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N-player linear quadratic differential games on an infinite time horizon with deterministic feedback in-
formation structure have been studied. Two iterative methods (the Newton method and its acceleration
modification) are introduced to compute the stabilizing solution of a set of generalized algebraic Ric-
cati equations which is related to the Nash equilibrium point of the considered game model. Moreover,
the sufficient conditions for convergence of the proposed methods are derived. Finally, we discuss two
numerical examples so as to illustrate both algorithms.
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1. Introduction

Recently, a linear quadratic (LQ) differential game theory based on Riccati equations, both for
deterministic and stochastic systems, has been studied. It is an important research field in control
theory and some interesting applications have been developed Azevedo-Perdicoulis & Jank (2005);
Bazar & Olsder (1999); van den Broek (2001); van den Broek et al. (2003); Dragan et al. (2007);
Jank & Kremer (2004); Li & Gajic (1995). We investigate the problem of finding a deterministic
feedback Nash equilibrium for an N-player infinite-horizon linear-quadratic differential game. This
equilibrium is defined as an N-tuple of linear time-invariant state feedback strategies stabilizing
the closed-loop system. The issue has been investigated in van den Broek (2001); van den Broek
et al. (2003).

Consider the dynamic system

ẋ = Ax+
N∑
j=1

Bj uj , x(0) = x0 (1)

where x is the state vector, x0 ∈ Rn×1 , A ∈ Rn×n , Bj ∈ Rn×mj and uj is the control vector, chosen
by player j, j = 1, . . . , N . The controls uj are of the type uj = Fjx and Fj ∈ Rmj×n. We define F
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through the following set of matrices:

F = {F = (F1, . . . , Fn) such that Fj ∈ Rmj×n andA+

N∑
j=1

Bj Fj is asymptotically stable} .

The aim of each player i (i = 1, . . . , N) is to maximize the own cost function, which is a quadratic
functional Ji defined by

Ji(F1, . . . , FN , x0) =

∫ ∞
0

xT

Qi +
N∑
j=1

F T
j Rij Fj

x dt , (2)

where Qi and Rij are symmetric matrices with Qi ∈ Rn×n and Rij ∈ Rmj×mj and i, j = 1, . . . , N .
Additional requirements to these matrices are:

(a) the matrices Qi and Rij , (i 6= j) are symmetric and nonnegative;
(b) the matrix R−1

ii is nonpositive, i = 1, . . . , N .
Further on, we want to apply the above N-player infinite-horizon linear-quadratic differential

game to a positive system defined by (1). For this purpose, we introduce a definition, some facts
and notations for nonnegative matrices and positive systems, , with the text that follows.

Definition 1: The system (1) is said to be positive if for all initial nonnegative x0 and for non-
negative controls uj , j = 1 . . . , N , the state trajectory x(t) takes only nonnegative values.

There are many examples and applications for positive systems in economics (do Amaral et al.
, 2006; Metzler , 1945), and financial modelling (Filipović et al. , 2010). The specific properties
to reset the control of positive linear systems are established and problems of reset stabilization
are commented in (Zhao et al. , 2015). A necessary and sufficient condition to guarantee the
admissibility of the stability of positive descriptor systems via linear matrix inequalities (LMIs) is
derived in (Zhang et al. , 2013).

An n×n matrix A is called a Z-matrix if it has nonpositive off-diagonal entries. Any Z-matrix A
can be presented as A = αI−N with N being a nonnegative matrix, and it is called a nonsingular
M-matrix if α > ρ(N), where ρ(N) is the spectral radius of N . In addition, a matrix is called
nonnegative (nonpositive) if all of its entries are nonnegative (nonpositive).

The next lemma gives equivalent statements about when a Z-matrix is an M-matrix.

Lemma 1.1: (Berman & Plemmons , 1994). For a Z-matrix A, the following items are equivalent:
(a) A is a nonsingular M-matrix;
(b) A−1 ≥ 0;
(c) Au > 0 for some vector u > 0;
(d) All eigenvalues of A have positive real parts.

In our investigation we exploit the fact that the following statements are equivalent for a Z-matrix
(-A):

(a) −A is a nonsingular M-matrix;
(b) In ⊗ (−AT ) + (−AT )⊗ In is a nonsingular M-matrix;
(c) A is asymptotically stable .

Lemma 1.2: (Guo & Laub , 2000). Let A = (aij) ∈ Rn×n be an M-matrix. If the elements of
B = (bij) ∈ Rn×n satisfy the relations bii ≥ aii , aij ≤ bij ≤ 0 , i 6= j , i, j = 1, . . . , N then B also
is an M-matrix.

Lemma 1.3: Consider the linear matrix equation −ATX −XA = Q for a real symmetric matrix
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Q and a Z-matrix (-A). The following statements are equivalent:
(a) A is asymptotically stable;
(b) for any nonnegative Q the equation −ATX−XA = Q has a unique nonnegative solution X .

Proof. (a) Assume A is asymptotically stable and -A is a Z-matrix. Then (−AT )⊗In +In⊗ (−AT )
is a nonsingular M-matrix and vec(X) = [(−AT ) ⊗ In + In ⊗ (−AT )]−1 vec(Q) > 0 when Q is
nonnegative. Thus (a) implies (b).

(b) Let X and Q be symmetric nonnegative matrices and X satisfies the equation −ATX−XA =
Q. Thus [(−AT )⊗ In + In ⊗ (−AT )] vec(X) = vec(Q) > 0. By (1.1), (−AT )⊗ In + In ⊗ (−AT ) is
a nonsingular M-matrix and (a) holds.

The following property of the positive systems are well known (see (Farina & Rinaldi , 2000)).

Proposition 1.4: The system (1) is positive if and only if Bj , j = 1, . . . , N are nonnegative
matrices and the matrix −A is a Z-matrix.

The concept of a Nash equilibrium in games with feedback information structure has been in-
troduced (van den Broek , 2001; van den Broek et al. , 2003). Following their findings we refer
that the deterministic feedback Nash equilibria are characterized by the solutions of a set of cou-
pled algebraic Riccati equations with a stability property. We consider and investigate the linear
quadratic differential games for positive systems and more specially we attract how to compute
the Nash equilibrium point of the game defined on a positive system. Further on, we refer two
investigations where the stabilizing solution and its properties of a set of coupled algebraic Ric-
cati equations are studied. A Newton iteration to approximate the stabilizing solution of a system
of coupled generalized Riccati equations associated to deterministic feedback Nash equilibria in
feedback information structure is proposed (Azevedo-Perdicoulis & Jank , 2005). The existence
of a stabilizing solution of a system of coupled nonlinear matrix differential equations arising in
connection with the computation of the deterministic feedback Nash equilibrium strategy in the
case of linear quadratic two player Nash game is proved in (Dragan et al. , 2005).

Let introduce the following equilibrium definition:

Definition 2: An N -tuple of matrices F∗ = (F ∗1 , . . . , F
∗
N ) is called a deterministic feedback Nash

equilibrium on the positive system (1) if the following inequalities hold:

Ji(F
∗
1 , . . . , F

∗
N , x0) ≥ Ji(F ∗1 , . . . , F ∗i−1, Fi, F

∗
i+1, . . . , F

∗
N , x0) , i = 1, . . . , N ,

for all initial nonnegative states x0, all Fi ∈ Rmi×n such that
(F ∗1 , . . . , F

∗
i−1, Fi, F

∗
i+1, . . . , F

∗
N ) ∈ F and nonnegative strategies ui = Fix, (Fi ≥ 0), i = 1, . . . , N .

Then, the deterministic feedback Nash equilibrium strategy is u∗i = F ∗i x(t) for the player i and
i = 1, . . . , N . Moreover, the state x(t) is a solution to the following equation:

x̄ =

A+

N∑
j=1

Bj F
∗
j

 x , x(0) = x0 ≥ 0 , x ∈ [0,∞) .

Considering Definition 2, it might be deduced that every player wants to maximize its utility
function Ji(F, x0).

The following result for the existence of a deterministic feedback Nash equilibrium for an N-player
linear quadratic differential game with feedback information structure described by a general system
(1) was also obtained in (van den Broek , 2001).
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Theorem 1.5: (Theorem 5.3.2 (van den Broek , 2001)) Assume that the matrices Qi and Rij

are symmetric and that −Rii is positive definite for i, j = 1, . . . , N . A deterministic feedback Nash
equilibrium exists if and only if there exist N real symmetric n × n solutions X∗i to the following
set of equations (i=1,. . . , N):

0 = Ri(X) := −AT Xi −XiA−Qi +Xi SiXi +
∑

j 6=i (Xi Sj Xj +Xj Sj Xi −Xj Sij Xj) , (3)

with the matrix A−
∑N

j=1 Sj X
∗
j is asymptotically stable. Moreover, the N-tuple of feedback matrices

(F ∗1 , . . . , F
∗
N ) with F ∗i = −R−1

ii B
T
i X

∗
i is a deterministic feedback Nash equilibrium and

Ji(F
∗
1 , . . . , F

∗
N , x0) = xT0 X

∗
i x0 , i = 1, . . . , N.

Here, the matrix coefficients Si and Sij are Si = BiR
−1
ii BT

i , i = 1, . . . , N ;Sij =

Bj R
−1
jj Rij R

−1
jj B

T
j , i, j = 1, . . . , N, i 6= j .

Based on conclusions derived in (Starr & Ho , 1969, Section 3) as well as on the definition for
a positive system we find that the equilibrium strategy is the u∗i = F ∗i x, with F ∗i = −R−1

ii BT
i Xi,

where Xi is nonnegative solution described in the above theorem. Since F ∗i has to be nonnegative,
i.e. R−1

ii has to be nonpositive, i.e. R−1
ii ≤ 0. Moreover, based on the assumptions (a) and (b) we

conclude that the matrix coefficient Si is nonpositive for i = 1, . . . , N and Sij is nonnegative for
i, j = 1, . . . , N, i 6= j . Our investigation is derived under the above properties of the matrices Si
and Sij.

In order to find a deterministic feedback Nash equilibrium point one has to solve the set of Riccati
equations (3). This system is equivalent to a system of Nn(n+ 1)/2 quadratic scalar equations in
Nn(n+1)/2 real scalar unknowns. Hence, there exist at most (Nn(n+1)/2)2 different solutions and
the stability condition needs to be verified for each of them (van den Broek , 2001). The Newton
method for the computation of a stabilizing solution to (3) in case N = 2 have been considered
by Azevedo-Perdicoulis and Jank in (Azevedo-Perdicoulis & Jank , 2005). Here, we extend their
approach to obtain the Newton method for in the general case N > 2.

In this paper we introduce two iterative methods for finding of the stabilizing solution to the set
of Riccati equations (3). We are going to prove the convergence properties of the proposed iterations
under new assumptions, which can be considered as sufficient conditions for the existence of the
stabilizing solution to (3). The Newton method (the first one) is described in terms of the solution
to a system of linear equations with high dimensional structure. The Lyapunov matrix equation has
to be solved at each iterative step of the second method. Numerical examples have been introduced
so as to demonstrate the effectiveness of the proposed algorithms.

In this paper we use the following notations: Rn×s stands for n× s real matrices. The inequality
X ≥ 0 (X > 0) means that all elements of the matrix (or vector) X are real nonnegative (positive)
and we call the matrix X nonnegative (positive). For the matrices A = (aij), B = (bij), we write
A ≥ B(A > B) if aij ≥ bij(aij > bij) hold for all indexes i and j. The notation X ≥ Y with
X = (X1, . . . , XN ) means that Xi ≥ Yi , i = 1, . . . , N . A matrix A is called asymptotically stable
(or Hurwitz) if the eigenvalues of A have a negative real part. A symmetric matrix A is called
positive definite (semidefinite) matrix if all eigenvalues are positive (nonnegative). The matrix Y

is a stabilizing solution to (3) if the matrix A−
∑N

j=1 Sj Yj is asymptotically stable.

We use the fact that the matrix equation AXB = C is equivalent to the linear system (BT ⊗
A) vec(X) = vec(C), where the sign ⊗ denotes the Kronecker matrix product and the vec operator
arranges the columns of a matrix into a column vector. A usual Gaussian elimination technique
for solving this system requires O(n6) operations.
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2. Iterative Methods

2.1. Preliminary Statements

We consider the matrix function Ri(X), i = 1, . . . , N defined as in (3).

Lemma 2.1: For the matrix function Ri(X), i = 1, . . . , N the following identities hold:

(i) Ri(X) = AX
T Xi −XiAX −Qi −Xi SiXi −

∑N
j 6=iXj Sij Xj , (4)

with AX = A−
∑

j Sj Xj, and

(ii) Ri(X) = Ri(Z,X) := −AZ
T Xi −XiAZ −Qi − Zi Si Zi + (Xi − Zi)Si(Xi − Zi)

+
∑

j 6=i [(Xj − Zj)Sj Xi +Xi Sj(Xj − Zj)]−
∑

j 6=iXj Sij Xj ,
(5)

where Zi = ZT
i , i = 1, . . . , N .

Proof. The statements of Lemma 2.1 are verified by direct manipulations.

We denote Ri(Z,X) the presentation of Ri(X) through a symmetric matrix Z.
In order to consider the Newton method for the set of Riccati equations Ri(X) = 0, i =

1, . . . , N , we need the Fréchet derivative of R(X) =

 R1(X1, . . . , XN )
...

RN (X1, . . . , XN )

. Following the results

of Kantorovich & Akilov (1964) we find the Fréchet derivative (i=1,. . . , N):

R′i,X(H) = −AX
T Hi −HiAX +

∑
j 6=i (Wij,XHj +Hj Wij,X

T ) , (6)

where Wij,X = XiSj −XjSij , i, j = 1, . . . , N .

2.2. The Newton Method

In this section, we derive a convergence result for the Newton method applied to a set of Riccati
equations Ri(X) = 0, i = 1, . . . , N .

The Newton method is given by the formula (Damm & Hinrichsen, 2001):

X(k+1) = X(k) −
(
R′X(k)

)−1
(R(X(k)) ) ,

and it can be written down

R′i,X(k)(X
(k+1)) = R′i,X(k)(X

(k))−Ri(X
(k)) , i = 1, . . . , N , (7)

which is equivalent to the following set of recursive equations (i = 1, . . . , N):

−A(k)TX
(k+1)
i −X(k+1)

i A(k) +
∑
j 6=i

[
W

(k)
ij X

(k+1)
j +X

(k+1)
j W

(k)
ij

T
]

= Q
(k)
i , (8)
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where

A(k) = A−
∑

j Sj X
(k)
j , W

(k)
ij = X

(k)
i Sj −X(k)

j Sij , i, j = 1, . . . , N ,

Q
(k)
i = Qi +X

(k)
i SiX

(k)
i +

∑
j 6=i

[X
(k)
i SjX

(k)
j +X

(k)
j SjX

(k)
i −X(k)

j SijX
(k)
j ] .

(9)

The set of matrix equations (8) is equivalent to the linear system:

L(k) vec(X
(k+1)
1 , . . . , X

(k+1)
N ) = vec(Q

(k)
1 , . . . , Q

(k)
N ) ,

where

L(k) =
(
L

(k)
ij

)N
i,j=1

=

 L
(k)
ii = −In ⊗A(k)T −A(k)T ⊗ In

L
(k)
ij = −In ⊗W (k)

ij

T
−W (k)

ij

T
⊗ In, i 6= j .

(10)

We use the notation N (k)
i (X(k+1)) for the left-hand side of (8). Thus, iteration (8) has the form

N (k)
i (X(k+1)) = Q

(k)
i .

Lemma 2.2: Let {X(s)}∞s=0 be a matrix sequence created by iteration (8). The following identities
hold (i = 1, . . . , N):

(i) Ri(X
(s)) = N (s)

i (X(s) −X(s+1)) , (11)

and

(ii) N (s)
i (X(s+1) − X̂) = −Ri(X̂)−

∑
j 6=i[(X̂j −X(s)

j )Sij (X̂j −X(s)
j )

+(X̂i −X(s)
i )Si(X̂i −X(s)

i ) +
∑

j 6=i[(X̂i −X(s)
i )Sj(X̂j −X(s)

j ) + (X̂j −X(s)
j )Sj(X̂i −X(s)

i )] .
(12)

Proof. We apply the iteration equation (8) with k = s : N (s)
i (X(s+1)) = Q

(s)
i and identity (5) with

Z = X = X(s) :

Ri(X
(s)) = −A(s)T X

(s)
i −X

(s)
i A(s) −Qi −X(s)

i SiX
(s)
i −

∑
j 6=iX

(s)
j Sij X

(s)
j ,

−A(s)T X
(s)
i −X

(s)
i A(s) = Ri(X

(s)) +Qi +X
(s)
i SiX

(s)
i +

∑
j 6=iX

(s)
j Sij X

(s)
j .

After some matrix manipulations we obtain:

N (s)
i (X

(s)
i −X

(s+1)
i ) = Ri(X

(s)) +
∑N

j 6=i [X
(s)
j Sij X

(s)
j +X

(s)
j SijX

(s)
j ] ,

−
∑

j 6=i(X
(s)
i SjX

(s)
j +X

(s)
j SjX

(s)
i ) +

∑
j 6=i

[
W

(s)
ij X

(s)
j +X

(s)
j W

(s)
ij

T
]
.

Using the notation for W
(s)
ij we transform the right-hand side of the above equation and equality

(11) yields.

Now, we will prove equality (12). Consider the difference N (s)
i (X(s+1)) − Ri(X

(s), X̂) and it is

6
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derived:

N (s)
i (X

(s+1)
i − X̂i) = −Ri(X̂) +

∑
j 6=i(X

(s)
i SjX

(s)
j +X

(s)
j SjX

(s)
i )

−
∑

j 6=i[X
(s)
j SijX

(s)
j + X̂j Sij X̂j ] +

∑
j 6=i (X̂j −X(s)

j )Sj X̂i + X̂i Sj(X̂j −X(s)
j ) ,

+(X̂i −X(s)
i )Si(X̂i −X(s)

i )−
∑

j 6=i

[
W

(s)
ij X̂j + X̂j W

(s)
ij

T
]
.

We transform the right-hand side and we obtain

N (s)
i (X

(s+1)
i − X̂i) = −Ri(X̂)−

∑
j 6=i(X̂j −X(s)

j )Sij (X̂j −X(s)
j )

+(X̂i −X(s)
i )Si(X̂i −X(s)

i ) +
∑

j 6=i[(X
(s)
i − X̂i)Sj(X

(s)
j − X̂j) + (X̂j −X(s)

j )Sj(X̂i −X(s)
i )] .

Equality (12) is proved.

According to previous investigations on the convergence of iterative methods (Damm & Hinrich-
sen, 2001; Freiling & Hochhaus , 2004; Ivanov , 2008) we prove the following theorem:

Theorem 2.3: Assume there exist symmetric nonnegative matrices X̂ and X(0) such that X(0) ≤
X̂, and Ri(X

(0)) ≤ 0 and Ri(X̂) ≥ 0, and L(0) is an M-matrix. Then, the matrix sequence
{X(k)}∞k=0 defined by (8) satisfies:

(i) X̂ ≥ X(k+1) ≥ X(k) and Ri(X
(k)) ≤ ... ≥ 0 for k = 0, 1, . . .;

(ii) The matrix L(k) is an M-matrix for k = 0, 1, . . .;
(iii) The matrix sequence {X(k)}∞k=0 converges to the nonpositive solution X̃ = (X̃1, . . . , X̃N )

to the set of Riccati equations (3) with X̃ ≤ X̂ and the matrix L̃ is an M-matrix.

(iv) In addition, if the matrix −(A −
∑N

j=1 Sj X̂j) is an M-matrix, then the matrix Ã =

−(A−
∑N

j=1 Sj X̃j) is also the M-matrix , i.e. the matrix Ã is asymptotically stable.

Proof. Let us choose a matrix X(0) such that L(0), given by (10), is an M-matrix and compute

X(1) via (8) for k = 0. We already have X̂ ≥ X(0). Applying (11) for s = 0 and i = 1, . . . , N we

find that N (0)
i (X(1) −X(0)) = −Ri(X

(0)). Since −Ri(X
(0)) ≥ 0, there exists a unique nonnegative

solution X
(1)
i −X

(0)
i , i = 1, . . . , N because

vec(X
(1)
1 −X(0)

1 , . . . , X
(1)
N −X

(0)
N ) = L(0)−1

vec (−R1(X(0)), . . . ,−RN (X(0))) .

Thus X(1) ≥ X(0).
Using the iteration (8) we construct the matrix sequence X(0),X(1), . . . ,X(r). We will prove by

induction the following statements for r = 0, . . .:
(A) Ri(X

(r)) ≤ 0 and the matrix L(r) is an M-matrix;
(B) X(r+1) ≥ X(r);

(C) X̂ ≥ X(r+1).

Assume that Ri(X
(k−1)) ≤ 0 and the matrix L(k−1) is an M-matrix and X̂ ≥ X(k) ≥ X(k−1). We

will prove the statements (A)-(B)-(C) for r = k.
First, we would prove Ri(X

(k)) ≤ 0 and L(k) is an M-matrix. Secondly, we would compute

X(k+1) as a unique solution of (8). Third, we would prove that X̂ ≥ X(k+1) ≥ X(k).
We will prove Ri(X

(k)) ≤ 0, i = 1, . . . , N . We perform Ri(X
(k)) = Ri(X

(k−1),X(k)) and accord-

7



January 22, 2016 International Journal of Systems Science H8*IJSS*2

ing to formula (8) for computing X
(k)
i we write down

−A(k−1)TX
(k)
i −X(k)

i A(k−1) = Q
(k−1)
i −

∑
j 6=i

[
W

(k−1)
ij X

(k)
j +X

(k)
j W

(k−1)
ij

T
]
.

After short calculations for Ri(X
(k)) we obtain:

Ri(X
(k)) = +(X

(k)
i −X(k−1)

i )Si(X
(k)
i −X(k−1)

i )−
∑

j 6=i(X
(k−1)
j −X(k)

j )Sij(X
(k−1)
j −X(k)

j )

+
∑

j 6=i[(X
(k−1)
i −X(k)

i )Sj(X
(k−1)
j −X(k)

j ) + (X
(k−1)
j −X(k)

j )Sj(X
(k−1)
i −X(k)

i )] .

Hence Ri(X
(k)) ≤ 0 , i = 1, . . . , N .

Next, we will prove that L(k) is an M-matrix. We apply the presentation Ri(X̂) = Ri(X
(k), X̂)

and Ri(X
(k)) through (4). Next, we consider the difference Ri(X

(k)) − Ri(X̂) and we obtain

N (k)
i (X(k) − X̂) = V

(k)
i , where (i = 1, . . . , N)

V
(k)
i = +Ri(X

(k))−Ri(X̂) + (X̂i −X(k)
i )Si(X̂i −X(k)

i )

−
∑N

j 6=i [(X̂j −X(k)
j )Sij (X̂j −X(k)

j )]

+
∑

j 6=i [(X̂j −X(k)
j )Sj (X̂i −X(k)

i ) + (X̂i −X(k)
i )Sj(X̂j −X(k)

j )] .

Since Ri(X̂) ≥ 0,Ri(X
(k)) ≤ 0 and Si ≤ 0, Sij ≥ 0, i 6= j and hence, together with X̂ ≥ X(k) ≥ 0

we infer V
(k)
i ≤ 0 , i, j = 1, . . . , N . By the relation

L(k) vec((X
(k)
1 − X̂1), . . . , (X

(k)
N − X̂N ) ) = vec (V

(k)
1 , . . . , V

(k)
N ) ,

we have that L(k) is an M-matrix by Lemma 1.1. Therefore, the matrix L(k), defined in (10), is an
M-matrix.

Thus, we can apply the recursive equation (8) to find the matrix X(k+1). We will prove X̂ ≥
X(k+1). We apply equality (12) with s = k. Then (i = 1, . . . , N)

N (k)
i (X(k+1) − X̂) = −Ri(X̂) + (X̂i −X(k)

i )Si(X̂i −X(k)
i )

+
∑

j 6=i

[
(X̂j −X(k)

j )Sj(X̂j −X(k)
j ) + (X̂j −X(k)

j )Sj(X̂i −X(k)
i )− (X̂j −X(k)

j )Sij (X̂j −X(k)
j )
]
.

Now let us analyze the last set of matrix equations. The matrix L(k) is an M-matrix. The right-

hand side of each equation is nonpositive. Thus X
(k+1)
i − X̂i ≤ 0 , i = 1, . . . , N and X̂ ≥ X(k+1).

For proving X(k+1) ≥ X(k) we consider (11) for s = k, which is N (k)
i (X(k) −X(k+1)) = Ri(X

(k))

for i = 1, . . . , N . Since Ri(X
(k)) is a nonpositive matrix and L(k) is an M-matrix we obtain

X
(k)
i − X

(k+1)
i ≤ 0, i = 1, . . . , N . Thus X(k+1) ≥ X(k). Hence, the induction process has been

completed.
Thus the matrix sequence {X(k)}∞k=0 is monotonically increasing and bounded above by X̂ (in

the elementwise ordering). We denote limk→∞X(k) = X̃. By taking the limits in (8) it follows that

X̃ is a solution of Ri(X) = 0, i = 1, . . . , N with the property X̃ ≤ X̂.

Further on, assume that the matrix A −
∑N

j=1 Sj X̂j is an M-matrix. Since Sj ≤ 0, X̂j ≥ X̃j ≥
0, j = 1, . . . , N , then −(A−

∑N
j=1 Sj X̂j) ≤ −(A−

∑N
j=1 Sj X̃j) = Ã . According to Lemma 1.2, it

follows that Ã is an M-matrix and therefore −Ã is asymptotically stable. The proof is complete.

8
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Corollary 2.4: Assume than Y and X̃ are nonnegative solutions to Ri(X) = 0, i = 1, . . . , N and
X̃ is the stabilizing solution. Then Y ≥ X̃.

Proof. The stabilizing solution X̃ is obtained via iteration (8). Assume Y ≤ X̃. There exists an

index q such that X(q) ≥ Y. Applying (12) with k = q and X̂ = Y. We obtain (i = 1, . . . , N)

N (q)
i (X(q+1) −Y) = −Ri(Y) + (Yi −X(q)

i )Si(Yi −X(q)
i )

+
∑

j 6=i

[
(Yj −X(q)

j )Sj(Yj −X(q)
j ) + (Yj −X(q)

j )Sj(Yi −X(q)
i )− (Yj −X(q)

j )Sij (Yj −X(q)
j )
]
.

The right-hand side of each equation is nonpositive (Ri(Y) = 0). The matrix L(q) is an M-matrix.

Thus X
(q+1)
i − Yi ≤ 0 , i = 1, . . . , N and therefore Y ≥ X(k+1), which is a contradiction.

Remark 1: Very often the initial point X(0) for the Newton iteration is chosen to be a zero
matrix. Thus the matrix L(0) is the diagonal matrix L0 = diag[−(In ⊗ AT ), . . . ,−(In ⊗ AT )], i.e.
it is necessary the matrix −A to be an M-matrix to start the Newton iteration.

2.3. The accelerated Newton method

In order to apply Newton iteration (8) we have to solve a high dimensional linear system on each
iteration step. To avoid the computational work for solving these linear systems we introduce a
new iterative scheme named the accelerated Newton method (AN). Consider the set of iteration

equations (8). We put X
(k+1)
2 = X

(k)
2 , . . . , X

(k+1)
N = X

(k)
N in the first equation (i = 1) of set (8). It

becomes a Lyapunov equation relating to X
(k+1)
1 :

−A(k)TX
(k+1)
1 −X(k+1)

1 A(k) = Q
(k)
1 −

∑
j>1

[
W

(k)
1j X

(k)
j +X

(k)
j W

(k)
1j

T
]
.

Let us assume that X
(k+1)
1 , . . . , X

(k+1)
s−1 are computed. In order to compute X

(k+1)
s , s = 2, . . . , N

we apply the following equation:

−A(k)TX
(k+1)
s −X(k+1)

s A(k)

= Q
(k)
s −

∑
j<s

[
W

(k)
sj X

(k+1)
j +X

(k+1)
j W

(k)
sj

T
]
−
∑

j>s

[
W

(k)
sj X

(k)
j +X

(k)
j W

(k)
sj

T
]
.

Thus, we obtain the accelerated Newton method:

−A(k)TX
(k+1)
i −X(k+1)

i A(k) = Q̃
(k)
i , i = 1, . . . , N , (13)

where

Q̃
(k)
i = Q

(k)
i −

∑
j<i

[
W

(k)
ij X

(k+1)
j +X

(k+1)
j W

(k)
ij

T
]
−
∑

j>i

[
W

(k)
ij X

(k)
j +X

(k)
j W

(k)
ij

T
]
. (14)

We will prove several properties of the sequences of Lyapunov algebraic equations (13), whose
solutions construct monotone increasing matrix sequences bounded by above with an upper bound.
The limits of these sequences complete a symmetric stabilizing solution to the set of Riccati equa-
tions (3). The convergence properties of iteration (13) are proved in the following theorem.

9
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Theorem 2.5: Assume there exist symmetric nonnegative matrices X̂ and X(0) such that X(0)) ≤
X̂, and Ri(X

(0)) ≤ 0 and Ri(X̂) ≥ 0, and A −
∑N

j=1 Sj X
(0)
j is asymptotically stable. Then, the

matrix sequence {X(k)}∞k=0 defined by (13) satisfies:

(i) X̂ ≥ X(k+1) ≥ X(k) and Ri(X
(k)) ≤ 0 for k = 0, 1, . . .;

(ii) The matrix A−
∑N

j=1 Sj X
(k)
j is asymptotically stable k = 0, 1, . . .;

(iii) The matrix sequence {X(k)}∞k=0 converges to the nonnegative solution X̃ = (X̃1, . . . , X̃N )

to the set of Riccati equations (3) with X̃ ≤ X̂ and the matrix A −
∑N

j=1 Sj X̃j is asymptotically
stable.

Proof. Consider iteration (13) for k = 0:−A(0)TX
(1)
i −X

(1)
i A(0) = Q̃

(0)
i . Moreover,

−A(0)TX
(0)
1 −X(0)

1 A(0) = R1(X(0)) +Q1 +X
(0)
1 S1X

(0)
1 +

∑N
j 6=1X

(0)
j S1j X

(0)
j .

We obtain that −A(0)T (X
(1)
1 −X(0)

1 )− (X
(1)
1 −X(0)

1 )A(0) = −R1(X(0)). Since R1(X(0)) ≤ 0 and

A(0) = A −
∑N

j=1 Sj X
(0)
j is asymptotically stable, then X

(1)
1 −X(0)

1 ≥ 0 or X
(1)
1 ≥ X

(0)
1 ≥ 0, i.e.

the matrices (X
(1)
1 −X

(0)
1 ) and X

(1)
1 are nonnegative. Assume that for the matrices X

(1)
1 , . . . , X

(1)
s−1

the inequalities (X
(1)
r − X(0)

r ) ≥ 0 and X
(1)
r ≥ 0 for r = 1, . . . , s − 1 are satisfied. We will prove

that the matrix X
(1)
s satisfies the inequalities (X

(1)
s −X(0)

s ) ≥ 0 and X
(1)
s ≥ 0.

Consider iteration (13) with k = 0 and i = s. Following representation (4) we have

−A(0)T (X
(1)
s −X(0)

s )− (X
(1)
s −X(0)

s )A(0)

= −Rs(X
(0)) +

∑
j<s

[X
(0)
i Sj(X

(0)
j −X

(1)
j ) + (X

(0)
j −X

(1)
j )SjX

(0)
s ]

+
∑

j<s

[
X

(0)
j Ssj (X

(1)
j −X

(0)
j ) + (X

(1)
j −X

(0)
j )SsjX

(0)
j

]
.

Since X
(1)
j − X(0)

j is nonnegative for j < s and Sj ≤ 0, we conclude that the right-hand side of

the above equation is a nonnegative matrix. Thus, the inequalities (X
(1)
s −X(0)

s ) ≥ 0 and X
(1)
s ≥ 0

hold. We deduce that X
(1)
i is nonnegative for i = 1, . . . , N and X(1) ≥ X(0) .

We construct the matrix sequence X(s) with iteration (13). We prove items (i) and (ii) by

induction. Assume that Ri(X
(k−1)) ≤ 0 , A −

∑N
j=1 Sj X

(k−1)
j is asymptotically stable and

X̂ ≥ X(k) ≥ X(k−1). We first prove that Ri(X
(k)) ≤ 0 and A −

∑N
j=1 Sj X

(k)
j is asymptotically

stable. Secondly, we will compute X(k+1) as a unique solution of (13). Third we will prove that

X̂ ≥ X(k+1) ≥ X(k).
We begin with the inequality Ri(X

(k)) ≤ 0, i = 1, . . . , N . We apply identity (5) with X = X(k)

and Z = X(k−1) for Ri(X
(k)) = Ri(X

(k−1),X(k)) and combine it with iteration (13) for the

computation of X
(k)
i .

10
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We execute some matrix manipulations and derive

Ri(X
(k)) = +(X

(k)
i −X(k−1)

i )Si(X
(k)
i −X(k−1)

i ) ,

+
∑
j<i

[(X
(k−1)
i −X(k)

i )Sj(X
(k−1)
j −X(k)

j ) + (X
(k−1)
j −X(k)

j )Sj(X
(k−1)
i −X(k)

i )]

−
∑
j<i

[
(X

(k)
j −X(k−1)

j )Sij (X
(k)
j −X(k−1)

j )
]

−
∑
j>i

[X
(k−1)
j Sij(X

(k)
j −X(k−1)

j ) + (X
(k)
j −X(k−1)

j )Sij X
(k)
j ]

−
∑
j>i

(X
(k−1)
j −X(k)

j )Sj X
(k)
i +X

(k)
i Sj(X

(k−1)
j −X(k)

j ) , i = 1, . . . , N .

Note that X(k) ≥ X(k−1) ≥ 0 and Si ≤ 0, Sij ≥ 0, j 6= i. Then X
(k−1)
j Sij(X

(k)
j −X

(k−1)
j ) ≥ 0 and

(X
(k)
j −X(k−1)

j )Sij X
(k)
j ≥ 0 for j = 1, . . . , N . Moreover, Ri(X

(k)) ≤ 0 , i = 1, . . . , N .

We will prove that A(k) = A−
N∑
j=1

Sj X
(k)
j is asymptotically stable. For this purpose we consider

M (k) = diag[−(In ⊗A(k)), . . . ,−(In ⊗A(k))].

From the difference Ri(X
(k))−Ri(X̂) we express (i = 1, . . . , N):

−A(k)T (X
(k)
i − X̂i)− (X

(k)
i − X̂i)A

(k) = T
(k)
i ,

where

T
(k)
i = Ri(X

(k)) + (X̂i −X(k)
i )Si(X̂i −X(k)

i ) + (X̂i −X(k)
i )Si(X̂i −X(k)

i )

−
N∑
j 6=i

[X̂j Sij (X̂j −X(k)
j ) + (X̂j −X(k)

j )Sij X
(k)
j ] +

∑
j 6=i

[(X̂j −X(k)
j )Sj X̂i + X̂i Sj(X̂j −X(k)

j )] .

The inequalities X̂j Sij (X̂j−X(k)
j ) ≥ 0, (X̂j−X(k)

j )Sij X
(k)
j ≥ 0 hold true because X̂ ≥ X(k) ≥ 0

and Sij ≥ 0 for i, j = 1, . . . , N, j 6= i. Analogously, we conclude that (X̂j − X(k)
j )Sj X̂i ≤ 0 and

X̂i Sj(X̂j−X(k)
j ) ≤ 0, j 6= i because Sj ≤ 0, j = 1, . . . , N . Thus T

(k)
i ≤ 0, i = 1, . . . , N and therefore

M (k) = diag[−(In ⊗A(k)), . . . ,−(In ⊗A(k))] is an M-matrix.

Now, we could compute the matrix X(k+1) via (13). We have to prove the inequalities X̂ ≥
X(k+1) ≥ X(k).

We begin with the proof of the inequality X(k+1) ≥ X(k). Combining iteration (13) for computing

X
(k+1)
i and identity Ri(X

(k)) = Ri(X
(k),X(k)) we deduce:

−A(k)T (X
(k)
i −X(k+1)

i )− (X
(k)
i −X(k+1)

i )A(k)

= Ri(X
(k))−

∑
j<i

[X
(k)
i Sj(X

(k)
j −X(k+1)

j ) + (X
(k)
j −X(k+1)

j )SjX
(k)
i ]

−
∑
j<i

[
X

(k)
j Sij (X

(k+1)
j −X(k)

j ) + (X
(k+1)
j −X(k)

j )Sij X
(k)
j

]
, i = 1, . . . , N .

11
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Assume i = 1. We have for (X
(k)
1 −X(k+1)

1 ) :

−A(k)T (X
(k)
1 −X(k+1)

1 )− (X
(k)
1 −X(k+1)

1 )A(k) = R1(X(k)) .

Thus, (X
(k)
1 −X(k+1)

1 ) ≤ 0. Assume i > 1 and (X
(k)
s −X(k+1)

s ) ≤ 0 for s = 1, . . . , i− 1. We have

−A(k)T (X
(k)
i −X(k+1)

i )− (X
(k)
i −X(k+1)

i )A(k)

= Ri(X
(k))−

∑
j<i

[X
(k)
i Sj(X

(k)
j −X(k+1)

j ) + (X
(k)
j −X(k+1)

j )SjX
(k)
i ]

−
∑
j<i

[
X

(k)
j Sij (X

(k+1)
j −X(k)

j ) + (X
(k+1)
j −X(k)

j )Sij X
(k)
j

]
, i = 1, . . . , N .

Under the assumption (X
(k)
j −X(k+1)

j ) ≤ 0 for j < i we find that the right-hand side of the above

identity is nonpositive. Thus, (X
(k)
i −X(k+1)

i ) ≤ 0. Hence, the inequality X(k+1) ≥ X(k) is proved.

Further on, we consider the difference
(
−A(k)T (X

(k+1)
i − X̂i)− (X

(k+1)
i − X̂i)A

(k)
)
.

We signify the term −A(k)T X̂i − X̂iA
(k) from the identity Ri(X̂) = Ri(X

(k), X̂). Combining
with iteration (13) we derive

−A(k)T (X
(k+1)
i − X̂i)− (X

(k+1)
i − X̂i)A

(k) = −Ri(X̂) + (X̂i −X(k)
i )Si(X̂i −X(k)

i )

+
∑
j<i

(X̂j −X(k)
j )Sj (X̂i −X(k)

i ) + (X̂i −X(k)
i )Sj(X̂j −X(k)

j ) ,

+
∑
j<i

[+X
(k)
i Sj(X̂j −X(k+1)

j ) + (X̂j −X(k+1)
j )SjX

(k)
i ]

+
∑
j>i

(X̂j −X(k)
j )Sj X̂i + X̂i Sj(X̂j −X(k)

j )− [X
(k)
j Sij(X̂j −X(k)

j ) + (X̂j −X(k)
j )Sij X̂j ] ,

−
∑
j<i

(X
(k)
j −X(k+1)

j )Sij (X
(k)
j −X(k+1)

j )

−
∑
j<i

[+X̂j Sij (X̂j −X(k+1)
j ) + (X̂j −X(k+1)

j )Sij X
(k+1)
j ] , i = 1, . . . , N .

We fix i = 1. Then

−A(k)T (X
(k+1)
1 − X̂1)− (X

(k+1)
i − X̂1)A(k)

= −R1(X̂) + (X̂1 −X(k)
1 )S1(X̂1 −X(1)

i ) +
∑
j>1

(X̂j −X(k)
j )Sj X̂1 + X̂1 Sj(X̂j −X(k)

j ) ,

−
∑
j>1

[X
(k)
j S1j(X̂j −X(k)

j ) + (X̂j −X(k)
j )S1j X̂j ] .

The right-hand side of the last equality is nonpositive, moreover X
(k+1)
1 − X̂1 ≤ 0. Assume that

X
(k+1)
j − X̂j ≤ 0 for j < i ≤ N . We would prove now the inequality X

(k+1)
i − X̂i ≤ 0. For the

right-hand side of the last identity we have

X
(k)
i Sj(X̂j −X(k+1)

j ) + (X̂j −X(k+1)
j )SjX

(k)
i ≤ 0, j < i ,

12
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because X̂j −X(k+1)
j ≥ 0 , X

(k)
i ≥ 0 and Sj ≤ 0. For the same reason we could conclude that

(X
(k)
j −X

(k+1)
j )Sij (X

(k)
j −X

(k+1)
j ) ≥ 0 , and X̂j Sij (X̂j−X(k+1)

j )+(X̂j−X(k+1)
j )Sij X

(k+1)
j ≥ 0 .

Thus −A(k)T (X
(k+1)
i − X̂i) − (X

(k+1)
i − X̂i)A

(k) ≤ 0 and moreover X
(k+1)
i − X̂i ≤ 0 for i =

1, . . . , N .
The induction process for the proof of (i) and (ii) is now complete.
The matrix sequence of nonnegative matrices {X(k)}∞k=0 converges to the nonnegative solution

˜̃X = ( ˜̃X1, . . . ,
˜̃XN ) to the set of Riccati equations (3). Moreover, the ”limit” matrix has the prop-

erties ˜̃X ≤ X̂ and the matrix −A+
∑N

j=1 Sj
˜̃Xj is an M-matrix. Thus the matrix A−

∑N
j=1 Sj

˜̃Xj

is asymptotically stable.
The proof is complete.

3. Numerical simulations

We carry out some numerical experiments for computing the stabilizing solution to the set of
generalized Riccati equations (3). The Newton method (8) and the accelerated Newton method
(13) are applied.

Example. We consider a three players game (N = 3) where the matrix coefficients: A,Bi, Qi

and Rij for i, j = 1, . . . , N are the following. We define them using the Matlab description.
A=abs(randn(n,n))/10; A=A-5*eye(n,n);
B1= zeros(n,1); B1(1,1)=5; B1(3,1)=2; B1(n,1)=4;
B2=full(abs(sprandn(n,4,0.8))/10);
B3=full(abs(sprandn(n,3,0.8))/10);,
Q1=4.5*eye(n,n); Q1(1,n)=3.5; Q1(n,1)=3.5;
Q2=3.75*eye(n,n); Q2(1,n)=4.5; Q2(n,1)=4.5;
Q3=2.85*eye(n,n); Q3(1,n)=1.5; Q3(n,1)=1.5;
R11 = -90; R21 = R31 = 200;
R22 = [-400 0 0 -10; 0 -100 0 0; 0 0 -200 0; -10 0 0 -400];
R33 = [-80 0 0; 0 -90 -5; 0 -5 -60]*10;
R12 = [40 0 0 0; 0 200 0 0; 0 0 500 0;0 0 0 30];
R13 = [120 0 0; 0 75 0; 0 0 140];
R23 = [220 0 0; 0 180 0; 0 0 190];
R32 = [100 0 0 0; 0 250 0 0; 0 0 240 0; 0 0 0 300];
We execute this example for different values of n and 100 runs for each values of n. We take

X
(0)
1 = X

(0)
2 = X

(0)
3 = 0 and thus Ri(X

(0)) = −Qi ≤ 0 (i.e. the matrix is nonpositive). In

addition, we take X̂1 = 1.25 e eT , X̂2 = X̂3 = 2.5 e eT , with eT = (1, 1, . . . , 1). For the above

choice the conditions of theorems 2.3 and 2.5 are fulfilled, i.e. X(0) ≤ X̂, Ri(X
(0)) ≤ 0 and

Ri(X̂) ≥ 0, i = 1, 2, 3 . The computed solution X̃ satisfies the inequality X̃ ≤ X̂.
We summarize the results from experiments for n = 10. The Newton iteration (8) needs 4 iteration

steps to find the stabilizing nonnegative and positive definite solution X̃N . The accelerated Newton
iteration (13) needs 6 iteration steps to find the stabilizing nonnegative and positive definite solution
X̃AC . The CPU time is 1.4s for executing the Newton iteration with 100 runs and 0.5s for executing
the accelerated Newton iteration with 100 runs.

We would comment the results from experiments for n = 15. The Newton iteration (8) needs 4
iteration steps to find the stabilizing nonnegative and positive definite solution X̃N . The accelerated
Newton iteration (13) needs 6 iteration steps to find the stabilizing nonnegative and positive definite
solution X̃AC . The CPU time is 11.4s for executing the Newton iteration with 100 runs and 1.2s

13
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for executing the accelerated Newton iteration with 100 runs.

4. Conclusion

We have studied two iterative processes for finding the stabilizing solution to a set of generalized
Riccati equations (3). The convergence properties of both methods have been derived and for-
mulated as sufficient conditions for the existence of a stabilizing solution to (3). The accelerated
Newton method is a new method, which uses the specific type of the Newton iteration. We have
made numerical experiments for the computation of this solution and we have compared the nu-
merical results. First of all, our numerical experiments confirm the effectiveness of the proposed
new iterative methods (8) and (13). Furthermore, the second method, based on the solution the
Lyapunov equations at each iteration step, is faster than the Newton method.
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