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Abstract

This master thesis have examined the e↵ect of variations in composition and mi-

crostructure on the HISC susceptibility of Inconel-718. 6 di↵erent Inconel-718 vari-

ants with di↵erent compositions and heat treatments were examined. Tensile sam-

ples were pre-charged with hydrogen at 120�C in an H3PO4/Glycerol electrolyte

for 5 days, and subsequently subjected to stepwise constant-load tensile tests. The

tensile tests were performed in synthetic saltwater with a negative polarization of

-1050mA Ag/AgCl, corresponding to a galvanic coupling with aluminium or zinc in

seawater. Hydrogen free samples were tested in air for comparison. An optical mi-

croscope was used to examine the sample surfaces during testing. Fracture surfaces

were examined in SEM, and the samples were also examined for secondary cracks.

All the Inconel-718 samples pre-charged with hydrogen showed a significant reduc-

tion in ductility and contained Inter Granular (IG) areas on the fracture surfaces.

A decrease in fracture strength of approx. 5-10% of Yield Strength (YS) was seen in

all the variants examined, but no significant trend between the Inconel-718 variants

was detected here. Smaller grain sizes were correlated with an increasing ductility

loss measured by loss of Reduction of Area (RA) and loss of Elongation (✏) prior

to fracture. This was attributed to increased Grain Boundary (GB) di↵usion of hy-

drogen during pre-charging, resulting from more GBs. A Hydrogen melt extraction

analysis done by SINTEF confirmed the elevated hydrogen levels expected in these

fine-grained Inconel-718 variants.
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Sammendrag

Denne masteroppgaven har undersøkt e↵ekten av sammensetning og mikrostruktur

p̊a graden av hydrogensprøhet i Inconel-718. 6 forskjellige varianter av Inconel-718

har blitt undersøkt i denne oppgaven. Strekkprøver ble for-ladet med hydrogen i

en H3PO4/Glycerol blanding ved 120�C i 5 dager, og ble deretter tested i syn-

tetisk saltvann ved et negativt potensial p̊a -1050mV Ag/AgCl, som tilsvarer en

galvanisk kobling med aluminium eller sink i sjøvann. Testene ble gjort ihht. en

stegvis konstant spenning test. Prøver uten hydrogen ble testet i luft og brukt som

sammenlikning. Et lysmikroskop ble brukt til å observere prøveoverflatene under

testing. Bruddflatene ble undersøkt i SEM, og prøveoverflatene ble undersøkt for

sekundærsprekker. Alle Inconel-718 variantene som var for-ladet med hydrogen viste

en tydelig reduksjon i duktilitet, og inneholdt omr̊ader av Intergranulært brudd p̊a

bruddflaten. En reduksjon i bruddstyrke p̊a 5-10% ble observert i alle variantene,

men ingen significant sammenheng med mikrostruktur eller sammensetning ble ob-

servert her. Det ble observert at duktilitetstapet målt som tap av Reduction of Area

(RA) og Elongation (✏), økte med minkende kornstørrelse. Årsaken til dette antaes

å være at Inconel-718 variantene med liten kornstørrelse hadde en større grad av

korngrense di↵usjon under for-ladingen, som følge av økt korngrenseareal. Dette

ble bekreftet av smelte-ekstraksjon analysene gjort av SINTEF, som viste et høyere

hydrogen innhold i prøvene med mindre kornstørrelse.
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1 List of abbreviations and symbols

• Aafter - Fracture area after testing

• Abefore - Cross section area before tensile testing

• Ag/AgCl - Silver/Silver Chloride reference electrode

• b - Tafel’s slope

• BCC - Body Centered Cubic crystal structure

• CC - Cathodic Current

• CP - Cathodic Protection

• D - Grain Diameter

• D - Average grain size

• DH - Steady state di↵usivity of hydrogen in Inconel-718

• DhighT
H - High temperature di↵usivity of hydrogen in Inconel-718

• DlowT
H - Low temperature di↵usivity of hydrogen in Inconel-718

• E - Electric potential

• ECoupling - The coupling potential of two dissimilar metals in galvanic contact

• Erev - Reversible potential for an electrochemical half cell reaction

• ESR - Electro Slag Remelting

• FCC - Face Centered Cubic crystal structure

• FEM - Finite Element Method

• fGI - Fraction of Grain Interior

• fGB - Fraction of Grain Boundary area

• G - ASTM Grain size number
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• GB - Grain Boundary

• HELP - Hydrogen Enhanced Localized Plasticity

• Hg/HgSO4 - Mercury/Mercury Sulphate reference electrode

• HIP - Hot Isostatically Pressed

• HISC - Hydrogen Induced Atress Cracking

• HT/HP - High Temperature, High Pressure

• i - Current density

• i0 - Exchange current density

• icorr - Corrosion current density

• IG - Inter granular

• KIc - Fracture toughness

• K0
Ic - Fracture toughness of a single crystal

• KGI
Ic - Local fracture toughness in the grain interior

• KGB
Ic - Local fracture toughness in the grain boundary area

• LEFM - Linear Elastic Fracture Mechanics

• MVC - Micro Void Coalescence

• NASTM - Number of grains counted per square inch at 100x magnification

• NBorderline - Number of grains at the borderline of the area examined

• NInside - Number of grains inside the area examined

• OM - Optical Microscope

• PC - Poly Carbonate

• R - Universal gas constant

• RA - Reduction of Area
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• RA0 - Reduction of Area without hydrogen

• RAH - Reduction of Area with hydrogen

• RALoss - Loss of Reduction of Area as a result of hydrogen

• SD - Standard Deviation

• SDSS - Super Duplex Stainless Steel

• SEM - Scanning Electron Microscope

• SSRT - Slow Strain Rate Test

• thighT - High temperature di↵usion time

• tlowT - Low temperature di↵usion time

• tGB - Thickness of Grain Boundary zone

• T- Temperature

• TT - Transition Temperature

• TMP - Thermomechanical Processing

• UTS - Ultimate Tensile Strength

• VIM - Vacuum Induction Melting

• VAR - Vacuum Arc Remelting

• YS - Yield Strength

• ✏ - Elongation

• ✏0 - Elongation without hydrogen

• ✏Eng. - Engineering strain

• ✏H - Elongation with hydrogen

• ✏Loss - Loss of elongation as a result of hydrogen

• ✏Max - Maximum elongation of the load cell
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• ✏True - True strain

• � - Tensile stress

• �Eng. - Engineering stress

• �f - Fracture stress

• �True - True stress
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2 Background and inspiration for this Master thesis

2.1 Inconel-718 in the Oil and Gas industry

In the oil and gas industry, the Inconel-718 alloy is used extensively because of its

superior mechanical properties and resistance to H2S. The alloy is not considered

resistant to corrosion in seawater and will need Cathodic Protection (CP). Today,

Inconel-718 is tested against Hydrogen Induced Stress Cracking (HISC) and Sulphur

Stress Cracking (SSC) according to B.8 in ISO 15156-3 [9]: Samples are coupled to

carbon steel to achieve CP, and tested with 1 bar H2S in NACE solution-A [28].

Samples are then loaded to the desired stress level and tested for 1 month. A min-

imum of 3 samples must be tested. If a sample does not fracture and the surface

is free of cracks, then the sample has passed the test. If all three samples pass, the

alloy is considered safe for use. Precipitation-hardened nickel alloys like Inconel-718

are also required to follow a specific heat treatment, in order to obtain the desired

amount of precipitation hardening. The alloys hardness is tested, and in order to

be used in Oil and Gas applications, a hardness below 35 Rockwell is required. This

is done to avoid components with excessive precipitation, which is correlated with

reduced ductility and increased HISC susceptibility [11, 35, 36,59].

Despite the e↵ectiveness of these tests, they don’t account for the absorption of

hydrogen which can take place during years of service, especially in High Temper-

ature High Pressure (HT/HP) conditions. The possibility still exist that hydrogen

gradually di↵uses into the alloy during years of service. Previous studies have inves-

tigated the e↵ect of hydrogen in Inconel-718 [12, 16, 23, 25, 35, 45], and they suggest

that hydrogen is indeed able to cause a reduction in ductility and crack growth

resistance when the concentration is high enough. Until recently, the slow hydro-

gen di↵usion and the high inherent ductility in FCC materials have resulted in

the assumption that Inconel-718 is immune to HISC. Austenitic nickel alloys like

Inconel-718 are indeed much more resistant to HISC compared with their ferritic
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stainless steel alternatives, in which hydrogen di↵uses much faster. At shorter time

frames (months), Inconel-718 would therefore appear to be immune to HISC. Re-

cent failures [8] have now put this assumption into question, and lead to extensive

research by the industry, with the goal of achieving a better understanding of the

HISC properties in nickel-based superalloys. Although it has now become clear that

Inconel-718 can be susceptible to HISC given enough hydrogen and time, there still

exists a number of production routes and heat treatments available for producing

this alloy [18, 20, 21, 39, 50]. The variations in impurity contents, inclusions, grain

size and precipitate distributions resulting from production and heat-treatment, can

potentially have a large e↵ect on the HISC susceptibility. The aim of this master

thesis is therefore to examine the e↵ect of variations in chemical composition and

microstructure (grain size and �-particles) on the HISC susceptibility of Inconel-718.
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2.2 Previous work and inspiration for this master thesis

The experiments performed in this master thesis builds upon the project work pre-

ceding this master thesis, and inspiration from previous research [30, 33, 41] exam-

ining the HISC properties of Super Duplex Stainless Steel (SDSS). One of the key

inspirations here was the work done by Johnsen et. al [33], demonstrating the use

of a step-wise constant load test for determining the critical HISC stress in SDSS.

In a step-wise constant load test, a tensile sample subjected to CP is loaded to an

initial stress, and the stress level is subsequently increased every day until fracture

occurs. Johnsen et al. demonstrated that the step-wise constant load test resulted

in the same fracture stress as the test where the sample was loaded directly to the

final stress level.

The tensile test setup utilized in this master thesis was inspired by the results and

experience gained from the preceding project work. In this project, the reduction

in fracture strength in Inconel-718 as a result of hydrogen was examined. Samples

were pre-charged in synthetic saltwater at 80�C at a potential of -1050 mV Ag/AgCl

and subsequently subjected to tensile tests at room temperature in synthetic salt-

water at -1050mV Ag/AgCl. It was shown that the reduction in fracture strength

increased with the number of days of pre-charging, where the longest pre-charging

period was 10 days. All the samples tested nevertheless fractured well above Yield

Strength (YS), with the lowest fracture at 124% of YS. The high fracture strengths

resulting fro these tests formed the basis for some of the starting stresses chosen for

the step-wise constant load tests performed in this master thesis.

7



3 Background theory

3.1 Microstructure and properties of Inconel-718

Inconel-718 is part of a class of nickel superalloys characterized as precipitation hard-

ened alloys. These alloys were originally developed for use in turbine engines and

aerospace technology due to their high temperature creep resistance, high strength

and good ductility. Being a precipitation hardened alloy, Inconel-718 achieves its

superior mechanical properties through the fine �0 and �00 precipitates. The precip-

itation of these particles depends on the composition (the Al + Ti/Nb ratio), but

generally occurs in the 650 - 900�C range. A Temperature Transformation Time

(TTT) diagram [46] is displayed in figure 1, showing the isothermal precipitation

times and temperatures for �0, �00 and �-particles in a wrought Inconel-718 alloy.

Figure 1: A TTT diagram from the article: ”A current T-T-T diagram for
wrought alloy 718” by A. Oradei [46]. The temperature denomination has been
changed from �F to �C, hence the odd y-axis numeration.
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The �0 phase has the composition Ni3(T i, Al) and a L12 crystal structure. These

particle form as nano sized pseudo-spherical precipitates, which are coherent with

the �-matrix. The �00 phase has the composition Ni3Nb and a DO22 crystal struc-

ture. This phase also forms as nano-sized precipitates and has a coherency to the

�-matrix along two of its three principle axis. The slight misalignment along the

c-axis causes the �00-phase to precipitate as disk-shaped particles in order to mini-

mize the larger surface energy along the c-axis. Both particles have a precipitation

hardening e↵ect, but �00 is the dominant strengthening particle as it occupies a much

larger volume faction than �0 in Inconel-718 [51]. A picture is included in figure 2

from the characterizations of Inconel-718 done by C. Slama [51]. This pictures show

a TEM image obtained from a thin Inconel-718 foil, showing the disk shaped �00-

precipitates (Black) and the small pseudo-spherical �0-precipitates (White) in the

�-matrix (Grey). After excessive ageing at 750-850�C, or if heat treatment is per-

formed in directly in the 900-1000�C range, �-phase will start to form at the expense

of �00-particles. Both �00 and � have the composition Ni3Nb. The � phase has a or-

thorhombic crystal structure and is incoherent with the �-matrix. If not controlled,

the �-particles will therefore tend to precipitate at grain boundaries (GBs), which

has a detrimental e↵ect on the mechanical properties. Through precipitation hard-

ening, the Inconel-718 alloy is able to maintain its high yield strength (>800Mpa)

and creep resistance up to temperatures as high as 650�C. Being an austenitic alloy

with many crystallographic slip systems, Inconel-718 also exhibits a large degree of

ductility, with elongations prior to fracture in the range of 20-50%. These superior

properties explains why Inconel-718 was originally developed and used in critical

high temperature engine parts. Because its high nickel and chromium content, the

Inconel-718 alloy also has a good corrosion resistance, particularly in H2S contain-

ing environments. The combination of superior mechanical properties and good

corrosion properties has resulted in use of Inconel-718 by the Oil and Gas industry

for critical components exposed to harsh environments, such as low pH H2S envi-

ronments known as sour service and HT/HP conditions. The use of Inconel-718 is

nevertheless limited by its high production cost.
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Figure 2: A TEM image from the article: ”Structural characterization of aged inconel
718” by C. Slama [51]. The image shows the di↵erent precipitates formed in Inconel-718
during aging: �0 (White), �00 (Black) and the �-matrix (Grey background). The �00 phase
tends to nucleate at previous �0 particles.
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3.2 An introduction to the production of Inconel-718

Inconel-718 is commonly melted using Vacuum Induction Melting (VIM), and cast

as thick cylinders known as electrodes. These electrodes are then remelted using

Vacuum Induction Remelting (VAR) or Electro Slag Remelting (ESR) [50]. The

remelting step can be repeated 1 or more times, depending on the purity desired

and the acceptable cost. The purpose of these remelting steps is to remove inclu-

sions and to minimise the content of C, N, O and S, which have a negative e↵ect on

the mechanical properties [32]. The remelting steps also aims to reduce the amount

of segregations (primarily Nb). These production techniques are size limited [39].

The combination of expensive alloying elements (Ni, Cr, Nb, Mo) and limited size-

ability, makes Inconel-718 an expensive alloy to produce, and explains why the use

of Inconel-718 is limited to special applications where other materials do not qualify.

After remelting, the Inconel-718 alloy follows a homogenization treatment. The ho-

mogenization temperature is set slightly below the eutectic melting point which, de-

pending on the exact composition lies around 1200�C. Homogenization reduces Nb

segregations and redissolves the eutectic Laves phase, which is a brittle intermetal-

lic phase that forms during solidification. The Laves phase has a hexagonal crystal

structure and the composition (Ni, Fe, Cr)2(Nb,Mo, T i), which is commonly sim-

plified as Ni2Nb because of the high Nb content in this phase. This phase reduces

the ductility and impact toughness of Inconel-718, by acting as a preferred crack-

propagation path along the GBs [7]. If the carbon concentration is not kept low,

MC-carbides will also form during solidification. Course MC-particles are not easily

removed by the homogenization treatment, which is one of the reasons why a low C

concentration level is desired.

11



After homogenization the grain structure is often very course, which is not desir-

able with respect to strength and fracture toughness. This is improved during the

subsequent Thermo Mechanical Processing (TMP). For Inconel-718 this process is

also called �-processing [2, 17, 20, 29, 34]. In this process the alloy is kept below the

� solvus-temperature during hot rolling, which causes large amounts of acilcular

�-particles to precipitate from the highly deformed microstructure. The contin-

uously applied deformation causes these particles to break up, into smaller more

globular-shaped particles. When the deformed microstructure starts to recrystal-

lize, these globular �-particles act as GB pinners, reducing grain growth through

Zener drag [40]. This retards grain growth and result in a fine grain structure. The

process requires strict control on deformation rate, temperature and time, in order

to work as intended [20]. To little/late or to much/early �-precipitation will result

in inadequate GB pinning or depletion of Nb, respectively. The process can never-

theless be very e↵ective in achieving small grain sizes. Recently, a modified versions

of �-processing have been developed and tested, resulting in extremely small, even

nano sized grains in Inconel-718 [19, 34].

Fine grain sizes can also be produced through Hot Isostatical Pressing (HIP). In

this production process, a fine metal powder is pressed together at an elevated tem-

perature, yielding a fully dense material. The ability to produce complex geometries

with a fine grain size and without �-particles is a great advantage with respect to

HISC, as these particles have been correlated with an increased ductility loss when

hydrogen is present [11].
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3.3 The e↵ect of grain size on mechanical properties

It has long been known that the yield strength of a polycrystalline alloy can be

increased by grain refinement. Hall [22] and Petch [44] simultaneously discovered

that the yield strengths of polycrystalline alloys increased proportionately with D� 1
2 ,

with D being the grain diameter. This relationship is known as the Hall-Petch e↵ect.

A relationship between fracture toughness and grain size exists as well. Fan [13]

examined several polycrystalline systems and found that the fracture toughness

could be expressed as KIc = K0
Ic + kf · D�1. An interesting theory was proposed

in order to derive this expression, playing on the di↵erent dislocation behaviours in

low and high stacking fault energy materials: Dislocations in the low stacking fault

alloys like Cu (40mJ/m2) and Cu-25at.%Zn (7mJ/m2) dissociate readily, which

results in wedge shaped dislocation pile-ups at the GBs. The stress fields exerted

by these dislocations act as strong barriers for further dislocation movements along

the original slip plane. This results is a more heterogeneous plastic deformation

across the grains, which enhances the Micro Void Coalescence (MVC) [55] failure

mechanism. The GB areas in low stacking fault material can therefore be regarded

as having a locally lower fracture toughness KIG
Ic , relative to the grain interior. The

opposite is true for high stacking fault energy materials like Al (200mJ/m2) and Ni

(150mJ/m2). These materials are not expected to have the same barriers against

dislocation motion, and a more uniform plastic deformation occurs. As the GBs

represents obstacle for dislocations which require extra energy to be overcome (for

example through cross slip), the local fracture toughness in the GB area is higher,

relative to the grain interior.

Fan [13] expressed the Fracture toughness of an alloy (KIc) as a linear, volume-

fraction weighted sum of the grain interior fracture toughness (KGI
Ic ) and the GB

fracture toughness (KGB
Ic ). The expression is shown in equation 1:
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KIc = fGI ·KGI
Ic + fGB ·KGB

Ic (1)

.

In this equation, fGI and fGB are the fractions of grain interior and GB area re-

spectively. By approximating the volume-fraction of GB zone as fGB = 2·t
GB

D
, where

tGB is the the GB zone thickness and D is the grain size, the previous expression

becomes:

KIc =
2tGB

D
·KGB

Ic + (1� 2tGB

D
) ·KGI

Ic (2)

Equation 2 can then be further simplified by substituting kf = 2tGB · (KGB
Ic �KGI

Ic )

and K0
Ic = KGI

Ic . Here, K0
Ic is the fracture toughness of a single crystal and kf will

be a material constant. The result is shown in equation 3:

KIc = K0
Ic + kf ·D�1 (3)

This derivation also gives meaning to the D�1 relationship observed by Fan [13].

The physical meaning of the coe�cient kf as the di↵erence between the fracture

toughness of the GB area relative to the grain interior means that alloys with posi-

tive kf exhibit GB toughening as the grains get finer, while the alloys with negative

kf exhibit GB embrittlement as the grains get finer. Indeed, the high stacking

fault materials examined by Fan [13] showed an increase in fracture toughness with

decreasing grain size, while the low stacking fault materials showed a decrease in

fracture toughness with decreasing grain size.

Because of the large amount of alloying elements present in Inconel-718, the stack-

ing fault energy will be substantially lower than in pure nickel. The exact value is

not known, but estimates based on the alloying elements present range from 50 to

75mJ/m2 [15, 53]. The alloy therefore falls somewhere in between compared with

14



the alloys examined by Fan [13]. Whether the fracture toughness increases with

finer grains is therefore not certain. The alloy will nevertheless have a positive e↵ect

of grain refinement on yield strength due to the Hall-Petch e↵ect.

When hydrogen enters the metal however, hydrogen atoms will interacts with dis-

locations. This causes the dislocation mobility to increase and results in hydrogen

enhanced localized plasticity (HELP), a mechanism which will be described in detail

later on. The interesting thing to note in this context, is that if plastic deforma-

tion occurs more heterogeneous across the grains due to hydrogen, fine grained

microstructures are expected to lose more fracture toughness as a result of hydrogen

than course grained microstructures.
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3.4 Hydrogen’s interaction with dislocations

When hydrogen is present in a stressed metal, it di↵uses to the dislocations present

and interacts with the stress field present around these dislocations. The presence of

a hydrogen atmosphere around dislocations lowers the repulsive force between them

and causes the dislocation mobility to increase [5,47,52]. It has even been suggested

that the interaction between dislocations can shift sign and become attractive at

higher hydrogen concentrations, which may lead dislocation pileups to merge to-

gether forming cracks [5]. Hydrogen is also transported by dislocations when stress

is applied [5,14]. In the case of Inconel-718 which has a low H-di↵usivity, this means

that once deformation occurs and dislocations move, hydrogen atoms can be trans-

ported much further by dislocation drag, than by di↵usion alone. In the case of

slow strain rate testing (SSRT) of samples containing hydrogen near the surface,

this implies that the strain rate will e↵ect the mechanical properties observed. At

slow strain rates hydrogen is transported further into the component, increasing the

e↵ect of hydrogen embrittlement. When the strain rate increases and the disloca-

tion speed reaches a critical speed however, the hydrogen atoms will no longer be

able to follow the moving dislocation [56]. Decreased e↵ect of hydrogen at higher

strain rates was observed experimentally by Fournier [16]. In his study, Inconel-718

samples pre-charged with hydrogen were tested at strain rates of 5 ·10�7, 5 ·10�5 and

5 · 10�3 s�1. Almost no embrittlement resulted from hydrogen at 5 · 10�3 s�1 while

the SSRTs done at 5 · 10�5 and 5 · 10�7 showed respectively more and more embrit-

tlement due to hydrogen. The loss of ductility observed at slow strain rates can be

though to apply to cold creep in Inconel-718 as well, since cold creep is e↵ectively

a very slow plastic deformation. Since the di↵usivity of hydrogen in Inconel-718 is

very low, it is therefore likely that cold creep plays a central role in the hydrogen

embrittlement of Inconel-718 components exposed to CP.
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3.5 Di↵erent mechanisms for hydrogen embrittlement

Many mechanisms have evolved trying to explain the failure mechanism of HISC.

Each of them can be demonstrated successfully in some material systems, but none

of them apply to all the materials exposed to hydrogen embrittlement. The three

most commonly cited theories today are the decohesion mechanism , the hydride

film formation mechanism and the hydrogen enhanced localized plasticity (HELP)

mechanism:

The hydride-film mechanism have been applied successful in some hydride form-

ing materials (e.g. Zr, Ti, V and Nb). In these systems the intensified stress at a

crack tip promotes the formation of a brittle hydride film. The crack then propa-

gates through the hydride film and the process repeats until failure occurs [10,31,37].

Despite its limited success, the mechanism cannot be applied in alloys where hy-

drides don’t form. Hydride film formation in Inconel-718 is therefore believed to be

highly unlikely.

Then there is the decohesion mechanism [42, 43], in which hydrogen di↵uses to the

crack tip and reduces the cohesive strength of the alloy. This causes the threshold

stress intensity for crack propagation to be reduced, which means that cracks in

e↵ect becomes sharper. This mechanism has been successfully demonstrated in fer-

ritic steels, where previously arrested cracks began to propagate when the hydrogen

pressure was increased [42]. Interestingly, a reduction in the critical threshold stress

intensity in Inconel-718 with increasing hydrogen concentrations has also been ob-

served in the case of Inconel-718 [25].

Most work done on hydrogen embrittlement in Inconel-718 suggests that hydro-

gen mainly e↵ects the alloy according to the HELP mechanism. This mechanism is

based on the fact that hydrogen interacts with dislocations and increases the dislo-

cation mobility [5, 47, 52]. Because of the slow hydrogen di↵usivity in Inconel-718,
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hydrogen will preferably di↵use into the metal along GBs. Since hydrogen increases

the dislocation mobility, it results in a localized plasticity along the GBs when the

material is stressed above yield. The net result of this localization of plasticity at

the GB’s, is that the total elongation to fracture becomes smaller. The e↵ect is also

evident from the fracture surfaces resulting from this type of failure, as inter gran-

ular (IG) fractures will be present. Closer examinations of these fracture surfaces

have shown intense deformation along the fracture surface, and its disputed wether

the crack propagate in the vicinity of the GBs or along the GBs themselves [48].

Interestingly, increasing the number of low angle GBs at the cost of high angle GBs

through grain boundary engineering, have shown to reduce HISC sensitivity [4].

This is because low angle GBs have lower free volume to accommodate hydrogen

atoms. Hydrogen is also segregated at the interfaces of incoherent second phase

particles such as MC-carbides or �-particles [45]. These interfaces act as irreversible

traps where hydrogen is segregated and causes localized deformation. If such parti-

cles forms at the GBs, it further intensifies the localized deformation caused by the

presence of hydrogen. When �-particles are present at the GBs, they will therefore

further increase the embrittlement resulting from hydrogen [26, 35, 36]. The two

sketches below illustrate the GB di↵usion and the resulting localized plasticity:

(a) A sketch showing hydrogen di↵usion
into the material through the GBs.

(b) A sketch showing the localized de-
formation resulting when the same ma-
terial is stress above yield.
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3.6 Hydrogen production from cathodic protection (CP)

When a chemically active metal is exposed to seawater, corrosion will start to oc-

cur. The corrosion reaction can be split up into electrochemical half cell reactions:

Reduction reactions and an oxidation reaction. In seawater, the reduction reactions

will consist of hydrogen evolution and reduction of dissolved oxygen. These half cell

reactions are shown in equation 4 and 5. The amount of dissolved oxygen in seawater

at subsea depths is limited and the resulting current from this reaction will there-

fore be very small. In the context of explaining the principles of CP, this reaction

is therefore neglected. The dominant reduction reaction is then hydrogen evolution.

The metal specie corroding will surrender one or more of its electrons (depending in

its oxidation states) as it dissolves in seawater. This is the oxidation reaction, and

its summarized in equation 6, where n is the oxidation state of the resulting ion.

During corrosion, both these reactions happens simultaneously in a Redox-reaction.

The electric charge is therefore conserved. The combined Redox-reaction is shown

in equation 7.

2H2O + 2e� ! 2OH� +H2 (4)

2H2O +O2 + 4e� ! 4OH� (5)

M ! Mn+ + ne� (6)

2H2O +
2

n
M ! 2

n
Mn+ +H2 (7)
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The relationship between the reaction current and the electric potential of each half

cell reaction can be expressed through Tafel’s equation shown in equation 8. Here

b is a constant called Tafel’s slope, i0 is the exchange current density and i is the

current density. E is the electric potential. The electric potential is always a relative

value and have to be specified against a reference electrode, like the Standard Hydro-

gen Electrode SHE, the Silver/SilverChloride electrode (Ag/AgCl) or the Standard

Calomel Electrode (SCE). The exchange current density (i0) can be though of as

simultaneous oxidation and reduction current density of an electrochemical half cell

reaction, when this reaction is at its equilibrium electric potential Erev.

E = b · log( i
i0
) (8)

When the corrosion is allowed to occur freely, the potential and current density will

be determined by the intersection of the Tafel curves from the two half cell reactions.

This can be visualised in the Evans diagram shown in figure 4, where the tafel curves

from both half cell reactions have been plotted together:

Figure 4: An Evans-diagram showing the corrosion current and potential
resulting from hydrogen evolution and dissolving metal as a redox reaction.
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When two dissimilar metals M and N are in electrical contact in the same electrolyte,

the situation changes. Since two metals cannot have di↵erent potentials when they

are in electrical contact, M and N will now attain a new galvanic potential called

ECoupling. The metal M is here the active metal, and N represents the more noble

metal. The Evans diagram resulting from this coupling of M and N is shown in

figure 5. Typically, the nobel metal N has a tafel curve corresponding to a higher

hydrogen evolution current density than M. This means that at ECoupling hydrogen

will be produced almost completely from the surface of N. It can also be seen that

the corrosion current of M and N has shifted to IM�N
corr and IN�M

corr respectively. This

means that the corrosion of N has decreased and the corrosion of M has increased.

The increased corrosion of metal M, is called galvanic corrosion, and can be very

serious if it occurs unintended.

Figure 5: An Evans-diagram showing the corrosion currents of the noble metal N and the
less noble metal M during galvanic coupling
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The reduced corrosion in metal N coupled with M is the basic principle behind Ca-

thodic Protection (CP). CP is widely used in o↵shore steel structures submerged in

seawater, in order to protect the steel against corrosion. Zinc or aluminium anodes

are commonly used. As illustrated in the previous example these sacrificial anodes

will su↵er from galvanic corrosion while the corrosion of the steel structure is re-

duced or even eliminated.

Inconel-718 is generally not regarded as seawater resistant by the Oil and Gas indus-

try, and will need CP when exposed to seawater. Corrosion of Inconel-718 is then

completely eliminated. When the sacrificial anodes corrode, hydrogen will evolve on

the Inconel-718 surface. This is the main source of hydrogen in the subsea applica-

tions of Inconel-718. Hydrogen can also come from welding with wet filler materials.

This source has however been largely eliminated by stricter welding procedures that

require the filler material to be dried prior to welding.
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3.7 Hydrogen di↵usion in Inconel-718

Because of its FCC structure the Inconel-718 alloy has a high solubility and a low

di↵usivity with respect to hydrogen. W.M.Robertson [49] measured the solubility,

permeability and di↵usivity of hydrogen in Inconel-718 and 903. The di↵usion of

hydrogen was measured through a permeation experiment, where hydrogen di↵uses

through a thin metal foil of Inconel-718. The di↵usion coe�cient was then calculated

when the di↵usion through the foil had reached a steady state. The hydrogen

di↵usivity in homogenized Inconel-718 was determined as:

D = 1.07 · 10�2 exp(
�11, 900

RT
)
cm2

s
(9)

Where R is measures in cal/mole. Precipitate-hardened samples were also tested

in this study, and it was found that the di↵usivity was surprisingly stabile across

di↵erent heat-treatments. The solubility was however found to vary a lot. Solution

annealed Inconel-718 showed a higher solubility, presumably because of the high

hydrogen a�nity of some of the strong hydride forming alloying elements present in

solid solution (e.g. Nb and Ti). Hydrogen di↵uses both through the grain lattice

and along GBs. To which extent these two transport paths dominate the total

di↵usion in nickel-based alloys have been a subject of controversy. It is di�cult

to measure the GB and lattice di↵usivities separately in an explicit manner, which

have resulted in very few studies trying to measure these quantities. There are many

di↵erent theories and opinions regarding this question, but they vary a lot. They

all agree however, that the GB di↵usion has to be bigger because of the excess free

volume present at the GBs. Some experiments have been done with austenitic steel

and pure nickel, but the results reported varies a lot. The GB di↵usion of hydrogen

have been reported everywhere from 60 [54] to 108 [6] times greater than the lattice

di↵usion, in the case of nickel and austenitic steel respectively. Some theoretical

work have been done by Yao [57] on pure nickel, concluding that the GB di↵usion
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is not necessarily dominant in the total transport of hydrogen a multi crystalline

microstructure. Because of this uncertainty, only the e↵ective steady-state, total

di↵usivity of hydrogen will be considered in the simple di↵usion model examined in

this master thesis.
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4 Theoretical work

4.1 Di↵usion of hydrogen during pre-charging

In order to get a rough estimation of the distance which hydrogen is able to di↵use

into a thin sample, a numerical model was developed in Matlab. In this model the

di↵usion was assumed to follow Fick’s second law where the di↵usion follows the

partial di↵erential equation:

dC

dt
= DH · d

2C

dx2
(10)

In this model the di↵usivity of hydrogen is assumed to be independent of hydrogen

concentration. The e↵ects of the hydrogen trapping discussed previously, is also ig-

nored. The di↵usion constant used in the model above is therefore the steady-state

di↵usion coe�cient measured by Robertson [49]. In the Matlab script a thin plate is

considered, where hydrogen di↵uses from both ends. The surface concentration on

both sides of the thin plate is set to c0 = 70wppm. This concentration corresponds

to the solubility limit of hydrogen observed by Yao [58] in nickel. This value is

used as reasonable approximation for the solubility of hydrogen in Inconel-718. The

1.4mm sample thickness is divided into 1000 data points, and a numerical 3-point

Laplace operator (1,-2,1) is used to compute (d
2C
dx2 ) as a convolution between the

Laplace-operator and the concentration vector. The script uses temperature T(�C)

and di↵usion time(days) as input parameters and returns the final concentration

profile through the plate after multiple time intervals up to the final pre-charging

time. Because of the assumptions made to ignore hydrogen trapping, this model

will overestimate the extent of hydrogen di↵usion, as hydrogen atoms otherwise

irreversibly trapped are assumed to di↵use freely into the sample. This can be ad-

justed for by using di↵usion equations which account for trapping. These equations

are complex and nevertheless needs to be fitted to experimental data. Since this is
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beyond the scope of this master thesis, it will not be attempted here. Interactions

between dislocations and hydrogen atoms are also ignored in this model, a mech-

anism which increases the hydrogen transport into the sample if stress is present.

Because all the samples considered in this sample are pre-charged without any me-

chanical load, this is not considered to be a significant source of error in this context.

This model serves as a rough estimate of what could be expected in terms of how

far from the surface the Inconel-718 samples can be expected to be embrittled. Pre-

vious experiments correlating hydrogen concentrations with corresponding fracture

morphologies [24], have displayed completely IG fractures above 20 wppm H. In the

case of the new pre-charging equipment used in this master thesis, this model was

utilized to compare the hydrogen concentration profiles expected from the old and

new pre-charging procedures. The old pre-charging setup comprised of pre-charging

at 80�C for 10 days, while the new pre-charging procedure last for 5 days at 120�C.

The resulting profiles are displayed in figure 6a and 6b. The figures clearly show

the improvement predicted when increasing the pre-charging temperature from 80

to 120�C.

In order to verify the e↵ectiveness of the new pre-charging method, a dummy sample

was first pre-charged for 3 days at 120�C according to the new pre-charging equip-

ment. The hydrogen content was then measured by SINTEF using a Hydrogen Melt

Extraction Analysis, which measured a concentration of 21.3 wppm H. The model

predicts an average concentration of 29.5 wppm after 3 days, which means that the

model overestimated the total hydrogen concentration with 38% in this particular

case. The model predicts an average concentration of 37.8 wppm H after 5 days

of pre-charging at 120�C, which with an overestimation factor of 1.38 corresponds

to a real concentration of about 27.4 wppm H. The implicit assumption that the

overestimation factor is constant is also a very rough approximation in this context

since di↵usion is not a linear process. The transition from ductile to brittle IG

fracture is observed to occur from around 15-25 wppm H [24]. The simple Matlab
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analysis performed therefore suggests that a significantly thicker surface zone will

be embrittled from the new pre-charging equipment.

(a) Numerically estimated hydrogen concentration profiles in a
1.4mm thick sample, through 10 days of pre-charging at 80�C

(b) Numerically estimated hydrogen concentration profiles in a
1.4mm thick sample, through 5 days of pre-charging at 120�C
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4.2 Some perspective on the accelerations involved in pre-charging

Pre-charging at 120�C o↵ers a new method for accelerating the absorption of hy-

drogen that would otherwise take months or years to accomplish at room tempera-

tures. It would however be useful to relate the amount of hydrogen resulting from

pre-charging at 120�C to the amount of time necessary for the same amount of

hydrogen to be absorbed at room temperature. In order to derive an expression

for this relationship, some simplifications will have to be made. The relationship

between hydrogen evolution kinetics and temperature is ignored. This can be partly

justified, since the di↵usion of hydrogen in Inconel-718 will be the limiting process.

Dislocation-hydrogen interactions are also ignored, since the samples are not stressed

during pre-charging. The final simplification is to ignore the irreversible trapping of

hydrogen at the interfaces of secondary particles like MC-carbides. Because of the

high activation energy associated with these trap sites, its likely that they will be ir-

reversible both at room temperature and at 120�C. The trapping sites will therefore

contribute to lowering the overall di↵usion at both temperatures, and their e↵ect

will at least partially cancel each other out in the ratio between two pre-charging

times.

In this derivation, hydrogen absorption from one flat surface is considered. The

surface concentration of hydrogen is assumed to be constant and Fick’s second law

is assumed to apply. This results is the well known analytical solution to Fick’s

second law:
c(x, t)� c0
cs � c0

= erfc(
x

2
p
DH · t

) (11)

We wish to calculate the di↵usion time at a lower temperature such that the depth

of transition between ductile and IG fracture occurs at the same distance from the

surface after pre-charging at both temperatures. If we insert the constant transition

depth Xtrans and the corresponding constant hydrogen concentration at this depth
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Ctrans, this results in both sides of the equation becoming constant. This means that

at the transition depth: DH · t = constant. The equivalent room temperature time

which would result in the same depth of brittle fracture as 5 days of pre-charging at

120�Ccan then be estimated as:

tRT =
D120�C

H · t120�C

DRT
H

(12)

The equivalent room temperature time corresponding to pre-charging for 5 days at

120�C is calculated in equation 13. The di↵usion expression used in this equation

is the steady state di↵usivity measured by Robertson [49].

tRT =
exp(�11, 900/1.9872 · 393)
exp(�11, 900/1.9872 · 298) · 5 days = 644 days (13)

This corresponds to almost two years! It should be emphasized that the numerous

assumptions made in deriving this expression makes the answer a very course es-

timate at best. The answer is therefore only an estimate of the magnitude of the

time acceleration involved, and should not be regarded as a precise tool. Disloca-

tion drag will greatly increase the transport of hydrogen at both temperatures when

stress is applied. Furthermore, the surface concentration is not necessarily constant

across the two di↵erent temperatures, as the solubility of hydrogen is temperature

dependent. In addition to this, surface layer and roughness may e↵ect absorption

of hydrogen into the metal. The calculations are nevertheless meant to add some

perspective on the accelerations involved, and the potential benefit of using high

temperature pre-charging as an accelerated test method.
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4.3 Measuring error involved in the tensile stress data acquired

In measuring the gauge area of the tensile test samples, some measuring error oc-

currs. The maximum measuring error i both dimensions was estimated to 0.02mm

based on measuring the same gauge many times at di↵erent places along the sample

length. The area of a cross section is given by W ·T , where W is the width and T is

the thickness. If we include the measuring errors ✏W and ✏T we get the expression:

Ameasured = (W + ✏) · (T + ✏) = WT +W ✏T + T ✏W + ✏W ✏T

✏W ✏T can then be neglected because its very small. Assuming ✏W = ✏T we get:

Ameasured = WT + ✏(T +W ) = Areal + ✏(T +W )

The stress is given by force per area: � = P
A
. The relative error in stress can

then be estimated as:

✏�
�

=
P

A
real

+✏(W+T ) �
P

A
real

P
A

real

=
Areal

Areal + ✏(W + T )
� 1 (14)

A typical gauge dimension of the Inconel-718 samples was 1.35mm · 4.95mm. Using

these typical dimensions to calculate the gauge area and assuming + 0.02mm mea-

suring error in both dimensions, we get a relative error in stress of:

✏�
�

=
1.35 · 4.95

1.35 · 4.95 + 0.02 · (1.35 + 4.95)
� 1 = �1.85% (15)

Note that in this example, the error was estimated when both errors were at their

maximum in the same direction. Since the measuring errors on average are less

then 0.02mm and can have opposite signs, the average relative error will be smaller.

1.85% is therefore a maximum error estimate, not a standard deviation.
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4.4 FEM analysis of notched samples in Abaqus

Notched tensile test samples were also tested in this master thesis. A total of 6

notched samples where tested: One with and one without hydrogen from three dif-

ferent alloys. The alloys examined where 56LH-1-OP, P3A01-1900 and P3A01-1800.

These alloys where chosen in order to compare the compositions and microstructures

examined in this study. 56LH-1-OP and P3A01-1900 both have the same course and

�-free microstructure, but di↵erent compositions. P3A01-1900 and P3A01-1800 both

have the same composition but di↵erent microstructures, the latter microstructure

with fine grains scattered with �-particles and the former with course grains and no

�-particles. The purpose of running the notched samples was to obtain better time-

lapse videos of the crack propagation since the initiation point would be known.

In the smooth samples, this proved di�cult since secondary cracks initiated at a

number of spots. A picture with dimensions is displayed in figure 7, showing the

size and shape of the notched tensile test samples. The samples each contained two

notches on each side of the sample gauge, both with a depth of 0.6mm and a tip

radius of 0.3mm.

Figure 7: A photo showing a notched sample after sample preparation
and pre-charging.
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In order to design an appropriate loading schedule for these samples the stress

strain behaviour of the notched geometry had to be determined. This was done

using a standard static analysis in Abaqus. The notched gauge area of the samples

was modelled as a 2D shell geometry in Abaqus, and plain strain was assumed to

apply. This assumption will be reasonable if the sample is thin and flat, which it

is. Since the outer width and thickness of the notched samples varied with a few

hundredth of a mm, one model was created for each sample in order to account for

this. For the material properties, an E-modulus of 210Gpa and a poisson coe�cient

of 0.3 were used for the elastic regime of the stress-strain curve. For the plastic

regime a Ramberg - Osgood relationship given in equation 16 was assumed as an

approximation. In this model, the YS, UTS and ✏ data given by ATI-metals where

fitted to obtain K and n for each of the three alloys. Before the material data

was entered into Abaqus, the engineering strain and engineering stress had to be

converted into true stress and true strain. The relationship between these entities

are displayed in equation 17 and 18.

✏ =
�

E
+K · ( �

E
)n (16)

�True = �Eng. · (1 + ✏Eng.) (17)

✏True = ln(1 + ✏Eng.) (18)
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A few things should be noted about the possible errors in the Abaqus model. When

a significant portion of the sample cross section starts to become plastically de-

formed the poisson contractions will make the plain strain assumption invalid due

to shear stresses occurring in the z-direction. The second and perhaps biggest error

source in this model is absence of any failure mechanism. Since no damage mech-

anisms have been included in this simple Abaqus model, the material is assumed

to remain perfectly cohesive throughout the deformation. This stands in contrast

to the cracking and micro void nucleation that would occur in reality. The model

will therefore overestimates the UTS of the sample. The purpose of this Abaqus

analysis was nevertheless to determine the yield point for the notched samples, in

order to assign appropriate initial loads. The overestimation of UTS was therefore

not considered a relevant problem in this context.

A picture showing the 2D sketch in Abaqus is shown in figure 8. The test done

in Abaqus consisted of pulling the sample 4mm in 100 increments. At each incre-

ment the reaction load is recorded, and subsequently used to generate a Load -

Displacement plot for the sample. These plots will then work as an estimate for the

YS of the notched sample, and will be used to assign an appropriate starting load

slightly above YS. The resulting Load - Displacement curves are shown in figure

9. Images of the stress field at two di↵erent loads are also included in figure 10.

The visual stress fields show an intense stress concentration around the notch which

extends in a circular area between the two notches. This area of plastic deformation

could also be observed during testing, due to he poisson contraction in the deformed

areas. A picture is included in figure 11 showing the pattern observed during testing.

The patterns are strikingly similar.
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Figure 8: A sketch showing the notch geometry and tip radius. The notch has a depth of
0.6mm and a tip radius of 0.3mm

Figure 9: Force-Displacement behaviors predicted by the Abaqus model. The sample with
and with out pre-charging have slightly di↵erent dimensions, resulting from the sample
preparation step. This has been factored in in the analysis thereby the slight misalignment
between the two samples from each alloy.
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Figure 10: A visualisation of the stress field produced during. The image corresponds to
one of the 56LH-1-OP samples at a 0.32mm displacement.

Figure 11: The deformed notch area observed during testing. The picture was taken from
the hydrogen free reference sample of 56LH-1-OP at a displacement of 0.32mm
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5 Experimental

5.1 Compositions and microstructures examined

A total of 6 di↵erent alloys were examined in this study: Two compositions com-

bined with three microstructures. The two compositions consisted of a standard

commercial composition named 56LH-1-OP and a High Nb low C/N variant of

Inconel-718 called P3A01. The two compositions are summerized in table 2 and

3. The P3A01 alloy was produced as a 300lb cast electrode, which were remelted

using VAR and cast as a 8” ingot. This ingot was homogenized at 1190 �C. The

standard composition ingot was taken from a commercial billet. This billet started

as a 10000lb 21” diameter VIM cast, which was then remelted using VAR and cast

into a 24” diameter billet. The standard composition ingot was also also homoge-

nized, although the exact homogenization treatment was kept secret for commercial

reasons. Ingots from both compositions were then TMP’ed on order to yield three

di↵erent microstructures for each composition, and subsequently aged. The compo-

sitions and microstructures are summarized in table 1. The P3A01-1850A variant

was intended to achieve a course microstructure, similar to the 56LH-1-Piece-1 alloy.

This had been achieved the last time the test material was produced, but failed to

materialize when the ingot size was scaled up from the laboratory scale test used

last time. P3A01-1850A and P3A01-1800 therefore have an almost identical mi-

crostructure. All the 6 variants were nevertheless included in all steps of this master

thesis. Pictures of the 6 ingot materials received are displayed in figure 12a - 12f.

Their respective microstructures are shown in figure 13a - 13f.

Table 1: Alloy variants

Alloy Composition Microstructure YS UTS
56LH-1-OP Standard grade Course grains, �-free 911Mpa 1218Mpa
56LH-1 Piece-1 Standard grade Course grains, globular �-particles 823Mpa 1159Mpa
56LH-1 Piece-2 Standard grade Medium grains, globular �-particles 1163Mpa 1391Mpa
P3A01-1800 Low C/N and high Nb Course grains, �-free 1109Mpa 1341Mpa
P3A01-1850A Low C/N and high Nb Fine grains, globular �-particles 1293Mpa 1498Mpa
P3A01-1900 Low C/N and high Nb Fine grains, globular �-particles 1356Mpa 1576Mpa
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Table 2: Alloy compositions (wt%)

Alloy Al Co Cr Fe Mo Nb Ni Si Ti
56LH-1 0.52 0.05 17.62 19.14 2.87 4.98 53.77 0.07 0.95
P3A01 0.53 0.01 17.64 18.64 2.88 5.35 53.91 0.02 1.00

Table 3: Trace elements (wt%)

Alloy C S P O N B
56LH-1 0.018 <0.0003 0.008 NA NA 0.004
P3A01 0.004 0.0006 0.009 <0.0005 0.0029 0.005

(a) The 56LH-1-OP Ingot received from ATI-
metals

(b) The P3A01-1900 Ingot received from ATI-
metals

(c) The 56LH-1-Piece-1 Ingot received from
ATI-metals

(d) The P3A01-1850A Ingot received from
ATI-metals

(e) The 56LH-1-Piece-2 Ingot received from
ATI-metals

(f) The P3A01-1800 Ingot received from ATI-
metals

Figure 12: Ingots received by ATI-metals. Some of the ingots contain holes after samples
have been but out.
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(a) 56LH-1-OP: Standard alloy composition.
Course grains with no �-particles.

(b) P3A01-1900: Low C/N, high Nb content.
Course grains with globular �-particles.

(c) 56LH-1-Piece-1: Standard alloy composi-
tion. Course grains with globular �-particles.

(d) P3A01-1850: Low C/N, high Nb content.
Fine grains with globular �-particles.

(e) 56LH-1-Piece-2: Standard alloy composi-
tion. Fine grains with globular �-particles.

(f) P3A01-1800: Low C/N, high Nb content.
Fine grains with globular �-particles.

Figure 13: Microstructure in the 6 Inconel-718 variants
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5.2 Sample preparation

5.2.1 Smooth tensile test samples

Tensile test samples were cut from the ingots in the direction such that the length

of the gauge was parallel to the rolling direction of the ingot. The samples were cut

out using spark erosion, which was done by NOMEK AS. Once the tensile samples

had been received, they were grinder by progressively finer SiC papers on all sides,

to remove the brass contaminant and the oxidation products from the spark erosion

process. After grinding, the samples were mechanically polished with 6, 3 and

finally 1 µm diamond suspensions. Between each step the samples were subjected

to ultrasonic cleaning in an ethanol. Afterwards, the samples were electropolished

on one side of the gauge. This was done in order to remove surface deformations

and to get a smooth surface which could be examined in the microscope used in the

tensile tests. A picture is shown in figure 14, showing a tensile test sample before

and after sample preparation.

Figure 14: A picture showing a smooth ten-
sile test sample before and after grinding,
polishing and electropolishing
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5.2.2 Notched tensile test samples

The notched samples were mechanically grinder and polished according to the same

steps as the smooth samples. The notch area was also grinded with 1200 grit SiC

paper by hand to remove the surface contaminants present there. The notched

samples were electropolished on both sides. This was done to prevent crack initiation

on rougher ”back-side” of the gauge, which would be unobservable during testing.

A picture is shown in figure 15, showing a notched sample after sample preparation.

Figure 15: A picture showing a notched tensile test sample before and
after grinding, polishing and electropolishing
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5.2.3 Samples prepared for observations in the optical microscope

Some cylindrical samples were also cut from the ingots. These samples were intended

for micro structural imaging in the optical microscope (OM). The OM samples were

mechanically grinded and polished according to the same steps as tensile samples.

Instead of electropolishing however, these samples were anodized for 30s at 3V in a

10 vol% Oxalic Acid solution. This resulted in a dark oxide layer on the samples,

which gave contrast to the microstructures when the samples were observed in the

OM. Pictures of an OM sample after polishing and anodizing is shown in figure 16.

Figure 16: A picture showing the OM samples after anodizing. From the
left: 56LH-1-OP, 56LH-1-Piece-1 and P3A01-1900. In the round sample
holder 56LH-1-Piece-2, P3A01-1850A and P3A01-1800.

5.3 Pre-charging equipment developed

The pre-charging done in this thesis was done using a 2:1 mixture of Glycerol/Ortho-

Phosphoric Acid as electrolyte instead of synthetic seawater. The motive for this

was to achieve an accelerated pre-charging by raising the temperature above 100�C.

Pictures showing the pre-charging setup are shown in figure 17 and 18. The setup

allows for multiple parallels of pre-charging to be carried out at the same time. In

each parallel, 4 samples, which were connected with platinum wires are submerged

in a 250ml glass bulb filled with Glycerol/Ortho-Phosphoric Acid. Two Pt counter

electrodes, one from each side of the samples were used in order to obtain a more
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uniform cathodic current (CC) on both sides of the samples. All the parts involved

in the pre-charging chambers were made out of pyrex glass or plastic. No metal parts

other than platinum wires were used. This was done to avoid corrosion and contam-

ination due to corrosion products, a problem encountered in the preceding project

work. In the project work, metal screws inside the pre-charging chamber corroded

and left residues on the samples. The pre-charging chambers were connected to

Hg/HgSO4 reference electrodes through plastic tubes filled with Glycerol/Ortho-

Phosphoric Acid. The reference electrodes contained a membrane to shield the

inside sulphate solution from the outside glycerol solution. The pre-charging cham-

bers were partially submerged in a bath heating oil, which was heated to 120 �C

and controlled using a heating element connected to an electronic thermostat. The

pre-charging was done using electronic GamaryTM potensiostats, which logged the

CC every 30s. All samples were pre-charged at -1500mV Hg/HgSO4, which corre-

sponds to -1050mV AgAgCl. In order to verify that this new setup worked to its

intensions, an Inconel-718 dummy sample was pre-charged for 3.5 days, and sub-

jected to a hydrogen melt extraction analysis performed by SINTEF. The hydrogen

concentration of the sample was measured to 21.33 wppm H, which corresponds to a

substantial degree of hydrogen embrittlement in Inconel-718 [25]. All samples were

therefore pre-charged for 5 days at these conditions to ensure adequate hydrogen.

After pre-charging for 5 days, samples are removed from the chambers and washed

in ethanol, before being stored in a freezer at -19�C until testing.
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Figure 17: An overview image of the pre-charging setup used. The Ther-
mostat is located to the left in the picture (1), the Hg/HgSO4 reference
electrodes in the middle (2) and the heating oil reservoir containing
multiple pre-charging parallels is located to the right (3).

Figure 18: A close up picture showing the di↵erent parallel pre-charging
chambers immersed in the heating oil reservoir.
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5.4 Tensile test equipment

The tensile test equipment used to test the pre-charged Inconel-718 samples involved

three ME � systemeTM load cells, each with a capacity of a 1 Ton equivalent load.

These machines were cranked by hand using a torchmeter and were mounted to

the desk workspace with vices. Two-part electrolyte chambers were developed in

the project work preceding this master thesis. These electrolyte chambers allow

exposure to synthetic seawater and potensiostatic polarization during testing. A

picture is included in figure 19 and 20 showing the tensile equipment during testing.

The electrolyte chambers parts were made out of Poly Carbonate (CP) with stainless

steel screws holding the two pieces together. The stainless steel screws and the

metal parts of the tensile machine itself were not galvanically coupled with the

samples during testing. During testing a standard Ag/AgCl reference electrode is

used together with a platinum counter electrode placed behind the sample gauge in

order to achieve a -1050mV Ag/AgCl polarization. This simulates the CP protection

potential of Aluminium or Zinc in saltwater. The purpose of CP during testing was

to resupply the hydrogen at the surface during testing. Design sketches of the PC

electrolyte chamber design are given in the appendix. The front side of the PC

electrolyte chambers were polished to a transparent finish, allowing the sample to

be observed during testing. A DinoLiteTM microscope mounted on a XYZ - micro

movement stage allowed the sample surface to be accurately scanned and focused

on during testing. The microscope was capable of obtaining photos, videos and

constructing time-lapse videoes by taking pictures at fixed time intervals.

44



Figure 19: A picture showing the tensile test setup during testing. The
electrolyte chamber is filled with synthetic saltwater and the sample
is polarzed to -1050mV Ag/AgCl. An optical microscope is used to
monitor the microstructure during testing.

Figure 20: I picture showing the same equipment form the top. The
counter electrode is placed behind the sample, and the reference elec-
trode is connected through the nozzles on the backside of the electrolyte
chamber.
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5.5 Tensile test procedures

From each of the alloy variants, 4 sample with pre-charging are tested. In addi-

tion, 2 reference samples without hydrogen pre-charging are tested in air. Before

testing the cross sections are measured. The samples are then cleaned thoroughly

in ethanol and distilled water and placed inside the electrolyte chamber in the load

cell. The chamber is then closed, tightened, filled with synthetic saltwater, and a

potensiostatic polarization of -1050 mV Ag/AgCl is applied.

The stepwise constant load utilized in this master thesis originates from previous

HISC testing done on Super Duplex Stainless Steel (SDSS) at NTNU and SIN-

TEF [1, 30, 33]. Johnsen et. al [33], showed that in the case of SDSS, step-wise

constant loading and direct loading to the final stress resulted in the the same crit-

ical stress for HISC. Little work have been done on constant load HISC testing

of Inconel-718. This test method was nevertheless assumed to be applicable for

Inconel-718 as well. The pre-charged 56LH-1-OP and P3A01-1900 samples tested in

the project work fractured at 132% and 125% of YS respectively. Since these samples

were pre-charged at 80�C at -1050 mV Ag/AgCl in synthetic salt water, the initial

load in this study was set slightly lower, at 116% and 108% for the 56LH-1-OP and

P3A01-1900 alloys respectively. This was done since the new pre-charging equip-

ment is expected to result in more hydrogen and potentially lower fracture strengths.

The initial load for the rest of the alloy variants tested were based on considerations

of the YS to UTS range in each respective alloy, and comparing them to those of

56LH-1-OP and P3A01-1900. The initial starting loads are summarized in table 4

and 5. One samples from alloy 56LH-1-OP (Sample-1), P3A01-1900(Sample-1), and

P3A01-1850A(Sample-1) were loaded with a di↵erent initial load, other things the

same. The alloys were picked based on variations in microstructure (P3A01-1900 vs.

P3A01-1850A) and composition (56LH-1-OP vs. P3A01-1900). The reason for test-

ing using a di↵erent initial load, was to give an indication wether the independence

of direct vs. step-wise load was indeed a suitable assumption for Inconel-718.
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After loading at the initial stress level for 4 hours, the load is increased every hour

by 4% of YS, until fracture occurs. The fracture stress recorded includes the last

load increase when the samples fractured during the load increase (marked as 00min

in the results). It should be emphasized that the stress values obtained should there-

fore be regarded as ”fracture stress values” and not as ”safe-up-to-stress” values.

At each stress level there will be cold creep. This is a time and stress dependent

relaxation, which results in plastic strain. The amount of cold creep increases as

the stress level gets higher. In order for the stress levels recorded to be as correct as

possible, this cold creep was adjusted during testing to keep the engineering stress

as constant as possible. As the creep can be very high at the higher stress levels

approaching the fracture stress, the creep and following creep adjustment will result

in fluctuations in the stress-data curves collected at these stress levels.

Table 4: Initial starting loads and loading procedures for the smooth tensile samples

Alloy variant Initial load Subsequent loading schedule
56LH-1-OP 116% of YS, 4hours 4% of YS every hour

56LH-1-Piece-1 116% of YS, 4 hours 4% of YS every hour
56LH-1-Piece-2 108% of YS, 4 hours 4% of YS every hour
P3A01-1900 108% of YS, 4 hours 4% of YS every hour
P3A01-1850A 108% of YS, 4 hours 4% of YS every hour
P3A01-1800 100% of YS, 4 hours 4% of YS every hour

Table 5: Initial starting loads and loading procedures for the notched samples

Alloy variant Initial load Subsequent loading schedule
56LH-1-OP 116% of YS 4% of YS every hour until crack initiate
P3A01-1900 108% of YS 4% of YS every hour until crack initiate
P3A01-1800 108% of YS 4% of YS every hour until crack initiate
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5.6 SEM observations

After the tensile tests, the samples are observed and studied in SEM. A Zeiss

UltraTM 55, Field-Emission SEM was used for this. All pictures were taken us-

ing secondary electron imaging, which means that the pictures formed only consist

of topography contrast. An aperture of 30µm was used together with high current

mode. The working distance varied with the height of the samples, but was typically

in the range 15-25mm. The acceleration voltage was by default set to 20kV. Since

no magnifications larger then 15000 was needed, no e↵ort was made to optimise

these parameters, and hence most of them are default values.

Fracture surfaces are examined, and the fracture modes found are identified. Of

special interest here is the extent of IG fracture, since this is evidence of hydrogen

embrittlement in Inconel-718. Low magnification (50-200X) overview pictures and

higher magnification (100-5000X) images of the di↵erent fracture modes were taken

from all samples. This constitutes more than 200 SEM images, so only a fraction of

them will be presented in this thesis. In addition to the fracture surfaces examined,

the samples are also examined for secondary cracks. The extent of secondary crack-

ing will be compared between the pre-charged samples and the equivalent hydrogen

free samples.
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5.7 Hydrogen melt extraction analysis

When each tensile test with a pre-charged sample had been completed, one of the

two fracture pieces resulting would be stored in the freezer. After all the tensile

tests were completed, one sample from each alloy variant was sent for Hydrogen

Melt Extraction Analysis at SINTEF.

In this analysis a small piece approximately 0.5g is cut from the sample. This

piece is then placed in a graphite crucible and heated to 1550�C. Hydrogen and

CO2 are then released from the sample. These gases in addition to dust is picked up

by the carrier gas which in this case is Nitrogen. A dust trap, oxidizing agents and

a molecular sieve removes dust and CO2, such that only Hydrogen and Nitrogon are

left. The thermal conductivity of the gas flow and a reference gas flow is measured,

and the di↵erence between these conductivities produces a signal corresponding to

the hydrogen content. The total hydrogen content in the sample can then be calcu-

lated from the time integral of the signal. In this analysis the hydrogen content is

calculated with an accuracy of 0.001 wppm.
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6 Results

6.1 Examination of microstructures in the Optical Microscope

In addition to the microstructure pictures supplied by ATI, new pictures were taken

in order to confirm the microstructures received. The OM pictures taken were

obtained using a LeicaTM � FEM4F optical microscope connected to a camera

and a computer. The microstructure images are displayed in figure 21a-21f. The

images obtained from the P3A01-1800 and P3A01-1850A alloys where taken at 100X

magnification due to their fine microstructure, and are showed in color because the

GBs were not visible in their respective gray scale images. The other microstructures

were imaged at 10X. These microstructures are displayed as gray scale images for

consistency, since the color and contrast varied between the alloys due to variations

in the thickness of the anodizing layers. The 56LH-1-OP alloy imaged in figure 21a

show some occasional course � particles, possibly particles formed during casting

which survived the homogenization step. This alloy is otherwise � free and the grain

size is relatively course. The 56LH-1-Piece-1 and Piece-2 alloys shown in figure 21c

and 21e both contain globular � particles, which are seen as white spots in the images.

The grain size is somewhat finer in the Piece-2 alloy than in the Piece-1 alloy. The

P3A01-1900 shown in figure 21b, show a course grain size and is completely �-free.

The P3A01-1850 and 1800 alloys displayed in figure 21d and 21f both show a very

fine grain size which can be seen from the calibration scales in the images. Both

microstructures contains numerous �-particles both at the GBs and in the grain

interiors. These particles are to be expected, since the precipitation of �-particles

are necessary in the TMP used to achieve these ultra fine grain sizes. The �-particles

are seen in the picture as white spots. In summary, all these microstructure were in

accordance with the microstructure images received from ATI-metals.
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(a) 56LH-1-OP: Standard alloy composi-
tion. Course grain size, occasional �-particles
(white).

(b) P3A01-1900: Low C/N, high Nb compo-
sition. Course grain size, no �-particles were
observed.

(c) 56LH-1-Piece-1: Standard alloy compo-
sition. Course grain size, with globular �-
particles (white).

(d) P3A01-1850: Low C/N, high Nb composi-
tion. Fine grain size, with globular �-particles
(white).

(e) 56LH-1-Piece-2: Standard alloy composi-
tion. Medium grain size, with globular �-
particles (white).

(f) P3A01-1800: Low C/N, high Nb composi-
tion. Fine grain size, with globular �-particles
(white).
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6.2 Estimation of grain size based on the OM pictures obtained

Based on the microstructure images obtained from the OM samples, the average

grain size in each microstructure was calculated according to the plane section

method described in ASTM 112e [27]. In this procedure, the number of grains

in an image is counted. Grains inside the image are counted as whole grains and

grains on the borderline are counted as half grains. Twins are not regarded as grains.

The calibration scale given in an image is then used to calculate the true area of

the imaged microstructure Asample, which is then divided by the number of grains

to yield the average area per grain. The square root of this area is then regarded as

the average grain diameter, which implies that all grains are assumed to be squares.

This is not the case in reality, but is accepted as a reasonable approximation, as

the grains take on various shapes and geometries. The calculation is summarized in

formula 19:

D =

vuut Asample

Ninside +
N

borderline

2

(19)

Where Ninside is number of grains inside the area imaged, Nborderline is the number

of gains on the edge and Asample is the real image area calculated from the image

dimensions and the calibration scale included in the image. This calculation is then

repeated for 3 di↵erent images from the same alloy. The resulting grain size is then

chosen as the average of these. Using this average value the ASTM number G is

defined as:

NASTM = 2G�1 (20)

This shows that the ASTM number G is a logarithmic measure where one number

larger means twice as small grains. The number NASTM is defined as the number
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of grains counted per square inch at 100X. The number of grains per square inch at

100x can be calculated according to equation 21:

NASTM =
2.542 · 100002·

1002 ·D2 (21)

Where 2.54 is cm/Inch, 10000 is the number of µm/cm and the number 100 accounts

for 100X magnification. The grain sizes measured, the average grain sizes and the

ASTM numbers calculated is summarized in table 6:

Table 6: Grain sizes calculated according to ASTM 112e.

Alloy 1 2 3 Average grain size ASTM number
56LH-1-OP 110.8µm 93.9µm 127.2µm 110.6µm 3.4

56LH-1-Piece-1 101.4µm 94.3µm 96.0µm 97.2µm 3.8
56LH-1-Piece-2 78.9µm 72.6µm 77.9µm 76.5µm 4.5
P3A01-1900 98.6µm 94.6µm 91.8µm 95.0µm 3.8
P3A01-1850A 11.8µm 11.3µm 11.3µm 11.5µm 9.9
P3A01-1800 11.8µm 9.2µm 11.7µm 10.9µm 10.0
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6.3 Smooth samples: Stress - Time plots

During tensile testing the load cell force was logged every 10s. These data series

were used to generate Stress - Time log plots from all the tensile tests. The Stress

- time plots are displayed in figure 22 - 33. The y - axis on each plot displays the

tensile stress level during testing, and the x - axis show the time in hours. The

loading steps were described in the previous Experimental section. As the stress

level reach higher levels, extensive creep typically occurs. The adjustment of the

creep can be seen as the fluctuations in stress level at each stress level. The fracture

stress recorded from each test was defined as the stress level at which the sample was

being adjusted to, including the load increase step up to this stress level. This, of

course overestimates the fracture strength as many of the samples fractured during

a load increase step. Since the overestimation happens for both the pre-charged and

hydrogen free sample, a comparison between the two can nevertheless still be done.

Some notes should be included about the plots presented: Sample 4 in figure 22,

sample 2 in figure 24 and sample 4 in figure 28 have been removed due to problems

with the potensiostatic setup in these in-situ tests. In these tests, the contact with

the reference electrode was lost during testing, which resulted in extensive corrosion

due to an anodic current supplied by the potensiostat. The loading signal recorded

for one of the P3A01-1850A reference samples shown in figure 31 was also lost due

to a software crash on one of the computers used. These problems are noted in

the figure texts. Only one reference sample from the P3A01-1900 alloy was tested

due to a short supply of samples machined from this alloy. This occurred when 4

samples from this alloy were destroyed during pre-charging, following an unexpected

Windows update executed by the computer which controlled the potensiostat. A

reference sample from this alloy was however tested in the project work preceding

this master thesis. This reference sample fractured at 128% of YS, and was included

in the fracture strengths summary to add some confidence to the reference fracture

strength in this alloy.
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Figure 22: Stress - time plot from the 56LH-1-OP samples pre-charged with hydrogen.
Sample 1 was started at 120% of YS, while the other samples were started at 116% of
YS. Sample 4 was mistakenly overloaded at the start of the experiment and has been
removed.
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Figure 23: Stress - time plot from the 56LH-1-OP reference samples.
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Figure 24: Stress - time plot from the 56LH-1-Piece-1 samples pre-charged with hy-
drogen. Sample 2 have been removed due to corrosion damage occurring when the
reference electrode lost contact. Two extra samples were pre-charged and tested to
validate the high fracture strengths recorded.
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Figure 25: Stress - time plot from the 56LH-1-Piece-1 reference samples. Both samples
reached ✏max at 152% and did not fracture. Both samples are however believed to
have been close to fracture because of the extensive necking observed in both samples.
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Figure 26: Stress - time plot from the 56LH-1-Piece-2 samples pre-charged with hy-
drogen. The premature fracture observed in sample 4 was particularly strange, given
the consistancy seen in sample 1-3. The hypothesis is that some sort of internal defect
have been present in sample 4.
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Figure 27: Stress - time plot from the 56LH-1-Piece-2 reference samples.
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Figure 28: Stress - time plot from the P3A01-1900 samples pre-charged with hydrogen.
Sample 1 was started at 100% of YS and sample 2-3 were started at 108% of YS.
Sample 4 has been removed due to corrosion damage occurring when the reference
electrode lost contact.
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Figure 29: Stress - time plot from the P3A01-1900 reference sample tested. Only one
sample was tested in this master thesis due to a shortage of P3A01-1900 samples for
reference testing.
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Figure 30: Stress - time plot from the P3A01-1850A samples pre-charged with hydro-
gen. Sample 1 was started at an initial stress of 100% of YS, while sample 2-4 was
tested with an initial stress of 108% of YS. Sample 2 and 3 were mistakenly loaded
to 100% of YS the first hour. This was corrected to 108% of YS for the remaining 3
hours of the initial period.
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Figure 31: Stress - time plot from the P3A01-1850A reference samples tested. The
load signal from sample-2 was lost due to a software crash on the computer. Sample-2
nevertheless fractured when being loaded from 120% to 124% of YS.
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Figure 32: Stress - time plot from the P3A01-1800 samples pre-charged with hydrogen.
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Figure 33: Stress - time plot from the P3A01-1800 reference samples. Its uncertain
wether the di↵erence between the fracture stresses in sample-1 and sample-2 is the
result of scatter, or if sample-1 contained an internal defect.

60



6.4 Smooth samples: Tensile fracture strengths

The fracture stresses recorded from the tensile tests are summerized in table 7 and 8.

Minutes to fracture are noted in the parenthesis displayed in the tables. (00) means

that a sample fractured during the load increase up to the stress level displayed.

Samples marked with ” - ” have been removed since they were destroyed when the

reference electrode lost contact. As noted earlier, two extra samples from the 56LH-

1-Piece-1 alloy were tested to confirm the high fracture stresses recorded in sample

1 - 4. In all the alloys examined, the pre-charged samples on average fractured at a

lower stress compared to the reference samples. The Standard deviation (SD) also

appears to be larger amongst the pre-charged samples.

Table 7: Fracture stresses recorded from the hydrogen free reference samples, expressed
as % of YS. Minutes to fracture are noted in the parenthesis.

Sample 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
1 136% (00) �152%1 124% (60) 124% (00) 124% (52) 112% (00)
2 136% (00) �152%1 120% (00) 128%2 124% (00) 116% (55)

Average 136% �152%1 122% 126% 124% 114%
SD 0.0% 0.0% 2.8% 2.8% 0.0% 2.8%

Table 8: Fracture stresses recorded from pre-charged samples expressed as % of YS.
Minutes to fracture are noted in the parenthesis.

Sample 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
1 132% (11) 148% (26) 112% (58) 116% (17) 116% (21) 112% (02)
2 128% (22) - 116% (20) 120% (00) 120% (00) 108% (00)
3 132% (07) 152% (05) 116% (15) 120% (00) 116% (00) 112% (01)
4 - 148% (00) 108% (120) - 116% (24) 112% (00)
5 140% (50)
6 152% (26)

Average 130.7% 148.0% 113.0% 118.7% 117.0% 111.0%
SD 2.3% 2.3% 3.8% 2.3% 2.0% 2.0%

1The 56LH-1-Piece-1 reference samples reached the maximum elongation allowed by the load cell: ✏
max

2This P3A01-1900 reference sample was included from the project work.
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The losses in fracture strengths expressed as % of YS are summarized in table 9.

It can be seen that the loss of fracture strength is rather moderate, at around 5 -

9 % of YS. This is still a significant loss though. No pre-charged samples fractured

below YS. Furthermore, no significant trend across the di↵erent microstructures and

compositions can be seen, given that there is a 2-3% standard deviation.

One of the pre-charged samples from 56LH-1-Piece-2 and one of the reference sam-

ples from P3A01-1800 fractured prematurely at a much lower stress levels than their

respective peers. These values distort the values of fracture strength losses measured

from these series, and results in a high loss of 9% YS for 56LH-1-Piece-2 and a low

loss of 3% YS for P3A01-1800. Given that a high scatter in fracture strengths is

unexpected especially in the reference samples, it is not unlikely that at least one

of these values may have been the result of some sort of defect in the sample. If

these premature fractures were indeed the result of internal defects of some sorts,

it is clear that these values should have been excluded. Table 10 show the losses

in fracture strengths if these two samples were excluded. It is seen that all the

alloy variants now exhibit a rather uniform loss of around 5 -7 % of YS. Although

the 5 - 7% loss of fracture strength is significant, there is still no significant trend

across the microstructures and compositions. Both table 9 and 10 indicate that the

fracture strength loss seen in relation to hydrogen embrittlement is only weakly if

not independent of composition and microstructure in Inconel-718.

Table 9: Average loss of fracture stress seen in the pre-charged samples relative to the
hydrogen free samples. The losses are expressed as % of YS loss for each alloy.

56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
Loss 5.3 % � 4.0% 9.0% 7.3% 7.0% 3.0%

Table 10: Average loss of fracture stress, where 56LH-1-Piece-2(Pre-charged-sample-4)
and P3A01-1800(Reference-sample-1) have been excluded

56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
Loss 5.3 % � 4.0% 7.3% 7.3% 7.0% 5.0%
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6.5 Loss of Reduction of Area

All the sample cross sections were measured before and after tensile testing. After

fracture the fracture areas were still roughly rectangular, which meant that the

fracture areas could be measured with reasonable accuracy by measuring the length

and width of the fractured surface. The percent wise reduction of area (RA) was

then calculated according to equation 22:

RA = 100 · Abefore � Aafter

Abefore

(22)

Where Abefore and Aafter are the cross section areas measured before and after the

tensile test. This procedure was repeated both for the tensile test samples with

hydrogen pre-charging, and those without. The percent wise loss of RA in the

pre-charged samples caused by hydrogen was calculated according to equation 23:

RAloss = 100 · RA0 �RAH

RA0
(23)

Where RA0 and RAH are the average RA values calculated for the tensile test

samples without and with hydrogen respectively. This number can then be used as

an indicator of the relative loss in ductility associated with hydrogen pre-charging.

The RAloss calculations are summarized in table 11, 12 and 13.

Table 11: RA0 values measured from the samples without hydrogen pre-charging

Sample 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
1 29.5% �32.6%1 34.2% 31.0% 31.8% 33.9%
2 27.1% �30.1%1 35.0% - 34.9% 38.5%

Average RA0 28.3% �31.4%1 34.6% 31.0% 33.4% 31.2%
SD 1.7% 1.7% 0.6% - 2.2% 3.9%

1The reference samples from 56LH-1-PIece-1 reached the maximum elongation of the load cell ✏
max

and
did not fracture.
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Table 12: RAH values measured from the samples with hydrogen pre-charging

Sample 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
1 23.3% 17.3% 16.4% 21.8% 7.1% 3.3%
2 18.4% - 9.6% 22.7% 16.0% 8.8%
3 20.9% 21.5% 11.5% 21.7% 17.6% 4.5%
4 - 28.1% 9.7% - 10.1% 13.1%
5 18.0%
6 14.5%

Average RAH 20.9% 19.9% 11.8% 22.1% 12.7% 7.4%
SD 2.5% 5.2% 3.2% 0.6% 4.9% 4.5%

Table 13: RAloss values calculated from the average RA0 and RAH values

56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
RAloss values 26.3% �36.6% 65.9% 28.9% 62.0% 76.3%

It is seen that all the alloy variants exhibit a large relative loss of reduction of

area when hydrogen was present. Some alloys even lost as much as 70% of RA.

Furthermore, its noted that finer grain sizes seen in the 56LH-1-Piece-2, P3A01-

1850A and P3A01-1800 variants seems to be correlated with larger loss of RA.

This may indicate that finer grains make the Inconel-718 alloy more susceptible to

hydrogen embrittlement, perhaps through increased GB di↵usion. A scatter plot is

included in figure 34, showing the RA values measured from the pre-charged and

hydrogen free samples. The maximum and minimum values measured are indicated

by the error bars. This plot shows that although there is a large scatter amongst

some of the alloy variants, the correlation between fine grains and large RAloss still

persists. The RAloss values calculated have been plotted in figure 35. The grain

sizes in the alloy variants have been included as well, illustrateing the trend.
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Figure 34: A scatter plot comparing the RA for all the alloys with and without hydrogen.
The values plotted are averages, with min and max values indicated by the error bars.
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Figure 35: A comparison between the di↵erent alloys showing percentage loss of RA due
to hydrogen pre-charging.
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6.6 Loss of Elongation (✏)

The elongation in all the samples were measured as well. This was done by measuring

the gauge length before testing, and the gauge length of the two fractured pieces

after fracture. The two pieces were measured on the same side and from the same

point on the fracture surfaces. The elongation is calculated according to equation

24.

✏ =
Lpart�1 + Lpart�2 � L0

L0
(24)

The percent wise loss of elongation due to hydrogen pre-charging can then calculated

according to equation 25.

✏loss = 100 · ✏0 � ✏H
✏0

(25)

The elongation calculations are summarized in table 14, 15 and 16. A large loss of

elongation (✏loss) can be seen across all the alloy variants tested. The ✏loss values

seem to be correlated with the grain sizes in the variants as well. This is the same

trend that was observed for the RA values. The 56LH-1-Piece-2, P3A01-1850A and

P3A01-1800 which have the finest grain sizes, exhibit losses of 65.9%, 62.0% and

76.3% respectively. There appears to be higher standard deviations in the elongation

measurements compared to the RA measurements. This may be caused by di↵erent

measuring errors associated with the two types of ductility measurements. A scatter

plot from the elongations measured is shown in figure 36, where the error bars

indicate the minimum and maximum values measured in each series. The loss of

elongation is displayed in figure 37. The grain sizes have been noted in the figure,

illustrating the trend of higher ductility loss in smaller grained variants.
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Table 14: ✏0 values measured for the samples without hydrogen pre-charging

Sample 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
1 30.1% 29.5% 24.0% 29.9% 16.0% 18.3%
2 29.9% 29.3% 25.3% - 20.0% 19.0%

Average ✏0 30.0% 29.4% 24.6% 29.9% 18.0% 18.7%
SD 0.1% 0.1% 0.9% - 2.9% 0.5%

Table 15: ✏H values measured for the samples with hydrogen pre-charging

Sample 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
1 15.8% 13.4% 11.2% 14.5% 5.8% 2.2%
2 15.6% 14.0% 9.6% 16.3% 12.4% 4.5%
3 14.9% 8.4% 8.9% 15.8% 11.1% 4.2%
4 - 28.1% 4.3% - 3.9% 8.3%
5 16.2%
6 11.5%

Average ✏H 15.4% 17.6% 8.5% 15.5% 8.3% 4.8%
SD 0.5% 6.3% 3.0% 0.9% 4.1% 2.5%

Table 16: ✏loss values calculated from the average RA0 and RAH values

56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
✏loss values 26.3% 40.1% 65.9% 28.9% 62.0% 76.3%
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Figure 36: A scatter plot comparing the elongation to fracture for all the alloys with and
without hydrogen. The values plotted are averages, with min and max values indicated
by the error bars.
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Figure 37: A comparison between the di↵erent alloys showing percentage loss of elongation
(✏loss) due to hydrogen pre-charging.
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6.7 Notched samples - Tensile results

The stress - time plots from the notched samples are shown in figure 38 and 39.

The purpose of these tests was to obtain time-lapse videos of the initiation and

propagation of the critical crack under CP in synthetic saltwater. The long constant

load segments of the stress-time plots are therefore the result of the e↵ort to film a

crack propagating at a constant load. The time-lapse videos obtained are included

in the electronic attachments submitted together with this master thesis. In both

the 56LH-1-OP sample and the P3A01-1900 sample, the critical crack was filmed

from initiation to failure. Hydrogen bubbles were seen evolving from the main crack

and nearby secondary cracks, as new active surface areas were exposed. In the

initial period of the time-lapse movies, the main crack also seemed to propagate

preferentially at the GBs. In the latter more rapid stage of crack propagation this

changed, and trans granular crack propagation was seen as well. The P3A01-1800

sample fractured before the critical crack could be identified. The movie from this

sample is nevertheless included in the electronic attachments as well. The tensile

fracture strengths recorded from the notched tensile tests are summarized in table

17, where the fracture stresses are given as % of YS. All the stresses are given as

engineering stresses, calculated across the reduced area at the notch.

Table 17: Tensile fracture strengths recorded from the notched samples, presented as %
of YS

56LH-1-OP P3A01-1900 P3A01-1800
Without H 142% 132% 128 %
With H 128% 122% 116%

A few points should be noted from the fracture strengths recorded. The first is that

the una↵ected fracture strengths measured in the reference samples are much higher

than in the smooth reference samples tested previously. Proposed explanations for

this are:
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• The size e↵ect: The deformed area in the notch is much smaller than the

entire gauge length deformed in the smooth samples. This results in a lower

statistical risk of strength limiting defects in the notched samples.

• A notch with 0.6mm depth and a tip radius of 0.3mm is not very sharp. This

means that the reduction in fracture stress caused by the stress intensification

is small.

• The larger cross sections on both sides of the notch resist and limit the poisson

contraction in the notch. This means that the cross section at the notch will

contract less than it otherwise had if the entire gauge length had the same

cross section as the notch. The di↵erence between engineering and true stress

therefore becomes less and a higher engineering fracture stress is recorded as

a result.

The loss of fracture strengths calculated from the notched samples are also larger.

This happens as the pre-charged samples fractured at the same stress as the pre-

charged smooth samples, while the reference samples exhibited a higher fracture

strength relative to the smooth samples. Some proposed explanations for this are:

• The reduced elongation and RA occuring in pre-charged samples, leaves less

room for the e↵ect of the poisson contraction restriction caused by the sur-

rounding cross sections. This prevents the pre-charged samples from achieving

the same degree of ”notch-strengthening” as the reference notched samples.

• The presence of a stress intensifier results in an increased transportation of

hydrogen to the crack tip, due to the presence of a stress gradient. This may

result a larger reduction of fracture strength in the notched samples, compared

with the pre-charged smooth samples. Since the notch is not particularly sharp,

its not certain if this is a significant e↵ect or not.
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Figure 38: Stress time plots from the tensile tests performed on notched samples without
hydrogen pre-charging.
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Figure 39: Stress time plots from the tensile tests performed on notched samples with
hydrogen pre-charging.
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6.8 Other tensile results

Sample-4 from the 56LH-1-OP alloy was accidentally loaded far above the intended

initial load during the initial loading step. A stress - time plot from this test is

displayed in figure 40. The overload happened as result of a calculation error in es-

timating the load corresponding to the right stress level intended. The stress applied

during this overload was even higher than the fracture strengths measured from the

other pre-charged samples from this alloy (stress peak at 140% of YS vs. fracture

at approx. 128% for the remaining samples). The test was nevertheless completed

and fracture occurred when the sample reached 144% of YS.

Despite the accidental and uncontrolled nature of this test, the resulting stress strain

curves give rise to some interesting indications with respect to both hydrogen em-

brittlement and creep in Inconel-718:

The first thing that is observed from the graph is that no creep followed after the

stress was corrected. This results from the strain hardening occurring during the

overloading step, which e↵ectively results in an increase of of the tensile yield stress

according to the Bauschinger e↵ect [3]. As cold creep occurs predominately above

the yield stress, this prevents creep from occurring until the previous loading peak

is approached again. This is seen in figure 40 as creep first starts to reemerge when

the sample reach 140% of YS. Creep have been concluded to be a prerequisite for

HISC to evolve in SDSS [30,41]. The drastically increased fracture strength obtained

after this accidental overload raises the question of wether this might be the case

for Inconel-718 as well. In should be emphasized that further research is needed to

confirm this, as the accidental overload test is no definitive proof in itself.
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However, should future testing show that work hardening prevents hydrogen em-

brittlement of Inconel-718 through the elimination of creep, it will open up the

possibility of new preventive measures against hydrogen embrittlement in Inconel-

718. One such measure could be to overload components slightly before service,

the e↵ect of which is called ”shakedown”. Again, it should be emphasized that the

results derived from this test should only be regarded as an indication, and that

further research is needed to document the proposed e↵ect.
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Figure 40: Stress - time plot from 56LH-1-OP pre-charged with hydrogen and overloaded
at start.
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6.9 Cathodic current measurements during tensile testing

During the in-situ tensile testing, the Cathodic Current (CC) was monitored and

logged electronically by the GamaryTM software on the computer. The intension for

these CC measurements was to correlate initiations of cracks on the sample surface

with peaks in the CC resulting from exposure of new active metal surfaces in the

cracks. At first this seemed promising. Figure 41 shows the CC curve obtained

from the two first hours of tensile testing of alloy P3A01-1900 pre-charged with hy-

drogen (Sample-2). At first it was though that the most significant peaks observed

(marked with red circles) in the CC were related to the initiation of new cracks. At

this stress however (108% of YS), no cracks were observed. Closer examination of

the experimental setup however, revealed that these peaks in the CC were instead

related to the re-injection of new electrolyte following a leakage in the electrolyte

chamber. The large CC peaks observed, where therefore caused by the increase in

convection resulting from these refilling procedures. To demonstrate this, electrolyte

was injected deliberately next to the sample surface, which resulted in the large peak

seen in the end of the graph (marked with green).

Further e↵ort was therefore made to avoid leakage and to prevent the need for

refilling the electrolyte. This was done by using a plastic film wrapped around the

sample areas in contact with the PC chamber, which proved partly e↵ective. Most

of the tensile tests avoided leakage, while leakage still persisted in others. At larger

strains, following significant poisson contraction of the sample cross sections, most

tensile tests encountered some leakage. This was particularly challenging to the CC

observations, as the leakage of electrolyte was often associated with a jump in CC.

This happens when the sample areas previously in contact with the PC chamber,

become exposed to the electrolyte. Figure 42 show a CC curve resulting from one of

the tests where no leakage occurred. Following the same logic, e↵orts were made to

link these peaks to crack initiations. These peaks (red) turned out to be the resulting

convection caused when larger hydrogen bubbles initially stuck on the sample sur-
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face, grew larger and gave way. This resulted in dragging of the electrolyte around

the bubbles. As seen from figure 42, these e↵ects are fairly periodically, which is to

be expected when bubbles continuously build up and give away from the same hy-

drogen evolution sites on the sample. The CC increase seen in the start of the graph

is associated with the initial load-up of the sample to its first initial starting load

(green). After these false peaks had been accounted for, only a steady state CC with

some minor fluctuation was left. It was therefore concluded that the CC increase

associated with a crack initiation was to small to be detected in the experimental

setup used.

Figure 41: A plot showing the cathodic current recorded during the two initial hours of
tensile testing of P3A01-1900 with pre-charging (Sample-2). Leakage and refillings are
marked with red.
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Figure 42: A plot showing the cathodic current recorded during the two initial hours of
tensile testing of P3A01-1900 with pre-charging (Sample-1). No leakage occurred. Large
bubble releases are marked with red.

6.10 In situ optical microscope images obtained during tensile testing

The microstructure in the samples were photographed in-situ using an optical mi-

croscope (OM). These images are aimed at showing the cracking behaviour and

hydrogen evolution taking place at each stress level. Images were taken both from

the pre-charged samples tested in seawater with CP, and from the reference sam-

ples tested in air. Some videos were also taken during the tensile tests. These are

included in the electronic attachment submitted together with this master thesis.

The pictures taken from the pre-charged samples were taken through the transpar-

ent PC chamber wall and the saltwater electrolyte. The brightness in some of these

pictures is therefore somewhat dark. The pictures taken from the reference samples

in air will therefore seem a little brighter in comparison. It should be noted that

the extra light reflection and glare seen in the reference samples are the result of the

medium which the sample surfaces were photographed through and not the amount

of deformation on the sample.
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6.10.1 56LH-1-OP

The images obtained from the pre-charged and hydrogen free samples from alloy

56LH-1-OP are shown in figure 43a - 43f and 44a - 44a respectively. Figure 43e

shows a newly initiated crack at 124% of YS. After initiation, hydrogen evolution

was observed to evolve from the crack. Figure 43f shows the same crack when the

stress level has been increased to 132% of YS. It can be seen that the crack has

grown into a much larger secondary crack. Cracks of visible size like the one shown

in figure 43e, often initiated at the stress levels around 120% and 124% of YS. Hy-

drogen bubbles evolving were always observed from freshly initiated cracks.

The images in figure 44a - 44f show the images obtained from the reference samples

tested in air. The reference samples from the 56LH-1-OP alloy fractured at 136% of

YS, roughly 5% higher than the average fracture stress in the pre-charged samples.

The interesting thing to note from figure 44a - 44f is that the initiation of cracks

first started at 132% - 136% of YS. This is close to the fracture stress and indicates

that only a very limited amount of secondary cracking occurs prior no fracture when

hydrogen is absent.

The presence of hydrogen is therefore seen to result in the initiation of multiple

secondary cracks at a stress level well below fracture stress. The cracks initiated in

the pre-charged samples were for the most part IG cracks. In all the cracks initiated

in saltwater with CP, hydrogen bubbles were seen evolving from the crack opening.
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(a) 56LH-1-OP: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

(b) 56LH-1-OP: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 128% of YS

(c) 56LH-1-OP: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 120% of YS

(d) 56LH-1-OP: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 132% of YS

(e) 56LH-1-OP: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 124% of YS

(f) 56LH-1-OP: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 132% of YS

Figure 43: Pictures taken from the 56LH-1-OP samples pre-charged with hydrogen.
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(a) 56LH-1-OP: Hydrogen free sample in air at
116% of YS

(b) 56LH-1-OP: Hydrogen free sample in air at
128% of YS

(c) 56LH-1-OP: Hydrogen free sample in air at
120% of YS

(d) 56LH-1-OP: Hydrogen free sample in air at
132% of YS

(e) 56LH-1-OP: Hydrogen free sample in air at
124% of YS

(f) 56LH-1-OP: Hydrogen free sample in air at
132% of YS

Figure 44: Pictures taken from the 56LH-1-OP reference samples.
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6.10.2 56LH-1-Piece-1

The images obtained from the pre-charged and hydrogen free samples from alloy

56LH-1-Piece-1 are shown in figure 45a - 45f and 46a - 46f respectively. This alloy

has a much more ductile behavior than the 56LH-1-OP and a larger YS - UTS stress

interval measured by % YS. The pre-charged samples fractured at 140 - 150% of

YS, whereas the hydrogen free reference samples reached the maximum load cell

elongation (✏max) at 152% without fracturing. Crack initiation in the pre-charged

samples started at 136% - 140% of YS, which is fairly close to the average fracture

strength of the pre-charged samples. Figure 45f shows a small crack initiated at

140% of YS. It should be noted that the crack-like features seen in figure 45b and

45d are twins, not actual cracks.

Figure 46a - 46f show the microstructure observed in the hydrogen free reference

samples. The reference samples showed no sign of crack initiations and reached ✏max

without fracturing.

Alloy 56LH-1-Piece-1 is the most ductile of the Inconel-718 variants tested in this

master. Furthermore, secondary cracks are only observed close to fracture stress of

the pre-charged samples. Hydrogen bubble were also seen evolving from these crack

openings. Since the secondary cracks first started to initiate close to the fracture

strength of the pre-charged samples, the resistance to secondary cracking in this

alloy appears to be better than that of 56LH-1-OP.
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(a) 56LH-1-Piece-1: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 116% of YS

(b) 56LH-1-Piece-1: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 128 of YS

(c) 56LH-1-Piece-1: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 120% of YS

(d) 56LH-1-Piece-1: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 132% of YS

(e) 56LH-1-Piece-1: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 124% of YS

(f) 56LH-1-Piece-1: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 140% of YS

Figure 45: Pictures taken from the 56LH-1-Piece-1 samples pre-charged with hydrogen.
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(a) 56LH-1-Piece-1: Hydrogen free sample in
air at 120% of YS

(b) 56LH-1-Piece-1: Hydrogen free sample in
air at 136% of YS

(c) 56LH-1-Piece-1: Hydrogen free sample in
air at 128% of YS

(d) 56LH-1-Piece-1: Hydrogen free sample in
air at 144% of YS

(e) 56LH-1-Piece-1: Hydrogen free sample in
air at 132% of YS

(f) 56LH-1-Piece-1: Hydrogen free sample in
air at 148% of YS

Figure 46: Pictures taken from the 56LH-1-OP reference samples.

82



6.10.3 56LH-1-Piece-2

The images obtained from the pre-charged samples from alloy 56LH-1-Piece-2 are

shown to the left in figure 47a, c and e while the hydrogen free reference samples are

shown on the right in figure 47b, d and f. Both the pre-charged and the hydrogen

free samples from this alloy exhibited very limited amount of secondary cracking,

even when the stress was close to fracture. One occasional small secondary crack

was observed and filmed. This video clip is included in the electronic attachment.

No secondary cracks were observed in the reference samples.

Very little secondary cracking was observed in the pre-charged samples from this

alloy. This does not mean that the alloy is more resistant to hydrogen embrittle-

ment though, as obvious from the RA and ✏ losses presented earlier.
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(a) 56LH-1-Piece-2: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 108% of YS

(b) 56LH-1-Piece-2: Hydrogen free sample in
air at 108% of YS

(c) 56LH-1-Piece-2: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 112% of YS

(d) 56LH-1-Piece-2: Hydrogen free sample in
air at 112% of YS

(e) 56LH-1-Piece-2: Pre-charged sample at -
1050 mV Ag/AgCl in saltwater at 116% of YS

(f) 56LH-1-Piece-2: Hydrogen free sample in
air at 116% of YS

Figure 47: Pictures taken from the 56LH-1-Piece-2 pre-charged samples (on the left) and
reference samples (on the right)
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6.10.4 P3A01-1900

The images obtained from the pre-charged and hydrogen free samples from alloy

P3A01-1900 are shown in figure 48a - 48f and 49a - 49f respectively. Figure 48c

shows a bubble of hydrogen evolving from the sample surface, possibly at a particle

or some local roughness. This picture was taken at 112% of YS. Figure 48e show

the same area at 116% of YS, where a large crack have initiated. Hydrogen is still

evolving from the interior of the crack (not shown in the picture). Figure 48b shows

a surface crack formed at the edge at 116% of YS. Nearby secondary cracks have

formed around this crack as well. This large crack turned out to be the critical crack

resulting in failure. Figure 48d and 48f show the crack at 116% of YS after 15 and

30 minutes respectively.

The hydrogen free reference sample displayed in figure 49a - 49f showed no cracks,

even at 120% of YS. The sample fractured at 124% of YS, and even then, no sec-

ondary cracks were observed in the SEM (”Secondary cracks observed in SEM”

subsection).

This alloy is by far the alloy variant which showed largest amount of secondary

cracking as a resulting of hydrogen pre-charging. This is interesting as the alloy

showed the same ductility loss as 56LH-1-OP which have the same microstructure.

The large degree of hydrogen e↵ected secondary cracking may be a result of the low

C/N content: C and N normally segregate at the GB. When these species are as

good as absent, there my be more sites for hydrogen atoms to occupy at the GB,

leading to increased hydrogen assisted secondary cracking at the GB’s.
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(a) P3A01-1900: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 108% of YS

(b) P3A01-1900: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

(c) P3A01-1900: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 112% of YS

(d) P3A01-1900: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

(e) P3A01-1900: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

(f) P3A01-1900: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

Figure 48: Pictures taken from the P3A01-1900 samples pre-charged with hydrogen.
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(a) P3A01-1900: Hydrogen free sample in air
at 108% of YS

(b) P3A01-1900: Hydrogen free sample in air
at 116% of YS

(c) P3A01-1900: Hydrogen free sample in air
at 112% of YS

(d) P3A01-1900: Hydrogen free sample in air
at 120% of YS

(e) P3A01-1900: Hydrogen free sample in air
at 116% of YS

(f) P3A01-1900: Hydrogen free sample in air
at 120% of YS

Figure 49: Pictures taken from the P3A01-1900 reference samples.
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6.10.5 P3A01-1850A

The images obtained from the pre-charged and hydrogen free samples from alloy

P3A01-1850A alloy are shown in figure 50a - 50f and 51a - 51f respectively. Because

of the ultra fine grain size in this alloy, cracks were not possible to observe. It is

therefore uncertain how the hydrogen free and pre-charged samples compare. The

visible hydrogen evolution at various sites nevertheless increased at the highest stress

levels, which may indicate that small cracks have been initiated. An example of this

is shown in figure 50b where a large hydrogen bubble is forming on some sort of

crack, particle or irregularity.

6.10.6 P3A01-1800

The same results was found for the P3A01-1800 alloy, which has an almost identical

microstructure as P3A01-1850A. The images obtained from the pre-charged and

hydrogen free samples from alloy P3A01-1850A alloy are shown in figure 52a - 52d

and 53a - 53b respectively. Not much can be seen from the pictures, due to the fine

grain size.
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(a) P3A01-1850A: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 104% of YS

(b) P3A01-1850A: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 112 of YS

(c) P3A01-1850A: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 108% of YS

(d) P3A01-1850A: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

(e) P3A01-1850A: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

(f) P3A01-1850A: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

Figure 50: Pictures taken from the P3A01-1850A samples pre-charged with hydrogen.
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(a) P3A01-1850A: Hydrogen free sample in air
at 108% of YS

(b) P3A01-1850A: Hydrogen free sample in air
at 116% of YS

(c) P3A01-1850A: Hydrogen free sample in air
at 112% of YS

(d) P3A01-1850A: Hydrogen free sample in air
at 120% of YS

(e) P3A01-1850A: Hydrogen free sample in air
at 116% of YS

(f) P3A01-1850A: Hydrogen free sample in air
at 120% of YS

Figure 51: Pictures taken from the P3A01-1850A reference samples.
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(a) P3A01-1800: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 104% of YS

(b) P3A01-1800: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 112 of YS

(c) P3A01-1800: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 108% of YS

(d) P3A01-1800: Pre-charged sample at -1050
mV Ag/AgCl in saltwater at 116% of YS

Figure 52: Pictures taken from the P3A01-1800 samples pre-charged with hydrogen.

(a) P3A01-1800: Hydrogen free sample in air
at 116% of YS

(b) P3A01-1800: Hydrogen free sample in air
at 116% of YS

Figure 53: Pictures taken from the P3A01-1800 reference samples.
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6.11 Fracture surfaces imaged in SEM

6.11.1 56LH-1-OP

Figure 54 shows an image of the fracture surface resulting from a pre-charged sample

from 56LH-1-OP. The central areas of the fracture surface are dominated by ductile

fractures. The ductile fracture is evident from the dimpled surface with occasional

broken particles, which indicates fracture from MVC. The upper and lower right

areas in the picture show some brittle features, with both IG and ductile fractures.

Figure 55 shows a higher magnification image of this IG fracture area. The IG

fractures mode close to the surface can be seen clearly here, as the ”rocky” tex-

ture is a typical indicator of IG fractures. This texture occurs when the fracture

propagates along the GBs, leaving entire grain facets exposed on the fracture surface.

Moving further away from the surface, the fracture mode shifts from completely

IG over to a mixture of brittle and ductile features. Figure 56 shows an image taken

from a fracture area consisting of both ductile and IG features. This fracture area is

characterized by a mix of ”rocky” and dimpled textures. The ductile fracture seen

in the centre of all the 56LH-1-OP samples tested is displayed in figure 57. In this

image the fracture area is scattered with small ripples and dimples, indicating plas-

tic deformation prior to fracture. Some larger voids containing fractured particles

are also observed. These features are strong evidence of ductile fracture occurring

according to MVC.

In this mechanism micro voids initiates at the interface of hard secondary parti-

cles like MC-carbides or �-particles during deformation. Fracture occurs when these

micro voids start to grow and coalesce. The triaxial stress created between the voids

pulls and elongates the matrix into the dimpled fracture surface seen. The ductile

fracture displayed in figure 57 is characteristic of the ductile fracture observed in

the centre of all the alloys examined in this study, both with and without hydrogen.
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All the pre-charged 56LH-1-OP samples exhibited brittle IG fractures around the

edge of the fracture surface, and ductile fracture in the central regions. This is to be

expected as hydrogen is only able to di↵use a limited distance into the sample during

pre-charging. The hydrogen free reference samples from 56LH-1-OP did not show

any brittle features and all showed a completely ductile fracture surface scattered

with dimples.

Figure 54: SEM image (171X) taken from 56LH-1-OP Sample-2 pre-charged
with hydrogen. Ductile fracture is seen in the centre while the edge exhibits IG
fracture.
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Figure 55: SEM image (831X) taken from 56LH-1-OP Sample-1 pre-charged with
hydrogen. The IG fracture at the edge is seen clearly from the ”rocky” features.

Figure 56: SEM image (831X) taken from 56LH-1-OP Sample-3 pre-charged with
hydrogen. The image shows a mixture of IG and ductile features.
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Figure 57: SEM image (1020X) taken from 56LH-1-OP Sample-4 pre-charged
with hydrogen. The picture is taken from the centre of the sample. A dimpled
fracture surface with occasional broken particles left in the larger micro voids.

6.11.2 56LH-1-Piece-1

The fracture resulting from one of the 56LH-1-Piece-1 samples pre-charged with

hydrogen is shown in figure 58. The areas close to the edge seen in the top of the

picture exhibit an IG fracture, characterized by its ”rocky” texture. The central

areas still exhibit a ductile fracture with dimples and micro voids, similar to the

ductile fracture presented for 56LH-1-OP in figure 57. The brittle IG area is shown

in figure 59. A large facet can be seen resulting from a large grain fracturing along

its GB. The hydrogen free reference samples from this alloy exhibited a completely

ductile fracture, similar to the fracture surface displayed in figure 57.
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In summary, all the features describes from the SEM images taken from 56LH-1-OP

can also be found in 56LH-1-Piece-1. This is not surprising as the the two alloys have

similar composition and grain size. The 56LH-1-Piece-1 contains some �-particles,

but these are course, far apart and are not located along GBs. They are therefore

not expected to a have a large e↵ect on the hydrogen embrittlement.

Figure 58: SEM image (253X) taken from 56LH-1-Piece-1 Sample-5 pre-charged
with hydrogen. The central areas show ductile behavior, while mixed ductile and
IG fractures can be seen close to the edges.
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Figure 59: SEM image (650X) taken from 56LH-1-Piece-1 Sample-5 pre-charged
with hydrogen. A completely IG fracture can be seen close to the edge, as a large
grain has fractured along its grain boundary leaving the facet seen in the image
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6.11.3 56LH-1-Piece-2

The fracture surface resulting from one of the pre-charged samples from 56LH-1-

Piece-2 (Sample-1) is shown in figure 60. The left area close to the edge exhibits

a completely IG fracture. The central area is dominated by ductile behavior, seen

as dimpled textures from MVC. A higher magnification image is displayed in figure

61, showing the IG area identified. The facets and ”rocky” textures indicate an

IG fracture mode. The hydrogen free reference samples from alloy 56LH-1-Piece-2

showed a completely ductile fracture of the type presented previously in figure 57.

The grain size in this alloy is slightly finer then the grain size in the two preceding

alloys examined, but it contain a similar amount and distribution of �-particles as

the 56LH-1-Piece-1 alloy.

In summary, the embrittlement e↵ect seen in 56LH-1-Piece-2 is similar to the em-

brittlement seen in ally 56LH-1-OP and 56LH-1-Piece-1. As the 56LH-1-Piece-2

only have a slightly finer grain size this is not surprising, since the microstructure

and composition is otherwise the same.
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Figure 60: SEM image (176X) taken from 56LH-1-Piece-2 Sample-1 pre-charged
with hydrogen. An IG fracture area can be seen to the left.

Figure 61: SEM image (520X) taken from 56LH-1-Piece-2 Sample-1 pre-charged
with hydrogen. The image shows the IG fracture are close to the edge.
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6.11.4 P3A01-1900

The fracture resulting from one of the pre-charged samples from P3A01-1900 (Sample-

2) is shown in figure 62. The upper right area exhibits an IG fracture, with its facets

and ”rocky” features. The central areas of the fracture surface is dominated with

dimpled fractures, characterized by a dimpled texture. A higher magnification im-

age of the IG area is shown in figure 63, displaying the ”rocky” texture more clearly.

In contrast to the previous alloys presented, a significant proportion of the fracture

areas from this alloy consisted of a mixture of IG fracture and extensive ductile

slipping. One such area is displayed in figure 64, showing a fracture surface with

significant embrittlement, yet with limited amounts of ductility even on the appar-

ently brittle facets. A higher magnification image of this area is shown in figure 65,

where the slip planes can be seen from the step-wise texture. The hydrogen free

reference samples from this alloy exhibited a completely ductile fracture, similar to

the fracture surface displayed in figure 57.

In summary, alloy P3A01-1900 also exhibits hydrogen embrittlement, as evident

from the IG fracture areas around the edge. The fraction of embrittled area is also

roughly the same as in the previously presented alloys. The alloy separates itself, as

extensive slipping along discrete crystallographic planes appears to occur together

with the IG fractures in the hydrogen e↵ected areas. This might be a result of the

reduced carbon and nitrogen content in this alloy. These interstitial elements are

very e↵ective dislocation pinners, and interfere with slip systems during deforma-

tion. Their absence may therefore be what enables extensive slipping along discrete

crystallographic planes in this alloy.
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Figure 62: SEM image (187X) taken from P3A01-1900 Sample-2 pre-charged
with hydrogen. IG features can be seen close to the edge.

Figure 63: SEM image (500X) taken from P3A01-1900 Sample-2 pre-charged
with hydrogen. IG features are seen from the ”rocky” textures.
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Figure 64: SEM image (1000X) taken from P3A01-1900 Sample-4 pre-charged
with hydrogen. A mixture of IG fracture and extensive slipping can be seen.

Figure 65: SEM image (3000X) taken from P3A01-1900 Sample-4 pre-charged
with hydrogen. The slip planes can be seen from the ”step-wise” texture.
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6.11.5 P3A01-1850A

The fracture area resulting from one of the pre-charged samples from P3A01-1850A

(Sample-2) is shown in figure 66. The image shows an IG fracture area in the lower

part of the image, extending up towards the center of the fractured sample. Ductile

areas are seen on the left and upper right areas. The IG fracture zone is seen ex-

tending a long way towards the centre of the fractured sample. Medium and higher

magnification images of this IG fracture area are displayed in figure 67 and 68. The

first picture shows the distinctive ”rocky” texture that is typically observed from IG

fractures. The second pictures shows a higher magnification of this area. Since the

grains in alloy P3A01-1850A and P3A01-1800 are very small compared to the other

alloys, the IG fracture areas can easily be mistaken for ductile dimples. Even the

high magnification picture in figure 68 shows some resemblance of a ductile fracture

surface. A true ductile fracture surface from P3A01-1850A is included in figure 69

for comparison. This picture also shows the broken particles left in some of the dim-

ples, strong indicators of MVC. Comparing these image to the brittle zone shown

in figure 68 suggests that the fracture surface in figure 68 could be a mixture of IG

and ductile fractures. The central areas of the pre-charged samples and all the ref-

erence samples from P3A01-1850A exhibited ductile fractures like the one presented

in figure 69.

In summary, alloy P3A01-1850A also shows embrittlement as a result of hydro-

gen pre-charging. Furthermore, the IG fractures seen in this alloy also extends

much further into the fracture surface. This is believed to the result of the ultra fine

grain size in this alloy, which enhances hydrogen di↵usion along the GBs during pre-

charging. This alloy also displays a very sharp shift from ductile to brittle fracture

at the ductile - brittle transition. This can be a result of the numerous �-particles

scattered along the GBs in this alloy. These particles are associated with increased

hydrogen embrittlement [26, 35,36].
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Figure 66: SEM image (154X) taken from P3A01-1850A Sample-4 pre-charged
with hydrogen. An IG fracture area is seen extending from the bottom.

Figure 67: SEM image (1000X) taken from P3A01-1850A Sample-3 pre-charged
with hydrogen. An image taken from the ”rocky” IG fracture area.
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Figure 68: SEM image (5000X) taken from P3A01-1850A Sample-3 pre-charged
with hydrogen. The IG area appears to be a mixture of IG and ductile features.

Figure 69: SEM image (4180X) taken from P3A01-1850A Sample-3 pre-charged
with hydrogen. A completely ductile fracture from the central area is seen.
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6.11.6 P3A01-1800

The fracture surface resulting from a pre-charged sample from P3A01-1800 (Sample-

2) is shown in figure 70. With its ultra fine grain size, also this alloy shows the same

very distinct areas of IG fractures. Higher magnification images of the IG fracture

areas in P3A01-1800 are shown in figure 71 and 72. The fracture surfaces seen

in these pictures are almost perfect textbook examples of IG fractures, with sharp

faceted structures resulting from fracture along the GBs. When comparing the IG

fracture seen in P3A01-1800 in figure 72 with the IG area observed in P3A01-1850A

in figure 68, it appears that the P3A01-1800 alloy is even more embrittled than the

P3A01-1850A alloy. The ductile fracture areas in both the pre-charged and hydro-

gen free samples of P3A01-1800 were completely ductile, and similar to the fracture

surface presented in figure 69.

Just as the P3A01-1850A alloy did, the P3A01-1800 alloy showed a sharp tran-

sition from ductile to brittle IG fracture. The IG fracture depth is deep in this alloy

as well, exceeding 1mm measured the left side in figure 70. The reasons for these fea-

tures are the same as those proposed for P3A01-1850A, since their microstructures

are the same.
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Figure 70: SEM image (233X) taken from P3A01-1800 Sample-2 pre-charged
with hydrogen. An IG fracture area is seen to the left.

Figure 71: SEM image (1500X) taken from P3A01-1800 Sample-2 pre-charged
with hydrogen. The IG fracture surface is identified form its ”rocky” texture.
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Figure 72: SEM image (5000X) taken from P3A01-1800 Sample-2 pre-charged
with hydrogen. Under higher magnification, the IG fracture area is an almost
perfect textbook example of an IG fracture, with sharp facets resulting from
fracture along the GBs.
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6.12 Depth if IG fracture

The depth of IG [38] fracture was examined in all of the fracture surfaces resulting

from the pre-charged samples. On each sample the maximum IG depth was mea-

sured from all 4 sides of the sample. The depth of IG fracture in each samples was

then defined as the average value of the non zero IG depths. In this way only the

areas with IG fracture were included the IG depth statistics. Zero values resulting

from IG free edges on the fracture surfaces are then excluded, and thereby prevented

from causing an artificially high variance in the statistics. All the hydrogen e↵ected

fracture surfaces contained edges completely free of IG fractures. Adding zero val-

ues resulting from these areas were therefore not considered to contribute in any

constructive way to the statistical image formed. The resulting IG depths measured

are summarized in table 18. The results are also plotted in figure 73 together with

the ASTM number measured in each alloy. The standard deviation measured in the

samples are market through the error bars. The ASTM numbers are plotted on a

secondary axis. Only the two extra samples from 56LH-1-Piece-1 are included in

these statistics, since sample 1-4 did not show any IG fracture areas.

The significantly higher IG depths observed in the fine grained P3A01-1850A and

P3A01-1800 alloys, indicate that these alloys have a much greater permeability with

respect to hydrogen. This is probably the result of increased GB di↵usion of hy-

drogen during pre-charging due to the ultra fine grain sizes in these alloys. This is

supported by the almost perfect correlation between IG depth and the ASTM grain

size number G seen in figure 73.
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Table 18: Non-zero IG depths measured from the hydrogen e↵ected fracture surfaces.

Sample nr: 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
1 294µm 308µm 550µm 273µm 1500µm 1481µm
2 333µm 355µm 302µm 303µm 1304µm 1889µm
3 264µm - 575µm 203µm 1113µm 1296µm
4 424µm - 271µm - 1556µm 1526µm

Average 326µm 331µm 397µm 260µm 1317µm 1548µm
SD 172µm 172µm 184µm 126µm 435µm 248µm
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Figure 73: The average IG depth in µm from samples pre-charged with hydrogen (blue).
The ASTM number is plotted on a secondary axis (red).
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6.13 Secondary cracks examined in SEM

Fractured samples from both pre-charged and hydrogen free samples were examined

for secondary cracks in SEM. Images obtained from the pre-charged and hydrogen

free samples are displayed in figure 75a-75f and 74a-74f respectively. The di↵erence

in secondary cracking seen in the pre-charged samples relative to the reference sam-

ples can be seen clearly, as no cracks were found in the reference samples while all

the fractured pre-charged samples contained secondary cracks. Most of the cracks

identified had lengths of similar magnitude as the grain size in each alloy. Longer

cracks were found in the course 56LH-1-OP, 56LH-1-Piece-1 and P3A01-1900 vari-

ants. The largest secondary cracks were found in the P3A01-1900 variant, where

cracks exceeding 1mm were identified. The fine grained P3A01-1800/1850A variants

contained fewer and much smaller secondary cracks, seen from the high magnifica-

tion in figure 75f and 75d.

The secondary crack examinations show that hydrogen not only reduces the fracture

strength and ductility, but that it also causes the initiation of numerous secondary

cracks prior to fracture. This was also indicated by the in-situ OM picture presented

earlier. Since secondary cracks may initiate and grow at lower stress levels than the

fracture stress recorded in this thesis, they pose a potential threat to the integrity

of an Inconel-718 component subjected to CP at high stresses.
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(a) 56LH-1-OP reference sample: SEM image
(500x), no secondary cracks can be seen on the
surface of the fractured sample.

(b) P3A01-1900 reference sample: SEM image
(500x), no secondary cracks are seen on the
surface of the fractured sample.

(c) 56LH-1-Piece-1 reference sample: SEM im-
age (200x), no secondary cracks can been seen
on the surface of the fractured sample.

(d) P3A01-1850 reference sample: SEM image
(2000x), no secondary cracks can been seen on
the surface of the fractured sample.

(e) 56LH-1-Piece-2 reference sample: SEM im-
age (500x), little or no secondary cracks can
been seen on the surface of the fractured sam-
ple.

(f) P3A01-1800 reference sample: SEM image
(500x), little or no secondary cracks can be seen
on the surface of the fractured sample.
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(a) 56LH-1-OP pre-charged sample: SEM im-
age (1050X) showing inter granular secondary
cracks.

(b) P3A01-1900 pre-charged sample: SEM im-
age (250X) showing inter granular secondary
cracks.

(c) 56LH-1-Piece-1 pre-charged sample: SEM
image (1000X) showing inter granular sec-
ondary cracks.

(d) P3A01-1850 pre-charged sample: SEM im-
age (1400X) showing inter granular secondary
cracks.

(e) 56LH-1-Piece-2 pre-charged sample: SEM
image (1300X) showing inter granular sec-
ondary cracks.

(f) P3A01-1800 pre-charged sample: SEM im-
age (5000X) showing inter granular secondary
cracks.
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6.14 Hydrogen melt extraction analysis

After tensile testing, the pre-charged samples were stored in a freezer at -19�C.

One sample from each alloy was selected for hydrogen melt extraction analysis at

SINTEF. The purpose of these analysis was to explore wether the increased embrit-

tlement in some of the microstructures were a result of more hydrogen absorption,

or if the same amount of hydrogen weakened the microstructures more. The results

from the hydrogen melt extraction tests are summarised in table 19. The values are

also displayed graphically in figure 76.

For all the alloys except 56LH-1-Piece-1, the hydrogen concentrations seems to cor-

relate nicely with the losses in ductility presented earlier. This indicates that the

extra susceptibility seen in the fine-grained alloys may have more to do with the

extra GB di↵usion in these alloys than with the microstructures themselves.

All the samples pre-charged in this study were pre-charged as 4 samples in each

pre-charging chamber. The 56LH-1-Piece-1 sample analysed was however one of the

two extra samples from this alloy. These were pre-charged as 2 samples together in

a pre-charging chamber. This might explain higher value measured in this sample.

Table 19: Hydrogen concentration in Wppm measured by hydrogen melt extraction at
SINTEF

Alloy 56LH-1-OP 56LH-1-Piece-1 56LH-1-Piece-2 P3A01-1900 P3A01-1850A P3A01-1800
Wppm 7.18 17.52 12.83 9.42 11.56 16.41
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Figure 76: Graphical illustration of the Hydrogen Melt Extraction results. The value
measured from the 56LH-1-Piece-1 sample has been marked in red, since the higher value
is believed to be the result of the pre-charging conditions and not the microstructure itself.
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7 Discussion

7.1 The e↵ect of hydrogen on the mechanical properties of Inconel-718

All the pre-charged Inconel-718 samples showed a drop in the fracture stress of ap-

proximately 5-7% of YS, corresponding to a drop of in the range 50 - 100Mpa. This

is only a moderate drop in fracture stress, as all the fracture stresses recorded were

far above YS. No significant trend was observed between the alloy variants with

respect to loss of fracture strengths. It should be noted that the polished samples

used in this study means that the fracture stresses obtained are artificially high rel-

ative to samples with a more realistic roughness. The slow di↵usion of hydrogen in

Inconel-718 meant that only a portion of the sample cross sections were embrittled.

Because of these points, the fracture strength of Inconel-718 may potentially drop

even further if the samples had been saturated with hydrogen and a more realistic

roughness had been introduced.

The embrittlement of Inconel-718 was seen best form the losses of elongation and RA.

While only moderate drops in fracture strengths were recorded, losss of elongation

and RA as high as 70% were observed in the alloys 56LH-1-Piece-2, P3A01-1850A

and P3A01-1800. The losses in ductility showed a clear correlation with the grain

sizes in the alloy variants. Finer grains were correlated with increased loss of elonga-

tion and RA. It was believed that the increased embrittlements seen in these alloys

was the result of more GB di↵usion of hydrogen occurring in these alloys during the

pre-charging step. This was confirmed by the hydrogen melt extraction analysis.

On the other hand it was observed that far less secondary cracking occurred in the

pre-charged fine grained variants. This could be related to the fact that fine grained

microstructures initially have a better fracture toughness, which resist the initiation

of secondary crack better.
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The e↵ect of grain size on HISC in Inconel-718 therefore appears to be twofold;

while finer grains results in better fracture toughness and less initiation of cracks, it

also allows for increased GB di↵usion of hydrogen. From the SEM observations of

the fractured samples and the following IG depth measurements, it was shown that

large areas of IG fracture can result from the increased GB di↵usion of hydrogen.

In the end, there is not much help in a better resistance to secondary cracking if

a component fractures without plastic deformation during an overload as a result

of IG fracture. The fine grained alloys examined in this study should therefore be

avoided in components exposed to CP over longer periods of time.

Despite the moderate drop in fracture stress, the course grained variants 56LH-1-OP

and 56LH-1-Piece-1 both fracture far above YS and with a substantial amount of

plastic deformation prior to fracture. This means that these alloy are still far bet-

ter choices than many stainless steel alternatives for components exposed to harsh

environments and subjected to CP. As long as the component is not loaded above

YS (or kept below, say 80% of YS as a precaution) and severe stress intensifiers are

avoided in the design, hydrogen embrittlement should not be a problem. The prob-

lem arises however if a component is accidentally overloaded after years of service, or

if stress intensifiers are present to raise the stress higher than the YS locally. Hydro-

gen embrittlement should then be considered as a potential threat to the component.

Since cold creep is e↵ectively a form of plastic deformation, it can be argued that

dislocation movement resulting from cold creep could assist hydrogen transport and

embrittlement according to the HELP mechanism. The accidental overload dis-

cussed in the ”Other tensile results” subsection gave some hint that cold creep may

be an important contributing factor to HISC in Inconel-718. If HISC fractures can

be prevented by shakedown treatments prior to installation, it would certainly be

worth looking into.
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7.2 The e↵ect of hydrogen on the cracking and fracture behaviour of

Inconel-718

All the pre-charged samples showed areas of IG fracture, while all the reference sam-

ples fractured in a completely ductile manner. The IG fracture areas were observed

close to the edges were the hydrogen concentration is expected to be largest. IG

fractures are caused by the hydrogen atoms segregated at the GBs, since the seg-

gregated hydrogen atoms results in localized plasticity and early fracture according

to the HELP mechanism.

In the pre-charged samples, extensive secondary cracking also occurred. These

cracks initiated at stress levels lower than the fracture stresses measured. The

secondary cracks were observed in the in-situ optical microscope pictures and from

the secondary cracks observed in SEM. Most of the secondary cracks examined were

IG, but some cracks also initiated at secondary particles. In-situ time-lapse videos

were obtained, showing cracks propagating to failure during CP in seawater. These

videos demonstrate how hydrogen evolves from the newly formed crack tips, poten-

tially causing more embrittlement. The amount of secondary cracking was largest in

the course grained alloys, while very little secondary cracks were observed in the fine

grained P3A01-1850A and P3A1-1800 variants. This was attributed to the higher

intrinsic fracture toughness expected in fine grained microstructures.

Alloy P3A01-1900 (High Nb, low C/N) was compared with the commercial grade

56LH-1-OP (standard composition) to examined the e↵ect of the high Nb low C/N

content. Unusually large secondary cracks were observed in the fractured P3A01-

1900 samples which had been pre-charged. This alloy had the largest secondary

cracks by far, with multiple secondary cracks exceeding 1mm. The secondary cracks

observed in the 56LH-1-OP alloy was no where close to these lengths, with typi-

cal lengths of 100, 200 and 300µm. The increased amount of secondary cracking in

P3A01-1900 was attributed to the absence of C and N at the GBs: These interstitial
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elements will often be segregated at the GBs, and can occupy sites where hydrogen

otherwise would have been located. The absence of C and N therefore leaves more

room for hydrogen atoms which can result in more secondary cracks. Despite the

large secondary cracks, alloy P3A01-1900 did not behave any di↵erent than 56LH-

1-OP with respect to loss of fracture strength, RA and elongation. This suggests

that the e↵ect of the high Nb low C/N composition is only minor.
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7.3 Further work

Since the relationship between cold creep and hydrogen embrittlement in Inconel-

718 has not been examined yet, it would be a natural topic for future work. To

establish this relationship is important since cold creep can occur slightly below YS

as well. The accidental overload of one of the 56LH-1-OP gave some hint that an

overload shakedown can be one possible approach to achieve better HISC resistance

in Inconel-718. This is an interesting concept which should be investigated and doc-

umented, as it provides a potential way to reduce the embrittlement resulting from

hydrogen in Inconel-718.

Because of the slow di↵usivity in Inconel-718, time becomes an important factor. It

can therefore be di�cult to access wether the Inconel-718 is safe against HISC or

not. In order to develop a more complete understanding of the HISC susceptibility

of Inconel-718, more comprehensive modelling tools are needed. A hydrogen trans-

port model of a stressed Inconel-718 component could be one place to start. This

model should incorporate the di↵usion of hydrogen in a stress gradient field as well

as the transportation of hydrogen atoms by dislocation movements resulting from

cold creep. Once the concentration profile resulting from a given load, geometry,

temperature and time can be predicted accurately, it can be combined by the KIc -

H[Wppm] relationship established by Hicks [25] to calculate the distribution of local

fracture toughnesses. This distribution can then be in fracture mechanic models to

assess the integrity and reliability of the Inconel-718 component.

The goals described require a lot of experimental and theoretical work to be ac-

complished. The di↵usion model will have to be fitted to experimental data from

hydrogen di↵usion in stress gradients, and the surface fugacity of hydrogen at vari-

ous galvanic potentials also has to be determined. Such a model will nevertheless be

a valuable tool, as it can be used predict the HISC susceptibility of an Inconel-718

component subjected to CP.
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8 Conclusion

• Hydrogen embrittlement occurred in all the Inconel-718 variants tested. The

embrittlement was seen from the IG fracture surfaces examined in the SEM.

• Hydrogen embrittlement resulted in a moderate loss in fracture stress corre-

sponding to around 5-7% of YS. This number may increase if the pre-charging

time is increased or if a surface roughness is introduced.

• Finer grains were correlated with higher ductility losses in the presence of

hydrogen. RAloss and ✏loss values as high as 70% were measured from the fine

grain variants 56LH-1-Piece-2, P3A01-1850A and P3A01-1800.

• The severe embrittlement of the fine grained microstructures were attributed

to increased GB di↵usion of hydrogen during pre-charing. This was confirmed

by the hydrogen melt extraction analysis.

• Secondary cracking were observed in the pre-charged samples from all the

Inconel-718 variants. These cracks typically initiated at 8-12% YS below the

final fracture stress and were mostly IG type cracks.

• Little e↵ect of reduced C/N and increased Nb content was observed on the loss

of fracture strength, RA and elongation. The high Nb low C/N P3A01-1900

alloy did however show much larger secondary cracks, which may be linked to

the absence of C/N and the GBs.

• In-situ time lapse videos of crack propagation during CP in saltwater were

obtained. The videos show the the evolution of hydrogen from the propagating

crack as it progresses to failure.

• Suggestions for further work are: Establishment of the relationship between

HISC and cold creep in Inconel-718, the construction of a hydrogen transport

model which incorporates both the di↵usion of hydrogen in a stress field and

hydrogen transport through cold creep.
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A PC - Chamber design

Figure 77: Design sketch, showing the backside of the electrolyte chamber

Figure 78: Design sketch, showing the front side of the electrolyte chamber
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B Stress - strain curves received from ATI metals

Figure 79: Tensile test data received from ATI
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Figure 80: Tensile test data received from ATI
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Figure 81: Tensile test data received from ATI
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Figure 82: Tensile test data received from ATI
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Figure 83: Tensile test data received from ATI
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Figure 84: Tensile test data received from ATI
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Figure 85: Tensile test data received from ATI
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