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Abstract—Industrial Wireless Sensor Networks (IWSNs) pro-
mote real-time data monitoring, precise control signaling trans-
mitting and effective instrument fault diagnosing throughout
manufacturing production. However, multipath attenuations,
noise and co-channel interference effects may have unpredictable
and time-varying impacts on the propagation channel, resulting
in the failure of delivering the packets in time. To address this
issue, we propose a Channel-based Sampling rate and Queuing
state Control (CSQC) scheme to minimize the packet transmis-
sion delay in IWSNs. Specifically, we explore level crossing rate
(LCR) to study the rapid fading characteristics of the industrial
wireless propagation channel. We develop a continuous-time
Markov model to evaluate the packet sojourn time and design
an expectation-maximization (EM) algorithm to timely calibrate
the transition rate in the model. Finally, we optimize the sensor
sampling rate and queuing state to minimize the packet queuing
delay in IWSNs. Simulation results show that the CSQC scheme
has lower delay than IEEE 802.15.4 standard does under varying
interference effects.

I. INTRODUCTION

Industrial Wireless Sensor Networks (IWSNs) furnish the
manufacturing integrated system with an automation platform
which supplies information collection and transmission [1].
For example, the packaging company “Polibo” utilizes the sen-
sor network technology to maintain quality control throughout
production [2]. Versatile sensors are installed within pipes,
around machines and in the workers’ living area to monitor
specific factors. Environmental conditions, such as air temper-
ature around printing machines and in pipes, light intensity
on the final products, and CO2 concentration in the workers’
living area, are continuously measured to keep them within
authorized levels. To reduce the cost and guarantee the quality,
IWSNs establish a multi-dimensional and digitalized network
by flexibly monitoring the designated objects in a specific
range of space [3].

To maintain the quality control throughout the production,
IWSNs impose stringent transmission delay requirements on
data communication between sensors and base station. Among
the numerous applications of IWSNs, real-time monitoring
can provide up-to-date observations for system performance
evaluation. It is necessary for sensors to not only periodically
send measurements to base station, but also keep the transmis-
sion delay of each measurements within limits. Moreover, in
order to detect the potential risks in manufacturing production,

large numbers of sensors are deployed in the environment to
ensure that the measurements can be collected from numerous
positions. Whereas, numerous sensors may crowd into the
channel such that some sensors may fail to transmit data.
Therefore, The transmission delay should be maintained to
make sure that all sensors can access the channel and transmit
the data in time. Furthermore, the quality of some industrial
materials highly depends on the duration of exposure to the air.
For example, in “Polibol” factory, the printing process during
food packaging is performed by first packing the food and then
printing color layer by layer on the envelop of the package
until the image completes [2]. In this process, since the ink in
the outlet may dry up in a short time, it is critical for sensors
to feedback the packaging state as timely as possible, such
that machines can finish printing without polluting the food.
Hence, it is necessary to reduce transmission delay in IWSNs
throughout the manufacturing production.

However, it may be difficult to significantly reduce trans-
mission delay in the harsh industrial environment due to
the following challenges. Firstly, the industrial environment
is filled with multipath attenuation and interference effects.
When a sensor is transmitting sampling results to the base
station, its neighbors may detect a “free” channel state under
the influence of the channel fading and interference. Then,
they may send out their packets simultaneously, resulting in
a “hidden terminal” problem. As a result, the packet queuing
delay may be increased. Secondly, due to the feature of short-
range transmission in IWSNs, the packet transmission delay
primarily depends on the packet retransmission times and
packet queuing delay. Whereas, in a time-varying industrial
wireless communication scenario, it may be hard to predict
packet retransmission probability in real time. Thirdly, some
detailed information in the medium access control layer is
invisible to the application layer such that some optimization
schemes may not be applicable [4]. Meanwhile, various hidden
information and time-dependent system output may degrade
the accuracy of an inflexible scheme. Despite these challenges,
it is possible to minimize the packet queuing delay in real time
in the industrial environment.

In this paper, we propose CSQC scheme to minimize the
packet queuing delay by controlling the sampling rate and
queuing state in IWSNs. Specifically, our main contribution
are two-fold.
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• First, we investigate LCR to measure the rapidity of
the fading in industrial wireless channel. We explore the
numerical results of LCR and present an experimental
closed form for practical scenario. We find that LCR
is related to the envelop of the received signal and the
defined distribution of envelop. Moreover, we introduce
sensor sampling interval (SSI) and packet sojourn interval
(PSI) to formulate the average packet queuing delay.

• Second, we design a continuous-time Markov model to
analyze the distribution of PSI and further present a three-
phase Coxian distribution to promote the calculation.
Meanwhile, we propose an EM algorithm to calibrate PSI
in real time. In addition, we formulate the distribution
of SSI by a Weibull distribution in terms of LCR,
queuing state and sampling rate, where LCR defines the
distribution shape; queuing state and sampling rate define
the variance and mean, respectively.

The remainder of this paper is organized as follows. The
related works are present in Sec. II. The system model
and problem formulation are introduced in Sec. III. Sec. IV
describes the CSQC scheme. Simulation results are shown in
Sec. V. Finally, we conclude this paper in Sec. VI.

II. RELATED WORK

Numerous research efforts have been put on minimizing
the packet transmission delay in the conventional WSNs
[5]. They can be briefly categorized into three methods: the
equivalent rate constraint approach, the Lyapunov stability
drift approach and the approximate Markov decision process
approach. Equivalent rate constraint approach converts the
average delay constraint into an equivalent average rate one
according to the large deviation theory. [6] investigates the
optimal link scheduling problem in WSNs by optimizing the
weight combination of effective capacity of each transmis-
sion link in terms of data rate and delay bound. Likewise,
considering the max-weight of effective rate of flow on each
transmission link with respect to delay constraints, [7] studies
the throughput optimization problem in a fixed random access
wireless multihop network, by jointly configuring the system
parameters including access probability and effective trans-
mission rate (modified by delay bound). In the Lyapunov drift
approach, the constraint on delay is achieved by analyzing the
stability characteristics of the proposed scheme with respect
to the Lyapunov drift method. In [8], a modified max-weight-
queue control policy is proposed to restrict packet queuing
delay in a time-varying wireless system. This is done by
using Foster Lyapunov criteria to analyze the queuing stability
under the delay constraint. In [9], a delay-based Lyapunov
function is investigated to achieve joint stability and utility
optimization in a multiuser one-hop wireless system with time-
varying reliability. This approach is further discussed in [10] in
a one-hop wireless system constituted by users with or without
delay constraints. In addition, the max-weight queuing policy
is extended in [10] with Markov Decisions associated with
delay constraints using Lyapunov drift and Lyapunov opti-
mization theory. In the Markov decision process, the system
state is characterized by the aggregation of the channel state
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Fig. 1: Network Model

information and queuing state information. [11] proposes an
average reward constraint Markov decisions model to optimize
the lifetime of sensor nodes under the delay constraint while
minimizing the weighted packet loss rate in IWSNs.

Different from the existing works, we propose a CSQC
scheme to minimize the packet queuing delay by configuring
the sampling rate and queuing state. The proposed scheme can
exploit the characteristics of the fading channel in industrial
environment and modify parameters in real time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

IWSNs are deployed in the industrial environment filled
with multipath attenuation, noise and interference effects,
as shown in Fig. 1. We consider a one-hop wireless net-
work, which consists of N sensors and one base station.
Sensors are equipped with sensing devices to measure the
ambient environment. The base station and sensors asso-
ciate with each other according to the IEEE 802.15.4 s-
tandard. The sensor monitors the environment based on
the sampling rate and further stores the measurement da-
ta in the queue for transmission. Let A(Q,N , s, t) =
(A1(Q1, N1, s1, t), . . . , AN (QN , NN , sN , t)) be the process
of random packet arrivals, where An(Qn, Nn, sn, t) is an
arbitrary distribution regarding to SSI of sensor n, where sn is
the sampling rate. For simplicity, PSIs are also drawn from an
arbitrary distribution given by B(t) = (B1(t), . . . , BN (t)).
The PSI distribution Bn(t) is related to the observations of
packet sojourn time. Let Q(t) = (Q1(t), . . . , QN (t)) is the
integer number of packets currently stored in each of the
N queues and N(t) = (N1(t), . . . , NN (t)) be the fading
characteristics of the industrial channel.

Our objective is to minimize the packet queuing delay by
modifying the sampling rate and queuing state according to
the analysis of the channel features and the packet sojourn
time in real time.

B. Channel State Information

In IWSNs, the received signal often undergoes heavy statis-
tical fluctuations which leads to not only a dramatic increase
of the bit error rate, but also “hidden” terminal problem. The
change of the signal-to-noise ratio (SNR) is mostly used to
study the channel state. However, SNR only describes the
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strength of the received signal but not the variation of the
propagation channel. Hence, in order to predict the probability
of accessing channel and calibrating the rate to transmit data,
it is important to investigate the crossing rate of the received
signal to cross a given signal level per time unit. Now, we
study LCR to describe this statistic characteristics of fading
channels. We describe the probability density function of
the received signal envelop crossing a given level R in a
positive direction as LCR, which is denoted as Nr(R) [12].
Nr(R) =

∫∞
0
ẋprṙ(R, ẋ)dẋ, where R ≥ 0 and prṙ(x, ẋ) is

the joint density function of the received signal envelop and
its time derivative ṙ(t) at the same time instant.

We consider a line of sight propagation scenario (there
is a direct predominant path over the indirect ones) in the
industrial environment with deterministic co-channel interfer-
ence from the neighbor sensors. Let the transmitted signal
be s(t) = p exp(jw0t). The received signal by a sensor in
an industrial environment with multipath propagation may
be given as r(t) = r exp[j(w0t + θ)]. If there is a line-of-
sight propagation, the received signal can be further modified
as exp(jw0t)[p0 exp(jθ0) +

∑
n∈{1...n} pn exp(jθn)], where

θn = wnt = 2πfnt. Considering co-channel interference
which follows Rayleigh distribution, we investigate signal-
to-interference ratio r(t)

I(t) to determine the quality of re-
ceived signal, where I(t) =

∑
n∈{1,...,n} In exp(jφn), where

φn = vnt. S protection ratio k is required for reliable
reception, i.e., r(t)

I(t) ≥ k. When r(t) ≤ kI(t), significant
transmission errors are expected. Therefore, we substitute the
giving level R with r(t) − kI(t) and further modified the
received signal as p0 exp(jθ0) +

∑
n∈{1...n} pn exp(jθn) −

k
∑
n∈{1,...,n} In exp(jφn). We simplify this expression as

Q+
∑
n∈{1...n} pn exp(jθn)−

∑
n∈{1,...,n} gn exp(jφn). Us-

ing the Euler’s Identities, we have Ic =
∑
n x1 + . . .+ xN =

r cos θ −Q and Is =
∑
n y1 + . . .+ yN = r sin θ, where

Ic =
∑
n

pn cos(wn − q)t− gn cos(vn − q)t (1)

Is =
∑
n

pn sin(wn − q)t− gn sin(vn − q)t (2)

where we employ a phase component in the expression to
present the burst variation from vibrating object or impulse
noise. We modify (1) and (2) to have the expression of xn
and yn as xn = (pn−Ac) cos(wn−q)t+As sin(wn−q)t and
yn = (pn−Ac) sin(wn− q)t+As cos(wn− q)t, respectively,
where Ac = gn cos(vn−wn)t and As = gn sin(vn−wn)t. In
addition, we define the time derivatives of ẋn and ẏn as

ẋn = (wn − q)[Ȧs cos(wn − q)t− (pn − Ȧc) sin(wn − q)t]
ẏn = (wn − q)[(pn − Ȧc) cos(wn − q)t− Ȧs sin(wn − q)t]

where Ȧs = −(vn − wn)gn sin(vn − wn)t and Ȧc = (vn −
wn)gn cos(vn−wn)t. In order to find the joint density function
of the received signal envelop and its time derivatives, we
calculate the covariance based on the linearity property of
expectations cov(X,Y ) = E[XY ] − E[X]E[Y ]. We further
substitute the results into (1) and (2) and summary them in
Table. I. Hence, the probability that the the received signal
envelop passes through the value R during the interval t, t+dt
with positive slope is dt

∫∞
0
ṙp(r, ṙ, t)dṙ. We show the covari-

TABLE I: Expectation Results

Expression Value Label
E{Ic}, E{Is} 0

E{İc}, E{İs} 0
E{I2c }, E{I2s} 1

2n

∑
nE{p

2
n + g2n} b0

E{İ2c }, E{İ2s} 1
2n

∑
n(wn − q)E{p2n + (vn −

wn)
2g2n}

b2

E{IcIs}, E{İcİs} 0

E{Icİc},−E{Isİs} 1
2n

∑
n(wn−q)E{−g

2
n(vn−wn)} a1

E{Icİs},−E{Isİc} 1
2n

∑
n(wn − q)E{p

2
n} a2

ance matrix and its moment matrix in (3). The time derivatives
of Ic and Is can be defined as İc = ṙ cos θ − r sin θθ̇,
İs = ṙ sin θ + r cos θθ̇ and dIcdIsdİcdİs = r2drdṙdθdθ̇. The
moment matrix and covariance matrix are
A = M =
I2c IcIs Icİc Icİs
IsIc I2s Isİc Isİs
İcIc İcIs İ2c İcİs
İsIc İsIs İsİc İ2s


b0 0 a1 a2

0 b0 −a2 −a1
a1 −a2 b2 0
a2 −a1 0 b2

 (3)

We define the inverse of matrix M as M−1 =
adj(M)/ det(M) = Λ/B, which enables us to write
the probability density function of r, ṙ, θ and θ̇ as
p(r, ṙ, θ, θ̇) = R2

4π2B exp
(
− 1

2B

∑
i,j Ai,jΛi,j

)
. In the expres-

sion that θ is from −π to π and θ̇ is from −∞ to ∞,
we show the density function for r and ṙ is p(r, ṙ) =
r2

4π2B

∫ 2π

0

∫∞
−∞ exp

(
− 1

2B

∑
i,j Ai,jΛi,j

)
dθ̇dθ. In the end,

Nr(R) can be further simplified as
√
b0/(2π)p(r), where

b0 is the expectation value of the received power gain from
each path, p(r) is the probability density function (pdf) of the
envelop of the received signal.

C. Problem Formulation

We consider that SSI is independent with each other. The
distribution of SSI is denoted as An(Qn, Rn, sn, t). PSIs are
also independently drawn from an arbitrary distribution given
by Bn(x). As shown in Fig. 1, there is one base station in
the system and the queue in each sensor is offered in a first
come first served order. We consider a sequence of sampling
results comes into the queue which is indexed by the subscript
m. We define Cm as the mth sampling results arriving to the
system; tm = τm − τm−1 as the interarrival time between
Cm−1 and Cm; bm as PSI to transmit Cm and wm as queuing
delay (waiting in queue) for Cm. We assume that the random
variables {tm} and {xm} are independent and are defined by
the distribution of An(Qn, Rn, sn, t) and Bn(x).

The waiting time wm can be considered in two cases: 1).
Cm+1 arrives to the system before Cm departs from the queue;
2). Cm+1 arrives to an empty system. Hence, wm+1 equals
wm + xm − tm+1, when wm + xm − tm+1 ≥ 0; otherwise,
equals 0. For convenience we define a new random variable
um as um , xm − tm+1. Substituting wm+1 with um, we
have wm+1 = um when wm + um ≥ 0; otherwise, equals 0.
We can further write wm+1 as wm+1 = max[0, wm + um] =
(wm + um)+. The stationary distribution of wm is defined as
limm→∞ P [wm ≤ y] = W (y), which exists when E[um] <
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0. We define Gm(u) as the probability distribution function
(PDF) for the random variable um, Gm(u) , P [um = xm −
tm+1 ≤ u]. We derive the expression for Gm(u) in terms of
An(Qn, Rn, sn, t) and Bn(x) as

Gm(u) = P [xm − tm+1 ≤ u]

=

∫ ∞
t=0

P [xm ≤ u+ t|tm+1 = t]dAn(Qn, Rn, sn, t)

=

∫ ∞
t=0

Bn(u+ t)dAn(Qn, Rn, sn, t) = C(u) (4)

Since Wm(y) = P [wm ≤ y], for y ≥ 0, the PDF of wm+1 is

Wm+1(y) = P [wm + um ≤ y]

=

∫ ∞
0−

P [um ≤ y − w|wm = w]dWm(w) (5)

where P [um ≤ y − w|wm = w] = Gm(y − w) since um is
independent of wm. The limiting PDF is W (y) =

∫∞
0−
C(y −

w)dW (w), for y ≥ 0; otherwise, equals 0. Combining these
two descriptions, we have the Lindley’s integral equation that
W (y) equals

∫∞
0−
C(y − w)dW (w) when y ≥ 0; otherwise,

equals 0. Integrating by parts, for y ≥ 0, W (y) can be further
written as W (y) = C(y−w)W (w)|∞w=0 −

∫∞
0−
W (w)dC(y−

w). Considering the simple variable change u = y−w for the
argument of the PSI distribution, we define that

W (y) =

{∫ y
u=−∞W (y − u)dC(u) y ≥ 0

0 y < 0.
(6)

Define a “complementary” PSI distribution

W−(y) ,

{
0 y ≥ 0∫ y
u=−∞W (y − u)dC(u) y < 0.

(7)

Combining (6) and (7), W (y) + W−(y) =
∫ y
−∞W (y −

u)c(u)du, where we define the probability density function
(pdf) of ũ as g(u) , dG(u)/du. In order to derive the
packet queuing delay distribution from the determined harvest-
ing interval and free channel detection interval distribution,
we employ Laplace transform to simplify this investigation.
We denote the Laplace transform of W−(y) and W (y) as
Φ−(s) ,

∫ 0

−∞W−(y)e−sydy and Φ+(s) ,
∫∞

0−
W (y)e−sydy,

respectively. Note that Φ+(s) is the Laplace transform of the
PDF for packet queuing delay. Let W ∗(s) be the transform for
the queuing time such that we have sΦ+(s) = W ∗(s). Since
we define the pdf of u as g(u) = dG(u)/du = a(−u)⊗ b(u),
C∗m(s) = A∗n(Qn, Rn, sn,−s)B∗n(s). Taking the Laplace
transform of W (y) + W−(y), we have Φ+(s) + Φ−(s) =
Φ+(s)C∗n(s) = Φ+(s)A∗n(Qn, Rn, sn,−s)B∗n(s) which gives
us Φ−(s) = Φ+(s)[A∗n(Qn, Rn, sn,−s)B∗n(s) − 1]. We in-
troduce a rational function of s and substitute into Φ− that
Φ−(s) = Φ+(s) Ψ+(s)

Ψ−(s) . Applying the Liouville’s Theorem, we
have Φ−(s)Ψ−(s) = Φ+(s)Ψ+(s) = K, which yields that
Φ+(s) = K

Ψ+(s) . Since sΦ+(s) = W ∗(s), we have sΦ+(s) =

W ∗(s) ,
∫∞

0−
e−sydW (y). We have lim

s→0

∫∞
0−
e−sydW (y) =∫∞

0−
dW (y). The W ∗(s) can be further written as∫ ∞

0−
dW (y) = lim

s→0
sΦ+(s) = lim

s→0

sK

Ψ+(s)
= 1 (8)

where K = lim
s→0

Ψ+(s)
s .
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Fig. 2: Overview of the Proposed Scheme

We summarize the method to calculate the packet queuing
delay as Z(·) as: 1) we use A∗n(Qn, Rn, sn,−s)B∗n(s)− 1 =
Ψ+(s)
Ψ−(s) to determine Ψ+(s) and Ψ−(s); 2) we determine K

by lims→0
Ψ+(s)
s ; 3) we determine Φ+(s) by K

Ψ+(s) ; 4) we
use sΦ+(s) = W ∗(s) to find the Laplace transform for the
pdf for w; and finally we obtain W (y) by F−1W ∗(s)(y).

The objective is to minimize the packet queuing delay by
controlling the sampling rate sn and queuing state Qn for each
node n over a period. According to the aforementioned packet
queuing delay in terms of the distribution of SSI and PSI,
we define Weibull distribution as the SSI distribution in our
queuing model with three parameters, An(Qn, Rn, sn, t) =
Rn
Qn

( t−snQn
)Rn−1 exp(− t−snQn

)Rn , where Rn is the shape pa-
rameter, Qn is the scale parameter and sn is the location
parameter. The packet queuing delay can be formulated as

argmin
Q,s

W (y|Q, s)

subject to W (y|Q, s) = Z(A∗n(Qn, Rn, sn,−s), B∗n(s))
(9)

where Z(·) is the process to obtain the packet queuing
distribution.

IV. THE PROPOSED CSQC SCHEME

As shown in Fig. 2, the CSQC scheme is proposed by firstly
determining LCR on the basis of received signal envelope;
secondly investigating the PSI distribution based on the ob-
served sojourn time that the packet waits on the head of the
queue for detecting free channel to transmit; thirdly employing
EM algorithm to derive the PSI distribution from the Coxian
distribution. The SSI distribution is derived from the Weibull
distribution in terms of LCR, queuing state information and
sampling rate. We solve the minimization problem in (9) to
configure the sampling rate and queuing state such that the
packet queuing delay can be restricted in a limitation.

According to the delay tapped channel model in [3], we
define the received signal in (12), where Am(t) is the pow-
er gain factor, τm is the delay effect caused by the m-th
scatter at time t, fm is the m-th Doppler effect and φDm
is the phase variation. The received signal is composed by
multipath components and primary component, which can be
further separated into real and imaginary parts. Assuming that
hµ1(t) and hµ2(t) are statistically independent, we denote
the joint probability density function of the two parts as
ph = p(hµ1+hρ1 )(x1) · p(hµ2+hρ2 )(x2). Considering polar
coordinated (z, θ) by means of x1 = zcos(θ), x2 = zsin(θ),
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h(t) =

M∑
m=0

Am(t− τm(t)) · exp
(
j(2πfcτm(t)− φDm(t))

)
(11)

= hµ1(t) + hρ1(t) + j(hµ2(t) + hρ2(t))

=

M∑
m=1

αm cos(2πfmt− φDm) + α0 cos(2πf0t− φD0) + j
( M∑
m=1

αm sin(2πfmt− φDm) + α0 sin(2πf0t− φD0)
)

(12)

pξ(z) = z

∫ π

−π
phµ1 (zcos(θ)− α0cosφDm) · phµ2 (zsin(θ)− α0sinφDm)dθ

= 4πz

∫ π

0

∫ ∞
0

[
M∏
m=1

J0(2παmycosθ)

][
M∏
m=1

J0(2παmysinθ)

]
J0(2πzy)cos[2πα0ycos(θ − φDm)]ydydθ (13)

Algorithm 1: EM Algorithm for Service Time Distribution
Data: Trace data T = t1, . . . , tm
Result: Service time distribution B(π,D0)
Randomly Initialize π̂, D̂0

repeat
for each k ∈ {1, . . . ,m} do

a(yk|π,D0) = π̂ exp(D̂0yk),
b(yk|π,D0) = exp(D̂0yk)d̂1

c(yk|π,D0) =
∫ yk
0
a(yk − u|π,D0)eib(u|π,D0)du

end
E(π,D0)|T [Bi]←

1
m

∑m
k=1

π(i)a(yk|π,D0)(i)
πb(yk|π,D0)

E(π,D0)|T [Zi]←
1
m

∑m
k=1

b(yk|π,D0)(i,i)
πb(yk|π,D0)

E(π,D0)|T [Nij ]←
1
m

∑m
k=1

D0(i,j)c(yk|π,D0)(i,j)
πb(yk|π,D0)

E(π,D0)|T [Nin+1]← 1
m

∑m
k=1

d1(i)a(yk|π,D0)(i)
πb(yk|π,D0)

π̂ ← E(π,D0)|T [Bi], D̂0(i, j)←
E(π,D0)|T [Nij ]

E(π,D0)|T [Zi]

d̂1(i)←
E(π,D0)|T [Nin+1]

E(π,D0)|T [Zi]
,

D̂0(i, i)← −
(
d̂1(i) +

∑n
i6=j,j=1 D̂0(i, j)

)
until ‖π − π̂‖+ ‖D0 − D̂0‖ < ε

Output: Service time distribution B(π̂, D̂0)

The joint pdf prϑ(z, θ) of the received signal envelop can be
written as

pξϑ(z, θ) (10)
= zp(hµ1+hρ1 )(zcos(θ)) · p(hµ2+hρ2 )(zsin(θ))

= phµ1 (zcos(θ)− αcosφDm) · phµ2 (zsin(θ)− αsinφDm)

Hence, after some algebraic manipulation we show the pdf
of the received signal envelop in (13). We can also define
LCR according to the analysis in Sec. III-B as Nξ(r) =√
−r̈µiµi (0)

2π pξ(z), where −r̈µiµi(0) = 1
2

∑Ni
n=1(cin2πfin)2,

cin is the square of the autocorrelation of the received signal.

D =

 −λ1 g1λ1 0 (1− g1)λ1

0 −λ2 g2λ2 (1− g2)λ2

0 0 −λ3 λ3

0 0 0 0

 (14)

According to IEEE 802.15.4 standard, sensors randomly
initial a backoff time and scan the channel until the backoff
time turns to zero. If sensors find a busy channel, they generate
a new backoff time. Sensors access into the channel when
they scan a free channel. If sensors do not receive any ACK
messages, they will retransmit the packets until the maximum
retry limit which is set as 3 times. In order to find the free
channel detection interval distribution, the performance of av-
erage sojourn time distribution should be evaluated. However,

conventional Markov model for sojourn time analysis is too
heavy for the sensors to timely investigate the FCD interval
distribution. In addition, since only the observations of time
till absorption state, ti ∈ T , i = 1, . . . ,m, can be easily
obtained, the background Markov process remains unobserved
in the sense that there are no information how the Markov
process entered into the absorption phase and sojourn time it
stays in each phase. EM algorithm is employed to investigate
the parameters in this hidden problem. Hence, in order to
exploit the FCD interval distribution, we introduce Coxian
distribution with sojourn time information in each transition
state to estimate the FCD interval distribution by means of
EM fitting algorithm. Considering 3 retransmission state and
1 absorbing state, we define {X(t)}∞t≥0 as a stochastic process
in this state space. Since a packet will always start from
the first state, we let the initial distribution vector to be
π = [1, 0, 0, 0] After starting in phase 1 the process traverses
through 3 unsuccessive phases with possibility different rates
λi. From the phase i the transition to the next phase i+ 1 can
occur with probability gi or the absorbing state is reached
with the complementary probability 1 − gi. The transition
matrix of the deterministic Coxian distribution is shown in
(14). The generator matrix D can be further expressed as

D =

(
D0 d
0 0

)
, where d = −D0e, e = (1, . . . , 1)T .

We denote the density function of this Coxian distribution as
f(y) = π exp(D0y)d. Observation ti ∈ T , i = 1, . . . ,m,
of the time till absorption are the incomplete observation
of the Markov process {X(t)}0≤t<ti . We denote the whole
stochastic process till absorption state as X0, . . . , Xk−1 and
further denote the corresponding sojourn time as s0, . . . , sk−1.
Thus, given an observation y of the Coxian distribution, a
complete observation of the process {X(t)}0≤t<ti can be
represented by z = (x0, . . . , xk−1, s0, . . . , sk−1), where the
time to the absorption state must satisfy ti = s0 + . . . + sk.
Since the pdf of the complete observation z is f(z|π,D0),
we define the likelihood function as

L((π,D0)|T ) = (15)

=

n∏
i=1

π(i)Bi
n∏
i=1

exp(ZiD0(i, i))

n∏
i=1

n+1∏
j=1,j 6=i

D0(i, j)Ni,j

where the amount of times the system started in state i is
denoted by Bi, the waiting time stay in state i is given by Zi,
and the total observed number of jumps from state i to j is
Nij , for i 6= j. The details of the parameters exploiting in the
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Fig. 3: The Normalized Packet Queuing Delay vs. Time

FCD interval distribution based on EM algorithm is proceeds
in Alg. 1.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed CSQC scheme
on OMNET++. The network consists of five sensors and one
base station. The network topology is shown in Fig. 1. The
performance of the CSQC scheme over time is shown in Fig.
3a. In the case where the PSI distribution is artificially changed
over time, we define two sampling rates to study whether
our scheme can select corresponding sampling rate towards
the lower queuing delay. The figure shows that the sampling
rate related to the lower delay can be found. A deterministic
simulation on queuing state is further shown in Fig. 3b. The
CSQC scheme can select the queuing state that provides a
better queuing delay solution.

Fig. 4 shows the comparison of the normalized pack-
et queuing delay between the proposed scheme and IEEE
802.15.4 standard does by changing the number of sensors
and the sum of the noise and interference effects. In Fig. 4a,
the packet queuing delay increases with the rising number
of sensors. More sensors increase the contention probability
and further enlarge the interval to detect a free channel,
resulting in an increasing PSI. In addition, the proposed CSQC
scheme provides a lower packet queuing delay than IEEE
802.15.4 standard when the number of sensors increases in
the industrial environment. Fig. 4b shows the comparison
results by magnifying the effects of interference. Compared
with the IEEE 802.15.4 standard, the packet queuing delay
of the proposed CSQC scheme is reduced by considering
a minimization framework in terms of QSI and CSI. The
channel characteristics is further investigated by LCR, which
enables the CSQC scheme to minimize packet queuing delay
through the evaluation on the fading channel in the industrial
environment.

VI. CONCLUSION

In this paper, we have proposed a CSQC scheme to min-
imize packet queuing delay by controlling the sampling rate
and queuing state of the sensor with the knowledge of channel
state and packet sojourn interval. Specifically, we have studied
LCR to analyze the specific characteristic of the industrial
channel. We have proposed the SSI distribution model which
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Fig. 4: The Impacts of the Number of Sensors and Interference

is built on the configuration of the Weibull distribution in terms
of LCR, QSI and sampling rate. PSI has been further investi-
gated by considering a three-phase Coxian distribution model
which is iteratively calibrated by EM algorithm. Simulation
results show that the proposed CSQC scheme can provide
lower packet queuing delay than IEEE 802.15.4 standard. For
the future work, we will study the average fading duration of
the industrial channel model with an attempt that the sensors
can predict the sampling rate and queuing state to further
minimize queuing delay.
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