1	Calcium binding and calcium-induced gelation of low-methoxyl pectin modified by
2	low molecular-weight polyuronate fraction
3	
4	Makoto Nakauma ^{a, *} , Takahiro Funami ^a , Yapeng Fang ^{b, **} , Katsuyoshi Nishinari ^b ,Kurt I.
5	Draget ^c , Glyn O. Phillips ^d
6	
7	^a Texture Design Laboratory, San-Ei Gen F.F.I., Inc., 1-1-11, Sanwa-cho, Toyonaka,
8	Osaka 561-8588, Japan
9	^b Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and
10	Pharmaceutical Engineering, Faculty of Light Industry, Hubei University of Technology,
11	Wuchang, Wuhan 430068, China
12	^c Norwegian Biopolymer Laboratory, Department of Biotechnology, Norwegian
13	University of Science and Technology, N-7491 Trondheim, Norway
14	^d Phillips Hydrocolloids Research Ltd., 45 Old Bond Street, London W1S 4AQ, UK
15	
16	* Corresponding author. m-nakauma@saneigenffi.co.jp
17	** Corresponding author. fangypphrc@163.com

18

19 Abstract

The functions of low molecular-weight polyuronate fraction in the calcium binding 20and calcium-induced gelation of normal low-methoxyl pectin (LMP) were investigated. 2122Pectin fractions with different degrees of esterification (DE) and alginate fractions with different mannuronate/guluronate (M/G) ratios were prepared. Weight average 2324molecular-weight (M_w) of each low molecular-weight polyuronate fraction ranged from ca. 40,000 to 65,000 g/mol. In the mixtures of LMP and each low molecular-weight 2526polyuronate fraction, changes in the relative viscosity (η_r) of dilute solutions and in rheological properties of gels were examined in the presence of calcium. The addition 27of low molecular-weight pectin fraction, regardless of DE, increased η_r of dilute 28solutions and increased dynamic storage modulus (G') of gels with greater effects at 2930 lower DE. On the contrary, the addition of low molecular-weight alginate fraction, regardless of M/G ratio, shifted the critical threshold calcium concentration required to 31steepen η_r of dilute solutions higher and decreased G' of gels with greater effects at 3233 lower M/G ratio (i.e. rich in G). Gelation behavior of the mixture was schematically presented, and the functions of low molecular-weight polyuronate fraction were 3435 compared on the molecular level between pectin and alginate.

36

Keywords: Calcium binding; Egg-box dimer; Gelation; Low-methoxyl pectin; low
 molecular-weight polyuronate

39

40 **1. Introduction**

Calcium-binding behavior of polysaccharides with polyuronate backbone has been 41 42investigated extensively as in the case of pectin and alginate. For pectin, it has been reported that degree of esterification (DE) and weight average molecular-weight (M_w) 43both influence pectin gelation in terms of gel strength and the kinetics of gel formation, 44and the functions relate to affinity and sensitivity to calcium (Hotchkiss et al., 2002; 4546 Luzio & Cameron, 2008; Ralet, Dronnet, Buchholt, & Thibault, 2001; Thibault & 47Rinaudo, 1985). Our research team investigated previously (Nakauma et al., 2016) the calcium binding and calcium-induced gelation of normal sodium alginate modified by 4849low molecular-weight polyuronate fractions. It was clarified that the addition of the alginate fraction shifted the critical threshold calcium concentration required to steepen 5051the relative viscosity (η_r) of dilute solutions higher and decreases dynamic storage modulus (G') of gels and that these effects of the alginate fraction depended both on $M_{\rm w}$ 52and mannuronate/guluronate (M/G) ratio. It was also clarified in the same report that 53the addition of low molecular-weight G-rich alginate fraction improved the water 54

3/26

55	holding capacity of calcium-induced alginate gels and made the gels more rheologically
56	deformable represented by increased yield strain. These results indicated the potential
57	usage of the G-rich alginate fraction as a novel texture modifier. On the other hand,
58	effects of low molecular weight low-methoxyl pectin fraction were quite different from
59	those of the G-rich alginate fraction, and in the mixture of the pectin fraction and
60	normal sodium alginate, viscosity increase of dilute solutions was detected at a calcium
61	feed even below the stoichiometry of egg-box dimers. Also, mechanical strength of
62	calcium-induced sodium alginate gels was increased by the addition of the pectin
63	fraction as represented by increased G' . As a series of the study, the functions of low
64	molecular-weight polyuronate fraction in the calcium binding and calcium-induced
65	gelation of normal low-methoxyl pectin (LMP with M_w of ca. 150,000 g/mol) was
66	investigated in the present study, and the effects of the polyuronate fraction on the
67	molecular association with LMP were compared between pectin and alginate.

- 68 **2. Materials and methods**
- 69 2.1. Materials

Pectins from citrus with different DE values (SAN-SUPPORT[®] P-160 for high-methoxyl pectin and SAN-SUPPORT[®] P-161 for low-methoxyl pectin) and sodium alginate (SAN-SUPPORT[®] P-80) were provided as commercial products by

4 / 26

73	San-Ei Gen F.F.I., Inc. (Osaka, Japan). Other materials used and the definition of
74	enzyme unit were the same as previous study (Nakauma et al., 2016). The following
75	abbreviations were used for convenience throughout this study:
76	LMP low-methoxyl pectin; HMP high-methoxyl pectin; SAL sodium alginate; MAN
77	polymannuronate; GUL polyguluronate.
78	2.2. Preparation of pectin fractions
79	Low molecular-weight pectin fractions with different DE values was prepared using
80	HMP (SAN-SUPPORT [®] P-160) as a starting material and combination of enzymatic
81	hydrolysis and de-esterification in the same procedure as reported previously (Nakauma
82	et al., 2016). In brief, HMP with pectinase treatment but without esterase treatment
83	was identified as LM_w -HMP, whereas that with both treatments was identified as
84	LM_w -LMP.
85	Macromolecular characteristics of the pectin fractions and LMP (SAN-SUPPORT®

P-161), including $M_{\rm w}$, number average molecular-weight $M_{\rm n}$, radius of gyration $R_{\rm g}$, 86 polydispersity index defined by M_w/M_n , and the Flory exponent v, were determined by 87 size-exclusion chromatography coupled with a multiangle laser light scattering 88 photometer (SEC-MALS) as reported previously (Nakauma et al., 2016). 89 As physicochemical 90 characteristics, constitutional identified sugars were by high-performance anion-exchange chromatography coupled with pulsed amperometric
detection (HPAEC-PAD), whereas DE was determined spectrophotometrically as
reported previously (Nakauma et al., 2016). These characteristics were summarized in
Table 1.

95 2.3. Preparation of alginate fractions

96 Low molecular-weight alginate fractions with different M/G ratios were prepared using SAL (SAN-SUPPORT® P-80) as a starting material and combination of acid 97 hydrolysis and pH-based fractionation in the same procedure as reported previously 98 (Nakauma et al., 2016). Exceptions from previous report were heating condition for 99 hydrolysis; 1 h and pH conditions for recovery of G-rich fraction (identified as 100 LM_w -GUL);3.8 and for recovery of M-rich fraction (identified as LM_w -MAN); 2.4. 101 102 Macromolecular characteristics of the alginate fractions and SAL were determined by 103SEC-MALS as reported previously (Nakauma et al., 2016). As physicochemical characteristics, G content and G-block length (the length of G-block larger than 1) were 104105determined by a nuclear magnetic resonance NMR spectrometry as reported previously (Nakauma et al., 2016). These characteristics were summarized in Table 2. 106 2.4. Relative viscosity measurement of dilute solutions 107

108 For the mixture of LMP and each low molecular-weight polyuronate fraction,

changes in η_r by calcium addition were measured at 25 °C using an Ubbelohde type 109 capillary viscometer as reported previously (Nakauma et al., 2016). Concentration of 110LMP in the mixture was fixed at 0.05%, whereas those of each low molecular-weight 111 polyuronate fraction were 0.01%, 0.02%, and 0.05%. η_r of dilute solutions was 112determined as t_s/t_0 , where t_s is the flow time for test solutions (either the mixture or 113114LMP alone) titrated by 7.5 mM CaCl₂ solution, and t_0 is the flow time for the solvent; 20 mM acetate buffer (pH 5.0). To eliminate the dilution effect by the addition of 115CaCl₂ solutions during titration, η_r was normalized: 116

117
$$\eta_r^N = \eta_r^{Ca}/\eta_r^C$$

118 Here η_r^{Ca} is the relative viscosity in calcium titration, and η_r^{C} is the relative viscosity

- in buffer titration (Fang et al., 2008). Data were presented as means \pm SD of triplicate.
- 120 2.5. Rheological measurements of gels

For the mixture of LMP and each low molecular-weight polyuronate fraction, rheological properties of gels were measured at 25 °C using a strain-controlled rheometer in an oscillation shear mode as reported previously (Nakauma et al., 2016). Concentration of LMP in the mixture was fixed at 0.8%, where as those of each low molecular-weight polyuronate fraction were 0.2%, 0.4%, and 0.8%. Dynamic viscoelasticity measurements, including frequency sweep and strain sweep tests, were 127

128

129

130

 $\eta^*(\omega) = K_{\rm f} \omega^{\rm nf} \, (0 < n_{\rm f} < 1)$

From the strain sweep test, some rheological parameters were determined, including constant for the higher modulus component K_{s1} , constant for the lower modulus component K_{s2} , exponent for the higher modulus component n_{s1} , and exponent for the lower modulus component n_{s2} in the following dual exponential equation:

between frequency ω and complex viscosity η^* (Keogh & O' Kennedy, 1998):

applied to gels formed by curing of the mixture at 25 °C for at least 20 min to reach to

pseudosaturation. From the frequency sweep test, some rheological parameters were

determined, including constant $K_{\rm f}$ and exponent $n_{\rm f}$, based on the power-law relationship

136
$$G'(\gamma) = K_{s1}\exp(-n^{s1}\times\gamma) + K_{s2}\exp(-n^{s2}\times\gamma)$$

137 In addition, the yield strain was identified as a peak in the plot of the elastic stress (G'

139 Data were presented as means \pm SD of triplicate for each rheological parameter.

140 2.6. Statistics

141 Data were analyzed by t-test to know the statistical difference from the control with a

significance defined at
$$p < 0.05$$
 or 0.01 at both sides using Microsoft Excel 2013

143 (Redmond, WA).

144 **3. Results and discussion**

145 *3.1. Relative viscosity measurement of dilute solutions*

146 3.1.1. Mixture of LMP and low molecular-weight pectin fraction

 η_r^N of LMP alone (i.e. control) increased monotonously with increased concentration 147148of calcium (in mM), and this was also the case for the mixture with either LM_w -HMP or LM_w-LMP (Fig. 1a & b). For the mixture, increasing degree of η_r^N was larger with 149increased addition level of low molecular-weight pectin fraction in general, and the 150deviation from the control was enlarged with increased calcium feed. LM_w -LMP was 151more effective than LM_w-HMP in these regards. η_r^N was replotted as a function of 152 $R_{\text{total fGal}}$; the molar ratio of fed calcium to free galactose residues from both LMP and 153the pectin fraction (Fig. 1c & d). In this plot, η_r^N reached peaked or saturated at R_{total} 154_{fGal} of 2.14 for the control, whereas η_r^N did so at 1.41 for the mixture with 0.05% 155 LM_{w} -HMP and at 0.89 for the mixture with 0.05% LM_{w} -LMP. It is likely for each low 156molecular-weight pectin fraction, particularly LM_w-LMP, to associate with LMP due to 157molecular similarity from thermodynamic point of view. The addition of the pectin 158159fraction, particularly LM_w -LMP, can act as a low molecular weight cross-linker to 160increase the hydrodynamic size of LMP. This contributes to increased exclusion volume and thus increased η_r^N . Differed from previous study using SAL (Nakauma et 161

162	al., 2016), decrease in η_r^N at low calcium feed (i.e. $R_{\text{total fGal}} < 0.25$) was not detected in
163	the LMP control or the mixture with low molecular-weight pectin fraction. This
164	indicates that monocomplexation should hardly occur for LMP at low calcium feed, and
165	thus the pectin faction has no impact on that molecular event. Calcium-binding
166	behavior of LMP is less critical than that of SAL due to sequential irregularity of
167	calcium binding site (Winning, Viereck, Norgaard, Larsen, & Engelsen, 2007), and
168	egg-box dimer formation can start even when theoretical calcium/galacturonate
169	stoichiometry (i.e. 0.25; 1 mol calcium/4 mol galacturonate) is not achieved (Fang et al.,
170	2008). This can be a cause for absence of the initial critical threshold concentration of
171	calcium in the LMP control or the mixture with low molecular-weight pectin fraction.
172	The second critical threshold concentration of calcium, which indicates the initiation of
173	lateral associations of egg-box dimer starting theoretically at the calcium/galacturonate
174	stoichiometry of 0.55 (Fang et al., 2007), was obscure in the LMP control or the mixture
175	with low molecular-weight pectin fraction, which is another difference from previous
176	study using SAL. If the peak in η_r^N corresponds to the second critical threshold
177	concentration, it is anticipated that low molecular-weight pectin fraction, particularly
178	LM_w -LMP, can promote the associations of LMP in some way.

179 *3.1.2. Mixture of LMP and low molecular-weight alginate fraction*

 η_r^N increased monotonously with increased concentration of calcium (in mM) 180 followed by a peak in some cases for the mixture with either LM_w-MAN or LM_w-GUL 181 at each addition level (Fig. 2a & b). In contrast to low molecular-weight pectin 182fraction, increasing degree of η_r^N was smaller with increased addition level of low 183molecular-weight alginate fraction, and the deviation from the control was enlarged 184with increased calcium feed. LM_w -GUL was more effective than LM_w -MAN in these 185 $\eta_{\rm f}^{\rm N}$ was replotted as a function of $R_{\rm fGal+Gul}$; the molar ratio of fed calcium to regards. 186 free galacturonate residues from LMP and free guluronate residues from alginate 187fraction (Fig. 2c & d). No substantial difference was observed between plots for the 188mixture with LM_w-MAN. On the other hand, η_r^N for the mixture with LM_w-GUL was 189190lower than that for the control when the stoichiometry was lower than 0.25 and almost overlapped with the control within the stoichiometry range from 0.5 to 1.0 at each 191addition level of LM_w-GUL. η_r^N for the mixture with LM_w-GUL was again lower than 192that for the control when the stoichiometry was higher than 1.0, and this effect was 193 194enhanced with increased addition level of LM_w -GUL. It is unlikely for low 195molecular-weight alginate fraction, particularly LM_w -MAN, to associate with LMP from 196thermodynamic point of view, and molecular associations can occur separately and

197	independently between LMP and the alginate fraction. It is thus anticipated that the
198	decrease in η_r^N by the addition of LM _w -MAN should be mainly due to its chelating
199	effect. In the mixture with LM_w -GUL, monocomplexation and subsequent egg-box
200	dimer formation of LM_w -GUL can occur prior to molecular associations of LMP. This
201	may be reasonable when differences in the chain length, sequential regularity of calcium
202	binding site, and molecular conformation between LMP and LM_w -GUL are considered.
203	Contribution of L <i>M</i> _w -GUL (even after self-associations) to η_r^N should be lower than that
204	of LMP, and this can explain the η_r^N behavior at low calcium feed. On the other hand,
205	macroscopic phase separation between LMP and LM _w -GUL can explain the η_r^N
206	behavior at high calcium feed.

- 207 *3.2. Rheological measurements of gels*
- 208 3.2.1. Mixture of LMP and low molecular-weight pectin fraction

Concentration of calcium fed to the system was 20 mM in theory, corresponding to $R_{\text{total fGal}} = 1.06$ for 0.8% LMP alone (i.e. control), and the addition of low molecular-weight pectin fraction increased the content of free galacturonate residues in the system and thus decreased $R_{\text{total fGal}}$ (Table 3). From the stoichiometry point of view, calcium feed should be sufficient for LMP to form egg-box dimers and multimers except for the mixture with 0.08% L M_{w} -LMP, in which $R_{\text{fGal+Gul}}$ was smaller than 0.55,

215	theoretical calcium/galacturonate stoichiometry for starting lateral associations of
216	egg-box dimer (Fang et al., 2007). From the strain sweep test, no difference was found
217	in the yield strain between the LMP control and the mixture with LM_w -HMP at each
218	addition level, whereas the sum of K_{s1} and K_{s2} (i.e. equilibrium G' in the linear
219	viscoelastic regime) for the mixture increased with increased addition level of
220	LM_w -HMP (Table 3). From the frequency sweep test, no difference was found in the
221	power-law exponent $n_{\rm f}$ between the LMP control and the mixture with LM _w -HMP at
222	each addition level (Table 3). Also, G' for the mixture with LM_w -HMP was almost
223	independent of frequency from 0.1 to 100 rad/s and increased with increased addition
224	level of LM_w -HMP in the whole frequency range tested (Fig. 3a). These results
225	indicate that the addition of LM_w -HMP should not alter the nature of inter-molecular
226	associations of LMP and strengthen the super-molecular structure of LMP. This
227	accords qualitatively with the η_r^N profile in dilute solutions. For the mixture with
228	LM_w -LMP, the yield strain decreased with increased addition level of LM_w -LMP in
229	general, whereas the sum of K_{s1} and K_{s2} increased with increased addition level of
230	L M_w -LMP. L M_w -LMP showed a greater effect in increasing the equilibrium G' than
231	LM_w -HMP even though the calcium feed per binding site (represented by $R_{\text{total fGal}}$) was
232	lower when compared at the same addition level (Table 3). No difference was found in

233 $n_{\rm f}$ between the LMP control and the mixture with LM_w-LMP at each addition level 234(Table 3). Similar to the case of LM_w -HMP, G' for the mixture with LM_w -LMP was almost independent of frequency from 0.1 to 100 rad/s and increased with increased 235addition level of LM_w -LMP in the whole frequency range tested (Fig. 3b). LM_w -LMP 236237showed a greater effect in increasing G' than that LM_w -HMP when compared at the 238same addition level. These results indicate that the addition of LM_w -LMP should not 239alter the nature of inter-molecular associations of LMP and strengthen the super-molecular structure of LMP, similar to LM_w -HMP. One marked difference is the 240structural brittleness provided by the addition of LM_w -LMP with the LMP system as 241presented by decreased yield strain. This also accords qualitatively with the η_r^N profile 242243in dilute solutions, and decreased yield strain of gels may correspond to the peak shift to 244lower calcium concentration (Fig. 1d).

245 3.2.2. *Mixture of LMP and low molecular-weight alginate fraction*

From the stoichiometry point of view, calcium feed should be sufficient for LMP to form egg-box dimers and multimers except for the mixture with 0.08% LM_w -GUL, in which $R_{fGal+Gul}$ was smaller than 0.55 (Table 4). From the strain sweep test, the yield strain for the mixture with LM_w -MAN increased with increased addition level of LM_w -MAN in general, whereas the sum of K_{s1} and K_{s2} decreased with increased

251	addition level of LM_w -MAN (Table 4). From the frequency sweep test, n_f decreased
252	with increased addition level of LM_w -MAN (Table 4). Also, G' for the mixture was
253	more frequency dependent, particularly within the frequency range from 0.1 to 1.0 rad/s,
254	with increased addition level of LM_w -MAN (Fig. 4a). These results indicate that the
255	addition of LM_w -MAN should prevent inter-molecular associations of LMP and weaken
256	the super-molecular structures. This accords qualitatively with the η_r^N profile in dilute
257	solutions. Similar results were obtained for the mixture with LM_w -GUL, but these
258	effects of LM_w -GUL were much larger than those of LM_w -MAN when compared at the
259	same addition level. It is anticipated that LM_w -GUL should bind with calcium prior to
260	LMP and should form microgels or clusters which can prevent the inter-molecular
261	associations of LMP. Rheological data were obtained at a fixed calcium dose not at a
262	fixed $R_{\text{total fGal}}$ or $R_{\text{fGal+Gul}}$ in the present study. It should be noted that the functions of
263	low molecular-weight polyuronate fraction in calcium-induced gelation of LMP may be
264	different at lower R values than theoretical stoichiometry of forming egg box dimer.
265	3.3. Molecular association mechanism between LMP and low molecular-weight pectin
266	fraction in comparison with low molecular-weight alginate fraction
267	Molecular association during calcium-induced gelation of LMP alone was presented
268	schematically in comparison with that of SAL alone (Fig. 5). For LMP,

15 / 26

269	intra-molecular and inter-molecular associations occur coincidently upon calcium
270	addition, which is quite different from multiple steps and critical behaviors of SAL.
271	Intra-molecular association leads to the reduction of molecular size and volume, while
272	inter-molecular association leads to the expansion. It may depend on M_w of LMP and
273	also the gelation step which association is dominant, but in the case of LMP used in the
274	present study, inter-molecular association can be dominant over intra-molecular
275	association even at low calcium feed, causing the increase in $\eta_{\rm r}$ (Ralet, Dronnet,
276	Buchholt, & Thibault, 2001; Fang et al., 2007). This is quite different from SAL, in
277	which intra-molecular association occurs dominantly at below the stoichiometry $R =$
278	0.25. Absence of the second critical threshold concentration for LMP, which is
279	detected at $R = 0.55$ in the case of SAL, indicates that lateral association of egg-box
280	dimers is more difficult to form than in SAL. This difference between LMP and SAL
281	can be attributed to the degree of molecular homogeneity in terms of monomer
282	composition and conformation. For SAL, very trace amount of monomers exists in the
283	molecules other than guluronate and mannuronate, and the sequence of these monomers
284	is regular with linear molecular conformation. Thus, calcium binding behavior of SAL
285	is critical through a series of molecular event, including intra-molecular association (i.e.
286	monocomplexation) and egg-box dimer formation, followed by lateral inter-molecular

287	association of the dimers. In contrast, LMP is characterized by a variety of monomers
288	and existence of the hairy region, making molecular associations more random and
289	super-molecular structures less regular than in SAL, thus preventing the lateral
290	associations (Fang et al, 2008). As a contribution to elasticity enhancement, it is
291	anticipated that energetic factor due to the strength of crosslinks should be dominant for
292	SAL, particularly G-rich one (Funami et al, 2009), whereas entropic factor due to the
293	number of crosslinks plays an additional role for LMP.
294	Molecular association during calcium-induced gelation of the mixture of LMP and
295	each low molecular-weight polyuronate fraction was also presented schematically (Fig.
296	6 for the mixture with LM_w -LMP and Fig. 7 for the mixture with LM_w -GUL). As
297	mentioned, for LMP used in the present study, inter-molecular association can be
298	dominant over intra-molecular association even at low calcium feed, and η_r increases
299	gradually without showing critical concentration boundary of calcium, both of which
300	are different from the behavior of SAL. Moreover, the pectin fraction added can act as
301	a low molecular weight cross-linker to increase the hydrodynamic size of LMP and can
302	promote the association of the long chain normal pectin since thermodynamic
303	incompatibility between LMP and the pectin fraction should not be high considering the
304	similarity of monomer composition and conformation. Low molecular-weight pectin

305	fraction, particularly LM_w -LMP, associates with free galacturonate in the LMP
306	molecules via calcium, and as a result, LMP has longer chain and larger number of
307	galacturonate site than the original LMP. It is anticipated that these changes should
308	increase the opportunity for molecular associations but decrease the structural
309	homogeneity of super-molecular structure at the same time, which may result in the
310	network formation of various pore sizes (Fig. 6). These may explain larger G' and
311	smaller yield strain for the mixture in a concentrated system. Effects of the pectin
312	fraction relate to the sequentiality of calcium binding site, and a certain length is
313	necessary for binding, for example consecutive 14-20 M free galacturonate (Rees, 1982;
314	Axelos, & Thibault, 1991). This is why LM_w -LMP is more effective than LM_w -HMP
315	in modifying the gelation behavior of LMP.

Thermodynamic incompatibility between LMP and low molecular-weight alginate fraction can be higher than in the pectin fraction, and thus the alginate fraction prefers to bind together rather than binding to LMP. Differed from the pectin fraction, dimers and multimers of the alginate fraction cannot associate easily with LMP molecules (Fig. 7). It is clear from viscometry in dilute solutions that the addition of low molecular-weight alginate fraction, particularly LM_w -GUL, decreases η_r of LMP at below the stoichiometry R = 0.25. This may indicate the absence of inter-molecular

323	association between LMP and low molecular-weight alginate fraction, and the alginate
324	fraction can compete with LMP for calcium at low calcium feed. Decrease in η_r for
325	the mixture with LM_w -GUL at above the stoichiometry $R = 0.55$ can be attributed to
326	macroscopic phase separation based on the incompatibility between LMP and
327	LM_w -GUL. Super-molecules from LM_w -GUL are dispersed within the LMP system
328	and can prevent molecular associations of LMP, making the pore size of the gel network
329	larger and rheological nature of the system more flexible and plastic. Effects of low
330	molecular-weight alginate fraction relate to the sequentiality of calcium binding site,
331	and a certain length is necessary for binding, for example consecutive 20 M free
332	guluronate (Kohn, 1975; Kohn & Larsen, 1972). This is why LM_w -GUL is more
333	effective than LM_w -MAN in modifying the gelation behavior of LMP.

4. Conclusions

Low molecular-weight polyuronate fraction modifies the calcium binding and consequent molecular association behaviors of long chain normal low-methoxyl pectin and thus rheological properties of the gels. These effects of the polyuronate fraction are enhanced when the degree of methyl-esterification is low for pectin and the guluronate content or guluronate-block length is high for alginate, indicating a key role of calcium binding site. Low molecular-weight pectin fraction, particularly 341 low-methoxyl one, strengthens the gel structure of normal low-methoxyl pectin, 342 whereas low molecular-weight alginate fraction, particularly guluronate-rich one, 343 weakens the gel structure of normal low-methoxyl pectin. Different functions between 344 low molecular-weight pectin and alginate fractions can be attributed to the molecular 345 compatibility with normal low-methoxyl pectin.

- 346 Acknowledgements
- 347 Y. Fang acknowledges the support from National Natural Science Foundation of China348 (31322043).
- 349

```
350 References
```

- Aarstad,O., Strand B. L., Klepp-Andersen L. M., &Skjåk-Bræk, G., (2013). Analysis of G-Block
- 352 distributions and their impact on gel properties of in vitro epimerized mannuronan.
- 353 Biomacromolecules, 14, 3409–3416.
- 354 Akhtar, M., Dickinson, E., Mazoyer, J., &Langendorff, V. (2002). Emulsion stabilizing properties of
- depolymerized pectin. Food Hydrocolloids, 16, 249–256.
- 356 Axelos, M.A., & Thibault, J.-F. (1991). Chapter 6: The chemistry of low methoxyl pectin gelation. In
- 357 R.H. Walter (Ed.), The chemistry and technology of pectin (pp. 109-118). New York: Academic
- 358 Press, Inc.

359	Borgogna, M.,	Skjåk-Bræk,	G., Paoletti, S.,	&Donati, I.,	(2013),	On the	initial	binding	of alginate	by
-----	---------------	-------------	-------------------	--------------	---------	--------	---------	---------	-------------	----

- 360 calcium ions. The tilted Egg-Box hypothesis. Journal of Physical Chemistry B, 117, 7277–7282
- 361 Cabrera, J. C., Boland, A., Messiaen, J., Cambier, P., &Cutsem, P. V., (2008). Egg box
- 362 conformation of oligogalacturonides: The time-dependent stabilization of the elicitor-active
- 363 conformation increases its biological activity. Glycobiology, 18, 473–482.
- 364 Draget, K. I., Gåserød, O., Aune, I., Andersen, P. O., Stobakken, B., Stokke, B. T., & Smidsrød, O.,
- 365 (2001). Effect of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels.
- 366 Food Hydrocolloids, 15, 485–490.
- 367 Draget, K. I., & Smidsrød, O., (2006). Modification of gelling kinetics and elastic properties by nano
- 368 structuring of alginate gels exploiting the properties of poly-gluronate. Gums and Stabilisers for
- 369 the Food Industry 13. 227–233.
- 370 Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., & Williams, P. A. (2008). Binding
- 371 behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydrate Polymers,
- 372 72, 334-341.
- 373 Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., Williams, P. A., & Li, L., (2007).
- 374 Multiple Steps and Critical Behaviors of the Binding of Calcium to Alginate. Journal of Physical
- 375 Chemistry B. 111, 2456-2462.
- 376 Funami, T., Fang, Y., Noda, S., Ishihara, S., Nakauma, M., Draget, K. I., Nishinari, K., & Phillips, G.

- 377 O., (2009). Rheological properties of sodium alginate in an aqueous system during gelation in
- relation to supermolecular structures and Ca^{2+} binding. Food Hydrocolloids, 23, 1746–1755.
- 379 Gant, G. T., Morris E. R., Rees DA, Smith PJC, Thom D. 1973. Biological interactions between
- 380 polysaccharides and divalent cations: The egg-box model. FEBS Lett. 32, 195–198.
- 381 Hotchkiss, A.T. JR., Savary, B. J., Cameron, R. G., Chau, H. K., Brouillette, J., Luzio, G. A. &
- 382 Fishman, M. L., Enzymatic, (2002). Modification of Pectin to Increase Its Calcium Sensitivity
- 383 while Preserving Its Molecular Weight. Journal of Agricultural and Food Chemistry, 50, 2931-
- 384 2937.
- 385 Keogh, M. K. & O' Kennedy, B. T. (1998). Rheology of stirred yogurt as affected by added milk fat,
- 386 protein and hydrocolloids. Journal of Food Science, 63, 108–112.
- 387 Kohn, R. (1975). Ion binding on polyuronates alginate and pectin. Pure and AppliedChemistry, 42,
- 388 371-397.
- 389 Kohn, R., & Larsen, B. (1972). Preparation of water-soluble polyuronic acids andtheir calcium salts,
- 390 and the determination of calcium ion activity in relation to he degree of polymerization.
- 391 ActaChemicaScandinavica, 26, 2455-2468.
- 392 Li, L., Fang, Y., Vreeker, R., & Appelqvist, I., (2007). Reexamining the Egg-Box Model in
- 393 calcium-alginate gels with X-ray diffraction. Biomacromolecules, 8, 464-468.
- 394 Luzio, G.A., Cameron, R. G., (2008). Demethylation of a model homogalacturonan with the

- 395 salt-independent pectin methylesterase from citrus: Part II. Structure-function analysis.
- 396 Carbohydrate Polymers, 71 300–309.
- 397 Mørch,Y. A., Donati, I., Strand, B. L., &Skjak-Bræk, G., (2006). Effect of Ca²⁺, Ba²⁺, and Sr²⁺ on
- alginate microbeads. Biomacromolecules, 7, 1471-1480.
- 399 Nakauma, M., Funami, T., Fang, Y., Nishinari, K., Draget, K. I. & Phillips, G. O., (2016) Calcium
- 400 binding and calcium-induced gelation of sodium alginate modified by low molecular-weight
- 401 polyuronate. Food Hydrocolloids, 55, 65-76.
- 402 Ralet, M. C., Dronnet V., Buchholt, H. C., Thibault, J. F., (2001). Enzymatically and chemically
- 403 de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding
- 404 properties. Carbohydrate Research, 336, 117–125.
- 405 Rees, D.A. (1982). Polysaccharide conformation in solutions and gels Recent results on pectins.
- 406 Carbohydrate Polymers, 2, 254-263.
- 407 Slavov, A., Garnier, C., Crépeau, M. J., Durand, S., Thibault, J. F., & Bonnin E., (2009). Gelation of
- 408 high methoxy pectin in the presence of pectin methylesterases and calcium. Carbohydrate
- 409 Polymers, 77, 876–884.
- 410 Stokke, B. T., Smidsrød, O., Bruheim, P., &Skjåk-Bræk, G., (1991). Distribution of uronate residues
- 411 in alginate chains in relation to alginate gelling properties. Macromolecules, 1991, 24, 4637-4645.
- 412 Thibault, J. F., & Rinaudo, M., (1985). Interactions of mono- and divalent counterions with alkali-

- and enzyme-deesterified pectins in salt-free solutions. Biopolymers, 24, 2131-2143.
- 414 Walls, H. J., Caines, S. B., Sanchez, A. M., & Khan, S. A. (2003). Yield stress and wall slip
- 415 phenomena in colloidal silica gels. Journal of Rheology, 47, 847-868.
- 416 Winning, H., Viereck, N., Norgaard, L., Larsen, J., & Engelsen, S. B. (2007). Quantification of the
- 417 degree of blockiness in pectins using H¹ NMR spectroscopy and chemometrics. Food
- 418 Hydrocolloids, 21, 256–266.
- 419
- 420 Figure captions

421 Fig. 1. Changes in normalized relative viscosity $\eta_r^N (\eta_r^{Ca}/\eta_r^C)$ during titration of 7.5 mM CaCl₂ for

422 the mixture of 0.05% normal low-methoxyl pectin (LMP) and low molecular-weight pectin fraction

- 423 at 0% (closed circle), 0.01% (open triangle), 0.02% (closed square), and 0.05% (open circle) for
- 424 high-metoxyl pectin fraction (LM_w -HMP) (a & c) and low-mexthoxyl pectin fraction (LM_w -LMP) (b
- 425 & d). Data are plotted as a function of calcium concentration (a & b) and the molar ratio R_{total fGal}
- 426 (calcium/total free galacturonate from LMP and pectin fraction) (c & d). See the text for
- 427 experimental detail. Data are presented as means \pm SD of triplicate.

428 Fig. 2. Changes in normalized relative viscosity $\eta_r^N (\eta_r^{Ca}/\eta_r^C)$ during titration of 7.5 mM CaCl₂ for

- 429 the mixture of 0.05% normal low-methoxyl pectin (LMP) and low molecular-weight alginate
- 430 fraction at 0% (closed circle), 0.01% (open triangle), 0.02% (closed square), and 0.05% (open circle)
- 431 for mannuronate-rich alginate fraction (LM_w-MAN) (a & c) and guluronate-rich alginate fraction

432 (LM_w-GUL) (b & d). Data are plotted as a function of calcium concentration (a & b), and the molar

433 ratio R_{fGal+Gul} (calcium/the sum of free galacturonate from LMP and free guluronatefrom alginate

- 434 fraction) (c & d). See the text for experimental detail. Data are presented as means \pm SD of
- 435 triplicate.

436 Fig. 3. Frequency-dependence of dynamic storage modulus G' for the mixture of 0.8% normal 437low-methoxyl pectin (LMP) and low molecular-weight pectin fraction at 0% (closed circle), 0.2% 438(open triangle), 0.4% (closed square), and 0.8% (open circle) for high-methoxyl pectin fraction 439 $(LM_w$ -HMP) (a) and low-methoxyl pectin fraction $(LM_w$ -LMP) (b). Concentrations of both CaCO₃ 440 and glucono- δ -lactone were fixed at 20 mM. See the text for experimental detail. Measurements 441 were carried out in triplicate, and one representative datum is shown. 442Fig. 4. Frequency-dependence of dynamic storage modulus G' for the mixture of 0.8% normal 443low-methoxyl pectin (LMP) and low molecular-weight alginate fraction at 0% (closed circle), 0.2% 444 (open triangle), 0.4% (closed square), and 0.8% (open circle) for mannuronate-rich alginate fraction 445 (LM_w-MAN) (a) and guluronate-rich alginate fraction (LM_w-GUL) (b). Concentrations of both 446 CaCO₃ and glucono-δ-lactone were fixed at 20 mM. See the text for experimental detail.

- 447 Measurements were carried out in triplicate, and one representative datum is shown.
- 448 Fig. 5. Schematic presentation of calcium-induced gelation for normal low-methoxyl pectin (LMP)
- 449 (a) in comparison with normal sodium alginate (SAL) (b).

- 450 Fig. 6. Schematic presentation of calcium-induced gelation for the mixture of normal low-methoxyl
- 451 pectin (LMP) and low molecular-weight low-methoxyl pectin fraction (LM_w -LMP).
- 452 Fig. 7. Schematic presentation of calcium-induced gelation for the mixture of normal low-methoxyl
- 453 pectin (LMP) and low molecular-weight guluronate-rich alginate fraction (LM_w-GUL).