
swSpTRSV: a Fast Sparse Triangular Solve with
Sparse Level Tile Layout on Sunway Architectures

Xinliang Wang

Department of Computer Science and Technology

Tsinghua University, China

wangxinl16@mails.tsinghua.edu.cn

Weifeng Liu

Department of Computer Science

Norwegian University of Science and Technology, Norway

weifeng.liu@ntnu.no

Wei Xue

Department of Computer Science and Technology

Tsinghua University, China

xuewei@tsinghua.edu.cn

Li Wu

Department of Computer Science and Technology

Tsinghua University, China

l-wu16@mails.tsinghua.edu.cn

Abstract
Sparse triangular solve (SpTRSV) is one of the most im-

portant kernels in many real-world applications. Currently,

much research on parallel SpTRSV focuses on level-set con-

struction for reducing the number of inter-level synchroniza-

tions. However, the out-of-control data reuse and high cost

for global memory or shared cache access in inter-level syn-

chronization have been largely neglected in existing work.

In this paper, we propose a novel data layout called Sparse

Level Tile to make all data reuse under control, and design a

Producer-Consumer pairing method to make any inter-level

synchronization only happen in very fast register communi-

cation. We implement our data layout and algorithms on an

SW26010 many-core processor, which is the main building-

block of the current world fastest supercomputer Sunway

Taihulight. The experimental results of testing all 2057 square

matrices from the Florida Matrix Collection show that our

method achieves an average speedup of 6.9 and the best

speedup of 38.5 over parallel level-set method. Our method

also outperforms the latest methods on a KNC many-core

processor in 1856 matrices and the latest methods on a K80

GPU in 1672 matrices, respectively.

CCS Concepts • Theory of computation→ Parallel al-
gorithms;

Keywords Sparse matrix, Sparse triangular solve, Sparse

level tile, Sunway architecture

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00

https://doi.org/10.1145/3178487.3178513

ACM Reference Format:
Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu. 2018. swSpTRSV:

a Fast Sparse Triangular Solve with Sparse Level Tile Layout on

Sunway Architectures. In PPoPP ’18: Principles and Practice of Paral-
lel Programming, February 24–28, 2018, Vienna, Austria. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3178487.3178513

1 Introduction
The sparse triangular solve (SpTRSV) operation computes a

solution vector x for a linear system Lx = b1, where L is a

sparse lower triangular matrix and b is a right-hand side vec-

tor. The SpTRSV operation is in general indispensable to the

solve phase of sparse direct solvers [11] and preconditioners

of sparse iterative solvers [44] in a wide range of applications

from numerical simulation [42] to machine learning [35].

Unlike other sparse basic linear algebra subprograms [28]

such as sparse transposition [60], sparse matrix-vector multi-

plication [31, 33] and sparsematrix-matrixmultiplication [32],

the SpTRSV is an inherently sequential operation. In worst

cases (e.g., when L is a triangular double-band matrix), any

solution component xi , if i , 0, needs to wait for its former

components to solve out. This makes parallelizing SpTRSV

seem not possible.

But by grouping components without dependencies be-

tween each other into one set, SpTRSV can run in parallel.

Although multiple sets have to run level-by-level (i.e., in se-

rial, because of the dependencies between their components),

at least the components inside a set can be calculated simul-

taneously. This is so-called level-set method first presented by
Anderson and Saad [2] and Saltz [45], and recently improved

by Park et al. [40] and Liu et al. [29]. The total overheads

for the level-set methods are two-fold: the calculation cost

inside each level and the synchronization cost between one

level to another. The proportions of the two parts highly

depend on the sparsity structure of input matrix.

1
Here we only use lower triangular matrix for problem formulation. But

note that any discussion in this paper can be easily ported to solve an upper

triangular system Ux = b.

338

https://doi.org/10.1145/3178487.3178513
https://doi.org/10.1145/3178487.3178513
http://www.acm.org/publications/policies/artifact-review-badging#replicated
http://www.acm.org/publications/policies/artifact-review-badging#available
http://www.acm.org/publications/policies/artifact-review-badging#reusable
http://www.acm.org/publications/policies/artifact-review-badging#functional

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

Unfortunately, in most real-world matrices (as collected in

the University of Florida Sparse Matrix Collection [8]), the

synchronization cost dominates the overall execution time.

This makes the performance of parallel SpTRSV through

the level-set methods far from satisfactory. Compared to

sparse matrix-vector multiplication (SpMV) [31, 33, 58, 64],

the SpTRSV kernel has exactly the same calculation cost (in

term of the amount of arithmetic and memory accessing

operations) but can be up to over a hundred times slower

than SpMV on modern processors [23, 25, 29, 30]. Based

on a comprehensive study, Li and Saad [25] pointed out

that SpTRSV is the actual performance bottleneck of parallel

preconditioned iterative solvers, due to the high cost of inter-

level synchronization.

Even though recent research (e.g., sparsifying synchro-

nization by pruning [40] and replacing synchronization by

atomic operations [29]) improved level-set method through

reducing the amount of synchronization, it has not explored

the potential of memory subsystems of modern processors.

This underexploration is reflected in two aspects: (1) data

reuse of x and b overly relies on cache, which is hardware

managed and may not supply the best data swapping; and (2)

inter-level synchronization, even of the recently proposed

methods [29, 40], needs to go through shared global memory,

which is too slow compared to inter-core communication.

Our proposed method is primarily concerned with paral-

lel SpTRSV aware of data locality and fast synchronization.
Besides the parallelism, which has been already developed

by the level-set methods, we further tap the potential from

memory access for higher performance. We propose a new

data layout called Sparse Level Tile, or SLT for short, to

divide a sparse matrix into two types of 2D tiles with non-

uniformed shapes. By carefully establishing the connections

between these tiles, the SLT layout gives highly efficient

data reuse for both solution x and right-hand side b, and mi-

grates the fine-grained, random and unprefetchable memory

access to coarse-grained, predictable and prefetchable.

As for fast synchronization, we best exploit the inter-core
communication of the newly developed SW26010 many-core

processor, which is the main building-block of the current

world fastest supercomputer Sunway Taihulight (125 Pflops

peak performance, 93 Pflops sustained LINPACK perfor-

mance, composed of 40960 SW26010 processors [1]). The

processor offers a register communication scheme that works

in the same row or column of its cores in a 2D mesh. This

regular communication pattern offers opportunities for fast

inter-core communication but also challenges the irregular

sparse matrix problems we are facing. Based on the relation-

ship between xi and bi , we design a Producer-Consumer

pairing method, where the paired xi and bi are held in the

paired Producer and Consumer respectively. The paired Pro-

ducer and Consumer are in the same row which makes any

inter-level synchronization only happen through register

communication in the same row. Meanwhile, such method

makes cores in the same column share x through register

communication but not global memory.

All 2057 square matrices from the Florida Sparse Matrix

Collection [8] are tested to evaluate the performance of our

proposed method and the latest approaches running on In-

tel Xeon Phi (KNC) and Nvidia K80 GPU. Compared with

the parallel level-set method on SW26010, our algorithm

achieves an average speedup of 6.9 and a maximal speedup

of 38.5. Our method also outperforms the latest methods on

KNC in 1856 benchmarks and the latest methods on K80 in

1672 benchmarks, respectively.

The paper makes the following contributions:

• The Sparse Level Tile layout is proposed to make data reuse

of vectors x and b under control and to make their memory

access coarse-grained, predictable and prefetchable.

• A Producer-Consumer pairing method is designed to make

any inter-level synchronization only happen through very

fast register communication but not slow global memory.

• Totally 2057 sparse matrices are used for performance eval-

uation, in which our method largely outperforms parallel

level-set methods and the latest methods on KNC and GPU.

2 Background and Motivation
2.1 Serial Algorithm for SpTRSV
Alg.1 lists a serial algorithm for Lx = b2. As can be seen,

there is no naïve concurrency in the outer for loop (line 1),

due to the dependency between each element of x and its

previous elements (line 4). Taking the problem in the left

half of Fig.1 as an example
3
, x0, x2 and x3 cannot be solved

in parallel, since x3 depends on x0 and x2 to solve out first.

Algorithm 1 A serial SpTRSV algorithm for Lx = b.
Input: L of size n × n, b of size n;
Output: x of size n;
1: for j = 0 to n − 1 do
2: x j = bj /lj j
3: for each li j on column j of L do
4: bi = bi − li jx j
5: end for
6: end for

2.2 Level-Set Methods for Parallel SpTRSV
Luckily, some potential concurrency can be exploited in this

problem with careful analysis. For example, x3 – x8 can be

calculated concurrently after x0 – x2 are completed. Based on

this discovery, parallelizable components x0 – x2, x3 – x8, x9
– x13, x14 – x15 are grouped into four sets, and a dependency

graph composed of four levels (i.e., the four sets) can be

2
Here L can be stored in any format, though the compressed sparse column

(CSC) layout may be better since Alg.1 is a column-wise algorithm.

3
Note that here the components in the levels are ordered in restrict ascend-

ing order. This is not typical in real-world problems. But doing so is helpful

for describing our problems, and it is easy to reorder/permute matrix rows

to this form when the level information is known.

339

swSpTRSV PPoPP ’18, February 24–28, 2018, Vienna, Austria

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

Level 0

Level 1

Level 2

Level 3

Thread 0

Thread 1

Thread 2

Figure 1. The left part shows a 16-by-16 sparse lower triangular matrix,

and the right part plots four level-sets, corresponding dependency and the

assignment to three threads.

extracted for parallel execution. The right half of Fig.1 shows

the dependency graph of the level-set method.

However, to make sure all the dependent elements have

been calculated out, a synchronization (see the three dot-

ted lines in the dependency graph in Fig.1) is introduced

after each level’s computation. Unfortunately, on modern

processors, especially many-core architectures, the cost for

synchronization is expensive and sometimes dominates the

execution time of parallel SpTRSV [25, 29, 40].

To reduce the costs for synchronization across threads,

two approaches have been proposed. One method by Park et

al. [40] replaces the full-synchronization with multiple core-

core (P2P) synchronization. In the above example, the x13
calculated by Thread 2 on level 2 only depends on the x4 of
Thread 0 and x7 and x8 of Thread 2 on level 1. Thus, a single

P2P synchronization between Threads 0 and 2 is enough

to guarantee correctness. Another optimization by Liu et

al. [29] replaces synchronization with atomic operations. In

Fig.1, Threads 0 and 2 on level 0 can update x6 by atomically

adding the results of x0 and x2. Before the atomic-add is

finished, Thread 1 busy-waits the lock on x6 getting updated.

2.3 Performance Problems in Existing Methods
Traditional data layouts, such as CSR

4
and CSC, are unaware

of data reuse. As shown in line 4 of Alg.1, methods based on

the CSC layout traverse the nonzeros in the column (vertical)

direction, which leads to perfect data reuse of x butmakes the

reuse of b handled by hardware. Similar, methods based on

the CSR layout traverse the nonzeros in the row (horizontal)

direction, which leads to perfect reuse of b but makes the

reuse of x out-of-control. Both methods only consider data

reuse in one dimension. Thus, methods based on either of the

two layouts may not achieve the best performance. Later on,

wewill design a new layout to carefully traverse the nonzeros

in both row and column directions, i.e., in 2D space, and to

make the reuse of x and b both under control.

It is well known that the inter-level synchronization cost

is expensive for parallel SpTRSV. Even though [40] and [29]

have replaced full synchronization with P2P synchronization

or atomic operations, the overhead for synchronization is

4
The compressed sparse row format.

still high. The main reason is that inter-core synchroniza-

tion has to go through global memories or low-level shared

caches, both of which offer lower bandwidth and higher la-

tency compared with high-level private caches and registers.

Furthermore, as the number of cores goes up, the potential

competition of accessing the global memory or shared cache

between different cores often further hurts the performance.

2.4 Sunway Architecture
The major building block of the supercomputer Sunway Tai-

hulight is the SW26010 many-core processor, as shown in

Fig.2. Each processor is composed of four Core Groups (CGs),

and each CG contains a Management Processing Element

(MPE) for latency sensitive tasks and one Computing Pro-

cessing Element (CPE) cluster of 64 CPEs organized as an

8×8 mesh for throughput sensitive tasks. Each MPE has 32

KB L1 data cache and 256 KB L2 instruction/data cache, while

each CPE has its own 16 KB L1 instruction cache and a 64 KB

Scratch PadMemory (SPM), whose speed is equal with that of

L1 cache. A CG has 34.1 GB/s theoretical memory bandwidth

and 765 GFlops double-precision peak performance [9, 13].

CPE CPE CPE CPE

CPE CPE CPE CPE

CPE

CPE

CPE CPE CPE

CPE CPE CPE

8 8

CPE cluster

SPM

Main Memory Main Memory

Main Memory Main Memory

L1

L2

Network on Chip

(NoC)
SI

CPE

Cluster

M

C

M
P
E

CG

CPE

Cluster

M

C

M
P
E

CG

CPE

Cluster

M
P
E

CG

M

C

CPE

Cluster

M

C

M
P
E

CG

Figure 2. The block diagram of an SW26010 processor.

Two kinds of memory access, i.e., Direct Memory Access

(DMA) and global load/store (Gload/Gstore), are supported,

between which an obvious performance gap exists: DMA

prefers transferring massive data frommain memory to SPM,

and Gload/Gstore prefers transferring small and random data

betweenmainmemory and registers. A StreamTriad test [63]

shows that the bandwidth of DMA and Gload/Gstore are 22.6

GB/s and 1.48 GB/s, respectively.

The CPE cluster offers low-latency register data commu-

nication among the 8 × 8 CPEs, and this is one of the key

features of the SW26010 processor. Each CPE has Register
Send Buffer and Register Receive Buffer. The hardware will
send data from one Send Buffer to another Receive Buffer unin-
terruptedly and automatically until the Send Buffer is empty

or the Receive Buffer is full. According to the benchmarking

results [63], the latency of the register communication is at

most 11 cycles and the integrated core-core communication

bandwidth is 637 GB/s. However, due to the limitation of the

hardware, the data in register can only be communicated

between the CPEs in the same row or column.

340

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

2.5 Challenges of SpTRSV on Sunway Architecture
Even though the SPM can help us manually control the tim-

ing of data swapping for better reuse, and the register com-

munication technique improves the efficiency of inter-core

data-sharing and synchronization, it is still challenging to

use these advantages for parallel SpTRSV.

First, the fine-grained and unpredictable memory access

of SpTRSV is unsuitable with the features of Sunway archi-

tecture. The fine-grained memory access can only use the

Gload/Gstore method with low bandwidth and high latency,

or use the DMA method in low efficiency. Meanwhile, the

memory access of SpTRSV is unpredictable, which means

that we need to estimate whether the data is cached or not

before each load/store instruction. This is natural for hard-

ware controlled caches but will cost much more for SPM,

because the estimating process is done by software but not

hardware. Furthermore, the unpredictable memory access

also makes it impossible to prefetch any data.

On the other hand, when parallelizing the SpTRSV, a CPE

may need to synchronize to any other CPEs for sharing data

or finishing dependencies. However, This cannot be directly

supported by the register communication technique on Sun-

way processors, because such high-speed communication

only works for CPEs in the same row or the same column.

A straight forward idea is to select some CPEs as “transfer

stations” to achieve register communication between those

CPEs not in the same row/column. However, such method

may introduce a cycle of messaging route, thus potential

deadlock may occur [26].

3 Sparse Level Tile Layout
In this section, we design a new data layout, called Sparse
Level Tile (SLT for short) layout, to make the reuse of x
and b both under control and to migrate the memory access

of SpTRSV from fine-grained, random and unprefetchable to

coarse-grained, predictable and prefetchable.

3.1 Data Layout Design
The key point of the SLT layout is to divide a triangular

matrix into multiple Tiles, each of which only applies to

part of x and b. Here, we use the general term “cache” as

the fastest memory on different processors, meaning that for

Sunway architecture, the “cache” is the SPM, and for other

processors, the “cache” may be high-level cache.

Fig.3 presents the establishing process of the SLT layout,

where Fig.3A is the example matrix plotted in Fig.1 with four

level-sets, and Fig.3B–Fig.3F are the output after each of the

five steps described in the rest of this section.

Step 1. Import the Concept of Region. We introduce a

high-level concept named Region to divide both x and b,
and then make X-Region and B-Region, respectively. Each

L0

L1

L2

L3

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Step 1

Step 4

Step 5

Step 3

0

4

8

3

6
9

1
2

5

7 10

D

E

C

F

solution vector x

ri
g

h
t-

h
an

d
 v

ec
to

r
b

B
-R

eg
io

n
 0

B
-R

eg
io

n
 1

B
-R

eg
io

n
 2

B
-R

eg
io

n
 3

X-Region 0 X-Region 1 X-Region 2 X-Region 3

X-Region 0 X-Region 1 X-Region 2 X-Region 3

B
-R

eg
io

n
 0

B
-R

eg
io

n
 1

B
-R

eg
io

n
 2

B
-R

eg
io

n
 3

X-Region 0 X-Region 1 X-Region 2 X-Region 3

B
-R

eg
io

n
 0

B
-R

eg
io

n
 1

B
-R

eg
io

n
 2

B
-R

eg
io

n
 3

X-Region 0 X-Region 1 X-Region 2 X-Region 3

B
-R

eg
io

n
 0

B
-R

eg
io

n
 1

B
-R

eg
io

n
 2

B
-R

eg
io

n
 3

B
-R

eg
io

n
 0

B
-R

eg
io

n
 1

B
-R

eg
io

n
 2

B
-R

eg
io

n
 3

X-Region 0 X-Region 1 X-Region 2 X-Region 3

A

B

Step 2

Figure 3. The establishing process for Sparse Level Tile layout. Based on

Region, the x and b will be divided into X-Regions and B-Regions (B).
The original levels will be separated into new levels if crossing Regions

(C). Each nonzero belongs to a Diagonal-Tile (D) or an Offdiagonal-Tile
(E) according to the ID of the used X-Region and modified B-Region. The

Tiles modifying the same B-Region will be gathered together to improve

the data reuse of b elements (F). The numbers in (F) denote tile order for

both storing and computing.

Tile uses x elements from some X-Regions to modify b ele-

ments from some B-Regions. The Region size is correspond-

ing to the cache size. In the following steps, we will group

the nonzeros into different Tiles to limit the number of X-

Regions and B-Regions that each Tile uses and modifies. In

this example, we assume the Region size is 4 elements, which

leads to 16/4 = 4 Regions for the 16 unknowns. As an exam-

ple in Fig.3, the first off-diagonal nonzeros on the top-left

(l3,0) of Fig.3B uses x0 from X-Region 0 (i.e., ⌊0/4⌋ = 0) to

modify b3 from B-Region 0 (i.e., ⌊3/4⌋ = 0).

Step 2. Separate Original Levels.A level is separated into

multiple levels when going across more than one X-Regions.

For example, the original L1 will be separated into three

levels, as it crosses three X-Regions. Totally, the original

four levels will be translated into seven levels. Note that

341

swSpTRSV PPoPP ’18, February 24–28, 2018, Vienna, Austria

0 1

2

3

4

5

6

7
8

9
10

Inherit from previous Tile

Load from main memory

Obtained from

Used in

Inherit

Load from main memory

Store to main memory

Figure 4. The dataflow using the SLT layout. Each bi will only be loaded once and will never be swapped out until it is used to compute xi (Line 2 in Alg.1).

The nonzeros in two dimension in each Tile make xi be reused as much as possible. When targeting a Tile, all the corresponding data must be cached to

guarantee predictability. The streaming access of x and b from main memory makes it possible to prefetch coarse-grainedly.

this operation usually introduces more levels to a problem.

But since our method processes synchronizations in a very

low-cost way, it is not sensitive to the number of level-sets.

Step 3. Build Diagonal-Tiles. To improve the data reuse

of x and b and to make memory access predictable, we com-

bine the diagonal nonzeros of each level with their “nearest”

off-diagonal nonzeros together to consist the first kind of

Tiles, Diagonal-Tiles or DiaTiles for short. The width of

a DiaTile is the number of diagonal nonzeros in each level,

and the height is the width plus the Region size. Hence, the

term “nearest” refers to a range that the DiaTile’s nonzeros

should be in. The number of DiaTiles is equal to the number

of divided levels. In our case, this number is seven.

In the seven DiaTiles, all x elements inside one single Tile

can be solved out without dependencies inside the current

Tile, but only with dependencies from its previous Tiles.

From the figure, it can be seen that a DiaTile is composed

of a diagonal on top and a square matrix on the bottom,

meaning that x elements corresponding to this diagonal can

be together solved by x j = bj/lj j (if previous dependencies
outside this Tile are released). This spatial feature actually

decouples operations x j = bj/lj j (only for the diagonal on

top) and bi = bi − li jx j (only for the square in the bottom)

inside a single DiaTile. This makes tasks in a DiaTile work in

a perfectly parallel-friendly way. It is worth to note that this

is why we use this non-uniformed tiling instead of regular

2D tiling selected by previous work [5, 19, 37, 41, 62].

Taking the left most DiaTile in Fig.3D as an example, we

can see that itswidth is 3 as there are three diagonal nonzeros,
and the Region size is 4. So its height is 4 + 3 = 7. In this

DiaTile, we can solve out x0,x1 and x2, which must be cached.

As the Region size is 4, only b3,b4,b5 and b6 are stored in

cache. To make memory access predictable, which means

that we can guarantee the corresponding x and b elements

must be cached without any extra estimating, each nonzero

in this Tile must have a row index smaller than heiдht = 7.

Then, this Tile only uses X-Region 0 to modify B-Region

0 and B-Region 1. In this DiaTile, x0 and x2 can be reused

three times and twice respectively, as three and two nonzeros

exist below. Similar, b3 and b6, stored in the cache, can be

reused twice as two nonzeros exist on the left, respectively.

Note that the cached b elements will be updated by some

bi = bi − li jx j operations (Line 4 of Alg.1), and can be reused

when conducting the calculation within its following Tiles.

Step 4. Build Offdiagonal-Tiles. Note that not all the

off-diagonal nonzeros have been assigned to DiaTiles. We

now need to group the rest of the nonzeros together to build

another kind of Tile: Offdiagonal-Tile, or OffdiaTile for

short. We let the nonzeros of an OffdiaTile only use a single

X-Region and modify a single B-Region. As a result, both the

maximal width and height of an OffdiaTile are equal with

Region size. However, as some off-diagonal nonzeros have

been assigned to DiaTiles, the actual range of an OffdiaTile

might be smaller. Take the top-left OffdiaTile of the matrix

(storing one nonzero) in Fig.3E as an example. This Tile uses

X-Region 0 and modifies B-Region 1. Similar, the OffdiaTile

located below the former OffdiaTile (storing six nonzeros)

uses X-Region 0 and modifies B-Region 2.

The goal of building OffdiaTile is to make memory access

predictable and to improve data reuse. Before targeting an

OffdiaTile, we can load a bunch of x and b elements, the size

of which is equal to the Region size. As each OffdiaTile only

uses a single X-Region and modifies a single B-Region, the

corresponding x and b must be cached and can be reused.

Step 5. Sort Tiles.We want to further improve the data-

reuse of b. The way is to closely store the Tiles modifying the

same B-Region. Then we can only load part of a B-Region but

not the whole B-Region before processing each Tile. Then

a Tile, regardless it is Diagonal or Offdiagonal, belongs to a

Region ID, which is the maximal ID of the B-Region it can

modify. We will store Tiles according to their Region IDs.

As can be seen in Fig.3F, because the potential maximal

row index of Tile 1 is 7 and it can modify b7 from B-Region 1

(even though there are no nonzeros in this tile having a row

index of 7), Tile 1 belongs to Region ⌊7/4⌋ = 1. In summary,

Tiles 0, 1 and 2 belong to Region 1, Tiles 3 and 4 belong to

342

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

Region 2, Tiles 5, 6, 7 and 8 belong to Region 3, and Tiles 9

and 10 belong to Region 4 (The B-Region 4 cannot be found in

Fig.3 since it locates beyond the matrix size and has no effect

on solving process). For the Tiles belong to different Region

IDs, Tiles belong to smaller IDs are stored in front of those

belong to larger IDs. For Tiles belong to the same Region ID,

DiaTiles are stored in front of OffdiaTiles and OffdiaTiles

with the same Region ID can be stored in arbitrary order.

The storing order of Tiles, as shown in Fig.3F, is same with

the computing order. So we can load the Tiles in a stream.

3.2 Dataflow, Data Reuse and Data Storage
Fig.4 uses the examplematrix in Fig.1 and Fig.3 for explaining

dataflow and data reuse based on the SLT layout. Here we

take Tiles 0, 1 and 2 as an example. Tile 0 only focuses on

x0-x2 and b3-b6. So we can guarantee that these data must be

cached without any extra estimating when using Tile 0. x0 is
reused three times to modify b3, b4 and b6, and x2 is reused
twice to modify b3 and b6. Similar, b3 and b6 are reused twice
to be modified by x0 and x3. After Tile 0 is finished, b3-b6
are in the cache. So, when targeting Tile 1, x3 is obtained by

x3 = b3/l3,3, and b3-b6 are inherited directly. Both of these

two operations are in the cache. Thanks to the order well

organized, only b7 are loaded from the main memory for Tile

1. Next, for Tile 2, x0-x3 are reloaded from main memory and

b4-b7 can be inherited from Tile 1 directly and perfectly.

The inheritance of b elements in this order can make

us reuse b until they are transformed to x elements after

x j = bj/lj j (Line 2 in Alg.1). It can also avoid any redun-

dant memory access to b. Meanwhile, the nonzeros in two

dimensions in each Tile can reuse the x elements as much

as possible. When targeting a Tile, any memory access is

predictable since the corresponding data must be cached. As

the memory access to x and b for DiaTiles are in streaming,

it can be guaranteed to prefetch b and integrally store x by

introducing other on-chip buffers in implementation, and

the memory access must be coarse-grained.

Alg.2 presents the pseudocode that establishes the SLT lay-

out. We first calculate the level-set information and separate

the original level-sets into new levels, as introduced in Steps

1 and 2. Next, we traverse all the nonzeros to classify them

into different Tiles, including Diagonal- and Offdiagonal-

Tiles, as introduced in Steps 3 and 4. At last, we sort these

tiles to improve the data-reuse, as motioned in Step 5.

The layout of storing each Tile is flexible. Any sparse ma-

trix representations, e.g., CSR, CSR or COO
5
, are usable. To

minimize redundant information, we select the COO as the

low-level layout for each Tile and make the nonzeros inside

each Tile ordered (this can be done by calling the parallel

segmented sort kernel [16]). Also note that converting a ma-

trix from another layout to the SLT layout mainly includes

obtaining Tile information and moving nonzeros. Thus the

5
The coordinate format stores row/col indices and value for each nonzero.

converting process is fast. In our experiments, the conversion

of large matrices in our benchmark requires up to several

seconds. Further considering an SLT matrix can be used

many times once created, the conversion cost is trivial.

3.3 SpTRSV Algorithm based on the SLT Layout
To store a matrix using the SLT layout, six variables are

needed: l, li, lj, tiles, sizes and idx, as exhibited in Alg.3. The

l, li, lj stores the values, the row and column indices of the

lower triangular matrix L respectively; The tiles stores the
number of Tiles, including both Diagonal- and Offdiagonal-

Tiles; The idx stores the index of the first nonzero of each

Tile; The sizes stores the number of diagonal nonzeros for

the DiaTiles and zero for OffdiaTiles.

Line 10 computes x j = bj/lj j and Line 15 computes bi =
bi − li jx j . The memory access to b and x in both Line 10

and 15 is predictable, because we can guarantee that the

corresponding x and b elements have already been cached

(cx and cb). The memory access to matrix L is also coarse-

grained and prefectchable, because the Tiles are stored in

the same order with that of computation, and we can load a

whole Tile from the main memory before each kernel starts.

Algorithm 2 The pre-process for establishing SLT layout

1: function preprocess

2: //Compute original level information

3: //Separate original levels into new levels based on Regions
4: for i = 0→ #new_levels − 1 do
5: for < row, col, val >∈ new_levels[i] do
6: if row < idx [i] + sizes[i] + REGION _SIZE then
7: Diaдonal_T ile[i].add (< row, col, val >)
8: else
9: Of f diaдonal_T ile[⌊row/REGION _SIZE ⌋]
10: [⌊col/REGION _SIZE ⌋].add (< row, col, val >)
11: end if
12: end for
13: end for
14: //Sort Diaдonal_T iles and Of f diaдonal_T iles if not empty

15: end function

3.4 Tuning the Region Size in the SLT Layout
The Region size in the SLT layout essentially affects the

performance. Compared with large Region size, small Re-

gion size leads to more levels and more Offdiagonal-Tiles,

the latter of which will reduce the x elements’ reuse and

cause more extra reloading of x elements (Line 13 in Alg.3).

While large Region size makes each targeting Offdiagonal-

Tile reload a large amount of x elements. If the targeting

Tile is very sparse, there will be lots of redundancy in these

reloading x elements. According to our experiment, a small

Region size suits problems with lots of levels thus few par-

allelism, while a large Region size suits problems with high

parallelism. Detailed results can be found in Sec.5.3.

343

swSpTRSV PPoPP ’18, February 24–28, 2018, Vienna, Austria

Algorithm 3 The SLT-based SpTRSV algorithm.

Input: l, l i, l j, t iles, sizes, idx, b
Output: x
1: function SpTRSV(x, b, l, l i, l j, t iles, sizes, idx)
2: CACHE cx [REGION_SIZE] // cache for x
3: CACHE cb[REGION_SIZE] // cache for b
4: Replenish cb from b for REGION_SIZE

5: for t = 0→ t iles − 1 do
6: nodnz ← idx [t + 1] − idx [t] − sizes[t]
7: if Tile is Diagonal then
8: Copy cb to cx for sizes[t]
9: Replenish cb from b for sizes[t]
10: Vector Division for sizes[t] //x j = bj /lj j
11: Store cx to x for sizes[t]
12: else if Tile is OffDiagonal then
13: Load x to cx for REGION_SIZE

14: end if
15: cb = cb − T ilet × cx for nodnz //bi = bi − li jx j , T ilet

means the submatrix consist of the nonzeros in Tile t
16: end for
17: end function

4 Implementation on Sunway architecture
4.1 Producer-Consumer Pairing Method
In this subsection, we propose a Producer-Consumer pairing

method to utilize the regular register communication pattern

for our irregular problem. Fig.5 plots our method.

For the whole CPE cluster, we define Producers as its left
half part (i.e., 32 CPEs on the left) and Consumers as its right
half part (i.e., the other 32 CPEs on the right). But note that

we can also use a combination of 16-16, 8-8, or 4-4. Because

the CPEs are organized as an 8 × 8 2D mesh, 8, 4, 2 or 1

rows of the mesh are used for the varied number of Pro-

ducers/Consumers, respectively. The performance of tuning

this number is discussed in Sec. 5.3. We can see that each

diagonal nonzero of a triangular matrix imports x j = bj/lj j
(Line 10 in Alg.3) and each off-diagonal nonzero imports

bi = bi − li jx j (Line 15 in Alg.3), and each bi = bi − li jx j
can be separated into ∆i j = li jx j and bi = bi − ∆i j . Then we

have three kinds of operations and assign x j = bj/lj j and
∆i j = li jx j to Producers and bi = bi − ∆i j to Consumers.

Each Producer has a cache_x and a buffer_l, the former

one is used to cache and reuse x elements and the latter one

is to coarse-grainedly prefetch the nonzeros in each Tile.

Similarly, each Consumer has a cache_b and a buffer_b.
The former one is used to cache and reuse b elements and

the latter one is to coarse-grainedly prefetch b. In fact, both

the cache and the buffer are part of the SPM. But in our

design, only the data in cache can be reused, while the data

in the buffer cannot, till moved from buffer to cache. Note

that multiplying cache_b size on each Consumer and the

number of Consumers is the Region size of the SLT layout.

Each Producer will be paired with one Consumer. The

b element in bi = bi − ∆i j on one Consumer is exactly

needed by x j = bj/lj j on the paired Producer. So, before each

level’s computation, Consumers will send corresponding b
elements to their paired Producers using the Row register

communication to replace full synchronization. This send-

ing operation, together with corresponding x j = bj/lj j , is
represented by the “x j = bj/lj j ” Line in Fig.4. Except the b
elements sent out, other b elements are still in the cache_b,
which is represented by the “Inherit” Line in Fig .4.

Here, we introduce a concept owner for each x element, b
element and nonzero. Each b element’s owner is a Consumer

using the b element for bi = bi −∆i j . Each x element’s owner
is a Producer computing the x element by x j = bj/lj j , and
Each nonzero’s owner is a Producer using the nonzero for

x j = bj/lj j or ∆i j = li jx j .
We first averagely distribute the b elements to all the

Consumers. Due to the one-to-one pairing, we can further

determine the owner of each x element in the same row

simply. Therefore, we can successfully assign the owner for
each x element, b element and diagonal nonzero.

Next, we will assign each off-diagonal nonzero’s owner, to
make sure the communication only happens in the same row

or column. Observe that each bi = bi − li jx j , imported by the

off-diagonal nonzero, uses x j to modify bi , and the owners
of both x j and bi have been assigned. So we can distribute

the nonzero to the Producer, which has the same column

with the x j ’s owner, and the same row with the bi ’s owner.
By such distributing method, each ∆ will be sent only by

the Row register communication and each x element will

be shared across the CPEs in the same column only by the

Column register communication.

4.2 SpTRSV with Producer-Consumer Pairing
In this subsection, we introduce the solving process for both

Diagonal-Tiles and Offdiagonal-Tiles, as exhibited in Fig.5B.

Step 1. The Producers load the current Tile from the main

memory to their buffer_l. Then all the CPEs check whether

the current Tile is Diagonal. If the answer is ‘Yes’, the Con-

sumers will send the b elements to their paired Producers

by the Row register communication for reuse (2a). While, if

the answer is ‘no’, the Producers will reload the x elements

from the main memory directly to the cache_x.
Step 2. If we are targeting a Diagonal-Tile, the Producers

will finish the x j = bj/lj j and then store the x back to the

main memory, and the Consumers will move the buffer_b’s
b elements to their cache_b. The Consumers will replenish

buffer_b once it is empty.

Step 3. When the current Tile is ‘thin’ (which means the

cache_x of each Producer is large enough to hold the x
elements from all the Producers in the same column), the

Producers will do a Whole-Rolling by the Column register

communication to share their x elements to all the Producers

in the same column (5a). Then Producers finish ∆i j = li jx j
and send ∆ to corresponding Consumers by the Row register

Communication (6a). The Consumers finally complete “bi =
bi − ∆i j ” after getting the ∆.

344

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

C
o
n
su
m
e
r
s

8 rows

4 columns

P
ro
d
u
c
e
r
s

;

cache_x cache_b

buffer_l buffer_bSend from Producers to Consumers

Send from Consumers to Producers

Producer-Consumer Pair

Start

2a: Producers recieve to

cache_x from Consumers;
Diagonal-Tile?

2b: Reload into cache_x;

1: Load Tile into buffer_l;

3: Producers compute

and store to main memory;

4: Consumers move from

buffer_b to cache_b;

6a: Producers compute

and send to Consumers;

#Cycles <

CPEs rows

6b: Sub-Roll in

the same column;

End

Y

Y

N

N

Tile is thin?
5b: Producers compute

and send to Consumers;

5a: Whole-Roll in

the same column;

Y

N

A

B

2a

5b 6a

6b

5a

Figure 5. The Producer-Consumer pairing method and solving process on

Sunway architecture. Each Producer will be paired with one Consumer, and

the synchronization before each level’s computation will only happen in

each pair. The Producers in the same column will share x elements using

Column register communication. The numbers 2a, 5a, 5b, 6a and 6b in

subfigure A are the related operations in subfigure B.

Step 4. If the current Tile is not ‘thin’, each Producer does

a Sub-Rolling to send cached x elements to its lower neigh-

bour and receive new x elements from its upper neighbour

by Column register communication to replace its cached x
elements (6b), after consuming all the nonzeros based on its

cached x elements (5b). We need to make each x element

cross all the Producers in the same column, so this step needs

to be repeated multiple times (named as Cycle for short), and
the times equal with the number of CPE rows we adopt. The

only reason of having this Step is that the cache_x has a

limited size and may not hold all the data at the same time.

In summary, thanks to the Producer-Consumer pairing

method, we complete inter-level synchronization and data

sharing by very fast Row/Column register communication.

5 Experimental Results
5.1 Experimental Setup
To benchmark our proposed algorithm and existing methods,

we evaluate 2057 sparse matrices on three platforms.

Group
Parallelism

#Matrices

Range Average

A [2
0 , 25) 15.97 249

B [2
5 , 210) 287.59 1015

C [2
10, 215) 7064.68 634

D [2
15, 220) 358216.55 159

Total [2
0 , 220) 30010.37 2057

Table 1. A statistics of the four groups of matrices tested.

Here we test all of the 2057 square matrices from the

University of Florida Sparse Matrix Collection [8] (contain-

ing in total 2757 matrices: 700 rectangular and 2057 square

matrices) to maximize the coverage of matrix features (i.e.,

matrix size, sparsity structure, the number of level-sets and

application domains). Without loss of generality, we only

execute lower triangular solve for each matrix, and add a

major diagonal to make it nonsingular. To better visualize

the large amount of results recorded, we divide the 2057 ma-

trices into four groups according to their parallelism. Here, as

work [29, 40] already did, we define the term parallelism as

the average number of nonzeros per level (i.e., nnz/#levels).
Tab.1 lists a statistics of the four groups of matrices.

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

1.E+2

1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7 1.E+8

In
sp

ec
to

r
T

im
e

(s
)

Number of nonzeros

Figure 6. The inspector cost for all thematrices. The cheapest cost is 0.0003s,

and the most expensive cost is 28.1621s. The harmonic average is 0.0033s

The three platforms are equipped with an SW26010 pro-

cessor, an Nvidia Tesla K80 GPU, and an Intel Xeon Phi (KNC)

processor, respectively. We test three SpTRSV methods (i.e.,

serial code, parallel level-set method, and the proposed swSp-

TRSV) on the SW26010 processor, three GPU methods (i.e.,

cuSparse 8.0 SpTRSV v1 and v2, and SyncFree [29]) and

two x86 methods from Intel (i.e., serial/parallel MKL and

P2P [40]). Note that to achieve the best performance, we test

the above algorithms on the processors they designed for.

Also, if a device has multiple “work nodes”, we only use one

of them. Specifically, a work node of an SW26010 is one of its

four CGs, and of an Nvidia K80 GPU is one of its two GK210

chips. Tab.2 lists more details. Also note that the experiments

are completed in double precision, and each performance

number is the average of 200 runs.

5.2 The Cost of establishing SLT layout
Fig.6 presents the cost of establishing SLT layout for all 2057

benchmarks. The cheapest cost is 0.0003 s, occurs in the

345

swSpTRSV PPoPP ’18, February 24–28, 2018, Vienna, Austria

The processors The participating SpTRSV algorithms

A single CG of an SW26010 (1 MPE +

64 CPEs @ 1.45GHz, 8 GB DDR3 @ 34.1

GB/s)

(1) A sequential SpTRSV on MPE.

(2) A basic parallel level-set SpTRSV on CPEs.

(3) The parallel swSpTRSV method proposed in this paper on CPEs.

A single chip of an NVIDIA K80 (1

GK210, 2496 CUDA cores @ 875 MHz,

12 GB GDDR5 @ 240 GB/s)

(1) The SpTRSV methods v1 (i.e., cusparse?csrsv) in NVIDIA cuSparse v8.0.

(2) The SpTRSV methods v2 (i.e., cusparse?csrsv2) in NVIDIA cuSparse v8.0.

(3) The synchronization-free method proposed by Liu et al. [29].

An Intel Xeon Phi 7120 (61 x86 cores

with 244 hyper-threads @ 1.33GHz, 16

GB DDR5 @ 352 GB/s)

(1) The best performance of serial and parallel MKL SpTRSV (i.e., mkl_?csrtrsv
and mkl_sparse_?_trsv) in MKL 2017 update 3.

(2) The P2P synchronization method by Park et al. [40].

Table 2. The testbeds and participating SpTRSV algorithms

Group A

409620481024512256128
Size of cache_b (elements in double)

8x8=64

4x8=32

2x8=16

1x8=8

N
um

be
r o

f C
PE

s

Group B

409620481024512256128
Size of cache_b (elements in double)

8x8=64

4x8=32

2x8=16

1x8=8

N
um

be
r o

f C
PE

s

Group C

409620481024512256128
Size of cache_b (elements in double)

8x8=64

4x8=32

2x8=16

1x8=8

N
um

be
r o

f C
PE

s

Group D

409620481024512256128
Size of cache_b (elements in double)

8x8=64

4x8=32

2x8=16

1x8=8

N
um

be
r o

f C
PE

s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 7. The impact of tuning the number of CPEs (i.e., the number of Producers/Consumers, see Sec. 4.1) and the size of cache_b (see Sec. 3.4). Each matrix

is tested with 24 (4 × 6) parameter settings. Each value filled in the heat maps is a harmonic mean, this mean is calculated from ratios of the performance of

current parameter setting to the highest performance of the 24 settings of all matrices in a group.

0

2

4

6

8

10

12

1 2 4 8 16 32

0

1

2

3

4

5

6

32 64 128 256 512 1024

1x8=8 CPEs

2x8=16 CPEs

4x8=32 CPEs

8x8=64 CPES

0

1

2

3

4

5

6

1024 2048 4096 8192 16384 32768

0

1

2

3

4

5

6

32768 65536 131072 262144 524288 1048576A
ct

u
al

 s
iz

e
/

T
h

eo
re

ti
ca

l
si

ze

Parallelism (nnz/levels)

Figure 8. The ratio of actual amount of memory access to the theoretical amount of memory access. The former is calculated from our counters inserted into

the code, and the latter is always Size(L) + Size(b) + Size(x).

matrix ‘Tina_DisCog’, while the most expensive cost is 28.16

s, occurs in the matrix ‘europe_osm’. The harmonic average

of all costs is 0.0033 s. It can be seen that the cost is basically

linear with the number of nonzeros, and most costs (68.8%)

are between 0.001 s and 0.1 s. So in practice, establishing

SLT layout is quite fast, especially when considering an SLT
matrix can be used many times once created.

5.3 Effect of Parameter Tuning
Note that multiplying #Producers or #Consumers and the

size of cache_b is the Region size in the SLT layout. Thus, as

described in Sec. 3.4 and Sec. 4.1, tuning the two parameters,

i.e., #CPEs (2× #Producers or #Consumers) and the size of

cache_b on each Consumer, may bring varied performance.

To tune them for best performance, we exhaustively execute

different combinations of the two parameters. We set #CPEs

to {8, 16, 32, 64} and cache_b to {128, 256, 512, 1024, 2048,

4096}, and run all 2057 matrices with those 24 parameter

settings. For each of the four group, we calculate a normal-

ized performance for one parameter setting. The results are

illustrated in Fig.7. As can be seen, with the increase of par-

allelism, best throughput tends to be obtained by more CPEs

and larger cache_b. For Group A, the best performance oc-

curs at the point when #CPEs is 16 and cache_b is 256; For

Group B, a combination of 32 CPEs and cache_b = 2048

achieves the best performance; And for Groups C and D,
using all CPEs with 4096 entries in each cache_b is the best.

It can also be seen in Fig.7 that the influence of tuning the

number of CPEs is more significant than tuning cache_b size,
in particular for the groups with less parallelism. So, we fix

the cache_b size to the best, and adjust the number of CPEs

to find more insights of where the performance differences

come. By profiling the code with all 2057 matrices, we find

that the ratio of the actual and the theoretical amount of

memory access (both in Bytes) is the key issue here. We

plot the metric in Fig.8. As can be seen, in Group A, the
ratio is pretty high (up to about 12) when using 32 or 64

346

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

0

40

80

120

160

200

240

1 2 4 8 16 32
0

200

400

600

800

1000

1200

32 64 128 256 512 1024

Serial Method on MPE

Level-set Method on CPEs

swSpTRSV on CPEs

0

600

1200

1800

2400

3000

3600

1024 2048 4096 8192 16384 32768
0

600

1200

1800

2400

3000

3600

32768 65536 131072 262144 524288 1048576

Parallelism (nnz/levels)

P
er

fo
rm

an
ce

 (
M

F
lo

p
s)

Figure 9. The performance of different methods on Sunway architecture. Compared with the serial method and the parallel level-set method, our parallel

method obtains an average speedup of 7.8 (maximal speedup of 117.3) and an average speed of 6.9 (maximal speedup of 38.5), respectively.

0

40

80

120

160

200

240

1 2 4 8 16 32

MKL

P2P

cuSparse v1

cuSparse v2

SyncFree

swSpTRSV

0

200

400

600

800

1000

1200

32 64 128 256 512 1024
0

1000

2000

3000

4000

5000

6000

1024 2048 4096 8192 16384 32768
0

3000

6000

9000

12000

15000

18000

32768 65536 131072 262144 524288 1048576

Parallelism (nnz/levels)

P
er

fo
rm

an
ce

 (
M

F
lo

p
s)

Figure 10. The performance of different methods on different devices. Our method achieves the best performance in 1624 benchmarks.

CPEs. According to some other performance counters (not

shown here for brevity), the extra memory accesses are from

loading SLT information to more CPEs, and also from more

frequently reloading x elements for Offdiagonal-Tiles. Thus,

for matrices in Group A, 16 CPEs are enough to behave the

best. With the increase of parallelism, the ratio becomes

smaller. For Group B, the ratios of using 32, 16 or 8 CPEs are
comparable (gradually become 1). More CPEs bring more

parallel resource thus achieve better performance. Therefore,

using 32 CPEs is the best. As for matrices in Groups C and

D, the ratios of using different number of CPEs are almost

identical (i.e., 1). Hence, using all the CPEs achieves the best

performance due to higher parallelism.

Wewill use the performance with the best group-wise (but

not matrix-wise) parameter settings in the rest of the paper.

In other words, for each matrix, we select the best parameter

setting of the group it belongs to, regardless whether the

setting brings the best performance for this single matrix.

5.4 Methods on Sunway Processor
Here we compared the peformance of three methods on SW

architecture: serial SpTRSV on one MPE, parallel level-set

method and the proposed method on the 64 CPEs. Note

that for the level-set method, memory access are set to go

through the best paths, i.e., DMA for accessing L and b, and
Gload/Gstore for accessing x, due to its randomness.

The results are presented in Fig.9. For the benchmarks

from GroupA, swSpTRSV has comparable performance with

the serial method, due to the poor parallelism andmore mem-

ory accesses for the SLT layout information. But when the

parallelism increases to 32 and beyond (i.e., Groups B, C
and D), our swSpTRSV can achieve noticeably higher perfor-

mance. The poor performance of parallel level-set method is

because of frequent, fine-grained and random memory ac-

cess for x, which can only use Gload/Gstore. Thus level-set

method’s performance may be even worse than the serial

method in some cases. With the increase of parallelism, the

performance gap between swSpTRSV and the other two

methods is larger.

Compared with the serial method, our method achieves

an average speedup of 7.79 and the best speedup 117.3, oc-

curs in matrix ‘kron_g500-logn21’ (n = 2M, nnz = 93M,

#levels = 4340, parallelism=21460). Compared with the

level-set method, our method obtains an average speedup

of 6.9 and the best speedup 38.5, occurs in matrix ‘torso1’

(n = 116K, nnz = 4.5M, #levels = 1689, parallelism=2672).

Tab.3 presents the power information of 20 typical bench-

marks. The parallelism range from 21 to 669K. The power

consist of two parts: the ddr power and the core power,

the former of which reflects the energy cost of memory ac-

cess and the latter reflects the cost of computation. With

the increasing of the performance, both the ddr power, the

core power, together with the performance/power increase.

For the benchmark ‘net150’, where we obtain the highest

performance, the total power reach 38.18 Watt and the per-

formance/power is 89.22 MFlops/W. However, for the last

three benchmarks, the power is high but the performance is

low. This is because that there are lots of Offdiagonal-Tiles,

which need much more memory access and obstruct high

347

swSpTRSV PPoPP ’18, February 24–28, 2018, Vienna, Austria

name #rows #nonzeros parallelism

performance

(MFlops)

ddr idle

(W)

core idle

(W)

ddr

(W)

core

(W)

total

(W)

performance/power

(MFlops/W)

dwt_1007 1007 4791 40 102 4.29 16.09 4.69 23.04 27.73 3.68

nemeth08 9506 202161 21 146 4.29 16.09 4.49 22.54 27.03 5.40

oscil_dcop_01 430 1027 103 181 4.29 16.09 5.09 23.04 28.13 6.44

adder_dcop_02 1813 5577 398 300 4.29 16.09 5.09 23.04 28.13 10.67

cavity17 4562 72685 241 415 4.29 16.09 4.99 23.54 28.53 14.55

g7jac040 11790 71658 787 651 4.29 16.09 5.49 23.79 29.28 22.24

California 9664 19751 2195 760 4.29 16.09 6.19 24.79 30.98 24.54

barth 6691 21482 1652 872 4.29 16.09 6.09 25.04 31.13 28.02

qc2534 2534 232947 1201 1041 4.29 16.09 5.79 24.29 30.08 34.61

t3dh 79171 2215638 1284 1129 4.29 16.09 5.79 24.79 30.58 36.93

para-5 155924 2786141 1445 1175 4.29 16.09 5.89 24.54 30.43 38.62

torso1 116158 4512480 2672 1269 4.29 16.09 6.09 24.54 30.63 41.44

barrier2-1 113076 1959072 1672 1229 4.29 16.09 5.89 24.54 30.43 40.39

atmosmodl 1489752 5904756 13668 1514 4.29 16.09 6.89 26.04 32.93 45.98

kron_g500-logn21 2097152 93138084 21460 2228 4.29 16.09 7.69 27.04 34.73 64.16

net150 43520 1582360 395590 3406 4.29 16.09 8.79 29.39 38.18 89.22

transient 178866 570398 38027 1203 4.29 16.09 6.99 26.04 33.03 36.43

hugetrace-00010 12057441 30139620 174217 146 4.29 16.09 6.89 25.54 32.43 4.50

patents 3774768 18744796 669457 729 4.29 16.09 6.99 26.04 33.03 22.07

circuit5M_dc 3523317 10631719 38660 449 4.29 16.09 6.99 25.54 32.53 13.80

Table 3. The power of 20 typical benchmarks. The ddr power reflects the energy cost of memory access and the core power reflects the cost of computation.

performance. What reflects in the table is that the ddr power

is high and does not matches the low core power.

Group A Group B Group C Group D Sum

MKL 24 0 0 0 24

P2P 0 3 49 25 77

cuSparse v1 0 0 66 107 173

cuSparse v2 0 10 143 6 159

SyncFree 0 0 0 0 0

swSpTRSV 225 1002 376 21 1624
Total 249 1015 634 159 2057

Table 4. A statistics of the behavior of each method, in terms of the #matri-

ces with the best performance achieved by it.

5.5 Different Methods on Different Processors
We compare swSpTRSV with five recent SpTRSV methods

developed for KNC Xeon Phi and K80 GPU. The performance

is presented in Fig.10, and a statistics about the number of

best performance achieved by each method is listed in Tab.4.

In Group A, the MKL (serial) method has comparable per-

formance with ours, and both of them are faster than the

other implementations. The reason is that less parallelism

bringsmore synchronizations, whichmakes parallel methods

slow. But the serial MKL function does not suffer from syn-

chronizations cost, and our method is not so sensitive to the

number of synchronizations. When the parallelism increases,

in Group B (containing around half of the tested matrices),

swSpTRSV largely outperforms any other methods, thanks to

the SLT layout and the low-cost synchronization techniques.

For the matrices in Groups C and D, as the parallelism in-

creases, the synchronization cost is relatively lower, and the

calculation cost gradually dominates the overall cost. As a

result, the compute pattern of SpTRSV is more like SpMV.

Hence, GPU with more concurrent threads (which are very

helpful for latency hiding) in general behaves the best.

In summary, as listed in Tab.4, for all of the 2057 bench-

marks, our method outperforms MKL and P2P methods on

KNC in 1856 cases, and cuSparse and SyncFree methods on

K80 in 1672 benchmarks. Totally, our method can achieve

the best performance in 1624 matrices. It is worth to note

that although the SyncFree method outperforms cuSparse

v1 and v2 methods in many cases, it never demonstartes the

best performance in the four Groups A–D. The reason is that

its performance is lower than our swSpTRSV method in the

low-parallelism benchmarks and is also lower than cuSparse

v1 and v2 methods in the high-parallelism benchmarks.

Though we list the performance of the recent work on

various platforms, it is worth to note that this brief compari-

son may only guide algorithm design (which is the primary

target of this work) within a certain range, due to dramatic ar-

chitectural difference between the three platforms and their

distinct design objectives for power-performance tradeoff.

6 Related Work
Concurrent data structures are fundamental building blocks

for computer science. Data layout for better spatial locality
and concurrency is becoming ever more crucial in the multi-

and many-core era [6, 10, 15, 22, 34, 36, 43, 53, 61, 68, 69]. Im

and Yelick presented a register blocking method to improve

the performance of SpMV [17]. Vuduc et al. demonstrated

that well-designed data layouts for cache/register data reuse

in SpMV operation provides superior performance [58], and

similar optimization techniques are effective to serial Sp-

TRSV operation as well [56, 59]. Strout et al. proposed sparse

tiling [48, 49] that brings data locality and extra parallelism

from both intra- and inter-iteration, and such techniques can

also be extended to compile-time [47, 50] for automatically

generating efficient code running in the inspector-executor

mode [7]. Liu and Vinter [31] proposed the CSR5 storage

348

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

format for avoiding degraded SpMV performance due to

the irregularity of the distribution of nonzero entries. More-

over, because of the diversity of sparsity structures, recent

research [24, 52, 70] suggested to analyze nonzero layout

and select the best sparse kernels by using machine learning

and deep learning methods.

Because of the serial nature, algorithm optimization
for parallel SpTRSV have been mainly developed on top

of the level-set methods by Anderson and Saad [2] and

Saltz [45] and color-set methods by Schreiber and Tang [46]

for various parallel architectures [25, 29, 39, 40, 51]. Despite

their effectiveness, the barrier synchronization (where itself

is a well-known bottleneck for parallel program [4, 14, 20, 21,

38, 65]) often limits the performance of parallel SpTRSV. To

address this problem, Park et al. [40] sparsified synchroniza-

tion through pruning unneeded dependencies, and Liu et al.

replaced synchronization with atomic operations [29] and

developed a implementation for further parallelizing mul-

tiple right-hand sides [30]. Recently, Venkat et al. [54, 55]

developed several techniques for loop and data transforma-

tions and dependency-aware optimization for sparse matrix

computations, and faster level-set scheduling is one of the

key targets of their research. However, synchronizations,

even of the reduced number, still need to go through global

shared memories and slow down the overall performance.

Mayer [37] and Wolf et al. [62] first pointed out that data
layout optimization for parallel SpTRSV actually plays

a more important role through some experiments on multi-

core systems. Kabir et al. [19] built A = L + LT and utilized

both level-set and color-set as well as graph partition tech-

niques for better data locality. But this method may not be

suitable for broader architectures beyond multi-core and

NUMA hardware. As for GPUs, Picciau et al. [41] developed

an approach that partitions a matrix into multiple sub-graphs

and uses graph theory for global scheduling. However, this

method emphasizes on better utilization of scratchpad mem-

ory and task scheduling but not data reuse. Bradley [5] de-

signed a method that mainly works well for matrices with

dense submatrices generated from sparse direct solvers. All

of the above tiling schemes, however, share a common dis-

advantage that the information from level-sets is not taken

into consideration. This makes the computations in the tiles

on the critical path (i.e., tiles containing diagonal elements)

are still inherently serial (i.e., operations x j = bj/lj j and
bi = bi − li jx j are intertwined thus tightly coupled). Also,

their data reuse is still out-of-control and inter-level synchro-

nization still needs to go through global shared memories.

Compared to existing research, our Sparse Level Tile
layout described in this paper divides a matrix into 2D

tiles of non-uniformed shapes and connects them through

their spatial relationships. Because we consider sparse tiling

with the information from level-set, a DiaTile of SLT is

always composed of a diagonal and a square submatrix,

and an OffdiaTiles is always a rectangular or square subma-

trix. This means that although each Tile may not have uni-

formed shape, the decoupled operations for it (i.e., x j = bj/lj j ,
bi = bi − ∆i j and ∆i j = li jx j) must be regular and parallel-

friendly. This design thus brings controllable data reuse of x
and b, and exploits the advantages of register communication

on Sunway architecture for very fast inter-level synchroniza-

tions. As shown in the experiments, a large amount of sparse

problems have obtained benefits from our method.

Compared with recent research on regular problems
on Sunway architecture, such as stencil [3], DNN [12],

GEMM [18, 27] and fully-implicit solver for nonhydrostatic

atmospheric dynamics [66], our work presented in this pa-

per is more complicated, as the irregularities from various

matrix sparsity structures are dynamic and leveraging such

irregularity is known to be more challenging [57, 67].

7 Conclusion
Sparse triangular solve plays an important role inmany appli-

cations. Despite its importance, out-of-control data reuse and

slow synchronization via global memory have been largely

neglected in existing research. In this work, we proposed

swSpTRSV for SW26010 processor, themain building block of

Sunway Taihulight supercomputer. The swSpTRSV consists

of a Sparse Level Tile layout to make all data reuse under con-

trol and a Producer-Consumer pairing method to make any

inter-level synchronization only happen through fast register

communication. The experimental results benchmarkedwith

2057 matrices showed that our approach largely outperforms

parallel level-set method and has superior performance over

five recent methods on KNC and GPU processors.

It is worth to note that even though in this paper the

SLT layout and the Producer-Consumer Pairing method are

designed for Sunway architectures with Scratch Padmemory,

DMA-based memory access and register communication on

mesh network, we believe that our proposed method can

bring insightful experience to algorithm design on future

architectures, such as GPUs with register-communication

and x86 processors with 2D mesh interconnect.

Acknowledgments
The authors would like to thank all anonymous reviewers for

their insightful comments and suggestions. This work was

supported by the National Key R&D Program of China (Grant

No. 2016YFA0602100 and 2017YFA0604500), National Natu-

ral Science Foundation of China (Grant No. 91530323 and

41776010) and the European Union’s Horizon 2020 research

and innovation programme under the Marie Sklodowska-

Curie project (Grant No. 752321). The corresponding author

of this paper is Wei Xue (xuewei@tsinghua.edu.cn). Any

opinions and conclusions or recommendations expressed in

this paper are those of the author and do not necessarily

reflect the views of the National Science Foundation.

349

swSpTRSV PPoPP ’18, February 24–28, 2018, Vienna, Austria

References
[1] 2017. https://www.top500.org/. (2017).
[2] Edward Anderson and Youcef Saad. 1989. Solving sparse triangular

linear systems on parallel computers. International Journal of High
Speed Computing 1, 01 (1989), 73–95.

[3] Yulong Ao, Chao Yang, Xinliang Wang, Wei Xue, Haohuan Fu, Fang-

fang Liu, Lin Gan, Ping Xu, and Wenjing Ma. 2017. 26 PFLOPS Stencil

Computations for Atmospheric Modeling on Sunway TaihuLight. In

Parallel and Distributed Processing Symposium (IPDPS), 2017 IEEE Inter-
national. IEEE, 535–544.

[4] Martin Bättig and Thomas R. Gross. 2017. Synchronized-by-Default

Concurrency for Shared-Memory Systems. In Proceedings of the 22Nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’17). 299–312.

[5] Andrew M. Bradley. 2016. A Hybrid Multithreaded Direct Sparse

Triangular Solver. In 2016 Proceedings of the Seventh SIAM Workshop
on Combinatorial Scientific Computing. 13–22.

[6] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.

2010. A Practical Concurrent Binary Search Tree. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’10). 257–268.

[7] R. Das, M. Uysal, J. Saltz, and Y.S. Hwang. 1994. Communication

Optimizations for Irregular Scientific Computations on Distributed

Memory Architectures. J. Parallel and Distrib. Comput. 22, 3 (1994),
462 – 478.

[8] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse

Matrix Collection. ACM Trans. Math. Softw. 38, 1 (2011), 1:1–1:25.
[9] Jack Dongarra. 2016. Report on the sunway taihulight system.

www.netlib.org. Retrieved June 20 (2016).
[10] Alexandre X. Duchateau, David Padua, and Denis Barthou. 2013. Hy-

dra: Automatic Algorithm Exploration from Linear Algebra Equations.

In Proceedings of the 2013 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO) (CGO ’13). 1–10.

[11] Iain S. Duff, Albert M. Erisman, and John K. Reid. 2017. Direct Methods
for Sparse Matrices (2nd ed.). Oxford University Press, Inc.

[12] Jiarui Fang, Haohuan Fu, Wenlai Zhao, Bingwei Chen, Weijie Zheng,

and Guangwen Yang. 2017. swDNN: A Library for Accelerating Deep

Learning Applications on Sunway TaihuLight. In Parallel and Dis-
tributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE,
615–624.

[13] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, Zhenya Song,

XiaomengHuang, Chao Yang,Wei Xue, Fangfang Liu, Fangli Qiao, et al.

2016. The Sunway TaihuLight supercomputer: system and applications.

Science China Information Sciences 59, 7 (2016), 072001.
[14] Elad Gidron, Idit Keidar, Dmitri Perelman, and Yonathan Perez. 2012.

SALSA: Scalable and Low Synchronization NUMA-aware Algorithm

for Producer-consumer Pools. In Proceedings of the Twenty-fourth An-
nual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’12). 151–160.

[15] Hwansoo Han and Chau-Wen Tseng. 2006. Exploiting locality for

irregular scientific codes. IEEE Transactions on Parallel and Distributed
Systems 17, 7 (2006), 606–618.

[16] Kaixi Hou, Weifeng Liu, Hao Wang, and Wu-chun Feng. 2017. Fast

Segmented Sort on GPUs. In Proceedings of the International Conference
on Supercomputing (ICS ’17). Article 12, 12:1–12:10 pages.

[17] Eun-Jin Im and Katherine Yelick. 1998. Model-based memory hierarchy

optimizations for sparse matrices. InWorkshop on Profile and Feedback-
Directed Compilation, Vol. 139.

[18] Lijuang Jiang, Chao Yang, Yulong Ao,Wanwang Yin,WenjingMa, Qiao

Sun, Fangfang Liu, Rongfen Lin, and Peng Zhang. 2017. Towards highly

efficient DGEMM on the emerging SW26010 many-core processor.

In International Conference on Parallel Processing (ICPP), 2017 IEEE
International. IEEE.

[19] Humayun Kabir, Joshua Dennis Booth, Guillaume Aupy, Anne Benoit,

Yves Robert, and Padma Raghavan. 2015. STS-k: a multilevel sparse

triangular solution scheme for NUMA multicores. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’15). ACM, 55.

[20] R. Kaleem, A. Venkat, S. Pai, M. Hall, and K. Pingali. 2016. Synchro-

nization Trade-Offs in GPU Implementations of Graph Algorithms. In

2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 514–523.

[21] Saurabh Kalikar and Rupesh Nasre. 2016. DomLock: A New Multi-

granularity Locking Technique for Hierarchies. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’16). 23:1–23:12.

[22] Alex Kogan and Maurice Herlihy. 2014. The Future(s) of Shared Data

Structures. In Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing (PODC ’14). 30–39.

[23] Ang Li, Weifeng Liu, Mads R. B. Kristensen, Brian Vinter, Hao Wang,

Kaixi Hou, Andres Marquez, and Shuaiwen Leon Song. 2017. Exploring

and Analyzing the Real Impact of Modern On-package Memory on

HPC Scientific Kernels. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC
’17). 26:1–26:14.

[24] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2013. SMAT:

An Input Adaptive Auto-tuner for Sparse Matrix-vector Multiplication.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’13). 117–126.

[25] Ruipeng Li and Yousef Saad. 2013. GPU-accelerated preconditioned

iterative linear solvers. The Journal of Supercomputing 63, 2 (2013),

443–466.

[26] Heng Lin, Xiongchao Tang, Bowen Yu, Youwei Zhuo, Wenguang Chen,

Jidong Zhai, Wanwang Yin, and Weimin Zheng. 2017. Scalable Graph

Traversal on Sunway TaihuLight with Ten Million Cores. In Parallel
and Distributed Processing Symposium (IPDPS), 2017 IEEE International.
IEEE, 635–645.

[27] James Lin, Zhigeng Xu, Akira Nukada, Naoya Maruyama, and Satoshi

Matsuoka. 2017. Optimizations of Two Compute-bound Scientific Ker-

nels on the SW26010 Many-core Processor. In International Conference
on Parallel Processing (ICPP), 2017 IEEE International. IEEE.

[28] Weifeng Liu. 2015. Parallel and Scalable Sparse Basic Linear Algebra
Subprograms. Ph.D. Dissertation. University of Copenhagen.

[29] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S. Duff, and Brian Vinter.

2016. A Synchronization-Free Algorithm for Parallel Sparse Triangular

Solves. In European Conference on Parallel Processing. 617–630.
[30] Weifeng Liu, Ang Li, Jonathan D. Hogg, Iain S. Duff, and Brian Vin-

ter. 2017. Fast Synchronization-Free Algorithms for Parallel Sparse

Triangular Solves with Multiple Right-Hand Sides. Concurrency and
Computation: Practice and Experience 29, 21 (2017), e4244–n/a.

[31] Weifeng Liu and Brian Vinter. 2015. CSR5: An Efficient Storage Format

for Cross-Platform Sparse Matrix-Vector Multiplication. In Proceedings
of the 29th ACM International Conference on Supercomputing (ICS ’15).
339–350.

[32] Weifeng Liu and Brian Vinter. 2015. A Framework for General Sparse

Matrix-Matrix Multiplication on GPUs and Heterogeneous Processors.

J. Parallel and Distrib. Comput. 85, C (Nov. 2015), 47–61.

[33] Weifeng Liu and Brian Vinter. 2015. Speculative Segmented Sum for

Sparse Matrix-vector Multiplication on Heterogeneous Processors.

Parallel Comput. 49, C (Nov. 2015), 179–193.

[34] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. 2017. Con-

current Data Structures for Near-Memory Computing. In Proceedings
of the 29th ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA ’17). 235–245.

[35] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M. Hellerstein. 2010. GraphLab: A New Parallel

Framework for Machine Learning. In Conference on Uncertainty in

350

https://www.top500.org/

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

Artificial Intelligence (UAI).
[36] Zoltan Majo and Thomas R. Gross. 2017. A Library for Portable and

Composable Data Locality Optimizations for NUMA Systems. ACM
Trans. Parallel Comput. 3, 4 (March 2017), 20:1–20:32.

[37] Jan Mayer. 2009. Parallel algorithms for solving linear systems with

sparse triangular matrices. Computing 86, 4 (2009), 291–312.

[38] AdamMorrison. 2016. Scaling Synchronization in Multicore Programs.

Commun. ACM 59, 11 (2016), 44–51.

[39] Maxim Naumov. 2011. Parallel solution of sparse triangular linear

systems in the preconditioned iterative methods on the GPU. NVIDIA
Corp., Westford, MA, USA, Tech. Rep. NVR-2011 1 (2011).

[40] Jongsoo Park, Mikhail Smelyanskiy, Narayanan Sundaram, and

Pradeep Dubey. 2014. Sparsifying synchronization for high-

performance shared-memory sparse triangular solver. In International
Supercomputing Conference. 124–140.

[41] A. Picciau, G. E. Inggs, J. Wickerson, E. C. Kerrigan, and G. A. Con-

stantinides. 2016. Balancing Locality and Concurrency: Solving Sparse

Triangular Systems on GPUs. In 2016 IEEE 23rd International Confer-
ence on High Performance Computing (HiPC). 183–192.

[42] I. Z. Reguly, G. R. Mudalige, C. Bertolli, M. B. Giles, A. Betts, P. H. J.

Kelly, and D. Radford. 2016. Acceleration of a Full-Scale Industrial CFD

Application with OP2. IEEE Transactions on Parallel and Distributed
Systems 27, 5 (May 2016), 1265–1278.

[43] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and W.

Schulte. 2013. SIMD parallelization of applications that traverse irreg-

ular data structures. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 1–10.

[44] Yousef Saad. 2003. Iterative methods for sparse linear systems. Siam.

[45] Joel H Saltz. 1990. Aggregation methods for solving sparse triangular

systems on multiprocessors. SIAM journal on scientific and statistical
computing 11, 1 (1990), 123–144.

[46] Robert Schreiber and Wei-Pei Tang. 1982. Vectorizing the conjugate

gradient method. Unpublished manuscript, Department of Computer
Science, Stanford University (1982).

[47] MichelleMills Strout, Larry Carter, and Jeanne Ferrante. 2003. Compile-

time Composition of Run-time Data and Iteration Reorderings. In

Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI ’03). 91–102.

[48] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, Jonathan Freeman,

and Barbara Kreaseck. 2002. Combining Performance Aspects of

Irregular Gauss-Seidel Via Sparse Tiling. In Languages and Compilers
for Parallel Computing: 15th Workshop, LCPC 2002, College Park, MD,
USA, July 25-27, 2002. Revised Papers, Bill Pugh and Chau-Wen Tseng

(Eds.). 90–110.

[49] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Barbara

Kreaseck. 2004. Sparse Tiling for Stationary Iterative Methods. The
International Journal of High Performance Computing Applications 18,
1 (2004), 95–113.

[50] Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante,

Barbara Kreaseck, and Catherine Olschanowsky. 2016. An Approach

for Code Generation in the Sparse Polyhedral Framework. Parallel
Comput. 53, C (April 2016), 32–57.

[51] Brad Suchoski, Caleb Severn, Manu Shantharam, and Padma Raghavan.

2012. Adapting sparse triangular solution to GPUs. In 2012 41st Inter-
national Conference on Parallel Processing Workshops. IEEE, 140–148.

[52] Guangming Tan, Junhong Liu, and Jiajia Li. 2018. Design and Imple-

mentation of Adaptive SpMV Library for Multicore and Manycore

Architecture. ACM Trans. Math. Softw. (2018).
[53] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L.

Chamberlain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F.

Hannig, E. Jeannot, A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H.

Ltaief, N. Maruyama, C. J. Newburn, and M. Pericas. 2017. Trends in

Data Locality Abstractions for HPC Systems. IEEE Transactions on
Parallel and Distributed Systems PP, 99 (2017), 1–1.

[54] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data

Transformations for Sparse Matrix Code. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’15). 521–532.

[55] Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo

Rong, Rajkishore Barik, Michelle Mills Strout, and Mary Hall. 2016.

AutomatingWavefront Parallelization for SparseMatrix Computations.

In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’16). 41:1–41:12.

[56] Richard Vuduc. 2003. Automatic Performance Tuning of Sparse Matrix
Kernels. Ph.D. Dissertation. University of California, Berkeley.

[57] Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat

Guney, and Aashay Shringarpure. 2010. On the Limits of GPU Accel-

eration. In Proceedings of the 2Nd USENIX Conference on Hot Topics in
Parallelism (HotPar’10). 13–13.

[58] Richard Vuduc, James W. Demmel, Katherine A. Yelick, Shoaib Kamil,

Rajesh Nishtala, and Benjamin Lee. 2002. Performance Optimizations

and Bounds for Sparse Matrix-vector Multiply. In Proceedings of the
2002 ACM/IEEE Conference on Supercomputing (SC ’02). 1–35.

[59] Richard Vuduc, Shoaib Kamil, Jen Hsu, Rajesh Nishtala, James W

Demmel, and Katherine A Yelick. 2002. Automatic Performance Tuning

and Analysis of Sparse Triangular Solve. In ICS 2002: Workshop on
Performance Optimization via High-Level Languages and Libraries.

[60] Hao Wang, Weifeng Liu, Kaixi Hou, and Wu-chun Feng. 2016. Parallel

Transposition of Sparse Data Structures. In Proceedings of the 2016
International Conference on Supercomputing (ICS ’16). 33:1–33:13.

[61] Xin Wang, Weihua Zhang, Zhaoguo Wang, Ziyun Wei, Haibo Chen,

and Wenyun Zhao. 2017. Eunomia: Scaling Concurrent Search Trees

under Contention Using HTM. In Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming.
ACM, 385–399.

[62] Michael M Wolf, Michael A Heroux, and Erik G Boman. 2010. Factors

impacting performance of multithreaded sparse triangular solve. In

International Conference on High Performance Computing for Computa-
tional Science. Springer, 32–44.

[63] Zhigeng Xu, James Lin, and Satoshi Matsuoka. 2017. Benchmarking

SW26010 Many-Core Processor. In Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017 IEEE International. IEEE, 743–
752.

[64] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. 2014.

yaSpMV: Yet Another SpMV Framework on GPUs. In Proceedings of
the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’14). 107–118.

[65] Shengen Yan, Guoping Long, and Yunquan Zhang. 2013. StreamScan:

Fast Scan Algorithms for GPUs Without Global Barrier Synchroniza-

tion. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’13). 229–238.

[66] Chao Yang, Wei Xue, Haohuan Fu, Hongtao You, Xinliang Wang, Yu-

long Ao, Fangfang Liu, Lin Gan, Ping Xu, Lanning Wang, et al. 2016.

10M-core scalable fully-implicit solver for nonhydrostatic atmospheric

dynamics. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’16). 6:1–6:12.

[67] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen.

2011. On-the-fly Elimination of Dynamic Irregularities for GPU Com-

puting. In Proceedings of the Sixteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS XVI). 369–380.

[68] Weihua Zhang, Xin Wang, Shiyu Ji, Ziyun Wei, Zhaoguo Wang, and

Haibo Chen. 2017. Scaling Concurrent Index Structures under Con-

tention Using HTM. IEEE Transactions on Parallel and Distributed
Systems (2017).

[69] Yuanrui Zhang, Wei Ding, Jun Liu, and Mahmut Kandemir. 2011. Op-

timizing Data Layouts for Parallel Computation on Multicores. In

351

swSpTRSV PPoPP ’18, February 24–28, 2018, Vienna, Austria

Proceedings of the 2011 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT ’11). 143–154.

[70] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. 2018. Bridging

the Gap between Deep Learning and Sparse Matrix Format Selection.

In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’18).

A Artifact appendix
A.1 Abstract
Our artifact provides the code of sparse triangular solve for

Sunway architecture (the building block of Sunway Taihu-

Light Supercomputer, top ranking supercomputer of TOP500),

the benchmarks, along with the scripts to run these bench-

marks to evaluate our algorithm’s performance.

As the code can be compiled and run only on Sunway

processor, we also briefly introduce how to login and use

Sunway TaihuLight Supercomputer.

A.2 Artifact check-list (meta-information)
• Program: Sparse triangular solve for Sunway archi-

tecture

• Compilation: Using the provided scripts via sw5cc

compiler (the customized compiler for Sunway archi-

tecture).

• Hardware: We provide a user account for evaluating

our solvers on Sunway TaihuLight Supercomputer.

• Dataset: Provided with part of the evaluated bench-

marks via Github. And all of the 2057 benchmarks used

in our manuscript can be found and run in the Home
directory of the user on Sunway TaihuLight.

• Run-time environment: Linux

• Experiment Workflow: Login the provided user;

Run build scripts; Run test scripts. (Note that the corre-

sponding code has been copied to the Home directory
of the given user.)

• Publicly available?: Yes.

A.3 Description
A.3.1 How delivered
The artifact has been uploaded to github at:

https://github.com/clarencewxl/swSpTRSV.git

The artifact can also be found in the Home directory of the

given user on Sunway TaihuLight Supercomputer.

A.3.2 Hardware dependencies
The swSpTRSV proposed in this work only uses a single core

group (CG) of SW26010 processor.

A.3.3 Software dependencies
The swSpTRSV requires sw5cc compiler, which has already

been installed on Sunway TaihuLight Supercomputer.

A.3.4 Dataset
We evaluated all of the 2057 square matrices from the Univer-

sity of Florida Sparse Matrix Collection in our manuscript.

Part of these benchmarks can be found in github link men-

tioned above. All of the benchmarks have been copied to the

following directory of the given user on Sunway TaihuLight:

./online1/triangular_files/

A.4 Login to Sunway TaihuLight
- Land the homepage of the National Supercomputing Center

in Wuxi:

http://www.nsccwx.cn/wxcyw/

- Select one VPN service: ‘Telecom’, ‘Unicom’ or ‘China Mo-

bile’ on the top of the website. Please choose the best one

for better connection.

- Login to Sunway TaihuLight Supercomputer

ssh 41.0.0.188

Email to clarencewxl@gmail.com for further questions.

A.5 Experiments for reproducing Fig. 7
- Build the binary:

$ cd ./online1/SpTRSV_map/

$./makeall.sh

- Run a single benchmark

$./test.sh -I benchmark_name
Note: The names of all the benchmarks are listed in the file

‘benchmarks_list’ in the same directory.

- The referenced output can be found in the following format:

Filename: ../triangular_files/atmosmodd.cscu, PRODUCER_CON
SUMER_ROWS: 8 CACHE_X_V4: 1024 Average time is 0.005880s,
Average MFlops is 1499.029826
- Use nohup to run all the benchmarks

$ nohup ./total_run.sh &

Note: Use bjobs to check whether the jobs finish or not. Each job

will produce a new file in the subdirectory ‘results’ in the current

directory.

- The referenced performance results are listed in the file

‘ref_map’ in the current directory. These results are used to

draw the Temperature map of Fig. 7.

Note: There are totally 4 × 6 × 2057 = 49368 test cases and will

cost about 36 hours. You do not need to wait for finishing all the test

cases and can compare the result of any case with the referenced

result as long as it is finished.

A.6 Experiments for reproducing Fig. 9 and Fig. 10
- Build the binary:

$ cd ./online1/SpTRSV_tuning/

$ make

- Run a single benchmark

$./run.sh -I benchmark_name
Note: The names of all the benchmarks are listed in the file

‘benchmarks_list’ in the same directory.

- The referenced output can be found in the following format:

352

PPoPP ’18, February 24–28, 2018, Vienna, Austria Xinliang Wang, Weifeng Liu, Wei Xue, and Li Wu

SwSpTRSV: Filename is ../triangular_files/atmosmodd.cscu Av-

erage time is 0.005869s, Average MFlops is 1501.908293

Serial: Filename is ../triangular_files/atmosmodd.cscu Average

time is 0.110587s, Average MFlops is 79.710070

level-sets: Filename is ../triangular_files/atmosmodd.cscu Aver-

age time is 0.055369s, Average MFlops is 159.201148

- Use nohup to run all the benchmarks

$ nohup ./total_run.sh &

Note: Use bjobs to check whether the jobs finish or not. Each job

will produce a new file in the subdirectory ‘results’ in the current

directory.

- The referenced performance results are listed in the file

‘ref_SwSpTRSV’, ‘ref_serial’ and ‘ref_levelsets’ in the current

directory. These results are used to draw the Scatter Plot of

Fig. 9 and Fig. 10.

Note: There are totally 2057 works and will cost about 2 hours.

You do not need to wait for finishing all the test cases and can

compare the result of any case with the referenced result as long

as it is finished.

353

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serial Algorithm for SpTRSV
	2.2 Level-Set Methods for Parallel SpTRSV
	2.3 Performance Problems in Existing Methods
	2.4 Sunway Architecture
	2.5 Challenges of SpTRSV on Sunway Architecture

	3 Sparse Level Tile Layout
	3.1 Data Layout Design
	3.2 Dataflow, Data Reuse and Data Storage
	3.3 SpTRSV Algorithm based on the SLT Layout
	3.4 Tuning the Region Size in the SLT Layout

	4 Implementation on Sunway architecture
	4.1 Producer-Consumer Pairing Method
	4.2 SpTRSV with Producer-Consumer Pairing

	5 Experimental Results
	5.1 Experimental Setup
	5.2 The Cost of establishing SLT layout
	5.3 Effect of Parameter Tuning
	5.4 Methods on Sunway Processor
	5.5 Different Methods on Different Processors

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Login to Sunway TaihuLight
	A.5 Experiments for reproducing Fig. 7
	A.6 Experiments for reproducing Fig. 9 and Fig. 10

