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Abstract

This paper presents a two-component load-sharing system. The failure rates
of the two components are time dependent and load dependent. Whenever
one fails, it is imperfectly repaired with a time delay during which the failure
rate of the survival component increases because of the resulting overload.
Three maintenance policies are proposed considering imperfect preventive
maintenance and system replacement. The optimal average costs in the long
run under different maintenance policies are derived from the theoretical
propositions. Sensitivity analyses through numerical examples are carried
out.

Keywords: Load-sharing system, multi-component systems, failure
interaction, age replacement, imperfect repair, maintenance policy
optimization, hoisting problem.

Notation

Xi lifetime of component i, i = 1, 2.
hi(t) failure rate of component i at time t, i = 1, 2.
li(t) load undertaken by component i at time t
βi(t) nominal failure rate of component i at time t in absence of

the load
τ0 duration of one mission
τ duration between two consecutive imperfect repair in policy

1, τ = k2τ0, k2 ∈ N∗
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τ
′

duration between two consecutive imperfect repair of the
long-lived component after the failure of its counterpart in
policy 3, τ

′
= k

′
2τ0 < τ

λ failure rate reduction factor, 0 < λ < 1
bxc maximum integer not greater then x
dxe minimum integer not smaller then x
r1(t) failure rate of the short-lived component under policy 1
ri(t) failure rate of the long-lived component under policy i, i =

2, 3
T system preventive replacement time under each policy, T =

k3τ , k3 ∈ N∗
pk probability that the system is replaced at kτ0 in policy 1
qk probability that both components fail in the period ((k −

1)τ0, kτ0] in policy 1
F (x) lifetime distribution of component i when both of them are

functional, i = 1, 2.
nx bx

τ
c

mx b x
τ0
c

Mx d x
τ0
e

n̂j: b j
k2
c, j ∈ N∗

ñj b j
k
′
2

c, j ∈ N∗

pi,k probability that the two components fail in ((i − 1)τ0, iτ0],
((k− 1)τ0, kτ0] respectively before the system preventive re-
placement under policy 2

Pik3 probability that one component survives at k3τ0 while one
fails in ((i− 1)τ0, iτ0], 1 ≤ i ≤ k3 under policy 2.

p
(3)
i,k probability that the two components fail in ((i − 1)τ0, iτ0],

((k− 1)τ0, kτ0] respectively before the system preventive re-
placement under policy 3

P
(3)
ik3

probability that one component survives at k3τ0 while one
fails in ((i− 1)τ0, iτ0], 1 ≤ i ≤ k3 under policy 3.

1. Introduction

In recent decades, maintenance study of multi-component systems are
becoming more and more intractable. In fact, the reliability and optimal
maintenance policies of multi-component systems can be obtained by similar
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approaches as when dealing with single unit systems only if components are
totally independent. However, such assumption is often unrealistic because of
the internal complex structures of the system, the set up costs, the common
cause failures to the components, etc. For instance, in a brake system, serious
damages are induced to the disc rotor if the brake pad is worn out and is not
replaced [1]; in a high voltage system, a transmitter have to undertake more
range if some of its counterparts fail [2]. Therefore, it is difficult to model the
system or to calculate the system reliability because of the complex structure
of the system and the stochastic correlation of failure times between them.
Besides, component interactions complicate the maintenance policies as it
provides the opportunity of group maintenance (also called opportunistic
replacement) which can be more economical [3]. In the literature, Thomas
[4] classified the interactions between components of the multi-component
system into three types. Firstly, the economic interaction indicates that the
system maintenance cost is related to the components [5, 6]. For example,
it may be cost saving to repair several components together comparing to
repair them individually. Structural dependence [7] implies that one has
to remove or even to replace the non-failed components to repair the failed
one. Stochastic dependence, also known as failure interaction means that
the failures of components can affect the state (the deterioration level, the
failure rate, etc.) of some working components [8, 9].

The main goal of the present paper is to focus on a specific case of stochas-
tic dependency (load sharing) and to propose optimal maintenance decision
rules in this context. The system under study is supposed to be described
by two main equivalent and interacting sub-systems.

Different classification of stochastic dependencies are introduced in liter-
ature. Murthy and Nguyen [10, 11] presented two types of stochastic depen-
dence of two-component systems and multi-component systems respectively.
For two-component systems, type 1 failure interaction implies that the failure
of component 1 may induce the failure of component 2 with a given prob-
ability (constant or time dependent) and vice versa. While type 2 failure
interaction indicates that the failure of a component can affect the failure
rates of the others. Further, Nakagawa and Murthy [12] introduced shock
damage interaction which has been intensively studied [13, 14, 15]. Such
type of interactions implies that the failure of a component induces a ran-
dom damage to the non-failed component.

It is worth mentioning that the type 2 failure interaction between com-
ponents is common in the load-sharing systems [16, 17, 18, 19]. In material
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testing, software reliability, population sampling, mechanical engineering the
load can strongly impact the component state [20, 21, 22, 23] (failure rate,
reliability, availability, damage level etc.). Because in a load-sharing system,
when a component fails, the static or time-varying workload [24] is under-
taken by the non-failed components. Therefore the state of the survival
components are affected by the increased load they bear.

Load-sharing systems have been extensively studied in the framework of
statistic inference and reliability characteristics. Kim et al. [25] proposed
the classical maximum-likelihood estimation of the system parameters where
all components have identical exponential distribution. Park et al. [26] ex-
tended the model of Kim et al. [25] by considering the parallel system with
Weibull distributed lifetime distribution. The closed-form Maximum Like-
lihood Estimator and conditional Best Unbiased Estimator of the Weibull
rate parameters are derived. Singh et al. [27] developed the reliability of
a parallel system with Lindy lifetime distribution components and the sys-
tem parameters estimation are presented. Jain and Gupta [28] obtained the
reliability and mean time to failure of a load sharing M -out-of-N system
with non-identical and non-repairable components. Amari et al. [29] gave an
overview of the load-sharing systems. More recent papers have considered
load sharing systems for instance [30, 31, 32, 33].

Most part of the aforementioned works deal with statistic inference and re-
liability study and very few are focused on maintenance optimization [32, 34].
Almost none are looking at dedicated maintenance strategies to handle the
load sharing problems. In this paper, a two-component system is studied
to investigate how preventive maintenance actions can compensate for the
negative effects of the load sharing. The remainder of the paper is orga-
nized as follows. In section 2, model assumptions and different maintenance
policies are presented. Section 3 is devoted to the maintenance optimiza-
tion problem. The maintenance policy performances are analyzed through
numerical calculations and Monte Carlo simulations in section 6. The ad-
vantages and weakness of the policies are pointed out and discussed. Finally,
the conclusion and further research aspects are indicated.

2. Problem statement

The main goal is to investigate how maintenance actions can compensate
for the negative effects of the load sharing. A first strategy (Policy 1) is pro-
posed which is very conservative and very simple to implement: inspections

4



and preventive actions are performed for each components, and the whole
system is either correctively renewed if one sub-system fails or preventively
renewed at a pre-determined age T . Hence, the effect of the load sharing is
assumed to be so risky that the whole system is replaced as soon as possi-
ble after the first failure. The second proposed strategy (Policy 2) tends to
be less conservative: the whole system is renewed only after a given age (i.e.
time in operation) or after a short delay of the system failure. At last, a third
strategy (Policy 3) will add the possibility to increase the inspections and
preventive actions periodicity after the first failure of a component. In each
situation, the preventive maintenance age is optimized to balance between
the risk of total failure and the cost of over-renewal. Hence, the effects of the
load sharing are carefully taken into account from two main perspectives:

• how long the load sharing system is supposed to be in usage?

• what is the optimal inspection periodicity before and after the first
failure of one of the redundant sub-system?

2.1. Model description for the load sharing

In the work of Birnbaum et al. [22], they assumed that the system failure
is caused by two different causes: the system load and deterioration factors
independent of the load. Under these hypotheses, the example of lifetime
estimation of the 6061-T6 aluminum sheeting is addressed. Moreover, in
[23], the author considered a system where the failure rate depends on the
load and a constant deterioration.

Similarly to Birnbaum et al. [22], in our study, we consider that the
failure rate depends on the load and a deterioration factor. On contrary to
[23], we consider that the deterioration is time dependent. More precisely,
the failure rate of component i at time t is defined as follows:

hi(t) = βi(t)li(t)

where li(t) is the load it undertakes at time t, βi(t) is the nominal failure rate
in absence of load representing the deterioration or corrosion related factor
of component i at time t, i = 1, 2..

Furthermore, it is assumed that in absence of load, according to the
number of survival components, the lifetime of component i follows a Weibull
distribution with a scale parameter equal to one. In other words,

5



βi(t) =

{
ata−1 if both components are operational at time t
a1t

a1−1 if component 3− i fails before time t

where, i = 1, 2 and a1 ≥ a ≥ 1. So the component deterioration has
a positive dependence on the load it bears. The system load 2l is shared
uniformly by both components when they operate. If one component fails
at time t, the system is still functional with the survival one who takes the
whole load.

The duration of one mission of the system is noted as τ0. During a mission,
that is to say within a time horizon ((kτ0, (k + 1)τ0] for any k ∈ N∗ , the
system cannot be maintained if failure occurs. Therefore, the maintenance
operations can be carried out only at the end of missions at time τ0, 2τ0, . . ..

To avoid failure and therefore a period of unavailability and loss of pro-
duction, different maintenance operations are carried out. We propose and
analysis three policies in our study. The maintenance operations, their im-
pacts and scheduling are described as follows.

2.2. Policy 1: component based policy

The system undergoes

• preventive imperfect repairs after each k2 missions. In other words,
preventive imperfect repairs are carried out at age τ, 2τ, · · · where τ =
k2τ0, k2 ∈ N∗. The approach of Arithmetic Reduction of Intensity with
memory one (ARI1) [35] is carried out to describe the imperfect repair
action which yields

βi((jτ)+) = βi(jτ)− λ[βi(jτ)− βi((j − 1)τ)+]

where (jτ)+ is the right limit of jτ , j ∈ N∗, 0 < λ < 1, i = 1, 2. It is
also assumed that the imperfect repair has no effect on the wear-out
speed of the system.

• preventive replacements at system age T or at the end of mission after
the first component failure which occurs first. In other words, The
system is preventively replaced at T = k3τ0 or at iτ0, where the first
component failure occurs in ((i−1)τ0, iτ0], i = 1, 2, · · · , (k3−1), which
comes first. The constant k3 is a decision parameter.
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• The replacement after failure is not instantaneous. More precisely,
there is a delay iτ0 − tf when a component fails at tf ∈ ((i− 1)τ0, iτ0],
i = 1, 2, · · · , (k3 − 1).

• The cost of system imperfect repair is c2 ( c2
2

for each component), and
the cost for renewing system is cr each time. Besides, there is a penalty
cp when both components fail in the same time period ((i − 1)τ0, iτ0],
i = 1, 2, · · · , k3.

An example of such policy is depicted in Figure 1.

Figure 1: A possible operational process of the system under policy 1

2.3. Policy 2: system based policy

• The system is imperfectly repaired as in policy 1.

• The system is replaced at age T (T = k3τ0) or at kτ0 when the system
fails in ((k−1)τ0, kτ0] which occurs first with cost cr , k = 1, 2, · · · , (k3−
1).

• There is a penalty cp if both the two components fail by time T .

Comparing to policy 1, under which the system is replaced with a time delay
when the short-lived component fails, in policy 2, the system keeps operating
with the long-lived component until it fails. Since the replacement is not
instantaneous, there is a period of unavailability. An example of policy 2 is
depicted in Figure 2.

2.4. Policy 3: component based policy variant

• When both components are operational as in policy 1, preventive im-
perfect repairs are carried out at age τ, 2τ, · · · . After the first compo-
nent failure, the survival component is imperfectly repaired as in policy
1 but more frequently at intervals of τ

′
= k

′
2τ0, k

′
2 < k2. An imperfect

repair for each component incurs a cost c2
2

.
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Figure 2: A possible operational process of the system under policy 2

• The replacement policies (both the corrective and the preventive re-
placement) are similar to policy 1.

Figure 3: A possible operational process of the system under policy 3

Possible operational processes of the system policy 3 is depicted in Figure 3.
Let be r1(t) the failure rate of the short-lived component, r2(t) (resp.

r3(t)) be the failure rate of the long-lived component in policy 2 (resp. policy
3). Figure 4 gives an example of their variation tendencies where the red point
represents the failure of the short-lived component.

3. Maintenance policy evaluation

In this section, the long run average maintenance costs under different
maintenance policies are calculated.

3.1. Average cost evaluation under policy 1

3.1.1. The failure rate and the lifetime distribution

It is easily seen that the failure rate of the short-lived component under
policy 1 can be given as

r1(t) = ata−1l − λa(iτ)a−1l, iτ < t ≤ (i+ 1)τ.
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Figure 4: failure rates

Let F (x) be the survival function of the short-lived component. Denote
nx := bx

τ
c for any 0 ≤ x < T , then we have:

F (x) = exp(−xal + λlaτa−1
nx∑
i=1

zii
a−1) (1)

where zi = x− nxτ if i = nx and τ otherwise.

3.1.2. The system replacement and failure probability
Denote pk be the probability that the system is replaced at time kτ0, qk be

the probability that both components fail in the same period ((k−1)τ0, kτ0],
k = 1, 2, · · · , k3. As

pk = P(X1 > (k−1)τ0, X2 > (k−1)τ0)−P(X1 > kτ0, X2 > kτ0), k = 1, 2, · · · , (k3−1).

one can deduce

pk = F
2
((k − 1)τ0)− F

2
(kτ0), k = 1, 2, · · · , (k3 − 1). (2)

pk3 = 1−
k3−1∑
k=1

pk. (3)
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Similarly, we have qk as follows:

qk = 2P
(

(k − 1)τ0 < X1 ≤ X2 < kτ0

)
(4)

= pk − 2P
(

(k − 1)τ0 < X1 < kτ0, X2 > kτ0

)
= pk − 2

∫ kτ0

(k−1)τ0
f(x)F (x) exp

(
− 2l[(kτ0)

a1 − xa1 ] + λla(nxτ)a−1(kτ0 − x)

)
dx

where n(x) = bx
τ
c, F (x) = 1 − F (x) and f(x) = dF (x)

dx
= (laxa−1 −

λla(nxτ)a−1)F (x) for k = 1, 2, · · · , k3.

3.1.3. Average long-run cost per unit time
The mean cost of one renewal cycle is:

k=k3∑
k=1

pk(n̂k−1 c2 + cr) + cp

k=k3∑
k=1

qk

where n̂k−1 = bk−1
k2
c. The average length of a lifetime cycle is defined:

k3∑
k=1

pkkτ0

According to the renewal reward process, the long-run cost per unit time
C(k3) under policy 1 can be given by

C(k3) =
cr + c2

∑k=k3
k=1 pkn̂k−1 + cp

∑k=k3
k=1 qk∑k3

k=1 pkkτ0
(5)

The average cost can be obtained by substituting equations (2), (3) and
(4) into equation (5). By utilizing the similar method, the cost rate in the
long run under policy 2 and 3 are derived in the following respectively.

3.2. Average cost evaluation under policy 2
3.2.1. The failure rate

Given that min(X1, X2) = x, the failure rate of the long-lived component
r2(t) under policy 2 can be represented as

r2(t) =


r1(t) t ≤ x
2la1t

a1−1 − λla(nxτ)a−1 x < t ≤ (nx + 1)τ
2la1t

a1−1 − 2λla1((nx + i)τ)a1−1 (nx + i)τ < t ≤ (nx + i+ 1)τ,

for i = 1, 2, · · ·
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3.2.2. The system replacement and failure probability
Denote by pi,k the probability that the two components fail in ((i −

1)τ0, iτ0], ((k − 1)τ0, kτ0] respectively, where 1 ≤ i < k ≤ k3, one can de-
duce:

pi,k = 2P
(

(i− 1)τ0 < X1 ≤ iτ0, (k − 1)τ0 < X2 ≤ kτ0
)

(6)

= 2

∫ iτ0

(i−1)τ0
f(x)F (x)

(
exp

(
−
∫ (k−1)τ0

x
r2(t)dt

)
− exp

(
−
∫ kτ0

x
r2(t)dt

)
dx

= 2

∫ iτ0

(i−1)τ0
f(x)F (x)

(
K(k−1)τ0(x)−Kkτ0(x)

)
dx

where

Kt(x) =


exp

[
− 2l

(
ta1 − xa1

)
+ λla(nxτ)a−1(t− x)

]
, nx = nt

exp
[
− 2l

(
ta1 − xa1

)
+ λla(nxτ)a−1((nx + 1)τ − x)

+2lλ
∑nt−nx

j=1 zja1((nx + j)τ)a1−1
]
, otherwise

(7)
where n(x) = bx

τ
c, F (·) is the system lifetime distribution defined in equation

(1) and f(·) is its intensity function. zj = t − ntτ when j = nt − nx and τ
otherwise.

Similarly, denote Pik3 be the probability that one component survives at
k3τ0 while one fails in ((i− 1)τ0, iτ0], 1 ≤ i ≤ k3. Then

Pik3 = 2

∫ iτ0

(i−1)τ0
f(x)F (x)Kk3τ0(x)dx (8)

where Kk3τ0 is given as in equation (7).

Let pk,k = qk, denote p
(2)
k be the probability that the system is renewed

at kτ0 which yields

p
(2)
k =

k∑
i=1

pi,k, k = 1, 2, · · · , k3 − 1;

p
(2)
k3

= 1−
k3−1∑
i=1

p
(2)
k .

3.2.3. Average long-run cost per unit time

The cost rate in the long run C(2)(k3) under maintenance policy 2 is
therefore:
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C(2)(k3) =
1∑k3

k=1 p
(2)
k kτ0

(cr +
c2
2

k3∑
k=1

k∑
i=1

pi,k(n̂k−1 + n̂i−1)) (9)

+
1∑k3

k=1 p
(2)
k kτ0

c2
2

k3∑
i=1

Pi,k3(n̂i−1 + n̂k3−1)

+
1∑k3

k=1 p
(2)
k kτ0

(c2F
2
(k3τ0)n̂k3−1 + cp

k3∑
k=1

k∑
i=1

pi,k)

3.3. Average cost evaluation under policy 3

3.3.1. The failure rate
Under this policy, the imperfect repair is carried out at time nτ , n =

1, 2, · · · if both the two components are functional. Moreover, we assume
that if one component fails in ](i − 1)τ0, iτ0], then the survival component
will be repaired imperfectly at iτ0, iτ0 + jτ

′
, j = 1, 2, · · · , τ ′ = k

′
2τ0 < τ .

Other conditions are similar as in policy 2. The failure rate of the long-lived
component under policy 3 given that min(X1, X2) = x can be represented
as

r3(t) =


r1(t) t ≤ x
2la1t

a1−1 − λla(nxτ)a−1 x < t ≤Mxτ0
2la1(t

a1−1 − λ(Mxτ0 + iτ
′
)a1−1) Mxτ0 + iτ

′
< t ≤Mxτ0 + (i+ 1)τ

′

for i = 0, 1, · · · , where Mx = d x
τ0
e

3.3.2. The system replacement and failure probability

Define p
(3)
i,k be the probability that the component failures occur in ((i−

1)τ0, iτ0], ((k− 1)τ0, kτ0] respectively under policy 3, P
(3)
i,k3

be the probability
that one component survives at k3τ0 while one fails in ((i−1)τ0, iτ0], 1 ≤ i ≤
k3 under policy 3. One can deduce

p
(3)
i,k = 2P((i− 1)τ0 < X1 ≤ iτ0, (k − 1)τ0 < X2 ≤ kτ0) (10)

= 2

∫ iτ0

(i−1)τ0
f(x)F (x))(K

(3)
(k−1)τ0(x)−K(3)

kτ0
(x))dx

where

K
(3)
t (x)

 e

[
−2l
(
ta1−xa1

)
+λla(nxτ)a−1(t−x)

]
, n(t) < 0

e

[
−2l
(
ta1−xa1

)
+λla(nxτ)a−1(iτ0−x)+2lλ

∑n(t)
j=0 δja1(iτ0+jτ

′
)a1−1

]
, otherwise

(11)
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where nx = bx
τ
c, n(t) = b t−iτ0

τ ′
c, δj = (t− iτ0 − n(t)τ

′
) when j = n(t) and τ

′

otherwise
Utilizing the same method we have

P
(3)
i,k3

= 2

∫ iτ0

(i−1)τ0
f(x)F (x)K

(3)
k3τ0

(x)dx (12)

where K
(3)
k3τ0

is defined in equation (11).

Similarly, let p
(3)
k,k = qk, denote by p

(3)
k the probability that the system is

renewed at kτ0, then

p
(3)
k =

k∑
i=1

p
(3)
i,k , k = 1, 2, · · · , k3 − 1;

p
(3)
k3

= 1−
k3−1∑
i=1

p
(3)
k .

3.3.3. Average long-run cost per unit time

The cost rate in the long run C(3)(k3) under maintenance policy 3 is:

C(3)(k3) =
1∑k3

k=1 p
(3)
k kτ0

(cr +
c2
2

k3∑
k=1

( k−1∑
i=1

p
(3)
i,k (ñk−1−i + 1 + 2n̂i−1) + 2qkn̂k−1

)

+
c2
2

( k3−1∑
i=1

Pi,k3(2n̂i−1 + ñk3−1−i + 1) + 2Pk3,k3n̂k3−1

)

+ c2F
2
(k3τ0)n̂k3−1 + cp

k3∑
k=1

k∑
i=1

p
(3)
i,k ) (13)

4. The existence of minimal average cost

In order to minimize the average cost rate under each maintenance policy,
the following theorems are presented.

Theorem 1: The optimal cost rate C(k3) under policy 1 exists.

Proof. As mentioned in [35], the failure rate of the short-lived component
satisfies

r1(t) ≤ (1− λ)ata−1l
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which yields

lim
k→∞

pk ≤ lim
k→∞

exp(−(1− λ)((k − 1)τ0)
al) = 0

Since 0 ≤ qk ≤ pk, so pk and qk go to 0 when k goes to infinity.
Let be C(N) and C(N + 1) the long-run cost rate when the preventive

replacement is carried out at Nτ0 and (N + 1)τ0 respectively. Denoted by
pi, p

′
j, qi, q

′
j the probabilities that the system is renewed at iτ0 and jτ0, that

both the two components fail in ](i − 1)τ0, iτ0], [(j − 1)τ0, jτ0] respectively,
i = 1, 2, · · · , N and j = 1, 2, · · · , N + 1. Let Ak = b k

k2
c c2 + cr, x =

cr
∑N

i=1 qi +
∑N

i=1 piAi, y =
∑N

i=1 piiτ0. Then

C(N + 1)− C(N) =
x+ cpq

′
N+1 + p′N+1(AN+1 − AN)

y + p′N+1τ0
− x

y

As p′N+1 and q′N+1 go to 0 when N goes to infinity and (AN+1 − AN) ≤ c2
is bounded, we know that C(N) is convergent when N goes to ∞. Let N0τ0
be the convergence time, the optimal long run cost C∗ can be given as

C∗ =

{
C(nτ0), n = minC(N), n < N0

C(N0τ0), N0 = minC(N)

�
Theorem 2: The optimal cost rate C(2)(k3) under policy 2 exists.

Proof. Similarly, denoted C(2)(N) and C(2)(N + 1) the long-run cost rate
when the preventive replacement is carried out at Nτ0 and (N + 1)τ0 respec-
tively under policy 2. Let x(2) and y(2) be the numerator and denominator of
C(2)(k3) respectively in equation (9). When the system preventive replace-
ment are carried out at (N+1)τ0, let p

′
N+1 be the probability that the system

are replaced at (N + 1)τ0 under policy 1, p
(2)′

N+1 be the probability that the

system is replaced at (N +1)τ0 under policy 2, p
′
i,N+1 be the probability that

the two components fail in ((i− 1)τ0, iτ0] and ((Nτ0, (N + 1)τ0 under policy
2 respectively, BN = c2(n̂N − n̂N−1) Then we have

C(2)(N + 1)− C(2)(N) =

x(2) +BN
∑N

i=1 PiN + 2c2p
′
N+1n̂N−1 + cp

∑N+1
i=1 p

′
i,N+1

y(2) + p
(2)′

N+1τ0
− x(2)

y(2)
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where n̂N = bN
k2
c. It can be seen that

lim
N→∞

p
(2)′

N+1 ≤ lim
N→∞

F (Nτ0) ≤ lim
N→∞

exp(−(1− λ)l(Nτ0)
a) = 0

lim
N→∞

p
′

N+1n̂N−1 ≤ lim
N→∞

N

F
2
(Nτ0)

≤ lim
N→∞

N

exp(2(1− λ)l(Nτ0)a)
= 0

lim
N→∞

N∑
i=1

PiN ≤ lim
N→∞

F ((N − 1)τ0) = 0

Therefore C(2)(N) is convergent when N goes to infinity and so the existence
of its optimal value. �
Theorem 3: The optimal cost rate C(3)(k3) under policy 3 exists.

Proof. . Under policy 3, denoted C(3)(N) and C(3)(N +1) the long-run cost
rate when the preventive replacement are carried out at Nτ0 and (N + 1)τ0
respectively . Let x(3) and y(3) be the numerator and denominator of C(3)(k3)
respectively in equation (13). Then

C(3)(N + 1)− C(3)(N) =

x(3) +
∑N−1

i=1 PiN B̃(N, i) + 2c2F
2
(Nτ0)BN + cp

∑N+1
i=1 p

′(3)
i,N+1

y(3) + p
′(3)
N+1τ0

− x(3)

y(3)

where B̃(N, i) = c2(ñN−i − ñN−1−i), BN = c2(n̂N − n̂N−1) p
′(3)
N+1 is the

probability that the system is replaced at (N + 1)τ0 under policy 3, p
′(3)
i,N+1 is

the probability that the two components fail in ((i−1)τ0, iτ0] and ((Nτ0, (N+
1)τ0 under policy 3 respectively. By the similar method as in policy 2, it can
be proved that

lim
N→∞

N∑
i=1

p
′(3)
iN = 0

lim
N→∞

p
′(3)
N = 0

lim
N→∞

F
2
(Nτ0)BN = 0

Therefore C(3)(N) is convergent when N goes to infinity and so the existence
of its optimal value. �
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5. Parameter estimation

There are many load sharing parallel systems in industry and engineering
field. For instance, one can enumerate the sensors which take the workload
together in a distributed computer system; the pumps sharing the workload
in a hydraulic system; the welded joints in a bridge support [36]; the cables in
a suspension bridge system [37] and the hoisting ropes in the mining system.
Hoisting rope plays a significant role in mining system as its tensile strength
and lifetime affect directly the system reliability and the system operation
state. According to the literature [38, 39], the break of ropes is relevant to the
fretting wear, mechanical damage, operating environment like temperature,
corrosive gas, distortion, etc. Therefore, regular inspections, lubrication and
overhaul are necessary for the enterprises to increase the effective operation
of systems and decrease the probability of failure. Our model can be applied
to a mining hoist system with two hoisting rope. The two ropes share the
system load uniformly. Whenever one fails,

• the survival component bear the whole system load.

• the sudden component failure can be regarded as a shock which in-
creases the failure rate of the survival one.

Different maintenance policies are provided to slow down the rope deteriora-
tion and to maintain the rope a good condition. Furthermore, for the safety,
the two components can be replaced together when the age of the system
arrives at a predetermined time limit. To develop maintenance policies to
equilibrate the owner costs and the system safety, the primary issue is to ob-
tain efficient evaluation of the system failure-related properties which implies
the estimation of a, l and a1 respectively in this study.

We propose a two-step method to estimate the system parameters a and
a1. Suppose that the test number is n and the failure times of the short-
lived component (resp. the long-lived component) are ti (resp. t̂i), i =
1, 2, · · · , n where ti < t̂i and {ti, i = 1, 2, · · · , n} (resp. {t̂i, i = 1, 2, · · · , n})
are independent. The system load is known and equal to 2l. Therefore,
according to the failure rates, the likelihood function of {ti, i = 1, 2, · · · , n}
is given as follows:

f(t1, t2, · · · , tn; a) = (al)nΠn
i=1ti

a−1 exp(−l
n∑
i=1

ti
a)
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By calculating respectively the first derivative of the log-likelihood func-
tion with respect to a and l the maximum-likelihood estimate â and l̂ can be
obtained from

n

â
+

n∑
i=1

log ti − l̂â
n∑
i=1

tâ−1i = 0 (14)

l̂ =
n∑n
i=1 t

â
i

(15)

Besides, it is reasonable to assume that t̂i is independent of t̂j (i 6= j)
given the value of ti for any i, j ∈ {1, 2, · · · , n}. Therefore, the conditional
likelihood function of {t̂i, i = 1, 2, · · · , n} is as follows:

f(t̂1, t̂2, · · · t̂n | t1, t2, · · · , tn; a1) = (2l̂a1)
nΠn

i=1ti
a1−1 exp(−2l̂

n∑
i=1

ti
a1 + 2l̂

n∑
i=1

ti
a1)

Similarly, the estimate â1 can be obtained from

n

â1
+ log

n∑
i=1

t̂i − 2l̂â1

n∑
i=1

(ti
â1−1 − tiâ1−1) = 0 (16)

6. Numerical analysis

In the following, we present a numerical example to illustrate the sys-
tem behavior. Afterward, for different maintenance policies, we analyse the
impact of different parameters on the long run average total cost.

6.1. Optimization Algorithm

Since the existence of the minimal cost is proved the maintenance opti-
mization can be carried out with different methods.

For the numerical minimization the following algorithm is implemented.

1. Set parameters τ, τ0, τ
′, a, a1, l, λ, c2, cr, cp, and the accuracy ε

2. Set k3 = 1.

3. for an arbitrary k3 presented in Section 3 calculate C(k3) and C(k3+1)

• if |C(k3 + 1)−C(k3)| < ε and |C(k3 + 2)−C(k3 + 1)| < ε go to 4

• else k3 = k3 + 1 repeat 3

4. Compare the value from C(1) to C(k3 + 1) and let the optimal value
be C∗ = min{C(i)}, i = 1, 2, · · · , k3 + 1.

17



optimal l = 0.03 0.04 0.06 λ =0.4 0.5 0.6
N∗ 20 16 12 16 16 24
C∗ 19.8975 24.0127 32.1823 25.1940 24.0127 22.6421

Table 1: The optimal cost rate with different load l and maintenance effect λ under policy
1.

6.2. Sensitivity analysis of the long run average maintenance cost

Numerical examples are given to describe the optimal average long run
cost with various parameters.

6.2.1. Policy 1: component based policy

Let τ = 4, τ0 = 1, c2 = 25, cr = 100, cp = 220, l = 0.04, λ = 0.5, a = 1.3,
a1 = 2, ε = 0.0001. Denote by C∗ and N∗τ0 the optimal long run average
total cost and the optimal time of preventive replacement under policy 1
correspondingly. Tables 1-4 show the variation of the optimal long run cost
rate under policy 1 with one parameter while other system parameters are
unchanged.

optimal a =1.3 1.4 1.5 a1 =1.8 2 2.1
N∗ 16 12 12 20 16 16
C∗ 24.0127 26.6954 29.3361 21.6656 24.0127 25.1899

Table 2: The optimal cost rate with different deterioration parameters a and a1 under
policy 1.

optimal c2 = 20 25 30 cr =90 100 120
N∗ 16 16 12 16 16 20
C∗ 23.1970 24.0127 24.8285 22.7558 24.0127 26.4438

Table 3: The optimal cost rate with different maintenance cost units c2 and cr under
policy 1.

optimal cp =150 220 250
N∗ 24 16 16
C∗ 21.5265 24.0127 25.0171

Table 4: The optimal cost rate with different penalty cost unit cp under policy 1.

The numerical results in Tables 1, 2, 3 and 4 indicate the following:
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• Table 1 shows that the total maintenance cost and they maintenance
frequency increase with the load. Moreover, the closer is the imper-
fect maintenance to the perfect maintenance the cheaper is the total
maintenance cost. As λ increases, the system replacement become less
frequent.

• It can be noticed in Table 2, long run average total maintenance cost
increases as the components deteriorate faster. More replacements are
required for fast deteriorations.

• When a, a1, λ, l are high, the system deteriorates faster, it is then sensi-
ble to carry out the preventive maintenance more often. The increasing
parameter a of Weibull distribution, which is positively correlated with
the failure rate of the system, impacts lightly the optimal average costs,
while it is more sensitive to the variation of l.

• The optimal average costs are quiet robust in the sense that they don’t
vary significantly with the degradation parameters.

• Unsurprisingly, the optimal cost rate C∗ is increasing with imperfect
maintenance cost c2, system renewal cost cr and failure penalty cost cp.

6.2.2. Policy 2: system based policy

Under policy 2, we take the same parameters as in policy 2. The optimal
average long-run cost C(2)∗ under different parameter settings are illustrated
in Tables 5, 6, 7, 8. The following features can be pointed out.

• Similarly to policy 1, it can be noticed that the C(2)∗ decreases with
the system load l and shows an decreasing tendency with λ . Because
the larger λ is, the better is the repair. Therefore, the system is more
robust and is liable to survive. The higher is the system load, the larger
is the system failure rate. Thus the system fails more frequently which
causes an increase of the maintenance cost.

• Table 6 considers the variation of C(2)∗ under different deterioration
parameters a and a1. In our example, the long-run average total cost is
not very sensitive to the variations of a1. It is more sensitive to small
values of a.
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• In Table 7-8 the impact of maintenance costs units variations on C(2)∗

are presented. Obviously C(2)∗ increases with respect to maintenance
costs units. It is shown in Table 8 that the system is replaced earlier
when the penalty is high. Therefore, the system owner are recom-
mended to consider the potential risk he or she should undertake when
the consequence of system failure is serious.

optimal l = 0.03 0.04 0.06 λ =0.4 0.5 0.6

N (2)∗ 24 20 16 12 20 28
C(2)∗ 28.6937 34.6901 45.9031 36.6135 34.6901 32.2203

Table 5: The optimal cost rate with different load l and maintenance effect λ under policy
2.

optimal a =1.3 1.4 1.5 a1 =1.8 2 2.1

N (2)∗ 20 8 4 8 20 20
C(2)∗ 34.6901 38.6017 39.9732 32.3945 34.6901 35.3785

Table 6: The optimal cost rate with different deterioration parameters a and a1 under
policy 2.

optimal c2 = 20 25 30 cr =90 100 120

N (2)∗ 20 20 16 16 20 24
C(2)∗ 33.8679 34.6901 35.5110 33.6349 34.6901 36.7052

Table 7: The optimal cost rate with different maintenance costs units c2 and cr under
policy 2.

optimal cp =150 220 250

N (2)∗ 28 20 16
C(2)∗ 28.1650 34.6901 37.4398

Table 8: The optimal cost rate with different cp under policy 2.

20



6.2.3. Policy 3: component based policy, variant

Under policy 3, the system optimal long-run average maintenance cost
and the optimal preventive maintenance time are denoted respectively by
C(3)∗ and N (3)∗τ0. By adopting the parameters setting as in the cost analysis
under policy 1 and assuming that k

′
2 = 3, Tables 9, 10, 11 and 12 elucidate

the similar average cost variation as in policy 2.

optimal l =0.03 0.04 0.06 λ =0.4 0.5 0.6

N (3)∗ 20 16 16 8 16 28
C(3)∗ 28.6769 34.6156 45.2158 36.3411 34.6156 32.0843

Table 9: The optimal cost rate with different load l and maintenance efficiency λ under
policy 3.

optimal a =1.3 1.4 1.5 a1 =1.8 2 2.1

N (3)∗ 16 4 4 8 16 20
C(3)∗ 34.6156 37.2893 38.4369 31.5371 34.6156 35.4033

Table 10: The optimal cost rate with different deterioration parameters a and a1 under
policy 3.

optimal c2 = 20 25 30 cr =90 100 120

N (3)∗ 20 16 16 8 16 24
C(3)∗ 33.7100 34.6156 35.4971 33.4508 34.6156 36.6353

Table 11: The optimal cost rate with different maintenance unit costs c2 and cr under
policy 3.

optimal cp =150 220 250

N (3)∗ 28 16 8
C(3)∗ 28.2491 34.6156 37.2236

Table 12: The optimal cost rate with different penalty cp under policy 3.

It is pointed out that in our example policy 1 is the most economical one
comparing to policy 2 and 3. In most cases, policy 3 is a second-best choice
which indicates that it is necessary to consider the period to carry out the
imperfect maintenance when only one component is functional in the system.
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In all policies, the maintenance costs are very sensitive to the system load.
In sum, under high loads, low quality system and non efficient maintenance
operations, the maintenance policies are very costly. The penalty cost may
have influence on the policy preference. For example when cp = 150 or 220,
the cost difference between policy 2 and policy 3 is tiny while policy 3 is
more favored when the failure consequence is serious. To distinguish the
policies when similar optimal maintenance costs are revealed, by considering
the system safety we introduce the concept of dangerousness rate in the
following.

6.2.4. Dangerousness rate of the maintenance policy

Here we introduce the dangerousness rate to measure the accident risk of
the system. The dangerousness rate is defined as the probability that both of
the two components failure occur before the system replacement time Nτ0,
N ∈ N∗.

Denote by dr(i, N) the system dangerousness rate under policy i when
the system preventive renewal time is Nτ0 . Then

dr(1, N) =
N∑
k=1

qk

dr(2, N) =
N∑
k=1

qk +
N∑
k=1

k−1∑
i=1

pi,k

dr(3, N) =
N∑
k=1

qk +
N∑
k=1

k−1∑
i=1

p
(3)
i,k

where qk, pi,k and p
(3)
i,k are given in equation (4), equation (6) and equation

(10) respectively.
By taking the same parameter settings as in policy 1-3 in the above,

Figure 6 demonstrates the dangerousness rate under the three policies. It
can be noticed that policy 1 is the safest maintenance policy and policy 2
which is the the most dangerous policy. Decision-makers are recommended
to consider the two aspects and find an equilibrium considering both the
maintenance cost and the system reliability.
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Figure 5: the dangerous rate under different policies

7. Conclusions

In this study, different maintenance policies for a two-component load-
sharing system are proposed. To avoid system failure, imperfect preventive
maintenance and preventive system replacement are applied. The long-run
average cost of the system under different maintenance policies are obtained.
Numerical examples are illustrated and it is shown that policy 1 is the most
cost saving policy. The system dangerousness rate criteria is proposed to
describe the system accident risk. It is recommended to the decision maker
to consider an equilibrium between the average maintenance cost and the
system reliability. This work can be generalized by considering a dynamic
load of a multi-component system and analyse its induced cost complexity.
The next step is to apply real deterioration data of the hoisting ropes in the
mining system and implement statistical inference to estimate different model
parameters. Sensitivity analysis of the maintenance policy performances can
be presented.
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