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Preface

This thesis is submitted in fulfilment of the requirements for the doctor of philosophy at 
the Norwegian University of Science and Technology (NTNU). The work has been 
carried out at the Department of Materials Science and Engineering (DMSE), NTNU 
from March 2011 to March 2014. Professor Bjørn Holmedal at DMSE, NTNU was the 
main supervisor. Professor Odd Sture Hopperstad at the Department of Structural 
Engineering, NTNU, Dr. Stéphane Dumoulin at SINTEF Materials and Chemistry, and 
Professor Knut Marthinsen at DMSE, NTNU, were the co-supervisors. The thesis 
consists of two parts. The first part (Part I) includes the introduction, a short literature 
review and a summary of the work. The second part (Part II) contains articles which 
were published or prepared by the candidate during the PhD study. Four articles are 
listed in the main body of Part II, which present the main work, results and academic 
contributions of this PhD project. Two articles which were presented at international 
conferences are attached in the appendix of Part II.

The articles contained in this thesis:
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2. “Use of Plane-strain Tension and Shear Tests to Evaluate Yield Surfaces for AA1050 
Aluminium Sheet’’, accepted after peer-review for the 14th International Conference on 
Aluminium Alloys (ICAA14). The conference proceeding will appear in the journal: 
Materials Science Forum.

3. “A Robust and Efficient Substepping Scheme for the Explicit Numerical Integration 
of a Rate-dependent Crystal Plasticity Model”, International Journal for Numerical 
Methods in Engineering, 2014. DOI: 10.1002/nme.4671

4. “Modelling the Plastic Anisotropy of Aluminium Alloy 3103 Sheets by Polycrystal 
Plasticity Models”, submitted to: Modelling and Simulation in Materials Science and 
Engineering.

The articles contained in the Appendix:

I. “An Explicit Integration Scheme for Hypo-elastic Viscoplastic Crystal Plasticity”, 
1st Asian Conference on Aluminium Alloys (ACAA-2013), accepted for publication in 
the journal: Transactions of Nonferrous Metals Society of China, 2014.
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Abstract

This thesis aims to accurately describe the plastic anisotropy of aluminium alloys
through a hierarchical multi-level method. Robust and efficient integration schemes 
have been proposed for the explicit numerical integration of rate-dependent crystal 
plasticity models. 

On the mesoscale, the plastic anisotropy is modelled by crystal plasticity models 
considering a representative volume element (RVE). The RVE consists of a number of 
single grains and inherits the microstructural information of the polycrystalline material, 
e.g. crystallographic texture, grain size and shape and grain boundary misorientation. 
Five crystal plasticity models have been used in this work, namely the full-constraint 
(FC) Taylor model, the Alamel model, the Alamel model with so-called type III 
relaxation (Alamel Type III), the visco-plastic self-consistent (VPSC) model and the 
crystal plasticity finite element method (CPFEM). The accuracy and applicability of 
these crystal plasticity models when predicting the plasticity anisotropy have been 
investigated for three different aluminium alloys. On the continuum scale, the yield 
surface of the material is represented by advanced yield functions. Two yield functions 
have been employed and investigated for this purpose, namely the Yld2004-18p yield 
function and the Facet yield function. The yield function is a key component of an 
anisotropic model in a finite element method (FEM) code, in addition to the flow rule 
and work hardening law, for simulating plastic deformations. Advanced yield functions, 
like Yld2004-18p, are conventionally identified by experiments, e.g. uniaxial tensile 
tests, biaxial tension/compression tests and shear tests. However, the number of 
available experimental tests is limited for sheet metals and most of the stress space is 
not covered by the experiments. The multi-level modelling was made through 
identifying the parameters of the advanced yield functions partially or fully by stress 
points at yielding provided by crystal plasticity calculations. The accuracy and 
applicability of this multi-level modelling scheme were evaluated for describing the 
plastic anisotropy of three aluminium alloy sheets in this thesis.

In Article 1, the plastic anisotropy of a fully annealed AA1050 aluminium sheet is 
studied by the use of five crystal plasticity models and two advanced yield functions. 
The in-plane uniaxial tension properties of the sheet were predicted by the FC-Taylor 
model, the Alamel–type models, the VPSC model and CPFEM. Results were compared 
with data from tensile tests at every 15° from the rolling direction (RD) to the transverse 
direction (TD) of the plate. Furthermore, all the models, except CPFEM, were used to 
provide stress points in the five-dimensional deviatoric stress space at yielding for 201 
plastic strain-rate directions. The Facet yield surface was calibrated using these 201 
stress points and compared to the in-plane yield loci and the planar anisotropy which 
were calculated by the crystal plasticity models. The anisotropic yield function 
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Yld2004-18p was calibrated by three methods: using uniaxial tension data, using the 
201 virtual yield points in stress space, and using a combination of experimental data 
and virtual yield points (i.e., a hybrid method). Optimal yield surface exponents were 
found for each of the crystal plasticity models, based on calibration to calculated stress 
points at yielding for a random texture, and used in the latter two calibration methods. It 
was found that the hybrid calibration method could capture the experimental results and 
at the same time ensure a good fit to the anisotropy in the full stress space predicted by 
the crystal plasticity models.

Plane-strain tension and shear tests were carried out for the same AA1050 sheet and
described in Article 2. The tests were simulated numerically with a commercial FEM 
code using an anisotropic plasticity model including the Yld2004-18p yield function, 
the associated flow rule and isotropic hardening. FEM simulations of the tests were 
made with parameters of Yld2004-18p identified in Article 1 by three methods, i.e. 
using uniaxial tension data combined with FC-Taylor model predictions of the 
equibiaxial yield stress and r-value, using 201 virtual yield points in stress space 
provided by the Alamel Type III model, and using a combination of experimental data 
and virtual yield points. Predicted force-displacement curves were compared to the 
experimental data, and the accuracy of the parameter identification methods for 
Yld2004-18p was evaluated based on these comparisons. The results showed that the 
hybrid method captured the initial yielding most accurately for both the plane-strain 
tension and shear tests.

Similar studies as described in Article 1 have been carried out on AA3103 sheets in the 
cold-rolled condition (H18 temper) and in the fully annealed condition (O temper) in 
Article 4. The plastic anisotropy of AA3103-H18 and AA3103-O sheets was studied 
experimentally and numerically. The microstructure and texture of the two materials 
were characterized and the anisotropic plastic behaviour was measured by in-plane 
uniaxial tension tests along every 15° from RD to TD of the sheets. The same five 
polycrystal plasticity models as used in Article 1 were employed to predict the plastic 
anisotropy in the plane of the sheet. Experimentally observed grain shapes have been 
taken into consideration. In addition, a multi-level modelling method was employed 
where the advanced yield function Yld2004-18p was calibrated to stress points at 
yielding provided by CPFEM simulations along 89 strain-paths, and the plastic 
anisotropy was then produced by the yield function. Based on comparisons between the 
experimental and the predicted results, the multi-level fitting method was found to be
the most accurate way of describing the plastic anisotropy. The Alamel Type III and 
Alamel models were also recommended as accurate and time-efficient models for 
predicting the plastic anisotropy of the AA3103 sheets in H18 and O tempers.
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Article 3 describes the development of efficient and robust numerical integration 
schemes for rate-dependent crystal plasticity models. A forward Euler integration 
algorithm was first formulated. An integration algorithm based on the modified Euler 
method with an adaptive substepping scheme was then proposed, where the substepping 
was mainly controlled by the local error of the stress predictions within the time step. 
Both integration algorithms were implemented in a stand-alone code with the Taylor 
aggregate assumption and in an explicit finite element code. The robustness, accuracy 
and efficiency of the substepping scheme were extensively evaluated for large time 
steps, extremely low strain-rate sensitivity, high deformation rates and strain-path 
changes using the stand-alone code. The results showed that the substepping scheme is 
robust and in some cases one order of magnitude faster than the forward Euler 
algorithm. The use of mass scaling to reduce computation time in crystal plasticity finite 
element simulations for quasi-static problems was also discussed. Finally, simulation of 
the Taylor bar impact test was carried out to show the applicability and robustness of 
the proposed integration algorithm for the modelling of dynamic problems with contact.
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Chapter 1 Introduction

1.1 Background 

Sheet forming processes are among the most common operations used in the industry. A
large volume of products are produced by sheet forming, particularly in the automotive 
and packaging industries. Aluminium alloys are widely used nowadays in forming
industries due to their high specific strength, good corrosion resistance and low 
recycling cost. International competition pushes all enterprises to shorten the 
manufacturing times and improve the quality of products, in order to maintain and 
better their position within the market. Numerical simulation of metal forming 
processes has a very important role in reducing the need for expensive and time 
consuming experiments for manufacturing good quality products. The finite element 
method (FEM) is currently the most widely used numerical procedure for simulating 
sheet metal forming processes. The accuracy of the simulation programs used in 
industry is influenced by the constitutive models of the material [1]. Sheet metals 
commonly exhibit plastic anisotropy which can have a major effect on the sheet metal 
forming processes and on in-service performance. Hence, the constitutive models used 
in FEM simulations of forming processes should describe the plastic anisotropy of the 
material accurately in order to give realistic predictions.

1.2 Objectives, scopes and limitations of the thesis

Crystal plasticity models at the mesoscale and advanced phenomenological yield 
functions at the macroscale are known as two principal methods for describing the 
plasticity, and its anisotropy, of engineering metallic materials. Combining these two 
methods through identifying yield functions by the help of crystal plasticity calculations, 
i.e. a multi-level modelling scheme, is a tendency in the forming industries. This work 
aims to find proper approaches to accurately describe the plastic anisotropy of 
aluminium alloys. Great efforts have been made to evaluate the accuracy and 
applicability 1) of existing models at both scales and 2) of the methods that bridge the 
two scales, i.e. the yield function identification procedures. The objectives of the thesis 
are summarized as:

1. Evaluate the accuracy and applicability of existing crystal plasticity models for 
predicting the plastic anisotropy of different aluminium alloys;

2. Compare the accuracy of two advanced yield function, i.e. the Yld2004-18p and 
the Facet yield functions, in terms of describing plastic anisotropy; 



Introduction

2

3. Evaluate different parameter identification procedures for advanced yield 
functions, especially the hybrid method where both experiments and crystal 
plasticity calculations are considered in the calibration procedure;

4. Improve the performance of CPFEM by proposing robust and efficient 
integration methods.

Three different aluminium sheets are studied in this thesis, including a fully 
recrystallized AA1050 sheet, a fully annealed AA3103-O sheet and a cold-rolled 
AA3103-H18 sheet. The anisotropic plastic behaviour is measured by in-plane uniaxial 
tension tests along every 15° from the rolling direction to the transverse direction of the 
sheet. The microstructure and texture of the two materials are characterized mainly 
using the electron back-scatter diffraction technique. Five crystal plasticity models are 
employed separately in the thesis to model the plastic anisotropy, which includes the 
full-constraint Taylor model, the Alamel model, the Alamel model with the so-called 
Type III relaxation, the visco-plastic self-consistent model and the crystal plasticity 
FEM (CPFEM). Grain morphology and/or grain boundary misorientation are considered 
in the crystal plasticity calculations. Two advanced yield functions employed in the 
thesis are the Yld2004-18p and the Facet criteria. Parameter identification procedures of 
the yield functions are evaluated by comparing the results obtained by the fitted yield 
surfaces to the experiments. The numerical integration schemes proposed in the thesis 
fall into the category of explicit integration methods.

The crystal plasticity models used in the thesis take the crystallographic texture as the 
main input. Dislocation populations and structures as well as their evaluation during 
deformation are not considered. The grain size, constitutive particles and dispersoids are 
also neglected in the crystal plasticity modelling. As a consequence, the plastic 
anisotropy predicted from crystal plasticity calculations is mainly texture-based in this 
thesis.
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Chapter 2 Literature review
The topics studied in this thesis mainly include plastic anisotropy, crystallographic 
texture (or texture for short), crystal plasticity models and phenomenological yield 
functions. Each of these topics will be introduced and briefly reviewed in the following 
of this chapter.

2.1 Plastic anisotropy

In the field of materials, anisotropy is the directional dependence of physical properties 
of the material. Among mechanical properties such as elastic modulus (Young’s 
modulus), yield stress, ductility, ultimate tensile stress, the anisotropy of the yield stress 
and the flow pattern are of main concern in the forming industry. The anisotropic work 
hardening [2, 3] is also within the context of plastic anisotropy, but it is seldom used in 
the industry due to the complexity of the theory and the numerical implementation.
Plastic anisotropy in terms of the yield stress and flow pattern is of main concern in this 
thesis.

Plastic anisotropy of materials greatly influences the final shapes and dimensions of the
products in a forming process. As an example, the earing after deep drawing in Fig. 1(a)
is due to plastic anisotropy of the material; the springback is also influenced by the 
plastic anisotropy [4]. Accurate numerical simulations of the plastic deformation, e.g. 
Fig. 1(b), are required for the purpose of predicting the final product shape and 
optimizing the operation processes.

(a) (b)
Fig. 1 Earing profile for a cube-textured aluminium sheet after cup drawing:

(a) experiment and (b) CPFEM simulation [5].
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Plastic anisotropy of a material can be measured by mechanical tests. The uniaxial 
tensile test is a widely used method. By conducting uniaxial tensile tests along various 
directions, the angular dependence of the initial yield stress (or the flow stress) and the 
flow pattern in terms of the Lankford value (r-value) can be obtained. The stress state 
corresponding to a uniaxial tensile test is known analytically and the strain state can be 
determined when the r-value is measured. Since both the stress and strain states are 
known, uniaxial tensile tests are very well suitable for calibration and validation of
anisotropic plasticity models. The r-value can be measured according to the ASTM 
E517 standard. For in-plane tension at degrees from the rolling direction (RD) in the 
RD-TD plane, the corresponding stress tensor expressed in the material frame, see
Fig. 2 , can be represented as

2

2

cos cos sin 0
cos sin sin 0

0 0 0
(1)

The strain rate tensor D for a uniaxial tensile test along RD is 

11

1 0 0
0 0
0 0 (1 )

D q
q

D (2)

where 11D is the strain rate along RD and q -value is the contraction ratio proposed by 
Bunge [6], with 0 1q and related to the r-value as / (1 q)r q .

Fig. 2 Orthotropy axes of the rolled sheet metals: RD—longitudinal direction; TD—transverse
direction; ND—normal direction, and the material frame with three base vectors ( 1,3)i ie [1].

The coefficient of biaxial anisotropy [7, 8], defined as
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22

11
br (3)

can be measured by the disk compression test [7] or using a biaxial tensile testing 
machine [8].

Texture and microstructure, besides chemistry, are key factors that control properties of 
engineering materials. The plastic anisotropy exhibited by materials is mainly attributed 
to the existence of texture which is a preferred distribution of grain orientations. A 
single crystal of a metal is inherently anisotropic due to its lattice structure. If grains 
within a polycrystalline metal have randomly distributed orientations, the anisotropy at 
the single crystal level will ‘vanish’ due to the randomization. However, sheet metal 
commonly features stronger crystallographic texture than bulk metals due to the thermo-
mechanical processing history, and exhibits anisotropy as a consequence. Anisotropic 
polycrystalline metals are thus merely reflecting the anisotropy of the single crystals 
they are composed of [9].

In addition to texture, other microstructural features can also influence the plastic 
anisotropy. Xie et al. [10] concluded that the initial grain shape has a clear effect on the 
q -value during tensile tests for three low carbon steels. Second-phase particles in 
aluminium alloys not only change the magnitude of the strength of an alloy, but also 
change its plastic anisotropy [11]. As an example, Bate et al. [12] showed changes in 
plastic anisotropy which accompany precipitation from a supersaturated solid solution 
in three different textured aluminium alloys, even though the crystallographic texture 
was not changed. Similar results were also found in [11]. Through-thickness variations 
of grain size and texture were observed in extruded aluminium profiles [13], and might 
have influence on the plastic anisotropy [14]. Chang et al. [15] examined the subgrain 
texture evolution of face-centered-cubic (FCC) metals under shear deformation by the 
help of CPFEM where the texture was the same but the grain boundary misorientation 
distribution (MD) was varied. It was found that the MD affected the evolution of texture. 
Hence, the MD may have influence on the evolution of texture-induced plastic 
anisotropy. During the deformation, the dislocation structure (substructure) evolves and 
may have influences on the plastic anisotropy. Juul Jensen and Hansen [16] measured
the in-plane directional flow stress anisotropy of cold-rolled (to different plastic strains) 
polycrystalline high purity and commercially pure aluminium by uniaxial tension tests.
The microstructure was also observed by transmission electron microscopy (TEM).
Microbands (MB) and dense dislocation walls (DDWs) were found to arise after cold-
rolling (especially at a low degree of deformation) and have preferred inclinations with 
respect to the sample frame. These DDW/MDs could act as obstacles to slip and hence 
influence the macroscopic flow stress anisotropy. Typical microstructure of FCC metals 
after plastic deformation and the relationship between grain orientation and the 
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substructure have been reported in the literature [17-21]. Landau et al. [22] investigated 
the evolution of the substructure during uniaxial compression of FCC metals from low 
to high stacking fault energy (SFE). Fig. 3(a) shows the dislocation boundaries formed 
following 3% strain, while Fig. 3(b) shows the dislocation cell structure following 70% 
strain. Latent hardening [16] and strain-path changes [23] may also contribute to the 
plastic anisotropy.

Fig. 3 TEM micrographs of aluminium compressed at room temperature showing dislocation 
boundaries and cell structure at different strains: (a) dislocation boundaries following 3% strain, 

(b) cellular structure following 70% strain [22].

Plastic anisotropy can be modelled by two different methods: crystal plasticity models 
and phenomenological anisotropic yield functions, which will be introduced later in this 
chapter.

2.2 Crystallographic texture

As illustrated schematically in Fig. 4, the crystallographic orientation of a grain is 
defined with respect to a reference frame, e.g. the RD-TD-ND sample frame of a rolled
plate in Fig. 4. The orientation may be expressed by Miller indices h k l u v w , by 

Euler angles 1 2, , or by an angle/axis of rotation [24]. The Miller indices can be 

interpreted as the (h k l) crystallographic plane being parallel with the RD-TD plane 
while u v w crystallographic direction being along RD.

There are several different conventions for expressing the Euler angles. The most 
commonly used are those formulated by Bunge, as shown in Fig. 5 [25]. In the 
angle/axis of rotation method, the crystal lattice will coincide with the sample 
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coordinate system by a rotation through a single angle , provided that the rotation is 
performed about a specific axis 1 2 3, ,r r r .

Fig. 4 Spatial orientation of the crystal lattice (FCC) of a grain relative to the rolled 
sheet [26].

Fig. 5 Diagram showing the rotation between the specimen and crystal axes by rotation 
through the Euler angles 1 , and 2 in that order [24].

The grain orientation can be illustrated by means of a pole figure, an inverse pole figure 
and the Euler space. In a pole figure, the orientation of the crystal coordinate system is 
represented in the specimen coordinate system, while the orientation of the specimen 
coordinate system can be projected into the crystal coordinate system in an inverse pole 
figure. It is noted that one single pole figure cannot describe all the orientation 
information; multi-poles are generally necessary for a full representation of the 
orientation. Inverse pole figures are commonly used for tracking the rotation of crystals
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during deformation. The Euler space is a three dimensional (3D) coordinate system 
whose axes are spanned by the three Euler angles. Cubic-orthorhombic texture functions 
(e.g., of rolling textures) are conventionally represented in the Euler space with a range 
of 0° to 90° for 1 , and 2 .

Fig. 6 Pole figures of 95% cold rolled aluminium, (a) {100} pole figure, (b) {111} pole figure
[27].

A preferred distribution of grain orientations is called texture. As-cast materials are 
generally assumed to have a random texture, i.e. no texture. After different thermo-
mechanical processing, the texture will arise. Typical cold-rolling texture of aluminium 
alloys are shown in Fig. 6.

In Fig. 6, one may perceive the difficulties of yielding unambiguously the entire texture 
information in a quantitative manner. To overcome these ambiguities and thus to permit 
a quantitative evaluation of the textures, it is necessary to describe the orientation 
density of grains in a polycrystal in an appropriate 3D representation, that is, in terms of 
its orientation distribution function (g)f (ODF) [28]. Typical cold rolling and 
recrystallization textures of aluminium alloys are illustrated in Fig. 7(a) and Fig. 7(b), 
respectively, in terms of ODFs.

It is necessary to compare two ODFs quantitatively for some circumstances, e.g. to 
examine the texture predicted by CP models, or to characterize the quality of the 
selected orientations in representing the measured texture. To compare two ODFs in a 
quantitative manner, the normalized difference texture index, NID , defined as

2

ref
2

ref

( ) ( )

( )
N

f g f g dg
ID

f g dg
(4)
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with 1 2sindg d d d can be used [29], where ref ( )f g is a reference ODF.

(a)                                                                  (b)
Fig. 7 (a) ODF of 90% cold rolled aluminium [30]; (b) recrystallization textures of coarse-

grained Al–3%Mg after prior reduction 90% [31].

The coordinate transformation matrix Q corresponding to a set of Euler angles 

1 2, , is expressed as

1 2 1 2 1 2 1 2 2

1 2 1 2 1 2 1 2 2

1 1

cos cos sin cos sin sin cos cos cos sin sin sin

cos sin sin cos cos sin sin cos cos cos sin cos

sin sin cos sin cos

Q (5)

The misorientation matrix between two grains A and B is calculated as 
1

A B
ABQ Q Q (6)

This misorientation is then expressed in axis-angle format and one obtains the rotation 
angle and the corresponding rotation axis 1 2 3, ,r r r that makes A and B coincide by

1

23 32 31 13 12 21
1 2 3

tr 1cos
2

, ,
2sin 2sin 2sin

AB

AB AB AB AB AB ABQ Q Q Q Q Qr r r

Q

(7)
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Due to the crystal symmetry, there are multiple descriptions of the rotation (24 for cubic 
crystals) and the minimum angle from these equivalent angles is taken as the 
misorientation. In cubic metals, the maximum misorientation angle is given as 62.8° 
[32]. The distribution of the misorientation for a random texture case is shown in Fig. 8.

Fig. 8 Density function for the distribution of misorientation angles for a randomly textured 
polycrystal, from Mackenzie [32].
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2.3 Crystal plasticity models

Deformation will happen in the material under external forces. Elastic deformation is 
reversible and occurs in the crystal by changing the mutual distance between atoms 
without breaking the atomic bonds. If the elastic limit is exceeded, non-reversible 
plastic deformation will take place. The main mechanisms for plastic deformations are 
slip and twinning, while slip is dominant for metals with high SFE, such as aluminium 
and its alloys. Slip happens through the dislocation movement on the slip systems which 
are defined by the most densely packed crystallographic planes and the most densely 
packed crystallographic directions. In body-centred-cubic (BCC) metals, the atoms are 
closest to each other along the <111> direction. Any plane in a BCC crystal that 
contains this direction is a suitable slip plane. Slip has been experimentally observed in 
{110}, {112} and {123} planes, leading to 48 potential slip systems in BCC metals. In 
FCC metals, there are 12 slip systems, i.e. the {111}<110> slip systems. These 12 slip 
systems are listed in Table 1, where m is the unit vector of slip direction and n is the 
slip plane normal vector.

2.3.1 Schmid’s law
Crystal plasticity has as its origin in Schmid’s law, which states that crystallographic 
slip is initiated when a critical resolved shear stress c is reached on a slip plane in a slip 
direction. Fig. 9 illustrates crystallographic slip in uniaxial tension. The resolved shear 
stress for the uniaxial tensile stress state can be expressed as

cos cos (8)

where cos cos is known as the Schmid factor. For an arbitrary Cauchy stress tensor 
, the resolved shear stress on  slip system can be defined as

T1 1
2 2: ( ) : ( ) c (9)

where M m n is the Schmid tensor and is the label of slip systems.

Non-Schmid yield behaviour has been observed in some BCC metals [33] and 
intermetallic compounds [34], where not only the resolved shear stress on the primary 
slip system (the Schmid stress) controls the dislocation motion on that system, but other 
shear stress components also affect the mobility of dislocations. The generalization of 
Schmid’s law and the flow rules accounting non-Schmid behaviour has been proposed
in [34, 35].
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Table 1 Slip direction m and slip plane normal n with respect to an orthonormal basis 
associated with the lattice for an FCC crystal (Bishop and Hill notation)

m n m n

1 1
2

(0,1, 1) 1
3

(1,1,1) 7 1
2

(0,1, 1) 1
3

( 1,1,1)

2 1
2

( 1,0,1) 1
3

(1,1,1) 8 1
2

(1,0,1) 1
3

( 1,1,1)

3 1
2

(1, 1,0) 1
3

(1,1,1) 9 1
2

( 1, 1,0) 1
3

( 1,1,1)

4 1
2

(0, 1, 1) 1
3

( 1, 1,1) 10 1
2

(0, 1, 1) 1
3

(1, 1,1)

5 1
2

(1,0,1) 1
3

( 1, 1,1) 11 1
2

( 1,0,1) 1
3

(1, 1,1)

6 1
2

( 1,1,0) 1
3

( 1, 1,1) 12 1
2

(1,1,0) 1
3

(1, 1,1)

Fig. 9 Illustration of Schmid’s law for a uniaxial tensile test. The resolved shear stress on the 
slip plane n along the slip direction m is: cos cos [36].

2.3.2 Sachs model
The oldest crystal plasticity model was proposed by Sachs [37] with the iso-stress
assumption for all grains in the polycrystal. Under this assumption, adjacent grains will 
deform independently and lead to unrealistic overlaps and gaps at grain boundaries. Slip 
will happen on the slip system which features the largest resolved shear stress or 
Schmid factor according to Eq. (9). Hence, single slip is preferred in the Sachs model.
The Sachs model is also known as the lower-bound model. Implementations of the 
standard or the modified Sachs models can be found in [38-40]. As a simple
approximation of the Sachs model, the weighted mean value of the maximum Schmid 
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factor for all grains in the RVE can be used to investigate the strength anisotropy [41].
Sachs-type models were found to work well for some cases, e.g. simulating the early 
stage of development of rolling texture in Copper and Brass [42], and predictions of the 
strength anisotropy of AlZnMg materials [41]. Despite of these successes, the use of the 
Sachs model has been out of fashion in the last decades because the Taylor-type model 
has been considered much closer to reality [42, 43]. The Sachs model was not employed 
in the work of this thesis.

2.3.3 Taylor-Bishop-Hill model
The full-constraint (FC) Taylor model was originally proposed by Taylor in 1938 [44].
The plastic deformation rate tensor pD for a general plastic deformation of metals has 
only five independent components due to the incompressibility condition. The plastic 
deformation can then be accommodated by a least five independent slip systems as

p T1
2 ( )D M M (10)

The spin of the crystal pW due to the slip can be expressed as 

p T1
2 ( )W M M (11)

In the Taylor theory, the single crystal is assumed to experience the same deformation 
as the macroscopic polycrystalline material, i.e. the iso-strain assumption is adopted, see 
Fig. 10. As mentioned above, there exist 12 potential slip systems for FCC metals at 
ambient temperature. The abundance of slip systems leads to multiple solutions of five 
active slip systems in Eq. (10) when pD is known, e.g. there are 792 combinations of 5 
slip systems out of total 12. Taylor [44] proposed the second assumption that the 
solution with a minimum internal energy dissipation as

minc (12)

is a valid solution, where c is assumed to be the same for all slip systems.

Bishop and Hill [45, 46] proposed a stress-based procedure for finding the active slip 
systems with the iso-strain assumption. Their stress-based approach sought to directly 
find stress states that could simultaneously operate at least five independent slip systems. 
By examining the yield criterion of each slip system, they found that any polyslip stress 
state that simultaneously operates at least five slip systems will actually operate six or 
eight. In total, there are 28 (56 with negatives) permissible FCC polyslip stress states. 
To accommodate an imposed deformation pD , the particular stress state can be found 
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by selecting from these total of 56 permissible ones, the one which maximizes the 
external work done, i.e.

p maxij ijdW D (13).

This principle of maximum work was first derived rigorously by Bishop and Hill [45,
46]. It was also shown that the maximum work principle is equivalent to the minimum 
internal energy dissipation approach taken earlier by Taylor [45-47]. Hence, the FC-
Taylor model also has the name as Taylor-Bishop-Hill model. A very concise and lucid 
introduction of the Taylor and the Bishop-Hill procedures can be found in [48] while 
comprehensive reviews are collected in [49-51].

Fig. 10 Four commonly used homogenization schemes [52].

Eq. (10) with the constraint set by Eq. (12) can be solved effectively by the linear 
programming technique [50, 53]. However, the so-called Taylor ambiguity arises when 
multiple solutions that satisfy both Eqs. (10) and (12) are found. Physically, the Taylor 
ambiguity is attributed to using exactly the same critical resolved shear stress for all slip 
systems [49] and neglecting substructural anisotropy [54]. All valid basis solutions 
could be found by systematically changing the value of c for single slip systems. Any 
non-negative linear combination (with sum of weighting factors equal to unity) of those 
basis solutions is also a valid solution. Hence, an additional criterion should be defined 
to select a valid solution for updating the orientation of the grains. One simple approach 
is a random choice of one of these basis solutions or an average of all basis solutions 
[50]. Delannay et al. [55] has tested two criteria for solving the Taylor ambiguity, by 
minimizing and by maximizing

2

2

( )
T (14)
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By minimizing T , slip will be distributed on as many as possible slip systems over all 
critically stressed slip systems, and the FC-Taylor model could reproduce a more 
realistic rolling texture than by maximizing T [55]. The method of minimizing T has 
also been found to be the best secondary criterion in [56] for solving the Taylor 
ambiguity. It is shown in [56] that the method for solving the Taylor ambiguity has 
significant influence on the texture predictions in the FC-Taylor model. By minimizing 
T , the FC-Taylor was found to perform similarly to other advanced crystal plasticity 
models in terms of predicting the rolling textures for an AA1050 material [56]. The 
minimization can be solved by the quadratic programming or by the singular value 
decomposition [57], while the latter method is widely employed when implementing 
rate-independent crystal plasticity (RICP) models in FEM codes. However, slip bands 
on pre-polished surfaces reveal that the inner core of the grain activates less than five 
slip systems [58], which contradicts the slip behaviour obtained by minimizing T.

Another way to solve the Taylor ambiguity is by the rate-dependent flow rule [59],
which leads to the rate-dependent crystal plasticity (RDCP) models. The RDCP model
assumes that all slip systems are active and that the slip activity is determined by a 
power-law type equation

1

0 sgn( )
m

c

(15)

where 0 is a reference shearing rate, m is the instantaneous strain-rate sensitivity, c

represents the slip resistance which evolves during plastic deformation according to the 
hardening law, and is the resolved shear stress calculated from the current stress-
state and crystallographic orientation. The RDCP models are commonly implemented 
into the FEM codes as CPFEM. A comprehensive review of the Taylor ambiguity can 
be found in [56].

2.3.4 Relaxed-constraint Taylor models, Alamel and GIA 
The Taylor hypothesis violates stress equilibrium at grain boundaries and is in this sense 
as unrealistic as the Sachs hypothesis, although the deformation textures predicted by 
the Taylor model are generally closer to experiment [43]. Many models have been 
suggested with relaxations of the rigid strain constraint in the Taylor hypothesis, leading 
to the various relaxed-constraint (RC) Taylor models.

In ‘relaxed constraint’ (RC) Taylor models [60, 61], the full-constraint assumption, i.e.
a uniform deformation throughout the aggregate, is partly abandoned based on grain-
shape considerations. These models have for example been applied to rolled materials 
where grains are flattened and a significant proportion of the total grain-boundary area 
is parallel to the rolling plane. Along such boundaries, geometrical compatibility is not 
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hindered by heterogeneities in the shear components 13L and 23L of the global velocity 

gradient tensor L . In the real material, the 13L and 23L can thus be assumed to be
constrained only in the close neighbourhood of the boundaries but varied from grain to 
grain. The RC “pancake” model [50] neglects these small boundary regions and allows
free variations of 13L (Type I relaxation) and 23L (Type II relaxation) from grain to 

grain. Due to the two degrees of freedom introduced, i.e. p
13D and p

23D are also relaxed,
and only 3 independent slip systems need to be activated to fulfil the remaining 3
constraints. As shown mathematically in [50, 62], the stress components 13 and 23

will be zero, and hence partial stress equilibrium across grain boundaries will be 
satisfied. A schematic illustration of the RC-Taylor models is shown in Fig. 10.

The classical Taylor models, either with the FC or RC assumption, usually treat each 
single grain separately, i.e. no interaction between grains is considered in these 1-site 
models. However, the behaviour of single crystals in a real material is surely influenced 
by the neighbourhood grains, as experimentally observed in [17, 63] and from direct 
CPFEM simulations [64]. Hence, some advanced Taylor-type models have been
proposed to consider more than one grain at the same time. The Lamel model [65] and 
the Advanced Lamel (Alamel) [29] model consider simultaneously two grains near a 
common boundary. The grain boundaries in the Lamel model are assumed to be parallel 
with the rolling plane while they are arbitrarily inclined in the Alamel model. Due to the 
configuration of grain boundaries, the Lamel model is only suitable for simulating 
rolling while the Alamel is applicable to any deformation modes. In the Lamel model, 
the in-plane shear strain component 12L can also be relaxed, which is termed Type III 
relaxation. It was found that the texture prediction for BCC metals cannot be improved 
by incorporating 12L in the Lamel model [66]. Li and Van Houtte [67] evaluated the 
predictions of cold-rolling texture by FC-Taylor, Lamel-type and CPFEM models, for 
the AA1200 and AA5182 alloys. It was found that the Lamel model performed better at 
higher reductions, while the Lamel + Type III model performed better at lower 
reductions. The Lamel type models gave better results than the FC-Taylor model and, 
were only inferior to the CPFEM at lower reductions. Rolling texture predictions for 
BCC and FCC materials showed that the Alamel model was among the best models. 
This suggested that the Alamel model, despite of all simplifications, captures the 
dominating mechanisms controlling the development of deformation textures in the 
materials studied [29]. The so-called Type III relaxation was introduced into the Alamel 
model in [68]. Due to the Type III relaxation, the deformation state of an Alamel cluster 
will deviate from the global deformation, hence leading to possible misfits between 
grains. The local coordinate system at the grain boundary should then be defined in a 
way that the reaction stresses from the surrounding material is minimum. The method 
for defining such an invariant grain boundary coordinate system has been proposed in 
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[68], where the grains (of a spherical shape before the deformation) and grain boundary 
will be deformed hypothetically by the global deformation gradient tensor F. The major 
and minor axes of the ellipse intersected by the ‘deformed’ grains and updated boundary 
are taken as the two in-plane axes of the local coordinate system in an Alamel pair.
With Type III relaxation, the performance of the Alamel model was found to be 
improved with respect to rolling texture prediction for two aluminium materials [68].
An extension of the Alamel model to an ‘N-stack’ model was also proposed in the 
literature [69].

The grain interaction (GIA) model [70, 71] and a similar variant, the so called relaxed 
grain cluster (RGC) model [72], consider a volume element consisting of eight  
hexahedral grains which as a whole is aligned with the rolling direction. The entire 
cluster is forced to comply with the Taylor conditions but the grains in the cluster are 
allowed to deform freely and impose shears on next neighbour grains across these 
internal boundaries. This is illustrated in Fig. 10 and Fig. 11. However, this 
incompatibility has to be compensated for by the introduction of geometrically 
necessary dislocations. An energy minimization yields the activated slip systems and 
the respective shears, see also [73]. The computational cost of the GIA model is much 
higher than for the 2-point models, but with optimally chosen parameters it can predict 
rolling textures very well [29, 68, 73]. Similarly to the RC-Taylor and the Lamel 
models, the GIA model has been designed for rolling and not for general deformations.
A modified GIA model which considers slip and twinning was proposed recently and 
applied to predict the texture evolution of Mg [74].

Fig. 11 The grain cluster model GIA considers an arrangement of eight grains and allows for 
interaction across their boundaries [75].

2.3.5 Visco-plastic self-consistent (VPSC) model
The self-consistent (SC) models regard each grain as an ellipsoidal inclusion in and
interacting with a homogeneous effective medium (HEM). When a stress or 
deformation rate is applied to the outer boundary of the HEM, the inhomogeneity 



Literature review

18

induces local deviations of stress and strain rate in its vicinity. Such local field 
variations can be solved analytically using the Eshelby inclusion formulation when the 
local response of the medium is linear. Besides, stresses and strain rates are uniform 
within the ellipsoidal domain. This allows one to calculate the state of the grain without 
having to solve the local field outside the inclusion in the SC model [76]. When the 
relation between stress and strain rate is nonlinear it is usual to assume a linearized 
expression. The two common linear forms are the secant and the tangent 
approximations. It has been shown that for 1

mn the tangent approximation tends 
to a uniform stress state (Sachs or lower-bound approximation). On the other hand, it 
has been proved that the secant interaction is stiff and tends to a uniform state of strain
rate (Taylor or upper-bound approximation) in the rate-insensitive limit. These two 
linearization schemes are schematically illustrated in Fig. 12. An intermediate 
approximation that gives polycrystal responses between the stiff secant and the 
compliant tangent approaches, can be obtained by introducing a tuning parameter effn ,
such that eff1 n n . This intermediate approximation was termed a relative directional 
compliance criterion when originally proposed in [76].

Fig. 12 Schematic one-dimensional representation of the linearization of the stress against 

strain-rate response in the vicinity of the overall magnitudes ( , ) for different types of 
interaction assumptions [76].

The visco-plastic self-consistent (VPSC) code develop by Lebensohn
and Tomé [77] has been widely applied for simulating the plastic deformation and 
texture evolution of FCC and BCC materials as well as HCP metals and other materials
of low symmetry crystallographic structures [10, 78]. The VPSC model has experienced 
continuous improvement in the last decades, e.g. second-order homogenization 
procedure [79], improved twinning models and work hardening laws [80, 81], finite 
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strain elastic–viscoplastic self-consistent (EPSC) model for polycrystalline materials
[82, 83], and implementation of the VPSC model into an FEM code as the constitutive 
law at integration points [84].

2.3.6 Crystal plasticity finite element method (CPFEM)
The finite element (FE) method is commonly used to solve boundary-value problems in 
continua. Constitutive equations based on crystal plasticity have been implemented in 
FE simulations and applied to study a variety of material phenomena. Without Taylor 
ambiguity, RDCP models with power-law type flow rules, like Eq. (15), are widely 
employed in CPFEM [5, 62, 85-87], while rate-independent CPFEM implementations 
have also been proposed in the literature [57, 88]. The total deformation of a crystal is 
the result of two main mechanisms: dislocation motion within the active slip systems 
and lattice distortion. The general kinematics of the elastic-plastic deformation of 
crystals at finite strains were defined in the 1970s [89-91] and widely accepted in later 
research [5, 85, 92, 93]. The kinematic description may start from the additive 
decomposition of the velocity gradient tensor L , generally associated with the 
hypoelastic assumption, or start from the multiplicative decomposition of the 
deformation gradient tensor F where hyperelasticity is generally assumed. The two 
kinematic frames are practically identical for metals due to their small elastic 
deformations. The additive decomposition formulations have been described in Article 
3 and Article A-1 of this thesis. Fig. 13 is a schematic illustration of the deformation of 
crystals according to the multiplicative decomposition of the deformation gradient. The 
details are not elaborated here and the reader is referred to e.g. [87, 94] for a complete 
description. In addition to slip, other deformation mechanisms such as twinning, phase 
transformation and non-crystallographic banding [95] can also be incorporated into
CPFEM, see the comprehensive review of CPFEM in [5].

Since the 1980s, many research efforts have been made with CPFEM. Metals usually 
exhibit low value of strain-rate selectivity m in Eq. (15) at ambient temperature, which 
makes the resulting system of algebraic equations numerically extremely stiff. Hence, 
very small time step is commonly required when applying CPFEM in order to keep the 
stability. As a consequence, CPFEM is typical very time demanding. One research topic 
is to propose efficient and robust numerical integration schemes, to reduce the high 
computational cost due to the stress update algorithm. Some implicit integration 
schemes have been proposed, e.g. the slip-rate approach [85], the plastic deformation 
gradient pF approach [96], the stress approach [87], modified versions of the implicit 
slip-rate approach and of the implicit pF approach [86]. Examples of explicit 
integration schemes for integrating of RDCP models are the tangent modulus method 
[97], which was proposed first by Peirce et al. [91] using the Taylor series expansion of 
the flow rule to improve the numerical stability, and the fully explicit schemes proposed 
in [98] and [99]. Comparisons between different integration schemes for RDCP models, 
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with respect to efficiency, accuracy and robustness, have been presented in [86] and 
[94]. It was found that under the considered conditions the explicit methods were 
around 50 times faster than the implicit ones. However, the explicit method is only 
conditionally stable.

Fig. 13 Multiplicative decomposition of the total deformation gradient into thermal, plastic 
and elastic deformations. The rotation and stretching of the lattice are taken into account 

through the elastic deformation gradient eF [100].

Phenomenological constitutive models are commonly used in CPFEM, where the 
material state is only described in terms of the critical resolved shear stress c .
Dislocation populations and structures as well as their evaluation are not considered in 
these phenomenological constitutive models [5]. In recent years, dislocation-based 
constitutive laws in CPFEM have been proposed. Meissonnier et al. [100] have 
composed a strain-gradient theory based on the variation of dislocation density over a 
spatial area. Arsenlis and Parks [101] provided a model for plastic deformation based on 
the evolution of mobile dislocation density including individual analysis of various 
dislocation interactions. Temperature dependent dislocation density as well as 
dislocation blocks and walls were modelled in [102] and [103], mostly based on
geometrically-necessary dislocation densities. Beyerlein and Tomé [104] used a multi-
slip constitutive law for HCP materials with evolution of stored dislocation density, 
which is further extended in [105] .

2.3.7 Fast Fourier transformation based crystal plasticity (CPFFT)
A spectral method operating in Fourier space was introduced in [106] and [107], as an 
alternative to the FEM for solving the system of partial differential equations resulting 
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from compatibility and static equilibrium in the context of computational 
homogenization. This spectral method is very efficient compared to FEM due to the 
repetitive use of a fast Fourier transforms (FFT) as part of an iterative solution 
algorithm. The FFT method has been extended to crystal plasticity models, leading to 
CPFFT models [108-110]. Compared with CPFEM [87], the CPFFT method has the 
advantage of higher efficiency [111], whereas one disadvantage is the requirement of 
periodic microstructures, making it less general than CPFEM. A CPFFT 
implementation is available in the open source Düsseldorf Advanced Materiel
Simulation Kit (DAMASK) [112]. The CPFFT method is not used in the current 
project.

2.3.8 Modelling the plastic anisotropy
In 1970 Bunge [6] illustrated some applications of the FC-Taylor theory, for example to 
simulate uniaxial tensile and plane-strain tests and to predict the yield loci. Particularly, 
the method for determining the r-value was proposed, i.e. finding the contraction ratio q
in Eq. (2) with a minimum Taylor factor. Bunge’s method was widely used afterwards 
in the classical Taylor type models (e.g. FC/RC-Taylor, Alamel models) to conduct the 
virtual uniaxial tension tests, from which the angular dependence of yield stress and r-
values can be observed, e.g. [10, 113-115]. Other type of tests, such as shear tests and 
biaxial tension/compression tests, can also be simulated by the FC-Taylor method.
Virtual stress points at yielding along different applied strain rate directions are readily 
determined by Taylor-type models. These stress points at yielding can be employed to 
identify yield functions, e.g. [115-117]. These virtual experiments can be readily done 
by the VPSC code [77] where mixed boundary conditions can be prescribed, e.g. [118,
119].

Complex boundary conditions can be well prescribed in an FEM model. CPFEM is thus 
applicable to nearly any deformation type, from simple uniaxial tension, shear, plane-
strain deformation [87] to real forming processes [98]. CPFEM has been applied to 
study the plastic anisotropy, e.g. conducting uniaxial tension tests along various in-
plane directions [14] and providing stress-points at yielding for different loading 
directions [120].

Due to differences in underlying assumptions, different crystal plasticity models could 
perform differently for the prediction of plastic anisotropy. It is therefore worth
investigating the accuracy and applicability of different CP models when predicting the 
plastic anisotropy. Such systematic investigations and comparisons are lacking in the 
existing literature and constitute a major part of this thesis.
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2.4 Phenomenological plasticity theory

Computer simulations by means of FEM for large scale analysis of metal forming 
operations are used in the forming industry. Within FEM a constitutive model is 
required to describe the material response under general loadings. The constitutive 
model is commonly formulated under the framework of continuum mechanics. In 
continuum plasticity, the complexity of crystallographic deformation mechanisms and 
evolving dislocation substructures is disregarded and the plastically deforming material 
is replaced by a homogeneous continuum. The theory of plasticity has three main 
ingredients:

the yield function, which defines the transition from elastic to plastic 
deformation.
the flow rule, which defines the direction of the plastic deformation at yielding.
the work hardening rule, which defines how the material hardens as a function 
of the imposed strain.

2.4.1 Yield functions
Mathematically the yield limit is described by the yield criterion, which is stated as

( ) 0f (16)

where f is the yield function. The function f is assumed to be a continuous function 
of the stress tensor , which takes negative values while the material is in the elastic 
region. The condition that ( ) 0f is inadmissible. It is convenient to write the yield 
function in the form 

( ) ( ) Yf (17)

where ( )eq is the equivalent stress, measuring the magnitude of the stress state to 

which the material is subjected, and Y is the yield stress of the material. The 
equivalent stress is assumed to be a positive homogeneous function of order one of the 
stress. For most metals and alloys, the yield function can be assumed to depend only on 
the deviatoric stress state S and is expressed as ( ) 0f S .

For isotropic materials the yield function should depend only on either the principal 
stresses 1 2 3( , , ) or the principal invariants ( , , )I II III , and thus Eqs. (16) and 
(17) can be expressed as a function of the principal stresses or the principal invariants.
The influence of hydrostatic pressure is usually neglected in classical metal plasticity. 
The Tresca criterion is the oldest yield criterion for isotropic materials. According to the 
Tresca criterion, yielding starts when the maximum shear stress reaches a critical value.
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The von-Mises yield criterion is the most widely used isotropic yield function, and the 
equivalent stress is defined as

2 2 22 3 1
1 2 2 3 3 12 2

2 2 2 2 2 21
11 22 22 33 33 31 23 31 122 3( )

eq ij ijS S
(18)

A non-quadratic formulation of the von-Mises yield criterion was introduced by 
Hershey [121] and used later by Hosford [122], expressed as 

1 2 2 3 3 12 a a aa
eq (19)

where a is the integer exponent which was shown to be connected to the crystal 
structure. Based on Taylor-Bishop-Hill calculations, it was found 8a for FCC metals, 
and 6a for BCC metals.

Anisotropic yield functions can be developed by generalizing the isotropic yield 
function into anisotropic cases, by adding coefficients to the isotropic yield function 
formulations [1] in a classical manner or by linear transformation [123]. It is important 
for any anisotropic yield function that the formulation reduces to isotropy when the 
material is isotropic and that convexity is preserved [119].

In 1948 Hill [124] proposed an anisotropic yield function by generalization of the von-
Mises yield function. Later Hill proposed non-quadratic anisotropic yield functions
[125-127]. However, the exponent in such yield functions should be determined 
numerically or by the r-values, and the yield loci obtained from these yield functions are 
distinct from Taylor-Bishop-Hill calculations [1].

Based on the Hershey isotropic yield function, Eq. (19), many anisotropic yield 
functions have been proposed, e.g. the renowned YLD series of yield functions 
proposed by Barlat and co-authors [7, 119, 128, 129] and the Banabic–Balan–Comsa 
(BBC) type yield function [130, 131].

Karafillis and Boyce [123] proposed the ‘Isotropic Plasticity Equivalent’ (IPE) theory, 
where a linear transformation ‘weights’ the different components of the stress tensor in 
order to account for the anisotropy. The ‘IPE stress transformation’ operates as

4thS L (20)

where 4thL is a fourth order tensorial operator and S is the IPE stress tensor.
Combining linear transformation with an isotropic yield function can be used to 
describe the anisotropy of materials. As pointed out by Aretz [132], the IPE procedure 
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has enormous advantages ‘From a mathematical point of view, this procedure is a very 
elegant way to arrive at a valid yield function for orthotropic materials. Most 
importantly, the use of a linear transformation ensures that the convexity of the 
isotropic yield function is preserved, which is the greatest problem in the development 
of orthotropic yield functions. Another advantage of this procedure is the fact that it is 
relatively easy to develop yield functions that can accommodate the full three-
dimensional stress tensor, while most other developments in this field resulted in yield 
functions that can only account for planar stress-states’. Since the year 2000, several 
advanced yield functions have been proposed, which enable an accurate description of 
the anisotropic behaviour both of BCC and FCC metals, e.g. BBC2003 [131], Yld2004
[119], Yld2011 [132]. Two linear transformations are used in the Yld2004-18p yield 
function, and each 4thL has 9 independent parameters. In total, there are 18 parameters
for describing the anisotropy. The Yld2004-18p has been proven as an accurate model 
for describing the plastic anisotropy of aluminium alloys [51, 115, 119]. Fig. 14 and Fig. 
15 are two such examples.

Fig. 14 Yld2004-18p yield surface represented by contours of normalized shear in 0.05 
increments from zero, and projection of experimental data for 6111-T4 [119].
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Fig. 15 Anisotropy of the flow stress (normalized by the RD uniaxial flow stress) and the r-
value for 2090-T3, measured and calculated with Yld2004-18p [119].

A main drawback of advanced yield functions lies in the complexity of the parameter 
identification. For example, there are 18 parameters in Yld2004-18p to be identified in 
addition to the exponent, while there are even more in the Yld2011 criterion. These 
yield functions are generally calibrated by mechanical tests, e.g. uniaxial tensile tests 
and biaxial tension/compression tests. However, most of the stress space is left 
unexplored when fitting the parameters of the yield function due to severe experimental 
limitations [115], and biaxial tension/compression testing is not universally accessible.
Hence, the crystal plasticity calculations have been employed to facilitate the yield 
function calibration. This can be done by conducting all or part of the required 
mechanical tests, such as uniaxial tensile tests, biaxial tests and/or shear tests virtually
using CP models [29, 133]. For example, Kraska et al. [134] applied the CPFEM for the 
virtual uniaxial tensile, biaxial tensile, plane strain and shear tests, and calibrated the 
Vegter yield criterion [135]. However, it was found there the virtual tests lacked the 
improtant capability to predict the r-values correctly. If the r-values of the virtually
fitted Vegter model were replaced by the measured r-values, the results of springback 
simulation were found to be improved. Alternatively, the virtual stress points at yielding 
along different strain-rate directions can be generated using CP models. The yield 
functions are then calibrated using these stress points [115, 117, 136]. Real mechanical 
tests and virtual stress points at yielding can be combined to identify parameters of 
advanced yield function. For example Grytten [115] evaluated three methods of 
identifying the Yld2004-18p by experiments, FC-Taylor stress points at yielding and a 
combination of experiments and FC-Taylor stress points (a hybrid method). By FEM 
simulation of plane-strain and shear tests, Grytten [115] concluded that the experiment-
based method was the most reliable approach. However, the hybrid method was not 



Literature review

26

fully discussed in the work of Grytten [115]. It was also suggested there that advanced 
CP models in addition to the FC-Taylor model should be evaluated for the hybrid 
method.

An alternative yield function, again following the phenomenological plasticity approach, 
has been proposed by Van Houtte et al. [117] which is known as the Facet method. Dual 
plastic potentials described by means of a homogenous polynomial can be used either in 
the stress or strain-rate space. A large number of strain-rate/stress directions are 
generated by CP calculations to cover the total strain-rate/stress spaces, which permit a
higher number of stress or strain modes than realizable in pure mechanical testing. As a 
consequence, a large number of parameters are usually contained in the Facet function.
The Facet function was found to be flexible enough to represent the yield loci calculated 
by crystal plasticity models, and the texture evolution during the deformation can be 
taken into consideration under the hierarchy multi-scale (HMS) modelling scheme [136].
The comparison between Facet and other advanced yield functions is seldom done in 
the literature.

2.4.2 Flow rules and work hardening laws
The plastic flow rule defines the plastic strain-rate tensor pD in a way that ensures non-
negative dissipation. In the most general case, the plastic flow rule is defined by

p ( )with   ij ij ij
ij

gD h h (21)

where is a non-negative scalar denoted the plastic multiplier and ijh is the flow 

function which may be derived from a plastic potential function ( )g . One particular 
choice is to assume that the plastic potential function ( )g is defined by the yield 
function ( )f , in the sense that 

p ( )
ij

ij

fD (22)

This is called the associated flow rule or normality rule.

The loading/unloading conditions may be expressed by the Kuhn-Tucker conditions as

0, 0, 0f f (23)

which constitutes the constraints determining when plastic flow may occur in the 
elastic-plastic material. The concepts of yield surface, flow rule and loading/unloading 
conditions are schematically illustrated in Fig. 16.
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Work hardening laws determine how the yield surface evolves during the plastic 
deformation. Isotropic and kinematic hardening laws are widely used in FEM, where 
the yield surface keeps the shape but expands or translates in the stress space, 
respectively. However, change of the shape of the yield surface has been observed in 
experiments. A distortional hardening law is then required to capture the change of 
shape of the yield function [2], which is now a very active research topic.

More details on the classical plasticity theories can be found in textbooks, e.g. [137].

Fig. 16 Yield surface, normality rule and loading/unloading condition in the theory of plasticity
[138].
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Chapter 3 Experimental techniques

3.1 Mechanical testing
The tensile test is a standard technique to measure the mechanical properties of 
materials. Stress-strain curves and r-values are measured from tensile tests. The 
procedure of measurements is according to ASTM E517. In the present work the tests 
were performed at room temperature. The nominal strain rate was ~10-3 s-1.

3.2 Structure characterization
Materials science investigates the relationship between the processing, the structure and 
the properties. The structure encompasses atomic arrangements, the chemical structure 
and the grain-scale microstructure. The following instruments were used to characterize 
the structure.

The optical microscopy. Since in anisotropic crystals the grains with different 
orientations have different values of polarized light reflectivity, polarized light 
microscopy could be used to characterize the grain structure. However, aluminium has a
cubic crystal structure, and is not sensitive to the polarization. Thus, a layer of 
anisotropic coating on the surface is required to reflect polarized light. An anodized 
aluminium surface displays contrast under polarized light. The anodization instrument is 
the same as the one used for electro-polishing where samples are connected to the 
anode. Anodization is performed at room temperature, at a voltage of 20-30 V for 2
min, using 5% HBF4 solution. 

The scanning electron microscope (SEM) is used for microstructure observation. The 
most common mode uses a secondary electron detector, which is generally used for the 
morphology of sample surface. Heavy elements reflect more backscattered electrons 
(BSE), so the BSE images can show chemical composition contrast. BSE imaging was 
used for observation of constitutive particles and dispersoids.

The electron back-scatter diffraction (EBSD) technique is used to characterize grain 
orientation, boundary misorientation and texture of crystalline materials. Zeiss 
Supra/Ultra 55 with EBSD detector was used in this work, and the results of EBSD 
were analysed by TSL software. To ensure a statistical soundness of the texture
measured by EBSD, more than 5000 grains were generally covered in the scanning for 
the fully annealed sheets in this work. For the deformed material, the scanning area was 
large enough to ensure that the texture would change little if more scans were included. 
The Euler angles of all scanning points were then output to an external file. From the 
file, a number of orientations were then randomly chosen and compared to the measured 
texture in terms of NID defined by Eq. (4). The set of orientations that had a value equal 
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to or smaller than the user-set critical value of NID was then input into CP models for 
modelling the plastic anisotropy.

The texture goniometer is using X-ray diffraction to determine the crystallographic 
macrotexture of polycrystalline materials. This technique was used to determine the 
macrotexture of materials in this thesis. A Siemens D5000 X-ray diffractometer 
equipped with an Eulerian cradle was used. Four incomplete pole figures, namely 
{200}, {111}, {220} and {311}, were obtained for every sample, from which the ODFs 
were calculated by the series expansion method, generally using 22 terms in the 
expansion, and ghost-corrected. Compared with the EBSD technique, the texture 
goniometer is an economic and fast method to determine the texture. However, it is not 
straightforward in the texture goniometer to generate a set of Euler angles which is the 
input to CP models, even though it is possible, e.g. [139]. In this work, the texture 
measured by EBSD was compared to the macrotexture of the same material to check the 
statistical quality of measurements.
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Chapter 4 Summary and remarks

4.1 Summary

Three different aluminium sheets were studied in this thesis, which included a fully 
recrystallized AA1050 sheet (in Article 1), a fully annealed AA3103-O sheet (in 
Article 4) and a cold-rolled AA3103-H18 sheet (in Article 4). The texture and 
microstructure of the three materials were characterized. Different textures and grain 
microstructures were observed in the three sheets. The AA1050 material featured a
strong cube texture with a maximum ODF value of 18. The grain structure was almost 
equiaxed. In AA3103-O the texture was weak with a maximum ODF value of 6 and 
both cube and P orientations were dominant. The AA3103-H18 sheet exhibited a typical 
cold-rolling texture while the maximum ODF value was 10. A fibrous type 
microstructure was observed in AA3103-H18, while grains in AA3103-O were slightly 
elongated along the RD. 

In-plane uniaxial plastic anisotropy was measured from uniaxial tensile tests along 
every 15º from the RD to the TD. Yield stresses and r-values for these 7 tensile 
directions were measured. Different anisotropic behaviours in terms of angular yield 
stresses and r-values were observed for the three materials. In all three materials, the
anisotropy of the flow pattern was much stronger than the strength anisotropy. 

Five crystal plasticity models, namely the FC-Taylor model, the Alamel model, the 
Alamel type III model, the VPSC model and the CPFEM, were employed to predict the 
plastic anisotropy through virtual uniaxial tension tests, and compared to experiments.
Except the VPSC, the other four CP models have been implemented in an in-house code 
during the project. The main input for the CP calculations was the texture, which was
represented by N single grain orientations. The measured grain boundary 
misorientation distribution was taken into consideration when making Alamel pairs for 
the AA1050 material, and for the AA3103-O and AA3103-H18 materials the observed 
grain morphology in terms of grain aspect ratios were taken into consideration when 
predicting the plastic anisotropy. For all three materials, the five crystal plasticity 
models could only predict qualitatively correct plastic anisotropy compared to the 
experiments. However, the predictions by high resolution CPFEM and the Alamel Type 
III model were found to be similar to each other and generally gave better results than
the other three models. The Alamel Type III model is much more CPU-time efficient 
than CPFEM. Hence, the Alamel Type III model is recommended as an accurate and 
efficient model for predicting the plastic anisotropy of 1xxx and 3xxx series aluminium 
alloys.
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Two advanced yield functions, namely Yld2004-18p and Facet, were employed in 
Article 1 to describe the plastic anisotropy of the AA1050 sheet. Optimal exponents of 
Yld2004-18p for isotropic FCC metals (equivalent to the Hershey isotropic yield 
function) were determined for the FC-Taylor, Alamel, Alamel Type III and VPSC 
models, respectively. The optimized exponent according to the FC-Taylor model was 8, 
while an exponent of 6 was found for the other three CP models. Each of these four CP 
models provided a set of 201 virtual stress points at yielding along 201 equally 
distributed strain-rate directions. The Facet yield surface was calibrated using each of 
these four sets of 201 stress points and compared to the in-plane yield loci and the 
planar anisotropy calculated by the corresponding crystal plasticity models. The 
anisotropic yield function Yld2004-18p was calibrated by three methods: using uniaxial 
tension data, using the 201 virtual yield points in stress space, and using a combination 
of experimental data and virtual yield points (i.e., a hybrid method). The Facet yield 
function and the Yld2004-18p yield function based on virtual stress points only were 
found to be close to the predictions of the underlying CP models, but deviated from the 
experiments. The Yld2004-18p yield function identified mainly by experiments and by
the hybrid method could accurately capture the experimental directional dependence of 
the yield stress and the r-value. By examining the yield loci involving out-of-plane 
stress components, it was found that the hybrid calibration method could capture the 
experimental results and at the same time ensure a good fit to the anisotropy in the full 
stress space predicted by the crystal plasticity models. Based on all these results for
AA1050, the Yld2004-18p, the Alamel Type III model and the hybrid identification 
procedure were recommended as an accurate approach for describing the plastic 
anisotropy for the studied materials. Calibrating the Yld2004-18p yield surface for the
AA1050 material by CPFEM calculations covering all the stress space has been done 
but not reported in this thesis. That will be published in a subsequent paper by the 
current author.

In Article 2, plane-strain tension and shear tests were conducted in laboratory and 
simulated numerically in an FEM code for the AA1050 sheet. In the FEM modelling, 
the Yld2004-18p functions calibrated in Article 1 by three methods, i.e. by mainly 
experiments, by Alamel Type III stress points at yielding and by a combination of 
experiments and Alamel Type III stress points, were employed. Comparing the 
experimental and the predicted force-displacement curves, the Yld2004-18p calibrated 
by the hybrid method was found to be most accurate for describing the initial yielding 
of the material.

A multi-level modelling scheme involving the Yld2004-18p yield function and CPFEM 
was described and utilized in Article 4, to study the plastic anisotropy of AA3103 
sheets which have non-equiaxed grain morphologies. The Yld2004-18p yield function 
was calibrated to 89 stress points at yielding provided by CPFEM calculations. This 
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method makes it convenient to predict plastic anisotropy while considering the real 
grain shapes even for non-equiaxed grain structures in the CPFEM simulations. The 
Yld2004-18p yield surface was able to represent quite accurately the plastic anisotropy 
determined from CPFEM calculations under this multi-level modelling scheme.

Article 3 and Article A-1 in the appendix describe the efforts made to propose robust 
and efficient numerical integration schemes for a RDCP model. The kinematic 
framework in both articles started with additive decomposition of the velocity gradient 
tensor into elastic and plastic parts. The Cauchy stress was calculated by using a 
hypoelastic formulation applying the Jaumann stress rate. In Article A-1, an explicit 
integration scheme, similar to that used in [98], was proposed and implemented as 
“hypo-CPFEM”. It was compared to a well-evaluated “hyper-CPFEM” implementation
[94] with the explicit integration method proposed in [98], through uniaxial tension and 
plane-strain compression simulations. It was found that the hypo-RDCP formulation 
was as accurate as the hyper-RDCP formulation, even though the Cauchy stress and the 
grain orientation were updated following different strategies. The integration scheme 
proposed in Article A-1 was found to be slightly faster than the one proposed in [98]. In 
Article 3, the explicit integration scheme in Article A-1 was improved by avoiding the 
update of Schmid tensor at each time step. An integration algorithm based on the 
modified Euler method with an adaptive substepping scheme was then proposed, where 
the substepping is mainly controlled by the local error of the stress predictions within 
the time step. Both integration algorithms were implemented in a stand-alone code with 
the Taylor aggregate assumption and in an explicit FEM code. The robustness, accuracy 
and efficiency of the substepping scheme were extensively evaluated for large time 
steps, extremely low strain-rate sensitivity, high deformation rates and strain-path 
changes using the stand-alone code. The results showed that the substepping scheme is 
robust and in some cases one order of magnitude faster than the forward Euler algorithm. 
The use of mass scaling to reduce computation time in crystal plasticity finite element 
simulations for quasi-static problems was also discussed. Finally, simulation of the 
Taylor bar impact test was carried out to show the applicability and robustness of the 
proposed integration algorithm for the modelling of dynamic problems with contact.

4.2 Suggestions for future work

1. The accuracy and applicability of these five CP models for describing the plastic 
anisotropy have been considered for typical 1xxx and 3xxx aluminium alloys in 
Articles 1, 2 and 4. Similar systematic studies should be extended to 5xxx, 6xxx 
and 7xxx aluminium alloys. This work could guide the industry and researchers 
to select the proper CP models for predicting the plastic anisotropy of
aluminium alloys.
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2. In Article 2, calibrations of the Yld2004-18p yield function were evaluated by 
plane-strain tension and shear tests. By these two tests, the biaxial tension and 
the pure shear regions of the yield surface were mainly tested. A more general 
evaluation can be done by formability tests and associated calculations.

3. Evolution of the directional flow stress, which is termed distortional hardening,
was observed for the AA1050 material in the uniaxial tensile tests. The observed 
distortional hardening was not explained nor modelled in this thesis. Modelling 
of distortional hardening is suggested for further research efforts.

4. It would have been interesting to compare the efficiency of CPFEM with the 
substepping integration scheme to the CPFFT method.

5. As stated in Chapter 1.2, the CP models were employed in this thesis to deal 
with texture-induced plastic anisotropy of aluminium alloys. The secondary 
effects played by grain morphology and grain boundary misorientation 
distribution on the plastic anisotropy, in addition to the texture, have also been 
taken into consideration when predicting the plastic anisotropy by CP models.
However, other important microstructural features, e.g. dislocation structures, 
particles and dispersoids, precipitates in heat-treatable aluminium alloys, are 
ignored in all CP models used here. Modelling the microstructure-based plastic 
anisotropy which considers all important microstructural features (including the 
texture of course) is recommended for future research. Dislocation-based
CPFEM may be a promising candidate for that purpose.
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Multi-level Modelling of Mechanical Anisotropy of Commercial Pure 
Aluminium Plate: Crystal Plasticity Models, Advanced Yield 

Functions and Parameter Identification

Abstract

The mechanical anisotropy of an AA1050 aluminium plate is studied by the use of five 
crystal plasticity models and two advanced yield functions. In-plane uniaxial tension 
properties of the plate were predicted by the full-constraint Taylor model, the advanced 
Lamel model (Van Houtte et al., 2005) and a modified version of this model (Mánik and 
Holmedal, 2013), the viscoplastic self-consistent model and a crystal plasticity finite 
element method (CPFEM). Results are compared with data from tensile tests at every 
15° from the rolling direction (RD) to the transverse direction (TD) in the plate. 
Furthermore, all the models, except CPFEM, were used to provide stress points in the 
five-dimensional deviatoric stress space at yielding for 201 plastic strain-rate directions. 
The Facet yield surface was calibrated using these 201 stress points and compared to in-
plane yield loci and the planar anisotropy which were calculated by the crystal plasticity 
models. The anisotropic yield function Yld2004-18p (Barlat et al., 2005) was calibrated 
by three methods: using uniaxial tension data, using the 201 virtual yield points in stress 
space, and using a combination of experimental data and virtual yield points (i.e., a 
hybrid method). Optimal yield-surface exponents were found for each of the crystal 
plasticity models, based on calibration to calculated stress points at yielding for a
random texture, and used in the latter two calibration methods. It is found that the last
hybrid calibration method can capture the experimental results and at the same time 
ensure a good fit to the anisotropy in the full stress space predicted by the crystal 
plasticity models. 

Keywords: crystal plasticity models; Yld2004-18p; Facet method; parameter 
identification; hierarchy multi-level modelling

1. Introduction

During thermo-mechanical processing, crystallographic texture will evolve in sheet 
metals. Texture, i.e. preferred crystallographic orientations of the grains, is the primary 
source of plastic anisotropy. This anisotropic plastic behaviour should be taken into 
account in finite element simulations of metal forming processes and in predictions of 
sheet formability.
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Two main approaches exist to describe the plasticity of polycrystalline metallic metals. 
In the first, a phenomenological yield function is used. The Tresca (1864) and the von 
Mises (1913) yield criteria are widely used for isotropic materials. Hill (1948) proposed 
a quadratic yield function for materials with orthotropic symmetry, while Hosford (1972) 
introduced a non-quadratic yield function with a variable exponent for isotropic 
polycrystalline metals. Based on full-constraint (FC) Taylor model calculations of 
metals with random textures, the exponent was suggested as 6 and 8 for body-centered 
cubic (BCC) and face-centered cubic (FCC) metals, respectively. This criterion was 
then generalized to anisotropic materials by Hosford (1979). Barlat and Lian (1989) 
further extended Hosford’s criterion. Later on, Barlat et al. (1991, 1997, 2003a, 2005), 
Karafillis and Boyce (1993), Banabic et al. (2003, 2005) and Aretz and Barlat (2013) 
proposed yield functions, where anisotropy is introduced by means of linear 
transformations of the stress tensor. A detailed overview of linear transformation-based 
yield functions can be found in Barlat et al. (2007). Nowadays, phenomenological yield 
functions are commonly used in finite element simulations by the sheet forming 
industry. One drawback by applying a flexible yield function is that a significant 
number of material tests is required (Barlat et al., 2005). Among the linear 
transformation-based yield functions, the Yld2004-18p criterion, proposed by Barlat et 
al. (2005) and implemented by Yoon et al. (2006) into a finite element code, has been 
proven as an accurate and flexible yield function capable of predicting six or eight ears 
in deep drawing of aluminium plates. Due to severe experimental limitations, a 
fundamental problem with the phenomenological approach is that most of the stress 
space is left unexplored when fitting the parameters of the yield function.

The other approach is to use polycrystal plasticity models. The oldest one was proposed 
by Sachs (1928) with the iso-stress assumption for all grains in the polycrystal 
representative volume element. In contrast, the full-constraint Taylor model (Taylor, 
1938; Bishop and Hill, 1951 a,b) assumes that each grain experiences the same 
deformation as the aggregate, and the deformation is accommodated by at least five slip 
systems according to the principle of maximum plastic work or the complementary 
minimum principle, which follows from the yield criterion at the slip system level.
Some relaxed-constraint Taylor models have also been developed to increase the 
freedom of single grains (Kocks and Chandra, 1982; Van Houtte, 1982, 1988). The 
Lamel model (Van Houtte et al., 1999, 2002) is also a relaxed-constraint Taylor model 
particular for the rolling process which considers two grains at the same time. Since the 
model considers a pair of grains, it is called a two-site model. 

Over the past few decades, materials scientists have become more aware of the
important role played by the distribution and connectivity of different grain boundary 
types in governing various mechanical and functional properties of materials (Patala et 
al., 2012). It has been shown that the grain boundary can be of importance to texture 
and microstructure evolution during deformation (Chang et al., 2010). Grain boundary 
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characteristics can be expressed by five degrees of freedom, i.e., the misorientation 
between the two neighbouring grains (three parameters) and the boundary plane normal 
(two parameters). It is now possible to obtain complete three-dimensional boundary 
information owing to the development of three-dimensional X-ray diffraction methods 
and automated serial sectioning methods combined with Electron Backscatter 
Diffraction (EBSD). The Taylor-type advanced Lamel model (ALAMEL) (Van Houtte 
et al., 2005) was developed to account for grain boundary orientations and general 
deformation modes. Recently, a modified version has been suggested, taking into 
account the so-called Type III strain constraint relaxation (Mánik and Holmedal, 2013).
There are also other similar N-site Taylor-type models, such as the GIA model 
(Crumbach et al., 2001) and the N-‘stack’ model (Arul Kumar et al., 2011). In these N-
site rate-independent crystal plasticity models, the local interaction at the grain 
boundary is introduced by relaxation of strain components and stress equilibrium is 
partially obtained. 

Another popular class of polycrystal plasticity models is based on the self-consistent 
approach, originally proposed by Kröner (1958) for the elastic case and later extended 
to elastoplasticity (Hill, 1965) and viscoplasticity (Hutchinson, 1976). The viscoplastic 
self-consistent (VPSC) model regards each grain of the polycrystalline material as an 
ellipsoidal inclusion embedded in a homogeneous effective medium whose mechanical 
response corresponds to the volumetric average of all grains. Among various self-
consistent plasticity models, the VPSC model developed by Molinari et al. (1987), and 
extended by Lebensohn and Tomé (1993, 1994) to account for anisotropy, has been 
widely used to simulate large strain behaviour and texture evolution. In addition to 
various first-order linearization schemes, a second-order approximation scheme is also 
available now (Lebensohn et al., 2007).

Since it was first introduced by Peirce et al. (1982), the crystal plasticity theory 
implemented in the finite element method (CPFEM) has matured into a whole family of 
constitutive and numerical formulations that has been applied to a broad variety of 
crystal mechanics problems (Roters et al., 2010). The CPFEM has both theoretical and 
practical advantages. Firstly, grains are represented by single or multiple elements 
where both stress equilibrium and strain compatibility are fulfilled at the boundaries. 
Secondly, complex boundary conditions are easily specified in the FEM code. Hence,  
the CPFEM is applicable to simulations of engineering processes. One main drawback 
of CPFEM is the huge computational time cost (Dumoulin et al., 2009). Recently, a 
full-field method based on the Fast Fourier Transform algorithm has been developed for 
polycrystal plasticity (Lebensohn, 2001; Lebensohn et al., 2012; Eisenlohr et al., 2013). 
Compared with the CPFEM, it shows much higher time efficiency (Prakash and 
Lebensohn, 2009). 
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To combine the strength of phenomenological yield functions and crystal plasticity 
models, hierarchical modelling schemes have recently become of interest. In such 
context, virtual experiments are performed using crystal plasticity models to provide 
data points; advanced yield functions are then identified using virtual experimental data. 
Barlat et al. (2005) used experimental data plus some out-of-plane stress points 
calculated by the VPSC model to identify the parameters of the Yld2004-18p yield 
function. Grytten et al. (2008) evaluated different methods for identifying the 
parameters of the Yld2004-18p yield function, including only experimental data, only 
virtual experiments with the FC-Taylor model and a combination of these methods. A
similar study has also been done by Zhang et al. (2012). The hierarchal modelling 
approach has also been used by Inal et al. (2010), An et al. (2011) and Saai et al. (2013) 
with different yield functions or crystal plasticity models. Extra data provided by crystal 
plasticity calculations, in addition to the experimental, is believed to improve the fitting 
of yield functions, although Grytten et al. (2008) claimed that fitting only to 
experimental data was most reliable for one case where the FC-Taylor model was 
employed.

Another well-established hierarchal modelling scheme was proposed by Van Houtte et 
al. (2009), where the Facet yield surface and the FC-Taylor or the ALAMEL model are 
used. The Facet method (Van Houtte et al., 2009) applies convex plastic potentials in 
the stress and strain-rate spaces using the simple analytical Facet polynomials. Owing to 
the large number of coefficients, the Facet yield surface is optimal in combination with 
crystal plasticity models. The texture evolution occurring during deformation can 
optionally be captured by lower-scale crystal plasticity models and used to update the 
Facet yield function. This hierarchal modelling scheme has been successfully applied in 
simulations of cup drawing, see Van Houtte et al. (2011) and Gawad et al. (2010; 
2013a). 

Following the work of Grytten et al. (2008), identification methods for the Yld2004-18p
yield function will be evaluated in this paper for an AA1050 aluminium plate, 
employing four different crystal plasticity models. The two ALAMEL-type models, the 
VPSC model and the FC-Taylor model are applied. A detailed comparison of the yield 
surfaces obtained by the different calibration methods will be made. The capability of 
crystal plasticity models to capture the experimentally observed mechanical anisotropy 
will be discussed. The Facet yield surface for the aluminium alloy AA1050 will be 
identified using these crystal plasticity models. A primary comparison will be made 
between the Facet and Yld2004-18p yield functions using the hierarchical modelling 
scheme. CPFEM will also be used here for modelling of the plastic anisotropy, although 
not extensively for fitting of the yield functions. Calibrations of the Yld2004-18p yield 
function by means of CPFEM has been presented recently by Saai et al. (2013) for 
plane stress states.   
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In Section 2 of this paper, the crystal plasticity models used in this study, namely the 
FC-Taylor model, the ALAMEL-type models, the VPSC model and CPFEM, will be
summarized. In particular, a new misorientation fitting algorithm for ALAMEL-type 
models will be introduced. Virtual experiments performed to obtain uniaxial tensile 
properties and stress points on the yield surface are also described in this part. In 
Section 3, the advanced yield function Yld2004-18p and the Facet method are recalled, 
and relevant calibration methods are presented. Section 4 deals with material 
characterization and experimental mechanical tests. The results obtained from the 
experiments, the crystal plasticity simulations and the different calibration methods of 
the Yld2004-18p yield function and the Facet method are presented in Section 5 and 
discussed in Section 6. The main conclusions of the experimental and numerical study 
are provided in Section 7.

2. Crystal plasticity modelling

2.1 FC-Taylor model
A strain-rate independent FC-Taylor model was implemented and applied here. Elastic 
deformations are neglected. This model is briefly outlined below while more theoretical 
details can be found in the literature (Van Houtte, 1988; Van Houtte et al., 2005). 

For a single crystal, the plastic deformation rate tensor pD is related to the shear rate on 
the slip systems by

1
2

pD b v v b (1)

where  is the shear rate of slip system . Each slip system is uniquely defined by its 

slip plane normal v and slip direction b . Among all solutions of Eq. (1), the solution 
that minimizes the internal plastic power is defined as a valid basis solution, i.e.

min (2)

By lack of other experimental data, it is assumed here that the critical resolved shear 
stress c is identical for all slip systems.  

The following yield criteria for the slip systems provide an equivalent alternative to Eq. 
(2)

1 ( ) :
2 cb v v b S (3)
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where is the resolved shear stress on slip system and S is the deviatoric Cauchy 

stress tensor of grain . For FCC crystals where {111}<110> are the dominant slip 
systems, Bishop and Hill (1951a; 1951b) have summarized 56 stress states which can
activate 6 or 8 slip systems simultaneously, fulfilling Eq. (3). These stress states 
constitute the corners of the poly-slip yield surface in the five-dimensional deviatoric 
stress space. The deviatoric Cauchy stress tensor S of the grain aggregates is calculated 
as the simple average of the stress response of each grain , viz.

1

1 N

N
S S (4)

where N is the number of grains.

2.2 ALAMEL-type models 

2.2.1 ALAMEL theory and additional Type III relaxation
The ALAMEL model was proposed by Van Houtte et al. (2005). Interactions between 
two neighbouring grains are taken into account by introducing strain constraint 
relaxations at the grain boundaries. A brief introduction to the ALAMEL model will be 
given in the following paragraphs for the sake of completeness. Comprehensive 
theoretical descriptions can be found in Van Houtte et al. (1999, 2005) and Mánik and 
Holmedal (2013).

Figure 1 shows parts of two neighbouring grains, denoted ‘grain 1’ and ‘grain 2’, 
respectively, which share the grain boundary segment AB. Region 1 and region 2,
which belong to grain 1 and grain 2, respectively, are in the vicinity of AB. The two
regions and the grain boundary segment compose an ALAMEL pair. A Cartesian 
coordinate system 1 2 3y y y is attached to the grain boundary segment where the 3y axis is 

along the normal direction (ND) of the boundary surface defined by the 1 2y y plane. 
This coordinate system is called the ‘grain boundary reference frame’ and is given by 
the Euler angles of its three axes with respect to the macroscopic frame. These Euler 
angles constitute the only microstructural description available in the ALAMEL model. 
If nothing else is stated, all vector and tensor components in this section are expressed 
in the grain boundary reference frame. Note that the ALAMEL model is invariant with 
respect to rotations of the reference system around the 3y axis, while the modified 
version with the Type III relaxation is not.
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Figure 1 Schematic illustration of one ALAMEL pair consisting of Region 1 in Grain 1, Region 2 in 
Grain 2 and the grain boundary AB.

 

Three relaxations are considered, as illustrated in Figure 2, and denoted Type I, II and 
III. The velocity gradient xl felt by grain x ( 1, 2x ) is expressed as

2 2
RLX RLX RLX RLX

1 3 3 2 3 3
1 1

,r r r r
r r

l L K K l L K K (5)

where L is the global velocity gradient tensor, RLX
r is the relaxation shear rates and the 

tensors rK are expressed as

1 2 3

0 0 1 0 0 0 0 1 0
0 0 0   ,   0 0 1   ,   0 0 0  
0 0 0 0 0 0 0 0 0

K K K (6)

Then Eq. (5) is transformed into

2
RLX RLX

1 1 1 1 1 1 3 3
1

2
RLX RLX

2 2 2 2 2 2 3 3
1

1
2
1
2

r r
r

r r
r

d b v v b M M

d b v v b M M
(7)

where xd is the symmetric part of xl and rM is the symmetric part of rK . The internal 
plastic power due to slip is to be minimized for the two grains simultaneously, and, 
therefore, Eq. (2) is transformed into

2

1
minx

x

(8)

y1

A
Grain 1

Grain 2

B

Region 2

Region 1

y3

y2
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in which the subscript x refers to the grains in the pair. This minimization, subject to 
the constraints defined in Eq. (7), is carried out by the simplex method. The deviatoric 
stresses in the two grains are computed by solving the following set of linear equations:

1

2

1 2 RLX
13 13 1

1 2 RLX
23 23 2

RLX1 2
312 12

11
1 1 1 1 1 12

21
2 2 2 2 2 22

( ) : sgn if 0

( ) : sgn if 0

if 0

0if
if 0

c

c

S S

S S

S S

b v v b S

b v v b S
(9)

where 1c and 2c are the critical resolved shear stress of grain 1 and grain 2, 

respectively. From Eq. (9) it can be shown that, as far as the shear stresses 13
xS and 23

xS

are concerned, stress equilibrium is guaranteed at the interface. When the Type III 
relaxation occurs, 12

xS will have the same magnitude but opposite signs in the two grains. 

Thus, 12
xS in one ALAMEL cluster will not contribute to the internal plastic power.

Figure 2 Illustration of Type I ( 13L ), Type II ( 23L ) and Type III ( 12L ) relaxation in the grain boundary 
frame of one ALAMEL pair. The grey face indicates the grain boundary, while Grain 1 and Grain 2 are 

positioned at the upper and lower sides of the boundary, respectively.

More details on the original ALAMEL model and the ALAMEL model with Type III 
relaxation can be found in Van Houtte et al. (2005) and Mánik and Holmedal (2013).

In the original implementation of the ALAMEL model (Van Houtte et al., 2005), 
ALAMEL pairs are created by random selection of a grain boundary interface 
orientation from the microstructure file and a random choice of two crystal orientations 
from the discretized orientation distribution functions (ODF). In this work, both the 
original ALAMEL, and the one with the additional Type III relaxation, denoted 
ALAMEL Type III in the following, have been implemented. Instead of randomly 

Type I
Type II

y2

y3

y1

Type III
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choosing the ALAMEL pairs, a fitting procedure is proposed for obtaining the measured 
misorientation distribution function (MDF) which will be described in the following.

2.2.2 Grain boundary misorientation distribution in ALAMEL
When only the relative misorientation between crystallites is concerned, two-
dimensional EBSD measurements are sufficient to provide a statistical description by 
suitably defined probability density functions (Zhu et al., 1999; Miodownik et al., 1999). 
This is also the case for the ALAMEL model, since the grain boundary inclination has 
been specified through Euler angles recorded in the microstructure file.  The grain 
boundary MDF represents the number fraction vs. misorientation angle as measured by 
EBSD.

The MDF of the list of ALAMEL clusters can be obtained by calculating the 
misorientation angle of each pair and by converting all the misorientation angles into a 
continuous distribution. The difference between the MDF of the list of grains and the 
experimental one is called MDe and expressed as

exp
MDe P P d (10)

where is the misorientation angle, P is the MDF from ALAMEL, and expP is the 
experimental one. The fitting procedure starts with making ALAMEL pairs by 
randomly choosing two orientations from the input. Then the density function P and the 
error MDe are computed. If the error MDe is sufficiently small, max

MD MDe e , then the 
solution fulfils the MDF requirement and can be used for further calculations. 
Otherwise, two pairs are randomly selected and two orientations, one from each pair,
are interchanged. If the new value of MDe is smaller than the previous one, the exchange 
of orientations will be recorded, else it is discarded. This process is repeated until the 
targeted accuracy is reached.

2.3 Viscoplastic self-consistent crystal plasticity model (VPSC)

The viscoplastic self-consistent model regards each grain of the polycrystal as an 
ellipsoidal inclusion embedded in a homogeneous effective medium whose mechanical 
response corresponds to the volumetric average of all grains. This assumption considers 
the long-range interaction between a single grain and the matrix.

Inspired by Eshelby (1957), the partitioning of strains between matrix and inclusions is 
computed by assuming that the matrix can be characterized by a uniform, effective 
compliance operator. Elasticity is neglected and the treatment of plasticity follows Eq. 
(1), where slip activity is derived from the resolved shear stress using a viscoplastic 
exponential law:
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1

0 sgn
m

c

(11)

Here 0 is a reference shearing rate, m is the instantaneous strain-rate sensitivity, is 

the resolved shear stress defined by Eq. (3), and c will evolve during the plastic 
deformation of single grains.

Several formulations exist for the interaction equation that linearly relates stress and 
strain rates in the grain with the overall stress and strain rates of the effective medium, 
such as the secant approach (Hutchinson, 1976), the tangent approach (Lebensohn and 
Tomé, 1993) and the intermediate approximation with one adjustable parameter effn
(Tomé, 1999). The last approximation approach gives a response of the polycrystal 
which lies in-between the stiff secant and the compliant tangent approaches. Further 
details about the VPSC are not given here, but can be found in the references 
(Lebensohn and Tomé, 1993, 1994; Tomé, 1999; Lebensohn et al., 2007).

2.4 Crystal plasticity finite element method (CPFEM)

The formulation of single crystal plasticity models is well documented by several 
authors (e.g. Kocks et al., 2000). CPFEM accounts for both short and long-range grain 
interactions in the polycrystal and ensures both stress equilibrium and strain 
compatibility, at least in a weak form. The model which has been implemented into the 
commercial finite element code LS-DYNA (LSTC, 2007) through a user subroutine is 
briefly described in the following. 

The velocity gradient tensor L is additively decomposed into symmetric and skew-
symmetric parts:

L D W (12)

where D is the symmetric deformation rate tensor and W is the skew-symmetric spin 
rate tensor. The tensors D and W can be further decomposed into lattice and plastic 
parts:

e pD D + D (13)

* pW W + W (14)

where eD is the elastic deformation rate and pD is the plastic deformation rate due to 
crystallographic slip. The spin tensors *W and pW represent the lattice and plastic 
spins, respectively. The plastic deformation rate and spin tensors depend on the slip
rates for the active slip systems by Eq. (1) and by
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1
2

pW b v v b (15)

respectively, where the slip activity is described by Eq. (11). The vectors b and 

v are not affected by crystallographic slip but will be rotated by the lattice spin *W
as:

* *,b W b v W v (16)

A hypoelastic relation is used here and the rate of the Cauchy stress tensor is defined 
as

* *J (17)

where the Jaumann stress rate tensor J is computed as 

ˆ :J T e T (18)

In Eq. (18), Ĉ is the fourth-order elasticity tensor which is constant in the co-rotational 
lattice frame, whereas is the rotation tensor from the initial crystal frame to the 
current co-rotational frame and is updated as

*W (19)

Work hardening is captured at the slip system level by the slip resistance functions c

in Eq. (11). The hardening rule used in this work, assumes that the critical resolved 
shear stress, c , equals 0 initially, and then evolves according to

c h (20)

where h is the instantaneous strain hardening matrix. In this work, h is described 
phenomenologically by a Voce-type rule:

0 1 0
1 0 1 0 0

1 1

exp 1h q q (21)

where 0 is the initial hardening rate, while 1 and 1 describe the asymptotic 
hardening. is the accumulated plastic shear strain defined by  

(22)
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The parameter 0q represents latent hardening, while is the Kronecker delta function.

2.5 Virtual experiments by crystal plasticity models

A total of 1000 orientations selected from the measured crystallographic texture, i.e. an 
aggregate of 1000N grains, were used as input to the five crystal plasticity models 
described above. The N representative orientations out of texture measurement can be 
gathered either by random selection from scanning points in the EBSD measurement or 
by discretization techniques for ODFs calculated based on X-ray diffraction 
measurement (Toth and Van Houtte, 1992). To characterize the quality of the selected 
N orientations in representing the measured texture, the normalized difference texture 
index, NID , proposed by Van Houtte (Van Houtte et al., 2005) for comparing two
textures, is adopted here as

2R exp

2expN

f g f g dg
ID

f g dg
(23)

where Rf g and expf g are the ODFs of the selected N orientations and the 

experimental measurements, respectively. The integral is taken over the entire 
orientation space. This criterion does not only consider the major texture components, 
but also the minor ones. Ideally, NID should be equal to zero, which means that the 
texture defined by the N orientations is identical to the experimental one, but practically 
this is hardly ever the case. Since plastic anisotropy can be significantly affected by a 
large number of minor texture components, NID should be kept at a very low level.

In this work, the texture was measured by EBSD which covered more than 8000 grains 
and 1000N orientations were randomly selected from all scanning points. The 
functions expf g and Rf g were computed using the series expansion method with 

max 22l and 0 5 (see Engler and Randle, 2009, for further details). The orientation 

selection used here has 34.42 10NID , which indicates a rather good representation 
of the experimental ODF.

The list of grains used for the virtual experiments with ALAMEL or ALAMEL Type III 
consists of 500 ALAMEL clusters. The MDF fitting, which has been discussed in 
Section 2.2.2, was used to obtain max 3

MD 6.5 10e .

For the VPSC model, the instantaneous strain-rate sensitivity m in Eq. (11) was set 
equal to 0.02 and an intermediate linearization with eff 10n was used. 
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For the CPFEM model, a cube of volume 31.5 1.5 1.5 mm was considered as the 
representative volume (RVE), and Voronoi tessellation (Quey et al., 2011) was used to 
generate a random grain structure made of 1000 grains. It was then discretized with 
64000 cubic eight-node element with eight integration points, i.e. about 64 elements per 
grain in average, as shown in Figure 3. This mesh represents the microstructure of the 
fully-recrystallized AA1050 sheet with a high resolution. In order to reproduce the 
experimental conditions during tensile testing in CPFEM, periodic boundary conditions 
were applied on the faces of the RVE. To simulate tensile testing in different directions 
with respect to the RD, the mesh and the boundary conditions remained fixed in space,
while the texture was rotated. This is a reasonable approach for the actual equi-axed 
grain structure. The material parameters were fitted through trial and error to the stress-
strain curve of the same AA1050 sheet along the rolling direction. All parameters are 
given in Table 1. Uniaxial tensile tests were simulated by CPFEM with loading rates at 

2 110  s . The Lankford coefficients (r-values) were determined between 5% and 10% 
elongations, whereas yield stresses were determined at 0.2 MPa specific plastic work 
which was calculated based on the predicted stress-strain curves.

Figure 3 CPFEM model with 64000 eight-node elements representing a random microstructure with 1000 
grains.
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Table 1 Material parameters for CPFEM simulations of AA 1050.

0 m 0 1 0 1 0q 11Ĉ 12Ĉ 44Ĉ

(MPa) (MPa) (MPa) (MPa) (GPa) (GPa) (GPa)

310 0.02 300 16.5 12.9 138.8 1.0 106.75 60.41 28.34

Two types of virtual experiments were conducted. In the first case, in-plane uniaxial 
tension tests at different angles from RD to TD were simulated by the five CP models. 
The r-value and the normalized yield stress computed by the CP models were then 
compared to experimental data to evaluate the quality of the predictions. The calculation 
of the r-value and the yield stress for an in-plane uniaxial tensile test using aggregate 
models, i.e. FC-Taylor, ALAMEL-type models and VPSC, is done by imposing strain-
rate components which are iteratively adjusted until the average stress is uniaxial along 
the tensile axis. In the second case, 201 stress states at initial yielding in the five-
dimensional strain-rate space were calculated with the FC-Taylor, ALAMEL, 
ALAMEL Type III and VPSC models. A uniform distribution of strain-rate directions is 
convenient, since the deformation rate tensor is the prescribed input of these models. 
However, the yield points will not be evenly distributed in stress space, but will be 
condensed where the gradient of the yield surface changes most rapidly. This provides a 
natural adaptive distribution of the stress directions.

The problem of obtaining a uniform distribution of strain-rate directions can be reduced 
to finding a uniform distribution of points on a five-dimensional hypersphere. However, 
such a uniform distribution is hard to find in higher dimensions, even by numerical 
iteration schemes. Van Houtte et al. (2009) proposed to extend the Miller indices from 
three-dimensional to five-dimensional spaces by adding two extra indices so that the 
strain-rate directions can be represented by five-dimensional Miller indices. This 
approach is adopted here. A total of 402 directions could be made from [00001], 
[00011], [00111], [01111], [11111] and the additional [11113], plus all permutations, 
plus those obtained by changing the sign of one or several of them. Since the stress 
differential effect was not considered, only one-half of these, i.e. 201 directions, were 
used when fitting the parameters of the Yld2004-18p and Facet yield surfaces.

For fitting the exponent of the Yld2004-18p yield surface to the various CP models, 
5832 random crystal orientations together with 1241 strain-rate directions (generated in 
the same way as above) will be employed. Stress states along 1241 strain-rate directions 
at yielding for AA1050 were also calculated for the purpose of evaluating Facet fittings 
based on 201 points.  
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3. Continuum yield functions and fitting methods

3.1 Yld2004-18p and its three fitting procedures

The analytical yield function, denoted Yld2004-18p, was proposed by Barlat et al. 
(2005) as

1 1 1 2 1 3 2 1 2 21

1/

2 3 3 1 3 2 3 3

1
4

a a a a a
a

aa a a a

S S S S S S S S S S

S S S S S S S S
(24)

where is the equivalent stress and a is the exponent of the yield function. iS and iS ,

1, 2,3i , are the principal values of the tensors S C S and S C S , where S is the 
stress deviator. Using Voigt notation, the two fourth-order transformation tensors are 
expressed in the principal axes of anisotropy as

12 13 12 13

21 23 21 23

31 32 31 32

44 44

55 55

66 66

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

c c c c
c c c c
c c c c

c c
c c

c c

C C (25)

In addition to the exponent a , the yield function has 18 coefficients which are used to 
describe the plastic anisotropy of the material. Among these, 14 parameters are related 
to the in-plane properties of the sheet, while the remaining 4 parameters are associated 
with out-of-plane properties (Yoon et al., 2006). A possible approach to determine the 
in-plane parameters is to use data from uniaxial tension tests at every 15° from RD to 
TD, where the directional yield stresses and the r-values are measured. The out-of-plane 
properties cannot easily be measured for sheet materials, but they can either be set to 
their isotropic values as a first approximation or calculated by crystal plasticity models 
when the crystallographic texture is known. When the coefficients are all equal to one, 
this yield function reduces to Hershey’s isotropic yield function (1954). 

The main role of the exponent a of the yield function is to determine the radius of 
curvature of the corners of the yield locus, which most often cannot be properly 
resolved by mechanical tests due to the limited number of experimentally available 
strain paths. Alternatively, the exponent a can be fitted through a multi-scale modelling 
scheme, i.e. using CP models to provide stress points along uniformly distributed strain-
rate directions. In general anisotropic cases the curvature of the yield surface can be 
different in different corners in the five-dimensional deviatoric stress space. The value 
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of a corresponding to the best fit of the isotropic case with a random texture will be 
used. The case when the 18 anisotropy coefficients are all set to unity corresponds to a 
random texture. A total of 5832 almost uniformly distributed orientations were applied, 
for which 1241 strain-rate directions were prescribed and the FC-Taylor, ALAMEL, 
ALAMEL Type III and VPSC models were run to generate corresponding stress points. 
The exponent a was chosen so that the error function 

2cp

1
( ) 1

cpN

q
q

e a S (26)

is minimised by a least squares method. Here cpN is the number of yield points from 

the virtual experiments and takes the value 1241. cp
qS is the normalized deviatoric stress 

tensor at yielding in a virtual experiment, where the yield stress obtained in a virtual 
uniaxial tension test in the RD is used for normalization.

In the following, experimental data, virtual experimental data, i.e. stress states at 
yielding along 201 strain directions, and their combination will be used to determine the 
coefficients of the Yld2004-18p yield function. It is assumed that the equivalent stress 

equals unity at yielding. The experimental yield stresses at every 15° from RD to TD 
were normalized by the yield stress in the RD direction. Stress states along 201 strain-
rate directions at yielding were normalized by the yield stress for a virtual uniaxial 
tension test along the RD. The error function to be minimized by a non-linear least 
squares method is  
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(27)

where expN is the number of in-plane directional uniaxial tensile tests (equal to 7 in this 

work) and cpN is equal to 201 in the following of this work. exp
p and exp

pr are the 

normalized yield stress and the r-value for direction p from the experiments, while pr
p

and pr
pr are the counterparts predicted from the yield function (see Barlat et al., 2005 

for details). cp
qS is the normalized deviatoric stress tensor at yielding from a virtual 

experiment, while 0 is the unit stress tensor corresponding to uniaxial tension along 
the RD. The term containing 0 in Eq. (27) is added to force yielding to occur at an 

equivalent stress equal to unity in uniaxial tension along the RD. Finally, YSw , Rw , cpw
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and 0w are weighting factors for the different contributions to the error function. By 
selecting different sets of weighting factors, different fitting procedures are obtained. 
Three procedures for fitting the anisotropy parameters of Yld2004-18p are evaluated 
while keeping the exponent a constant. 

The first approach is to use only the seven yield stresses and the seven r-values 
measured from the uniaxial tensile tests to fit the 14 in-plane anisotropy parameters. 
The coefficients governing the out-of-plane properties, i.e. 44c , 55c , 44c , 55c , were then 
set to unity. Since only experimental data are used, this approach is termed ‘Fit_Exp.’. 
As suggested by Barlat et al. (2005), the yield stress should be given a higher weight 
than the r-values in uniaxial tension, due to the smaller variation range of the 
normalized yield stress and higher fitting accuracy. Two sets of weights will be used for 
this fitting procedure, as shown in Table 2, where Rw has different values, and the 
resulting parameter sets will be called ‘Fit_Exp.-1’ and ‘Fit_Exp.-2’, respectively.

Table 2 Weights used for the different calibrations of Yld2004-18p.

Calibration YSw Rw cpw 0w

Fit_Exp.-1 1.0 0.25 0.0 10

Fit_Exp.-2 1.0 0.1 0.0 10

Fit_FC-Taylor 0.0 0.0 1.0 20

Fit_ALAMEL 0.0 0.0 1.0 20

Fit_ALAMEL Type III 0.0 0.0 1.0 20

Fit_VPSC 0.0 0.0 1.0 20

Fit_Exp.+FC-Taylor 1.0 0.25 0.04 10

Fit_Exp.+ALAMEL 1.0 0.25 0.04 10

Fit_Exp.+ALAMEL Type III 1.0 0.25 0.04 10

Fit_Exp.+VPSC 1.0 0.25 0.04 10
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In the second approach, only the 201 stress states at yielding from the virtual 
experiments with the CP models are used to fit all 18 parameters of Yld2004-18p, i.e. 
anisotropic out-of-plane properties are assumed. This approach is termed ‘Fit_CP’, 
where CP could be FC-Taylor, ALAMEL, ALAMEL Type III or VPSC. The weights 
are also shown in Table 2 with the title ‘Fit_CP’. 

The third fitting approach combines contributions from both the experimental and 
virtual experimental results, and is denoted ‘Fit_Exp.+CP’. The weights are shown in 
Table 2. The weights are determined so that the experimental and virtual experimental 
results will give similar contributions to the total error. 

The exponent a is taken as 8 for the first fitting procedure, whereas for ‘Fit_CP’ and 
‘Fit_Exp.+CP’ the exponent a takes the value that best fits the isotropic case with a 
random texture for the corresponding CP models.

3.2 The Facet method

Van Houtte et al. (2009) recently proposed an analytical expression describing the dual 
plastic potentials, known as the Facet method. It provides a yield surface description

1/

1
: , 0

nK np
k k k

k

(28)

where the exponent n is an even integer and k are weights to be determined. Here p
kD

are plastic strain rates used for the K predictions that are applied to fit S at yielding.

The weights k can be determined uniquely, so that the yield surface fits all stress 

points kS for the corresponding strain rates p
kD (from the virtual experiments), and with

a sufficiently large exponent n, all the weights k remain positive. However, at lower 
exponents points are left out in order to have positive weights k , i.e. a convex yield 
surface. The larger the angle between the stress tensors, the smaller the exponent can be,
without loss of convexity (Van Houtte et al., 2009). Commonly the strain rates are 
prescribed as uniformly distributed, and then the stress points tend to cluster in the 
corners of the yield surface causing the need of a very high exponent. The result is a 
very faceted, poor yield surface. Hence, Van Houtte et al. (2009) proposed to first fit the 
dual plastic potential in the strain-rate space to the virtual experiments, and then fit the 
yield surface to this fitted potential. The dual strain-rate potential pD can be 

expressed by a similar Facet polynomial 
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The weights k can be uniquely fitted to the virtual experiments by a similar procedure 
as for the yield surface (Van Houtte et al., 2009). Since the strain rates are almost 
uniformly distributed, the exponent n , which is an even integer, can be chosen much 
smaller than for the direct fit in the stress space and still fit most of the virtual 
experiments. The weights k determine the contributions to the plastic potential from 
the stresses kS (Gawad et al., 2013a), and must be non-negative to guarantee convexity. 
Finally, an approximately uniform distribution of stress directions is used for the fit of 
the yield surface S to stresses derived from the plastic potential pD . More 

details about parameter identification can be found in Van Houtte et al. (2009) and 
Gawad et al. (2013a). 

In this paper, the FC-Taylor, ALAMEL, ALAMEL Type III and VPSC models are used 
to provide stress tensors at yielding for 201K strain modes as described in Section 
2.5. After having calculated deviatoric stress points for the 201 strain-rate tensors, the 
plastic potential pD is first identified in the strain-rate space. Then, the Facet

function in stress space S is fitted to 201 deviatoric stress points that are obtained 

from pD .

The exponent n of pD with the same set of 201 strain-rate directions as presented 

here, was empirically suggested to be 6 (Van Houtte et al., 2009). The exponent will 
influence the shape of the Facet yield surface. From the work of Hosford (1972), it is 
known that the exponent of the yield function is material dependent. Hence, the 
exponents n and n should be optimised in a quantitative manner. The approach 
proposed here is that pD and S are first calibrated based on the 201 points.

Different exponents n and n are tested. The potential S is then examined for a 

higher number of virtual experiments based on 1241 uniformly distributed pD . The 

optimal exponent n of S should minimize the error defined as   

1241

1
( ) ( ) 1i

i
e n S (30)
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where the deviatoric stress tensors at yielding, iS , here are normalized by the tensile 
yield stress in the RD in a virtual experiment. The exponents n and n are varied as even 
numbers in the range from 6 to 16 in this work. It is noted that ( )e n  also depends on n
due to the fitting procedure.

 

4. Material characterization 

A commercial purity aluminium AA1050 sheet was studied. The microstructure, 
including texture, grain size and MDF, is used as input for CP calculations, while 
mechanical data are used for several purposes. Firstly, they are the basis for quantitative 
examinations of the capability of the CP models in predicting realistic plastic anisotropy. 
Secondly, these data are input to some of the fitting procedures used for the Yld2004-
18p yield criterion, as described in Section 3.1.

The material was received as rolled sheets with length 2000 mm (along RD), width 
1000 mm (along TD) and thickness 1.5 mm. The measured chemical composition is 
shown in Table 3. Uniaxial tensile samples at every 15° from RD to TD (seven 
directions) as well as samples for microstructure characterization were cut from the 
sheet. Before any tests or characterization, samples were annealed in salt bath at 390 C
for 60 min to achieve a fully recrystallized state. A Zeiss ULTRA 55 FESEM equipped 
with a Nordif digital EBSD detector and TSL OIM4 EBSD software was used for 
characterization of the microstructure
15 2mm . An EBSD scan of the microstructure is shown in Figure 4. The ODF is shown 
in Figure 5, where the cube texture is dominating with some Brass components present.
The distribution of the misorientation across grain boundaries was also generated by the 
OIM software. The measured MDF is shown in Figure 6 with 5° binning steps. The 

Table 3 Chemical composition of AA1050 (wt%).

Si Fe Zn Ti Al Others

0.058 0.438 0.01 0.01 99.442 <0.043



Article 1
 

67
 

Figure 4  Microstructure of AA1050 sample after annealing, RD-ND section.

Figure 5 Orientation distribution function (ODF) (constant 2 sections) of commercial pure aluminium 
AA1050 after annealing, measured by EBSD technique.
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Figure 6 Misorientation distribution function (MDF) across grain boundaries measured by EBSD of fully 
recrystallized AA1050 sheet and MDF fitting for ALAMEL.

The uniaxial tensile samples have a uniform section with a gauge length of 50 mm and a 
width of 12.5 mm. The experiments were carried out at a nominal strain rate of 

4 12 10  s . In the 0º (RD), 60º and 90º (TD) directions, two parallel tests were carried 
out, while the number of parallel tests was three in the other directions. 

The r-value is determined following the ASTM Standard E517-00 (2010), i.e. it is 
measured using two extensometers: one attached in the longitudinal direction; and the 
other in the transverse direction. Employing the plastic incompressibility condition, the 
r-value is computed as

w w

t l w

d dr
d d d

(31)

where ld , wd and td are the true strain increments in the length, width and 
thickness direction of the sample. 
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5. Results

5.1 Uniaxial tension test data

Figure 7 illustrates the uniaxial tensile flow stress as a function of specific plastic work 
at seven directions as computed based on the experimental stress-strain curves. It is seen 
that the plastic anisotropy of the material changes over the investigated strain range. The 
normalized flow stress is defined as the ratio of the directional flow stress to the flow 
stress in the RD at the same level of specific plastic work. Figure 8 depicts the 
normalized flow stress versus sample orientation at specific plastic work equal to 0.2 
MPa, 1 MPa, 5 MPa and 10 MPa, respectively. These levels of the specific plastic work 
correspond to plastic strains of about 0.4%, 2%, 8% and 14%, respectively. It should be 
noted that at each of these levels, the average value of the flow stress obtained from 
duplicate samples in the RD is used for normalization. At a specific plastic work of 0.2 
MPa, a relatively larger scatter between duplicate tests is found. The reason for this is 
that flow stresses determined at small specific plastic work are sensitive to experimental 
errors, which may actually be very small. At higher specific plastic work, the spread 
reduces to become almost negligible.

 
Figure 7 Uniaxial flow stress as a function of plastic work per unit volume for uniaxial tension in seven 

directions (all curves stop before necking) as obtained from the experiments.

In Figure 8, it is clearly seen that the strength anisotropy is weak. The maximum 
difference with respect to RD is below 3% for all cases. It is further illustrated that the 
strength anisotropy changes with increasing specific plastic work. At a specific plastic 
work equal to 0.2 MPa, the material is strongest in the RD and weakest in the 30° 
direction, but the difference is less than 2%. The strength anisotropy at 1 MPa specific 
plastic work has changed little compared with that at 0.2 MPa. At specific plastic work 
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equal to 5 and 10 MPa, the strength anisotropy has changed: the material is now 
strongest at 45° and weakest at 90° with a smooth change from the RD to TD. 

Figure 8 Normalized flow stress versus tensile direction at different specific plastic work levels as 
obtained from the experiments.

The r-values are determined at true strains between 2% and 15%, where the texture 
changes little and the elastic strain increments are relatively small as to not influence the 
results. Experimental r-values for different tensile directions are shown in Figure 10,
where the results from CP simulations are also presented. The experiments show a 
variation of the r-value, which is an evidence of the anisotropy of the plastic flow of the 
material. The r-value is lowest in the 45° direction and highest at the RD and TD. In the 
actual strain range, the r-values in all directions show little variation with strains, which 
is in contrast to the behaviour of the normalized flow stress.
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Figure 9 Normalized yield stress from experiments at 0.2 MPa and 10 MPa specific plastic work and 
predictions by the five CP models.

Figure 10 Plots of the r-value from experiments and predictions from the five CP models.
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5.2 Prediction of mechanical anisotropy using crystal plasticity models

Modelling of pure tension along different angles from RD to TD was described in 
details in Section 2.5. Simulation results together with the experimental data are shown
in Figure 9 and Figure 10. Simulations with CPFEM were made at every 15° from RD 
to TD, and at every 3° for simulations made with the other four CP models. The 
material is almost planar isotropic when it comes to yield stress measurements. As 
illustrated in Figure 9, all five CP models predict directional flow stress anisotropy, 
where the material is slightly stronger at 45° and weakest at 90°. The predictions differ 
from each other by the estimated maximum normalized yield stresses at 45°. At this 
direction, the FC-Taylor model gives the highest value of 1.08, ALAMEL gives an 
intermediate value, while ALAMEL Type III, VPSC and CPFEM give the lowest 
values which are similar and below 1.06. The CPFEM values are closest to the 
experimental results. It is interesting to note that at 10 MPa specific plastic work, which 
corresponds to a moderate strain level around 14% plastic strain, the experiments are 
closer to the crystal plasticity predictions. 

It is interesting to compare the Taylor factor M predicted by the Taylor-type models 
with the CPFEM. The Taylor factors in uniaxial tension in the RD are given in Table 4,
where the Taylor factor is estimated as 0YM for VPSC and CPFEM1; Y is the 
yield stress. This is a reasonable definition of the Taylor factor for low strain-rate 
sensitivity. The FC-Taylor model gives the largest value. The other models give lower 
M, and it is noted that CPFEM gives the lowest value.

Table 4 Taylor factors for AA1050 in uniaxial tension along the RD as computed by the different CP 
models.

FC-Taylor ALAMEL ALAMEL 
Type III

VPSC CPFEM

2.81 2.65 2.58 2.58 2.55

The r-values obtained by experiments and CP predictions are shown in Figure 10.
According to the experiments, the material has similar r-values at 0° and 90°, about 0.92, 
while the r-value has a minimum at 45° equal to 0.44. The r-values predicted from the 
five CP models have a similar trend as seen in the experiments. The r-value is high at 0°, 
decreases smoothly to a minimum at 45° and increases gradually again to a local 
maximum at 90°. However, none of the models gives quantitatively correct r-values. At 

                                                            
1 In order to accurately capture the initial yield stress in CPFEM, the work hardening was deactivated and 

Y was then determined at the plateau in the stress-strain curve up to 1% elongation. This set-up was 
only employed for giving the results in Table 4. 



Article 1
 

73
 

0° and 90°, the CP models predict higher values than the experimental ones. The VPSC 
prediction is closest to the experiment at 0°, while the other four models give better 
predictions at 90°. However, the largest difference between experiments and predictions
occurs at 45°, where FC-Taylor, ALAMEL and VPSC predicted values are less than one 
half of the experimental data. Note that CPFEM and ALAMEL Type III give much 
better predictions at 45°, with the value at 0.31, i.e. an error of only 25% compared to 
the experiments. Also in the other directions, except at 0°, the CPFEM and ALAMEL 
Type III models provide the best results. As can be seen from Figure 9 and Figure 10,
the CPFEM and ALAMEL Type III models give almost identical results.

As shown in Figure 8, the in-plane directional variation of the flow stress in the 
experiments was found to change with the plastic strain. The texture evolution during 
uniaxial tension certainly contributes to the experimentally observed evolution of the 
strength anisotropy. To investigate this issue, the CPFEM model was employed to 
predict the strength anisotropy at different levels of specific plastic work where the 
texture evolution had been taken into consideration. The CPFEM calculations were 
conducted as described in section 2.5. Based on the predicted stress-strain curves for the 
seven tensile directions tested in the laboratory, the flow stresses at different levels of 
specific plastic work were recorded. The normalized flow stress was then obtained by 
normalization of the flow stress for each direction by the flow stress for the RD at the 
same level of specific plastic work.

Figure 11 presents for each tensile direction the change of the normalized flow stress 
from CPFEM calculations evaluated at specific plastic work equal to 1.0 MPa, 5 MPa 
and 10 MPa with respect to the normalized flow stress at specific plastic work equal to
0.2 MPa. The CPFEM model predicted an evolution of the strength anisotropy, i.e. the 
material gets stronger at the 30° and 45° directions (with respect to the RD) and weaker 
at the 75° and 90° directions as compared to the initial predictions shown in Figure 9.
The largest change is predicted at the 45° direction, which indicates that the texture 
evolution is strongest in this direction under uniaxial tension. The predicted evolution of 
the strength anisotropy is in qualitative agreement with the experimental results, see 
Figure 8, but the predicted changes are severely underestimated and much smaller than 
the difference between the experiments and model predictions at the initial yielding.
Changes estimated by the FC-Taylor model are very close to these CPFEM results.
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Figure 11 Change of normalized flow stress with specific plastic work predicted by CPFEM with respect 
to the calculations at initial yielding.

 

5.3 Calibration of the Yld2004-18 yield function

In this section, the initial yielding of the AA1050 sheet is described using the advanced 
yield function Yld2004-18p. The calibration methods of the Yld2004-18p yield function 
have been elaborated in Section 3.1. Equation (27) gives the error to be minimized 
using the values of the weighting factors given in Table 2. Since the initial yield surface 
is concerned here, the experimental normalized flow stresses at specific plastic work 
equal to 0.2 MPa, shown in Figure 8 and Figure 9, were used as the experimental yield 
stresses in the following. When the coefficients of the Yld2004-18p yield function are 
determined, the in-plane normalized yield stresses, r-values and sections of the yield 
surface, e.g. the 11 22 yield locus, can be derived (Barlat et al., 2005), where 11

and 22 are the normalized stresses (by the stress at yielding along the RD) along RD 
and TD, respectively. Results are presented and discussed in the following. 

5.3.1 Using experimental data

As discussed in Section 3.1, Yld2004-18p was fitted only to uniaxial tension data from 
experiments, i.e. the normalized yield stresses and r-values for various in-plane 
directions. Following the work of Barlat et al. (2005) and Grytten et al. (2008), a is set 
as 8 when fitted to only or mainly mechanical experimental results. Mechanical isotropy 
was assumed for the out-of-plane directions by setting the coefficients governing the 
out-of-plane properties, i.e. 44c , 55c , 44c , 55c , equal to unity. The two experimental 
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calibration methods, ‘Fit_Exp.-1’ and ‘Fit_Exp.-2’, are different in the weighting 
factors used for the r-value, which are 0.25 and 0.1, respectively.

As shown in Figure 12, the Yld2004-18p yield functions obtained from Fit_Exp.-1 and 
Fit_Exp.-2 capture the in-plane directional anisotropy in uniaxial tension with high 
accuracy. There is little difference between the two solutions. However, the two 
resulting yield loci are quite different, as shown in Figure 13. Especially in the equi-
biaxial stress region, the two loci have distinct curvatures, which indicate distinct plastic 
flow directions owing to the normality rule. 

The normalized equi-biaxial flow stress b and the equi-biaxial r-value 22 11
p p

br D D
which can be determined by experiments or CP calculations, could be added into the 
error function in order to control the curvature of the yield locus. To illustrate this point, 

b (normalized by the yield stress in RD) and br were calculated by the FC-Taylor 
model for the material. The resulting values were 1.027b and 1.000br . These two 
values were added to the error function for ‘Fit_Exp.-1’ and ‘Fit_Exp.-2’ in the same 
manner as the experimental data, using weighting factors equal to 0.05 and 0.01 for b

and br , respectively. Relatively small weights were applied, as suggested by Barlat 
(2005). The two resulting yield loci are also shown in Figure 13, with the legend 
‘Fit_Exp.-1 + Biaxial’ and ‘Fit_Exp.-2 + Biaxial’, respectively. The two new yield loci 
are almost identical but different from the previously calculated yield loci. 
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(a)

(b)

Figure 12 Anisotropy of (a) normalized yield stress and (b) r-value for AA1050 measured and calculated 
with Yld2004-18p fitted to uniaxial tensile data. 

0.9

0.95

1

1.05

1.1

0 15 30 45 60 75 90

N
or

m
al

iz
ed

yi
el

d
st

re
ss

Tensile direction (°)

0

0.25

0.5

0.75

1

1.25

1.5

0 15 30 45 60 75 90

r-
va

lu
e

Tensile direction (°)

Experimental
Fit_ Exp.-1
Fit_ Exp.-2



Article 1
 

77
 

 

Figure 13 RD-TD section of the yield surface of Yld2004-18p fitted to uniaxial tensile data and fitted to 
uniaxial tensile data plus the equi-biaxial yield stress and r-value predicted by the FC-Taylor model. 

Different weighting factors were assigned to the ‘Exp.-1’ and ‘Exp.-2’ approaches.

5.3.2 Using data from crystal plasticity simulations 

The calibration methods using virtual experiments by CP simulations were detailed in 
Section 3.1. Now, Yld2004-18p is fitted in the five-dimensional deviatoric stress space, 
using 201 stress points at yielding provided by the FC-Taylor, ALAMEL, ALAMEL 
Type III and VPSC models, respectively. The normal directions to the yield surface are 
given by the prescribed strain paths but are not included in the fitting procedure, which 
means that the curvature of the yield surface is only controlled by the 201 yield stress 
points. One prominent advantage of such a fitting method is that no real mechanical 
tests are needed. 

Results for fitting of the exponent a of Yld2004-18p to a random texture are shown in 
Table 5, together with the Taylor factor M for tensile tests of this isotropic case. One 
can notice that, when fitting to the CP models, the FC-Taylor model gives the largest 
value of a , and hence has the yield surface with sharpest corners. When grain 
interactions are introduced either locally (ALAMEL and ALAMEL Type III) or in the 
long range (VPSC), the fitted exponent drops from 8.5 for the FC-Taylor model to 
around 6.5 for the other three CP models. Conventionally, the exponent of 
phenomenological yield functions takes an even integer. Thus, for the fitting of 
Yld2004-18p by the ‘Fit_CP’ and the ‘Fit_Exp.+CP’ methods, the exponent a is set as 
8 when the FC-Taylor model is used as the lower-scale model, and as 6 when one of the 
other three CP models is employed. This is indicated in Table 5 by the values of a
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given in the parentheses. The result obtained for the FC-Taylor model is consistent with 
the work done by Hosford (1972) for a random FCC texture where the exponent was 
also found as 8. 

Table 5 Taylor factor M in uniaxial tension along RD and estimated values of the exponent a of the 
Yld2004-18p yield function, based on CP simulations for random texture. The nearest even integer value 
of a is given in parenthesis. 

CP models M a

FC-Taylor 3.067 8.53 (8)

ALAMEL 2.826 6.60 (6)

ALAMEL Type III 2.732 6.46 (6)

VPSC 2.752 6.65 (6)

Normalized yield stresses and r-values could be calculated using the yield function 
fitted by the 201 FC-Taylor model predictions. In Figure 14 these are compared with 
experiments for different angles to the RD in the sheet and also with predictions by the 
FC-Taylor model. Compared to the FC-Taylor calculations, the Yld2004-18p yield 
function (denoted ‘Yld2004-18p FC-Taylor’ in the figure) captures the stress anisotropy 
well, while the r-value exhibits the same trend but with a moderately higher value at all 
angles except near the TD. Figure 15 shows good agreement between the yield locus 
obtained by Yld2004-18p and the in-plane yield stresses from the FC-Taylor 
calculations.

The Yld2004-18p yield function was also fitted to yield stresses computed by the 
ALAMEL, ALAMEL Type III and VPSC models. The results are shown in Figure 16 to 
Figure 21, where they are compared to the corresponding CP calculations and 
experimental data. The conclusions are the same as for the fitting based on FC-Taylor 
calculations. The Yld2004-18p yield function agrees well with the anisotropy 
determined by the underlying ALAMEL, ALAMEL Type III and VPSC calculations, 
respectively. 
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(a)

(b)

Figure 14 Plots of (a) normalized yield stress and (b) r-value obtained from experiments, FC-Taylor 
calculations, Yld2004-18p fitted to 201 FC-Taylor stress points, Yld2004-18p fitted to a combination of 

201 FC-Taylor stress points and the tensile tests, and the Facet model fitted to 201 FC-Taylor stress 
points.
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Figure 15 RD-TD section of the yield surface of Yld2004-18p fitted to 201 FC-Taylor stress points and 
fitted to a combination of both experiments and the 201 stress points, compared to the FC-Taylor model 

predictions.
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(a)

(b)

Figure 16 Plots of (a) normalized yield stress and (b) r-value obtained from experiments, ALAMEL 
calculations, Yld2004-18p fitted to 201 ALAMEL stress points, Yld2004-18p fitted to a combination of 

201 ALAMEL stress points and experiments, and Facet fitted to 201 ALAMEL stress points.
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Figure 17 RD-TD section of the yield surface of Yld2004-18p fitted to 201 ALAMEL stress points and 
fitted to a combination of both experiments and the 201 stress points, compared to the ALAMEL model 

predictions.
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(a)

(b) 

Figure 18 Plots of (a) normalized yield stress and (b) r-value obtained from experiments, ALAMEL Type 
III  calculations, Yld2004-18p fitted to 201 ALAMEL Type III stress points, Yld2004-18p fitted to a 

combination of 201 ALAMEL Type III stress points and experiments, and Facet fitted to 201 ALAMEL 
Type III stress points.
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Figure 19 RD-TD section of the yield surface of Yld2004-18p fitted to 201 ALAMEL Type III stress 
points and fitted to a combination of both experiments and the 201 stress points, compared to the 

ALAMEL Type III model predictions.
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(a)

(b)

Figure 20 Plots of (a) normalized yield stress and (b) r-value obtained from experiments, VPSC 
calculations, Yld2004-18p fitted to 201 VPSC stress points, Yld2004-18p fitted to a combination of 201 

VPSC stress points and experiments, and Facet fitted to 201 VPSC stress points.
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Figure 21 RD-TD section of the yield surface of Yld2004-18p fitted to 201 VPSC stress points and fitted 
to a combination of both experiments and the 201 stress points, compared to the VPSC model predictions.

5.3.3 Using combined data from experiments and crystal plasticity simulations

Data from experiments and CP calculations can be combined by various weighting in 
Eq. (27) to fit the Yld2004-18p yield function. The tension tests in seven directions 
provide the experimental data, and 201 yield stresses were computed by the chosen CP 
model along the same number of strain-rate directions. Weighting factors are given in 

Table 2. These factors were chosen to ensure similar contributions to the total error 
from all the experiments and from all the CP computations with the FC-Taylor, 
ALAMEL, ALAMEL Type III and VPSC model, respectively. All 18 parameters of 
Yld2004-18p are now calibrated, while values of the exponent a are referred to Table 5.
The results are presented in Figure 14 to Figure 22. 

It is clearly illustrated in Figure 14, Figure 16, Figure 18 and Figure 20 that yield 
functions calibrated using a combination of experimental data and CP simulations 
capture the experimentally observed in-plane anisotropy with a good accuracy. All 
calibrations reproduce the very weak stress anisotropy seen in the experiments. The 
results predicted by the yield function deviates less than 2% from the experimental data 
in all directions. The distribution of the r-value shows perfect agreement with the 
experiments in all the four cases. The yield loci correspond rather well with yield points 
calculated by the corresponding CP models, see Figure 15, Figure 17, Figure 19 and 
Figure 21. Even though the 201 points are spread in the five-dimensional space, the 
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yield loci show reasonable agreement with CP predictions near the corners of the equi-
biaxial stress region. 

In the experimental fitting schemes, all parameters governing the out-of-plane 
behaviour were set to unity, while they were free in the calibrations discussed here. This 
will influence the shape of yield surface in the regions where out-of-plane stress 
components are involved. In Figure 22, the 11 33 yield locus, based on the different 

calibration schemes discussed above, is shown for cases where 13 0 and 13 0.3 ,
respectively. The differences in the yield loci relate to the way the out-of-plane yield 
stresses are calibrated. 

 

Figure 22 RD-ND sections of yield surface of Yld2004-18p: fitted to experimental data plus the equi-
biaxial yield stress and r-value calculated by the FC-Taylor model; fitted to 201 FC-Taylor stress points; 

fitted to a combination of experiments and the 201 FC-Taylor stress points. The sections with 13 0

(outer ones) and 13 0.3 (inner ones) are shown.

5.4 Calibration of the Facet yield surface 

The Facet method is designed to be used in combination with multilevel models. The 
parameters are identified from stress states at yielding calculated for selected strain rates 
by CP models with texture as input. No experimental data, except for the measured 
texture, are needed or included in the identifications. In this work, 201 stress-strain rate 
pairs from the FC-Taylor, ALAMEL, ALAMEL Type III and VPSC models have been
used for fitting the Facet yield surface, respectively.
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The error ( )e n , defined in Eq. (30), was computed to determine the optimal Facet 
exponents for the considered material with different CP models. It was found that the 
number of points actually fitted by pD and S increases with larger exponents 

n and n , respectively. When the exponent is large enough, all the fitting points are 
exactly run through by the Facet yield function. Quantitative evaluations of calibrations
to 201 points were made by comparison to another 1241 strain-rate directions and 
corresponding stress states from virtual experiments. It was found that optimal values 
for n and n exist, at which ( )e n reaches its minimum. Optimal exponents of the Facet
yield functions for all CP models, and corresponding errors ( )e n , are compiled in Table 

6. The yield function S fitted with the optimal exponents in Table 6 is used to

predict the plastic anisotropy of AA1050 and the results are described in the following.

Table 6 Optimal exponents n and n of the dual Facet potentials in strain-rate space and stress space, 
respectively, and the corresponding error ( )e n for the different CP models.  

CP models n n ( )e n
FC-Taylor 12 14 9.13
ALAMEL 10 12 7.06

ALAMEL Type III 10 12 5.60
VPSC 10 10 8.73

Normalized yield stresses and r-values for in-plane uniaxial tensile tests could then be 
predicted for various angles to the RD, as shown in Figure 14, Figure 16, Figure 18 and 
Figure 20. The fitted Facet yield surface gives a precise representation of the in-plane 
anisotropy provided by the corresponding calculations by each of the four CP models. 
The Facet yield surface shows a slightly oscillating prediction of the in-plane stress 
anisotropy, but still the accuracy is good. 

The yield loci of Facet and Yld2004-18p identified from virtual experiments using the 
four CP models are shown in Figure 23, where yield points computed by the CP models
are also shown. As can be seen from the figure, the yield surface corners of the FC-
Taylor based yield locus become too rounded by the Facet fit, whereas Yld2004-18p is 
slightly closer to the FC-Taylor calculations. For the other three CP models, both the 
Facet and the Yld2004-18p give results in good agreement with the corresponding CP-
based yield loci, where in general the Facet fits are slightly better.
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(a)
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(c)

 

(d)
Figure 23 RD-TD sections of the yield surface of Facet and Yld2004-18p fitted to 201 stress points at 

yielding from (a) FC-Taylor, (b) ALAMEL, (c) ALAMEL Type III and (d) VPSC models, respectively, 
together with the in-plane stress points computed by each of the four models.



Article 1
 

91
 

6. Discussion

The hierarchical modelling approach applied here, i.e. a two-scale scheme, uses 
analytical yield functions at the continuum scale and CP models at the mesoscale. The 
continuum yield functions implemented in finite element codes can be used in 
simulations of complex deformation processes at the engineering scale with relatively 
high computational efficiency, while the CP models provide stress-strain points at 
yielding to identify the advanced yield functions. However, the success of the 
hierarchical modelling approach depends crucially on the independent accuracy of 
models at both scales in representing the material behaviour and on the fitting method 
which bridges the models through the scales. 

It is quite clear from the results that the FC-Taylor, VPSC and ALAMEL models are 
not capable of capturing the plastic anisotropy of the AA1050 sheet in a quantitative 
manner. The variation of the r-value is qualitatively correct, but especially with the FC-
Taylor model the stress anisotropy is overestimated. Similar conclusions with respect to 
the FC-Taylor model, namely that it is only qualitatively correct in predicting 
mechanical anisotropy, have been made in other studies (Grytten et al., 2008; Delannay 
et al., 2009). The recent ALAMEL Type III model provides predictions that are very 
similar to CPFEM and these two models give results that are in better agreement with 
the experimental data than the other three models.

It is interesting to compare the Taylor factors, both for the case of a random texture in 
Table 5 and for the AA1050 cube texture in Table 4. The FC-Taylor model predicts the 
largest Taylor factor among the five CP models. The other models give lower values 
due to their strain constraint relaxations. The aggregate type of Taylor models 
considered here can be regarded as computationally efficient simplifications of a 
CPFEM model where both equilibrium and compatibility are achieved. Research on 
CPFEM texture predictions shows that increasing the in-grain mesh resolution can 
improve the agreement with experimental results (Zhao et al., 2007). Plastic anisotropy 
predicted by CPFEM is believed to be improved by a finer mesh, which is why a very 
fine mesh was used in this investigation. Attempts with a coarser mesh (not included 
here) gave results closer to the FC-Taylor model. It is interesting to note that CPFEM 
gives the lowest value of M for AA1050, and that the relaxed Taylor models are much 
closer to the stress predicted by CPFEM than by the FC-Taylor model, suggesting that 
strain relaxations are very important in stress calculations by aggregate models.

The in-plane directional variation of the flow stress in the experiments was found to 
change with the plastic strain. This change is not captured by the CP models, where 
only the texture-induced anisotropy is considered. According to the CPFEM 
calculations shown in Figure 11, the texture evolution contributes only to a minor part 
of the experimentally observed evolution of strength anisotropy. Other microstructural 
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features, possibly playing a role in defining the observed mechanical anisotropy, are 
neglected in the formulations of all CP models discussed in this work. Sources of 
microstructure-induced anisotropy could be aligned dislocation structures (Barlat et al.,
2003b, Barlat et al., 2013, Holmedal et al., 2008), grain size (Delannay et al., 2012) and 
texture heterogeneity (Dumoulin et al., 2011). Furthermore, strain gradients and 
corresponding geometrically necessary dislocations are not accounted for. Keeping 
these simplifying assumptions in mind, the CP models do not seem capable of 
describing the plastic anisotropy of the material with high accuracy. The CP models 
predict the correct trends, but are not capable of accurately describing the directional 
variation of the flow stress and the r-value of the AA1050 sheet. The ALAMEL Type 
III and the CPFEM give the best results, but still with a 25% too small r-value at the 45
direction.

The results obtained with the calibrated Yld2004-18p and Facet yield functions in the 
present study show that both yield functions are capable of capturing the plastic 
anisotropy described by the underlying CP model with good accuracy. Only fitted to 
201 yield stress points, the yield functions could still give r-values and reproduce the 
curvature and radius of the RD-TD section of the yield locus closely to what was 
predicted by the CP models. Since the 201 stress points were not chosen particularly to 
map the region of the stress space shown in Figure 23, one may expect similar quality of 
the fits to CP models by the Yld2004-18p or Facet yield surfaces in other regions of the 
stress space as well. However, one should always keep in mind that this approach is 
limited by the quality of the CP models in reproducing the experimentally observed 
mechanical anisotropy. When a realistic crystal plasticity model is available, both the 
Yld2004-18p and Facet yield surfaces seem capable of giving a realistic description of 
the plastic anisotropy exhibited by the material at hand.

FCC metals are challenging for the Facet yield surface, in particular when applying the 
FC-Taylor model, because the sharp corners of the yield surface require a much higher 
exponent than for the rounded BCC yield surfaces. This contributes to the largest error 
for the FC-Taylor model in Table 6. The relaxed constraint CP models predict a more 
rounded shape that may be described by lower exponents, similar as the decrease from 8 
to 6 for the exponent a of Yld2004-18p in Table 5 for the case of random texture. It is 
desirable that as many as possible amongst the 201 points are included in the fitting 
procedure, but when the exponent is too low that is not possible by the non-negative 
least squares method, which is chosen because of uniqueness and high computational 
efficiency. On the other hand, if the exponent is too large the generic shape of the yield 
surface is wrong. As a compromise, the optimal fit was achieved with less than 201 
points involved. A procedure for determining the exponent has been suggested here, 
with which minimum errors of the Facet surface can be achieved when a sufficiently 
large number of points has been used. The exponents obtained were larger than those 
suggested and applied earlier (Van Houtte et al., 2009, Gawad et al., 2013a). Note that 
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with another number of stress/strain-rate points or a different distribution of their 
directions, this procedure must be repeated to obtain suitable exponents.

The planar stress anisotropy as described by the Facet yield surface in Figure 14, Figure
16, Figure 18 and Figure 20, shows some oscillations. This is due to that among the 201 
points, only a few are controlling the in-plane properties. Note that the oscillations 
would vanish with a lower exponent of the Facet function, but at the cost of a poorer 
overall fit. Of importance for formability predictions, a low exponent would also give a 
too rounded equi-biaxial region of the yield surface that would lead to non-conservative 
formability limit estimates. 

Compared to the Yld2004-18p, results from the Facet model are somewhat closer to the 
CP calculations. An advantage of the Facet model is that it can be fitted unambiguously 
to the virtual experiments, but due to its many terms it is computationally more 
expensive in use. The reason for the slight difference between the fitted Yld2004-18p
and the CP calculations can be twofold. Firstly, 201 stress points are not enough to fully 
represent the yield surface. Secondly, there are only 18 parameters in the Yld2004-18p 
yield function (not counting a ), which limits its flexibility in adapting to complex 
surface shapes.

It is interesting to compare the calibration using only the 201 CP simulations, the one 
using a combination of experimental data and CP simulations, and the one using the 
experimental data in addition to one CP calculation providing the yield stress and r-
value for the equi-biaxial stress state. As seen from Figure 22, the latter approach 
deviates significantly from the two first regarding the  11 33 section of the yield 

surface with 13 0.3 . Without experimental data involving the out-of-plane stress 
components, it is difficult to assess the quality of these different yield loci, but the 
calibrations based on CP simulations in the full stress space clearly indicate the 
presence of additional out-of-plane anisotropy.

When isotropy is assumed for the out-of-plane mechanical properties of the material, 14 
parameters remain to be fitted in Yld2004-18p. The uniaxial yield stresses and r-values 
in the seven directions in the plane of the sheet provide 14 data points, which is the 
minimum number required for fitting of the yield function. Using this approach, the in-
plane directional tension properties could be reproduced with high accuracy. However, 
a small change of the weighting factors led to significant changes in the shape of the 
yield locus, especially in the equi-biaxial stress region, as shown in Figure 13. This 
effect may be weakened if biaxial data from CP models or experiments are used. Hence, 
fitting Yld2004-18p only to uniaxial tensile data in seven directions is not found to be a 
reliable and stable approach.
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Despite the shortcomings of the CP models, it is suggested that advanced yield 
functions can be identified by using a combination of all the available experimental data, 
supplemented with the 201 yield stresses from CP simulations to span the five-
dimensional deviatoric stress space. In the current case, the recent ALAMEL Type III 
model gave much better results than the FC-Taylor model, but since the mechanical 
anisotropy is not generally determined with satisfactory precision in the virtual 
experiments, adequate corrections are implicitly taken into consideration by the hybrid 
identification method. This method provides a good compromise between the 
qualitatively correct CP calculations and the experiment results for several stress states 
and material directions. Even if only uniaxial tension tests could be employed to 
provide the experimental data, additional tests, e.g. in shear, plane-strain tension or 
biaxial tension, are recommended to increase the accuracy and robustness of the 
identification (Lademo et al., 2009).

Methods for identifying the initial yield surface of aluminium alloys with a satisfactory 
accuracy have been described and discussed above. Plasticity models using the initial 
yield surface combined with isotropic or combined isotropic and kinematic hardening 
are widely used by the industry in forming simulations and have produced results in 
good agreement with experiments (Worswick and Finn, 2000; Yoon et al., 2004). 
However, the shape of the yield surface may change in the course of the forming 
operation, due to the evolution of the microstructure of the material. As a consequence, 
the coefficients of the anisotropic yield function should be updated to track the 
subsequent yield surfaces. Although the initial yield surface is the main concern in this 
paper, ways of tracking the subsequent yield surfaces are briefly discussed in the 
following with emphasis on employing the fitting procedures proposed above.

In a hierarchical multi-scale (HMS) model 2 , Gawad et al. (2013a) included the 
evolution of crystallographic texture in the FACET yield function in simulations of 
plastic forming of polycrystalline metallic alloys. Similar methods were also reported 
by Neumann et al. (2005), Kowalczyk and Gambin (2004) and Gawad et al. (2013b).
The HMS model could easily be extended to the Yld2004-18p yield function by use of 
crystal plasticity based fitting procedures. However, the prediction accuracy of such an 

                                                            
2 In the HMS model, the crystallographic texture at each integration point is represented by a 

number of orientations. Initially, the texture is the same for all integration points. After certain 

plastic strains or strain-intervals, the texture is updated with the CP models and deformation 

history experienced by the integration point. With newly updated texture, virtual stress points 

are provided with CP models and then used to calibrate the new coefficients of the yield 

function.
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approach would depend critically on the accuracy of the crystal plasticity model used to 
identify the yield surfaces. In the case of the AA1050 material, crystal plasticity 
simulations indicate that the experimentally observed evolution of strength anisotropy 
can only be partially attributed to texture evolution. Hence, the HMS model cannot 
capture accurately the observed distortion of the yield surface. The evolution of the 
shape of the yield surface can also be described by distortional hardening models (e.g., 
Aretz, 2008; Barlat et al., 2013; Shutov and Ihlemann, 2012), but these models are 
beyond the scope of this paper.

7. Conclusion

In this work, the mechanical anisotropy of an AA1050 sheet has been studied by 
experiments, crystal plasticity modelling and use of advanced yield functions. None of 
the five considered crystal plasticity models, namely the FC-Taylor model, the two 
variants of the ALAMEL model, the VPSC model and CPFEM, were able to perfectly 
describe the plastic anisotropy exhibited in uniaxial tension tests in the plane of the 
sheet. However, CPFEM and ALAMEL Type III provided the best agreement with 
experimental results for the AA1050 sheet. The ALAMEL Type III predictions showed 
as good accuracy as the CPFEM with a high resolution mesh. Since the computational 
efficiency of the ALAMEL Type III model is much higher than that of high resolution 
CPFEM, it is a promising candidate for hierarchical modelling. 

The Yld2004-18p yield function and the Facet potential have been identified based on 
201 distinct stress states on the yield surface computed by the FC-Taylor, ALAMEL, 
ALAMEL Type III and VPSC models. The results show that even though the Yld2004-
18p yield surface has few parameters compared to the Facet surface, both yield 
functions are flexible and fit rather accurately the yield points as well as the yield 
surface predicted by the CP models. It is concluded that the exponent of the Facet 
polynomial should be carefully chosen and that the optimal values are higher than 
reported earlier. However, due to the inaccuracy of the CP models, the identifications of 
the yield functions could not represent the experimental data with high precision. 

Identifying the Yld2004-18p yield function based on uniaxial tensile tests in seven 
directions with respect to RD is not a reliable method. More data points are required to 
properly define the equi-biaxial stress region of the yield locus. This is achieved by the 
hybrid calibration method adopted for the Yld20014-18p yield function, which takes 
both the experimental data and the yield stresses from the CP simulations into 
consideration in the parameter identification. By this approach the identified yield 
function shows good agreement with the experimental data as well as with the CP 
calculations. This method is suggested here for identifying the Yld20014-18p yield 
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function, as it gives a more robust determination of the yield surface in the whole of the 
five-dimensional deviatoric stress space.
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Use of plane-strain tension and shear tests to evaluate yield surfaces for 
AA1050 aluminium sheet

Abstract. Plane-strain tension and shear tests were carried out for a fully annealed 
AA1050 sheet. The tests were simulated numerically with a commercial finite element 
method (FEM) code using an anisotropic plasticity model including the Yld2004-18p 
yield function, the associated flow rule and isotropic hardening. The advanced yield 
function was calibrated by three different methods: using uniaxial tension data combined 
with FC-Taylor model predictions of the equibiaxial yield stress and r-value, using 201 
virtual yield points in stress space, and using a combination of experimental data and 
virtual yield points (i.e., a hybrid method). The virtual stress points at yielding were 
provided by the recently proposed Alamel model with the so-called Type III relaxation
(Alamel Type III model). FEM simulations of the tests were then made with parameters 
of Yld2004-18p identified by these three methods. Predicted force-displacement curves 
were compared to the experimental data, and the accuracy of the parameter identification 
methods for Yld2004-18p was evaluated based on these comparisons.

Keywords: Yld2004-18p, parameter identification, Alamel Type III model, multi-level 
modelling, finite element simulation

Introduction

The yield function is a key component for simulating plastic forming with FEM codes.
Sheet metals commonly exhibit plastic anisotropy, i.e. direction-dependent strengths and 
flow patterns, which is mainly attributed to the crystallographic texture. Many advanced 
anisotropic yield functions that are capable of accurately describing the plastic anisotropy 
of aluminium alloys have been proposed in the last decade [1-3]. One example is the 
linear transformation-based Yld2004-18p yield function [2]. The parameters of an 
advanced yield function are conventionally identified by mechanical tests. However, the 
available mechanical tests are limited for sheet metals. Crystal plasticity (CP) 
calculations can be employed to facilitate the identification of anisotropic yield functions, 
i.e., using hierarchical multilevel modelling [4, 5].

In a recent work by the authors [5], the plastic anisotropy of a commercial pure 
aluminium sheet, AA1050, was measured by uniaxial tensile tests at every 15º from the 
rolling direction (RD) to the transverse direction (TD). With the measured texture as the 
main input, five different CP models were used to predict the anisotropic plastic
behaviour. The Yld2004-18p yield function was identified by three methods: using 
uniaxial tension data combined with FC-Taylor model predictions of the equibiaxial yield 
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stress and r-value, using 201 virtual yield points in stress space, and using a combination 
of experimental data and virtual yield points.

As a continuation of [5], plane-strain tension and shear tests were conducted on the same 
material in this study. These tests were then simulated with the commercial FEM code 
LS-DYNA using an anisotropic plasticity model including the Yld2004-18p yield 
function, the associated flow rule and isotropic hardening. The Yld2004-18p yield 
function was identified by experiments and virtual equibiaxial yield stress and r-value, by 
virtual yield stress points provided by the Alamel Type III model [6, 7] and by a 
combination of experimental data and the virtual stress points, and then evaluated by 
comparison of experimental and predicted force-displacement curves.

(a)                                                                 (b) 
Figure 1 (a) Normalized yield stress and (b) r-value for AA1050 at different tensile directions

with respect to RD obtained from experiments, the Alamel Type III model and predictions with 
Yld2004-18p calibrated by the three methods.
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Material  

The AA1050 sheet was of thickness 1.5mm. It was in a fully annealed state and the grain 
structure was almost equiaxed with a grain size of ~100 μm. The orientation distribution 
function (ODF) was measured by the EBSD technique. The cube orientation was the 
dominant texture component with a maximum intensity of about 18. Uniaxial tensile tests 
along 7 directions from RD to TD revealed that the material exhibits weak strength 
anisotropy but strong anisotropy in plastic flow, see Figure 1. Distortional hardening was 
observed from these tests, i.e. the strength anisotropy evolved with strain.

Parameter identification  

The Yld2004-18p yield function and the parameter identification will be briefly described
in this section, while the reader is referred to [5] for further details.

The Yld2004-18p yield function has an analytical expression as

1 1 1 2 1 3 2 1 2 21

1/

2 3 3 1 3 2 3 3

1
4

a a a a a
a

aa a a a

S S S S S S S S S S

S S S S S S S S
(1)

where is the equivalent stress; a is the exponent of the yield function; iS and iS ,
1, 2,3i , are the principal values of the tensors S C S and S C S , where S is the 

deviatoric stress tensor and C and C are fourth-order tensors containing all the 18 
parameters of the yield function.

The Yld2004-18p yield function was employed to describe the yield surface of the 
AA1050 material. The coefficients of the yield function were identified by three methods.
Firstly, it was fitted to normalised yield stresses and r-values from uniaxial tensile tests 
along 7 directions. The experimental equi-biaxial flow stress and r-value were not 
available. Instead, they were provided by FC-Taylor calculations. The exponent was set 
to 8 following conventions for FCC metals. This method was denoted Fit_Exp. + biaxial.
Secondly, the yield function was fitted to 201 yield stress points provided by Alamel 
Type III calculations. This method was denoted Fit_Alamel Type III. Thirdly, the 
experimental data (7 yield stresses and 7 r-values) and the 201 virtual stress points at 
yielding were combined to identify the parameters. The last method represents a hybrid 
fitting method and was termed Fit_Exp. + Alamel Type III.

When all coefficients of the Yld2004-18p equal unity, the yield function reduces to 
Hershey’s isotropic yield function [8]. Optimized exponents of the isotropic 
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Yld2004-18p yield function for a randomly textured FCC polycrystal were identified for 
the FC-Taylor model, Alamel type models and the VPSC model along 1241 strain-paths 
[5]. It was found that when the exponent was 8 (nearest even integer), the isotropic yield 
function fitted best to the FC-Taylor stress points, while the exponent was 6 for the 
Alamel type models and the VPSC model. Hence, the exponent for the identifications 
Fit_Alamel Type III and Fit_Exp. + Alamel Type III was set to 6, while a value of 8 was 
used for the Fit_Exp. + biaxial identification, following the conventions for purely 
experimental fitting. The FC-Taylor model was chosen to provide the equal-biaxial data 
points because the FC-Taylor based isotropic yield function also has the same value of the 
exponent. Details about the parameter identifications, e.g. the error function, weighting 
factors and the fitting algorithm, can be found in [5]. As the identified coefficients were 
not shown in [5], they are compiled in Table 1.

The measured normalized yield stresses and r-values for the AA1050 sheet at different 
directions are plotted in Figure 1, where predicted results by the Alamel Type III model 
and by the Yld2004-18p yield function with parameters compiled in Table 1 are also 
shown.

Table 1 Yld2004-18p coefficients identified by three methods.
Fit_Exp.+

Biaxial
Fit_Alamel 

Type III
Fit_Exp.+ 

Alamel Type III
Fit_Exp.+

Biaxial
Fit_Alamel 

Type III
Fit_Exp. + 

Alamel Type III

12c 0.6675 1.0893 1.3952
12c 0.6827 0.9232 0.5741

13c 0.9842 1.2371 1.5374
13c 0.8491 0.2354 -0.6093

21c 1.3155 0.5741 0.809
21c 0.7963 1.1698 0.7892

23c 1.2477 0.931 0.7741
23c -0.032 1.192 1.1262

31c 0.0459 0.7879 0.928
31c 1.0476 0.9533 0.3695

32c 1.0818 0.8374 0.8402
32c 0.9001 1.0169 0.6886

44c 1.0 0.5453 0.5612
44c 1.0 1.1363 1.132

55c 1.0 1.1614 1.247
55c 1.0 0.5515 0.3961

66c 1.1455 1.0503 1.1333
66c 0.6563 0.6403 0.5924

a 8 6 6 - - - -
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                                (a)                                                                                   (b)
Figure 2 Geometries of test samples for (a) plane-strain tension and (b) shear [9].

Plane-strain tension and shear tests

The geometries of the plane-strain tension and shear test samples are illustrated in Figure 
2. The samples were machined with the longitudinal directions being parallel with RD. 
The tests were carried out on a Zwick/Roell Z030 testing machine. During the 
plane-strain tension tests, the samples were clamped at 10 mm distances from the groove 
edges, while the cross-head speed was 0.6 mm/min. The displacement was recorded by an 
extensometer with a gauge length of 30 mm. During shear testing, the samples were 
mounted to the testing machine at the two outermost holes with bolts of a similar diameter
[9]. The same loading speed was applied as in the plane-strain tension tests, and an 
extensometer with a gauge length of 70 mm was used to record displacements. The force 
was also recorded during testing. Each test was carried out two times. The measured 
force-displacement curves for the plane-strain tension and shear tests are shown in Figure 
3 and Figure 4, respectively.
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Figure 3 Force-displacement curves in plane-strain tension along RD from tests and FEM 
simulations.

Figure 4 Force-displacement curves in shear along RD from tests and FEM simulations.

FEM simulations

An anisotropic plasticity model including the Yld2004-18p yield function, the associated 
flow rule and isotropic hardening has been implemented into LS-DYNA through a
user-defined material subroutine (UMAT) [4]. The plane-strain tension and shear tests
were simulated in LS-DYNA using solid elements. Isotropic hardening was described 
using the extended Voce rule, i.e.
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3
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( ) 1 exp( )i
Y i

i i

Q
Q

(2)

where is the equivalent plastic strain,  0 is the yield stress in the reference direction, 

and iQ and i are hardening parameters. The hardening parameters and 0 were 
identified against the true stress vs. plastic strain curve (up to a plastic strain of 0.3) for
the uniaxial tensile test in the RD of AA1050, using a least-squares fitting method. The 
fitted hardening parameters are compiled in Table 2. Uniaxial tension tests in RD were
simulated in LS-DYNA with the parameters compiled in Table 1 and Table 2, and the 
predicted stress-strain curves accurately matched the experimental one (not included 
here). The same parameters were used for simulating the plane-strain tension and shear 
tests.

Table 2 Work-hardening parameters for AA1050 [MPa].

0  1Q  1  2Q  2  3Q  3  
19.51 12.92 21905 28.91 1924.4 52.17 187.7

FEM meshes for the plane-strain tension and shear test samples are illustrated in Figure 5.
Only the unclamped part of the plane-strain tension sample was discretized. Solid 
elements with one integration points were used for both models, while there were 3 
elements and 6 elements through the thickness direction for the plane-strain tension and 
shear test models, respectively. Constant velocities were applied at the loading points. 
The relative displacement between nodes N1 and N2 in Figure 5 (a) and nodes N3 and N4 
in Figure 5 (b) were assumed to be equivalent to the measured displacements by the 
extensometers for respective tests. Forces were recorded at a cross-section of the FEM 
model during the simulation.

The predicted force-displacement curves obtained in the FEM simulations with different 
parameters of the Yld2004-18p yield function are shown in Figure 3 for the plane-strain 
tension test and in Figure 4 for the shear test. Curves at the initial loading/yielding are 
shown as inserts in both figures.
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                         (a)                                                                             (b)
Figure 5 FEM models for (a) the plane-strain tension test and (b) the shear test. Triangular 

markers and arrows indicate the boundary conditions.

Discussion and conclusion

The directional normalized yield stresses and r-values obtained from experiments, the 
Alamel Type III model and the Yld2004-18p yield function with different identification 
methods are shown in Figure 1. The Yld2004-18p yield function identified by the 
uniaxial tensile tests and biaxial data points from a FC-Taylor simulation captures the 
experimental data accurately. The yield function fitted by the hybrid method gives very 
similar results, while the identification based solely on simulations with the Alamel Type 
III model is less accurate.

The experimental and predicted force-displacement curves for the plane-strain tension 
test are shown in Figure 3. The effective plastic strain at a displacement of 4 mm was 
about 0.5 in the FEM simulations. All simulations predicted higher forces than found in 
the experiments, but the prediction using the yield function obtained with the hybrid 
identification method is closest to the experiments. The prediction with the yield function 
identified solely from Alamel Type III simulations is the least accurate.

Figure 4 shows the results for the shear test. The effective plastic strains at displacements
of 0.25 mm and 4 mm are about 0.05 and 1.0, respectively. Up to 0.25 mm displacement,
the yield function identified with the hybrid method captured the experimental data with 
greatest accuracy, while for displacements larger than 2 mm all simulations predicted 
higher force levels than what was observed experimentally.

Based on results of the FEM simulations, the yield function identified by the hybrid 
method was most accurate for small displacements, while all identification methods led to 
too high force levels for large deformations. There are at least three possible explanations 
for the latter observation. First, the isotropic hardening rule was fitted up to necking in 
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uniaxial tension but used in the simulations up to significantly larger strains. Second, the 
distortional hardening of the material which was neglected in the simulations, may also
contribute to the overestimation of the force level. Third, there may be an influence of the 
mesh size and element aspect ratio on the predictions. 

The yield function obtained with the hybrid identification method and exponent 6a
performed very well in terms of capturing the experimental uniaxial tensile data and the 
force-displacement curves of the plane-strain tension and shear tests at strains smaller 
than about 5%. Compared to the hybrid identification method, the yield function 
identified mainly to the uniaxial tensile results performed similarly for the plane-strain 
tension test and even better at large strains for the shear test. The yield functions 
identified mainly or partially to the experimental data performed better than the yield 
function identified solely by CP simulations.
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A robust and efficient substepping scheme for the explicit numerical 

integration of a rate-dependent crystal plasticity model 

 

Abstract 

This paper describes the development of efficient and robust numerical integration 
schemes for rate-dependent crystal plasticity models. A forward Euler integration 
algorithm is first formulated. An integration algorithm based on the modified Euler 
method with an adaptive substepping scheme is then proposed, where the substepping is 
mainly controlled by the local error of the stress predictions within the time step. Both 
integration algorithms are implemented in a stand-alone code with the Taylor aggregate 
assumption and in an explicit finite element code. The robustness, accuracy and 
efficiency of the substepping scheme are extensively evaluated for large time steps, 
extremely low strain-rate sensitivity, high deformation rates and strain-path changes 
using the stand-alone code. The results show that the substepping scheme is robust and 
in some cases one order of magnitude faster than the forward Euler algorithm. The use 
of mass scaling to reduce computation time in crystal plasticity finite element 
simulations for quasi-static problems is also discussed. Finally, simulation of Taylor bar 
impact test is carried out to show the applicability and robustness of the proposed 
integration algorithm for the modelling of dynamic problems with contact.   

Keywords: crystal plasticity, forward Euler method, modified Euler method, adaptive 
substepping, stability, dynamic problems 

 

1. Introduction 
The mechanisms of plastic deformation of metals, e.g. slip and twinning, are well 
described by single crystal plasticity models. Slip is the dominant mechanism in face 
centred cubic (FCC) and body centred cubic (BCC) metals and can be described either 
by rate-independent or rate-dependent single crystal plasticity models, see Mánik and 
Holmedal [1] for a review. Rate-dependent crystal plasticity (RDCP) models commonly 
assume viscoplasticity, i.e. that all slip systems are active during plastic deformation 
and that the slip activity is determined via a power-law type equation [2, 3]. Since most 
metals exhibit weak rate dependence at room temperature, the RDCP models with 
power-law type crystallographic flow rules are highly non-linear and could lead to 
numerical instabilities in the temporal integration [4]. Many research efforts have been 
made to propose efficient and robust integration algorithms for various RDCP models 
[5-13].  Ling et al. [13] and Dumoulin et al. [14] evaluated several implicit and explicit 
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constitutive update schemes for RDCP models, and found that the explicit schemes are 
much more time efficient than the implicit ones but are only conditionally stable. 

The combination of crystal plasticity with the finite element method (CPFEM) opens up 
for a wide range of applications [15]. In many applications, such as in impact dynamics, 
explicit finite element methods are most often used, in which the stable time step is 
determined by the Courant-Freidrichs-Lewy criterion [16]. The stable time step is then 
found to depend on the element size and the speed of sound in the material, and to 
achieve large deformations in the material with fine resolution of the stress and strain 
fields a large number of time steps are required.  

In classical explicit integration schemes for differential equations, the accuracy depends 
significantly on the size of the selected time step. Sloan [17] proposed an automatic 
time stepping with error control for temporal integration of the elastic-plastic 
constitutive relations. This numerical technique, widely used in the field of numerical 
analysis, is based on extrapolation procedures using for instance the modified Euler 
method or the Runge-Kutta method. The use of automatic substepping and time 
stepping algorithms with error control overcomes the main limitation of explicit 
techniques, since the system adapts as the estimated error changes [18]. Substepping 
schemes for integrating RDCP models also exist. van der Giessen and Neale [19] 
proposed an adaptive time stepping method to ensure that the increments of several 
pertinent quantities remain within user-defined bounds, but this method was particularly 
proposed for simulating the torsion of a cylindrical bar or tube. Kuchnicki et al. [8] 
proposed an explicit integration method with a subcycling algorithm in order to work 
around the maximal time step limitation of their explicit model, but apparent stress 
oscillations occurred when large time increments were applied. Besides, both 
substepping methods mentioned above have no estimate of the error during the 
integration process. Substepping is very important for contact problems since the 
contact algorithm might introduce large strain increments and strain rates locally. 

In this work, we extend the adaptive substepping scheme based on the modified Euler 
method [17] to integrate RDCP models in time. The accuracy, efficiency and stability of 
the substepping scheme is extensively investigated, considering large time steps, 
extremely low strain-rate sensitivity in the power-law type flow rules, large strain rates 
and strain-path changes. The mass scaling technique is also discussed for CPFEM with 
the purpose of speeding up explicit finite element simulations of quasi-static 
deformation processes. Simulation of the Taylor bar impact test is conducted to 
illustrate the extremely good stability of the substepping scheme in a problem involving 
large deformations, high strain rates and contact.  

The paper is organized as follows. The crystal plasticity models are described in section 
2. In section 3, the new explicit integration scheme is presented and procedures of 
adaptive substepping based on the modified Euler method are proposed. The integration 
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algorithms are evaluated for simple cases in section 4, using a stand-alone code based 
on the full-constraint Taylor hypothesis, while CPFEM is used to evaluate the 
algorithms for more complex cases in section 5. The conclusions of the research work 
are found in section 6.  

2. Crystal plasticity model 
The mathematical formulation of the crystal plasticity model is described in this section. 
The model is developed for metals and alloys, assuming that plastic deformation occurs 
via slip on crystallographic slip systems. It is further assumed that the elastic 
deformations are infinitesimal, while plastic deformations and rotations may be finite. 

2.1. Single crystal plasticity 

In addition to the global or sample coordinate system (or frame) with basis g
ie , 1, 2,3i

, two additional coordinate systems will be employed for defining vector and tensor 
components. The first one is the initial lattice frame with basis ie  that coincides with the 
three orthogonal axes of the cubic lattice at the beginning of deformation. The other is 
the co-rotational lattice frame with basis ˆ ie  which coincides with the lattice after 
deformation. The rotation of the lattice is defined by an orthogonal rotation tensor . 
The sample and initial lattice frames are stationary, while the co-rotational frame 
changes as the deformation proceeds. The coordinate transformation between the initial 
and co-rotational lattice frames reads   

 ˆ ˆ,Tv v v v  (1) 

 ˆ ˆ,T TT T T T  (2) 

where v  is a vector and T is a second-order tensor with components referred to the 
initial lattice frame. Hence, v̂  is the same vector as v  but with components referred to 
the co-rotational coordinate system. The same convention is used for tensors. The 
transformation matrix Q  from the global frame to the current co-rotational lattice frame 
is determined as:  

 0
TQ Q  (3) 

where 0Q  is the transformation matrix from the sample frame to the initial lattice 
frame. Then   

 ˆ ˆ,g Tgv v vQ Q v  (4) 

 ˆ ˆ,g gT TQ Q QT T T T Q  (5) 
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where the notation gv  and gT  implies that the components of the vector and tensor are 
referred to the sample frame. 

The velocity gradient L  can be additively decomposed into symmetric and skew-
symmetric parts: 

 L D W  (6) 

where D is the symmetric deformation rate tensor and W is the skew-symmetric spin 
tensor. The tensors D and W  can be further decomposed into lattice and plastic parts: 

 e pD D + D  (7) 

 * pW W + W  (8) 

where eD  represents the elastic deformation rate of the lattice and pD  is the plastic 
deformation rate caused by crystallographic slip. The rigid spin of the lattice is 
represented by *W , while pW  is the spin due to slip activities. The elastic spin is 
negligible since infinitesimal elastic deformation is assumed. The tensors pD  and pW  
can be expressed by the shear rates  on all slip systems: 

 p

1

N

D P  (9) 

 p

1

N

W  (10) 

where N  is the number of slip systems, and P  and  are the symmetric and skew-
symmetric parts of the Schmid tensor M , respectively:   

 M m n  (11) 

where m  is the unit vector defining slip direction, while n  is the unit slip plane 
normal vector, for the slip system  (where 1 12  for FCC metals). Thus 

 
1
2

P m n n m  (12) 

 
1
2

m n n m  (13) 

The unit vectors m  and n  are not affected by crystallographic slip, and are defined 
by 
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 ˆ ˆ,m m n n  (14) 

where m̂ and n̂  define the slip system in the co-rotational frame, and the orthogonal 
rotation tensor  is defined by the differential equation 

 *W  (15) 

The Schmid tensor M̂  with respect to the co-rotational frame is then defined as 

 ˆ ˆ ˆM m n  (16) 

while P̂  and ˆ  are the symmetric and skew-symmetric parts of M̂ , respectively. 
Using Eq. (11), (14) and (16), we get  

 TˆM M  (17) 

The vectors m̂ and n̂  refer to the co-rotational frame and have constant components, 
and so does the Schmid tensor M̂ .  

The resolved shear stress  on the slip system  can be expressed as:  

 ˆˆ: :P P  (18) 

where  and ˆ  are the Cauchy stress tensor expressed in the initial and co-rotational 
lattice frames, respectively. 

In the co-rotational lattice frame, Hooke’s law can be expressed in the rate form as: 

 eˆ ˆˆ :C D  (19) 

where Ĉ is a fourth-order elastic modulus tensor and eD̂  is the elastic deformation rate 

tensor, both in the co-rotational frame. The fourth-order tensor Ĉ  accounts for the 
elastic anisotropy of the cubic lattice. It is assumed to be invariant to plastic 
deformation and is kept constant in the co-rational lattice frame. Expressed in the 
orthonormal basis associated with the crystal lattice, it reads (in Voigt notation):  

 

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0
0 0 0
0 0 0ˆ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c c
c c c
c c c

c
c

c

C  (20) 
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where 11c , 12c  and 44c  are three independent elastic constants. The elastic deformation 

rate tensor eD̂  is computed according to Eq. (7) with the tensors expressed in the co-

rotational lattice frame. The Jaumann stress rate J  is then defined by transforming ˆ  
into the initial lattice frame, i.e. 

 ˆJ T  (21) 

Finally, the material time derivative of the Cauchy stress tensor is obtained as 

 * *J W W  (22) 

The shear rate on the slip systems is calculated using a power-law equation:  

 
1

0 sgn( )
m

g
 (23) 

where 0  is a reference shearing rate, m  is the instantaneous strain-rate sensitivity and 

g  represents the slip resistance which evolves during the plastic deformation 
according to the hardening law. The hardening law used here assumes that the critical 
resolved shear stress g , which is initially equal to 0g , evolves through 

 
1

N

g h  (24) 

where h  is the instantaneous strain hardening matrix. In this work, h  is described 
phenomenologically by a saturation-type law [5]: 

 0[ (1 ) ][1 ] sgn[1 ]a
sat sath h q q g g g g  (25) 

where  is the Kronecker delta function; 0h , satg and a  are material parameters, 
representing the reference self-hardening coefficient, the saturation values of slip 
resistance and the hardening exponent, respectively. The parameter q  represents latent 
hardening.  

Other single crystal models, in terms of flow rules and work hardening laws, exist in the 
literature, e.g. Cuitino and Ortiz [6] and Buchheit et al. [20].  

2.2. Polycrystal plasticity 

Most engineering metals are polycrystalline and the constitutive model described above 
can be applied to polycrystal plasticity by use of CPFEM, where the grains are 
explicitly resolved. Alternatively, less time consuming, simplified Taylor-type of 
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models [21] are applied, for which a statistical aggregate of grain orientations is 
considered.  

The Cauchy stress at the material point, here denoted g , because it is most often 
expressed in the sample frame, is the volume-averaged stress of all the grains. If all 
grains are assumed to have the same volume, the volume-averaged stress may be 
expressed as: 

 
1

1 gN
g g

i
igN

 (26)   

where gN  is the number of grains. 

3. Temporal integration schemes 
Two explicit integration schemes are proposed in this work for the RDCP model 
described above. The first one is a fully explicit method based on the first-order forward 
Euler method, while the second one is featured with adaptive substepping and employs 
the modified Euler method within each substep. The modified Euler method is an 
extension of the forward Euler method into a two-stage, second-order Runge-Kutta 
method [22].  

3.1. Forward Euler method 

A fully explicit integration algorithm based on the forward Euler method with 
application to the RDCP model in section 2 is proposed here. The main steps of this 
scheme are summarized below. It is assumed that all variables at time nt  are known in 
the initial lattice frame and the task is to determine the same variables at time 

1n nt t t . 

a) Compute the deformation rate tensor 1
2

T
n n nD L L  and the spin tensor

1
2

T
n n nW L L , which are assumed to be constant during the time step t .

b) Compute the stress tensor ˆ T
n n n n  and deformation rate tensor 

ˆ T
n n n nD D  in the co-rotational lattice frame.  

c) Compute the resolved shear stresses ˆˆ :n n P  and the shearing rates 
1/

0 / sgn( )
m

n n n ng  on all slip systems.  
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d) Compute the plastic and elastic deformation rate tensors p
1

ˆ ˆN
n nD P  and 

e pˆ ˆ ˆ
n n nD D D , and the plastic spin tensor p

1
ˆˆ N

n nW , all in the co-

rotational lattice frame.  
e) Compute the plastic spin tensor p pˆ T

n n n nW W  and the lattice spin tensor 
* p
n n nW W W  in the initial lattice frame.  

f) Compute the Jaumann stress rate: ˆ ˆˆ :J T e T
n n n n n n nC D   

g) Compute the material time derivative of the stress tensor in the initial lattice 
frame as J

n n n n n nW W  and update the stress tensor according to 

 1n n n t  (27) 

h) Update the critical resolved shear stresses according to 1n n ng g g t , where 

1

N
n ng h  and h  is calculated according to Eq. (25) 

i) Update the rotation tensor 1n using a second-order scheme [23] as 

 
1* *1 1

1 2 2n n n nt tI W I W  (28) 

where I  is the identity tensor. 

j) Update the grain orientation matrix as 1 1 0
T

n nQ Q  . 

This integration scheme is theoretically equivalent to the one proposed by Zhang et al. 
[11] where formulations of the same RDCP model are mainly expressed and integrated 
in the initial lattice frame. The vectors m  and n  as well as the Schmid tensor M  
then need to be continuously updated at every time step, while this is not required in the 
current scheme. Hence, the forward Euler scheme proposed here should have the same 
accuracy and somewhat higher efficiency than the one proposed by Zhang et al. [11]. 

It is well known that the forward Euler integration scheme is only conditionally stable. 
If the time step exceeds a critical value critt , which is also called the stable time step, 
the solution will grow unboundedly. For RDCP models, the flow rules, such as Eq. (23), 
are very stiff. The reason is the low strain-rate sensitivity of metals at room temperature, 
and  can readily attain very high values even if is only slightly greater than g , 
which might lead to instabilities in the integration algorithm. In practice, instability is 
detected when 

 critt  (29) 
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where crit  is a critical shear increment. Eq. (29) was employed also in the work by 
van der Giessen and Neale [19] in order to estimate the stable time step when 
integrating the RDCP model, where crit  was set to a small value, 0.0025. It should be 
noted that limiting the shear increment per step to a small value cannot always ensure a 
stable integration. In addition to the constraint set by Eq. (29), other criteria [19] or 
advanced integration schemes should be used to keep the stability when integrating 
RDCP models.   

3.2. Modified Euler method with adaptive substepping 

Following the work of Sloan [17], a modified Euler method with adaptive substepping 
and error control is proposed here for temporal integration of the RDCP model. The 
Adaptive Sub-Stepping scheme with the Modified Euler method is denoted the ASSME 
method in the following. The substepping in the ASSME is controlled by the shear 
increment and by the error of the stress increment, while the second criterion plays the 
main role. 

All variables at time nt  are known in the initial lattice frame and variables at 

1n nt t t  are going to be determined. Instead of integrating directly over t  in one 
step as in the forward Euler method proposed in section 3.1, the interval will be 
subdivided into NS  ( 1NS ) substeps. NS  is equal to one at the beginning of t  and 
will increase monotonically as the substepping proceeds. The velocity gradient nL  is 
constant over t  and all the substeps within it. Each substep has a time increment 

( ) ( )i it t , where ( )i  is a substep time factor for substep number i  ( 1, 2, ...,i NS ) 

and is defined according to 

 
( )

( )
1

0 1

1

i

NS

i
i

 (30) 

It is noted that ( )i  is not necessarily the same for all substeps.  

For each substep, the modified Euler method is used to integrate the constitutive 
equations. The modified Euler method involves two forward Euler integration steps, 
where the forward Euler method proposed in section 3.1 is used for each step. The 
adaptive substepping scheme will be illustrated by describing the procedure for substep 

1i  between nt  and 1nt . All variables are known at the end of the last substep, or 
equivalently at the beginning of the current substep, which starts at time 

( ) ( ) ( )1 1

i i
i n j n jj j

t t t tt . It is noted that (0) ntt , which corresponds to the 
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beginning of the first substep within t . The updated variables at ( 1)it  are computed as 

follows.  

A. The velocity gradient is assumed constant and equal to nL  during the time 

increment 1n nt t t . The provisional time step is ( 1) ( 1)i i tt . Use the 

forward Euler scheme with rates at ( )it , e.g. ( )i , ( )
s
ig , ( )

s
i  and *

( )iW , to compute 

intermediate variables at time ( 1)it , e.g. ( 1)i , ( 1)i  and ( 1)
s
ig .  

B. Based on these intermediate variables, compute rates at time ( 1)it , e.g. ( 1)i , 

( 1)
s
ig , ( 1)

s
i  and *

( 1)iW . 

C. Check the stability of the integration according to Eq. (29), and if 

( 1) ( 1)
s
i i critt , decrease the time factor as  

 1 10.5i i  (31) 

Return to step A. 
D. Else, compute the relative error in the stress increment based on the two steps, 

defined here as 

 ( 1) ( ) ( 1)

( 1)
( ) ( 1) ( )( )

2

i i i

i
i i i

t
ERR

t
 (32) 

E. If ERR TOL (typical range is 2 510 ~ 10 ), decrease the time factor as  
 1 1i i  (33) 

where [17] 

 
1/2

max 0.1,  0.8 TOL
ERR

 (34) 

Return to step A.  
F.  If ERR TOL , calculate rates at the midpoint of ( 1)it  as 

 

( 1 2) ( 1) ( )

( 1 2) ( 1) ( )

( 1 2) ( 1) ( )

* * *
( 1 2) ( 1) ( )

( ) / 2

( ) / 2

( ) / 2

( ) / 2

i i i

s s s
i i i

s s s
i i i

i i i

g g g

W W W

 (35) 

and update variables at ( 1)it  according to 
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( 1) ( ) ( 1 2) ( 1)

( 1) ( ) ( 1 2) ( 1)

( 1) ( ) ( 1 2) ( 1)

1* *1 1
( 1) ( 1 2) ( 1) ( 1 2) ( 1) ( )2 2

i i i i

s s s
i i i i

s s s
i i i i

i i i i i i

t

g g g t

t

t tI W I W

 (36) 

G. If 1
( )1

1.0i
jj

, record the variables at ( 1)it , update the number of substeps, 

1NS NS , and estimate the time factor for the next substep as 

 
1

( 2) ( 1) ( 1)min ,  1
i

i i i
j

 (37) 

   where  is an adaptive factor of substep size.  

 Return to step A. 
H. If 1

( )1
1.0i

jj
,  the integration over the time step t  is complete. 

 

Some comments to the above integration procedure are added in the following. As a 
first attempt, the initial value of the time factor (1)  was set equal unity. However, a 

better estimate of (1)  is obtained by 

 (1)
2min ,  1.0

nNS
 (38) 

where nNS  is the number of substeps from last time increment. Using Eq. (38) to define 
the initial value of (1)  was found, in most cases, to reduce the number of trials required 

to find a value of (1)  that fulfils the error tolerance. Thus, Eq. (38) will be used as 

default to estimate the initial value of (1) . The value of crit  in Eq. (29) was set to 10 

to indicate numerical instability of some sort. This value is many order of magnitudes 
larger than 0 ( 1)it , and will not control the accuracy of the integration algorithm. The 

tolerance used to control the error is in the range 2 510 10TOL , while the default 
value of TOL  is taken as 310 . The minimum value of  equal to 0.1 is introduced in 
Eq. (34) to avoid exceedingly small substeps. The adaptive factor between substeps,  
in Eq. (37), can be determined according to 

 
1/2

min 0.8 ,  2.0TOL
ERR

 (39) 
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which was suggested by Sloan [17]. However, 1.0  is found here to be a better 
choice, since a valid time factor will usually work also for the next several substeps 
when the time step is not excessively large. Finally, the efficiency of the ASSME 
algorithm can be further improved by some practical techniques, such as changing from 
the ASSME algorithm to the forward Euler algorithm when no substepping is needed 
and vice versa.  

For a given strain increment, the forward Euler method has a local truncation error of 
order 2( )O t , whereas the local truncation error in the modified Euler method is of 

order 3( )O t . The substepping is controlled by the error estimated from the stress rates 
calculated from the two steps of the modified Euler method. By controlling the local 
relative error for each substep, we aim to control the global relative error in the overall 
solution. 

The proposed integration schemes have been implemented in a stand-alone code using 
the Taylor assumption for the polycrystal, and as a user-defined material subroutine 
(UMAT) in the commercial finite element code LS-DYNA [24]. Boundary conditions, 
crystallographic texture and material parameters are the main input of both codes, while 
the stress response and the texture evolution are predicted. The accuracy, efficiency and 
stability of the forward Euler and ASSME methods will be evaluated in sections 4 and 
5. 

It should be noted that the ASSME method proposed here can be extended to 
hyperelastic formulations of rate-dependent crystal plasticity, e.g. by adopting the 
forward Euler scheme proposed by Grujicic and Batchu [7].  

4. Evaluation of forward Euler and ASSME methods using the stand-
alone code 

The robustness, efficiency and stability of the two temporal integration schemes for the 
RDCP model, and especially the ASSME method, are now evaluated using the stand-
alone code. It is not intended to compare with any experimental results here. All the 
simulations made by the stand-alone code were run on a computer with a 3.2GHz 
processor. Only a single thread was employed for each simulation. 

4.1. Primary verification of integration schemes 

Simulations of uniaxial compression and simple shear for oxygen-free high conductivity 
(OFHC) copper with random texture have been used by many researchers as a 
benchmark for accuracy evaluation of RDCP models. It will also be employed here as a 
primary verification of the two integration schemes. To assess the accuracy, another 
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verified implementation [14] of the explicit integration scheme for RDCP models 
proposed by Grujicic and Batchu [7] has been used as a reference here. 

A total of 500 almost random orientations are used and the corresponding pole figure is 
shown in Figure 1, while material parameters are compiled in Table 1 [5]. The velocity 
gradient imposed for uniaxial compression is   

 33

0.5 0 0
| | 0 0.5 0

0 0 1

g gL  (40) 

while for simple shear the velocity gradient is  

 12

0 1 0
2 0 0 0

0 0 0

g gL  (41) 

where 33
g  and 12

g  indicate the axial compression and shear strain rates, respectively. 

The strain rates used in this section are 2 1
33| | 10 sg  and 2 1

12 0.5 10 sg . The 

loading time is 120 s and the time step is set to 410  s for the fully explicit methods and 
22 10 s for the simulations with the ASSME method. It is noted that critt  for both 

explicit schemes is only around 45 10  s with the current set-up of the simulations.  

The predicted stress-strain curves are shown in Figure 2, while the CPU time is 
presented in Table 2. Here “FE” refers to the forward Euler integration scheme 
proposed in this work, whereas “FE-GB” refers to the explicit integration scheme 
proposed by Grujicic and Batchu [7] and implemented by Dumoulin et al. [14].  
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Figure 1  {111} equal area pole figure of the 500 orientations. 

 

Table 1 Model parameters for OFHC copper 

0  m 0g  satg  0h  a  q  11c  12c  44c  

(s-1) - (MPa) (MPa) (MPa) - - (GPa) (GPa) (GPa) 
310  0.012 16 148 180 2.25 1.4 186 93 46.5 

 

 

Table 2 CPU time (s) for simulations of uniaxial compression and shear using the 
different integration schemes. 

 FE-GB FE ASSME

Uniaxial compression 8533 7369 906 

Shear 9099 7934 639 
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(a) 

 

(b) 

Figure 2 Stress-strain curves in (a) uniaxial compression and (b) simple shear calculated 
by different integration algorithms. 

As illustrated in Figure 2, the stress predictions are visually identical. The stresses 
predicted with the current FE method deviate only slightly from those obtained with the 
FE-GB method with relative errors less than 0.3% for both deformation cases. The 
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ASSME method has the same accuracy as the FE method, although a much larger time 
step was used. The CPU time shown in Table 2 demonstrates the computational 
efficiency of the FE method compared with the FE-GB method; in both cases, the FE 
method is around 15% faster. The ASSME method is around 10 times faster than the 
two fully explicit methods, but still the accuracy is retained.  

 

4.2. Evaluation of the ASSME method 

The robustness, efficiency and accuracy of the ASSME method are now evaluated for 
large time increments, extremely low strain-rate sensitivity, high strain rates, and strain-
path changes, using the stand-alone code. These conditions are known to be very 
challenging for the stability of integration schemes for RDCP models.  

4.2.1. Large time steps 
Two arbitrarily chosen FCC single crystals, denoted grain A and grain B respectively, 
will be employed for the investigations. The Euler angles of grain A are 
(212 ,  58 ,  51 )  in Bunge’s notation, while they are (115 ,  15 ,  53 )  for grain B.  The 
material parameters correspond to copper [5] and take the values given in Table 1. Both 
grains will be deformed separately with the strain path specified by Eq. (40) with

2 1
33| | 10 sg , to a logarithmic strain of –1.2 along the compression direction.  

Details on the simulation programme and extensive simulation statistics are compiled in 
Table 3 and Table 4 for grain A and grain B, respectively, where the time step t  and 
the tolerance TOL  of the ASSME method were varied and by which the performance of 
the integration schemes can be evaluated. In the tables, max ( )NS , min ( )NS  and 
avg ( )NS  mean the maximum, minimum and average number of substeps per time step, 
respectively. The average substep size is then given by ( )avg ( t ) / avg ( )i NSt . The 

tables also present the CPU time of each simulation. To assess the accuracy of the stress 
prediction, the relative error of the stress state  is defined as 

 
*

*
err ( )  (42) 

where * is a reference stress obtained by the ASSME method with 310TOL and a 
very fine step, i.e. 610 st . The relative stress error err ( )  is calculated at intervals 
of axial strain 33| |g  equal to 310  except for the two cases with large time step, 1 st

and 10 st , where it is measured at each step. The maximum value of err ( )  during 
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the simulation, which is denoted max err ( ) , is then listed in the tables. Note that the 
initial value of (1)  was set to 1.0 in all simulations. 

Using the forward Euler (FE) algorithm for grain A and grain B, the CPU time changes 
inversely proportional to the time step t . With a time step 410 st , it is found that 
max err ( )  has the same magnitude as t , which indicates good accuracy, while for 
larger time steps max err ( )  increases faster than t  and eventually the critical time 
step critt  is reached, at which the algorithm fails to converge. It is noted that critt  is 
markedly lower for grain A than for grain B, which is important for a polycrystal since 
it is the lowest value of critt  for all grains that will limit the time step.  

The influence on stability, accuracy and efficiency of the time step t  and the tolerance 
TOL  used with the ASSME method is seen for grain A in Table 3 and for grain B in 
Table 4. Six cases for each grain are shown where 310TOL  and the time step t  
varies from 410 s  to 10 s . Even with the largest time step, the ASSME method was 
stable. No sign of instability was found in the other cases with higher or lower TOL, 
except for the cases in which the tolerance was set to the exceedingly large value 

1TOL . It is noted that Sloan [17] suggested the typical range of the tolerance as 
2 510 ,  10TOL  for the substepping algorithm based on the modified Euler method. 

The accuracy of various stress calculations for grain A and B with respect to the 
corresponding high precision reference case, can be assessed by considering the value 
of max err ( )  in Table 3 and Table 4. It is seen that for all combinations of time step 
and tolerance giving stable solutions, the maximum relative error of the stress is about 
one order of magnitude lower than the tolerance. The following phenomenological 
relationship can be found 

 1max err ( ) 10 ·TOL  (43) 

This indicates that the accuracy of the ASSME method is rather independent on t  but 
depends on TOL ; the smaller the value of TOL , the higher the accuracy. Hence, a good 
accuracy of the ASSME method can be obtained even for extremely large time steps, as 
shown in Table 3 and Table 4. 

The orientation evolution of grain A and B at intervals of 33| |g  equal to 0.1 is shown in 
Figure 3. Both the forward Euler and ASSME methods predict the same orientation 
change, and the orientation evolution obtained with the ASSME method is independent 
on the time step.  

The efficiency of the integration schemes can be assessed from the CPU time tabulated 
in Table 3 and Table 4. Since each substep in the ASSME method involves two forward 
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Euler updates, the ASSME method with no substepping ( max ( ) 1NS ) should be two 
times more expensive than the forward Euler method. Comparison between the 
calculations with 40 s1t  in Table 3 for grain A and Table 4 for grain B shows that 
this is indeed the situation. Substepping is initiated ( max ( ) 1NS ) only when 310t , 
as shown in Table 3 and Table 4. The values of max ( )NS  and avg ( )NS  vary in the 
same way as the time step t , which means that more substeps are needed when larger 
time steps are used. The increase by a factor of 10 of the time step from the case with 

40 s1t  to the case with 30 s1t  ( 310TOL ) leads to a decrease of 10 times of 
the CPU time, both for grain A and B, which implies that substepping here contributes 
little to the efficiency, since only a few substeps are made. However, when the time step 

t  is increased to 210 s  and further to 110 s , the improved efficiency is attributed to 
the substepping, since these time steps are far beyond the critical time step critt  of the 

forward Euler method. By comparing the cases with 310 st  and 110 st , 
keeping 310TOL , it is seen that ( )avg ( t )i  becomes only five times larger when t  

is increased by two orders of magnitude. By further increasing the time step, the CPU 
time starts to increase again, which shows that there is an optimal time step size for the 
substepping algorithm.  

It is also noted that the difference between avg ( )NS  and max( )NS  becomes more 
apparent with larger t . This indicates that the degree of substepping is not constant 
during the simulation. Since the substepping is controlled by the relative error in stress 
rate measured between the two forward Euler steps, defined in Eq. (32) and denoted 
ERR , adaptive substepping means that ERR  is not constant. To illustrate this, the 
evolutions of NS  and ERR at the beginning of each step, i.e. ERR computed with t  as 
the substep size, denoted tERR , are shown in Figure 4 and Figure 5 with 310TOL  

and 210 st  for grain A and B, respectively. The data are plotted at intervals of 33| |g

equal to 410  when 2
33| | 10g  and 310  otherwise. As illustrated in Figure 4 and Figure 

5, 1NS  and 3<< 10tERR  for the first two or three time steps. After these time steps, 
both NS  and tERR  increase abruptly to reach a global maximum. The slip activity in 

the first few steps, as described by 2
1
( )N , is illustrated in Table 5. It shows that 

during the first few steps, 2 11 1
1
( ) 10 sN , which demonstrates no or 

infinitesimal plastic slip on the slip systems. The deformation is then nearly elastic and 
a small value of tERR  is expected, hence no substepping is needed at all. When 

2 5 1
1
( ) 10 sN , the slip activity is not negligible any more. This corresponds to 

initial yielding in the RDCP model, and a very small time step should then be used to 
accurately capture the ‘elastic-plastic’ transition. Ideally, the ASSME method behaves 
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in this manner and a maximum value of NS  occurs in the ‘elastic-plastic’ transition. 
Then as the monotonic deformation proceeds, both NS  and tERR  decrease, see Figure 
4 and Figure 5. This trend can be explained as follows. Firstly, the work-hardening 
leads to a higher stress level, thus increasing the denominator in Eq. (32) and making 

tERR , and thus the number of substeps, smaller. Secondly, the work-hardening rate 
will generally decrease at increasing strain levels. For a small or near constant work-
hardening rate, relatively large time steps can be used while still keeping a good 
accuracy. The decrease of NS  and tERR  at increasing strain levels also leads to an 
increase of the substep size. As a result, the simulation will speed-up at increasing strain 
levels. Ideally, the ASSME method will run with a maximum substep size which fulfils 
the accuracy requirement at each step or substep. The substep size will increase during 
the simulation and is much larger than the critical time step critt  of the forward Euler 
scheme, since this is typically set by the ‘elastic-plastic’ transition. In polycrystalline 
materials, each grain can run at its own substep size without any limitations from the 
other grains. The above factors all explain the improvement of the computational 
efficiency of the ASSME method compared with the forward Euler scheme when large 
time steps are used. Since the average substep size in the ASSME method for a 
polycrystal could be many times larger than critt  (which is the minimum value for all 
grains throughout the loading process), the ASSME method could be an order of 
magnitude faster than the forward Euler method. This emerges from the simulations 
made in section 4.1, where Table 2 shows that the ASSME method is nearly 10 times 
faster than the forward Euler method for the polycrystal in uniaxial compression and 
shear. A comparison between the FE-GB scheme [7] and a fully implicit integration 
scheme [6, 13] has been done by Dumoulin et al. [14], where the FE-GB scheme was 
found to be more than 50 times faster than that implicit integration scheme. Together 
with the data shown in Table 2, it is then expected that the ASSME method could be 
two orders of magnitude faster than the fully implicit integration scheme for some 
cases.    
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Table 3 Statistics of simulations for grain A with the ASSME and forward Euler (FE) 
methods using different settings. 

Method TOL  t  (s) max ( )NS  avg( )NS  ( )avg it

(×10-3 s) 
CPU time 

(s) 
max err ( )

 

ASSME 

310  

410  1 1 0.1 28.92 53.48 10  
310  6 1.01 0.99 3.15 42.73 10  
210  30 3.33 3.03 1.40 43.23 10  
110  255 19.78 5.21 0.73 44.61 10  

1 3703 310.53 3.22 0.98 41.53 10  

10 41663 6289.92 1.59 2.01 53.26 10  

410  
210  89 3.35 2.99 1.42 57.11 10  
110  717 23.12 4.32 0.78 57.10 10  

210  
210  23 3.23 3.09 1.40 35.05 10  
110  169 19.88 5.03 0.61 34.79 10  

110  
210  182 2.99 3.34 1.17 25.18 10  
110  3858 31.81 3.14 1.03 24.72 10  

1 210  Unstable     

FE  

410     14.06 57.6 10  
45 10     2.79 42.69 10  

48.5 10  critt      
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Table 4 Statistics of simulations for grain B with the ASSME and forward Euler (FE) 
methods using different settings. 

Method TOL  t  (s) max ( )NS  avg( )NS  ( )avg it

(×10-3 s) 
CPU time 

(s) 
max err ( )

 

ASSME 

310  

410  1 1 0.1 28.42 54.30 10  
310  11 1.01 0.99 2.92 42.14 10  
210  44 4.08 2.45 1.67 42.24 10  
110  507 23.23 4.30 0.80 45.18 10  

1 6170 371.31 2.69 1.19 55.52 10  

10 56913 8279.92 1.13 2.65 64.77 10  

410  
210  102 4.05 2.47 1.62 56.59 10  
110  1515 27.98 3.57 0.94 56.81 10  

210  
210  25 3.86 2.59 1.54 33.82 10  
110  267 22.82 4.38 0.75 34.90 10  

110  
210  32 3.63 2.75 1.29 24.52 10  
110  2761 73.26 1.37 2.25 26.50 10  

1 110  Unstable     

FE  

410     13.95 41.41 10  
45 10     2.85 46.87 10  
31 10     1.42 23.13 10  

31.7 10  critt      
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      (a)                                                       (b) 

Figure 3 Standard triangular inverse pole figure showing the orientation change of 
grain A and grain B at strain intervals of 0.1 in terms of 33| |g . 

 

Table 5 Slip activity of the first 5 time steps for ASSME results with 310TOL  and 
210 st . 

4
33   ( 10 )g  

2
1
( )N  ( 1s ) 

Grain A Grain B 

1 525.55 10  381.19 10  
2 276.76 10  131.45 10  
3 123.19 10  55.72 10  
4 53.09 10  41.64 10  
5 41.46 10  42.72 10  
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(a) 
 

(b) 
 

Figure 4 For grain A: (a) Number of substeps NS  and (b) relative error tERR  at the 
beginning of each time step vs. magnitude of true axial strain for ASSME results with 

310TOL  and 210 st . 
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(a) 
 

(b) 
Figure 5 For grain B: (a) Number of substeps NS  and (b) relative error tERR  at the 

beginning of each time step vs. magnitude of true axial strain for ASSME results with 
310TOL  and 210 st . 
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4.2.2. Low strain-rate sensitivity 
The visco-plastic flow rule adopted in the RDCP model becomes very stiff with a low 
rate sensitivity, i.e. for small values of the exponent m . In the following, the stability 
of the ASSME method is evaluated for values of m  equal to 410 , 310 , 210  and 

110 , which represent very low to rather high rate sensitivity.   

Simulations of the copper single crystal with cube orientation are made, where it is 
deformed in uniaxial compression, i.e. according to Eq. (40) with 2 1

33| | 10 sg . All 
material parameters, except m , take the values compiled in Table 1. The deformation 
is up to an axial logarithmic strain of 1.2 and the time step is set to 210 s . The 
default settings of the ASSME method are used, i.e. 310TOL  and Eq. (38) is used 
to define (1) . Figure 6 shows the predicted stress-strain response. More simulations 

were made with other setting of m  and TOL , and the statistics from all these 
simulations are compiled in Table 6. 

It is clearly shown that the simulation with high strain-rate sensitivity, i.e. 110m , 
gives a higher stress level than the simulations with lower m . Simulations made with 

210m  give quite similar stress responses. Especially when 310m  and 410m , 
the stress predictions show no visible difference. As suggested by Rashid and Nemat-
Nasser [4], a nearly rate-independent response can be recovered from RDCP models 
by making 35 10m  or smaller. The simulations with 310m  and 410m  
correspond to the nearly rate-independent cases. 

As already mentioned, the statistics shown in Table 6 cover a wide range of values for 
m  and TOL . The ASSME method is stable even when m  is as low as 510 , but 
max ( )NS , avg ( )NS  and the CPU time increase when decreasing m , which suggests 
higher levels of substepping at smaller strain-rate sensitivities. A smaller value of 
TOL  should be used when employing extremely small m , otherwise a numerical 
instability could occur due to the increased stiffness of the equation system. As an 
example, the integration scheme becomes unstable when 210TOL  and 510m . 
The critical time step of the forward Euler method when simulating uniaxial 
compression of the single crystal with different m  is shown in Figure 7. One can 
notice that log critt  decreases almost linearly with log m , and the relation  

0.8970 .118 scritt m  is obtained by a least square linear fitting of the data. It is noted 
that the relation between critt  and m  depends on grain orientation and deformation 
rate.  
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Figure 6 Uniaxial stress-strain response with different strain-rate sensitivity values 
and 310TOL . 

 

Table 6 Statistics of simulations run with different m  and TOL  

m  TOL  max ( )NS  avg ( )NS  CPU time   
(s) 

110  

310  

23 1.01 0.34 

210  26 3.82 1.62 

310  204 35.77 10.59 

410  3165 348.62 98.61 

410  210  3605 279.68 85.55 

510  410  137122 4942.91 2134 
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Figure 7 Critical time step of the forward Euler method at different values of the 
strain-rate sensitivity m  in simulation of copper single crystal with cube orientation 

under uniaxial compression. 

 

4.2.3. High strain rates 
The performance of the ASSME method at different strain rates is studied in this 
section. Except for the strain-rate sensitivity m  and the deformation rates, the set-up 
of the simulations is the same as in section 4.2.2. The value of m  will be set to 210  
and 310 , and for each of these values, four levels of the strain rate in Eq. (40) will be 
used, namely 210 , 1, 210  and 4 110 s  for 33| |g . The time step t  also takes varying 

values so that the strain increment per step 33| |g t  equals 410 ; i.e., t  equals 210 , 
410 , 610  and 810 s  for the four strain rates, respectively. Totally, there are 8 cases 

simulated.  

Statistics related to the above simulations are shown in Table 7. It is very interesting 
to note that the CPU times are almost the same for each of the two values of m . Also, 
max NS  is barely influenced by the strain rate, especially for the case of lower 

strain-rate sensitivity. The reason is that the strain increment per time step is the same 
for all simulations. High strain rates will not really challenge the integration schemes 
with a proper strain increment, i.e. smaller time steps for high strain rates. This also 
holds for the forward Euler scheme.  

 

 

 



Article 3 
 

144 
 

Table 7 Statistics of the simulation with different strain rate 33
g  and strain-rate 

sensitivity parameter m  

33
g  

( 1s ) 

210m  310m  

max ( )NS  avg ( )NS CPU time 
(s) 

max ( )NS avg ( )NS  CPU time 
(s) 

210  26 3.82 1.62 204 35.77 10.70 

01 0  86 3.65 1.51 198 35.61 10.73 

21 0  61 3.48 1.44 207 35.43 10.64 

41 0  54 3.36 1.36 194 35.28 10.69 

 

 

4.2.4. Strain-path change 
In forming operations and impact events, the loading process often involves strain-
path changes of some sort. Loading and unloading occurring during strain-path 
changes will challenge the stability of the numerical integration scheme. The 
performance of the ASSME method under strain-path changes is investigated here. 
The copper single crystal with cube orientation is studied. The material parameters 
take values as given in Table 1. The velocity gradient is given by Eq. (40) with 

2 1
33| | 10 sg . The single crystal will be first stretched to a logarithmic strain of 0.1, 

then compressed to a logarithmic strain of 0.1 and finally stretched to a logarithmic 
strain of 0.15. The default settings of the ASSME method are used with a time step of

210 st . 

The stress response is shown Figure 8 (a), while the number of substeps per time step 
is shown in Figure 8 (b). The stress-strain curve shows the elastic loading, unloading 
and reloading. The evolution of the number of substeps NS  shows an abrupt increase 
at points of plastic loading (A), elastic unloading (B/D) and plastic reloading (C/E). 
The increase of NS  helps to accurately capture the elastic-plastic transition points. 
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(a) 

 

(b) 

Figure 8 Single crystal with cube orientation. (a) Predicted stress-strain response and 
(b) the evolution of NS  during the simulation. Points A to E indicate plastic 

loading/reloading and elastic unloading. Inserts in (b) are enlarged views near 
loading, reloading and unloading points. 
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5. CPFEM simulations 
The two integration schemes have also been implemented into the commercial finite 
element code LS-DYNA through a user-defined material subroutine (UMAT). The 
explicit solver of LS-DYNA applies the explicit central difference method to solve for 
velocities and accelerations from the momentum balance equations. This integration 
procedure is only conditionally stable, and the stable time increment of the central 
difference scheme is estimated as: 

 min minFE e
crit e

d

lt l
c E

 (44) 

where el  is the characteristic element length and dc  is the dilatational elastic wave 

speed in the material; dc  approximately equals /E , where  is the specific mass 

density and E  is the Young’s modulus. In CPFEM, single grains are usually 
represented by one element or more. Hence, el  approximately equals the grain size. In 

the case of aluminium or copper with 100 m  grain size, FE
critt  is in the order of 810 s

. 

Time and mass scaling are two common methods to speed up explicit finite element 
simulations. However, the RDCP models are deformation rate sensitive, especially for 
relatively large values of m , as shown in Figure 6. Thus, reducing the time scale of 
the loading process is not a valid way of speeding up CPFEM simulations. Mass 
scaling can be used, but may introduce undesirable dynamic effects that originate 
from the inertia forces of the governing equations. Hence, the influence of mass 
scaling on the accuracy and efficiency of CPFEM simulations is worthy of 
investigation.  

5.1. Mass scaling in quasi-static problem 

Uniaxial tension of the same copper single crystal with cube orientation is simulated, 
but with different mass scaling factors (MSF) by CPFEM, run on the same computer 
as described in section 4 with a single thread. For the CPFEM model, a cube of 
volume 31 1 1 mm  is considered as the representative volume element (RVE), which 
is meshed using 4 4 4  uniform cubic elements with one integration point. The face 
with normal vector 1

ge  is constrained in the 1
gx  direction, while the opposite face 

with normal vector 1
ge  is subjected to a motion in the 1

gx  direction to stretch the RVE. 
The nodes belonging to these two faces are free to move along the 2

gx  and 3
gx  

directions, whereas the other four faces are free of any constraints. The loading speed 
increases smoothly from zero to 0.02 mm/s in one second and is then kept constant. 
The total process time is 21 seconds and the final elongation is 41%. Simulation 
results were recorded at every 0.25 seconds. The density of copper is 8.96 3g / mm  
and five different MSF values are evaluated, namely 1 (no mass scaling), 410 , 810 , 
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1010  and 1210 . The ASSME method is used to integrate the constitutive equations, 
except for the no mass-scaling case where the forward Euler method is used instead. 
The forward Euler method is used to reduce the CPU time but it is unstable for large 
MSF. Predicted stress-strain curves are shown in Figure 9, while some statistics of the 
simulations running are shown in Table 8, where kineticE  and totalE  represent the kinetic 
and total energy of the system, respectively.    

The stress prediction with no mass scaling is taken as a reference. The maximum 
relative errors of the stress prediction is 51.7 10  and 32.8 10  for MSF equal to 410  
and 810 , respectively. The differences are so small that the stress predictions can be 
said to be identical for these three cases. When MSF equals 1010 , a 4.1% relative error 
occurs at the initial loading stage, as shown in the insert of Figure 9. As the 
deformation proceeds, the relative error decreases rapidly to smaller values. It is only 
around 310  or less when the true strain is larger than 35.0 10 . When further 
increasing MSF to 1210 , non-physical peaks and some oscillations of the stress-strain 
curve are observed, indicating that dynamic effects have been introduced in the 
solutions, see Figure 9. 

As illustrated in Table 8, the average time step determined by the finite element code 
changes with the MSF according to Eq. (44). If MSF is no larger than 810 , no 
substepping is initiated, and the maximum value of NS is one. Beyond this value of 
MSF, substepping is required to control the accuracy of the time integration. The CPU 
time drops dramatically when increasing MSF. Without mass scaling, kineticE  is 
negligible compared with totalE , but kineticE  increases almost linearly with MSF, due to 
the artificially added mass. The ratio /kinetic totalE E  changes near linearly with MSF. A 
large value of this ratio indicates a transition from quasi-static to dynamic 
deformation. 

The main conclusion of this section is that mass scaling is a valid technique to speed 
up the CPFEM simulation for quasi-static problems. The ratio /kinetic totalE E should 
always be checked to make sure that the deformation can still be considered as quasi-
static. Based on the results here, the kinetic effect introduced by mass scaling for a 
quasi-static problem is negligible by keeping the ratio between the kinetic and the 
total energy /kinetic totalE E  less than 210 . Further, a critical strain increment, about 

510  here, is normally needed to initiate the substepping in the ASSME method. This 
critical increment depends on the material and the prescribed tolerance TOL . 
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Figure 9 Stress-strain responses predicted with CPFEM and different mass scaling 
factors (MSF). The curves with the three lowest values of MSF coincide throughout 

the loading process. 

 

Table 8 Statistics of CPFEM simulations with different MSF 

MSF 
avg ( )t  

(s) 
CPU 

time (s) 
max( )NS avg( )NS  max kinetic

total

E
E
 

avg kinetic

total

E
E
 

1 84.31 10  195780 1 1 123.51 10  132.00 10  

410  64.31 10  4383 1 1 83.51 10  92.00 10  

810  44.31 10  44.76 1 1 43.51 10  52.00 10  

1010  34.19 10  21.45 13 3.6 23.40 10  31.97 10  

1210  24.09 10  17.64 299 39.9 16.27 10  29.46 10  
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5.2. Dynamic problem 

In this section, the Taylor bar impact test will be simulated with CPFEM. The purpose 
is to validate the robustness of the ASSME method under highly dynamic 
deformations with contact.  

The material of the Taylor bar is assumed to be OFHC copper with random texture. 
Hence, material parameters except m  take the values compiled in Table 1. The 
instantaneous strain-rate sensitivity m  is set to 0.005 to have a nearly rate-
independent stress-strain response. 

The Taylor bar in the analysis has a length of 32 mm and a diameter of 6.4 mm. The 
finite element model consists of 5184 eight-node solid elements with one integration 
point, using the standard hourglass control in LS-DYNA, see Figure 10. Each element 
is given an orientation out of 5184 random orientations, and hence each element 
represents one grain. The impact velocity is 190 m/s and the interface between the bar 
and the rigid wall is assumed to be frictionless. The deformation time is 30 s. The 
ASSME method is used to integrate the constitutive equations with 410TOL .  

The simulation was run using the shared memory parallel (SMP) version of LS-
DYNA on a computer with two 2.4 GHz Quad-Core CPUs, i.e. using 8-equivalent 
CPUs. The average time step was 22.65 10 s  and the CPU time was 3310 s. The 

final deformation shape with fringes of effective plastic strain p p p

0
2 / 3 : d

t
tD D  

is shown in Figure 11. 

The simulation captures the flat, bulged shape at the contact surface where the 
maximum plastic strain occurs while the rear part of the bar shows no plastic strains at 
all. The irregular element shape at the contact surface after deformation is due to the 
plastic anisotropy exhibited by elements which are assigned with different grain 
orientations. The number of substeps per time step for the elements marked with 
crosses in Figure 10 (b) is shown in Figure 12. It clearly shows that due to contact, the 
elements at the front of the impact bar experience high levels of substepping, while 
the rear ones need no substepping at all.  
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                                         (a)                                                        (b) 

Figure 10 (a) Sketch of Taylor bar impact test and (b) finite element model. The 
crosses indicate selected history elements and are labelled A-F.  
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Figure 11 Final shape of the Taylor bar with fringes of effective plastic strain 
simulated by CPFEM. The side view and the contact surface of the bar are shown.   

 

  

Figure 12 Number of substeps per time step for elements A to F marked with crosses 
in Figure 10 (b) versus time for the simulation of the Taylor bar impact test by 

CPFEM.  
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6. Conclusions 
A robust and efficient substepping scheme based on the modified Euler method has 
been proposed for time integration of hypo-elastic RDCP models and denoted the 
ASSME method. Based on the numerical tests, the accuracy and stability of the 
ASSME method are found independent on the time step, but depend on the 
substepping control parameter, which governs the relative error of stress prediction 
between the two steps of the modified Euler method. The substepping is not 
influenced by other grains in the polycrystal, and accordingly each grain can run at its 
own maximum substep size. The ASSME method is in some cases one order of 
magnitude faster than the forward Euler method, and shows excellent stability for 
large time steps, exceedingly small strain-rate sensitivity, high strain rates and strain-
path changes. The effect of mass scaling, used to speed up quasi-static CPFEM 
simulations, has been investigated. It was found that when the ratio of the kinetic to 
total energy is small, say less than 210 , there is almost no effect of the mass scaling 
on the stress prediction for the case studied here. Simulation of the Taylor bar impact 
test shows that the ASSME method works well even for highly dynamic problems 
involving large deformations, high strain rates and contact.  
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Modelling the Plastic Anisotropy of Aluminium Alloy 3103 Sheets by 
Polycrystal Plasticity Models

Abstract
The plastic anisotropy of AA3103 sheets in the cold-rolled condition (H18 temper) and 
in the fully annealed condition (O temper) was studied experimentally and numerically 
in this work. The microstructure and texture of the two materials were characterized and 
the anisotropic plastic behaviour was measured by in-plane uniaxial tension tests along 
every 15° from the rolling direction to the transverse direction of the sheet. Five 
polycrystal plasticity models, namely the full-constraint Taylor model, the Alamel 
model, the Alamel Type III model, the visco-plastic self-consistent crystal plasticity 
model and the crystal plasticity finite element method (CPFEM), were employed to 
predict the plastic anisotropy in the plane of the sheet. Experimentally observed grain 
shapes have been taken into consideration. In addition, a multi-level modelling method 
was employed where the advanced yield function Yld2004-18p was calibrated to stress 
points provided by CPFEM simulations along 89 strain-paths, and the plastic anisotropy 
was then produced by the yield function. Based on comparisons between the 
experimental and the predicted results, the multi-level fitting method is considered as 
the most accurate way of describing the plastic anisotropy. The Alamel Type III and 
Alamel models are also recommended as accurate and time-efficient models for 
predicting the plastic anisotropy of the AA3103 sheets in H18 and O tempers.

Keywords: Plastic anisotropy, crystal plasticity models, Yld2004-18p, multi-level 
modelling, AA3103

1. Introduction 
Due to their thermo-mechanical history, sheet metals commonly feature a
crystallographic orientation distribution which is termed crystallographic texture – or 
texture for short. The significance of texture lies in the plastic anisotropy, i.e. direction-
dependent strengths and flow patterns, which is mainly attributed to the texture. In a
forming process, the plastic anisotropy of the material greatly influences the final 
shapes and dimensions of the products. Hence, proper description of the plastic 
anisotropy is of importance for the design and optimization of forming processes. 
Crystal plasticity (CP) models and anisotropic yield functions are two principal 
approaches to describe the plasticity, and its anisotropy, of engineering metallic alloys 
[1]. Due to higher computational efficiency than the CP models, anisotropic yield 
functions are widely applied in finite element (FE) simulations of forming processes.   

In the last decade, many advanced yield functions have been proposed that are capable 
of accurately describing the plastic anisotropy of aluminium alloys [2-5]. These yield 
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functions are generally calibrated by mechanical tests, e.g. uniaxial tensile tests and 
biaxial tension/compression tests. However, most of the stress space is left unexplored 
when fitting the parameters of the yield function due to severe experimental limitations, 
and biaxial tension/compression testing is not universally accessible. To overcome these 
limitations, many researchers have employed CP models to facilitate the fitting of 
anisotropic yield functions, i.e. a hierarchical multi-level modelling. This can be done 
by conducting all or part of the required experimental tests virtually using CP models 
[2, 6, 7]. Alternatively, the yield functions can also be calibrated against the stress 
points at yielding provided by CP models in the stress space [1, 8-11]. As pointed out 
by Zhang et al. [12], the success of the hierarchical multi-level modelling critically 
depends on the accuracy of the lower-scale CP models in representing the materials’ 
plastic anisotropy. Hence, quantitative evaluations of the performance of CP models for 
predicting plastic anisotropy are of great value for the research on and applications of 
the hierarchical multi-level modelling.

Over the past few decades, materials scientists have become more aware of the 
important role played by the distribution and connectivity of different grain boundary 
types in governing various mechanical and functional properties of materials [13]. It has 
been shown that the grain boundary can be of importance to texture and microstructure 
evolution during deformation [14, 15]. The plastic anisotropy predicted by CP models is 
also influenced by the grain morphology [15]. Hence, the grain morphology should be 
taken into consideration when conducting CP calculations, and thus make the 
predictions more physically reasonable. 

In this work, the plastic anisotropy of AA3103 sheets, in a cold-rolled state (H18 
temper, denoted AA3103-H18 in the following) and in a fully annealed state (denoted 
AA3103-O in the following), were investigated by experiments and by various CP 
models. Uniaxial tensile tests at every 15° from the rolling direction (RD) to the 
transverse direction (TD) were carried out to get the directional normalized yield 
stresses and Lankford coefficients (r-values). Five different crystal plasticity models, 
namely the full-constraint (FC) Taylor model [16-18], the Alamel model [19] and the 
variant with Type III relaxation (Alamel Type III) [20], the visco-plastic self-consistent 
(VPSC) model [21] and the crystal plasticity finite element method (CPFEM) [22], were 
employed to simulate the uniaxial tension tests. Besides the texture, the grain shape of 
the material has also been taken into consideration in the CP models, except for the FC-
Taylor model. Due to the non-equiaxed grain structures of the AA3103 sheets 
(especially AA3103-H18), the in-plane uniaxial tensile tests along directions other than 
the RD and TD are difficult to perform by the CPFEM while keeping a realistic grain 
structure in the representative volume element (RVE). Instead, a hierarchical multi-level 
modelling method is used, i.e. fitting the advanced yield function Yld2004-18p [2] by
CPFEM stress points for different in-plane loadings. The numerical results are 
compared with the experiments to evaluate the performance of the different CP models. 
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In Section 2 of this paper, the procedures for microstructure characterization and 
uniaxial tensile testing are described along with the experimental results. The five CP 
models and the virtual uniaxial tensile tests are described in Section 3. The methods
adopted for considering the grain morphology in the different CP models are described
in the same section. Section 4 deals with the hierarchical multi-level modelling of 
plastic anisotropy, including the Yld2004-18p yield function and CPFEM calculations. 
All the numerical results are presented and discussed in Section 5, while the main 
conclusions of the study are provided in Section 6.

2. Experimental methods and results 
The AA3103-H18 and AA3103-O sheets were provided by the R&D Center of Hydro 
Aluminium in Bonn, Germany. Starting from a 4.1 mm thick hot-rolled strip, the 
AA3103-H18 sheets were produced by cold-rolling to a final thickness of 1.2 mm, i.e. 
corresponding to a 71% thickness reduction. The AA3103-O was then prepared through 
a simulated batch anneal of the AA3103-H18 sheets with a holding time of 2 hours at a 
peak metal temperature of 350 ºC. The chemical composition is shown in Table 1. 

The microstructure in both RD-ND and TD-ND sections (ND being the normal 
direction) of the two variants of the AA3103 sheets were measured by electron back 
scatter diffraction (EBSD) in a Zeiss Ultra/Supra 55 field emission scanning electron 
microscope (FESEM) equipped with the TSL software. The scanned area in the RD-ND
and TD-ND sections of the AA3103-O material were 1.0×1.6 mm2 and 0.8×1.2 mm2,
respectively, with a step size of 2 μm. In the case of the AA3103-H18 material, the 
scanned area in both sections was 0.3×0.3 mm2 with a step size of 0.5 μm. The 
orientation distribution functions (ODF) were then generated using all scanning points 
by the series expansion method with max 22l and o

0 5 . In order to get EBSD 
diffraction patterns with a higher quality, the EBSD samples of the AA3103-H18 
material were put in an air-circulated oven, which had been pre-heated to 250 ºC, and 
held for 10 minutes, before water quenching. Textures of the AA3103-H18 samples 
before and after the flash annealing at 250 ºC were also measured by X-ray diffraction,
which confirmed that there was little influence on the texture. The constitutive particles 
were characterized by back-scattered electrons (BSE) in the FESEM while the area 
fraction and size of constitutive particles were analysed by quantitative metallography.

Uniaxial tensile tests at every 15° from the RD to the TD (a total of seven directions) 
were conducted to measure the anisotropy in strength and plastic flow of the two 
AA3103 materials. The tensile direction with respect to RD is represented with the 
angle , i.e., 0 for the RD and 90 for the TD. The uniaxial tensile samples 
had a uniform section with a gauge length of 50 mm and a width of 12.5 mm. The 
experiments were carried out with a cross-head speed of 2 mm per minute until fracture. 
At least two samples were tested in each direction. Extensometers were attached in the 
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longitudinal and transverse directions to record the respective deformations. The r-value 
was then determined from the recorded deformations employing the plastic 
incompressibility condition. Elastic deformations were calculated based on the 
longitudinal true stress, Young’s modulus and Poisson’s ratio and were deducted from 
the total deformations when calculating the r-value [23]. The r-values were calculated 
in the uniform plastic deformation region with logarithmic strain between ~0.5% and 
2.0% for the AA3103-H18 sheet and between 3% and 15% for the AA3103-O sheet.
The yield stresses were determined at 0.2% plastic strain.          

EBSD orientation maps of the AA3103-H18 and AA3103-O sheets are shown in Fig. 1.
The RD-ND section of AA3103-H18 shows a typical cold-rolling structure, i.e. fibrous 
grain shapes, whereas the pancake grain shape can be seen in the TD-ND section. Due 
to the large deformation, the grain size and aspect ratio along three orthotropic 
directions of the AA3103-H18 sheet are difficult to measure accurately. Instead, they 
can be estimated according to the thickness reduction and the grain morphology before 
the cold-rolling, i.e. a partially recrystallized grain structure after hot-rolling. The 
AA3103-O sheet shows a fully recrystallized grain structure where a slightly smaller 
grain size along ND can be observed. Grain sizes along the RD, TD and ND directions 
are measured using the line intercept method. The aspect ratios along the three 
orthotropic directions of the sheet were then determined based on the measurements and
are compiled in Table 2. 

The BSE micrographs in Fig. 2 further reveal that the AA3103 alloys contain a large 
fraction of micron-sized second-phase particles. The size and area fraction of these 
particles were analysed by quantitative metallography and are summarized in Table 2.

Crystallographic textures of the two AA3103 sheets are illustrated in Fig. 3 by means of 
ODFs -fibre which consists of the copper, S and brass components is clearly 
recognized in the ODF of the AA3103-H18 material. The main texture components for 
the AA3103-O material are the cube and P orientations together with the Goss 
orientation at a lower intensity. The AA3103 alloy in both tempers exhibit quite weak 
textures, which are attributed to the high fraction of second-phase particles [24].

In Fig. 4, experimental stress-strain curves of the two AA3103 materials are shown. 
Due to the pre-cold-rolling, the A3103-H18 sheet has small uniform elongations before 
necking, only ~1.5%. In contrast, the AA3103-O sheets have uniform deformations of 
~25% engineering strain. The yield stress along the RD for the AA3013-H18 and the 
AA3103-O sheets is 201.6 MPa and 39.8 MPa, respectively. The yield stress along the 
RD was taken as a reference to normalize the yield stress along the other directions. The 
anisotropy in strength and plastic flow is plotted in Fig. 5. The AA3103-H18 sheet
shows weak strength anisotropy. The maximum deviation from the reference value 
occurs at 45 where the yield strength is only about 3% lower. The strength 
anisotropy of the AA3103-O sheet is different and significantly stronger. The maximum 



Article 4
 

161 
 

deviation from the reference value occurs in the TD ( 90 ) where the yield strength 
is about 8% lower. The directional variation of the r-value of the AA3103-H18 sheet is 
strong with a minimum of about 0.5 in the RD and a maximum of about 1.5 at 45 .
The AA3103-O sheet exhibits less and somewhat different variation of the r-value. The 
maximum value of about 0.9 occurs at 30 , while the minimum value, about 0.4, is 
found in the TD. Within the investigated strain ranges, only minor changes in the 
anisotropy in strength and plastic flow of the AA3103 materials were found.

Table 1 Chemical composition of the AA3103 alloy (in wt%).

Si Fe Cu Mn Mg Cr Zn Ti Al

0.063 0.53 0.0027 1.03 0.01 0.0006 0.0054 0.006 Rest

 

 

  

Fig. 1 EBSD maps for (a, b) the AA3103-H18 material and for (c, d) the AA3103-O
material.

Table 2 Measured grain size, estimated aspect ratios of grains, constituent particle size 
(mean diameter of an equivalent circle) and area fraction of constituent particles.
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AA3103-H18 AA3103-O

Grain size 
— RD: 38.4 ± 4.3 μm
— TD: 30.8 ± 3.1 μm

ND: ~5 μm ND: 15.0 ± 1.7 μm
Aspect ratio    

(RD: TD: ND)
5 : 1 : 0.2 2.5 : 2 : 1

Particle size 2.6 ± 0.14 μm 2.6 ± 0.15 μm
Area fraction 3.5 ± 0.3 % 3.2 ± 0.29 %

 

Fig. 2 BSE images of the constituent particles of the AA3103 sheets (a) in the H18 
temper and (b) in the O temper.



Article 4
 

163 
 

       

(a) (b)

Fig. 3 ODFs for (a) the AA3103-H18 and (b) the AA3103-O sheets.

       

(a)                                                               (b)

Fig. 4 Stress-strain curves from uniaxial tensile tests along seven in-plane directions of 
the AA3103 sheets: (a) H18 temper and (b) O temper.
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(a) (b)

Fig. 5 Plastic anisotropy of the AA3103 sheets based on tensile tests in seven in-plane 
directions with respect to the RD: (a) normalized yield stress and (b) r-values.

3. Crystal plasticity modelling of plastic anisotropy 
The five CP models employed in this work will be briefly introduced in Section 3.1,
while the virtual uniaxial tension tests performed with the Taylor-type and VPSC 
models are described in Section 3.2. Section 3.3 deals with the CPFEM simulations. 

3.1. Crystal plasticity models 
It is assumed that the plastic deformation is caused by crystallographic slip on the 
{111}<110> slip systems, as is usually assumed for face-centred-cubic (FCC) metals. 

The FC-Taylor model assumes that each grain experiences the same deformation as the 
aggregate, and the deformation is accommodated by at least five slip systems according 
to the principle of maximum plastic work or the complementary minimum principle,
which follows from the yield criteria of the slip systems. Based on the active slip
systems, the stress state is found in one of the 56 vertices of the yield surface of each 
FCC crystal. The stress state of the aggregate is defined as the volume average over all 
grains. 

In the Alamel-type models, a pair is assembled by two grains and their common grain 
boundary. Local interactions between the two grains in the pair are considered by means 
of relaxations of constraints of the shear strain components of the prescribed 
deformation. Stress tensors in each crystal of one pair are calculated from the yield 
criteria of the slip systems and the equilibrium conditions of the shear stress 
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components [12, 25]. The Taylor-type models studied here, i.e. the FC-Taylor and 
Alamel-type models, are rate-independent. 

The VPSC model regards each grain of the polycrystal as an ellipsoidal inclusion 
embedded in a homogeneous effective medium whose mechanical response corresponds 
to the volumetric average of all grains. Grains in the CPFEM are represented by single 
or multiple elements and both stress equilibrium and strain compatibility are fulfilled. 

The rate-dependent VPSC and CPFEM models assume that all slip systems are active 
and that the slip activity is determined by a power-law type equation

1

0 sgn( )
m

g
(1)

where 0 is a reference shearing rate, m  is the instantaneous strain-rate sensitivity, g
represents the slip resistance which evolves during the plastic deformation according to 
the hardening law, and is the resolved shear stress calculated from the current stress-
state and crystallographic orientation.  

The hardening law employed in the CPFEM simulations in this work assumes that the 
critical resolved shear stress g , which is initially equal to 0g , evolves through

1

N

g h (2)

where h is the instantaneous strain hardening matrix; and are indices referring 
to slip systems; and N is the number of slip systems. In this work, h is described 
phenomenologically by a Voce-type law:

0 1 0
1 0 1

1 1

exp 1h q q
g g

(3)

where 0 is the initial hardening rate, while 1 and 1g describe the asymptotic 
hardening. The accumulated plastic shear strain  is defined by  

(4)

The parameter q represents latent hardening, while is the Kronecker delta 
function.
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3.2. Set-up of Taylor-type and VPSC calculations
Grain orientations are the necessary input for all of the CP models mentioned above. A 
total of 2500 orientations were randomly selected from the EBSD scanning points, i.e. 
an aggregate of 2500 grains, for both the AA3103-H18 and AA3103-O materials. The 
quality of the selected orientations in representing the measured texture is evaluated by 
the normalized difference texture index [19], defined as

2
exp

2
exp

( ( ) ( ))

( ( ))
selected

N

f g f g dg
ID

f g dg
(5)

where ( )f g  is the ODF. Values of NID for the grain selections of AA3103-H18 and 
AA3103-O are 0.39% and 1.13%, respectively, which indicates a rather good 
representation of the experimental ODF for both materials.

The 2500 orientations were randomly assembled into 3750 Alamel pairs for the 
AA3103-H18 sheet, such that each grain was reused three times. These pairs were then 
considered by the Alamel and the Alamel Type III models. The cold-rolled AA3103-
H18 sheet shows extensively elongated grain shapes, as illustrated in Fig. 1 and 
estimated by the grain aspect ratio compiled in Table 2. To reflect such rolling grain 
structure in the Alamel-type models, grain boundaries in all Alamel pairs were assumed
parallel with the RD-TD plane, which reduces the Alamel-type models into Lamel-type 
models  [25], i.e. the Lamel model and the Lamel Type III model.

The same number of Alamel pairs was considered for AA3103-O as for AA3103-H18. 
To account for the non-equiaxed grain morphology, a deformation gradient tensor F of a 
hypothetical deformation was constructed, corresponding to the transformation of a
sphere (the ‘basic’ equiaxed grain) into an ellipsoid with the same aspect ratio as the 
average one estimated in Table 2. Each grain boundary segment, out of a total of 1875,
was first assigned a random orientation. Then it was deformed by the tensor F, leading 
to a rotation of its plane normal, i.e. modifying the grain boundary orientation 
distribution. The ratio between the new and the original area of each grain boundary 
segment was taken as a weighting factor for its corresponding Alamel pair. More details 
about the methodology for considering grain shapes in Alamel-type models can be 
found in the literature [15, 19].

The VPSC code reads the grain aspect ratio to define the initial lengths of the three 
ellipsoid axes. The aspect ratios shown in Table 2 for AA3103-H18 and AA3103-O
were then input into the VPSC code for their respective calculations. The instantaneous 
strain-rate sensitivity m was set as 0.01 to represent the low strain-rate sensitivity of the 
materials under study. Several formulations exist for the interaction equation that 
linearly relates stress and strain rate in the grain with the overall stress and strain rate of 
the effective medium. The intermediate approximation with one adjustable parameter 
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10effn was used [26]. This approximation approach gives a response of the 
polycrystal which lies in-between the stiff secant and the compliant tangent approaches.

Virtual in-plane uniaxial tensile tests were carried out along every 3° from the RD to the 
TD for the Taylor-type and VPSC models. The global strain-rate components were 
applied and iteratively adjusted until the average stress of the aggregate was uniaxial 
along the tensile axis. Only the strain-rate components were iterated for the FC-Taylor 
and Alamel-type models when determining r-values [27, 28], whereas both strain-rate 
and stress components entered the iteration procedure in the VPSC model. 

3.3. Direct CPFEM simulations of tensile tests
To conduct CPFEM simulations of the AA3103-H18 material, Voronoi tessellation [29]
was first utilized to generate 2500 grains of random structure in a cuboid volume of size 
0.8 mm, 4 mm and 4.8 mm along the RD, TD and ND, respectively. About 26 grains 
were resolved along the ND while only about 4 grains along the RD. This equiaxed
tessellation was then scaled according to the grain aspect ratio shown in Table 2 to 
obtain a final RVE of 4.0×4.0×0.96 mm3. The RVE was finally meshed with 89×89×21
= 166341 cubic solid elements with one integration point, i.e., under-integrated 
elements with hourglass control. In average, each grain is represented by 67 elements 
and holds the experimentally observed grain shape, see Fig. 6 (a). 

The RVE of AA3103-O material was made in a similar manner, but the final RVE size 
was 2×2×1 mm3. The RVE was meshed into 131072 elements. With such a fine mesh, 
each grain in the RVE is represented by about 52 elements in average and holds
qualitatively the general experimental grain shape, see Fig. 6 (b). 

Particles were not represented in the CPFEM mesh. Periodic boundary conditions were 
applied to the nodes located on the faces of the RVE in order to ensure periodicity in 
displacements and minimize constraint effects [8].

The same value of the strain-rate sensitivity parameter as in the VPSC calculations was 
adopted in the CPFEM simulations, i.e. m = 0.01; the latent hardening parameter q is set 
to 1.4 as commonly used for FCC metals [30, 31]. The elastic constants c11, c12 and c44

were set to 106 GPa, 60.4 GPa and 28.2 GPa, respectively. The calibration of other 
material parameters in Eqs. (1) and (3) were carried out with the design optimization 
tool LS-OPT [32]. The calibration was made against the experimental uniaxial tensile 
stress-strain curves along the RD. Since the initial plastic anisotropy is of main concern 
in this work, the calibration was made in a relatively small deformation range, i.e. up to 
1.5% elongation for AA3103-H18 and up to 9.5% elongation for AA3103-O. The 
calibrated values of the coefficients are compiled in Table 3.
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(a)  (b)

Fig. 6 The RVE used in the CPFEM simulations for (a) the AA3103-H18 and (b) the 
AA3103-O sheets; the x, y and z axes coincide with the RD, TD and ND, respectively.

Uniaxial tension tests were simulated for AA3103-O by CPFEM for the seven
experimentally investigated directions. Tension along the RD was simulated by 
stretching along the RD with a constant speed. The final elongation for AA3103-O
materials was 9.5%. Yield stresses were determined at a constant plastic work per unit 
volume, namely 0.07 MPa, corresponding to 0.2% plastic strain along the RD for 
AA3103-O. The r-value was determined from 2% plastic strain to the final deformation. 
For uniaxial tension in other directions than RD and TD, a technically convenient 
‘texture rotation’ method [6, 31] was applied, i.e. fixing the RVE and boundary
conditions used for uniaxial tension along the RD while the texture was rotated through 
decreasing the first Euler angle by the tensile angle .The ‘texture rotation’ method 
could be employed since the AA3103-O exhibits nearly equiaxed grain shapes in the 
RD-TD plane. Uniaxial tension along the TD was simulated by stretching the RVE 
along this direction.

Uniaxial tension tests for AA3103-H18 were simulated by CPFEM only for the RD and 
TD, where the RVE was stretched along the respective directions with a constant speed 
until a final elongation of 1.5%. Yield stresses were determined at a constant plastic 
work per unit volume, namely 0.36 MPa, corresponding to 0.2% plastic strain along the 
RD for AA3103-H18. The r-value was determined from 0.4% plastic strain to the final 
deformation. Simulations were not performed for directions between RD and TD, since 
the distinctly elongated grain shapes cannot be properly represented by the ‘texture 
rotation’ method.
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Simulation of uniaxial tensile tests in other directions than RD and TD is not simple for 
non-equiaxed grain structures. Instead, a multi-level modelling method is proposed in 
the next section.

Table 3 Model parameters used in the CPFEM simulations.

m q 1
0 (s ) 0 (MPa)g 0 (MPa) 1 (MPa)g 1 (MPa)

AA3103-H18 0.01 1.4 0.001 66.52 3000 9.49 10.98

AA3103-O 0.01 1.4 0.0021 12.02 467.64 15.59 27.76

4. Multi-level modelling by Yld2004-18p and CPFEM
A two-scale modelling scheme was used to describe the plastic anisotropy. The lower 
scale (meso-scale) model is the grain aggregate consisting of 2500 grains. Stress points 
at yielding are provided by CPFEM for a number of prescribed in-plane deformations.
The macroscopic yield surface is described by the advanced yield function Yld2004-18p 
which is fitted to these stress points at yielding. The generation of the plane stress states 
at yielding by CPFEM follows the method proposed by Saai et al. [8]. For the sake of 
completeness, the method is briefly described in the following.

The RVE has four master nodes, which are numbered 0, 1, 2 and 3 and shown by full 
black circles in Fig. 7. The axes x, y and z coincide with RD, TD and ND, respectively. 
Master node 0 was always fixed. A constant velocity 1

xv was applied to the master node 
1 along the RD, while master node 2 was given a constant velocity 2

yv along the TD for 
normal loading and/or a constant velocity 2

xv in the RD for shear loading. Master node 3 
was free to move along the ND to adapt the incompressibility of the deformation.

The stress states on the yield surface were generated by controlling the three velocities 
of master nodes 1 and 2. Three sets of deformation were prescribed, namely

0 0 0
1 2 2, ,x y xv v v v v v (6)

0 0 0
1 2 2, ,x y xv v v v v v (7)

0
1 2 20, 0,x y xv v v v (8)

where 0v is a constant reference velocity, the variable was varied between -1 and 1 
with increment , and the variable was varied between 0 and 3 with increment .
The deformation according to Eq. (8) corresponds to pure in-plane shear. CPFEM 
simulations were made for each deformation condition until the volume-weighted 
average of the plastic work among all integration points reached a critical value. The 
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Cauchy stress tensor of the RVE was defined as a volume-weighted average of the 
stress tensors of all integration points. Since all deformations were prescribed in the 
sheet plane, the stress components 13 , 23 and 33 were negligibly small compared to 
the three in-plane stress components, i.e., the averaged stress tensor corresponded to a 
state of plane stress.

In this study, the increments and were set to 0.2 and 1.0, respectively. To 
obtain stress states near initial yielding of each material, the critical plastic work was 
taken as the plastic work per unit volume at 0.2% plastic strain calculated with the 
experimental stress-strain curves for tensions along the RD. The value was found to be
0.36 MPa for AA3103-H18 and 0.07 MPa for AA3103-O. With the described settings, a 
total of 89 stress points at yielding were obtained for each material. The stress 
component 11 obtained at the critical plastic work for uniaxial tension along the RD 
was considered as the reference yield stress of the material. 

Fig. 7 Boundary conditions applied to the RVE; grey marks at nodes show the 
constraints of translation motions along axes.

The analytical yield function, denoted Yld2004-18p, was proposed by Barlat et al. [2] as

1 1 1 2 1 3 2 1 2 21

1/

2 3 3 1 3 2 3 3

1
4

a a a a a
a

aa a a a

S S S S S S S S S S

S S S S S S S S
(9)

where is the equivalent stress; a is the exponent of the yield function; iS and iS ,
1, 2,3i , are the principal values of the tensors S C S and S C S , where S is the 

deviatoric stress tensor; C and C are fourth-order tensors containing all the 18 
parameters of the yield function. The exponent a  is usually set to 8 for FCC materials. 
The yield function is then fitted to the stress points at yielding provided by the CPFEM. 
Among the 18 parameters of Yld2004-18p, there are four related to the through-
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thickness stress components. Since only plane stress states are considered here, these
four parameters were set to unity, which is the value for an isotropic material. The other 
14 parameters were identified by calibration to the 89 stress points at yielding computed 
by CPFEM. It is noted that these 89 stress points were normalized by the yield stress 
along the RD before entering into the calibration procedure. 

More details about the yield function and associated parameter identification procedures 
can be found in the literature [1, 2, 12, 33].

    

(a) (b)

Fig. 8 Comparisons between the experimental stress-strain curves and the CPFEM 
predictions with calibrated material coefficients.

5. Numerical results and discussion 
Stress-strain curves for uniaxial tension in the RD predicted by CPFEM with the 
parameters compiled in Table 3 are compared to the experimental data in Fig. 8. The 
predicted curves for both materials show perfect match with the experiments, thus 
validating the parameter calibration.

The 11 22 yield loci derived from the fitted Yld2004-18p for both materials are 
plotted in Fig. 9, where also the CPFEM stress points at yielding in biaxial tension, i.e. 
loading with = 0 in Eq. (6) and (7), are shown. Fig. 9 shows good agreement between 
the yield loci and the CPFEM stress points. Since all 89 stress points were equally 
weighted in the calibration procedure, the same accuracy of the Yld2004-18p yield 
surface in representing the CPFEM calculations is expected for other plane stress states. 
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(a) (b)

Fig. 9 Yld2004-18p yield loci for (a) the AA3103-H18 and (b) the AA33103-O
material, including the stress points at yielding in biaxial tension from the CPFEM 

calculations.

The predicted anisotropy of the normalized yield stress and the r-value by all the CP 
models described above is shown in Fig. 10 and Fig. 11 for AA3103-H18 and AA3103-
O, respectively. The average of duplicate experimental tests is shown in these figures to 
evaluate the quality of predictions.

As shown in Fig. 10 for AA3103-H18, all CP models and the Yld2004-18p yield 
surface calibrated to CPFEM stress points predict weak anisotropy in strength but 
strong anisotropy in plastic flow. The trends of the experimental data are well captured 
by all CP models and the yield surface, but there are some quantitative differences. The 
FC-Taylor model gives the most accurate prediction of the anisotropy in the normalized 
yield stress, and gives results within 2% of the experimental values. The other CP 
models consistently predict lower normalized yield stresses. Note that for all CP models 
the normalized yield stress equals unity in the RD owing to the normalization. The 
Lamel and Lamel-type III models give similar predictions but the latter model performs 
slightly better. The predictions obtained with the VPSC model and the CPFEM 
calibrated Yld2004-18p yield function are similar, but less accurate.
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(a)

        

(b)

Fig. 10 Plastic anisotropy of the AA3103-H18 material predicted by different CP
models and the CPFEM-fitted Yld2004-18p yield surface: (a) normalized yield stress 

and (b) r-value.
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Concerning the r-value at the RD, the Lamel-type models and the CPFEM-calibrated 
Yld2004-18p yield function give reasonable predictions, while the FC-Taylor and 
VPSC models are 25% higher and 50% lower than the experimental data, respectively. 
At 45 , the FC-Taylor and Lamel Type III models give about 30% higher r-value 
than the experiments, whereas the predictions with the Lamel and VPSC models and the 
Yld2004-18p yield function are close to the experiments. At the TD, only the prediction 
with the VPSC model agrees well with the experiment, while the other predictions are 
lower than the experimental results. In particular, the FC-Taylor model underestimated 
the r-value severely at the TD. 

In Fig. 10, the CPFEM points at RD and TD are close to the predictions by the 
Yld2004-18p yield function fitted to 89 distributed yield points in the stress space, 
which indicates a good precision of this calibration. In summary, the CPFEM-calibrated 
Yld2004-18p yield surface gives the best overall description of the variation of the r-
value, whereas the Lamel Type III model works slightly better than other aggregate 
models when considering both the variation of the normalized yield stress and the r-
value.  

Simulations were also made by Alamel-type models where the grain morphology was 
represented by fictitiously deforming a random grain structure according to the 
measured grain aspect ratio of the AA3103-H18 sheet. The results were very similar to 
the Lamel-type calculations, confirming that the assumption made with respect to the 
grain boundary in the Lamel-type models is reasonable for the heavily cold rolled H18 
condition. 

The predicted anisotropy in normalized yield stress and r-value for AA3103-O is 
presented in Fig. 11. All models show similar variations of both the normalized yield 
stress and the r-value, but there are some quantitative differences. The lower strengths 
exhibited in the experiments for 45 ,90 is not captured by any of the models. 

The predictions obtained with CPFEM, either with direct calculations or the fitted yield 
surface, are closest to the experiments, only 3% and 6% higher values of the normalized 
yield stress than in the experiments at equal to 45° and 90°, respectively. The 
predictions of the normalized yield stress by the Alamel, Alamel Type III and VPSC 
models are nearly identical and slightly higher than the CPFEM results, while the FC-
Taylor model gives the least accurate predictions. 

The variation of r-values predicted by all CP models and the CPFEM-calibrated 
Yld2004-18p yield function agrees well with the experimental results. The predictions 
obtained with the Alamel model, CPFEM and its calibrated Yld2004-18p yield surface 
are closest to the experimental r-values.
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(a)

 
(b)

Fig. 11 Plastic anisotropy of the AA3103-O material predicted by different CP models 
and the CPFEM-fitted Yld2004-18p yield surface: (a) normalized yield stress and (b) r-

value.
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In Fig. 11, small discrepancies can be observed between the CPFEM calculations and 
the calibrated Yld2004-18p yield function with respect to predictions of the directional 
normalized yield stresses and r-values. These differences indicate the errors of the 
calibration procedure of the Yld2004-18p yield surface. In other directions than RD or 
TD, the non-equiaxed shape of the grains may also contribute to the differences. Since 
the differences are small, it can be concluded that the multi-level modelling method can 
accurately capture the plastic anisotropy predicted from CPFEM calculations. This 
conclusion is supported by the similarity of the predictions in Fig. 9 and Fig. 10.

In summary, the Alamel model, CPFEM and the CPFEM-calibrated Yld2004-18p yield 
surface perform slightly better than other models in predicting the in-plane plastic 
anisotropy of the AA3103-O in uniaxial tension.

Even the simple FC-Taylor model was found to give reasonable predictions of the 
plastic anisotropy of the AA3103-H18 and AA3103-O sheets based solely on the 
texture. This indicates that the plastic anisotropy exhibited by the two materials is 
mainly due to their respective textures. The predictions of the Alamel-type models, the 
VPSC model and CPFEM are generally better than those of the FC-Taylor model. In 
these advanced CP models, the strain constraints imposed in the FC-Taylor model are 
relaxed to various extents, rendering these models somehow more physically 
reasonable. The grain morphology is to some extent considered in these advanced CP 
models in addition to the texture. Despite their differences in handling the grain 
morphology and grain interactions, the performance of these CP models in predicting 
plastic anisotropy and its evolution is improved, even though not significantly.

As mentioned above, the ‘texture rotation’ method has been employed in the CPFEM 
simulations of uniaxial tension tests in directions between the RD and TD for AA3103-
O. It should be noted that the ‘texture rotation’ method is physically meaningful for 
equiaxed grain structures. For elongated grain structures as studied here, however, the 
grain boundary configurations change with the tensile direction. As an example, the 
number density of grain boundaries along the RD differs significantly from that along 
the TD of the AA3103-H18 material, see Fig. 6. As a consequence, different RVEs 
should be prepared for uniaxial tension along different directions. Unfortunately, 
preparing such RVEs for directions other than the three orthotropic axes is rather 
complex and inconvenient. Alternatively, the hierarchical multi-level modelling method 
described in Section 4 can be used, where uniaxial tension is no longer the only desired 
deformation mode. Instead, a number of virtual deformation modes are prescribed to 
obtain stress states on the yield surface. The flexible yield function Yld2004-18p is then 
calibrated against these stress points at yielding and used to represent the yield surface
of the material. In these CPFEM simulations, the effect of the grain shape has been 
considered implicitly, since all the deformations are prescribed with respect to the same 
RVE. Another distinct advantage of this multi-level method is that the plastic anisotropy 
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is known for any stress direction once the calibration is done. The yield loci shown in 
Fig. 9 are such examples. Furthermore, the virtually fitted yield surface can be used in 
large-scale FE simulations of forming processes.

As shown in Fig. 10 and Fig. 11, the CPFEM-calibrated Yld2004-18p yield surface 
cannot capture the experimental data in a quantitative manner. This is mainly attributed 
to the inaccuracy of the underlying CPFEM calculations compared with the 
experimental results. The Yld2004-18p yield surface can also be calibrated to both 
experimental data and virtual stress points at yielding from CPFEM calculations, 
following the hybrid fitting procedure proposed in [12]. As concluded by Zhang et al. 
[12], based on results for a commercially pure aluminium alloy, the hybrid-fitted 
Yld2004-18p yield function can capture the experimental results and at the same time 
ensure a good fit to the anisotropy in the full stress space predicted by the crystal 
plasticity models. Procedures for calibrating the Yld2004-18p yield surface against the 
virtual stress points at yielding provided by the FC-Taylor, Alamel, Alamel-type III and 
VPSC models, respectively, can also been found in [12].

The FC-Taylor, Alamel-type and VPSC models showed a similar computational 
efficiency when simulating the uniaxial tensile tests. Each of these models can calculate 
a tensile test up to a strain of 10% in only a few seconds using one single CPU, whereas 
the CPFEM takes a few hours running 4 parallel CPUs on the same computer. Thus,
roughly estimated, applying the CPFEM is three orders of magnitude more 
computationally expensive than the Taylor-type and VPSC models.

The current materials feature large fractions of constituent particles which were ignored 
in all the simulations made in this work. During cold-rolling, back-stresses can be 
introduced due to these non-shearable particles [34]. The back-stress may contribute to 
the weak strength anisotropy observed in the AA3103-H18 material. For the fully 
annealed material, the back-stress should have completely vanished during the 
recrystallization, and there should then be little influence of particles on the observed 
initial strength anisotropy. Other micro-structural features besides the texture and grain 
morphology, such as aligned dislocation structures [35-37] and grain size [38], may also 
be the sources of mechanical anisotropy. Taking particles and other micro-structural 
information into consideration by CP models is beyond the scope of this paper.

6. Conclusion 
The anisotropic plastic behaviour of AA3103 sheets in cold-rolled and fully 
recrystallized states has been investigated experimentally by uniaxial tensile tests and 
virtually by five different CP models and a hierarchical multi-level modelling method. 
The experimentally observed grain shapes have been taken into consideration in the 
computations. All the five CP models give reasonable predictions of the directional 
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normalized yield stresses and r-values for both materials when compared to the 
experiments, but the Alamel-type models and the multi-level fitting method that 
involves CPFEM calculations and the Yld2004-18p yield function perform slightly 
better than the other CP models. 

In the multi-level modelling method, the yield surface of the material was represented 
by the Yld2004-18p yield function and calibrated to stress points at yielding obtained 
with CPFEM. This method makes it possible to predict plastic anisotropy while 
considering the real grain shapes even for non-equiaxed grain structures in the CPFEM 
simulations. The Yld2004-18p yield surface was able to represent quite accurately the 
plastic anisotropy determined from CPFEM calculations under this multi-level 
modelling scheme. Based on the results presented in this work, the multi-level fitting 
method used here is considered to be the most accurate method for predicting the plastic 
anisotropy in the considered two cases. Since high-resolution CPFEM calculations are 
very time-expensive, the Alamel-type models are good alternatives for predicting the 
plastic anisotropy of the considered AA3103 sheets.
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An explicit integration scheme for hypo-elastic viscoplastic crystal 
plasticity 

 

Abstract: An explicit integration scheme for rate-dependent crystal plasticity (CP) 
has been developed in this work. Additive decomposition of the velocity gradient 
tensor into lattice and plastic parts is adopted for describing the kinematics; the 
Cauchy stress is calculated by using a hypo-elastic formulation, applying the Jaumann 
stress rate. This CP scheme has been implemented into a commercial finite element 
code (CPFEM). Uniaxial compression and rolling processes were simulated. The 
results show good accuracy and reliability of the integration scheme. The results were 
compared to simulations using one hyper-elastic CPFEM implementation which 
involves multiplicative decomposition of the deformation gradient tensor. It is found 
that the hypo-elastic implementation is only slightly faster and has a similar accuracy 
as the hyper-elastic formulation.

Keywords: crystal plasticity; hypo-elasticity; hyper-elasticity; forward Euler 
integration

1. Introduction 

 Crystal plasticity (CP) models originate from the physical aspect of plastic 
deformation, i.e. slip dominated plastic deformation [1]. Constitutive laws of single 
crystals together with homogenization methods across polycrystalline aggregates 
define the polycrystal plasticity model [2, 3]. Mechanical properties, texture evolution 
and other material phenomena can be simulated using CP models [2-5]. The main 
inputs into CP models are initial texture and material parameters.  

One key component of a crystal plasticity model at single grain level is the 
determination of shear strains or shear strain rates on slip systems, which can 
generally be solved using two different approaches, either rate-independent or rate-
dependent. For the rate-independent method, the shear strain is determined to 
accommodate the prescribed plastic deformation using a minimum dissipation energy 
assumption [1]. Only the slip systems for which the resolved shear stress equals the 
critical resolved shear stress are considered to be active. It can be implemented 
numerically by solving linear equations or using e.g. the Simplex method with high 
computational efficiency [6]. However, due to the Taylor ambiguity, an additional 
criterion is needed [7]. The rate-dependent crystal plasticity (RDCP) model assumes 
that all slip systems are active and uses a viscoplastic flow rule. Although without 
Taylor ambiguity, RDCP could lead to numerical instabilities of integration, because 
most metals exhibit a weak rate dependence at room temperature [8]. Since first 
introduced by PEIRCE et al [9], the crystal plasticity theory implemented in the finite 
element method (CPFEM) has matured into a whole family of constitutive and 
numerical formulations that have been applied to a broad variety of crystal 
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mechanical problems [3]. CPFEM has both theoretical and practical advantages. First, 
grains are represented by single or multiple elements while both stress equilibrium 
and strain compatibility can be fulfilled at boundaries. Second, complex boundary 
conditions are easily specified in the FEM code. Hence, CPFEM is applicable to 
simulations of engineering processes. The main drawback of CPFEM is the huge 
computational cost and the numerical instabilities [2]. Thus, robust and efficient 
integration schemes are required to reduce computational cost and improve the 
stability [2, 8, 10-14]. 

DUMOULIN et al [2] implemented and evaluated three different integration schemes 
for RDCP, including two forward Euler methods and one implicit integration method. 
Multiplicative decomposition of the deformation gradient tensor F  was used to 
describe the kinematics and a hyper-elastic formulation was used for the calculation 
of the Cauchy stress. Rotation of the crystal lattice was obtained by polar 
decomposition of the elastic deformation gradient tensor eF . Among those three 
integration methods, the forward Euler integration scheme proposed by GRUJICIC 
and BATCHU (GB) [14] proved to be stable, accurate and the fastest. The RDCP 
model together with the GB forward Euler integration scheme has also been 
implemented into a commercial finite element code, LS-DYNA [15], via a user 
defined subroutine UMAT. This model implementation is referred to as hyper-
CPFEM in the following since hyper-elasticity is assumed.  

In the current work, a new explicit integration scheme for rate-dependent viscoplastic 
crystal plasticity has been developed. Different from the constitutive models 
employed by DUMOULIN et al [2], additive decomposition of the velocity gradient 
tensor L  is employed for the kinematics; hypo-elasticity is assumed for the material 
and Jaumann stress rate is applied. In the crystal plasticity theory, the hyper- and 
hypo- elastic formulations should give the same results in terms of the plastic 
deformation. There is small difference in the elastic part while details about the hypo-
elastic and hyper-elastic theories can be found in the literature [16]. The hypo-elastic 
theory is commonly applied in the continuum plasticity for metals and alloys due to 
their small elastic strains. Compared with the hyper-elastic crystal plastic framework, 
the hypo-elastic counterpart has a simpler mathematical formulation and is easier to 
implement. Hence, the hypo-elastic crystal plasticity model has a potential to speed up 
the calculations. However, the accuracy and reliability of stress calculation and 
texture prediction should be evaluated due to the different formulation employed.  

The kinematics, kinetics and crystal plasticity models are described in section 2. A 
new explicit integration scheme is proposed in section 3. The RDCP model has been 
implemented into LS-DYNA and is termed hypo-CPFEM in the following. The 
accuracy and efficiency of this new integration scheme are evaluated through 
numerical simulations and a comparison with the hyper-CPFEM which are shown in 
section 4, while general conclusions are made in section 5.   
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2. Kinematics and crystal plasticity models 

The model employed in this work is briefly given here while more details can be 
found in the literature [17, 18]. It includes anisotropic elastic deformation and 
assumes that all plastic deformation occurs via dislocation slip on {111} <110> 
crystallographic systems for face centred cubic (FCC) crystal metals.

2.1. Kinematics 

 All the equations described in the following are formulated in the initial crystal frame 
unless specified otherwise. The imposed velocity gradient L  can be additively 
decomposed into symmetric and skew-symmetric parts: 

L = D + W  (1) 

where D  is the symmetric deformation rate tensor and W  is the skew-symmetric spin 
tensor. Deformation of single crystals has been attributed to a combination of plastic 
flow due to crystallographic slips and lattice distortion. Lattice distortion includes 
elastic distortion and rigid body rotation of the crystal lattice. Thus, for single crystals, 
the deformation rate D  and spin W  can be further decomposed into lattice and 
plastic parts as follows: 

e pD = D + D  (2) 

pW = W + W   (3) 

where eD  represents the elastic deformation rate of the lattice, while pD  is the plastic 
deformation rate caused by crystallographic slip. W represents the lattice rigid spin, 
while pW  is the spin due to slip activities. pD  and pW  can be expressed by the shear 
rates s on all slip systems: 

12
p

1

s s

s
D P  (4) 

12
p

1

s s

s
W  (5)
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1 ( )
2

s s s s sP m n n m  (6) 

1 ( )
2

s s s s sm n n m  (7) 
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where sm  is the unit vector defining slip direction, while sn is the unit slip plane 
normal vector, for the slip system s  (where 1 12s  for FCC metals). sm  and sn
are not affected by crystallographic slip but will be rotated by the lattice spin W  as: 

s sm W m  (8) 

s sn W n   (9) 

2.2. Kinetics 

The resolved shear stress s  on the slip system s  can be expressed as:

:s sP  (10) 

where is the Cauchy stress tensor. For rate-dependent crystal plasticity, the shear 
rate on slip systems is often calculated using a power-law type equation:

1

0 sgn( )
s m

s s
sg

 (11) 

where 0  is a reference shearing rate, m  is the instantaneous strain rate sensitivity 

and sg  represents the slip resistance which evolves during the plastic deformation of 

single grains. The evolution laws of sg  or hardening models will be discussed in 
section 2.3. 

During distortion of single crystals, a coordinate system attached to the lattice will co-
rotate with the lattice. The co-rotational lattice frame is related to the fixed lattice 
frame by a rotation tensor  which is orthogonal and updated by the lattice spin 
tensor W :

W  (12) 

In the co-rotational frame, Hooke’s law can be expressed in the rate form as:  

eˆ ˆˆ :C D  (13) 

where Ĉ  is a fourth-order elastic modulus tensor and eD̂  is the elastic deformation 
rate tensor, both in the co-rotational frame. The fourth-order tensor Ĉ  accounts for 
the elastic anisotropy of the cubic lattice. It is assumed to be invariant to plastic 
deformation and is kept constant in the co-rational lattice frame. Expressed in the 
orthonormal basis associated with the crystal lattice, it reads (in Voigt notation):  



Article A-1 

187

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0
0 0 0
0 0 0ˆ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c c c
c c c
c c c

c
c

c

C  (14) 

where 11c , 12c  and 44c  are three independent elastic constants. eD̂  can be computed 

by transforming eD  from the fixed lattice frame to the co-rotational frame as: 

e eˆ TD D  (15) 

where the upper script T means transpose of a tensor or matrix. Then Jaumann stress 
rate, J , is now defined by transforming ˆ  into the fixed coordinate system: 

ˆJ T  (16) 

Finally, the material time derivative of the stress tensor is obtained: 

J W W  (17) 

2.3. Hardening model 

Material hardening is captured at slip system level through sg  in Eq. (11). The 

hardening law used in this work assumes that the critical resolved shear stress, sg ,
initially equals 0g , evolves through: 

12

1

s sn n

n
g h  (18) 

where snh  is the instantaneous strain hardening matrix; s  and n  are indices referring 
to slip systems.  In this work, snh  is described phenomenologically by a saturation-
type law [8, 19]: 

0[ (1 ) ][1 ] sgn[1 ]sn sn n a n
sat sath h q q g g g g  (19) 

where 1sn  for s n  and otherwise zero; 0h , satg and a  are material parameters, 
representing the reference self-hardening coefficient, the saturation values of slip 
resistance and the hardening exponent, respectively. The parameter q  represents 
latent hardening.  
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2.4. Update of grain orientations and the texture  

If the velocity gradient L  is prescribed in the sample frame, L  in the initial lattice 
frame is obtained by the transformation 

0 0
TL Q L Q  (20) 

where the transformation matrix 0Q  depends on the Euler angles ( 1 , , 2 ). The 
transformation matrix Q  from the global frame to the current co-rotational lattice 
frame is updated by: 

0
TQ Q  (21) 

Euler angles of single grains during deformation can be calculated from Q and are 
used to represent the texture. 

3. Integration algorithm  

The crystal plasticity model described above has been implemented into LS-DYNA 
through a user defined material subroutine. The key input includes material 
parameters and initial grain orientations. Mechanical response and deformation 
texture can then be predicted. 

For the time integration, a fully explicit scheme based on the forward Euler method is 
adopted. This method is simple, robust but only conditionally stable and requires 
small time steps. The main steps of the explicit scheme are summarized below, where 
all variables at time nt  are known and the variables at 1n nt t t  are to be 
determined.  

a) Compute the resolved shear stress n
s  on each slip system using Eq. (10)

b) Compute the slip rate s
n  using Eq. (11)

c) Compute p
nD  and p

nW  using Eq. (4) and Eq. (5) 

d) Compute e
nD  and nW  using Eq. (2) and Eq. (3), where D  and W  are constant 

during the current time step  
e) Compute the Jaumann stress rate J

n  using Eq. (13), Eq. (15) and Eq. (16) 

f) Compute n using Eq. (17) and update 1n :

1n n n t  (22) 

g) Update 1n using a second-order scheme [20] as: 

1* *1 1
1 2 2n n n nt tI W I W  (23) 
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h) Update internal variables and update the critical resolved stress 1
s
ng  using 

equations described in section 2.3 
i) Update slip direction vectors, 1

s
nm , and slip plane normal vectors, 1

s
nn , using 

the second-order method: 

1* *1 1
1 2 2

s s
n n n nt tm I W I W m  (24) 

1* *1 1
1 2 2

s s
n n n nt tn I W I W n  (25) 

j) Compute 1
s
nP  and 1

s
n  from 1

s
nm  and 1

s
nn  using  Eq. (6) and Eq. (7) 

k) Update the grain orientation matrix 1nQ  using Eq. (21)

4. Numerical study and discussion 

To evaluate the hypo-elastic formulation used here and the integration algorithm 
proposed in this work, two numerical studies have been conducted. The first one is the 
simulation of uniaxial compression of OFHC copper with initially random texture 
while the second one is the texture prediction after rolling of the same material. The 
hyper-CPFEM model implemented by DUMOULIN et al [2] with the GB integration 
scheme has also been used for the above simulation cases. Predicted results from the 
two CPFEM formulations will be compared in order to evaluate their performance in 
terms of accuracy and efficiency.   

The material parameters are given similar values as reported in the work of 
KALIDINDI et al [18], as shown in Table 1. 1000 random orientations are used to 
represent the initial texture of the material and the {111} pole figure is shown in Fig. 
1. The representative volume (RVE) has a size of 2mm 2mm 2mm . The RVE is 
meshed with 1000 equal-sized 8 integration point solid elements and each element is 
assigned one orientation and hence represents one grain, as shown in Fig. 2. Mass 
scaling is used to speed up the simulations with a scaling factor of 810 . All 
simulations were performed on a work-station with Intel Xeon E5620 CPU (2.4 GHz) 
and 12G memory, and 8 threads were used simultaneously for each simulation.  

Table 1 Model parameters used in the simulations. 

0 m 0g satg 0h a q 11c 12c 44c

  (MPa) (MPa) (MPa)   (GPa) (GPa) (GPa) 
310 0.012 16 148 180 2.25 1.4 186 93 46.5 
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Fig. 1 Initial {111} equal area pole figure of the 1000 orientations.

Fig. 2 RVE with 1000 grains. 

4.1. Uniaxial compression  

The RVE is compressed along the x-direction with a speed of 0.01 mm/s to 70% 
thickness reduction, i.e. the deformation time is 140 seconds. The surfaces along y-
and z- directions are free to move. 

The stress-strain curves from simulations using the hypo-CPFEM and the hyper-
CPFEM respectively are shown in Fig. 3, where the experimental data from literature 
[19] is also shown. It can be seen that the hypo-CPFEM and the hyper-CPFEM give 
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the same stress versus strain response. The agreement between the predicted curves 
and the experiment is reasonable. The CPU time is shown in Table 2. Both CPFEM 
models have similar time efficiency, but the hypo-CPFEM is slightly faster. 

The good agreement between the predictions by the two CPFEM models validates 
accuracy and reliability of the crystal plasticity formulations as well as the integration 
method used for the hypo-CPFEM. Moreover, the fact that the hypo-CPFEM and the 
hyper-CPFEM give identical stress predictions illustrates that both hypo-elasticity and 
hyper-elasticity are valid assumptions for crystal plasticity models of metals. 

Fig. 3 Stress-strain curves from CPFEM simulations and experiment. 

Table 2 CPU time for the simulations using two CPFEM models. 

Problem time (s) Hypo-CPFEM (s) Hyper-CPFEM (s) 

140 12580 13971 

4.2. Rolling texture prediction 

For the rolling simulation, periodic boundary conditions were applied on all faces of 
the RVE. The RVE was compressed along the z-axis with a speed of 0.02 mm/s to a 
thickness reduction of 70%. It was allowed to move along the x-axis freely while the 
deformation along the y-direction was constrained. The Euler angles after deformation 
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in all integration points were output into files, and the orientation distribution function 
(ODF) were computed using the series expansion method with max 22l  and 

0 7.5 .

Fig. 4 shows the ODFs predicted by both hypo-CPFEM and hyper-CPFEM after 
rolling to 70% thickness reduction, while the corresponding CPU times are shown in 
Table 3. The ODF shows a typical rolling texture of FCC metals made of Brass, Goss, 
S, and Copper texture components [18] which qualitatively validates the correctness 
of the texture updating algorithms employed. Furthermore, the ODFs from the two 
simulations show excellent agreement with each other. It is reminded that the texture 
is updated by the tensor eR  which is obtained from the polar decomposition of the 
elastic deformation gradient tensor in the hyper-CPFEM. However,  which is 
updated using W  is employed for updating the texture in the hypo-CPFEM. The 
excellent agreement between the texture predictions demonstrates that both texture 
updating methods are equally accurate. Similar to the uniaxial compression case, the 
hypo-CPFEM is slightly faster (~10%) than the hyper-CPFEM, as shown in Table 3. 

            

                  

                                    (a)                                                                    (b) 

Fig. 4 Orientation distribution function (ODF) after 70% thickness reduction in rolling 
predicted by (a) hypo-CPFEM, (b) hyper-CPFEM. 

Table 3 CPU time for rolling using two CPFEM models. 

Problem time (s) Hypo-CPFEM (s) Hyper-CPFEM (s) 

70 12958 14669 
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5. Conclusion 

(1) A new forward Euler integration scheme is proposed for rate-dependent crystal 
plasticity, which employs the additive decomposition of the velocity gradient and 
uses a hypo-elasticity formulation for the stress calculation. The RDCP model 
with the new integration scheme has been implemented into the commercial finite 
element code LS-DYNA.  

(2) This implementation is validated by comparison with a hyper-elastic formulation 
through two numerical tests. It is shown that the hypo-CPFEM is accurate for 
stress predictions, and the numerical algorithm for updating texture is validated 
by comparison to hyper-CPFEM predictions.  

(3) Comparison of predictions by the hypo-CPFEM and by the hyper-CPFEM shows 
that the two models have equal accuracy when predicting stress and texture while 
the hypo-CPFEM is slightly more efficient.  

(4) Finally, the current forward Euler integration method, and thereby the hypo-
CPFEM, can be further improved without loss of accuracy, through e.g. sub-
stepping; this is part of an on-going work. 
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Crystal Plasticity Calculations of Mechanical Anisotropy of 
Aluminium Compared to Experiments and to Yield Criterion Fittings 

 
 

Abstract
 
Mechanical anisotropy of a sheet was studied by experiments as well as crystal 
plasticity calculations. The material is a 99.999% high purity Aluminum with additions 
of 0.066%Fe and 0.068%Si. Uniaxial tensile tests at every 15° from the rolling to the 
transverse direction were conducted. Yield stresses were measured and also the r-values 
for the uniaxial tensile tests. The anisotropic Yld2004-18p yield function for fully three-
dimensional stress state was fitted to the experiments. Crystallographic orientation data 
were measured by EBSD and used as input for the full-constraint Taylor model. The 
yield locus was calculated by the Taylor model and compared to the Yld2004-18p 
criterion fitted to the experiments. Since the number of possible mechanical tests is 
limited and the experimental errors can be a challenge, it would be desirable to replace 
the mechanical tests by one texture measurement and virtual experiments by crystal 
plasticity calculations. The reliability of this approach is discussed for the case of pure 
aluminium. 
 
Keywords:  mechanical anisotropy, yielding condition, mechanical testing, crystal 
plasticity 
 

Introduction 
 
The yield condition for polycrystalline metallic materials can be described by two 
principal approaches. The first one is to use a polycrystalline plasticity model, like the 
full-constraint Taylor model [1,2,3]. This approach is based on the physical aspects of 
plastic deformation and on averaging the response over the grain aggregates. The 
second approach is to use a phenomenological yield functions which are based on the 
classical theory of plasticity. A fundamental problem with this approach is that when 
fitting parameters of the phenomenological models most of the stress space is left 
unexplored, due to the severe experimental limitations. The only realistic way to span 
the space is by fitting advanced phenomenological models to match virtual experiments 
using crystal plasticity calculations [4,5]. 
 The Yld2004-18p yield criterion is a linear transformation-based yield function which 
was proposed by Barlat et al. [6] for the fully three-dimensional stress state. It has 18 
anisotropy parameters and an exponent that can be varied. Yoon et al. [7] used results 
from uniaxial tensile and equiaxial tensile tests to determine the properties in plane, 
while crystal plasticity calculation were used to determine four parameters governing 
out-of-plane properties. Grytten et al.[4] explored different identification methods for 
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Yld2008-18p: only using experimental data, solely based on Taylor model calculations 
and their combination for the aluminium alloy AA5083-H116. Tikhovskiy et al. [8], 
Von Houtte et al. [9] and An et al. [10] used other crystal plasticity models (CPFEM, 
RC-Taylor, ALAMEL) to identify the parameters of different yield criterions.    
 
In this paper, the mechanical anisotropy of sheet material, a 99.999% high purity 
Aluminum with additions of 0.066%Fe and 0.068%Si, is studied. Yield stress and r-
values at seven directions are measured by uniaxial tensile tests. The FC-Taylor model 
is employed to calculate the stress states in 242 strain directions. The Yld2004-18p 
criterion is fitted to the experimental data and also to the calculated points. The two 
yield function fittings are discussed. 
 

Yield criterion 
 
The yield function Yld2004-18p is adopted. The effective stress is   

              

 
11( )

4
m                  (1) 

where 

1 1 1 2 1 3 2 1 2 2

2 3 3 1 3 2 3 3
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 (2) 

 
In Eq. (2), S and S  represent the principal values of the stress deviators s and s , 
which are defined by two linear transformations of the deviator of the Cauchy stress 
tensor. The two linear transformations provide 18 coefficients that can be used to 
capture materials’ anisotropy. The details are not listed here but can be found in Barlat 
et al. [6]. 
 

Virtual experiments by the full-constraint Taylor model 
 
A strain-rate independent full-constraint Taylor model is applied, more details might be 
found in Van Houtte et al. [5,11]. The measured texture and prescribed rate-of-
deformation tensors are input into the FC-Taylor model. The texture was measured by 
EBSD. In this work, 1000N  representative grains were chosen. In order to make this 
representative aggregate inherit the overall texture characteristics, the total scanned area 
was divided into N  regions of equal areas, and one orientation was randomly picked 
from each such area.  
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For incompressible materials, the yield surface is in a five dimensional stress space. A 
good resolution of points on this surface was obtained by a procedure described by 
Grytten et al. [4]. Contracting the stress and strain tensors into five dimensional vectors, 
a distribution of strain-rate points on the five-dimensional unity hyper-sphere can be 
used to create the rate-of-deformation tensor as input for each Taylor model calculation. 
A resolution of 3 points on each axis, i.e. 1, 0 and -1, gave 242 calculated stress points 
on the yield surface. These results were used to calibrate the phenomenological 
Yld2004-18p yield surface. 
 
 

Experiments
 
The material is a 99.999% high purity Aluminum with additions of 0.066%Fe and 
0.068%Si (denoted Al5NFeSi), which makes it a well defined 99.8% purity alloy with 
most of the Fe and Si in the constituent particles. A flat extrusion profile, 70mm wide, 
5mm thick and about 1000mm long was rolled into a 1mm thick sheet, from which 
tensile specimens at every 15° from the rolling to the transverse direction (7 directions) 
were machined. These samples were then annealed at salt bath at 375  for 30min, 
intended to achieve a fully recrystallized state. The geometry of the specimens used in 
these tests is shown in Fig. 1.  
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Fig. 1. Uniaxial tensile test specimen (in mm) 

 
A Zeiss ULTRA 55 FESEM equipped with a Nordif digital EBSD detector and TSL 
OIM4 EBSD software were used, with a step size of 10 m covering approximately 

4 2mm . The orientation distribution function (ODF) is shown in Fig. 2, from which 
strong Goss and Cube orientations can be seen.  
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Fig. 2. Orientation distribution function (ODF) of aluminium alloy Al5NFeSi 

   
Uniaxial tensile tests at every 15° from the rolling to the transverse direction were 
performed in a MTS 810 universal testing machine at a crosshead speed of 1mm/min, 
i.e. a strain rate ~10-3s-1. The tests were stopped at a strain of 0.15. An extensometer 
with 10mm gauge length was used to record the elongation automatically, while the 
specimen width before and after tests was measured manually using a caliper of 10-2mm 
accuracy. From the stress-strain curves, the yield stresses were determined and r-values 
at 15% elongation were calculated according to ASTM E517 

 0

0 0

ln( / )
ln( / )

f

f f

w w
r

l w l w  
  (3) 

where 0l , fl and 0w , fw  are original and final lengths and widths respectively. The 

measured yield stresses normalized by the average yield stress in the rolling direction 
( 0 ) and the corresponding r-values at every 15° from the rolling to the transverse 
direction are shown in Fig. 3 and Fig.4. 
 

Parameter identification 
 
 A least squares method was used to identify the 18 parameters of Yld2004-18p yield 
function. A yield criterion exponent m =8 was applied, corresponding to the case of a 
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random FCC texture [12]. In the following, two procedures for fitting the anisotropy 
parameters will be tested and evaluated. 
The first approach, ‘Fit 1’ is to use only the seven measured yield stresses and r-values 
to fit the parameters. The coefficients governing the out-of-plane properties, 
i.e. 55c , 66c , 55c and 66c were set to 1 as they are not easily measured for sheet materials. 
The function to be minimized is 

 2 2

1 0

( 1) ( 1) min
N

i i
i i

i i

rw w
r

  (4) 

where N is the number of available fitting data points; 1iw  and 0.01iw  are weight 

factors for ‘Fit 1’.  is the effective stress defined by Eq. (2) while ir  and ir are r-
values that experimentally measured and  predicted by the fitted yield function, 
respectively. 
 
The second approach, ‘Fit 2’, is fitted to the 242 stress states calculated by the FC-
Taylor model based on the measured texture. In this case, also the out of plane 
coefficients 55c , 66c , 55c  and 66c  were fitted. The fitted parameters are all listed in Table 

I. The normalized yield stress ( 0 ) and r-values from rolling to transverse direction 
are calculated by ‘Fit 1’ and ‘Fit 2’ yield functions and the results are shown in Fig. 3 
and Fig. 4, together with the experimental results and the Taylor model predictions.  
 

Table I. Fitted parameters of Yld2004-18p yield function (m=8). 
 Fit1 Fit 2   Fit1 Fit 2 

12c 0.9807 0.5027 12c 1.2446 1.1973 

13c 0.9482 0.8921 13c 0.8541 1.0862 

21c 0.9129 0.9112 21c 0.8346 0.8242 

23c 1.0479 1.0214 23c 1.4175 0.6757 

31c 1.0813 1.0331 31c 1.1571 0.9099 

32c 1.1372 1.0136 32c 1.0064 0.7189 

44c 1.0082 0.4899 44c 1.1211 1.0775 

55c 1.0000 0.5875 55c 1.0000 1.0805 

66c 1.0000 1.0806 66c 1.0000 0.7478 

 
Discussion and conclusions 

 
Measured, calculated and fitted yield stresses and r-values of Al5NFeSi at every 15° 
degrees from rolling to transverse direction are shown in Fig. 3 and Fig. 4. The 
difference between the maximum measured yield stress in the rolling direction and the 
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minimum one at 75° is around 15%, which reveals a moderately strong anisotropy. The 
experiments show a complex and stronger variation of r-values than the yield strength 
variation, which is evidence of a planar anisotropy in the plastic flow. 
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Fig. 3. Normalized yield stress versus angle to the rolling direction obtained from 

experiments, FC-Taylor calculation and fitted surfaces. 
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Fig. 4. r-values versus angle to the rolling direction obtained from experiments, FC-

Taylor calculation and fitted surfaces. 
 

Table I lists the yield surface parameters found for the studied anisotropic material of 
the two different fitting approaches. The two sets of fitted parameters are significantly 
different between ‘Fit 1’ and ‘Fit 2’. In Fig. 3 and Fig. 4 it can be observed that ‘Fit 1’, 



Article A-2 
 

203 
 

i.e. only fitted to the tensile tests, could capture the complex flow anisotropy and the 
general change of the yield strength.  On the other hand, ‘Fit2’ fits well the r-values and 
tensile stresses predicted by the FC-Taylor model. However, the FC-Taylor model 
calculated virtual experimental stress states deviate significantly both with respect to 
yield strength anisotropy and flow anisotropy as compared to the tensile tests. 

 
From the discussion, we can conclude that the Yld2004-18p yield function could be 
very well fitted to tensile tests in seven directions in the aluminium sheet plane. 
Furthermore, by using the 18 parameters of this yield surface to fit 242 stress points 
uniformly distributed in the general five-dimensional stress space still resulted in a very 
good fit to the planar variation of FC-Taylor model predicted yield stresses and r-
values. Unfortunately, the FC-Taylor model was not capable of predicting the measured 
mechanical anisotropic properties of the considered Al5N-FeSi sheet. In particular the r-
value predictions for tensile tests near the transverse direction were way off. More 
complex crystal plasticity models than the FC-Taylor model is required. A natural 
starting point would be to consider generalized Taylor type of models that account for 
interactions between neighboring grains. 
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