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Abstract—This paper proposes and implements a convolutional
neural network (CNN) that maps images from a camera to an
error signal to guide and control an autonomous underwater
vehicle into the entrance of a docking station.

The paper proposes to use an external positioning system
synchronized with the vehicle to obtain a dataset of images
matched with the position and orientation of the vehicle. By
using a guidance map the positions are converted into desired
directions that guide the vehicle to a docking station. The network
is then trained to estimate, for each frame, the error between the
desired direction and the orientation. After training, the CNN can
estimate the error without using the external positioning system,
creating an end-to-end solution from image to a control signal.

I. INTRODUCTION

Autonomous underwater vehicle (AUV) technology has

proven to be sufficiently mature to perform a variety of

underwater missions autonomously. However, the battery du-

ration of AUVs is generally a limiting factor for a mission.

This restriction adds the need of a surface support vessel to

launch and recover the vehicle, something which increases the

cost of the mission and makes the operational outcome more

dependent on sea conditions.

A permanent docking station on the seafloor, where the

vehicle could charge the batteries and transfer the results of

a mission, would reduce the need for frequent launch and

recovery operations at the surface, making the technology

more cost effective, safer and more robust. Also, it would

enable the possibility of permanently residing AUVs ready for

subsea operations, which would further extend the capabilities

of the AUV technology.

The lack of precise positioning systems such as GPS un-

derwater represents one of the most challenging aspects of

a docking operation. This can be compensated for by using

alternative positioning methods, a summary of which can be

found in [1]. In some cases, tailor-made solutions specific

to the docking task are applied to improve the navigation

accuracy when the vehicle is close to the docking station. In

[2] a single beacon solution is described. An induced local

electromagnetic field is used in [3] to obtain more precise

positioning data. A computer vision approach to identify

and locate the docking station is proposed in [4]. These

solutions often require a certain level of human abstraction

such as recognizing features of the docking station, producing

navigation data and generating control commands. [5] shows

how recent advances in convolution neural networks allow,

given the right conditions, to produce end-to-end solutions that

optimize all these elements simultaneously. Examples where

neural networks have been applied to learn and perform a

complex control task, by itself and even outperform humans

are presented in, [6], [7]. In the context of self driving cars,

[5], [8] show that a neural network is able to produce a

regression that maps image data into angular steering wheel

commands, enabling a car, under certain conditions, to drive

autonomously.

Motivated by these advances, this paper proposes a frame-

work for obtaining data and training a convolutional neural

network (CNN) for docking an AUV. The proposed CNN

uses raw images from a front facing camera as input and as

output it produces the error signal that can later be fed to a

controller to steer the vehicle into the docking station. In the

proposed framework the data required for training the CNN

to perform a docking maneuver is obtained in a controlled

environment, such as a tank equipped with a motion capture

system or an underwater operation where a supply vessel

equipped with GNSS-USBL is present and able to provide

accurate measurements. The external positioning system in
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this controlled environment allows for producing very accurate

measurements of the position and attitude (x, y, ψ) of the

vehicle during the training period. Simultaneously and in a

synchronized way, the data from the AUV’s internal sensors

is recorded from a large set of different states/locations and

paired with the precise data from the external sensors.

As represented in Figure 1, all the data measured by external

positioning system is mapped trough a guidance map, to

generate desired direction ψd that guides the AUV towards

the docking station. The end goal of this application is to

produce a regression from image/sensor information to an

estimate of the heading error, ψ̃, that does not use any of

the external sensors. This end-to-end solution combines the

detection of the docking station, navigation and guidance all

in one single network. To achieve this, the CNN takes frames

of the training dataset as input, and the output from the CNN

is compared with the ground-truth values obtained from the

external measurement system.

The paper is organized as it follows: Section II proposes a

guidance map and a transformation of the coordinate system to

map each position to the desired direction for the AUV. Section

III explains how the data for training the network is obtained

and pre-processed. Section III-A describes the model of the

network. Section IV explains the results and Section V draw

some conclusions about the design, training, and performance

of the network.

II. GUIDANCE

This section presents two elements that will be used for

the guidance of the vehicle: A transformation of the polar

coordinate system that takes into account the size of the

docking station, and a guidance map that prescribes the desired

direction at any given point.

A. Transformation of the polar coordinates

Polar coordinates are sometimes useful in underwater navi-

gation, especially for systems that measure range and bearing.

Also descriptions of spiral paths and trajectories become

simpler when using polar coordinates. However, in polar

coordinates any displacement close to the origin and per-

pendicular to the radial direction results in large changes

in the angular coordinate. This singularity can make polar

coordinates unattractive because some controllers may become

unstable when the system comes close to the origin. Since a

docking station has tolerance to accommodate a certain lateral

offset, we propose a transformation of the coordinate system

that can take into account the size of the entrance of a funnel

shaped docking station such as the one used in [9]. In this

paper we propose a transformation of the polar coordinates

(r, φ) → (r∗, φ∗) that, far from the origin, behaves as polar

coordinates, but unlike polar coordinates when close to the

origin the points in front of the entrance of the docking station

will all have similar range and angular position (see figure 2).

Since this avoids the singularity of polar coordinates at the

entrance, this choice of coordinates can provide a more robust
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Fig. 2: Transformation of the polar coordinates

control system when the vehicle moves towards the origin, i.e.

the docking station.

The transformation, that could also be interpreted as

”stretching the center point” of the polar coordinates along

the entrance, is described based on two virtual poles that

are placed at each side of the docking station’s entrance (at

a distance d/2 from the center). The first parameter of the

proposed system, the transformed angular coordinate φ∗, is

described as the average angle φ∗ = 1

2
(φ1 + φ2), where φ1

and φ2 are defined by the position of the virtual poles as shown

in Figure 2.

By definition, the new angular coordinate is thus always

between φ1 and φ2.
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The transformation for the range r∗ is described as the length

of a segment, that has an angle φ∗ with respect to docking

station centerline, and connects the point (r, φ) with the

docking station’s entrance. Note that the point of the segment

at the entrance is not a fixed point and can move between the

two poles depending on (r, φ). The length of the segment r∗

and can be found from the following expression:

r∗ = r
cos(φ)

cos(φ∗)
(2)

B. Guidance Map

In [10] a spiral path was proposed for reaching a docking

station and at the same time preserve the field of view

(FOV) of the transmitter or landmark mounted on the docking

station for navigation purposes. In this paper, we propose an

alternative solution to avoid the path planning. Instead, the

new approach uses a mapping of each position to a desired



direction ψd . The desired direction is designed such that when

the vehicle follows this direction it will reach the entrance

of the docking station. In particular, we choose the desired

direction as:

ψd(φ) = φ+ atan

(

tanh

(
2φ

tan(θmax)

)

tan(θmax)

)

(3)

where θmax is the maximum FOV. Figure 3 shows the benefit

of using the transformation of the coordinates; the left plot

shows the result of applying polar coordinates to the guidance

map ψd(φ), and the right plot shows the guidance map when

using transformation of the coordinates ψd(φ
∗). By using the

transformation of coordinates, the guidance system allows the

vehicle to enter the docking station from any point contained

between the sides of the docking station. Note that if the polar

coordinates were used instead, this guidance system would

only allow the vehicle to enter the docking station trough the

centerline.

*

Fig. 3: Guidance map with polar coordinates (left) or the

transformed coordinates (right)

III. DATA ACQUISITION AND PRE-PROCESSING

The images and data used in this paper were obtained

during the tuning and calibration phases of the experimental

results published in [10]. The required images were obtained

in the Marine Cybernetics Laboratory (MC-lab) at NTNU,

Trondheim, Norway [11], in a tank of dimensions L: 40 m,

H: 1.5 m and W: 6.45 m. The camera used to obtain the

images was attached to an underwater vehicle which received

real-time measurements of the robot’s position and orientation

were obtained from an underwater motion capture system,

Qualisys, installed in the basin [12]. Note that a template of

markers was mounted under the head module of the robot,

where the camera was attached, that allowed the positioning

system to determine the position and heading of each frame

accurately. A flat panel with a reflective region was used as

a mockup of the entrance of a docking station. The position

of the docking station (xds, yds) was also obtained using the

underwater positioning system. The data acquired consists of

eight different runs of a docking maneuver, resulting in a total

of 5358 frames correlated with their position. The frames ob-

tained were resized to 96x112 px to be more computationally

5358 Frames
96x112 px 

Fig. 4: Representation of the data set used for training the

CNN. The background arrows represent the guidance map

efficient but still preserve the important features. The images

were then normalized from: [0, 255] → [0, 1]. The positions

and orientation (x, y, ψ) of the camera and the position of the

docking station (xds, yds), obtained by the Qualisys motion

capture system, were first transformed to polar coordinates,

with the position of the docking station as origin:

r =
√

(x− xds)2 + (y − yds)2

φ = atan2(y − yds, x− xds)
(4)

Then, Equations (1-2) were used to transform the polar

coordinates and Equation (3) was used to calculate the desired

heading ψd, for each position. Finally, the error between the

heading ψ and the desired heading given by the guidance map,

ψd, was calculated:

ψ̃ = ψ − ψd (5)

This produced an array pairing each of the 5358 frames of

the set with the error ψ̃. The data are represented in Figure 4

each dot represents the position from where each frame was

obtained, and the arrows represent the guidance map used to

calculate ψd and ψ̃. A 15% of these data (a full run) was saved

for future validation.

A. Model of the network and training parameters

The neural network used in this paper follows the structure

of the network proposed in [5], but since the scenario for the

docking is quite monotone the size of the layers is reduced.

This also reduces the complexity of the network, thus reducing

the risk of overfitting.

The model of the network is illustrated in Figure 5 and its

parameters are displayed in Table 1. The network begins with

five convolution layers, the first three have 5x5 kernels and the

two last have 3x3 kernels. The outcome of the last convolution

layer is then flattened into a long array which is then connected

to the fully connected layers (FCL). The FCL layers consist

of four layers that reduce in size, for which each neuron is

connected with all the neurons from the previous layer. The

single neuron of the last layer returns the estimated error
ˆ̃
ψ.

The network is trained by finding the weights and biases that

minimize the difference between the error ψ̃ produced by the

guidance map and the
ˆ̃
ψ estimated by the neural network.
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Fig. 5: Architecture of the network

Convolution
Layers

Kernel
Size

Stride Padding Filters Activation

Conv 1 5x5 2 0 6 RelU

Conv 2 5x5 2 0 12 RelU

Conv 3 5x5 2 0 18 RelU

Conv 4 3x3 0 0 24 RelU

Conv 5 3x3 0 0 24 RelU

Fully Connected
Layers

Size Activ.

FCL 1 32 RelU

FCL 2 16 RelU

FCL 3 8 RelU

Output 1 -

TABLE I. Parameters of the model

The model and the training of the CNN was programmed

using the Tensorflow library [13]. It was trained during 160

epochs in batches of 100 frames and the loss function used

was the L2 norm distance with weight regularization (10−5).

All the weights were randomly initialized using a truncated

normal distribution (STD:0.01). The network was then trained

using the Adam optimization method [14] with a learning rate

of (10−4). To avoid overfitting, during the training phase, the

images were augmented by randomly changing the contrast

and brightness and imposing random dropouts in 20% of the

connections of the fully connected layers [15], [16].

IV. RESULTS

This section shows the results of training the system for

160 epochs. The resulting network has a size > 300 Kb, and

the computation time of an image could be executed in an

order of magnitude faster than the camera frame rate. Figure 6

shows the performance of the CNN at estimating ψ̃ for the

testing dataset. The performance of the CNN is illustrated in

Figure 6. The figure shows two very different performances in

the main and the late part of the frames, which are separated

into two regions with different backgrounds colors. In the

white region, which composes the initial and largest part of

the docking maneuver, the network shows to be very accurate

at estimating ψ̃ (RMSE: 0.0345 rad |1.98 deg). In the second

region with gray background, however, the network suddenly

becomes very inaccurate (RMSE: 0.1949 rad |11.17 deg).

An explanation of the drop in performance can be found by

observing the frames displayed in Figure 7. Here we see that

the frames that give an inaccurate estimate are the last frames

of the docking maneuver, i.e. when the vehicle is very close

to the docking station. At such a close distance there are no

references that the network can use to perceive neither the

direction nor the distance to the docking station, such as the

walls of the tank, the focus or the frame of the docking station.
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Fig. 6: Performance of the trained network estimate compared

with the measured error
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Fig. 7: Frames classified according to the accuracy of the

estimate



V. CONCLUSIONS

In this paper we have proposed a framework for end-to-

end learning of an AUV docking maneuver. In particular, we

have shown how to gather the data and train a convolutional

neural network to perform a docking task. The paper presents

a guidance approach that maps the position and orientation

of the vehicle with respect to the docking station, to a

desired direction given by the yaw angle ψd. When the AUV

follows this desired yaw angle, the system guides the vehicle

to the docking station, while preserving the FOV. To train

the CNN, the paper proposes to use an external positioning

system synchronized with the vehicle to obtain a dataset of

images, i.e. sensor measurements frames matched with the

vehicle position. When combined with the guidance map, this

data describes for each frame the error between the desired

direction and the orientation of the vehicle. Then the dataset is

used to train a convolutional neural network, which afterwards

can estimate the error in the direction ψ̃, without using an

external positioning system.

The results have shown that in general, the vehicle is able to

accurately estimate the error, producing a solution that embeds

the recognition of the docking station, the navigation and the

guidance in one network. Therefore, a yaw control law using

the estimated error in direction, ψ̃, as input, will make the

vehicle follow a trajectory that leads into the docking station.

The lack of information when the vehicle is very close to the

docking station has shown to produce inaccurate estimates. To

overcome this issue, the last phase of the docking maneuver

might need a special guidance law, for instance one that

maintains a straight course. The neural network could also

be trained to recognize when the vehicle is very close to the

docking station and switch to an alternative guidance law.

The results presented in this paper only train the network to

perform in a small area. Outside of the training set the vehicle

would probably not be able to estimate the error precisely, but

the experiment shows that if implemented for a larger training

set, the network would be able to provide a more general

and robust solution. The training set has a unique lighting

condition, a more robust training would also need training

data with different lighting conditions.

Future work may include experimental validation of the

trained network as well as using larger training sets, data

augmentation by virtually panning the camera, adding other

sensors or using recurrent neural networks.
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