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Abstract: State-of-the-art time-domain models of power cables account for the frequency
dependency of physical parameters to enable accurate transient simulations of high voltage
transmission schemes. Due to their formulation, these models cannot be directly converted into a
state-space form as required for small-signal eigenvalue analysis. Thus, dc cables are commonly
represented in HVDC power system stability studies by cascaded pi-section equivalents that neglect
the frequency-dependent effects. This paper demonstrates how the conventional cascaded pi-section
model is unable to accurately represent the damping characteristic of the cable and how this can
lead to incorrect stability assessments. Furthermore, an alternative model consisting of cascaded
pi-sections with multiple parallel branches is explored, which allows for a state-space representation
while accounting for the frequency dependency of the cable parameters. The performance of the
proposed model is benchmarked against state-of-the-art cable models both in the frequency domain
and in the time domain. Finally, the paper provides a comparative example of the impact of the
cable modelling on the small-signal dynamics of a point-to-point VSC HVDC transmission scheme.

1. Introduction

The present trends for improving cross border power market integration and the accelerating develop-

ment of large-scale power production from renewable energy sources are generating a growing demand for

High Voltage Direct Current (HVDC) transmission systems [1]. Moreover, Voltage Source Converter (VSC)

HVDC technology is increasingly preferred due to the recent advances in efficiency and power rating [2, 3]

combined with the inherent capability for reactive power or voltage control. Thus, even point-to-point

HVDC transmission schemes for bulk power transfer are currently being developed and built using VSC

technology [4, 5]. Furthermore, VSC HVDC can be especially relevant for the design of multi-terminal and

even meshed grid configurations envisioned as a future offshore transmission grid in the North Sea region

and as an overlay transmission grid in mainland Europe [6].

With the increasing penetration of HVDC transmission schemes in the existing ac grids, their accurate

representation becomes critical when assessing power system dynamics and stability [7, 8]. For large-

scale power systems, the small-signal stability is commonly studied using linearisation and corresponding



eigenvalue analysis [9]. The underlying theory is well developed for stability phenomena related to the

synchronous machines and their controllers, and tools are available in commercially-graded power system

software to study small-signal stability phenomena in ac power systems. Since the main dynamics of

traditional large-scale power systems have been dominated by the inertial dynamics of the synchronous

generators, these software tools are representing the ac grid by algebraic phasor models without accounting

for any electromagnetic transients. However, VSC HVDC systems are characterised by faster control loops

and system dynamics. This has triggered research efforts in small-signal modelling and analysis of VSC

HVDC systems during the last decade [10–15]. The focus has largely been on model development for

interaction studies with the surrounding ac grid, whilst incorporating the dynamics of the ac- and dc- sides of

the HVDC converter station. The behaviour of the dc cable in this respect, however, has been given less

attention.

State-of-the-art frequency-dependent cable models for electromagnetic transient (EMT) simulations

cannot be directly translated into a state-space representation needed for small-signal stability analysis.

Therefore, it has been common practice to undertake small-signal stability studies with the dc cables

represented as either a single pi-equivalent circuit [10–12, 15] or by multiple pi-equivalent circuits [13, 14].

In some cases the internal dynamics of dc cables have been deliberately ignored by representing the dc

transmission system as a resistive network [16]. In [17] the effect of this omission on the time-domain

response was analysed, but again a single pi-equivalent cable model was used as a basis for comparison.

Recently, it was demonstrated in [18, 19] that conventional pi-equivalent representations for a dc cable

can lead to a wrong stability assessment. The results presented in [19] also indicate that leaving out the cable

current dynamics by omitting the inductance can at least avoid false conclusions regarding the stability of

intermediate or high frequency oscillations while retaining a reasonably accurate representation of the slower

dynamics related to the overall power flow control. The need for representing the frequency-dependent

characteristics of the dc cable for an accurate assessment of small-signal dynamics of HVDC transmission

schemes was also confirmed by the findings in [19]. To account for the effect of frequency-dependent cable

parameters on the oscillation modes and damping in small-signal studies, an HVDC cable model based

on pi-equivalent sections with multiple parallel RL-branches was proposed in [19] as an alternative to the

conventional cascaded pi-section state-space model [20]. The model is based on the approach presented

in [21], which was applied for a state-space representation of transmission lines in [22]. The model parameter

values were determined by vector fitting [23] and the order of the model could easily be adapted according to

the accuracy requirements.

Starting from the approach presented in [19], this paper extends the analysis of the proposed model and
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demonstrates its advantages and limitations by means of time-domain comparisons with a state-of-the-art

EMT model. Such comparisons are presented for the model of a dc cable as well as for the analysis of a

point-to-point HVDC link, verifying the ability of the proposed cable model to accurately represent the

small-signal dynamics of the cable and its impact at a system level. Furthermore, it is shown that increasing

the order of the conventional cascaded pi-section model by adding more sections does not improve the

results, while a model with parallel RL-branches effectively can retain the damping characteristics of the

actual cable, thereby preventing the prediction of non-existent instabilities.

2. Conventional cable modelling for state-space representation

In general, cable models can be classified in two main subgroups, based either on lumped parameters

or on distributed parameters. In particular, the models with distributed and frequency-dependent parameters

have proved to provide an accurate representation of the complex behaviour of power lines and cables [24].

Arguably the most established example of such a model is the universal line model (ULM) also known as

wideband model [25]. The model benefits from efficient numerical implementations tailored to EMT analysis.

Thus, the ULM is at present the preferred numerical implementation for time domain simulation, as reflected

by its availability in the standard libraries of commercial EMT software. Furthermore, it may be assumed

as a reference to benchmark the performances of alternative models, as made clear by the time domain

comparison presented in [26]. Although suitable for time domain simulations, the ULM, and distributed

parameter models in general, cannot be translated into a state-space representation for integration into larger

models for performing small-signal eigenvalue analysis of power systems. For this class of applications,

lumped parameters models are more common since they can be effectively and conveniently expressed in a

state-space compatible format. However, a lumped parameter representation based on standard pi-equivalents

fails to account for the frequency dependency of the parameters. This section summarises the conceptual

steps that lead to the formulation of the conventional cascaded pi-section model for power cables. Moreover,

the simplifying hypotheses that are embedded in the modelling approach are explicitly highlighted together

with the resulting limitations that arise.

2.1. Steady-state cable model

For converter control interactions studies, the model of HVDC cables can be reduced by means of a

Kron reduction. This assumes an ideal grounding for both the armour and sheath conductors, namely that

they are at ground potential along the entire length of the cable. In reality, the sheaths of subsea cables are

usually grounded at both ends, while onshore cables can also be grounded at additional points along the
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length of the cable. Therefore, the reduction only applies when the voltages in armour and sheath remain

small compared to the conductor voltage [27], which is a realistic assumption for control studies. As a

consequence, the analytical representation of a subsea cable with three conducting layers (conductor, sheath

and armour) reduces to that of an equivalent conductor. The cable can then be accurately described by the

steady-state pi-model, shown in Fig. 1.

vin
iin

Yπ
2

Zπ

Yπ
2

iout vout

Fig. 1. Steady-state pi-model of the cable.

The series and parallel elements of this circuit are given by

Zπ = z `
sinh γ`

γ`
(1)

Yπ = y `
tanh γ`

2
γ`
2

(2)

where z and y are the cable impedance and admittance per unit length, respectively

z(ω) = r(ω) +  ω l(ω) (3)

y(ω) = g(ω) +  ω c(ω) (4)

and γ the propagation constant defined as

γ =
√
zy (5)

The frequency dependency of the conductance g and the capacitance c is normally omitted for EMT models

of power cables [27], simplifying (4) to

y = g +  ω c (6)

On the contrary, omitting the frequency dependency of the resistance r and inductance l is much more severe,

as discussed in the remainder of the paper. Figs. 2a–2b show the frequency dependency of r and l for a 320

kV XLPE cable for VSC HVDC transmission with data from [28]. Figs. 2c–2d show the impedance for
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Fig. 2. Frequency dependence of cable parameters and cable impedance.
a Cable parameters – resistance r
b Cable parameters – inductance l
c Steady-state cable model –impedance magnitude
d Steady-state cable model –impedance angle

a 300 km long cable with these parameters, using the analytical formulation from (1)–(6), with the cable

short-circuited at one end.

2.2. Constant parameter approximation

An underlying assumption in the conventional cascaded pi-section model is that the frequency depend-

ency of all parameters can be omitted, hence also simplifying (3) to

z = r +  ω l (7)

It is important to stress that the resulting model still relies on the analytical formulation from (1)–(2), but

with the approximation from (6)–(7).

Figs. 3a–3b show the effect of removing frequency dependency of r and l. In this example, the

single values of these parameters are obtained by a weighted fitting over the frequency range of 1 µHz up

to 1 MHz [23]. The process is described in more detail in Section 3.1. The overall result is an accurate

representation of predominantly the low-frequency range.
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Fig. 3. Cable impedance – constant parameter approximation and conventional pi-section model approximation.
a Constant parameter approximation – impedance magnitude
b Constant parameter approximation – impedance angle
c Conventional pi-section model – impedance magnitude
d Conventional pi-section model – impedance angle

2.3. Conventional cascaded pi-section model

As the model from the previous section still relies on the analytical formulation from (1)–(2), an

approximation is needed to express it in a state-space format. A common approach is to use cascaded

pi-sections. The approximation stems in the fact that for short lines, the hyperbolic correction factors

in (1)–(2) approach 1, resulting in a series impedance z `. For longer lines, these correction factors can

be approximated by cascading multiple pi-sections in series. This approach is taken in [20] to present a

state-space model for transmission lines and is a commonly used approach to model HVDC cables for

small-signal stability studies. Figs. 3c–3d show the approximation of the cable with respectively 1, 5 and 15

cascaded pi-equivalents, using the constant r and l values from Section 2.2.

These results clearly show that by cascading several branches the cable response better resembles the

behaviour of the analytical equivalent pi-model with constant parameters (Figs. 3a–3b), instead of the actual

cable impedance (Figs. 2c–2d).

3. Frequency-dependent cascaded pi-model

The previous discussion clearly highlights that increasing the number of pi-sections results in a

better approximation of the hyperbolic correction factors from (1)–(2), but this does not result in a good

approximation of the actual behaviour of the cable since it does not allow to take into account the frequency
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dependency of the distributed parameters. To overcome these drawbacks, the idea of modelling the cable by

means of parallel series RL-branches from [21] has been used. In [22], this idea has been explored to include

transmission lines in a state-space model. To some extent, the method presented in this paper also shows

similarities to the approach taken in [18], which involved modelling the cable screen by including a coupled

inductor. However, the proposed method is different since it assumes the screen to be at ground potential and

is more general in the sense that the approach can be extended to an arbitrary number of branches, thereby

improving the fitting in the frequency domain.

The modelling approach consists of two subsequent steps. First, the frequency dependency of the series

elements are fitted with parallel branches by using vector fitting [23]. Second, the hyperbolic correction

factors from (1)–(2) are approximated with multiple pi-sections, resulting in the model from Fig. 4a.
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Fig. 4. Cascaded pi-section model with parallel series branches.
a Full model
b Approximate representation of the frequency-dependent series parameters
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The elements of the pi-equivalent scheme are given by

Ri = ri `π (8)

Li = li `π (9)

G = c `π (10)

C = g `π (11)

where `π = `/p is the length of a pi-section and p represents the number of pi-sections.

3.1. Vector fitting of series impedance elements

The goal of the first step, the vector fitting, is to provide an adequate description of the series elements

in the frequency domain by means of a rational approximation of order N . The problem takes the general

form of a sum of partial fractions [23]

f(s) =
N∑
i=1

ci
s− ai

+ d+ s e (12)

Considering N parallel branches with a resistance ri and inductance li as in Fig. 4b, the series admittance of

the cable, ys(s) = [r(s) + s l(s)]−1, is in fact approximated as

ys(s) ≈
N∑
i=1

1

lis+ ri
(13)

A comparison of (12) and (13) shows that this model naturally leads to a simplified version of the

rational formulation from (12) with d = 0, e = 0 and

li = c−1
i (14)

ri = −aic−1
i (15)

Hence, the dc resistance per unit length of the equivalent cable model is given by

rdc =
1∑N

i=1−a
−1
i ci

(16)

Figs. 5a–5b show the approximation of the series impedance using 5 parallel branches. The fitting

of the series impedance data to parallel branches clearly provides a valid means to take into account the

8



10−4 10−2 100 102 104

10−6

10−4

10−2

100

102

Frequency [Hz]

M
ag

ni
tu

de
[Ω

/k
m

]

data
model

deviation

a

10−4 10−2 100 102 104

0

50

100

Frequency [Hz]

Ph
as

e
an

gl
e

[d
eg

.] data
model

deviation

b

10−4 10−2 100 102 104

101

102

Frequency [Hz]

M
ag

ni
tu

de
[Ω

] data
5// 1 π
5// 5 π
5// 15 π

c

10−4 10−2 100 102 104

−50

0

50

Frequency [Hz]

Ph
as

e
an

gl
e

[d
eg

.]

data
5// 1 π
5// 5 π

5// 15 π

d
Fig. 5. Cascaded pi-section model approximation – Series impedance z and cable impedance using 5 parallel branches.
a Series impedance – impedance magnitude
b Series impedance – impedance angle
c Cable impedance – impedance magnitude
d Cable impedance – impedance angle

frequency-dependence of the cable parameters.

3.2. Cascaded pi-section model with parallel branches

The hyperbolic correction factors in (1)–(2) are now taken into account by using cascaded pi-

equivalents with parallel series branches. The number of pi-sections depends on the modelling needs

and consequentially on the bandwidth of the cable model demanded in the state-space representation. This is

illustrated in Figs. 5c–5d, which show the results of using 1, 5 and 15 pi-sections for a cable model with 5

parallel branches.

The picture indicates that the method as such does not pose any theoretical restrictions on the level

of detail that can be represented, but the model order increases with the number of pi-equivalents and the

number of parallel branches.

3.3. State-space representation

The linear model from Fig. 4a can be directly written in a state-space form

ẋc = Acxc + Bcuc (17)
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with xc ∈ Rnc the cable state variable vector, uc ∈ R2 the cable input vector and Ac ∈ Rnc×nc , Bc ∈ Rnc×2

the cable coefficient matrices. Considering the cable separately, Fig. 4a can be represented by a state-space

model by considering external current sources at both cable ends as inputs and the internal currents and

voltages as states. In this paper, however, the cable is connected to a converter model with a capacitor at the

dc side. Since in this case the dc voltages at both cable ends are already state variables of the converter, the

shunt elements (G/2 and C/2 in Fig. 4a) of the pi-equivalents at the cable ends need to be treated as a part

of the converter instead, by adding C/2 to the converter capacitance. Hence, the cable can be written as as

state-space model with vectors xc and uc matrices Ac and Bc given by

xc =
[
i1,1 · · · i1,N v1 i2,1 · · · i2,N v2 · · · vp−1 ip,1 · · · ip,N

]T
(18)

Ac =


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
(19)
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Bc =

 1
L1
· · · 1

LN

− 1
L1
· · · − 1

LN


T

(20)

uc =

 vin
vout

 (21)

for the general case of a cable with p pi-equivalents and N parallel branches. The first and last subblock of

Ac in (19) differ as the voltages at the beginning and at the end of the cable are treated as inputs to the model

(see Bc in (20)). Similarly, in case only one pi-equivalent is used, matrices Ac and Bc respectively simplify to

an N×N and an N×2 matrix, with vector xc only retaining the N currents as state variables.

3.4. Time domain verification

In this section different modelling approaches are compared by simulating a cable section in PSCAD/

EMTDC. Cable geometries are taken from the open 4-terminal test network presented in [28]. The cable

has been implemented as ULM cable model, as well as using a model relying on a conventional cascaded

pi-section approximation and the proposed cascaded pi-section model with parallel branches.
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Fig. 6. Time-domain cable model verification – open circuit and short circuit response.
a Open circuit – step response (detail)
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Figs. 6a–6b show the open-circuit response of the different cable models. The ULM clearly shows

the expected reflection patterns of of the voltage at the cable ends. The conventional cascaded pi-section

model with 15 pi-equivalents poorly represents the time-response of the cable, resulting in a dominant

oscillation with higher amplitude, much longer settling time and different oscillation frequency compared to

the ULM’s reflection pattern. The conventional pi-section model also results in high frequency oscillations

superimposed to the poorly damped low frequency oscillation. The equivalent high-frequency dynamics

are negligible in the ULM response, and are well damped for the models with parallel branches. It can be

seen from the figures that all models with parallel branches provide a reasonably accurate representation of

the open-end cable dynamics, with the most accurate results observed for the models with 15 pi-sections.

The difference in response between the models with 5 and 9 parallel branches is negligible. It is also noted

that among the models with parallel branches, the case with a single pi-section and 5 parallel branches (in

red) has the lowest accuracy in representing the reflections at the cable ends: the model does not accurately

represent the delayed increase in the voltage due to the travelling wave effect and has an initial peak value in

the time response that is slightly lower than the other models. However, the oscillation frequency and settling

time are much closer to the ULM model than those of the conventional cascaded pi-section model. Thus, a

single section model with multiple parallel branches can more accurately represent the cable dynamics than

a conventional model with multiple cascaded pi-sections.

Figs. 6c–6d show the current through the cable for the different models after a step in the voltage of

1 V at one cable end with the other cable end short-circuited. No noticeable difference is observed with

respect to the number of pi-equivalents added. Indeed, the three curves representing the different models

using 5 parallel branches (in magenta and red), as well as the two models using 9 parallel branches (in blue)

are largely overlapping. In general, all models correctly represent the steady-state behaviour (due to a good

fitting at low frequencies), but the rise time is significantly different for the conventional cascaded pi-section

model with 15 pi-equivalents. Furthermore, the resonances are also triggered to a much higher extent than in

the other, more accurate models (Fig. 6d). The same oscillation frequencies as observed in Fig. 6b are excited

for the conventional cascaded pi-section model, while the ULM and the pi-section models with multiple

parallel branches show a smooth and well-damped response. Figs. 6c–6d indicate that all models using

parallel branches give a rather good approximation of the short circuit response of the system. However, the

number of parallel branches does alter the step response slightly and correspondence is best for the model

with 9 parallel branches (Fig. 6c – detail).
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4. Test system modelling

4.1. Reference configuration

In order to validate the proposed modelling approach, simulations are carried out for a ±320 kV,

900 MW two-terminal VSC HVDC link with a length of 300 km. Fig 7a shows the system configuration,

with converters a and b respectively set to constant voltage and constant power control.

∼
=
a

vdc control

=
∼
b

pac control

300 km

a

b

−

+v∗dc

vdc,f

Kdc

(
1 + 1

τdc·s

) i∗ld

c

−

+p∗ac

pac,f

KP

(
1 + 1

τP ·s

) i∗ld

d
Fig. 7. System modelling and control implementation.
a Two-terminal test system configuration
b Converter model
c Constant dc voltage control loop
d Constant power control loop

The converter model used in this study is based on the model described in [15], assuming an averaged
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model of a 2-level converter, including filter bus dynamics. The connection to the grid is taken into account

using a complex impedance, which represents the combination of the transformer and the grid Thevenin

impedance. Fig. 7b shows the averaged model that is used and indicates the different converter control loops.

A phase-locked loop (PLL) is used to synchronise the dq reference frame to the voltage at the filter

bus, while other control loops include decoupled inner current controllers and active power or dc voltage

control. The structure of the outer control loops are depicted in Figs. 7c–7d. The active power PI controller

has been tuned to obtain an equivalent time constant of 25 ms (hence 10 times slower than inner current

controller), while the dc voltage controller has been tuned according to symmetric optimum tuning. Further

features of the model include an active damping algorithm to prevent filter bus voltage oscillations from

entering the control loops, as well as dynamics related to the low-pass filtering of dc voltage and active

power measurements. The first-order measurement filters on the dc voltage and ac power signals have been

tuned in order to obtain a 40 dB attenuation at the switching frequency, assumed to be 2.1 kHz. Outer control

loops for the reactive power have been left out of the study. The current at the dc side is considered as an

input to the converter model, as are the ac voltage source and the references for the controllers.

4.2. System state-space modelling

In order to write the non-linear converter model in a linear state-space form, the equations are linearised

around a steady-state operation point x0 ∈ Rn

∆ẋ = A∆x + B∆u ; x(0) = x0 (22)

with ∆x ∈ Rn the converter state vector, ∆u ∈ Rm its input vector and A ∈ Rn×n, B ∈ Rn×m the

coefficient matrices. The different components in the HVDC system are first modelled as independent linear

time-invariant subsystems. With all different subsystems described in the form of (22), a state-space model

of the entire system is assembled. In order to find the steady-state operation point for the entire system,

which is needed to linearise the converter equations, a dc power flow solution is calculated, accounting for

the dc system losses.

The overall system matrix At can thereafter be assembled by accounting for the state variables of the

different models that are input variables to the model of other components. More specifically, these are the

dc currents at the cable ends and the converter dc voltages.

The total state-space model is given by

∆ẋt = At ∆xt + Bt ∆ut (23)
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with

∆xt =
[
∆xa ∆xb ∆xc

]T
(24)

∆ut =
[
∆ura ∆urb

]T
(25)

For this two-terminal HVDC system, subscripts a, b and c respectively refer to the first and second converter

and the cable connecting the two converters.

Without overlapping states in the modelling of the components, ∆xt∈Rnt with nt=na+nb+nc. The

total input vector ∆ut∈Rmt only consists of reduced versions ∆ura∈Rmra , ∆urb ∈Rmrb of the converter

input vectors ∆ua ∈ Rma and ∆ub ∈ Rmb , since the dc currents and voltages are no longer inputs to

subsystem models, but state variables of the cables and converters respectively.

5. Impact of cable model on system interactions

5.1. Identification of interaction modes

Following the procedure presented in [19], this paper uses the concept of interaction modes to identify

the system interactions in the test system and to address the effect of the cable modelling on these modes.

These interaction modes are defined as those system modes in which the two converters participate. Using

participation factors as defined in [9], let pki denote the participation factor of state variable xk in mode i,

pi∈Rnt the vector with the participation factors for all system states associated with mode i, and pα,i∈Rnα

the vector with the participation factors for all states of subsystem α. A parameter ηαi is now defined as a

measure for the overall participation for each subsystem α in mode i such that

ηαi =
‖pα,i‖
‖pi‖

(26)

with ‖ · ‖ denoting the L1-norm. ηai, ηbi and ηci are a measure for the degree to which the 2 converters and

the cable participate in each mode. Using a threshold χ, we define an interaction mode i as a mode for which

both ηai > χ and ηbi > χ, resulting in a subset of interaction modes S.

5.2. Interaction analysis with cascaded pi-section model with parallel branches

Fig. 8a shows the eigenvalues of Aa (converter a), the dc voltage controlling converter. The bandwidth

of both converter models fB is equal to 581 Hz. The states that are mainly associated with these modes are

resulting from the LC circuit at the ac side and hence, little impact on their position can be expected when
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Fig. 8. System, converter and interaction modes and cable model reduction.
a Eigenvalues Aa (converter a)
b Eigenvalues At (system)
c Interaction modes – Eigenvalues At with ηa>5% and ηb>5%
d Cable model reduction preserving interaction modes

connecting the cable. The conservative assumption that the model for the cable needs to be accurate until

this frequency, results in a cable model with 9 parallel branches and 15 pi-sections. Thus, the impedance

angle deviation is limited to less than 0.5◦ in the low frequency region and is limited to 2◦ at fB. Similarly,

the impedance magnitude deviation is limited to 7% at fB. Fig. 8b shows the resulting eigenvalues for the

combined system. The eigenvalues with real parts lower than -103 and imaginary parts over 104 have not

been depicted in this figure as these modes are well-damped and mainly related to internal cable states.

Fig. 8c shows eigenvalues that are the result of the interaction study after defining ηαi for the different

components α for mode i with a threshold χ = 5%. In total, 7 interaction modes are identified between the

two converters.
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The required cable bandwidth is now reduced to 297 Hz, corresponding to the frequency of the highest

interaction mode of interest. Fig. 8d shows the effect of lowering the number of parallel branches and

pi-sections. The figure shows that a model with 5 parallel branches and 5 pi-equivalents provides a good

compromise to still accurately represent the eigenvalues of interest. The picture indicates that keeping the

number of parallel branches equal to 9 whilst lowering the number of pi-sections, leaves the poles C to

G largely unaltered and only impacts A and B, the poles with the highest imaginary parts. Lowering the

number of parallel branches to 5 impacts the poles C and D as well. The number of parallel branches can be

lowered to 3, which forms a lower limit to still represent the complex conjugate poles A and B. It is clear

from this picture that including a number of parallel branches whilst only using one pi-equivalent still allows

a reasonably accurate representation of the poles C and D. It is also clear from Fig. 8d (see detail) that all

models accurately represent the interaction modes F and G, with the lowest accuracy for the simplest models

with only three parallel branches. These models are slightly conservative with respect to the damping of

modes C, D, F and G and can in this case still be used for stability assessment.

5.3. Conventional state-space cable modelling effects on interaction modes

The result of the simplifications that are commonly encountered in state-space representation and their

effect on the placements of the poles involved in the interaction modes are shown in Fig. 9. It is clear from
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Fig. 9. Conventional cable state-space representations and their effect on the interaction modes (reference case: 9 parallel
branches, 15 cascaded pi-sections).
a Cascaded pi-section approximation
b Single pi-section approximation
c Single pi-section approximation without inductance

this figure that the simplifications based on using one parallel branch (and either one or multiple pi-sections)

give misleading impressions about the relative stability of the cable modes (denoted A,B, C and D in Fig. 8c):
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the corresponding eigenvalues not only appear at different frequencies, but are also poorly damped. The

representation of the lower order cable modes is also less accurate than the representations from Fig. 8d, and

even than the model using one pi-section and 3 parallel branches. Similarly, the representation of the real

pole (E in Fig. 8c) is less accurate. It can be noted that the simplest representation, only using the resistive

cable value and leaving out the current as a state variable (Fig. 9c), results in similar values for modes E,

F and G, but does not include the wrongly predicted oscillatory modes from the conventional (cascaded)

pi-section models.

6. Cable modelling effects on dynamic response and system stability

The state-space models are verified against a time-domain model using MATLAB/Simulink. The

overall aim is to illustrate how the typical time response of the two-terminal system changes when the

frequency dependency of the cable parameters is accounted for in the state-space model or when, alternatively,

a conventional cascaded pi-model is used. The ’benchmark’ study case is a non-linear three-phase averaged

model in MATLAB/Simulink SimPowerSystems, with the cable implemented using the WideBand Line

model from the OPAL-RT ARTEMiS-SSN library.

The results of the benchmark model have been compared against the response of a linear state-space

model using respectively a cable model with 5 parallel branches and 5 pi-sections, as well as the conventional

cascaded pi-model with 5 pi-sections. Fig. 10 shows the response of the system when subjected to a 10%

step change of the equivalent ac grid voltage at the power controlling converter station. From Fig. 10b it is

clear that the step change in ac voltage causes an oscillation of the dc voltage in the system. Comparing the
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Fig. 10. Time-domain comparison of linearised model with non-linear 2-terminal model with ULM cable model – ac voltage step
change (0.1 p.u.) at power controlling converter.
a Filter capacitor voltage (d-component)
b DC voltage

results of the conventional cascaded pi-section model (in red) with the others, it is clear that the perturbation

at the ac side triggers a poorly damped oscillation at the dc side which is not present in the ULM model
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and in the model with parallel branches. The small differences between the ULM model (black) and the

cascaded pi-section model with parallel branches are mainly a result of the linearised state-space modelling

when operating away from the linearisation point. On the ac side, the two linearised models show a good

match with the non-linear averaged model.
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Fig. 11. Time-domain comparison of linearised model with non-linear 2-terminal model with ULM cable model – dc voltage
reference step change (0.05 p.u.), voltage at thepower controlling converter.
a Symmetric optimum controller tuning
b Increased dc voltage controller gains (Kdc scaling factor 3)
c Increased dc voltage controller gains (Kdc scaling factor 4.85)

In a next step, the effect of the cable modelling on the stability analysis of the system is investigated by

scaling the controller gain Kdc of the dc voltage PI controller (Fig. 7c). Fig. 11 shows the dc voltage response

at the power controlling converter after a 5% step change in the dc voltage reference with different controller

tuning. Under symmetric optimum controller tuning (Fig. 11a) the erroneous dc voltage oscillations are

mainly present during the initial phase of the step response and do not significantly influence the time

response. When increasing both proportional and integral gains by factors of respectively 3 (Fig. 11b) and

4.85 (Fig. 11c), the oscillations become more and more persistent and will eventually lead to instability in

the conventional cascaded pi-section model when increasing the controller gains even further.

Fig. 12 shows clearly that adding more pi-sections, which results in an increased bandwidth of the

cable model, does not result in a more realistic time-domain response, hence confirming the results from

Fig. 9. There is almost no noticeable difference between the models with 5, 15 and 25 pi-sections (Fig. 12a)

and also the model with a single pi-section indicates a similar oscillatory pattern (Figs. 12b-12c). The time

domain response of the single pi-section model with the inductance omitted does not suffer from the wrongly

predicted oscillation, but faces a slightly lower overshoot and a somewhat faster response than the ULM

model (Fig. 12b). None of the conventional pi-section models succeed in representing the system response

as accurately as the cascaded pi-model with parallel branches (Fig. 11).

Finally, Fig. 13 shows the effect of this parameter variation on the location of the overall system modes
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Fig. 12. Time-domain comparison of different conventional cascaded pi-section models with ULM cable model for Kdc scaling
factor equal to 3 – dc voltage reference step change (0.05 p.u.), voltage at the power controlling converter.
a Cascaded pi-section model
b Single pi-section model, with and without inductance
c Detail, including all models from (a) and (b)

(Figs. 13a and 13c) and on the interaction modes (Figs. 13b and 13d) in particular when changing gain Kdc of

the dc voltage controller (Fig. 7c) at converter a from respectively 0.1 to 10 times the original settings. The

intensity of the colour indicates the participation of the converters in these modes: the lighter the colour, the

more the mode is related to the cable, the darker the colour, the more it is related to the converters. Changing

the gains slightly alters the interaction pattern (Figs. 13b and 13d) in terms of new poles appearing compared

to the results from the previous sections. These real poles are related to the integrator of the dc voltage

controller at converter a and the dc filtered voltage at this converter, as well as with the dc voltages at both

cable ends. Comparing the interaction pattern from Figs. 13b and 13d confirms the time-domain analysis.

Namely, an increase of the controller gains causes the poles which are strongly linked to the first cable

resonance (modes C and D from Fig. 9a , encircled in red in Fig. 13d) to move into the right-hand plane,

hence making the system unstable for the case of the conventional cascaded pi-section model. On the other

hand, in the model with parallel branches (Fig. 13b), the poles linked to the first cable resonance (modes C

and D from Fig. 8d) do not trigger any instability and are still well damped, even for the higher controller

gain settings. From the overall system poles in Figs. 13a and 13c, it is clear that no other system instabilities

are triggered when changing the gains, other than the wrongly represented dc resonance in case of using

conventional cascaded pi-section models. Investigation of the participation factors of these unstable modes

shows that they are about equally linked with the dc voltages at both converters, and with internal cable

state variables. This confirms that the pole becomes unstable because of a wrongly represented interaction

between the converter controls and a cable resonance that is well damped in reality, but poorly damped in a

conventional cascaded pi-section model.
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a All modes – 5 parallel branches, 5 pi-sections
b Interaction modes – 5 parallel branches, 5 pi-sections
c All modes – conventional cascaded pi-section model, 5 pi-sections
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7. Conclusion

In this paper, the effect of the frequency dependency of HVDC cables on the small-signal stability has

been assessed. The traditional state-space models generally encountered in literature using the conventional

cascaded pi-section modelling result in a poor representation of the cable modes in the frequency domain.

This can lead to false conclusions on the dynamic response and stability margin of HVDC systems. As an

alternative, a model with parallel branches based on a vector fitting of the series elements of the cable has

been proposed to account for the frequency dependency of the cable parameters. The model allows for an an

accurate representation of the cable in the frequency domain and provides a time domain response similar

to that of wideband cable models. Furthermore, the approach can also be applied for other line or cable

configurations. It is shown that the model accurately represent the system interaction modes with a lumped

parameter model designed to cover the frequency range at which such interactions can occur. The study

leads to the general conclusion that the cable should preferably be modelled by a combination of parallel
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branches and pi-sections. In case a very simple model is sought for, it is better to model the cable using only

parallel branches instead of merely cascading pi-sections.
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