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Abstract: In this paper, we present an output feedback controller for systems consisting of
n 2 × 2 semilinear hyperbolic systems in series interconnection where actuation and sensing
are restricted to one boundary. The output-feedback control law consists of a state-feedback
controller combined with an observer. The control and estimation laws are based on the dynamics
on the characteristic lines of the hyperbolic system, and achieve stabilization of the origin or
tracking at one location, and full state estimation, respectively, globally and in minimum time.
We demonstrate the controller performance in a numerical example, and apply the controller
to a relevant disturbance rejection problem in oil well drilling.
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1. INTRODUCTION

Many physical systems are described by 2 × 2 hyperbolic
partial differential equations (PDEs), such as open water
channels (de Halleux et al., 2003; Dos Santos and Prieur,
2008), pipelines (Gugat and Herty, 2011) and oil wells
(Aamo, 2013; Di Meglio and Aarsnes, 2015). Often, ac-
tuation and sensing are restricted to one boundary of the
domain. An interesting property of hyperbolic systems is
that they can be controlled exactly; that is, the system can
be driven exactly to an equilibrium, or track a reference
signal, within a certain minimum time, as shown by Russell
(1978) for linear systems, by Zuazua (1993) for a semilinear
wave equation, and by Fu et al. (2007) for a very general
class of semilinear hyperbolic systems. The minimum time
for exact one-sided boundary controllability is given, e.g.,
by Li and Rao (2010). For quasilinear systems, local results
exist (Li and Rao, 2003). However, these papers discuss
only the existence of an open-loop control signal, which
limits their practical applicability. Over the last years, the
backstepping method has become a popular tool to con-
structively design state-feedback controllers and observers
for linear hyperbolic PDEs (Vazquez et al., 2011; Aamo,
2013; Hu et al., 2015). However, backstepping is (still)
limited to the linear case. Recently, we presented a con-
structive method for the controller and observer design for
semilinear systems (Strecker and Aamo, 2016), and applied
it to the so-called heave problem in drilling (Strecker and
Aamo, 2017a). In the present paper, we generalize this
method to n semilinear systems in series interconnection.
The development is mainly motivated by a special case of
the heave problem where the bit is far from the bottom of
the well.
The remainder of this paper is organized as follows. The

? Financial support by Statoil ASA is gratefully acknowledged.

precise problem statement is given in Section 1.1. Prelimi-
nary preparations are done in Section 2, which are used for
state-feedback controller, observer and output-feedback
controller design in Sections 3, 4 and 5, respectively. The
controller performance is demonstrated in a numerical
example in Section 6 and the heave problem in Section
7, before concluding remarks are given in Section 8.

1.1 Problem statement

For a positive integer n, we consider a system consisting
of n 2×2 semilinear hyperbolic systems in series intercon-
nection. Without loss of generality, we consider the spatial
interval [0, n] and assume that the i-th subsystem evolves
in the interval Ii = [i − 1, i]. For i = 1, . . . , n, the system
is governed by

uit(x, t) = −λiu(x)uix(x, t) + f iu(ui(x, t), vi(x, t), x, t), (1)

vit(x, t) = λiv(x)vx(x, t) + f iv(u
i(x, t), vi(x, t), x, t), (2)

for x ∈ Ii and t ≥ 0. The n subsystems are coupled
through

u1(0, t) = g1u(v1(0, t), t), (3)

vi(i, t) = giv(v
i+1(i, t), ui(i, t), t)

∣∣n−1
i=1

, (4)

ui+1(i, t) = gi+1
u (ui(i, t), vi+1(i, t), t)

∣∣n−1
i=1

, (5)

vn(n, t) = U(t), (6)

where we use |i2i=i1 to denote that an equation holds for

all i = i1, . . . , i2. We assume the nonlinear functions f iu,
f iv, g

i
u and giv to be uniformly Lipschitz continuous in the

state arguments and uniformly bounded and measureable
in x and t. U(t) is the actuation. Moreover, we assume
that giu and giv are invertible in the first argument in the
sense that there exist functions gi†u for i = 2, . . . , n and gi†v
for i = 1, . . . , n− 1 such that
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Fig. 1. The characteristic lines along which the states
ui (upwards) and vi (downwards) evolve for n = 2.
The bold lines represent the characteristic lines along
which Y (t) and U(t) propagate.

u+ = giu(u−, v+, t) ⇔ u− = gi†u (u+, v+, t), (7)

v− = giv(v
+, u−, t), ⇔ v+ = gi†v (v−, u−, t) (8)

for all u+, u−, v+, v− ∈ R and t ≥ 0. We consider the state
space of bounded functions on the respective intervals,
denoted by XIi , equipped with the spatial supremum
norm, and assume the initial conditions ui(x, 0) = ui0(x)
and vi(x, 0) = vi0(x) to lie in these spaces. Note that
the states might be discontinuous and satisfy (1)-(2) only
almost everywhere, i.e. not in the classical sense. Weak
solutions can be defined as the solution of the integral
equations that are obtained by integrating (1)-(2) along
its characteristic lines.
Finally, we assume there exist positive bounds λ and λ̄ on
the transport speeds such that λ ≤ λiu(x), λiv(x) ≤ λ̄ for
all x and i, and that the λ’s are measureable.
We consider the following two control problems

• for i∗ ∈ {1, . . . , n} and x∗ ∈ Ii∗ , achieve

vi
∗
(x∗, t) = h(ui

∗
(x∗, t), t), (9)

where h : R2 → R defines a tracking problem.
Note that in general f iu, f iv, g

i
u and giv can include

disturbance terms (for which short-term predictions
are needed). The tracking problem must be well posed
in the sense that the solution satisfying (9) remains
bounded for the given initial condition.

• stabilization of the origin in minimum time (as given
in Li and Rao (2010)) under the additional assump-
tion

f iu(0, 0, x, t) = f iv(0, 0, x, t) = 0 ∀x, t, i, (10)

giu(0, 0, t) = gi†v (0, 0, t) = 0 ∀t, i. (11)

This problem will be solved globally and the effect of
the initial condition is removed in minimum time.

Moreover, we design an observer to estimate the infinite-
dimensional state from the measurement Y (t) = un(n, t)
in minimum time, and combine the observer with the
state-feedback controller to achieve stabilization or track-
ing using output-feedback control.

2. PRELIMINARIES

The characteristic lines of the system are sketched in
Figure 1. Due to the hyperbolic nature of (1)-(2), the
input U(t) propagates with finite speed λv from x = n
throughout the domain. Therefore, we base the controller
design on the dynamics on the characteristic line along
which U(t) propagates. Similarly, the measurement Y (t)

evolves along a characteristic line corresponding to the
transport speed λu. We require the following preliminary
definitions.

φv(x) =

∫ n

x

1

λv(ξ)
dξ, τv(x, t) = t+ φv(x), (12)

φu(x) =

∫ n

x

1

λu(ξ)
dξ, τu(x, t) = t− φu(x), (13)

where we used the short notation λu/v = λiu/v if x ∈ (i −
1, i]. The integrals are not affected by the value of λ at the
finitely many points x = 1, . . . , n− 1 where both λiu/v and

λi−1u/v are defined. The following definition will be central

for controller design.

Definition 1. We define the state on the characteristic line
along which the actuation U(t) propagates by

ūi(x, t) = ui (x, τv(x, t)) , (14)

v̄i(x, t) = vi (x, τv(x, t)) , (15)

for x ∈ Ii and i = 1, . . . , n.

For observer design, we require the following definition.

Definition 2. We define the state on the characteristic line
along which the measurement Y (t) propagates by

ǔi(x, t) = ui (x, τu(x, t)) , (16)

v̌i(x, t) = vi (x, τu(x, t)) , (17)

for x ∈ Ii and t ≥ τu(x, t), i = 1, . . . , n.

For later use, we also introduce the notation{
wi(·)

}i2
i=i1

=
{
wi1(·), . . . , wi2(·)

}
(18)

to denote sets of functions, where the wi(·) do not neces-
sarily share their domain of definition.

2.1 Dynamics on the characteristic line (x, τv(x, t))

Due to the finite propagation speeds, the states ui(x, θ)
for x ∈ Ii and θ ∈ [t, τv(x, t)] are independent of the input
U(t). Likewise, vi(x, θ) in the open interval θ ∈ [t, τv(x, t))
is independent of U(t). Therefore, it is possible to predict ū
from the state at time t as stated by the following theorem.

Theorem 3. For every t, there exists a continuous operator
Φt : (XI1)

2 × . . . × (XIn)
2 → XI1 × . . . × XIn such that,

independent of U(t),{
ūi(·, t)

}n
i=1

= Φt
({
ui(·, t), vi(·, t)

}n
i=1

)
. (19)

Moreover,
(
ūi, v̄i

)
for i = 1, . . . , n satisfy the PDE-ODE

system

ūit(x, t) = − λiu(x)λiv(x)

λiu(x) + λiv(x)
ūix(x, t) (20)

+
λiv(x)

λiu(x) + λiv(x)
f iu(ūi(x, t), v̄i(x, t), x, τv(x, t)),

v̄ix(x, t) = − 1

λiv(x)
f iv(ū

i(x, t), v̄i(x, t), x, τv(x, t)), (21)

with the coupling conditions

ū1(0, t) = g1u(v̄1(0, t), τv(0, t)), (22)

v̄i(i, t) = giv(v̄
i+1(i, t), ūi(i, t), τv(i, t))

∣∣n−1
i=1

, (23)

ūi+1(i, t) = gi+1
u (ūi(i, t), v̄i+1(i, t), τv(i, t))

∣∣n−1
i=1

, (24)

v̄n(n, t) = U(t), (25)
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and initial condition{
ūi(·, 0)

}n
i=1

= Φ0
({
ui0(·), vi0(·)

}n
i=1

)
. (26)

Proof. A sketch of the proof of existence and continuity
of Φt is given in Appendix A.
To prove the second statement, we denote the total deriva-
tives with respect to t and x by d

dt and d
dx , whereas t and

x are partial derivatives with respect to time and space.
For ūi, x ∈ Ii, i = 1, . . . , n, we have

ūit(x, t) =
d

dt
ui(x, τv(x, t))

= uit(x, τv(x, t))
dτv(x, t)

dt
= uit(x, τv(x, t)),

(27)

ūix(x, t) =
d

dx
ui(x, τv(x, t))

= uix(x, τv(x, t)) + uit(x, τv(x, t))
dτv(x, t)

dx

= uix(x, τv(x, t))−
1

λiv(x)
uit(x, τv(x, t))

= − 1

λiv(x)
uit(x, τv(x, t))−

1

λiu(x)

[
uit(x, τv(x, t))

−f iu(ui(x, τv(x, t), v
i(x, τv(x, t)), x, τv(x, t))

]
= −λ

i
u + λiv
λiuλ

i
v

uit(x, τv) +
1

λiu
f iu(ūi(x, t), v̄i(x, t), x, τv(x, t)).

(28)
Inserting (27) into the latter equation gives (20). Analo-
gously for v̄i,

v̄ix(x, t) =
d

dx
vi(x, τv(x, t))

= vix(x, τv(x, t))−
1

λiv(x)
vit(x, τv(x, t))

= − 1

λiv(x)
vit(x, τv(x, t)) +

1

λiv(x)

[
vit(x, τv(x, t))

−f iv(u(x, τv(x, t)), v(x, τv(x, t)), x, τv(x, t))
]

= − 1

λiv(x)
f iv((ū

i(x, t), v̄i(x, t), x, τv(x, t)).

(29)

The coupling conditions follow directly from

ūi+1(i, t) = ui+1(i, τv(i, t))

= gi+1
u (ui(i, τv(i, t)), v

i+1(i, τv(i, t)), τv(i, t))

= gi+1
u (ūi(i, t), v̄i+1(i, t), τv(i, t))

(30)
and

v̄i(i, t) = vi(i, τv(i, t))

= giv(v
i+1(i, τv(i, t)), u

i(i, τv(i, t)), τv(i, t))

= giv(v̄
i+1(i, t), ūi(i, t), τv(i, t)).

(31)

Equation (25) follows from τv(n, t) = t.

Remark 4. The operator Φt can be implemented by solv-
ing (1)-(6) in the domain {(x, θ) : x ∈ [0, n], θ ∈
[t, τv(x, t)]}.

2.2 Dynamics on the characteristic line (x, τu(x, t))

Due to the finite propagation speeds, the states ui(x, θ)
and vi(x, θ) for x ∈ Ii and θ in the open interval
θ ∈ (τu(x, t), t] have no influence on the measurement
Y (t). Therefore, it is possible to predict the state at

time t,
(
ui(·, t), vi(·, t)

)
, i = 1, . . . , n, from the past state(

ǔi(·, t), v̌i(·, t)
)
, i = 1, . . . , n.

Theorem 5. For t ≥ τu(0), there exists a continuous
operator Λt such that, independent of U(t),{

ui(·, t), vi(·, t)
}n
i=1

= Λt
({
ǔi(·, t), v̌i(·, t)

}n
i=1

)
. (32)

Moreover,
(
ǔi, v̌i

)
, i = 1, . . . , n, satisfy the PDE-ODE

system

ǔix(x, t) =
1

λiu(x)
f iu(ǔi(x, t), v̌i(x, t), x, τu(x, t)), (33)

v̌it(x, t) =
λiu(x)λiv(x)

λiu(x) + λiv(x)
v̌ix(x, t) (34)

+
λiu(x)

λiu(x) + λiv(x)
f iv(ǔ

i(x, t), v̌i(x, t), x, τu(x, t)),

with the coupling conditions

ǔ1(0, t) = g1u(v̌1(0, t), τu(0, t)), (35)

v̌i(i, t) = giv(v̌
i+1(i, t), ǔi(i, t), τu(i, t))

∣∣n−1
i=1

, (36)

ǔi+1(i, t) = gi+1
u (ǔi(i, t), v̌i+1(i, t), τu(i, t))

∣∣n−1
i=1

, (37)

v̌n(n, t) = U(t), (38)

and v̌i(x, 0) = vi (x, φu(x)) for i = 1, . . . , n.

Proof. Proving existence and continuity of Λt is done by
transforming (1)-(5) with “initial” conditions ui(x, τu(x, t))
= ǔi(x, t) and vi(x, τu(x, t)) = v̌i(x, t) for x ∈ Ii and
i = 1, . . . , n into integral equations and proving existence
of a solution in the domains

Siδ = {(x, θ) : x ∈ Ii, θ ∈ [τu(x, t), t]} \ {(n, t)}, (39)

where the point {(n, t)} is omitted in order to remove the
effect of the actuation U(t).
The derivation of the PDE-ODE system follows the same
steps as in the proof of Theorem 3.

Remark 6. The operator Λt can be implemented by solv-
ing (1)-(6) in the domain {(x, θ) : x ∈ [0, n], θ ∈
[τu(x, t), t]}.

3. STATE-FEEDBACK CONTROLLER DESIGN

The actuation U(t) enters the system at x = n, while the
tracking objective (9) is located at some general x∗ ∈ [0, n].
Since ūi

∗
(x∗, t) is predictable from the current state, the

desired value of v̄i
∗
(x∗, t) can be computed. The idea is to

consider the desired value of v̄i
∗
(x∗, t) as a virtual control

input, which we denote by U∗(t), and control the system
by U∗(t). Exploiting the fact that (21) are ODEs in space
without dynamics in time, we can design U(t) such that
v̄i

∗
(x∗, t) becomes U∗(t). In Section 3.3, we show how the

same approach can be used to stabilize the system at the
origin under the additional assumptions (10)-(11).

3.1 Dynamics with virtual actuation

For given time t, predicted states {ūi(·, t)}ni=1, and virtual
actuation U∗(t) for fixed i∗ and x∗, the required actuation
U(t) in order to achieve v̄i

∗
(x∗, t) = U∗(t) can be con-

structed by solving the ODEs (21) backwards in space (as
seen from the propagation direction of U(t)) and inverting
the coupling conditions (23). This construction can be
written in algorithmic form as follows.
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• solve the Cauchy problem

ϕi
∗

x (x) = − 1

λi∗v (x)
f i

∗

v (ūi
∗
(x, t), ϕi

∗
(x), x, τ i

∗

v (x, t))

(40)
for x ∈ [x∗, i∗] with initial value ϕi

∗
(x∗) = U∗(t).

• for i = i∗ + 1, . . . , n:
· step from i − 1 to i by inverting the coupling

condition:

ϕi0 = gi−1†v (ϕi−1(i− 1), ūi(i− 1, t), τ iv(i− 1, t).
(41)

· solve the Cauchy problem

ϕix(x) = − 1

λiv(x)
f iv(ū

i(x, t), ϕi(x), x, τ iv(x, t)),

(42)
x ∈ [i− 1, i], with initial value ϕi(i− 1) = ϕi0.

• set U(t) = ϕn(n).

Finally, we define the operator Ψt
i∗,x∗ by

Ψt
i∗,x∗ :

(
{ūi(·, t))}ni=1, U

∗(t)
)
7→ U(t). (43)

Theorem 7. The system (20)-(25) in closed loop with
U(t) = Ψt

i∗,x∗

(
{ūi(·, t))}ni=1, U

∗(t)
)

satisfies

ūit(x, t) = − λiu(x)λiv(x)

λiu(x) + λiv(x)
ūix(x, t) (44)

+
λiv(x)

λiu(x) + λiv(x)
f iu(ūi(x, t), v̄i(x, t), x, τv(x, t)),

v̄ix(x, t) = − 1

λiv(x)
f iv(ū

i(x, t), v̄i(x, t), x, τv(x, t)), (45)

with the coupling conditions

ū1(0, t) = g1u(v̄1(0, t), τv(0, t)), (46)

ūi+1(i, t) = gi+1
u (ūi(i, t), v̄i+1(i, t), τv(i, t))

∣∣n−1
i=1

, (47)

v̄i(i, t) = giv(v̄
i+1(i, t), ūi(i, t), t)

∣∣i∗−1
i=1

, (48)

v̄i
∗
(x∗, t) = U∗(t) (49)

v̄i+1(i, t) = gi†v (v̄i(i, t), ūi(i, t), τv(i, t))
∣∣n−1
i=i∗

. (50)

Proof. Due to the Lipschitz conditions on f iv, g
i
v and

gi†v , and the uniform bounds on the transport speeds λiv,
the system consisting of the ODEs (42) and the coupling
conditions, for given t and ūi(·, t), has a unique solution
for any given initial conditions. Due to (8), stepping from
the i + 1-st to the i-th subsystem by giv is equivalent to
stepping from the i-th to the i + 1-st subsystem by gi†v .
Hence, the system can be solved both in positive and
negative x-direction. Therefore, the trajectories of ϕi for
all i = 1, . . . , n are uniquely defined by ϕi

∗
(x∗) = U∗(t).

Hence, ϕn(n) = U(t) if and only if ϕi
∗
(x∗) = U∗(t). Since

(42) is a copy of (21) for ϕi(·) = v̄i(·, t), this is equivalent
to

v̄i
∗
(x∗, t) = U∗(t)⇔ v̄n(n, t) = Ψt

(
{ūi(·, t))}ni=1, U

∗(t)
)
.

3.2 Tracking

We can now prove the following tracking result.

Theorem 8. The system (1)-(6) in closed loop with the
feedback law{

ūi(·, t)
}n
i=1

= Φt
({
ui(·, t), vi(·, t)

}n
i=1

)
,

U∗(t) = h(ūi
∗
(x∗, t), τv(x

∗, t)),

U(t) = Ψt
i∗,x∗

(
{ūi(·, t))}ni=1, U

∗(t)
)
,

(51)

satisfies the tracking objective (9) for all t ≥ φv(x∗).

Proof. Using the feedback law (51), the system (20)-(25)
satisfies the tracking objective for all t ≥ 0 by Theorem 7.
Hence, the claim follows directly from Definition 1.

3.3 Stabilization

Above, we established that we can move the location where
the virtual actuation enters the (ūi, v̄i) system to a desired
location. In order to stabilize the origin, the idea is to force
the inflow boundary of the ūi-subsystems, i.e. ū1(0, t), to
zero.

Theorem 9. The system (1)-(6) in closed loop with the
state-feedback law{

ūi(·, t)
}n
i=1

= Φt
({
ui(·, t), vi(·, t)

}n
i=1

)
,

U(t) = Ψt
1,0

(
{ūi(·, t))}ni=1, 0

)
,

(52)

satisfies ui(x, t) = vi(x, t) = 0 for all i = 1, . . . , n, x ∈ Ii
and t ≥ φv(0) + φu(0).

Proof. First, we prove that using (52),

ūi(x, t) = v̄i(x, t) = 0 for all (x, t, i) ∈ A, (53)

where

A = {(x, t, i : i ∈ {i, . . . , n}, x ∈ Ii, t ≥ φ̄(x))}, (54)

φ̄(x) =

x∫
0

λv(x) + λu(x)

λv(x)λu(x)
dξ. (55)

For this purpose, we transform the coupled PDE-ODE
system (20)-(25) into a system of integral equations. We
fix (x, t, i) ∈ A and define

ξ̄(s) = φ̄−1
(
φ̄(x)− t+ s

)
, ν(j) = t− φ̄(x) + φ̄(j). (56)

Since the transport speeds are positive, φ̄ is strictly mono-
tonically increasing, hence invertible. Thus, ξ̄ is well de-
fined. Integrating (45) from ξ = 0 to ξ = x and inserting
the coupling conditions (50) gives the following recursive
expression for v̄i(x, t). For j = 1, . . . , i− 1,

v̄j(j, t) =v̄j(j − 1, t)−
∫ j

j−1

1

λjv(ξ)
(57)

× f jv (ūj(ξ, t), v̄j(ξ, t), ξ, τv(ξ, t))dξ,

v̄j+1(j, t) =gj†v
(
v̄j(j, t), ūj(j, t), τv(j, t)

)
, (58)

and

v̄i(x, t) =v̄i(i− 1, t)−
∫ x

i−1

1

λiv(ξ)
(59)

× f iv(ūi(ξ, t), v̄i(ξ, t), ξ, τv(ξ, t))dξ.
Integrating (44) along its characteristic line and inserting
the coupling conditions gives recursively for j = 1, . . . , i−1

ūj(j, ν(j)) = ūj(j − 1, ν(j − 1)) +

∫ ν(j)

ν(j−1)
λ̃jv(ξ̄(s)) (60)

× f ju(ūj(ξ̄(s), s), v̄j(ξ̄(s), s), ξ̄(s), τ jv (ξ̄(s), s))ds,

ūj+1(j, ν(j)) = gj+1
u

(
ūj(j, ν(j)), (61)

v̄j+1(j, ν(j)), τv(j, ν(j))
)
,

where we abbreviated λ̃jv(x) =
λj
v(x)

λj
u(x)+λ

j
v(x)

, and
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ūi(x, t) = ūi(i− 1, ν(i− 1)) +

∫ t

ν(j−1)
λ̃jv(ξ̄(s)) (62)

× f ju(ūj(ξ̄(s), s), v̄j(ξ̄(s), s), ξ̄(s), τ jv (ξ̄(s), s))ds.

The choice U∗(t) = 0 ensures v̄1(0, θ) = 0 and, due
to assumption (11), ū1(0, θ) = 0 for all θ ≥ 0. Next,
we note that if (x, t, i) ∈ A, then (ξ, t, j) ∈ A for all
j ≤ i and ξ ∈ [0, x] (due to the monotonicity of φ̄),
(ξ̄(s), s, j) ∈ A for all j ≤ i and s ∈ [ν(0), t] (because,
if (x, t, i) ∈ A, then φ̄(x) ≤ t, hence φ̄(ξ̄(s)) ≤ s due
to the monotonicity of φ̄, hence φ̄(ξ̄(s)) ≤ t for s ≤ t ),
and (j, ν(j), j) ∈ A for all j < i. Thus, the evaluations
of ū and v̄ in the right-hand sides of (57)-(62) lie in A.
Inserting (53) into the right-hand sides of (57)-(62), we see
that, due to the assumptions (10)-(11), all right-hand sides
become zero. That is, (53) solves the integral equations
(57)-(62). Because of the Lipschitz conditions and the
uniform bounds on the transport speeds, it is also possible
to show that the solution of (57)-(62) is unique. Thus,
we can reverse the statement and say that the solution of
(57)-(62) must satisfy (53), and the same must hold for
the original PDE-ODE system (20)-(25).
Finally, the claim for (1)-(6) follows directly from (53),
Definition 1 and the equality φ̄(n) = φv(0) + φu(0).

Remark 10. Exponential Lyapunov stability of the origin
can be proven similarly as in (Strecker and Aamo, 2016).

4. OBSERVER DESIGN

Next, we assume we can measure Y (t) = un(n, t). Written
in the form of (33) with (35)/(37), the equations are to be
solved in positive x-direction from x = 0 to x = n. Since
(33) is a set of coupled ODEs in space without dynamics
in time, and since we know the boundary value at x = n,
we can instead solve (33) with (37) in negative x-direction
from x = n to x = 0. Therefore, we design the observer as
a copy of (33)-(38) with (35) replaced by the measurement
and (37) replaced by its inverse:

ûix(x, t) =
1

λiu(x)
f iu(ûi(x, t), v̂i(x, t), x, τu(x, t)), (63)

v̂it(x, t) =
λiu(x)λiv(x)

λiu(x) + λiv(x)
v̂ix(x, t) (64)

+
λiu(x)

λiu(x) + λiv(x)
f iv(û

i(x, t), v̂i(x, t), x, τu(x, t)),

with the coupling conditions

ûi(i, t) = gi+1†
u (ûi+1(i, t), v̂i+1(i, t), τu(i, t))

∣∣n−1
i=1

, (65)

v̂i(i, t) = giv(v̂
i+1(i, t), ûi(i, t), τu(i, t))

∣∣n−1
i=1

, (66)

ûn(n, t) = Y (t), (67)

v̂n(n, t) = U(t), (68)

and some initial guess v̂(x, 0) = v̂0(x).

Theorem 11. Consider the observer (63)-(68). The state
estimates{
uiest(·, t), viest(·, t)

}n
i=1

= Λt
({
ûi(·, t), v̂i(·, t)

}n
i=1

)
(69)

satisfy uiest(x, t) = ui(x, t) and vest(x, t) = vi(x, t) for all
i = 1, . . . , n, x ∈ Ii and t ≥ φv(0) + φu(0).

Proof. The idea of the proof is to establish that the
estimator errors eiu = ûi − ǔi and eiv = v̂i − v̌i satisfy

eiu(x, t) = eiv(x, t) = 0 for all (x, t, i) ∈ B, (70)

where

B = {(x, t, i : i ∈ {i, . . . , n}, x ∈ Ii, t ≥ φ̂(x))}, (71)

φ̂(x) =

n∫
x

λiv(x) + λiu(x)

λiv(x)λiu(x)
dξ. (72)

Then, the claim follows directly from Definition 2, Theo-

rem 5 and the equality φ̂(0) = φv(0) + φu(0).
Subtracting (33)-(38) with (37) replaced by its inverse and
ǔn(n, t) = Y (t) instead of (35) from (63)-(68) gives

eiu,x(x, t) = f̃u(ûi, v̂i, ǔi, v̌i, x, t), (73)

eiv,t(x, t) =
λiuλ

i
v

λiu + λiv
eiv,x(x, t) + f̃v(û

i, v̂i, ǔi, v̌i, x, t),

(74)

with the coupling conditions

eiu(i, t) = g̃i+1†
u (ûi+1, v̂i+1, ǔi+1, v̌i+1)

∣∣n−1
i=1

, (75)

eiv(i, t) = g̃iv(v̂
i+1, ûi, v̌i+1, ǔi)

∣∣n−1
i=1

, (76)

enu(n, t) = 0, (77)

env (n, t) = 0, (78)

where

f̃ iu(ûi, v̂i, ǔi, v̌i, x, t) =
1

λiu(x)

(
f iu(ûi(x, t), (79)

v̂i(x, t), x, τu(x, t))− f iu(ǔi(x, t), v̌i(x, t), x, τu(x, t))
)
,

f̃ iv(û
i, v̂i, ǔi, v̌i, x, t) =

λiu(x)

λiu(x) + λiv(x)

(
f iv(û

i(x, t), (80)

v̂i(x, t), x, τu(x, t))− f iv(ǔi(x, t), v̌i(x, t), x, τu(x, t))
)
,

g̃i+1†
u (ûi+1, v̂i+1, ǔi+1, v̌i+1, t) = gi+1†

u (ûi+1(i, t), (81)

v̂i+1(i, t), τu(i, t))− gi+1†
u (ǔi+1(i, t), v̌i+1(i, t), τu(i, t)),

g̃iv(v̂
i+1, ûi, v̌i+1, ǔi, t) = giv(v̂

i+1(i, t), (82)

ûi(i, t), τu(i, t))− giv(v̌i+1(i, t), ǔi(i, t), τu(i, t)).

The boundary values (77)-(78) follow directly from ûn(n, t)
= ǔn(n, t) = Y (t) and v̂n(n, t) = v̌n(n, t) = U(t). Next,
we note that eiu(x, t) = 0, i.e. ûi(x, t) = ǔi(x, t), implies

f̃ iu(ûi, v̂i, ǔi, v̌i, x, t) = 0, and that the analogue holds

for f̃ iv, g̃
i+1†
u and g̃iv. Thus, f̃ iu, f̃ iv, g̃

i+1†
u and g̃iv satisfy

conditions of the form (10)-(11). Therefore, if we make the
coordinate change from x to z = n−x and i to k = n+1−i,
the error system (73)-(78) has exactly the same structure
as (44)-(50) for U∗(t) = 0, x∗ = 0 and i∗ = 1. In that
sense, the estimation problem is dual to the stabilization
problem from Section 3.3. Thus, the proof can be finished
by following the proof of Theorem 9.

5. OUTPUT-FEEDBACK CONTROL

We combine the observer from Section 4 with the state
feedback laws from Section 3 to get an output feedback
controller.

Corollary 12. The system (1)-(6) in closed loop with the
output feedback controller consisting of the observer (63)-
(68) and the feedback law{

uiest(·, t), viest(·, t)
}n
i=1

= Λt
({
ûi(·, t), v̂i(·, t)

}n
i=1

)
,{

ūiest(·, t)
}n
i=1

= Φt
({
uiest(·, t), viest(·, t)

}n
i=1

)
,

U(t) = Ψt
i∗,x∗

(
{ūiest(·, t))}ni=1, U

∗(t)
)
,

(83)
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Fig. 2. System state and estimation error trajectories.

satisfies one of the following control objectives.

• If i∗ and x∗ are as defined by the tracking problem
and U∗(t) = h(ūi

∗
(x∗, t), τv(x

∗, t)), (9) is satisfied for
all t ≥ φv(0) + φu(0) + φv(x

∗).
• If i∗ = 1, x∗ = 0, U∗(t) = 0 and the additional

assumptions (10)-(11) hold, then ui(x, t) = vi(x, t) =
0 for all i, x ∈ Ii and t ≥ 2(φv(0) + φu(0)).

6. EXAMPLE

We demonstrate the controller performance in an example
with n = 2 and

λ1u(x) = 0.5 exp(x), f1u(u, v, x, t) =
sin(u+ v)

3− x
,

λ2u(x) = 1, f2u(u, v, x, t) = v/3,

λ1v(x) = 1 + 0.5x, f1v (u, v, x, t) = sin(v − u),

λ2v(x) = 3 exp(−x), f2v (u, v, x, t) = −0.25u,

g1u(v, t) = −v, g2u(u, v, t) = 0.5(u− v),

g1v(v, u, t) = v + 0.5 sin(v).

(84)

In open-loop (U(t) = 0), the origin is an unstable equilib-
rium and the system slowly converges to a stable non-zero
equilibrium. The initial states are set to u10(x) = v10(x) = 1
and u20(x) = v20(x) = 0, and all initial states of the observer
are set to zero. We stabilize the system using output feed-
back. In order to demonstrate the open-loop behavior, the
controller is switched on only for t ≥ 10, before that we use
U(t) = 0. The resulting trajectories are depicted in Figure
2. Note that the respective trajectories for i = 1, 2 are
plotted together. As predicted by theory, the estimation
error becomes zero within φu(0)+φv(0) ≈ 3.6, up to minor
numerical errors. Once the controller is switched on, the
same holds for the system states.

7. APPLICATION TO OIL WELL DRILLING

We apply the output feedback controller to the heave
problem in offshore managed pressure drilling (MPD). The
heave problem occurs when the drill string in an oil well
oscillates with the wave-induced heave motion of the rig,
and has been described in more detail elsewhere ((Aamo,
2013; Strecker and Aamo, 2017b) and references therein).

(a) (b)

Fig. 3. Left: Sketch of an oil well. Right: Illustration of the
domains T iδ (green), the integration paths to obtain
u2 and v2 at (y, θ) ∈ T 2

δ (dashed lines), and how to
obtain u1(x, τv(x, t)) by continuity (right arrow), see
also Appendix A.

A sketch of an oil well is also depicted in Figure 3a. Briefly
speaking, an oil well is filled with a fluid called drilling
mud, which is designed to keep the pressure in the well
within tolerable margins. However, movement of the drill
string induces pressure oscillations that can violate these
margins. A typical control objective is to keep the pressure
at the bottom of the well at a setpoint. We consider
the problem of attenuating such pressure oscillations by
controlling the topside annular pressure and flow rate at
the rig via the opening of an outflow choke. In this paper,
we are concerned with the case that the drill bit is not at
the bottom of the well, which occurs for instance when the
drill string is pulled out of the borehole. That is, the drill
string is only in the upper part of the well, and there is
a significant mud column below the bit. In this case, the
well can be modeled be two coupled hydraulic transmission
lines describing the mud dynamics in the section below
the bit and in the annular space around the drill string,
respectively. We assume the drill string to be rigid, which
is a reasonable assumptions in approximately vertical wells
up to 5000 m length. The governing equations are (see also
(Strecker and Aamo, 2017b; Aamo, 2013)

p1t (z, t) = − β

A1
q1z(z, t) (85)

q1t (z, t) = −A1

ρ
p1z(z, t)−

1

ρ
F 1(q1(z, t))−A1g (86)

p2t (z, t) = − β

A2
q2z(z, t) (87)

q2t (z, t) = −A2

ρ
p2z(z, t)−

1

ρ
F 2(q2(z, t), vd(t))−A2g (88)

where the index 1 represents the subsystem below the
bit, 2 is the mud in the annular space around the drill
string, z ∈ [0, l1 + l2] is the position measured from the
bottom, li is the length of the respective section, p is
pressure, q is the volumetric flow rate, the subscripts z and

t denote partial derivatives with respect to space and time,
respectively, vd(t) is the drill string velocity, A denotes the
respective cross sectional area, β the bulk modulus, ρ the
mud density, and g the gravitational acceleration. F 1 and
F 2 are nonlinear functions representing friction, which are
constructed as described in (Strecker and Aamo, 2017b)
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depending on the mud rheology and well geometry. There
is no flow at the bottom, hence

q1(0, t) = 0. (89)

The two subsystems are coupled at the (very short) drill
bit, where we have

p2(l1, t) = p1(l1, t), q2(l1, t) = q1(l1, t) + d(t) (90)

for d(t) = −Advd(t), where Ad = A1 − A2 is the cross
sectional area displaced by the drill string. The boundary
condition at the top, z = l1 + l2, is left as the actuation.
The objective is to control the pressure at the bottom of
the well to a setpoint pressure psp, i.e.

p1(0, t) = psp. (91)

7.1 State transformation

In order to apply the output feedback controller, we have
to transform the well model into the form (1)-(6). The
transformation

ui(x, t) =
1

2

(
qi(zi(x), t) +

Ai√
βρ

(pi(zi(x), t) (92)

−psp + ρgzi(x))) ,

vi(x, t) =
1

2

(
qi(zi(x), t)− Ai√

βρ
(pi(zi(x), t) (93)

−psp + ρgzi(x))) ,

for i = 1, 2 with z1(x) = l1x and z2(x) = l2(x − 1) + l1
maps (85)-(88) into (1)-(2) with

λiu(x) = λiv(x) =
1

li

√
β

ρ
, (94)

f1u(u, v, x, t) = − 1

2ρ
F 1(u+ v), (95)

f2u(u, v, x, t) = − 1

2ρ
F 2(u+ v, vd(t)), (96)

which can be verified by differentiating (92)-(93) w.r.t. t,
inserting (85)-(88), and substituting qi and pi by ui and
vi by inverting (92)-(93). Inserting the inverse of (92)-(93)
into the coupling conditions (90) gives

(u2(1, t)− v2(1, t)) =
A2

A1
(u1(1, t)− v1(1, t)), (97)

u2(1, t) + v2(1, t) = u1(1, t) + v1(1, t) + d(t). (98)

Solving this linear system for the unknowns v1(1, t) and
u2(1, t) gives

g1v(v, u, t) =− 1

1 + A2

A1

((
1− A2

A1

)
u− 2v + d(t)

)
(99)

g2u(u, v, t) =
1

1 + A2

A1

(
2
A2

A1
u−

(
A2

A1
− 1

)
v +

A2

A1
d(t)

)
(100)

Inserting the inverse of (92)-(93) into (89) gives

g1u(v, t) = −v. (101)

7.2 Simulations

We simulate a 4000 m deep vertical well where the bit
is 1000 m above the bottom, hence l1 = 1000 m and
l2 = 3000 m. The well and drill string outer diameters are
216 mm and 127 mm, respectively, hence A1 = 0.0366 m2,

Fig. 4. Pressure deviation from steady state, p(z, t)−psp+
ρgz, and flow rate trajectories using output feedback
control.

A2 = 0.0239 m2 and Ad = 0.0127 m2. We use a mud with
ρ = 1500 kg/m3, β = 16000 bar, and a Bingham-type
rheology with plastic viscosity 20 mPas and yield point
5 Pa. With this rheology and well geometry, the parameter
fitting procedure from (Strecker and Aamo, 2017b) returns
the following friction terms:

F 1(q1) =
(
c10 + c1K |q1/A1|n

1
)
s
(
q1/A1

)
, (102)

F 2(q2, vd) =

3∑
j=2

(
cj0 + cjK |v

j
eff |

nj
)
s
(
vjeff

)
, (103)

where vjeff (q2, vd) = q2/A2 − kjvd for j = 2, 3,

c10 = 3.4, c1K = 1.1, n1 = 0.85, (104)

c20 = 2, c2K = 2, n2 = 1, k2 = 0.8, (105)

c30 = 3.4, c3K = 3, n3 = 0.95, k3 = 0.07, (106)

and s(v) = v√
v2+0.01

is a smooth approximation of the sign

function.
For simplicity, we use a simple sinusoidal heave motion
with amplitude a = 1 m and wave period T = 12 s
(a typical dominant wave period in the North Sea), i.e.
vd(t) = aω sin(ωt) for ω = 2π/T . We set psp = 600 bar.
The pressure and flow rate trajectories are depicted in
Figure 4. The controller is switched on only after 40 s.
Before that, we use U(t) = 0. In the uncontrolled case, the
pressure at the bottom of the well oscillates by approx-
imately ±5 bar around psp, whereas the output feedback
controller attenuates the pressure oscillations up to minor
numerical errors. Since no disturbance terms enter in the
section below the bit, the pressure oscillations become zero
in the whole section z ∈ [0, l1].
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8. CONCLUSION

We generalized recent results on the controller and ob-
server design of 2×2 semilinear systems to n such systems
in serious interconnection. The controller was applied to
the heave-problem in MPD and successfully attenuates
pressure oscillations at the bottom of an oil well modeled
by two coupled hydraulic transmission lines. It would be
interesting to see if the approach in this paper can be
generalized to more general network structures, perhaps
with actuation and sensing at more locations. In Gugat
et al. (2011), for instance, tree-like networks with one
actuator for each tracking objective were considered, and
it should be possible to extend the methods in the present
paper to this case.
Evaluation of the presented control and estimation laws
requires solving PDE systems. For linear systems, explicit
formulas for the state-feedback control law could be de-
rived in (Strecker and Aamo, 2016) for the case n = 1.
Such explicit formulas are desirable from a computational
point of view, and it should be investigated if the same is
possible for n > 1.
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Dos Santos, V. and Prieur, C. (2008). Boundary con-
trol of open channels with numerical and experimental
validations. IEEE Transactions on Control Systems
Technology, 16(6), 1252–1264.

Fu, X., Yong, J., and Zhang, X. (2007). Exact con-
trollability for multidimensional semilinear hyperbolic
equations. SIAM Journal on Control and Optimization,
46(5), 1578–1614.

Gugat, M. and Herty, M. (2011). Existence of classical
solutions and feedback stabilization for the flow in gas
networks. ESAIM: Control, Optimisation and Calculus
of Variations, 17(1), 28–51.

Gugat, M., Herty, M., and Schleper, V. (2011). Flow
control in gas networks: exact controllability to a given
demand. Mathematical Methods in the Applied Sciences,
34(7), 745–757.

Hu, L., Di Meglio, F., Vazquez, R., and Krstic, M. (2015).
Control of homodirectional and general heterodirec-
tional linear coupled hyperbolic pdes. IEEE Transac-
tions on Automatic Control.

Li, T.T. and Rao, B.P. (2003). Exact boundary controlla-
bility for quasi-linear hyperbolic systems. SIAM Journal
on Control and Optimization, 41(6), 1748–1755.

Li, T. and Rao, B. (2010). Strong (weak) exact controlla-
bility and strong (weak) exact observability for quasilin-
ear hyperbolic systems. Chinese Annals of Mathematics,
Series B, 31(5), 723–742.

Russell, D.L. (1978). Controllability and stabilizability
theory for linear partial differential equations: recent
progress and open questions. Siam Review, 20(4), 639–
739.

Strecker, T. and Aamo, O.M. (2016). Output feedback
control of 2×2 semilinear hyperbolic systems. submitted
to Automatica.

Strecker, T. and Aamo, O.M. (2017a). Rejecting heave-
induced pressure oscillations in a semilinear hyperbolic
well model. to appear in Proc. of the 2017 American
Control Conference.

Strecker, T. and Aamo, O.M. (2017b). Simulation of
heave-induced pressure oscillations in herschel-bulkley
muds. aceppted for publication in SPE Journal.

Vazquez, R., Krstic, M., and Coron, J.M. (2011). Back-
stepping boundary stabilization and state estimation of
a 2× 2 linear hyperbolic system. In 2011 50th IEEE
Conference on Decision and Control and European Con-
trol Conference (CDC-ECC), 4937–4942.

Zuazua, E. (1993). Exact controllability for semilinear
wave equations in one space dimension. In Annales de
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Appendix A. EXISTENCE OF Φt

Due to page limitations, we provide only a sketch of the
proof of existence and continuity of Φt in Theorem 3. A
detailed proof for the case n = 1 can be found in (Strecker
and Aamo, 2016), which needs to be modified by including
the coupling conditions (4)-(5). First, the PDE system (1)-
(5) (note that we omit the actuation (6)) is transformed
into integral equations by integrating them along their
characteristic lines, similarly as it is done in the proof of
Theorem 9. See also Figure 3b. Then, for fixed t, existence
of a unique solution that is Lipschitz continuous in the
state

(
ui(·, t), vi(·, t)

)
in the domain

T iδ = {(x, θ) :x ∈ Ii \ [n− δ, 1],

θ ∈ [t, τv(x, t)− φv(n− δ)]}
(A.1)

for small δ > 0 and i = 1, . . . , n can be proven by a
successive approximation method. The domains T iδ are
designed such that for every i and (x, θ) ∈ T iδ , the resulting
integral equations involve only terms of uj and vj evalu-
ated at points inside the respective T jδ for j ∈ {1, . . . , n}.
In particular, the integral equations are independent of
U(t).

Finally, the output of the Φt,
({
ūi(·, t)

}n
i=1

)
, is obtained

by uniform continuity of ui along its characteristic lines.
More precisely, one can derive an appropriate ξu(x, θ, s)
with ξu(x, θ, s) < x for all θ and s < θ, and ξu(x, θ, θ) = x
for all x, such that ui(ξu(x, θ, s), s) satisfies an ODE in s.
Thus, we have

ūi(x, t) = ui(x, τv(x, t)) = lim
s→τv(x,t)

ui(ξu(x, τv(x, t), s), s),

(A.2)
where the limit is taken over s ∈ [s, τv(x, t)) for some ap-
propriate s. Since the characteristic line (ξu(x, τv(x, t), s), s)
intersects (ξ, τv(ξ, t)), ξ ∈ [0, n], in a non-zero angle,
there exists for every s ∈ [s, τv(x, t)) a δ > 0 such that
(ξu(x, τv(x, t), s), s) ∈ T iδ . Thus, the right-hand side of
(A.2) is well defined and Lipschitz continuous in the state
at time t. Since the limit is attained uniformly, the same
holds for ūi(x, t).
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