work, the unscented Kalman filter has been used for estimat-
ing reservoir parameters during drilling operations combined with a model
predictive control algorithm for adjusting the choke valve [61, 62].

Case-based comparison of the described Kalman filters

In this section a brief example is given to compare the results from various
Kalman filter methods described above. The case used is an UBD case where
a 2000 m deep well is extended into a reservoir with a production index of
0.04 kg/s/bar and reservoir pressure of 230 bar. The goal is to estimate the
reservoir production index using measurements of flow rates and pressures.
Initially, the reservoir production index is assumed to be 0.06 kg/s/bar. The
measurements have been synthetically generated using the low-order well
model with 7 states, described in Section 4.2.1, adding normal distributed
noise with zero mean and a standard deviation of 1% to the simulation results.

Fig. 4.7 shows the penetration rate into the reservoir and the resulting
well depth. The drilling rate is 0.01 m/s and the well depth is inceased from
2000 m to 2023 m after 85 minutes including drilling breaks due to pipe
connections.

The drilling fluid is a two-phase fluid consisting of liquid and gas. This
results in a compressible driling fluid. Fig. 4.8 presents the drilling fluid rates
at various positions of the well. The flow rate out of the well is nearly steady
state when the drilling is initiated after 18 minutes. After 24 minutes a pipe
connection is needed, and the circulation pumps are stopped for 10 minutes.
A new pipe connection is performed after 66 minutes. Since the drilling
fluid is compressible, the drilling fluid continues to flow out of the well. In
addition the annulus BHP is reduced, leading to an increased flow rate from
the reservoir.

The resulting annulus pressure at the bottom of the well is shown in
Fig. 4.9, in addition to the choke valve differential pressure. The pressure is
reduced when the drillstring fluid pumps are stopped, due to reduced friction
pressure loss.

To compare the three different Kalman filters, the reservoir production
index during the UBD operation is estimated using each of the filters. Re-
garding the computational load, the EKF requires a linearization of the state
model , f [·], and the measurement model,h[·], at each time step. The dimen-
sion of the state is 7 and gives an indication of the computational load. For
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Figure 4.7: The top diagram shows the penetration rate of the drillstring,
and the bottom diagram shows the depth of the well.
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Figure 4.8: The top diagram shows the liquid flow rates in the well. The
bottom diagram shows the gas flow rates in the well.
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Figure 4.9: The top diagram shows the annulus BHP in the well. The bottom
diagram shows the differential pressure across the choke valve.

the EnKF filter, the computation load is 100 times one model calculation
time step, since a number of 100 ensemble members have been used in the
analysis. However, the number of ensemble member can be reduced, and
this will reduce the computational load of the EnKF. The UKF filter only
requires a computational load of 3 times one model calculation time step
since only a single parameter is estimated.

The results from the estimation process are shown in Fig. 4.10. All filters
are started with an initial reservoir production index parameter guess of 0.06
kg/s/bar, and the true parameter is 0.04 kg/s/bar. The results show that
all three Kalman filters are able to estimate the parameters quite well, both
during the circulation periods, the drilling periods and the pipe connections.

In Fig. 4.11, the squared deviation from the true parameter are shown.
The range of the plot has been reduced, showing the deviation from the true
value during the stable region of the estimates from 25 minutes to 120 min-
utes. The plot shows that the UKF gives the best estimate, and that the
EKF gives the estimate that deviates most from the true value.

In Fig. 4.12, the sums of the squared deviation from the true parameter
when using the various Kalman filters, are shown as bar graphs, both the total
sum from 18 minutes to 120 minutes and the partial sum where the estimates
are nearly stable. The partial sum is calculated based on the estimates from
from 25 minutes to 120 minutes. Both bar graphs show that the UKF gives
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Figure 4.10: The diagram shows how the various Kalman filters converge to
the correct parameter for the reservoir production index used in the model.
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Figure 4.11: The diagram shows the calculated squared difference between
the true reservoir production index parameter and the estimated parameter
using the various Kalman filters.
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Figure 4.12: The upper bar graph shows the least squared sum of the dif-
ference between true and estimated reservoir parameters during the whole
estimation period from 18 to 120 minutes. The lower diagram shows the
least squared sum of the difference between true and estimated reservoir
parameters during the stabilized period from 25 minutes to 120 minutes.

the best estimate, and that the EKF gives the estimate that deviates most
from the true value. The comparison of the three filters is based on this single
case only, and gives only an indication of the perfomance of the filters. Based
on the performance of the filters and the discussion of the computational load
of the filters, the UKF filter might be a good selection for further analysis.
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Chapter 5

Multi Sensor Data Fusion -
Examples

This chapter presents three examples where MSDF is used for estimating
various parameters that are difficult to measure directly. The first example
has been carried out during an early phase of the research project, and the
two last examples have been carried out during the last part of the research
project.

In the first example, the flow rates from pipe junctions are estimated
using sensor data from several temperature probes in a laboratory test rig.
The laboratory test rig is designed for emulating fluid flow during UBD.

The second example is a synthetic case where the fluid friction param-
eter and the gas slip parameters are estimated during the unloading phase
of a UBD operation, prior to drilling into the reservoir. The reservoir pore
pressure parameter is estimated during the drilling phase. Various instru-
mentation layouts are tested and analysed focusing on different locations of
pressure sensors and flow sensors. Currently available sensors, in addition to
future sensors are used in the evaluations.

In the third example, sensor data from a full scale experiment at a test
site in Taquipe, Brazil is used for estimating the friction parameters and gas
slip parameters of the fluid flow. No drilling is performed in this case. The
test well is instrumented with pressure sensors currently not available in real
applications.

51



5.1 Estimating pipe junction influx using tem-

perature sensor array

In this section a soft-sensor method is presented that can be used for mea-
suring the fluid flow rate from the reservoir to the well. First, the selection of
sensors is discussed. Then a model is presented, describing the temperature
and fluid flow behaviour of the experiment. A description of the experimental
rig setup is given, and finally the results are presented and discussed.

5.1.1 Sensor selection

The motivation for this example is that measurements of the temperature
gradient along the annulus will contain information about the amount of
reservoir fluids flowing into the annulus. Since this type of measurement is
not currently taken during UBD, there are no real data currently available. A
test rig simulating the actual process has been designed and constructed. The
focus has been on measuring the temperature in the annulus which varies due
to mixing and transportation of the fluids. Currently no temperature sensor
array is commercially available for measuring the actual fluid temperature in
the well annulus. One type of sensor array that currently is the best candidate
for such an application, is the fibre optic temperature sensor. Currently, the
sensor array is used for temperature sensing in production wells. The data
can be used for giving a production flow estimate [38]. In the experimental
test rig, standard Pt100 elements are chosen for convenience. The main
purpose of the experiment is to evaluate methods for analysing the data from
the temperature array. Different methods for extracting the inflow data are
used and evaluated, using steady state temperature data.

5.1.2 Modelling thermal properties in fluid flow

An important part when analysing the temperature data given from the
sensors, is to have a good physical understanding of the heat transfer during
the mixing of fluids and the fluid flow. A steady state temperature modelling
approach is used for modelling the temperature difference along the pipe.

Based upon the flow data, the temperature profile can be calculated using
the thermodynamic models. The added heat to the system is given by

Q = mcp∆T, (5.1)

where Q is the added energy, m is the mass, cp is the specific heat capacity
and ∆T is the temperature increase.
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Table 5.1: Actual flow rates in oil well
Flow type Volume flow rates [l/min]

Circulating flow 1920

Inflow from Zone 1 180

Inflow from Zone 2 96

Inflow from Zone 3 480

Since water is used both as the injected fluid and the original fluid, and
mass is proportional to mass flow rate, the resulting temperature due to
injection of warm water is

Tr =
qoTo + qiTi

qo + qi

(5.2)

where Tr is the resulting temperature, To is the original temperature Ti is the
injected temperature, qo the original flow, and qi is the injected flow. If we
in addition assume that there are negligible losses to the environment, then
the resulting temperature can be calculated.

5.1.3 Description of the experimental test rig

The test rig is scaled to fit the 20 m long laboratory. The main scaling re-
striction is to make sure that the fluid uses the same time to flow through
the pipe section as it uses to flow through the well. The methodology for
scaling the experiment is to scale the length of the reservoir section to the
corresponding pipe section. The inner diameter of the pipe is scaled accord-
ingly. The fluid velocity in the pipe is scaled to keep the same transportation
delay as in the well. In [85], a 2000 m deep well with three 300 m long reser-
voir zones is simulated and the flow rates are calculated. The flow rates are
presented in Table 5.1.

The length of each reservoir zone is 100 m and the hydraulic diameter is
0.1822 m. To scale down the experiment to fit the laboratory, an experiment
pipe length of 18 m is selected. The pipe inner diameter is selected to be
0.027 m. The fluid velocity in the well is 1.226 m/s, and hence the equivalent
fluid velocity in the pipe should be 0.0735 m/s. This results in the equivalent
flow rates inside the pipe as given in Table 5.2.

The reservoir fluid migrates into the well along the reservoir section of
the well, but for simplicity a point inflow configuration is simulated for the
experiment test rig case. The temperatures at the inflow points are equal to

53



Table 5.2: Equivalent flow rates in experimental test rig

Flow type Volume flow rates [l/min]

Circulating flow 2.6

Inflow from Zone 1 0.24

Inflow from Zone 2 0.13

Inflow from Zone 3 0.63

each other. The temperature difference between the reservoir fluids and the
circulation fluids is around 20 ◦C.

The experiment test rig consistes of three 6 m long pipe segments. Be-
tween each pipe segment a T-fitting is mounted, and 3 pipes are connected
to supply warm fluid into the pipe. Temperature is measured at each inflow,
and also at the main cold fluid inflow at the end of the pipe. As test fluid,
water is selected for convenience. The rig is equivalent to the annulus part of
the oil well. The cold water is flowing into the main pipe in one end, which
is equivalent to the drill bit. As the fluid is flowing towards the outlet, it is
mixed with the warm fluid, which is injected at the three junctions along the
pipe.

Six temperature sensors are placed with 1 m distance along each pipe
segments, leading to 18 sensors along the main pipe. In addition, the temper-
atures at each inflow are also measured, leading to a total of 22 temperature
sensors. The temperature sensors are logged using NI LabView FieldPoint
Pt100 temperature modules, which are connected to a PC [56].

Flow sensors are mounted at each inflow and at the outflow. Measure-
ments of the main inflow and the main outflow are typically available in a
real application, and the three flow meters at the warm fluid inflow points
are used as reference sensors. A piping and instrument diagram is shown in
Fig. 5.1. The flow meters are connected to a NI LabView frequency data
acquisition cards.

5.1.4 Measurements and discussion

Measurements are carried out to test and evaluate the various flow estima-
tion methods. A total of 47 temperature profiles are logged, and these are
performed during 3 different series. The main inflow temperature (9 ◦C) is
the same in all the series. Series 1 uses a warm inflow temperature at 26 ◦C
and 12 different inflow profiles are logged. Series 2 uses a warm inflow tem-
perature at 24 ◦C and 20 different inflow profiles are logged. Series 3 uses a
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Figure 5.1: Piping and instrumentation diagram for the experimental test
rig.

warm inflow temperature at 32 ◦C and 15 different inflow profiles are logged.

Some of the profiles which are logged, have one or more of the warm
inflow valves closed. Only the flow profiles where all the valves are open, are
included in this analysis. Estimations of inflow rates using the Levenberq-
Marquardt algorithm are carried out for each flow profile. The uncertainties
in the measurements which are used for estimation, are given as one standard
deviation, and are set to 0.72 l/min, 0.2 bar and 0.1 ◦C. Similar results are
found for each series, so only the results in series 3 are presented.

In the third series, 9 profiles are logged where all the valves were open.
The measured and estimated data are presented in Fig. 5.2. The data for
each profile are grouped together, showing measured and estimated data for
each inflow pipe.

From the warm inflow estimates we find that there is fairly good agree-
ment between the measured flow and the estimated flow. However, for mea-
sured flow values above 2 l/min, the estimated values tend to underestimate
the flow. Regarding the temperature values there seems to be a good match
between the values. The Levenberg-Marquardt estimation algorithm man-
ages to estimate the inflow fairly well. The uncertainty in the estimation
algorithm lies in the values of the flow sensor readings.
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Figure 5.2: Measured and estimated warm inflow for 9 profiles in Series 3.

Table 5.3: Neural net layer topology

Layer Layer width Function type

Input 22

1st 35 ’logsig’

2nd 20 ’logsig’

3rd 10 ’logsig’

Output 3 ’purelin’
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Figure 5.3: Comparison between measured data, Levenberg-Marquardt esti-
mations and Neural Net estimations.

A neural net is trained with the available data sets to estimate the inflow
rate. Table 5.3 gives an overview of the neural network layer topology. The
function type ’logsig’ is the log-sigmoid neural transfer function, and the
function type ’purelin’ is the linear neural transfer function [21]. Based on
the main inflow and outflow measurements, the temperature profile along the
pipe and the warm inflow temperature is used to estimate the in-flow rate
profile. All the available measured inflow profiles is used to train the network.
The measured and estimated data were compared with the estimation results
from using the Levenberg-Marquardt algorithm.

The last two profiles in each series is shown in Fig. 5.3, and the results
indicates that the neural net estimates are nearly equal to the measured
values. This is as expected, since the neural net acts a multivariable function
approximation for the inverse flow function, where the temperature and main
flow values are used to calculate the warm inflow profile.

Regarding the Levenberg-Marquardt estimations, these estimations are
based upon the mathematical model of the test rig. As mentioned, there are
some differences between the modelled data and the measured data. These
differences between the model data and the measured data can lead to dif-
ferences in the Levenberg-Marquardt estimation results.
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Table 5.4: Constant parameters used in example

Model parameters Value

Compressibility of injection liquid 1.0e-9 Pa−1

Compressibility of production liquid 1.17e-9 Pa−1

Viscosity of injection liquid 0.001 Pa.s

Viscosity of production liquid 0.04 Pa.s

Wellbore radius 0.075 m

Penetration rate in the formation 0.01 m/s

Uncertainty in pressure measurements. (standard deviation) 0.1 bar

Uncertainty in flow rate measurements. (standard deviation) 0.1 %

5.2 Estimating fluid flow and reservoir pa-

rameters using pressure sensor arrays and

non-intrusive sensors

When estimating reservior parameters based upon pressure and flow mea-
surements in the well annulus, it is important that the model used for pa-
rameter estimation describes the physical behaviour of the flow. If some of
the well fluid flow parameters are uncertain such as the friction parameter f
and the gas slip relation parameters, K and S, then these parameters should
be estimated before reservoir parameters are estimated, such as the reservoir
pressure pres. This example shows the use of the ensemble Kalman filter to
estimate both annulus fluid flow parameters and the reservoir parameters in
a simulated test case [57].

5.2.1 Description of the well and reservoir

The well consists of a casing with an inner diameter of 0.18 m, and a drill-
string with an inner diameter of 0.075 m. The well length is 1262 m. A
parasite string for nitrogen injection with an inner diameter of 0.05 m is
connected to the casing at 760 m depth. Some of the reservoir parameters
are known, including the reservoir permeability at 350 mD and the reservoir
porosity at 0.18. Other constant parameters are given in Table 5.4, and the
values are typical for a real well.

For modelling the fluid flow in the well and the reservoir, the detailed
model described in Section 4.2.2 is used. The slip relation between the gas
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Table 5.5: Estimation of parameters

Parameter Initial value True value

f (friction) 0.010 0.012

K (slip gradient) 1.2 1.1

S (slip zero point) 0.55 0.40

pres (reservoir pressure) 120 bar 110 bar

and the liquid is calculated using a linear relation between the velocity of the
gas and velocity of the mixture, given by

vg = Kvmix + S. (5.3)

The friction pressure loss is modelled using a constant friction parameter f .
The inflow from the reservoir is modelled using Eq. (3.11). To match the
combined well-reservoir model with the measured data, the model parameters
f , K, S and pres are estimated. The initial and true values of the parameters
chosen for estimation are given in Table 5.5. The true values are used for
generating the syntetically mmeasurements, and the initial values are the
”best guess” prior to the drilling operation.

Initially the well is circulated using water at a rate of 600 l/min. After
7 minutes, nitrogen gas at standard conditions are injected into the annulus
at a rate of 8500 l/min using the parasite string. The well is unloaded, and
stable pressure conditions are present after 60 minutes. The drilling initiates
after 67 minutes, and lasts until 117 minutes. Afterwards, the well is only
circulated and no further drilling is performed.

The BHPs are presented in Fig. 5.4, where both the simulation using the
true parameters and the simulation using the initial parameters are given.
The uncalibrated parameters are resulting in an over-estimation of the pres-
sures in the well of about 3 bar.

The reservoir inflow measured at the wellhead are given in Fig. 5.5. Since
the un-calibrated simulation assumes a reservoir pressure of about 10 bar
higher than the true value, the un-calibrated inflow is nearly the double of
the true inflow.

5.2.2 Sensor selection

The ensemble Kalman filter is tested using three different instrumentation
layouts. The first layout is a standard drilling setup, using a single bottom-
hole sensor and a fluid flow meter at the wellhead. The second layout is also
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Figure 5.4: Comparison of BHP using true and un-calibrated model param-
eters.
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Figure 5.5: Comparison of inflow rate measured at wellhead (top) and casing
shoe (bottom) using true and uncalibrated fluid flow and reservoir parame-
ters.
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using a fluid flow meter at the top, but in addition an array of 19 pressure
sensors are placed along the drillstring, measuring the pressure at various
positions in the annulus ranging from the bottomhole assembly to 200 m
above the bottomhole assembly. The data from the sensors can be transmit-
ted using a cable which is incorporated into the drillstring as discussed in
Section 4.1.2. The third layout uses the same array of pressure sensors, but
in addition to measuring the flow at the wellhead, the flow is measured at
the casing shoe depth of 1012 m. A design concept for such a non-intrusive
annulus flowmeter is described in Section 4.1.4.

5.2.3 Results and discussions

The estimation of the parameters is improved as more instruments are added.
Fig. 5.6 shows the estimation and the calculated uncertainty of the fluid flow
friction parameter, f . Using only the single bottomhole sensor, the estimated
parameter fluctuates around the true value the first 40 minutes of the case,
but manages to converge to the correct value after 50 minutes. The parameter
estimation is improving a lot when using the downhole pressure sensor array.
When the downhole flow sensor is added, the estimates are converging quite
fast. The main difference between the uncertainties of the friction parameter
estimates is between when using the single downhole pressure sensor and the
array of downhole pressure sensors.

When looking at the gradient parameter for the gas-slip, K, shown in
Fig. 5.7 and the zeropoint parameter for the gas slip, S, shown in Fig. 5.8,
there is very little difference between the estimates using the various instru-
mentation layouts, both regarding the estimated values and the uncertainties
of the estimates. The parameters converge to the true values within the first
40 minutes, and the uncertainties are reduced accordingly.

The main difference between the instrumentation layouts is seen when
calibrating the reservoir pore pressure, pres. When using the single downhole
sensor, the estimate shows only a tendency to converge to the true value when
the drilling is stopped at 117 minutes, as seen in Fig 5.9. The uncertainty
of the pore pressure estimate is about 3 bar. When introducing the pressure
sensor array, the estimate converges to the true value with an uncertainty
below 1.5 bar. Finally, adding the downhole flow sensor, the reservoir pore
pressure estimate converges fast to the true value, with an uncertainty below
1 bar already 15 minutes after the start of drilling.

The results show that introducing pressure sensors along the drillstring,
improves the characterization of the reservoir. The introduction of a down-
hole non-intrusive flowmeter will further reduce the uncertainty of the esti-
mated reservoir parameters. The results also show that the ensemble Kalman
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Figure 5.6: Comparing the estimates of the friction factor parameter, f , and
the corresponding calculated uncertainty using various sensor layouts.

filter can be used for estimating model parameters having various instrumen-
tation layouts.

The reservoir model in this study is rather simple, modelling a homoge-
neous reservoir. A more complex reservoir model allowing for fractures and
other heterogeneities can be developed and included in the analysis. The
possibility of extracting additional information about the reservoir based on
the measurements can also be examined.

The cost of introducing the various sensors is not taken into account. A
request for additional sensors will impose additional investment and mainte-
nance. A study for selecting the best sensor layout based on both the quality
of information gained from the sensors and the cost of the sensor can be
preformed. For a given drilling operation this can be carried out similar to
what is done for prediction of reservoir inflow in production wells [4, 55].
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Figure 5.7: Comparing the estimates of the slip relation gradient parameter,
K, and the corresponding calculated uncertainty using various sensor layouts.
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Figure 5.8: Comparing the estimates of the slip relation zeropoint parameter,
S, and the corresponding calculated uncertainty using various sensor layouts.
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Figure 5.9: Comparing the estimates of the reservoir pore pressure, pres and
the corresponding calculated uncertainty using various sensor layouts.

5.3 Estimating fluid flow parameters using

pressure sensor array

In the third example, full-scale experimental data from a test well in Taquipe,
Brazil are used to calibrate the model. However, since no drilling is performed
in this case, the model is calibrated by only estimating the fluid flow param-
eters, f , K and S. The idea is to show how the ensemble Kalman filter is
able to estimate the fluid parameters when incorporating real measurements.

5.3.1 Description of the test well setup

Similar to the example in the previous section, the well consists of a casing
with an inner diameter of 0.18 m and a drillstring with inner diameter of
0.075 m. The parasite nitrogen injection line is a tubing with inner diameter
of 0.05 m that connects to the casing at the depth of 760 m. Here a check
valve and an orifice are installed to control the gas flow. The wellhead choke
is set to 75 % opening. Other parameters from the experiment are found
in Table 5.6. During the experimental tests, different combinations of gas
and liquid injection rates are used and the corresponding well pressures are
logged.

The case initiates with a water-filled well where the fluid flow rate is zero.
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Table 5.6: Constant parameters used in example

Model parameters Value

Compressibility of injection liquid 1.0e-9 Pa-1

Viscosity of injection liquid 0.001 Pa.s

Wellbore radius 0.075 m

Uncertainty in pressure measurements. (standard deviation) 0.1 bar

Uncertainty in flow rate measurements. (standard deviation) 0.1 %

Then the water pump is started at a rate of 600 l/min and nitrogen gas at
standard conditions is injected by a rate of 8500 l/min. The well is unloaded,
and the amount of gas leads to a substantial drop in the effective BHP. The
BHP is reduced to about 100 bar. This flow regime leads to challenges for
well flow models, as large amount of gas are difficult to model correctly, and
the predicted results often differs from real data. The steady state situation
is reached after 40 minutes. The choke valve remains at the same position
during the whole experiment.

5.3.2 Sensor selection

Three pressure-temperature memory sensors are attached to the drillstring
at the depth of 185 m, 605 m and 998 m. In addition, the BHP is monitored
by a logging tool at 1262 m depth.

In this example two different sensor layouts are used for the parameter es-
timation using the ensemble Kalman filter. First the estimation is performed
using all the four available sensors. Secondly, the estimation is performed
using only the bottomhole sensor.

5.3.3 Results and discussions

The pressure data from these parameter estimation calculations are presented
in Figs. 5.10-5.13, and compared with the measurement data and data from
an un-calibrated simulation. The resulting pressure data shows the best fit
with measured data when using four sensors.

In Figs. 5.14-5.16 the estimated parameters are presented, and the pa-
rameters varies during the unloading period. The calculated uncertainties
of the parameters are also presented. Calibration using all the four annulus
pressure sensors gives the lowest uncertainty.
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Figure 5.10: Comparing values for pressure sensor at 185 m.
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Figure 5.11: Comparing values for pressure sensor at 605 m.
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Figure 5.12: Comparing values for pressure sensor at 998 m.
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Figure 5.13: Comparing values for BHP sensor at 1262 m.
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Figure 5.14: Estimates of the friction parameter f at top, and at bottom the
calculated uncertainty.
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Figure 5.15: Estimates of the gas slip relation gradient parameter K at top,
and at bottom the calculated uncertainty.
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Figure 5.16: Estimates of the gas slip relation zeropoint parameter S at top,
and at bottom the calculated uncertainty.

Using the ensemble Kalman filter, the measurements can be used for
calibrating a real-time dynamic model of the complete drilling system. The
results show that introducing more sensors along the drillstring and casing
improve the estimation of the unknown model parameters.
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Chapter 6

Multivariable Process Control

During UBD, there are multiple control variables that are being adjusted in
order to maintain underbalanced conditions along the well section that are
exposed to the reservoir. The most important control variables are drillstring
fluid pump mass rate, w, drilling fluid density, ρ, and choke valve opening, z.
Multiple measurements are available in order to evaluate if the underbalanced
conditions are maintained. Typical measurements available are flow rates,
pump pressure, choke valve differential pressure and BHP.

To contain pressure fluctuations during the drilling operations, multivari-
able process control is required. In [3, 77] there are descriptions of several
approaches for controlling such a multivariable process. Control methods
such as decoupling, feed-forward, modal control and optimal control could
be used. In addition the available models of the drilling process should be
utilized to improve the control system.

The three control variables, the fluid density, the fluid rate and the choke
valve opening, all influence the BHP. Typically, the choke valve opening is
used to control and compensate for the rapid pressure transients in the time
span of a few seconds. For slower pressure variations in the time span of
within a few minutes, the fluid rate is adjusted. For a longer time horizon
the fluid density can be adjusted.

An important purpose of the drilling fluid is to clean the well for cuttings
during the drilling process. The control of the various pump systems manip-
ulating the fluid flow rate in the well, should be referenced to the hole clean-
ing efficiency. The third control variable, the fluid density, has the primary
role of maintaining pressure safety barrier for avoiding uncontrolled influx of
reservoir fluids. The fluid density should be kept as high as possible, but still
allow for sufficient pressure margins that allows for fluid friction pressure loss
both in annulus and at the choke valve opening. Fig. 6.1 describes inputs
and outputs of a multivariable control system for a well.
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Figure 6.1: Schematic of multivariable control of a well.

In a multivariable control system for UBD operations, the three control
variables is related to three different properties, the BHP, the annulus fluid
flow maintaining sufficient cleaning of the hole, and the pressure safety mar-
gin. The pressure safety margin could be a percentage of the total bottom-
hole reference pressure. A combined automated control of all three control
variables should be used during the various procedures when drilling a well,
such as circulation start-up, circulation shut-down, pipe connections, hole
cleaning and insertion and extraction of the drillstring.

In the present work, focus has been on two of the control variables, fluid
rate and choke valve opening, keeping the third control variable, the fluid
density, constant. Since the choke valve opening is able to compensate for
transient pressure changes faster than the fluid rate, the focus will be on
using the choke valve as the primary control variable. Two different control
approaches have been used and evaluated. The first control design is using
standard linear control, and the other control design is model predictive con-
trol. In this chapter a brief description of linear control and model predictive
control will be given.

72



Figure 6.2: Schematic of feedback PI control including feed-forward compen-
sation of disturbance

6.1 Linear Control

Linear control is selected to establish a basis for comparison with other con-
trol designs. For an initial evaluation, the choke valve opening is used as
the primary control variable. The fluid flow rate can then be modelled as a
disturbance to a single-variable control loop.

Fig. 6.2 shows a simple feedback Proportional-Integral (PI) control in-
cluding feed-forward compensation of known disturbances. The PI-control
method is evaluating the difference between the reference pressure value, r,
and the actual pressure value in the well, y. This difference e is used as
an input to the PI-control algorithm (see e.g., [79]), which relates this dif-
ference to a choke opening value. The other control variables such as the
input flow rate is defined as known disturbance, v. The known disturbance
is compensated for directly by changing the choke opening proportionally to
the disturbance. These two effects, the feedback from the measurements and
the feed-forward of the disturbance, defines an input to the choke opening
set-point u. The relation between the measured parameters and the control
parameter including the feed forward compensation can be described as

u = u0 + Kpe +
Kp

Ti

∫ t

0
edτ + Kfv, (6.1)

where u0 is the choke opening during normal drilling operations, Kp is the
proportional relation between difference in pressure and choke opening, Ti

is the integral time for the accumulated differences, Kf is the proportional
relation between fluid flow rate and choke opening.

The PI-control method is frequently used for a variety of different process
control problems. One of the main challenges when introducing such a control
algorithm is to find the correct control parameters Kp, Ti and Kf . One
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method for defining control parameters is to use the Ziegler-Nichols closed-
loop method (see e.g., [79]), which is based on experiments where the control
parameters are adjusted until the process becomes marginally stable.

Since such experiments are not possible to do during drilling, the control
setting can be found by using a model of the system. If a detailed model
of the actual well is not available, then a simple low-order model of the
process might be developed and tuned based on measurement from a real
well. In [80], a low-order dynamic model is developed for controlling slug
flow in a gas-lifted production well. An equivalent model for the UBD case
has been developed and the control parameters have been found based on
experiments performed on the low-order model. [58].

The described linear control system using the choke control valve opening
as the primary control variable can be expanded to a multivariable control
system, including the fluid flow rate and the fluid density as control vari-
ables. The measurements of fluid flow rate out of the annulus and the total
pressure safety margin could then be used in a decoupled control design or
an optimal control design. However, since the process is highly nonlinear,
defining the control parameters for the various drilling scenarios will require
detailed analysis for the whole range of fluid densities, fluid flow rates and
choke valve openings.

6.2 Nonlinear Model Predictive Control

Model prediction control is well suited for multivariable control design where
the control variables interact closely(see e.g., [50]). Model Predictive Control
uses a model to predict the future behaviour of the system. The optimal
control setting is then chosen based on an optimization algorithm which
minimizes the error between the reference set-point and the future predicted
measurements settings.

Since the two-phase flow in the well is highly non-linear, a model de-
scribing the fluid behaviour is developed. Then a non-linear optimization
algorithm is being used, resulting in a non-linear model predictive control
(NMPC) method. Fig. 6.3 shows a schematic of a well system with the pro-
posed control method, where r is the reference pressure value, y is the actual
pressure value in the well, v is the known disturbances such as the flow rate
into the well, and u is the choke opening set-point.

The model used for prediction is a numerical implementation of the par-
tial differential equations of the well system, and a least-squares non-linear
optimization method is used for selecting the choke opening set-points. The
model is used to predict the pressures at certain time steps ahead in time.
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Figure 6.3: Diagram of a well system with nonlinear model predictive control
algorithm.

The notation used here is similar to the notation used in [50], and r (k + i|k)
is used to describe a reference value r valid at the future time steps k + i
evaluated at the current time step k. The future time steps is denoted k + i,
where i is the amount of time steps ahead in time, given as i = [1, 2, . . . , Hp],
where Hp is the prediction horizon. We chose the reference trajectory r at
the time step t = k as

r (k + i|k) = yref −
[
(yref − ŷ (k)) e(−iTs/Tref)

]
, i = 1, 2, . . . , Hp (6.2)

where yref is the reference pressure, ŷ (k) is the modelled pressure at the
current time step, Ts is the time step duration, and Tref is the time re-
sponse. The state model fP and sensor model gP is used to predict the
future pressures of the well, and the input û (k + i|k) is applied over the
horizon i = [1, 2, . . . , Hp],

x̂ (k + i|k) = fP [x̂ (k + i− 1|k) , û (k + i|k) , . . . , û (k|k)] (6.3)

ŷ (k + i|k) = gP [x̂ (k + i|k)] , (6.4)

where fP and gP is calculated using the detailed model using spatial dis-
cretization. To find the optimal input trajectory, ûopt (k − i|k), a least square
cost criterion is defined by

S (r, ŷ) =
∑
i∈P

[r (k + i|k)− ŷ (k + i|k)]2, (6.5)

where P is the set of coincidence points where the reference trajectory and
the predicted outputs should match. To minimize (6.5) the Levenberg-
Marquardt algorithm is used, and the constraints of the system apply both to
u and y. The choke opening u, has fully open, umax, and fully closed, umin,
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as the upper and lower bounds. The annulus BHP y, has reservoir pore
pressure, ymax, and reservoir collapse pressure, ymin, as the upper and lower
bounds. The control algorithm is further described and evaluated in [59].

The described model predictive control design is well suited for a multi-
variable control design. The cost criterion can easily be revised by adding
new measurements such as sensor arrays and control variables such as fluid
flow rate and fluid density. Also restrictions of the fluid density and fluid
flow rate can be included as limiting factors in the optimization algorithm.
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Chapter 7

Paper Presentation

The research context for this project is based on the cooperation between
Telemark University College and IRIS Petroleum, and the activities that
IRIS Petroleum was engaged in at the start of this research [4, 41, 42, 45, 46].
IRIS Petroleum had developed a dynamic multi-phase well model over a
time span of 20 years, and had also implemented various Kalman filters for
nonlinear applications and the Levenberg-Marquardt optimization algorithm
for solving nonlinear least-squares problems.

Focus has been on UBD operations where one of the primary challenges
has been to estimate the reservoir properties based on flow related measure-
ments obtained during the drilling operation. A test rig has been set up at
the Telemark University College, and results from this work is presented in
Section 5.1.

Several papers from the start of this research discussed reservoir charac-
terization during UBD, such as [26, 36, 37, 40, 44]. All these papers focused
on how the reservoir responded to underbalanced drilling, but not taking into
account the dynamics of the whole well bore. A transient reservoir model
has been implemented and this has been integrated with the established dy-
namic well model. Analyses have been carried out using an off-line least
squares parameter estimation method, utilizing an implementation of the
Levenberg-Marquardt optimization algorithm. The work resulted in Paper
A.

Further examination of the Levenberg-Marquardt algorithm showed that
more information about the reservoir were obtained if the well pressure was
subjected to oscillations. The ensemble Kalman filter has also been examined
and shown promising results. These examinations resulted in Paper B. At the
same time, also other research institutions presented work in this field [6, 27].
At a later stage, Paper B was selected for publication by SPE Journal.

Achieving stable oscillations in the BHP during UBD operations would be
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difficult in an actual drilling operation, as the BHP was typically controlled
manually by a trained operator, resulting in inaccurate BHP. Some early
efforts of providing an automatic choke system had focused on controlling
the annulus pressure [70, 81, 84], using direct measurements of the flow rates,
pump pressure, choke pressure and if available, also the BHP.

The scope of research in the context of this thesis was now broadened
to develop methods that combined both reservoir parameter estimation and
control of the BHP. Of special interest was controlling the BHP during a pipe
connection procedure. A manual pipe connection procedure was described
in [64]. An NMPC algorithm for automating the pipe connection procedure
has been developed and presented in Paper C. The method was later ex-
tended to also include the whole drilling operation, and this work resulted
in Paper D. Several other industrial efforts were made by other companies
in developing a choke control system, however, using linear control or semi-
automatic methods only [13, 67, 71].

A comparison between linear control and the developed NMPC algorithm
has been performed, where a low-order state fluid flow model has been de-
veloped [58] for tuning the linear control algorithm. The low-order model
development has been inspired by the Petronics project at NTNU [14, 80].
A comparison between linear control and the developed NMPC algorithm
resulted in Paper E.

A comparison of the control methods has been further examined for a
potential field application [29]. The low-order model has been used for com-
parison of the performance of various Kalman filters. This work is described
in Section 4.3.4, and has been published in a conference paper [60].

As a new, high density data transmission method has been developed [30,
66], a new study has been carried out to evaluate the need for new sensors
at new positions during drilling operations. This study is presented in Sec-
tion 5.2 and Section 5.3, and has been published as a conference paper [57].

A chronological list of the author’s publications which has been the out-
come of this project is given below:

1. E. H. Vefring, G. Nygaard, K. K. Fjelde, R. J. Lorentzen, G. Nævdal, and A.
Merlo. Reservoir characterization during underbalanced drilling: Method-
ology, accuracy, and necessary data. In SPE Annual Technical Conference
and Exhibition, number SPE 77530-MS, San Antonio, Texas, USA, Septem-
ber 29 - October 2, 2002.
(Referred to as Paper A in Part II.)

2. E. H. Vefring, G. Nygaard, R. J. Lorentzen, G. Nævdal, and K. K. Fjelde.
Reservoir characterization during UBD: Methodology and active tests. In
IADC/SPE Underbalanced Technology Conference and Exhibition, number
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SPE 81634-MS, Denver, Colorado, USA, March 25-26, 2003.

3. G. H. Nygaard, E. H. Vefring, S. Mylvaganam, R. J. Lorentzen, G. Næv-
dal, and K. K. Fjelde. Underbalanced drilling: Improving pipe connection
procedures using automatic control. In SPE Annual Technical Conference
and Exhibition, number SPE 90962-MS, Houston, Texas, USA, September
26-29, 2004.
(Referred to as Paper C in Part II.)

4. G. H. Nygaard, E. H. Vefring, K. K. Fjelde, G. Nævdal, R. J. Lorentzen, and
S. Mylvaganam. Bottomhole pressure control during pipe connection in gas
dominant wells. In SPE/IADC Underbalanced Technology Conference and
Exhibition, number SPE 91578-MS, The Woodlands, Texas, USA, October
11-12, 2004.
(Referred to as Paper D in Part II.)

5. G. Nygaard and G. Nævdal. Modelling two-phase flow for control design
in oil well drilling. In IEEE Conference on Control Applications, Toronto,
Canada, August 28-31, 2005.

6. G. Nygaard, K. K. Fjelde, G. Nævdal, R. J. Lorentzen, and E. H. Vefring.
Evaluation of drillstring and casing instrumentation needed for reservoir
characterization during drilling operations. In SPE/IADC Middle East
Drilling Technology Conference and Exhibition, number SPE 97372-MS,
Dubai, U.A.E., September 12-14, 2005.

7. E. H. Vefring, G. Nygaard, R. J. Lorentzen, G. Nævdal, and K. K. Fjelde.
Reservoir characterization during underbalanced drilling (UBD): Methodol-
ogy and active tests. SPE Journal, Vol. 11, number SPE 81634-PA:181-192,
June 2006.
(Referred to as Paper B in Part II.)

8. G. Nygaard and G. Nævdal. Non-linear model predictive control scheme
for stabilizing annulus pressure during oil well drilling. Journal of Process
Control, 16(7):719-732, 2006.
(Referred to as Paper E in Part II.)

9. G. Nygaard, G. Nævdal and S. Mylvaganam. Evaluating Nonlinear Kalman
Filters for Parameter Estimation in Reservoirs During Petroleum Well Drilling.
To appear in IEEE Conference on Control Applications, München, Germany,
October 4-6, 2006.

Paper 1 is included in this thesis as Paper A. Paper 2 is initially published
as a conference paper, but appear in revised form as a journal paper, Paper
7, which is included in this thesis as Paper B. Paper 3 is a conference paper
which is included in the thesis as Paper C. Paper 4 is a conference paper
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which is included in the thesis as Paper D. Paper D is also currently under a
peer review process for publication in SPE Journal. Paper 5 is a conference
paper and the content of this paper is a part of a journal paper, Paper 8,
which is included in the thesis as Paper E. Paper 6 is a conference paper
where the content of the paper is based on the results from Section 5.2 and
Section 5.3. Paper 9 is a conference paper where the content of the paper is
based on the results from Section 4.3.4.

Paper A and Paper B evaluate the possibility of fusing flow related data to
estimate reservoir properties. Paper C and D show how the found reservoir
properties can be used to assist in controlling the well pressure using an
NMPC algorithm. Paper E seizes the essence of the NMPC algorithm and
compares it to a simple, conventional control method. The following sections
in this chapter summarize the papers, Paper A - Paper E, which are included
in Part II of this thesis.

7.1 Paper A: Reservoir Characterization dur-

ing Underbalanced Drilling: Methodol-

ogy, Accuracy, and Necessary Data

The focus in Paper A [85] is to estimate reservoir parameters using off-line
least squares techniques based on fluid flow related measurements obtained
during drilling operations. A transient reservoir model is developed, and
coupled with an existing transient well flow model as described in Section
4.2.2. A drilling case is defined and simulated. Synthetic measurements
are generated from the simulations by adding an unbiased noise signal to
the data. The measurement data are outlet flow rates, pump pressure and
BHP, which are usually available while drilling. The liquid injection and gas
injection rates are used as input to the model.

A Levenberg-Marquardt algorithm, described in Section 4.3.3, is used to
match the measurements with the model, by estimating the model param-
eters (permeability and reservoir pressure) along the well. Estimating both
reservoir permeability and reservoir pressure simultaneously is difficult, and
leads to large uncertainties in the reservoir parameter estimates. Under the
assumption that the reservoir pressure is known, reliable estimates of the
permeability can be obtained. A methodology for uncertainty analysis is
also presented and can be used to select necessary measurements for proper
reservoir characterization.
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7.2 Paper B: Reservoir Characterization dur-

ing Underbalanced Drilling (UBD): Me-

thodology and Active Tests

In Paper B [87], two different estimation methods are described: history
matching using an off-line nonlinear least squares technique utilizing the
Levenberg-Marquardt algorithm and data assimilation using the ensemble
Kalman filter technique for parameter estimation, described in Section 4.3.4.
The focus is to estimate both the pressure and permeability, while performing
an excitation of the BHP, trying to get a sufficiently rich signal to be used as
basis for the parameter estimation. A mathematical model combining both
reservoir dynamics and well fluid dynamics, described in Section 4.2.2, is
utilized. The measured data are outlet rates, pump pressure and downhole
pressure. The liquid injection and gas injection rates are used as input to
the model. The two methodologies are applied to synthetic cases. The
simulations show that data assimilation technique gives equivalent results
when compared to the post-processing history matching algorithm, but the
data assimilation technique is preferred since this analyzes the data in real
time.

7.3 Paper C: Underbalanced Drilling: Im-

proving Pipe Connection Procedures Us-

ing Automatic Control

In Paper C [62], the NMPC algorithm described in Section 6.2 is introduced
to maintain the well pressure within the given limits. The model used for the
predictions is the dynamic well-reservoir model from Section 4.2.2, and the
optimization step is carried out using the Levenberg-Marquardt algorithm.

The control method has been applied to two different field based cases.
The results show that by controlling the choke opening and adjusting the
circulation fluid flow rates during a pipe connection, it is possible to reduce
the pressure variation in the BHP. By predicting the future behaviour of the
well using the dynamic model, an optimal choke setting can be selected. The
model is calibrated with the UKF method presented in Section 4.3.4 and
using available well measurements.

It was showed that slow ramping of the circulation fluid flow rates before
and after pipe connection, while controlling the choke, have most effect in
wells with fluids having low compressibility.
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7.4 Paper D: Bottomhole Pressure Control

During Pipe Connection in Gas-Dominant

Wells

Paper D [61] is a further investigation of NMPC for controlling the BHP
during UBD operations where the fluid flow is highly gas dominant. The
available control actions are the gas injection rate before and after the pipe
connection and choke valve settings during the whole UBD operation. Mea-
surement of the pump rates, pump pressures, choke pressure and the BHP
are also available to support the control actions.

A field based case with gas injection has been examined using this control
methodology. The results show that NMPC can be utilized in developing an
integrated pump rate and choke control system for UBD operations.

The future state of the BHP depends to a large extent on the productivity
of the reservoir. However, the production rates that can be expected are often
unknown in advance. The reservoir model is updated based on measurements
of the well using the UKF method. The results indicate that this control
methodology might assist in reducing variations in the BHP during UBD.

7.5 Paper E: Non-linear model predictive con-

trol scheme for stabilizing annulus pres-

sure during oil well drilling

Paper E [59] compares a manual control procedure with a standard linear
controller, presented in Section 6.1, and the NMPC method described in
Section 6.2. In the selected test case, the manual control procedure reduces
the fluctuations of the BHP, but fails to keep the pressure within the required
margins. The linear control method for adjusting the choke valve during UBD
operations is able to keep the BHP within the required margins, both during
the whole drilling operations and during pipe connection procedures. By
using a low-order state model, described in Section 4.2.1, a set of efficient
control parameters can be found.

However, if the circulation flow rates are being modified, then the simple
low-order state model might not describe the real process with sufficient
accuracy. This requires that the low-order model is re-tuned, and that new
linear control parameters should be found. The NMPC method based on the
detailed model from Section 4.2.2 includes the circulation flow rate in the
control calculations, thus it will compensate for such variations.

82



Chapter 8

Future Directions

Based on the current research results, suggestions for future research di-
rections can be given. The chapter is divided into four topics: modelling,
sensors, data fusion and process control. In addition to these specific topics,
there are also a need for evaluating the described methods in full scale tests
in real-time, and eventually in actual UBD applications.

8.1 Modelling

Both the low-order well model and the detailed well model can be examined
further [57, 59]. Since the low-order model is faster computationally than
the detailed model, it can be used for calculating predictions further ahead
in time than the detailed model. This indicates that the low-order model
can be used to predict the low-frequency dynamics of the well, such as long
term flow rate variations and fluid density variations.

The detailed model is well suited for predicting the high frequency pres-
sure fluctuations that occur during drilling. Further development of the de-
tailed model would be to include dynamic temperature effects and cuttings
transportation inside the annulus section of the well. An improvement of the
transient reservoir model would also be of future interest.

8.2 Sensors

Evaluation of more sensors along the drillstring is important to improve the
reservoir parameter estimates. Sensors with various physical measurement
principles for estimating liquid velocity should be examined. Inclusion of
temperature sensors would be of interest for improving the estimation of
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reservoir inflow due to the temperature difference between the reservoir fluid
and the drilling fluid.

In this thesis, new sensor designs have been suggested to improve the
estimation of both drilling fluid properties and reservoir properties. The
current analysis indicates that flow data from an annulus flow meter would
improve estimation of unknown parameters in the well and reservoir. Further
investigation of the feasibility in designing such an annulus flow meter would
be of great interest.

Sensor arrays are another sensor design, which can be of interest. The
results from the sensor array evaluations indicate that the pressure sensor
arrays contain information about the friction pressure loss in the annulus
section of the well, and would hence give information abut the fluid velocities.
Pressure sensor arrays are currently being developed for production wells, and
the data from such sensors could be used also during the drilling phase of
the well.

Inclusion of other reservoir data such as the NMR log in addition to the
acoustic log could be a basis for further examination.

8.3 Data fusion

Further evaluations of various Kalman filter implementations using real-time
data from a full-scale experimental set-up would be interesting. Other esti-
mation techniques such as the H∞-filtering [75] could be evaluated combined
with the low-order dynamic model.

In a typical drilling operation, the data transmission rate is low between
the top of the well and the bottomhole sensors. Also during other well
operations such as cementing, it is currently not possible to transfer data
between the bottomhole of the well and the wellhead. One topic for future
research could be in develop and examine a virtual sensor system based
on a data fusion algorithm using only data available for sensors placed at
the wellhead, such as various flow sensors, pump pressure and choke valve
differential pressure. The virtual sensor system could then provide downhole
information such as flow rate, pressure and temperature at a higher rate than
currently available Measurement-While-Drilling system.

8.4 Process Control

Both linear control and NMPC should be further examined for controlling
the BHP in the well. Controlling the choke valve to compensate for pres-
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sure fluctuations has shown promising results, and the next step would be
to include automatic fluid flow rate control for maintaining sufficient hole
cleaning conditions.

The drilling flow rate can only be adjusted over a longer time span than
the choke valve, typically at a few minutes time scale. By including automatic
handling of the drilling fluid flow, the system can maintain a slowest possible
circulation rate to keep a sufficient hole cleaning, and having the choke at
the highest opening to avoid choke plugging. Based on calculations using a
dynamic model of the complete drilling system, the optimal selection of both
the choke setting and the drilling fluid flow rate are found.

A further step ahead will be to include control of the drilling fluid density.
This could give the possibility of dynamically adjust the density of the drilling
fluid. Change of the fluid density gives a slow response in the BHP, since the
new density drilling fluid will have to displace the old fluid before the full
pressure effects can be seen.

Controlling the fluid density dynamically raises quite a few issues regard-
ing the process safety with respect to an uncontrolled reservoir influx from
the reservoir and into the well. The multivariable control methods developed
should be evaluated according to the overall safety regulations issued by the
authorities.
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Chapter 9

Conclusions

During UBD, data from various sources are available for the operators. As
more sensors become available in drilling systems there is a growing need for
methods and tools for extracting useful information from the sensor data.
MSDF is an overall method for analysing sensor data, where the focus is to
extract as much information as possible from the measured data, where one
of the goals is to extract information that is not directly measurable.

When evaluating several sensors, the physical properties of the actual
process should be examined. A mathematical model which describes the
underlying physical dynamics of the fluid flow in addition to the heat transfer,
give the possibility of better understanding the data from pressure, flow and
temperature measurements coming from the process. By combining dynamic
measurements from the process and simulated results from the models, more
knowledge about the process can be extracted. This knowledge can then be
used for controlling the fluid flow and the pressures in the well.

When performing an UBD operation, reservoir fluids are migrating from
the reservoir and into the well. The resulting reservoir influx influences the
annulus pressure. To improve the drilling operations, information about the
reservoir properties should be made available to the operators. In addition,
assistance in maintaining a correct annulus pressure in the well would be
helpful for the operators.

The first section in this chapter presents the conclusions of the research
regarding reservoir characterization, and the second section presents the con-
clusions regarding annulus pressure control during drilling.
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9.1 Reservoir Characterization

MSDF provides several different algorithms for extracting useful informa-
tion from available data based on sensors and prior knowledge of the pro-
cess. Knowledge about fluid flow can be expressed using mathematical mod-
els based on known physical relations also called first-principles modelling.
These models are often non-linear, and with a high-order state vector. The
models are also referred as computational fluid dynamics models and contain
detailed information about the fluid flow behaviour. The models describe the
dynamics of the well fairly accurate and the calculated flow rates and pres-
sures match quite good to the real measurements. The research results show
that a detailed model should be used when evaluating the data from the
well, as a low-order are not able to describe the fluid behaviour sufficiently
accurate to extract useful information about the reservoir.

An important aspect for reservoir characterization is to select and develop
methods for estimating parameters in models that have a high-order state
vector. Standard Kalman filter methods such as the extended Kalman filter
for non-linear systems are computational intensive, since the method requires
a linearization of the model. Only sensor data usually measured during
an UBD operation is used for calibrating the model. The research results
show that the data should be evaluated in real-time and that post-processing
analysis is not able to extract more information from the data when compared
to real-time analysis.

Both single-phase fluid flow wells and two-phase fluid flow wells have
been considered. The few examples presented in the current work indicate
that it is difficult to estimate both permeability and reservoir pressure from
a reservoir with several zones. However, if the reservoir pressure is known,
reliable estimates of the permeability are obtained. A methodology for un-
certainty analysis has also been presented and can be used to evaluate neces-
sary measurements for proper reservoir characterization. The research results
show that when evaluating the reservoir properties when using a multi-phase
drilling fluid, the multi-phase fluid model needs to be calibrated using avail-
able fluid flow data.

Some of the obtained results in Paper B did not show significant differ-
ences between the parameter estimation results obtained with least squares
estimation and with ensemble Kalman filter. However, the advantage of
the ensemble Kalman filter is that the parameter estimates can be obtained
during drilling. The unscented Kalman filter has also been evaluated for es-
timation of reservoir parameters and fluid parameters. This filter has shown
to give good parameter estimates, and has shown to be less computational
intensive than the ensemble Kalman filter when used for model parameter es-
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timation. The research results in this thesis show that the unscented Kalman
filter parameter estimation is a good candidate for further analysis when us-
ing the model for pressure control, as the calculation resources required are
less than for the ensemble Kalman filter.

9.2 Pressure Control during Drilling

Automatic control of the well pressures during drilling reduces the transient
fluctuations during specific operations such as pipe connections. Multivari-
able control is a challenging task, but it is crucial to combine the control of
fluid flow rate and choke valve opening since both influence the BHP. The
research results show that only using choke valve for manipulating the pres-
sure gives sufficient results, but that fluid flow rate control would increase
the ability of maintaining the correct pressure during the whole drilling op-
eration.

Two different control algorithms have been evaluated, a linear control
algorithm and an NMPC algorithm. The results show that both these algo-
rithms are able to reduce the pressure fluctuations during pipe connections
when comparing them with manual procedures. The NMPC algorithm is
more computational intensive, but the algorithm is easier to expand to han-
dle multiple control variables and constraints.

The research results show that the model predictive control algorithm is
a good candidate for performing pressure control during drilling, when used
together with a detailed model. The low-order model could be used for long
time predictions when including fluid density control.
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