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Abstract— Concrete channels find use at the periphery of
irrigation networks, for expansion and to replace small earthen
channels given the relative ease of maintenance and elimination
of seepage losses. In design, it is important to account for control
system performance when dimensioning the channel infrastruc-
ture. In this paper, the design of a distributed controller is
investigated in terms managing water-levels, and thereby the
depth profile (i.e., amount of concrete) needed to support peak
flow load under the power of gravity.

I. INTRODUCTION

Irrigation supports agriculture in many parts of the world.
It is estimated that irrigation accounts for approximately 70%
of the worldwide water usage [1]. In many situations, water
is delivered from reservoirs to farms via a network of open
channels under the power of gravity. The flow of water is
controlled by adjustable gates located along the channels.
Traditionally, such gates have been operated manually, and
this is still the case in many parts of the world. Over the
last 15-20 years, technologies for automating the operation
of irrigation channels have been developed in a collaboration
between The University of Melbourne and Rubicon Water,
leading to both a significant reduction of water losses and
improved quality of service in Northern Victoria, where
large-scale installations serving thousands of supply points
are currently operational.

Controller design methods for irrigation channels range
from PDE-based methods [2], [3], [4], to methods based
on simplified integrator-delay models [5], [6], [7], [8]. The
latter are usually adopted in practice, because they are
more amenable to controller tuning and system identifica-
tion. Importantly, the simple models approximate the system
dynamics very well when operating in closed-loop with
relatively slow controllers [9].

To date, the focus of attention has been on large and
medium scale channels transporting water from reservoirs to
farms. The focus of this paper is on smaller channels at the
periphery of distribution network. By virtue of the reduced
storage volume in small channels, wave dynamics are more
pronounced. This needs to be considered in the controller
design.

Within the context of small channels, concrete lining can
be employed to eliminate seepage losses and to facilitate
maintenance. To avoid spillage and flooding, the water level
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must remain below the top of the concrete (minus some
safety margin) at all times. To manage the required channel
depth, and thus the cost of the concrete, achievable control
performance should be considered in a co-design of the civil
and automation engineering infrastructure. More precisely,
controllers should be designed so that water levels do not
exceed the height of the concrete at any location along the
channel. This is another difference compared to previous
work on large-scale channels where this was neglected,
as large channels typically have substantial free-board and
storage capacity, in order to facilitate manual operation.

The control requirements can be summarized as follows.
1) Regulation of the downstream water level of each

section of channel between two gates (within a band
of a reference value set by a supervisory control layer)
so as to provide quality of service guarantees at the
corresponding supply/off-take points.

2) To maintain water-levels along the stretches of channel
below specified levels, so as to avoid spillage and
flooding, particularly during high flow loads when
additional head is required upstream to provide the
flow under the power of gravity.

3) String instabilities, i.e., (excessive) amplification of
water-level errors and peak flows along the channel,
should be avoided.

The paper is organized as follows. In Section II we discuss
two types of models for the channel; a high-fidelity PDE
model used for analysis and a simpler model used for
controller design. The distributed controller structure is also
presented there. In Section III some differences relative to
larger channels and implications for the design of the decen-
tralized feedback part of the controller are discussed. The
design of additional feedfoward compensators, that adjust the
downstream water-level reference at each local feedback loop
on the basis of downstream flow, are discussed in Section IV
in terms of managing the water level profile along the stretch
of a channel between the gates. Finally, some concluding
remarks are given in Section V.

II. MODELING AND CONTROLLER STRUCTURE

A. Open channel modeling

The section of an irrigation channel between two gates is
called a pool. The side view of one such pool is depicted
in Figure 1. Water is taken from the channel through outlets
which are located at the downstream end of the respective
pool. Thus, the flow rate at the downstream end of the pool,
Qds, equals the outflow over the downstream gate plus the
sum of the outflows at all outlets. The flow over the gates is



Fig. 1: (Left) Schematic side view of a pool of length L
showing the water surface (blue), bottom slope (brown) and
overshot gates (grey). The dashed lines depict the horizontal.
(Right) Cross-sectional view of a pool with bed width B,
water level h, top width W and side slope γ .

controlled via the head over the gate but for simplicity we
consider the flow over the gate as the manipulated variable
in this paper (which can be related to the head over gate by
a static equation). All outflows, and thus Qds, as well as the
downstream water level hds are measured. Two models for
the dynamics in each pool are discussed in the following.

1) Saint Venant equations: The Saint Venant equations are
quasilinear hyperbolic PDEs derived from distributed mass
and momentum balances which are widely used to model
flow in open water channels [10], [11]. They are
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where t is time and x ∈ [0,L] is the location measured from
the upstream end in a pool of length L, A(x, t) is the wetted
cross-sectional area, Q(x, t) is the volumetric flow rate, g the
gravitational acceleration, W the channel width (the relation
between A, h and W can be derived from the trapezoidal
cross-section geometry, see Figure 1), S0 is the bottom slope
and the friction slope is

S f =
n2Q2

A2R4/3 (3)

with Manning coefficient n and hydraulic radius R. Note that
A, Q and S f are functions of (x, t) and the parameters may
potentially vary with x, but we omit the arguments in (1)-(2)
for brevity.
We use (1)-(2) as a high-fidelity reference model to verify
the controller design.

2) Integrator and delay model: For the controller design,
we use the following simplified model (see also [9])

ḣds(t) =
1
α
(Qin(t− τ)−Qout(t)) , (4)

where α = LW is the water surface area and τ is the delay in
the pool (i.e. L divided by the wave propagation speed (≈ 3
m/s)). That is, downstream outflow decreases the downstream
water level by emptying the pool while upstream inflow fills
the pool and thus, after a delay, increases the downstream
water level. Note that (4) is not capable of modeling waves
in the pool, but the model is relatively accurate if wave
dynamics are not excited.

3) Coupling conditions: The models (1)-(2) and (4) repre-
sent the dynamics of one pool. For a channel consisting of N
pools, let the superscript i denote the pool number such that
the 1-st pool is the most upstream pool and the N-th pool is
the most downstream one. Let Qi

out denote the outtake at the
outlet located at the downstream end of the i-th pool. Then,
the coupling conditions between neighboring pools are

QN(LN , t) = QN
ds = QN

out(t) (5)
...

Qi(Li, t) = Qi
ds = Qi+1

in (t)+Qi
out(t) (6)

...

Q1(L1, t) = Q1
ds = Q2

in(t)+Q1
out(t) (7)

where the upstream inflow into the i-th pool, Qi
in, is deter-

mined by the i-th controller. Note that there are no boundary
conditions on the water levels which are determined by the
inflows and outflows and the initial condition.

pool 1 pool 2 pool 3 pool 4
L 200m 900m 300m 700m
B 0.75m 0.75m 0.75m 0.75m
γ 3.2 3.2 3.2 3.2
n 0.012 0.012 0.012 0.012
hre f 1m 1m 1m 1m
S0 0.0002 0.0002 0.0002 0.0002
τ 1.1min 5min 1.7min 3.9min
Kp 0.96 0.83 0.92 0.85
Ti 19min 100min 30min 76min,
Tf 2.2min 10min 3.3min 7.8min

TABLE I: Channel and controller parameters. Pools are
numbered from upstream to downstream.

4) Exemplary channel: The parameters of an exemplary
channel consisting of 4 pools are given in Table I where the
controller parameters Kp, Ti and Tf will be introduced in
Section III. We use these parameters if not stated otherwise.

B. Controller structure

Fig. 2: Controller structure.

In this paper we consider the distributed distant-
downstream control architecture depicted in Figure 2, where
the inflow over the upstream gate is used to control the
downstream water level to a reference value by the feedback
controller Ci. The downstream water-level reference is set
by a supervisory controller based on the predicted/scheduled
load and is assumed to be a given constant in this paper.



The distant-downstream control architecture has the merit
that water is released from upstream reservoirs on demand,
whereas a drawback of this strategy is that the transport delay
in the pools limits achievable closed-loop performance [7].
The water-level profile as well as the closed-loop dynamics
can be improved by the feedforward paths Fi in Figure 2.
The design of the feedforward gains Fi is discussed further
in Section IV.

III. FEEDBACK CONTROLLER

Fig. 3: Bode plot of the transfer function from Qin to hds for
pool 1 in table I with Q0 = 5ML/d and hre f = 1 m.

Motivated by its simplicity the feedback controller design
is based on the simplified integrator & delay model (4).
However, (4) is not capable of modeling wave dynamics
that occur at high frequencies and the St Venant model (1)-
(2) is more reliable in this regard. The transfer functions
from upstream inflow to donwstream water level in a small
pool which can be derived by Laplace-transforming (4)
and the linearization of (1)-(2) around a nominal flow rate
Q0 and water level profile as determined by hre f , respec-
tively, are compared in Figure 3. The integrator & delay
model is a good approximation for frequencies slower than
approximately 1/τ where τ is the delay in the pool. At
higher frequencies, however, the pool does not act like an
integrator but standing waves are created. Because of the
small storage volume and the relatively small friction factor,
these resonances are significant, much more than in the larger
pool in Figure 4 which is typical for a secondary channel.
Following [8] we use for the feedback controller a PI
controller with roll-off of the form

C(s) = Kp
Tis+1

Tis(Tf s+1)
(8)

where the purpose of the roll-off term 1/(Tf s + 1) is to
reduce the controller gain at high frequencies where there
is a significant mismatch between the integrator & delay
model and the actual dynamics. The controller parameters
used for the exemplary channel, which can be obtained by
standard loop-shaping techniques, are given in Table I. The
Nyquist plot for the smallest pool in the channel in closed
loop with C for different roll-off parameters Tf is shown in
Figure 5. Since both the open-loop system and the controllers

have no unstable poles or zeros, the closed-loop system
is stable if the Nyquist curve does not encircle (−1,0).
For Tf = 0.7τ , for instance, the integrator & delay model
suggests a significant robustness margin for the closed-loop
system but the system is unstable according to the linearized
St Venant model. Tf = τ ensures closed-loop stability but
the robustness margin is tiny, while Tf = 2τ ensures stability
and some degree of robustness. The encirclement of (−1,0)
occurs at high frequencies that are hardly excited in practice,
but instability should be avoided nevertheless. For the larger
pool in Figure 4 the Nyquist plots when using the integrator
& delay and St Venant models are almost identical for any
Tf unless C has unreasonably high gain at high frequencies.

L B S0 γ n hre f Q0
1100 m 1.8 m 0.0001 2 0.022 1 m 20 ML/d

Fig. 4: Bode plot of the transfer function from Qin to hds for
a pool in a larger channel with parameters given in the table.

Fig. 5: Nyquist plots for different choices of Tf .

IV. FEEDFORWARD CONTROLLER DESIGN

As mentioned earlier we base the feedforward controller
design on the simpler integrator & delay model. Following
the approach in [12], [13] we design the feedforward term
F on a pool-by-pool basis such that the closed-loop transfer
function from downstream outflow Qds to upstream inflow



Qin becomes a desired transfer function which we denote by
G. It can be shown that

G(s) =C(s)
(

1+
1

αs
e−sτC(s)

)−1( 1
αs
−F(s)

)
(9)

where the case with pure feedback corresponds to F = 0. For
a given desired G, (9) can be solved for F which gives

F =
1

αs

(
1−G(s)e−sτ

)
− G(s)

C(s)
. (10)

As C has relative degree 1 (see (8)), G must have relative
degree at least 1 to ensure that F is proper. It is reasonable
to restrict the quest for a desirable G to LTI systems which
we write without loss of generality in the form

G(s) =
1+bτs+ . . .

1+aτs+ . . .
. (11)

For such G it can be shown (similarly as in [13], page 42)
that the steady-state offset ∆hF of the downstream water level
due to feedforward for a downstream outflow Qds is

∆hF =
(1+a−b)τ

α
Qds =

1+a−b
cW

Qds, (12)

where c ≈ 3 m/s is the transport speed and W is the pool
width. Thus, the water level offset increases with decreasing
pool width, and increases linearly with the outflow.
In the following, we discuss the design of G. The simplest
choice would be a low-pass filter

G(s) =
1

1+aτs
(13)

which has a as degree of freedom. Note that this choice
ensures ‖G‖H∞

≤ 1 such that string instability is avoided [12].
Taking a . 1 results in high gain in F at high frequencies
which is undesirable due to the mismatch between the
linearized St Venant equations and the integrator & delay
model at high frequencies as discussed in Section III and
because the wave dynamics in the channel are excited. Taking
a& 3 avoids high gain in F at high frequencies but the water-
level offset ∆hF as given in (12) becomes excessively large.
For instance, taking the pool as in Figure 3, a = 3 and a
flow rate Qds = 30ML/d results in ∆hF ≈ 0.35 m. Therefore,
using a low-pass filter for G is not the optimal choice in
small channels.
A second-order transfer function of the form

G(s) =
1+bτs

(1+ āτs)2 =
1+bτs

1+2āτs+(āτs)2 (14)

has the additional degree of freedom b that can be used to
manage ∆hF . In the following we discuss two particular
choices for ∆hF . The pure feedback controller achieves
tracking of the downstream water-level reference hre f at
steady state. For G as in (14), the same is achieved by use
of b = 2ā+1, i.e.

G(s) =
1+(2ā+1)τs
(1+ āτs)2 . (15)

Second, we design G to prevent a steady-state water level
increase at the downstream end of the pools during flow

loads. The water-level increase at the upstream end of the
pools in the channel with parameters as given in Table I is
depicted in Figure 6. As described in the introduction an
increase in the upstream water level is undesirable because
it increases the necessary height of the concrete lining. As
illustrated in Figure 7, the water-level increase due to friction
can be compensated by lowering the downstream water level
reference. For a given anticipated maximum flow rate Qmax
and given maximum steady-state upstream water level, the
required downstream water-level reference can be obtained
by solving the steady-state St Venant equations (i.e. (1)-(2)
with the time-derivatives set to zero) with the upstream water
level set to the maximum water level as boundary condition.
Let ∆h f denote the corresponding change in the downstream
water level reference. Setting ∆hF at flow rate Qds = Qmax
as given by (12) to ∆h f and solving for b gives

b = 1+2ā− α

Qmaxτ
∆h f . (16)

The corresponding G is

G(s) =

(
(1+2ā)τ− α

Qmax
∆h f

)
s+1

(āτs+1)2 . (17)

Fig. 6: Water level change due to friction as a function of
the flow rate.

Fig. 7: Water-level profile at zero flow (red), when controlling
the downstream water level to hre f (blue) and when lowering
the downstream water-level reference by feed-forward to
compensate the frictional water-level offset ∆h f (green).

A. Example with small outflows

In the following we use the channel parameters as given in
Table I. One outlet is located at the downstream end of each
pool. The nonlinear St Venant equations (1)-(2) are simulated
in closed loop with the feedback controller and different
variants of feedforward. First, we consider an example with
relatively small outflows as given in Figure 8a. The resulting
time series of the water levels and upstream flow rates
for a pure feedback controller (i.e. F = 0) is depicted in



Figure 9. The step changes in the outflows cause water-
level deviations of approximately 8 cm during transients.
Since the cummulative flow load is relatively small even
in the most upstream pool, the frictional head loss is small
and the upstream water level increases only marginally. The
trajectories for the system with feedforward with F as in
(10) for G as in (15) are depicted in Figure 10. We use
ā = 3 which is sufficiently large to prevent the excitation of
high-frequency dynamics while choosing ā > 3 would make
the transients unnecessarily slow. That is, the feedforward
is such that there is no change to the downstream water
level reference at steady state. However, the transients are
improved significantly compared to pure feedback. Since
friction is small in this example, using feedforward for G
as in (17) results in very similar trajectories as using G as
in (15).

(a) (b)

Fig. 8: Outflow through the outlets at the downstream ends
of the pools for (a) the small-outflow example and (b) the
large-outflow example.

B. Example with large outflows
The trajectories for an example with large outflows as

given in Figure 8b are depicted in Figures 11-12. The
three most downstream outlets are consecutively opened to
12 ML/d such that the maximum flow load in the two most
upstream pools is 36 ML/d. Without feedforward, there are
significant deviations of the water levels and flow rate during
transients. Moreover, high friction results at in significant
increase of approximately 12 cm of the steady-state upstream
water level in pool 2 during maximum flow load. In pool 2,
the concrete lining would have to be almost 20 cm higher
than the reference water level to avoid spilling. By use of
feedforward for G as in (17) where ∆h f is computed for
Qmax = 36 ML/d, the transients are much less severe and
faster, and the water level increase compared to the reference
is negligible at all locations in the channel. This comes at
the cost of reducing the downstream water level in pool 2 by
almost 20 cm. Using G as in (15) the transients look similar
to those in Figure 12 but the steady states are the same as in
Figure 11. Of course it is possible to choose G in between
the extreme cases (15) and (17) such that there is a moderate
water level decrease downstream and a moderate water level
increase upstream.

C. String stability
String instability can cause undesirable water-level fluctu-

ations in a channel. String instability can be excluded if the

H∞-norm of the closed-loop transfer function from Qds to Qin
in each pool is 1 [12]. Due to page restrictions we cannot go
into the detail here but it can be said that the feedforward
designs using both (15) and (17) result in an H∞-norm only
slightly larger than 1. Due to the small number of pools the
resulting water-level overshoots are very small which can
also be seen in Figures 10 and 12. In fact, string-instability-
induced overshoots are reduced compared to the case without
feedforward. Even in a worst-case example with 5 identical
pools no significant string-instabilities occurred (not depicted
here).

V. CONCLUSIONS

In this paper we discussed the control system design for
concrete irrigation channels. Waves resonances are more
significant than in larger channels. Therefore, the Saint
Venant Equations should be used as a high-fidelity model
to verify the controller design. One of the main control
objectives was to prevent a significant increase of the water
level at all locations along the channel during operation in
order to keep the required height of the concrete lining
minimal. The discussed feedforward scheme adjusting the
downstream water level reference depending on the flow load
reduces water-level variations during transient. Moreover, the
feedforward controller can be tuned to lower the downstream
water level such that the friction-induced water level increase
in the upstream part of the pools during high flow loads
is compensated. By use of this design, string instability
problems which had been observed in channels consisting
of a much larger number of pools did not occur.
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Fig. 9: Trajectories for the small-outflows example without feedforward.

Fig. 10: Trajectories for the small-outflows example with feedforward using F as in (10) with (15) and ā = 3.

Fig. 11: Trajectories for the small-outflows example without feedforward.

Fig. 12: Trajectories for the small-outflows example with feedforward using F as in (10) with (17) and ā = 3.


