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Abstract

The motion of electrons and nuclei in photochemical events often involve conical

intersections, degeneracies between electronic states. They serve as funnels in nuclear

relaxation processes where the electrons and nuclei couple nonadiabatically. Accurate

ab initio quantum chemical models are essential for interpreting experimental measure-

ments of such phenomena. In this Letter we resolve a long-standing problem in coupled

cluster theory, presenting the first formulation of the theory that correctly describes

conical intersections between excited electronic states of the same symmetry. This new

development demonstrates that the highly accurate coupled cluster theory can be ap-

plied to describe dynamics on excited electronic states involving conical intersections.
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Conical intersections, or electronic degeneracies, are widely recognized as central to the

motion of nuclei and electrons in photochemical events.1,2 They have been implicated in

a range of chemical reactions, from the ring-opening reaction of 1,3-cyclohexadiene3 and

the proton transfer reaction in hydroxybenzaldehyde4 to the cis-trans isomerization thought

to be the primary photochemical event in human vision.5 Our understanding of nuclear

dynamics is firmly rooted in the often accurate Born-Oppenheimer approximation, where

the motion of the electrons create potential energy surfaces to which the nuclei in turn

respond.6 However, the approximation breaks down completely when a molecule approaches

a conical intersection, where the dynamics involves an intricate interplay between nuclear

and electronic motion.7 Advances in pump-probe techniques have made this phenomenon

increasingly open to experimental investigation.8

Rapid developments in ab initio quantum chemistry was spurred by the realization that

nonadiabaticity is the norm in photochemistry. These include assessments of the potential

energy surfaces close to electronic degeneracies,9,10 attempts to incorporate nonadiabaticity

in dynamics simulations by solving the time-dependent Schrödinger equation explicitly,7,11

implementations of nonadiabatic coupling elements,12–14 and schemes for constructing quasi-

diabatic representations based on ab initio data15,16. A major overarching goal of this re-

search is the reliable prediction of nonadiabatic dynamics, which will enable one to monitor,

in real-time, processes—such as electron density fluctuations7—not directly accessible by

experiment.1 Since the Schrödinger equation cannot be solved exactly for many-electron

molecular systems, such predictions must be grounded in approximate treatments of elec-

tronic correlation, or electron-electron interactions.17

The most successful treatment of electronic correlation is provided by coupled cluster

theory,18,19 a model now routinely applied to chemically interesting systems in spite of its

steep computational scaling.20 Nevertheless, as is true for all quantum chemical models, the

theory is not globally accurate and may fail to describe certain regions of the potential en-

ergy surfaces. The standard coupled cluster ground state wave function, which is based on a
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closed-shell Hartree-Fock reference, is less accurate in regions where the exact wave function

has multireference character (e.g., when a molecule dissociates into fragments). Accurately

describing multireference ground states within a coupled cluster framework is still an active

research area.21,22 In the following, we restrict ourselves to excited electronic states, where

multireference character is not an issue23 but where other problems have hindered the the-

ory from being applied to conical intersections. About a decade ago, Hättig24 argued that

Hermitian symmetry—a property that coupled cluster theory does not have—is needed to

describe conical intersections between states of the same symmetry. The unphysical com-

plex energies, predicted to exist due to the nonsymmetric eigenvalue problem,24 were later

found in coupled cluster singles and doubles (CCSD)25 and triples (CCSDT)26,27 calcula-

tions.28 More recently, complex energies were encountered in dynamics simulations using the

perturbative doubles (CC2)29 model, illustrating their relevance in realistic applications.30

Moreover, since the vast majority of degeneracies are same-symmetry conical intersections,2

coupled cluster theory has been of limited use for conical intersections in general.

The state-of-the-art theories for conical intersections are complete active space (CAS)

models, such as CASSCF and CASPT2.31 However, while they give a physically correct

description of conical intersections by their Hermitian symmetry (see, e.g., Ben-Nun et al.11),

their ability to account for dynamic correlation is limited.32 The same can be said for the

algebraic diagrammatic construction (ADC)33 theory advocated by some groups.24,34 The

ground state wave function in ADC, obtained by Møller-Plesset perturbation theory, is known

to have a limited domain of validity.35,36 For large systems, computational chemists often

resort to density functional theory (DFT), which is less computationally demanding than

ab initio theories, but also less accurate.37,38 On the other hand, coupled cluster theory

accurately accounts for dynamic correlation effects and multireference character in excited

states. A formulation of the theory able to treat conical intersections will therefore be a

highly desirable addition to current methodologies.

A notable example is the ππ∗ nuclear relaxation in thymine, where theoretical investiga-
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tions by various methods have provided inconsistent predictions.39 Some simulations predict

that relaxation proceeds first to a local minimum of the ππ∗ state within 100 femtoseconds,

followed by slow internal conversion from the ππ∗ state to the nπ∗ state (CASPT2)40 or to the

ground state (CASSCF);41 others predict fast barrierless ππ∗/nπ∗ relaxation (TD-DFT)38

or direct ππ∗/ground state relaxation within a few hundred femtoseconds (CASPT2).42 Evi-

dently, accurate quantum chemical predictions are essential for reliable predictions in dynam-

ics simulations. The accuracy of coupled cluster theory was recently shown in experiments

confirming ultrafast ππ∗/nπ∗ conversion, emphasizing the need for highly accurate methods

in excited state dynamics.43

In a recent paper, we showed that nonsymmetric theories provide a correct description

of conical intersections if they are nondefective, a mathematical property that ensures non-

parallel eigenstates.44 Here we demonstrate that coupled cluster theory can be constrained

to be nondefective, thereby resolving the long-standing intersection issues.24 The modified

theory, named similarity constrained coupled cluster theory, provides a correct description

of same-symmetry conical intersections. In particular, we illustrate numerically that this is

the case for a conical intersection in hypofluorous acid. This new development shows that

coupled cluster theory can be applied to nonadiabatic photochemical processes.

The coupled cluster ground state wave function is written |Ψ〉 = eT |Φ0〉 for the Hartree-

Fock state |Φ0〉, where T =
∑
tµ τµ, the cluster operator, consists of excitation operators,

τµ, weighted by amplitudes, tµ.19,45 The nth excitation energy and electronic state, ωn and

rn, are determined from

Arn = ωn rn, Aµν = 〈Φµ |(H̄ − E0) |Φν〉, |Φµ〉 = τµ |Φ0〉, τ0 = I, (1)

where E0 = 〈Φ0 |H̄ |Φ0〉 and H̄ = e−TH eT is the similarity transformed Hamiltonian.46,47

For notational convenience, we assume that {|Φµ〉} is an orthonormal basis. In the CCSD

model, the cluster operator is restricted to one- and two-electron excitations, with amplitudes
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determined by projection onto the corresponding excited determinants.25

Complex pair of energies
in the interior of the cylinder

Intersection seam
of dimension N − 2

Intersection cylinder
of dimension N − 1

Apparent intersection seam
of dimension N − 2

Unconstrained
coupled cluster theory

Constrained
coupled cluster theory

Figure 1: Conical intersections in coupled cluster theory. The illustrated shapes are for three vibrational
degrees of freedom (N = 3), appropriate for hypofluorous acid and other three-atomic molecules. Superim-
posed on the illustrated vibrational space are potential energy surfaces in the plane orthogonal to the seams
at a point of intersection.

We recently traced the unphysical artifacts, observed using coupled cluster methods at

same-symmetry conical intersections,28 to defects in the nonsymmetric matrix A.44 Matrices

are known as defective when they are impossible to diagonalize, i.e. when two or more of

their eigenvectors are parallel.48

Considering a representation of A in a basis of the intersecting states, Jij(R), i, j = 1, 2,

where R is a nuclear coordinate, Hättig24 argued that at a degeneracy of a nondefective and

nonsymmetric J,

J11 = J22, J12 = 0, J21 = 0, (2)

and concluded, as others have since,9,28 that the intersections of coupled cluster theory are

qualitatively wrong. This is because equation (2), for real H, has one more condition than in

quantum mechanics,49,50 and might therefore be expected to give intersections of dimension

N − 3, where N is the number of vibrational degrees of freedom. These three conditions are

redundant for nondefective matrices, however. It can be shown that the R satisfying them

6



are expected to inhabit a space of the correct dimension44 N − 2.

In practice, A is defective with intersections where (J11 − J22)2 + 4 J12 J21 = 0, an equa-

tion obeyed in a space of dimension24 N − 1. While this dimensionality is incorrect, the

degeneracy is folded on itself. The intersection is a cylinder instead of a curve for N = 3,

for instance, resembling a seam of dimension N − 2. See Figure 1. Inside the cylinder the

excitation energies are complex and on its surface A is defective.28,44

When the cluster operator is complete (i.e., includes all excitation operators), A+E0 I is

mathematically similar to a representation H of the electronic Hamiltonian H. It can then

be shown that if cn is an eigenvector of H, where Hµν = 〈Φµ |H |Φν〉, then cn = Q rn, where

Qµν = 〈Φµ |eT |Φν〉. The orthogonality of the cn, implied by the symmetric H, translates to

a generalized orthogonality for the eigenvectors rn of A:

cTk cl = rTk Q
T Qrl = 0, k 6= l. (3)

As this is a relation only satisfied for a complete cluster operator, some of the eigenvectors

rn may and indeed do become parallel at same-symmetry intersections in truncated coupled

cluster methods. In the full space limit, the left eigenvectors lk and ll are similarly orthogonal

over the inverse of the above metric, (QTQ)−1.

The wave function of similarity constrained CCSD (SCCSD) is defined by including an

additional triple excitation in cluster operator T :

T =
∑
ai

tai τ
a
i +

1

2

∑
aibj

tabij τ
ab
ij + ζ τABCIJK . (4)

The amplitudes tai , t
ab
ij , and ζ are determined such that i) equation (3) is valid for the two

intersecting states, and ii) the projected equations of the CCSD model are satisfied. This

leads to a coupled set of equations that may be solved self-consistently. The implementation

is described in more detail in the Supporting Information.

Note that generalized orthogonality over a positive definite matrix is sufficient to ensure
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that the theory is nondefective. Indeed, since QTQ is positive definite, parallel eigenvectors

cannot satisfy equation (3). The theory is consequently nondefective.

The additional term in the cluster operator T may equivalently be viewed as performing

a second similarity transformation of H. This similarity transformation,

H̄ = e−ζ τ
ABC
IJK H̄ccsd e

ζ τABC
IJK , (5)

is chosen such that H̄ guarantees the validity of the generalized orthogonality condition,

where H̄ccsd is the standard CCSD similarity transformed Hamiltonian. Imposing constraints

on the matrix elements of model Hamiltonians is an idea that dates back to Linderberg51.

As first shown by Köhn and Tajti,28 the lowest singlet excited states of A1 symmetry

in formaldehyde have a defective conical intersection. Here we reproduce their findings and

compare them with the predictions of the similarity constrained theory. The results are

shown in Figure 2, where we have used the same geometry as in the original study.28

The unphysical behavior of CCSD is evident. The states become degenerate at 1.3515 Å

and 1.3570 Å, giving a complex pair of energies in-between (E± = Ereal ± i Eimag). Such

artifacts are absent in the constrained model, where the defective intersection becomes an

avoided crossing. If it exists, the conical intersection of the theory is located elsewhere in

nuclear space.

The lowest singlet excited states of A′ symmetry in hypoclorous acid intersect.52 We inves-

tigate this conical intersection in hypofluorous acid. This three-atomic molecule (H−O−F)

provides a pedagogical illustration of the model, allowing direct comparisons with Figure 1.

After locating a point of intersection, we performed a scan in the branching plane, the plane

orthogonal to the intersection seam.53 The results are shown in Figure 3.

In a recent paper, we showed that nondefective coupled cluster models exhibit the correct

first-order branching plane energy gap linearity,44 that is, their intersections are conical.53

From Figure 3, we see that the energy surfaces have the physically correct conical appearance;
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Figure 2: The 2 1A1 and 3 1A1 excited states of formaldehyde using CCSD (red) and SCCSD (blue) with an
aug-cc-pVDZ basis. The real part of the CCSD energies is shown. An imaginary pair of energies is obtained
for the C−−O bond distances 1.3515–1.3570 Å.

the energy gap linearity is satisfied. Note the contrast to calculations on formaldehyde using

CCSD, where the energy gradient changes more rapidly close to the intersection; this can be

seen from Figure 2 in the vicinity of the CO bond distances 1.3515 Å and 1.3570 Å.

In this initial development, we have used a conceptually simple cluster operator T that

preserves the size-extensive structure of the ground state wavefunction and energy as well

as the size-intensive structure of A.54 Aiming for a small correction of the wave function

|Ψ〉 = eT |Φ0〉, we selected the excitation, from the dominant single and double excitations

contributing to the two states, such that the ζ parameter was sufficiently small (we used 2

as a threshold). The excitation was selected at a particular geometry and kept unchanged in
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Figure 3: A branching plane in hypofluorous acid (SCCSD/aug-cc-pVDZ) between the 2 1A′ and 3 1A′

excited states.

subsequent calculations. This selection procedure can easily be made black-box; in the initial

geometry of the simulation, one can identify an appropriate excitation from an automated

test of several excitations.

We have considered variations in the energies for twelve choices of triple excitation, see

Table S2 in the Supporting Information. The energies are found to differ from CCSD by

less than five milliHartrees for all excitations, and the energy gaps are similar to the CCSD

and CC3 gaps (but different from the CC2 gap). In terms of quality and the location of the

intersection seam, the constrained model is thus similar but not identical to CCSD. This

behavior is as expected this close to seam, given the proximity to the unphysical cylinder
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(see Figure 1). For a numerical illustration of the cylinder, see our recent paper.44

While conceptually simple, the single triple excitation in T implies a loss of orbital

invariance and does not guarantee continuous potential energy surfaces. Other formulations

preserving the N6 scaling are indeed possible where the cluster operator is also orbital

invariant. For instance, this can be achieved by defining the triples contribution in T to be

the product of the singles and doubles contributions in one of the states. This definition also

guarantees continuity of the potential energy surfaces. Let rµ1 and rµ2 denote the singles

and doubles contributions in the state r. The cluster operator is then defined as

T = T1 + T2 + ζ
∑
µ1µ2

rµ1rµ2τµ1τµ2 , (6)

where the ζ parameter is used to enforce the generalized orthogonality in equation (3). In

equation (6), only one of the intersecting states is selected. However, both can be included

to give a balanced operator, state invariant with respect to the intersecting states. Al-

ternatively, the states can provide two parameters, ζ1 and ζ2, which will allow generalized

orthogonality to be enforced between the left and right eigenvectors simultaneously. For

the theory to be nondefective, however, orthogonality between either sets of eigenvectors

is sufficient. A generalization for three-state intersections is straight-forward. In this case,

the three states can each provide a parameter, ζ1, ζ2, and ζ3, that may be used to enforce

generalized orthogonality among the left or right eigenvectors.

Concluding remarks. Similarity constrained coupled cluster theory (SCCSD) gives a

physically correct description of an 2 1A′/3 1A′ same-symmetry conical intersection in hy-

pofluorous acid, with both the proper dimensionality of the intersection seam as well as

the correct energy gap linearity in the branching plane.2 Confirming our predictions from

a recent paper44 and resolving a long-standing problem in coupled cluster theory,24 this

finding demonstrates that the model can properly describe, with minor modifications, same-

symmetry conical intersections between electronic excited states.
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Nonadiabatic coupling elements and energy gradients govern the dynamics close to a

conical intersection.55 Implementing these quantities in the similarity constrained theory is

thus necessary for it to be applied in ab initio dynamics simulations. These developments are

within reach in the near future, although some controversies for the nonadiabatic coupling

elements remains to be settled.14,56 On the other hand, techniques for energy gradients are

well-established.54,57 For use in dynamics simulations on larger systems, the model should

be extended to the lower levels in the coupled cluster hierarchy. Particularly relevant is a

perturbative doubles model (SCC2, analogous to CC229), which should scale as N5, where N

is the number of orbitals. Further developments include implementations of cluster operators

which ensure orbital invariance, state invariance among the intersecting states, and continuity

of the potential energy surfaces.

As a closing remark, we note that the approach adopted in this paper, namely to enforce

a feature of the exact wave function (i.e., nondefectiveness), could potentially have more

wide-reaching applications. The standard philosophy in ab initio quantum chemistry is to

solve ever more accurate representations of the Schrödinger equation (the coupled cluster

hierarchy results by expanding the subspace onto which the equation is projected). Yet

many desirable features of the wave function—such as gauge invariance, the related origin

invariance,58 and the correct scaling of molecular properties and transition moments54,59—

are only valid for a complete cluster operator, and in some cases a complete one-electron

basis. Constraining the approximate wave function to satisfy exact properties may turn out

to be very useful.

Computational details. Calculations were carried out using the Dalton quantum chem-

istry program.60 We converged energies and residuals to within 10−8. The orthogonality in

equation (3) was converged to within 10−6, giving energies correct to approximately 10−6

Hartrees. The energies in Figures 2 and 3 are obtained by τABCIJK = τ 7,2,38,8,7 and τABCIJK = τ 10,2,27,5,8 ,

respectively, where the canonical orbitals are ordered according to their energy, from low to

high. Complex energies were converged with a modified Davidson algorithm.28
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A branching plane in hypofluorous acid was identified as follows. First we located a point

of intersection. By searching along three orthonormal vibrational coordinates, we then found

the intersection seam vector s, the direction in which the degeneracy is preserved. To obtain

an orthogonal basis of the branching plane (the orthogonal complement to s), we chose the

direction in which the energy difference increased most (denoted g, where g ⊥ s) and the

vector orthogonal to s and g (denoted h). The normal modes used in the above procedure,

as well as cartesian coordinates of s, g, h, and of the intersection geometry R0, are given in

the Supporting Information.

For formaldehyde, we performed the scan RCO = 1.3450 : 0.0005 : 1.3550 Å. Some

additional points were included for CCSD. For hypofluorous acid (where gscan = g g and

hscan = hh), g = −0.010 : 0.001 : 0.010 and h = −0.1160 : 0.0116 : 0.1160. Interpolated

values are shown in both figures.

The triples excitations used are as follows. In formaldehyde, the excitation is the product

of the second-largest singles and the largest doubles excitations in the lower state at 1.3450 Å.

In hypofluorous acid, the excitation is the product of the largest singles and doubles exci-

tations in the lower states at the geometry given by ROH = 1.1400 Å, ROF = 1.3184 Å, and

ϑHOF = 91.06◦.
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