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Abstract— Biological snakes are capable of exploiting rough-
ness in the terrain for locomotion. This feature allows them to
adapt to different types of environments. Snake robots that
can mimic this behaviour could be fitted with sensors and
used for transporting tools to hazardous or confined areas that
other robots and humans are unable to access. Snake robot
locomotion in a cluttered environment where the snake robot
utilises a sensory-perceptual system to perceive the surrounding
operational environment for means of propulsion can be defined
as perception-driven obstacle-aided locomotion (POAL). The
initial testing of new control methods for POAL in a physical
environment using a real snake robot imposes challenging
requirements on both the robot and the test environment in
terms of robustness and predictability. This paper introduces
SnakeSIM, a virtual rapid-prototyping framework that allows
researchers for the design and simulation of POAL more
safely, rapidly and efficiently. SnakeSIM is based on the Robot
Operating System (ROS) and it allows for simulating the
snake robot model in a virtual environment cluttered with
obstacles. The simulated robot can be equipped with different
sensors. Tactile perception can be achieved by using contact
sensors to retrieve forces, torques, contact positions and contact
normals. A depth camera can be attached to the snake robot
head for visual perception purposes. Furthermore, SnakeSIM

allows for exploiting the large variety of robotics sensors that
are supported by ROS. The framework can be transparently
integrated with a real robot. To demonstrate the potential of
SnakeSIM, a possible control approach for POAL is considered
as a case study.

Index Terms— perception-driven obstacle-aided locomotion,
snake robots, rapid-prototyping, ROS.

I. INTRODUCTION

Biological snakes may push against rocks, stones,
branches, obstacles, or other irregularities in the terrain for
locomotion, which allows them to be remarkably adaptable
to different types of environments. Snake robots that can
mimic this variety of behaviour could open up a variety
of possible applications for use in challenging real-life
operations, such as explorations of earthquake-hit areas,
pipe inspections for the oil and gas industry, fire-fighting
operations, and search-and-rescue activities. Snake robot
locomotion in a cluttered environment where the snake robot
utilises a sensory-perceptual system to exploit the surround-
ing operational space and identifies walls, obstacles, or other
external objects for means of propulsion can be defined
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Fig. 1: Biological snakes push against salient features in the
environment (top). Illustration of the same principle applied
to a virtual snake robot (bottom).

as perception-driven obstacle-aided locomotion (POAL) [1],
[2]. The underlying idea is shown in Fig. 1. The snake robot
exploits the environment for locomotion by using augmented
information: potential push-points are shown as cylinders,
while achievable contact reaction forces are illustrated by
arrows.

The development of POAL is known to be challenging
because of the complex interaction between the snake robot
and the immediate environment. Furthermore, testing new
control methods for POAL in a real setup environment is
very difficult because potential collisions may damage both
the robot and the environment. This process may also be time
consuming. In contrast, a realistic simulator framework may
enable researchers to develop control algorithms for POAL
in a practical, efficient and safe simulation setup. Robotic
simulators are commonly used in the design and testing of
control algorithms. Related to this, the Robot Operating Sys-
tem (ROS) [3] has emerged as a de facto standard for robot
software architecture in the research community in recent
years. The primary goal of ROS is to provide a common
platform to make the design of capable robotic applications
quicker and easier. Some of the features it provides include
hardware abstraction, device drivers, message-passing and
package management. In conjunction with ROS, Gazebo 3D
simulator [4] can be adopted to accurately and efficiently
simulate robots in complex indoor and outdoor environments.
Gazebo also provides a robust physics engine, high-quality
graphics, and convenient programmatic and graphical inter-
faces. In this perspective, ROS serves as the interface for the
robot model, while Gazebo is used to simulate both the robot
and its operational environment.



Even though ROS and Gazebo provide advanced features
for general robotic applications, a comprehensive collection
of tools, libraries, and conventions specifically designed
for rapid-prototyping [5] POAL is still missing. The main
contribution of this work is the development of SnakeSIM, a
rapid-prototyping framework for POAL, and the integration
of this missing technology with ROS. SnakeSIM makes it
possible to simulate the snake robot model in a virtual
environment cluttered with obstacles. Different sensors can
be added to the robot. Contact sensors can be adopted to
retrieve forces, torques, contact positions and contact normals
so that tactile perception can be achieved. A depth camera
can be attached to the snake robot head for visual perception
purposes. Moreover, SnakeSIM allows for exploiting the
large variety of robotics sensors that are supported by ROS.
The framework can be transparently integrated with a real
robot. This integrated framework will enable researchers to
develop control algorithms for POAL more safely, rapidly
and efficiently. To demonstrate the potential of SnakeSIM, a
possible control approach for POAL is considered as a case
study in this paper.

The paper is organised as follows. A review of the related
research work is described in Section II. SnakeSIM, the
proposed virtual rapid-prototyping framework for POAL of
snake robots is presented in Section III. As a case study, a
novel control algorithm for POAL is described in Section IV.
In Section V, related simulation are carried out to validate the
proposed framework. Finally, conclusions and future work
are outlined in Section VI.

II. RELATED RESEARCH WORKS

The application of software rapid-prototyping methods
for POAL has been quite limited in existing literature. For
instance, our research group previusly developed a gen-
eral motion planning framework for body shape control of
snake robots [6]. The applicability of the framework was
demonstrated for two-dimensional straight-line path follow-
ing control, and for implementing body shape compliance in
environments with obstacles. In [7], the same framework was
extended to motion in three-dimensional space. However, the
proposed framework still adopts a quite simplified represen-
tation of the environment and does not provide specifically
designed tools for rapid-prototyping.

In [8], [9], a simulation tool was proposed, namely the
Modular Snake Robot Simulator. This tool is a rigid-body-
dynamics based physics simulator, which features several
customisations such as body dimensions, actuator control and
response functions, and environment setup, among others.
Similarly, a physics-based simulation system for develop-
ment and optimisation of snake robot locomotion patterns
was proposed in [10]. The system provides a graphical
user interface (GUI), which allows for interaction with the
simulation at runtime and for supervising it. Long-term
optimisations can be performed as background processes
without GUI. However, most of these previous works mainly
provide general tools for snake robot locomotion, while
an exhaustive selection of tools, libraries, and conventions

specifically designed for rapid-prototyping POAL is still
lacking.

To the best of our knowledge, an integrated rapid-
prototyping framework for designing and testing effective
control algorithms for POAL is still missing.

III. FRAMEWORK ARCHITECTURE

A. Design guidelines

When considering the design guidelines to develop the
proposed rapid-prototyping framework, the following re-
quirements were taken into account:

• flexibility: the framework must offer the possibility of
collecting different sensor information from the simu-
lated scene;

• reliability: as a research tool, the framework must be
easy to maintain, modify and expand by adding new
components and features;

• integrability: the framework must allow for transparent
integration with real robots in the future.

For these reasons, ROS [3] is adopted as a common platform
for implementing the proposed rapid-prototyping framework
and as the interface for the snake robot model. Together
with ROS, the Gazebo 3D simulator [4] is adopted to
facilitate seamless simulations. Gazebo is one of the most-
known simulator among researchers for robotic applications.
Gazebo is designed to accurately reproduce the dynamic
environments a robot may encounter. All simulated objects
have mass, velocity, friction, and numerous other attributes
that allow them to behave realistically when pushed, pulled,
knocked over, or carried. These features can be used as
integral parts of the proposed framework. In addition to ROS
and Gazebo, the RViz (ROS visualisation) [11] visualisation
tool is adopted to visualise and monitor sensor information
retrieved in real-time from the simulated scenario. In partic-
ular, the normal and tangent vectors to the snake robot at
the contact points are visualised and continuously updated
according to the simulated scenario. The integration between
ROS, Gazebo and RViz is shown in Fig. 2.

B. Hierarchical organisation

The proposed control framework is hierarchically organ-
ised, as shown in Fig. 3. The following abstraction levels are
defined:

• Perception: this level is responsible for achieving the
functions of sensing, mapping and localisation. The
snake robot’s sensory-perceptual data are used to pro-
duce a representation of the surrounding environment.

RVizGazebo ROS

Control framework

Fig. 2: The integration between ROS, Gazebo and RViz.



This level performs parsing or segmenting of low-
level sensor data (e.g. point-clouds) into higher-level
and more manageable information, including positions
of the obstacles, their geometries and other relevant
attributes, as well as the positions, directions and mag-
nitudes of any relevant contact forces between the robot
and the environment;

• Motion planning: this level is responsible for decision
making in terms of where, when and how the robot
should ideally move. External system commands (e.g.
preset mission objectives, a joystick operated by a
human operator or an external system) and the snake
robot’s perception data provide the input to this level.
The expected output from this level is the robot’s desired
trajectory (e.g. path and velocity information);

• High-level control: this level is the core of the proposed
control framework. It enables researchers to develop
their own alternative control method for POAL. The
level does not impose any limitation regarding its in-
ternal implementation. However, each possible control
method must be compliant with the provided interfaces
of the framework. The inputs to this level are the desired
trajectory, as well as any relevant information from the
above perception level (sensor data). The objective of
the high-level control level is to derive the required
setpoints for the individual snake robot actuators in
order to follow the desired trajectory. This control action
will preferably be based on the high-level informtion
from the perception level, but lower-level information
like the actual position and magnitude of contact forces
might be necessary depending on the actual algorithm
employed in the high-level control level.

As highlighted in Fig. 3, the proposed control framework is
implemented in ROS, while Gazebo is adopted to provide
seamless simulations, and RViz is used to visualise and
monitor sensor information retrieved in real-time from the
simulated scenario.

Fig. 3: The proposed framework architecture for SnakeSIM.
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Fig. 4: (a) the retrieved bump contacts. (b) the retrieved
coordinate axes.

C. Simulated scenario
To carry out our experiment, a simulation scenario is built

in Gazebo reproducing a cluttered environment. In particular,
cylindrical objects or other shapes are placed in the scene and
used as obstacles.

D. Snake robot model
To take full advantage of ROS, the snake robot model is

implemented according to the Universal Robotic Description
Format (URDF) [12]. The URDF is a specific file format
used in ROS to describe all elements of a robot, such as links,
joints, actuators and sensors. Simulated controllers are then
adopted to actuate the joints of the snake robot. Simulated
contact sensors are used to retrieve collisions with obstacles.

E. Snake robot sensors
Simulated contact sensors are adopted to retrieve bump

contacts. In particular, the gazebo ros bumper
sensor is adopted [13]. Forces, torques, contact positions
and contact normals can be retrieved. The retrieved bump
contacts are shown in Fig. 4-a, while the retrieved coordinate
axes are shown in Fig. 4-b. This information can be used to
achieve tactile perception. A depth camera can be attached
to the snake robot head for visual perception purposes. In
addition, SnakeSIM allows researchers for exploiting the
large variety of robotics sensors that are supported by ROS.

IV. CASE STUDY

SnakeSIM allows researchers to design, develop and test
alternative control algorithms for POAL. The level where
researchers can implement their own controllers is the high-
level control layer of the proposed hierarchical architecture.
Each possible control method must be compliant with the
provided interfaces of the framework.
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Fig. 5: The obstacle triplet model. Each obstacle is repre-
sented by a round dot, while a possible path is suggested by
the dashed line. At the bottom right corner, the corresponding
information is visualised in RViz.

As a case study, a novel control algorithm for POAL,
which was previously designed by our research group based
on the foundations proposed in [14], is developed and
tested using SnakeSIM. This control algorithm is briefly
summarised in this section. For further details, the reader
is referred to [15]. The aim of the selected control algorithm
is to seek for a pragmatic approach to POAL by reducing
the problem from a multi-dimensional formulation to only a
two dimensional instance with one direction along the path
and the other direction across the path.

A. The obstacle triplet model
According to a review of lateral undulation as it occurs

in nature [16], at least three simultaneous push-points are
necessary for this type of motion to take place. Based on
this evidence, the control model for the case where the
snake robot is in contact with three simultaneous push-points
is considered, as shown in Fig. 5. The three simultaneous
push-points are selected at alternating sides of the path and
indicated as o1, o2, o3. The term obstacle triplet model is
adopted to describe this particular scenario.

The following assumptions are considered:
1) a path, S(s), with s being the path length parameter,

is known. The obstacle locations, o1, o2, o3, are also
known;

2) the snake is always on the path S(s);
3) the snake is planar and discrete (joints and links are

numbered from left to right);
4) there is no ground or obstacle friction;
5) the snake is at rest;
6) the snake tail link is tethered to the ground, as shown

in Fig. 5. The tether is unactuated. No tangential
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Fig. 6: A detail showing the internal torque, t , applied at a
known point, p23, on the path (e.g. snake) between o2 and
o3. At the bottom right corner, the corresponding information
is visualised in RViz.

movements are allowed. The tail is not restricted in any
other way. A tensile force, fs, acts along the tangent
at o1. Note that, the only reason why the tether is
introduced is to justify a static analysis – which is of
course an approximation of the real case;

7) the snake is perfectly rigid except at the point where
an internal torque can be applied. The obstacles are
perfectly rigid and fixed to the ground surface;

8) we choose to apply an internal torque, t , at a known
point, p23, on the path between o2 and o3, as shown
in Fig. 5.

As shown in Fig. 5, the triplet of contacts generate the
forces f1, f2, f3, which are normal to the snake body at
each contact point. The normal and tangent unit vectors are
indicated as n̂i and t̂i respectively, where i = 1,2,3.

According to the assumption 8, an internal torque, t , is
applied at a known point, p23, on the path (e.g. snake)
between o2 and o3. This produces a counter force, ft , acting
at the obstacle o3, as shown in detail in Fig. 6. The torque
radius is denoted as r and it is known because of assumption
1, 2 and 8. Since there is no friction by assumption 4, the total
contact force from o3 on the snake must be perpendicular to
the tangent at o3. Since the contact force, f3, is normal to the
snake body at the point o3, the following relation is valid:

f3 · t̂3 = 0. (1)

Referring to Fig. 6, the contact force, f3, can be obtained
as:

f3 = ft + fr, (2)

where, by using the definition of torque, the counter force,
ft , can be expressed as:

ft = r⇥ t, (3)

while fr is the force component parallel to the torque radius,
r, and by definition can be expressed as:

fr , | fr|
r
|r| . (4)

By combining (2), (3) and (4), the contact force, f3 can
be rewritten as:

f3 = r⇥ t + | fr|
r
|r| , (5)



which, because of (1), can be rewritten as:

(r⇥ t + | fr|
r
|r| ) · t̂3 = 0. (6)

This in turn can be rewritten as follows by using the distribu-
tive property of the dot product and the anti-commutative
property of the cross product:

| fr|
r
|r| · t̂3 = (t ⇥ r) · t̂3. (7)

It follows that:
| fr|=

(t ⇥ r) · t̂3
r
|r| · t̂3

. (8)

Consequently, because of (5) and (8), f3 can be rewritten as:

f3 = r⇥ t +

"
(t ⇥ r) · t̂3

r
|r| · t̂3

#
r
|r| . (9)

By considering the assumption 5 of static conditions, the
following force balance equation can be obtained:

fs + f1 + f2 + f3 = 0, (10)

where, fs is the tensile force that need to be counterbalanced,
f3 is given by (9), while f1, f2 are unknown variables. The
directions of the contact forces, f1, f2, are known as they
are given by the normals at each contact point. Since there
are 2 unknown variables, one more equation is required to
completely determine the considered system. The torques
exerted on the robot about the global origin by the external
forces can be considered as follows:

o1 ⇥ ( fs + f1)+o2 ⇥ f2 +o3 ⇥ f3 = 0. (11)

By combining (9), (10) and (11), the considered system is
now completely determined. The bending torque t can be
uniquely computed at any point. In other words, given any
point, s, on the path, it is possible to uniquely express the
bending torque as a function of fs, f1, f2, f3:

t(s) = f ( fs, f1, f2, f3). (12)

Equivalently, this means that the tensile force, fs, can be
obtained as a function of t(s), f1, f2, f3:

fs = g(t(s), f1, f2, f3). (13)

Therefore, the only necessary control variable is t(s).

V. SIMULATION RESULTS

The control approach presented in Section IV as a case
study was implemented by using SnakeSIM. A related sim-
ulation was carried out over a time period of 10 s in order
to illustrate the use of the framework. For the simulation a
desired propulsion acceleration, was indirectly set by impos-
ing fs = 35N. It should be noted that the joint 6 is controlled
by the propulsion controller, while all the others joints are
controlled in position mode. As shown in Fig. 7, a sequence
of screenshots is taken from SnakeSIM (for each screenshot,
the left snapshot is from Gazebo and the right snapshot is
from RViz) demonstrating the effectiveness of the considered
control algorithm for POAL. Note that this sequence shows

the action forces retrieved by the tactile sensors and the
images captured by the depth camera mounted on the snake
robot head. During this sequence, the link 6 is rotated
upwards, pushing on the obstacle to its left. The whole
snake is then pushed slightly forward. It should be noted
that the force polygon is also shown (red polygon) for each
screenshot highlighting the resultant propulsion force (white
arrow). During the same simulation, the torques applied on
all joint is monitored during the propulsion phase, as shown
in Fig. 8.

VI. CONCLUSIONS AND FUTURE WORK

SnakeSIM, a virtual rapid-prototyping framework that al-
lows for the design and simulation of control algorithms
for perception-driven obstacle-aided locomotion (POAL) was
presented in this paper. The framework proposed is inte-
grated with ROS and enables researchers to develop con-
trol algorithms for POAL in a simulated environment with
Gazebo. This integration makes the development of POAL
algorithms more safe, rapid and efficient. Different sensors
can be simulated both for tactile as well as visual perception
purposes. Once the development phase is terminated, the
designed control algorithms can be tested on a real prototype
and continuously tuned with real sensor data. The integration
with a real snake robot prototype, the Mamba snake robot
[17], is currently ongoing.

The framework is built on open-source software. It is the
opinion of the authors that the key to maximising the long-
term, macroeconomic benefits for the robotics industry and
for academic robotics research relies on the closely integrated
development of open content, open standards, and open
source. SnakeSIM contributes towards this same strategy. In
the future, different control algorithms for POAL may be
designed and tested. The framework may also be adopted as
an educational tool.

As future work, the proposed approach needs to be val-
idated with physical experiments. The ultimate goal of the
SnakeSIM framework is to facilitate effective experimenta-
tion with different high-level control algorithms at the level
where the obstacle triplet model is currently plugged in.
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