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Abstract  

This project is in support of the PhD project: ‘Removal of Inclusions from Liquid Aluminium 

using Electromagnetically Modified Filtration’. The purpose of the present project was to 

measure the tortuosity and permeability of ~50 mm thick 30, 40, 50 and 80 pores per inch (ppi) 

commercial alumina Ceramic Foam Filters (CFFs). Measurements have been taken of the cell 

(pore), the window and strut sizes, as well as the porosity, tortuosity and liquid permeability. 

Water velocities from ~0.015-0.77 m/s have been used to derive both the first order (Darcy) 

and the second order (Non-Darcy) terms for use with the Forchheimer equation. Experiments 

were made using 49 mm diameter ‘straight through’ and 101 mm diameter ‘expanding flow 

field’ designs. Experimental data are compared with simulation results made using COMSOL 

4.2a
®

 2D axial symmetric Finite Element Modelling (FEM). Permeability results are 

correlated using directly measurable parameters. Development of improved wall sealing (49 

mm) and elimination of wall effects (101 mm), has lead to a high level of agreement between 

experimental, analytical and FEM methods (±0-7% on predicted pressure drop) for both 

types of experiments. The liquid permeability experiments were also used to determine the 

variability of permeability between different filters of the same ppi, and permeability variation 

within the same CFF for changes position. Tortuosity has been determined by two inductive 

methods, one using cold solidified samples at 60 kHz and the other using liquid metal at 50 Hz, 

giving comparable results. 
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Chapter 1 

Introduction 

Ceramic Foam Filters (CFFs) have been used commercially in the foundry industry for more 

than four decades for the production of premium quality aluminium castings for use in such 

applications as in the aerospace industry.
[1 ]

 In recent years, CFFs have become more 

important in the physical purification of metals, for the ferrous and nonferrous industries. The 

nonferrous industry uses the largest amount of this filtering media, especially the aluminium 

casting industry. In 1992, Aubrey and Dore
[2]

 reported that eight million metric tons of 

aluminium was filtered using CFFs, and this means that about 50 percent of all the aluminium 

produced in the world in that year, was purified through this filtering media. 

High-temperature alloys also use CFFs. Sutton
[3]

 announced results on the filtration of 

super-alloys in 1985. In 1993, Garing and Cummings reported the successful filtration of 

carbon and alloy steels using CFFs.
[4]

 Porous ceramics are now widely applied as materials 

for filtration of fluid in high-temperature applications.
[5,6,7]

 

 

It is widely accepted that based on their structural properties, CFFs can remove exogenous 

and indigenous inclusions in the melts,
[8]

 and moreover, have low flow resistance and high 

filtration efficiency for particles over 10-20 microns.
[9]

 The structure of the CFF creates a 

unique, tortuous path for the fluid to flow, which captures inclusions and allows clean, 

smooth-flowing metal to exit into the mould cavity.
[10]

 CFFs are generally accepted as the best 

filters for casting. Their main advantages are: high filtration efficiency, turbulence reduction, 

refractoriness, and erosion resistance, for the most demanding casting applications.
[11]

 

 

Permeability is an important parameter for the characterization of CFFs, since it is required to 

predict the flow rate obtainable under a given pressure drop or to be able to predict the 

pressure drop necessary to achieve a specific flow rate. The relationship between these 

quantities can be expressed as a function of the fluid flow, and medium properties and is 

obtained by fitting the experimental data with permeability equations.
 [12,13]
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Chapter 2 

Theoretical Background 

2.1 CFF 

Cellular structures can be found in natural materials, such like wood, bone, coral, etc., 

significantly, nature has optimized certain mechanical properties, for example: stiffness, 

strength and mass, in an efficient manner.
[14]

 About 50 years ago, the development of 

synthetic materials manufacturing methods inspired investigation into the structure and 

properties of cellular materials.
[15,16]

 For ceramic foam, their good thermal resistance and high 

porosity characteristics led to use as filters in the purification of liquid metals, which are still 

the largest application today. Ceramic foam is also used for catalytic combustion, burner 

enhancers, soot filters for diesel engine exhausts, catalyst supports, and biomedical 

devices.
[17,18,19,20]

 

 

It is widely accepted that based on their structural properties, CFFs can remove exogenous 

and indigenous inclusions in the melts,
[21]

 and moreover, to have low flow resistance and high 

filtration efficiency.
[9]

 The Figure.1 shows a ceramic foam filter and bowl for use in the 

removal of solid inclusions from liquid metal. The filters are integrated into filter boxes and 

applied to the casting process directly in front of the casting unit. 

 

 

Figure.1 CFF and filter bowl.[22] 

 

The type of filtration occurring in a CFF can be divided into deep bed, cake or mixed 

filtration. The efficiency is dependent on the pores ppi (pores per inch) of the filter material, 

as shown in Figure.2
[23]

 and also on the size distribution of the particulates to be removed. The 
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ppi refers to the plastic material used to make the ceramic foam and is found from the average 

number of pore boundaries encountered per inch.
[24]

 More recently the CFFs are ‘graded’ into 

different ppi categories according to air permeability.
[25]

 In Figure.2, the line between each 

column of filtration efficiency ranges marks the mean efficiency. 

 

 

Figure.2 Relative performance of different inline filtration systems measured by the N15 LiMCA. 

 

The size ranges of typical commercial CFFs are 10 to 80 ppi (see Figure.3). 20-40 ppi are the 

most commonly used,
[26]

 for industrial cast houses to reach both the desired casting rate and 

achieve minimally acceptable filtration efficiency. The 10 to 20 ppi filters have poor particle 

retention, and are often used for filtration of entrapped bulk, surface borne oxides and other 

large particulates generated during melting, holding and transport. High pore density filters 

with 60-80 ppi are only useful for quality sensitive applications, such as surface critical 

extrusion and sheet products.
[27] 
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a)                             b) 

 

       c)                   d) 

Figure.3 Sivex® CFFs a) 30 ppi, b) 40 ppi, c) 50 ppi, d) 80 ppi. 

 

The structure of the CFF creates a unique, tortuous path for the fluid to flow, which captures 

inclusions and allows clean, smooth-flowing metal to exit into the mould cavity.
[27]

 The 

important filter parameters are effective porosity (i.e., the porosity that effectively contributes 

to the fluid flow), tortuosity, specific surface area and pore diameter.
[28]

 The filtration process 

is also dependent on:  the alloy type, grain refiner, casting rate, metal temperature, etc.
[29]

 

Grain refiner added before the filters has a particularly negative impact on filtration efficiency.  

CFFs are generally accepted as the ‘best’ filters for casting based on cost, ease of use and 

acceptable performance characteristics. Their main advantages are: high filtration efficiency, 

turbulence reduction, refractoriness, and erosion resistance, for the most demanding casting 

applications. Deep bed particle filters have generally better filtration performance, but are 

more difficult and costly to operate. 

 

The CFFs used for this research are commercial high alumina filters produced by SIVEX
®

. 

The chemical composition of the CFF is mainly alumina (the exact composition is proprietary 

commercial information), which was phosphate bonded, as indicated in Figure.4. Table I 

shows the detailed composition of the alumina CFFs produced by Jiangxi Jintai Special 

Material Co., Ltd, which are taken as indicative of the alumina CFF material used in this 

study.  It should be noted that the carbon in Figure.4 can be ignored, since it originates from 

the conductive carbon coating added to the sample before analysis. The porosity of the filter is 

around 85 to 90%. The ceramic particle density is 3.48±0.02 g/cm
3
, based on private 

communication with Norsk Hydro. 
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Figure.4 Electron Probe Micro Analysis(EPMA) of CFFs. 

 

Table I Chemical composition for Ceramic Foam Filters (CFF) made from alumina.
[30] 

 
* Others are assumed to be mainly Phosphate (P2O5) binders 

 

 

2.2 Permeability 

Permeability is an important parameter for the characterization of CFFs, since it is required to 

predict the flow rate obtainable under a given pressure drop or to be able to predict the 

pressure drop necessary to achieve a specific flow rate. The relationship between these 

quantities can be expressed as a function of the fluid flow, and medium properties and is 

obtained by fitting the experimental data with permeability equations.
 [31,32]

 

 

There are two main equations used in the literature to represent the permeability of CFFs, 

Darcy’s law and Forchheimer’s equation. 

 

Darcy’s law
[33]

 is shown as follows: 

 

 1k
q P




   (1) 
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Where q is the flux or discharge per unit area, with units of length per time, [m/s], k1 is the 

Darcian permeability constant [m
2
], μ is the fluid dynamic viscosity [Pa∙s] and P is the 

pressure gradient vector [Pa/m], P  is pressure drop [Pa]. 

 

The Darcy’s law only accurately describes the pressure flow relationship at low fluid 

velocities, and becomes increasingly inaccurate at high velocities (i.e. turbulent Reynolds 

numbers).
[34]

 At high velocity, Forchheimer’s equation has been reliably employed in the 

literature to predict the pressure flow relationship of ceramic filters in a broader velocity 

range.
[35]

 For an incompressible fluid and a rigid, homogeneous (i.e. isotropic) ceramic filter, 

Forchheimer’s equation can be represented as follows
[36]

:  

 

 2

1 2

s s

P
V V

L k k

 
   (2) 

 

Where P is pressure drop [Pa], L is the filter thickness [m], μ is the fluid dynamic viscosity 

[Pa∙s], ρ is the fluid density [kg/m
3
], the constants k1 and k2 are called the Darcian and 

non-Darcian permeability coefficients respectively and Vs is the superficial fluid velocity 

[m/s]. 

 

The term LP / is a ‘normalised’ pressure drop per unit length, i.e. the pressure gradient (see 

Equation (3)).  This assumes a pressure gradient in only one axis, which is essentially true 

for the ‘straight through’ design and not strictly true for the ‘expanding flow field design’, 

which experiences gradients in both the z and r-axes.   

 

 
P

P
L


   (3) 

 

The term 1/ kVs
 
represents the contribution to flow resistance due to friction between fluid 

layers and the pore walls (i.e. the viscous loss term). The term
2/ kVs
 
represents the 

contributions of inertia and turbulence.
[32, 37] 

 

One publication
[34]

 reported that computation of k1 and k2 using Forchheimer’s equation 

generally worsens when less data are included in the velocity curve, particularly at low flow 

velocities. The Darcian permeability constant k1 then varies more than the non-Darcian 

permeability constant k2. This is likely due to the effect of the high pressure gradients at 

higher velocities dominating the output of the regression techniques implemented by the 

previous investigators. 

 

In 1952, Ergun
[38]

 proposed expressions to describe k1 and k2 as follows: 
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3 2

1 2150(1 )

pd
k







 (4)     

 

3

2
1.75(1 )

pd
k







 (5)  

 

Where is the fractional porosity [unitless], and dp is the mean particle diameter of the foam 

filter [m]. 

 

Forchheimer’s equation can be modified using the terms of Ergun: 

 

 
2

2

3 2 3

(1 ) (1 )
150 1.75s s

p p

P
V V

L d d

   

 

  
   (6) 

 

Although dp is not ambiguous as a parameter, Ergun’s equation was derived for packed beds 

of solids and there is no precise way to assign a value to this variable for a porous filter media. 

The major challenge to the application of these equations to a porous media is therefore to 

define an equivalent mean particle diameter. It is possible to apply the Ergun formula using 

alternately: the cell (dc), window (dw) or strut (ds) diameters. These diameters are indicated in 

Figure.5. Several attempts have been presented in the literature trying to replace the particle 

size and possibly the most obvious trial is the use of the pore or cell diameter (dc)
[9,39,40,41]

, 

which is usually determined by examining enlarged photographs of cross-sections of foam 

samples. 

 

Several investigators
[41]

 have indicated that the use of Ergun’s equation yields errors in the 

prediction of permeability of ceramic foams as high as 50%, while the introduction of window 

size obtained by image analysis into the same equations, seems to give more reasonable 

results to assess the permeability of ceramic filters. 
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Figure.5 Definition of CFF: cell, window and strut diameters.
[42]

 

 

Ergun defined the ‘equivalent’ particle diameter of a non-spherical solid (dp) as the diameter 

of the sphere having the same ‘outer’ specific surface area per unit solid volume (Sv) of the 

actual material in question (internal porosity, and small projections or cavities were 

ignored)
[38]

: 

 

 
6

p

v

d
S

  (7) 

 

In Equation (7) the nomenclature of Ergun is maintained. There is some confusion in recent 

literature, where Sv is used to represent the surface area of solid per unit bed volume (i.e. SB). 

Equation (6) can be rewritten using Equation (7) as: 

 

 
2 2

2

3 3

(1 ) (1 )
4.17 0.292v v

s s

p

S SP
V V

L d

   

 

 
   (8) 

 

Richardson
[24]

 explored the relationship between Sv and dw for porous ceramics and suggested 

applying the hydraulic diameter (dh) concept. They equated the hydraulic diameter to the 

measured window diameter: 

 

 4w h

wetted area
d d

wetted perimeter


 


 (9) 

 

Assuming all the pores have the same hydrodynamic diameter, a simple geometric analysis 

yields: 
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4

(1 )
v

w

S
d







 (10) 

 

Substituting Equation (10) into Equation (8) yields: 

 

 
2

2 2
66.7 1.17s s

w w

V VP

L d d

 

 


   (11) 

 

Recently Dietrich
[43,44]

 proposed the following equation after correlating 2500 separate 

experimental values from 20 authors: 

 

 
2

2 2
110 1.45s s

h h

V VP

L d d

 

 


   (12) 

 

The Equation (11) and (12) are obviously similar. If one assumes that the hydraulic diameter 

in Equation (12) is equal to the window diameter, as both empirical constants in Equation (12) 

are larger than those in Equation (11), it will yield higher estimated pressure drops for any 

velocity. Equation (12) has recently been independently shown to give excellent results using 

the optically determined hydraulic diameter, i.e. the equivalent circular window diameter, 

(dw).
[45]

 

 

Other published correlations are all present in Table II 

 

Table II Pervious published correlations.
[46]

 

 
 

Reference Pressure drop on foams correlation proposed

J.T. Richardsom et al.
; ; ;

;

J.F. Liu et al.
;

Dp=equivalent spherical diameter

E.A. Moreira et al.

T.J. Lu et al.
;

L. Tadrist et al.
;

M.D.M Innocentini et al.
;

M. Lacroix et al.
;

2 2
2

3 3

(1 ) (1 )v v
s s

S SP
V V

L

     

 

 
 

0.5

0.5

12.979[1 0.971(1 ) ]

(1 )
v

w

S
d





 




2

3 2 3

22(1 ) 0.22(1 )
s s

p p

P
V V

L D D

   

 

  
 

1
1.5p wD d








2
9 4 2

3 0.05 3 0.25

(1 ) (1 )
1.275 10 1.89 10s s

w w

P
V V

L d d

   

  

  
   

0.15

0.43 1.13( / )

0.008( / )
[0.044 ]Re

( / 1) s c

c s

d d

c s

d d
P

d d




  



( /1 / )
Re s s s cd V d d






2
2

3 2 3

(1 ) (1 )
s s

s s

P
V V

L d d

 
   

 

  
  100 865,0.65 2.6    

2
2

3 2 3

(1 ) (1 )
150 1.75s s

p p

P
V V

L d d

   

 

  
 

1
1.5p cd d








2
2

3 2 3

(1 ) (1 )
150 1.75s s

p p

P
V V

L d d

   

 

  
  1.5p sd d

2

2
110 1.45s s

h h

P
V V

L d d

 

 


  4h

v

d
S




0.251
2.87 (1 )v

s w

S
d d

 


2 0.743 0.09829.73 10 (1 )wd     2 0.7523 0.071583.68 10 (1 )wd   
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2.3 Fluid Mechanics 

2.3.1 Viscosity 

Viscosity is that property of a fluid by virtue of which it offers resistance to shear.
[47]

 

Newton’s law (Equation (13)) gives the relationship between shear stress and viscosity.  

 

 
du

dy
   (13)      

 

Where τ is the shear stress [Pa], µ is viscosity [Pa·s], and du/dy is the velocity gradient [s
-1

]. 

 

For a given velocity gradient, the shear stress is directly proportional to the viscosity. In 

everyday terms (and for fluids only), viscosity can be considered ‘thickness’ or ‘internal 

friction’. Thus, water is ‘thin’, having a lower viscosity, while honey is ‘thick’, having a 

higher viscosity. Put simply, the less viscous the fluid is, the greater its ease of movement 

(fluidity).
[48]

 

 

The viscosity of a liquid decreases with temperature, but the viscosity of a gas increases with 

temperature. This can be explained by examining the causes of viscosity. The fluid’s 

resistance to shear depends on fluid’s rate of transfer of molecular momentum and its 

cohesion. Liquid has cohesive forces much larger than a gas, since liquid molecules are much 

more closely spaced than in a gas. Therefore, cohesion will be the predominant cause of 

viscosity in a liquid, so viscosity will decreases with temperature like cohesion, and also be 

independent of pressure (except at very high pressure).
[49] 

 

Viscosity coefficients can be defined in two ways: dynamic and kinematic viscosity. Dynamic 

viscosity µ, is also called the absolute viscosity, and the typical unit is Pa·s. Kinematic 

viscosity v, is the ratio of viscosity to mass density
[47]

, and the typical unit is [m
2
/s]: 

 

 v



  (14) 

  

2.3.2 Reynolds Number 

In fluid mechanics, the Reynolds number (Re) is a dimensionless number that gives a measure 

of the ratio of inertial forces to viscous forces and consequently quantifies the relative 

importance of these two types of forces for given flow conditions.
[50] 

The concept was 
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introduced by George Gabriel Stokes in 1851
[51]

, but the Reynolds number is named after 

Osborne Reynolds, who popularized its use in 1883.
[52]

 

 

Since the Reynolds number expresses the ratio of inertial forces to viscous forces, so: 

 

 Re
InertiaForce

ViscousForce
  (15) 

 

 
2

2

Re

dV
V

dx

d V

dx





  (16) 

 

 Re
VL VL

v




   (17) 

 

Where Re is Reynolds number, V is the mean velocity of the fluid relative to an object like a 

pipe, a particle or a pore [m/s], L is a characteristic linear dimension, (e.g. pipe, particle or 

pore diameter) [m], µ is the dynamic viscosity of the fluid [Pa·s or N·s/m² or kg/(m·s)], v is 

the kinematic viscosity [m²/s] (see Equation (14)), and ρ is the density of the fluid [kg/m³]. 

 

For flow in a pipe or tube, the Reynolds number is generally defined as
[53]

: 

 

 Re h h hVd Vd Qd

v vA




    (18) 

 

 

Where dh is the hydraulic diameter of the pipe [m], Q is the volumetric flow rate [m
3
/s], and A 

is the pipe cross-sectional area [m²]. 

Reynolds numbers are used frequently to characterize different flow regimes, such as laminar 

or turbulent flow. Figure.6 shows the area of different flow regimes. At low Reynolds numbers, 

Re<2300, it is laminar flow, viscous forces are dominant, and characters are smooth and 

constant fluid motion. Turbulent flow occurs at high Reynolds numbers, e.g. Re>4000, 

inertial forces are dominant, tend to produce chaotic eddies, vortices and other flow 

instabilities.
[47,54]

 When 2300 < Re < 4000, the flow is called "transitional". Transitional flow 

is a mixture of laminar and turbulent flow, with turbulence in the centre of the pipe, and 

laminar flow near the edges. Each of these flows behaves in different manners in terms of 

their frictional energy loss while flowing, and have different equations that predict their 

behaviour.
[55]

 Figure.7 shows the diagrammatic sketch of laminar and turbulent flow. 
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Figure.6 Moody diagram.
[56] 

 

 

Figure.7—Diagrammatic sketch of laminar flow and turbulent flow.
[57] 

2.3.3 Entrance Length 

A fluid requires some length to develop the velocity profile after entering the pipe or after 

passing through components such as: bends, valves, pumps, turbines or similar.
[58]

 At a finite 

distance from the entrance, the boundary layers merge and the in-viscid core disappears. The 

tube flow is then entirely viscous, and the axial velocity adjusts slightly further until at x=le 

(i.e. the length to fully develop the velocity profile), it no longer changes with x (typically 99% 

approach is assumed), and the velocity profile is fully developed and constant, the wall shear 

is constant, and the pressure drops linearly with x, for either laminar or turbulent flow.
[59]
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These details are shown in Figure.8.
 

 

 

Figure.8—Diagrammatic sketch of developing velocity profiles and pressure changes in the entrance of 

a duct flow.
 [53] 

 

The entrance length can be expressed with the dimensionless entrance lengths number 

expressed as
[58]

: 

 /eEL l d  (19) 

Where EL is entrance length number, le is the length to fully develop the velocity profile [m] 

and d is the pipe diameter [m]. 

 

Dimensional analysis shows that the Reynolds number is the only parameter affecting 

entrance length
[59]

.  
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 ( , , , )el f d V    (20) 

 ( )el vd
g

d




  (21) 

 

Substitution of Equation (17) in Equation (21) finally gives, 

 

 (Re)el g
d
  (22) 

 

The entrance length number correlation with the Reynolds number for laminar flow is
[60]

: 

 

 0 03laminar pipeEL . Re  (23) 

 

For turbulent flow one commonly accepted correlation is
[61]

: 

 

 1/41.3590ReturbulentEL   (24) 

 

2.4 Tortuosity 

The tortuosity is typically described as the ratio between the real length of the fluid’s path and 

the actual geometrical length of the sample,
[62]

 as shown in Figure.9. 
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Figure.9 Determination of tortuosity: fluid path and geometrical length.
[63] 

 

Figure.10 illustrates porous structures with different flow tortuosities: if both structures have 

the same volumetric flow rate and porosity, then the residence time of fluid is also identical in 

both cases. Since the residence time is same and the flow through the ‘left’ structure passes a 

significantly longer path, so the structure on the left side has a higher velocity compare to the 

structure on the right side and all else being equal will exhibit a higher pressure gradient for 

the same bulk flow.
[63]

 Depending mainly on the pores geometry and not on the contribution 

of diffusion mechanisms, tortuosity of a low porosity matrix tends to be high and vice versa. 

The porous solids with high connectivity, should have low tortuosities and vice versa.
[64]
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Figure.10 Porous structures with different flow toruosities.
[63] 

 

Scheidegger
[ 65 ]

 suggested that the tortuosity in sponge structures can be obtained by 

measuring the electrical resistivity of the structure completely saturated with a conductive 

solution. 

 

Thus tortuosity can be determined by electromagnetic induction experiments using alloys of 

known electrical conductivity (σ). The actual resistance of a filter element filled with metal, 

as shown in Figure.11 can be compared to the known resistance of an equivalent path length of 

metal either liquid or solid and the tortuosity determined. The conductivity is related to the 

path length, are and resistance by
[66]

: 

 

 
m

m

l

aR
   (25) 

 

Where σm is the conductivity of the metal [Ω
-1

m
-1

] at the measurement temperature, l is the 

length of the conducting path [m], a is the area of the conducting path [m
2
]. 
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Figure.11 Representative SEM micrograph’s showing a full 50 mm thickness vertical profile through of 

a well primed 50 ppi commercial alumina ceramic foam filter.  

 

Inside of the filter, the available conducting area is reduced by the presence of non-conducting 

obstructions (e.g. trapped gas or solid and filter media), and the conducting path length is 

increased due to the tortuosity. Assuming that the filter media is the only significant 

obstruction, the reduced apparent electrical conductivity can be estimated as follows
[66]

: 

 

 m
f

 



  (26) 

 

Where σf is the apparent electrical conductivity of the metal impregnated filter, the unit is 

[Ω
-1

m
-1

]. 

 

Rearranging Equation (26): 

 

 m

f


 


  (27) 
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An average temperature was used to estimate the liquid metal conductivity within the filter 

elements, starting with literature conductivity data for ultra pure metal, and correcting for the 

actual measured room temperature conductivity of the clean metal after experimentation:
[67] 

 

 
293

824.77 10  (1 0.000571 [ -933.2]) 65

K

m
m

m

IACS

T






 (28) 

 

Where IACS means ‘International Annealed Copper Standard’, IACSm
293K

 is the average room 

temperature conductivity of the solidified metal used during the experiment [% IACS] and Tm 

is the temperature of the liquid alloy under experimental conditions [K]. 
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Chapter 3 

Experimental Apparatus and Procedure 

3.1 Optical Microscopy 

3.1.1 Optical Microscopy - Theory 

Initial investigations were carried out using optical microscopy, but the large magnification 

and small sample size made it necessary to switch to using an optical scanner. The optical 

microscope, also called the "light microscope", uses visible light and a set of lenses to enlarge 

the images of small samples. Optical microscopy is based on the principle of the compound 

microscope, which dates back to the 17
th

 century. The basic optical microscope is very simple.  

Modern designs can greatly improve its properties, such like resolution and sample contrast. 

Optical microscopy uses visible light, and samples are directly observed visually by the user. 

These advantages make it easy to use and popular. 

Modern developments allow observation of a sample via a computer by equipping the 

microscope with a digital camera. The microscope can also be controlled partly by computer. 

The images captured by the digital camera allow greater analysis, such as measurements of 

distances and areas. The Figure.12 shows modern digital microscope. 

 

Figure.12 Modern digital microscope-LEICA MEF4M. 
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3.1.2 Optical Microscopy - Experimental Procedure 

The ceramic foam filters are brittle and fragile, so the grains of foam filter are easily broken 

off. Sample specimens obtained from the filters are therefore irregularly shaped, as well as 

porous. So it is necessary to mount the samples before analysis. 

Firstly the filters are sectioned by cutting several small pieces from the surface to produce the 

samples. Samples are then mounted, using Epofix, which is a cold-resin based on two fluid 

epoxy components, a resin (bisphenol-a-diglycidylether) and a hardener (triethylenetetramine). 

Because of Epofix’s low viscosity, it will penetrate into all the pores of the samples.  

Afterwards it is necessary to sand the surface of the specimens using progressively finer SiC 

sandpapers such as #’s: 320, 400 and 600.   

After preparation, the samples can be observed using the optical microscope. 

3.2. Optical Scanning 

The new procedure of diameter measurements used in this study: scanned filters by Epson 

Perfection V330 scanner (as shown in Figure. 13), and then measured the diameters manually 

with the help of Imagic ImageAcess easyLab 7 analysis software. The pictures’ resolution is 

1200 dpi (dots per inch) for 30 ppi, 40 ppi and 50 ppi CFFs, since 80 ppi CFF has much 

smaller cell, window and strut size, a higher resolution 2400 dpi was used. The pictures got by 

scanner are shown in Figure.3. 

 

 

Figure. 13 Epson Perfection V330 scanner.
[68] 

 

There is no sample preparation for this method, as the CFF can be placed directly onto the 

scanner. So this new procedure was both easier and faster to use. Compared with optical 

microscopy, more measurements could be taken in the same amount of time, and a higher 

level of statistical significance achieved for the obtained averages. 
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3.3. Energy-Dispersive X-ray Spectroscopy 

3.3.1 Energy-Dispersive X-ray Spectroscopy- Theory 

Energy-dispersive X-ray spectroscopy is often abbreviated as EDS. It is an analytical 

technique used for elemental analysis. The working principle is that every element has a 

unique atomic structure allowing X-rays that are characteristic of an element’s atomic 

structure to be identified uniquely from one another. An EDS system is commonly found on 

most Scanning Electron Microscopes (SEM). The operating principle of the SEM is that it 

scans a sample with a high-energy beam of electrons in a raster scan pattern, and the electrons 

will interact with the atoms that causing the sample to produce signals containing information 

about surface topography, composition and electrical conductivity.
[69]

 

 

The elemental analysis obtained from the EDS is not very accurate. There are many factors 

affecting the accuracy of EDS. Light elements such as: H, He and Li can not be detected by 

X-ray spectroscopy, because they do not have enough electrons to produce characteristic 

X-rays. Many elements produce similar or identical signal peaks, for example Ti and V, Mn 

and Fe, making them difficult to distinguish. 

3.3.2 Energy-Dispersive X-ray Spectroscopy - Sample Preparation 

The samples must be cut to the correct size to fit in the specimen chamber and must be 

mounted on specimen stub. Samples also need to be electrically conductive, or at least 

electrically conductive on the surface. Non-conductive specimens tend to charge when 

scanned by the electron beam, especially in secondary electron imaging mode, which will 

causes scanning faults.
[69]

 The CFF samples are embedded in Epofix, such that they are 

non-conductive.  It is therefore necessary to coat them with an ultra-thin electrically 

conducting material. There are a lot of conductive materials that can be deposited on the 

samples by low-vacuum sputter coating, such as: gold, gold/palladium alloy, platinum, 

osmium, iridium, tungsten, chromium or graphite.
 [25]

 The author used graphite as the coating 

material. After the described procedure, the specimens can be used for EDS microanalysis. 

3.4 Pressure Drop Experiments 

The liquid permeability of 50 mm thick commercial foam filters with: 30, 40, 50 and 80 ppi, 

were measured using water as the working fluid, in a temperature range from 5-8 
o
C, typical 

density is 999.9 kg/m
3
, viscosity is 1.3775×10

-3
 Pa·S. Mass flow rates from about 0.05 to 2 

kg/s were used. Eight to ten different velocities were used to measure pressure drop for each 

filter.  
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Water is a very good analogue for liquid aluminium as it has a very similar dynamic viscosity 

to both aluminium and aluminium alloy A356 at normal casting temperatures (e.g. 

700-720
o
C). A356 is a common foundry alloy and was the base alloy for the PhD. thesis to 

which this work relates. The common composition of A356 is 0.015 wt% Cu, 7.2 wt% Si, 

0.38 wt% Mg, 0.120 wt% Fe, 0.032 wt% Ti and 0.0029 wt% B.
[70]

 The dynamic viscosity of 

these three materials are presented in Table III. 

 

Table III Dynamic viscosity of water, pure aluminium and A356 alloy.
[71, 72, 73] 

 

    

The experimental set-up shown in Figure.14 was designed by Mark W. Kennedy and the filter 

housing was constructed by Egil Torsetnes. Figure.15 shows the close up of the filter housing. 

The pressure transducer was an AEP DF-2, 0-1 Bar measuring range, 4-20 mA output. The 

pressure was shown by means of electric current, and the transducer was factory calibrated 

and certified to an error of ±0.04% of reading, over the full scale from 0-1 Bar, using a 6 point 

calibration, represented the greatest uncertainty in the experimental and defining the 

experimental uncertainty limits. The transducer was powered using a MANSON, 0-30 V, 2.5 

A, DC power supply. The electric current measurements were taken using a FLUKE 26 III, 

True RMS Multimeter. During the experiments the current produced by the transducer at zero 

liquid flow velocity was determined manually using a FLUKE 26 III, True RMS Multimeter 

(Fluke, USA) to a precision of 0.001 mA (6.25 Pa), using the lowest available current scale. 

Current during the flow measuring periods were computer data logged at 100 mS intervals by 

conversion to a 0-5 V signal, with a resolution of 0.001 V or 0.004 mA (i.e. 25 Pa resolution). 

At higher than 4 mA, no bias could be detected between the manual and automated current 

readings, at the available 0.01 mA resolution (the FLUKE switched to a lower resolution at 

greater than 4.099 mA). 

 

The pressure was produced using a Jula 1000 W submersible pump and with a maximum 

pressure of 0.8 Bar. Fluid velocity was controlled by the use of a ball valve. Flow rate was 

computed by the ratio of weight gain in a 100 L tank vs. time, with the help of a computerized 

data logger (DATASCAN 7220, Analogue Input Measurement Processor), which scanned the 

scale weight at 100 ms intervals.  The scale used had a 4-20 mA output over a range of 0-100 

kg, with a resolution of 10 g. The data logging software used was DAS-16, version 1.0. 

 

Water Pure Aluminium A356

Temperature (
o
C) 7 710 710

Dynamic Viscosity (Pa·S) 1.38E-03 1.25E-03 1.03E-03

Density (kg/m
3) 1000 2386 2340

Kinematic Viscosity (m
2/s) 1.38E-06 5.25E-07 4.41E-07
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Figure.14 Photograph of experimental set-up constructed using DN 50 mm x 1.8 mm plastic pipe. 

 

 

Figure.15 Close up of filter housing. 

 

The water temperature was determined using 1 mm diameter Type K, Inconel sheathed 

thermocouples and a FLUKE 51 II thermocouple reader. Thermocouple readings were also 

data logged. 

 

These experiments were a continuation of the project “Liquid Permeability of Ceramic Foam 

Filters”, completed as part of course number “TMT 5500”. The initial procedure which was 

used previously was to directly put the large diameter 101 mm CFFs into the filter housing 

without any measures to avoid liquid bypassing at the outer periphery (gaskets were used on 
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top and bottom). The experiment procedures were sequentially improved during the current 

set of experiments on two occasions. The modified procedure (Method 1), used silicon grease 

evenly daubed onto the side surface of the CFFs. The final procedure (Method 2), used paper 

(cellulose) placed onto the side surface of CFF, which had silicon grease on it. Figure.16 

shows these different procedures. Swelling of the cellulose fibres on contact with water 

provided a negligibly permeable seal along the whole length of the side of the filter media. 

 

   

  

Figure.16 a) 49 mm(diameter) CFF sample. b) 49 mm CFF, Method 1. c) 49 mm CFF, Method 2. 

 d) 49 mm CFF in the filter housing, using Method 2. e) 101 mm CFF in the filter housing, 

using Method 2. 

 

There are two different designs of filter housings, one is for the experiment of filters with 

~101 mm diameter, and the details are shown in Figure.17. A smaller filter housing was 

designed for testing the ~49mm diameter filters, as shown in Figure.18.  

 

a) b) c) 

d) e) 

http://www.jukuu.com/show-onto-0.html
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Figure.17 Filter housing for ~101 mm diameter CFFs. 

 

 

Figure.18 Filter housing for ~49mm diameter CFFs. 
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3.5 Tortuosity Experiments 

As previously mentioned, the tortuosity of the CFFs was obtained by measuring the electrical 

resistivity when CFFs completely filled with a conductive medium. Aluminium was used in 

the experimental program. 

 

The CFF was contained for the experiment in a type of filter bowl built using two Bimex
®

 

400 fibre tubes, each 150 mm high and with an internal diameter about 100 mm (4”). The CFF 

was mounted in the top of the lower refractory tube with Fibrefrax cement. Fibrefrax 

mouldable cement was also used to glue the two fibre tubes together. The dimensions of the 

filters have been standardized to 50 mm thick and were sanded to 100 mm diameter (see 

Figure.19
[22]

). 

 

 
Figure.19 30 ppi Sivex

®
 CFFs (left side) and Bimex® 400 insulated crucibles (right side). 

Three filters with same ppi and 50 mm thickness were stacked on top of each other in the tube. 

The last mounting step was to place the 300 mm tube on a dense alumina fibre plate, as shown 

in Figure.20. The mounted crucibles were than dried for 12 hours at 60
o
C in a ventilated oven. 
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Figure.20 Mounted crucible. 

 

The effective electrical conductivities of the filters were also determined from the same liquid 

metal electromagnetic induction experiments, using procedures described in detail 

elsewhere.
[74,75,76]

 A schematic of the apparatus used is shown in Figure 21 a) and a photograph 

is shown in Figure 21 b). The power induced in a tight stack of three 50 mm thick, and ~100 

mm diameter filters of 30, 40, 50 or 80 ppi was determined electrically at a known 

temperature (and therefore metal electrical conductivity), while filled with ‘commercially 

pure’ aluminium alloys with initial electrical conductivity from 61-62% IACS. Temperatures 

were logged every 100 ms by type K thermocouples located under and over the 150 mm stack 

of filters.   

 

 

Figure.21 Schematic of the filter tortuosity apparatus (a) and photograph (b), showing a 2 layer, 31 turn 

(total) induction coil, operated at 371-734 A, using line frequency 50 Hz AC power. 
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Chapter 4 

Results and Discussion 

4.1 CFF Porosities 

There are two types of porosity in CFFs: effective porosity, also called open porosity, it refers 

to the fraction of the total volume in which fluid flow is effectively taking place; ineffective 

porosity, also called closed porosity, that refers to the fraction of the total volume in which 

fluids or gases are present but in which fluid flow cannot effectively take place and includes 

the closed pores.
[77]

 

 

It should be noted that the total and open porosity are of very similar magnitude in this study, 

as shown in Figure.11, areas of ‘closed’ porosity can be seen in black, some of which are 

highlighted by dotted circles as examples, visual inspection confirms nearly all macroscopic 

porosity is filled with metal. Previous literature
[78,79]

 have described the morphological 

characterization of CFFs in detail, by using mercury at up to 4000 Bar and found that the 

difference between the total and the open porosity is <5% of the measured valued, even when 

metal is forced at very higher pressure into the microscope pores between individual ceramic 

particles. The convention of Dietrich has therefore been followed in this work, i.e. the 

equality between total and open porosity. 

 

The total porosity was computed through Equation (29): 

 

( )TheoreticalWeight ActualWeight
Porosity

TheoreticalWeight


  (29) 

 

The composition of the CFFs was measured by EDS, and it was found that it is mainly 

alumina, as indicated in Figure.4. The maximum theoretical density of alumina, e.g. corundum 

is 3.9-4.0 g/cm
3
 could be used to compute the weight of a given volume of CFF and hence a 

total porosity estimated. A more precise value of 3.48 (average of 3 readings) ±0.02 g/cm
3
 

determined by helium pycnometery, for the exact type of ceramic used by Sivex in the 

construction of their CFF filters, was actually used in the present study, based on private 

communication with Norsk Hydro. 

   

For the 30, 50 and 80 ppi filters, porosity measurements were taken for complete 

commercially sized filter elements (23’’, 20’’ and 23’’ square). The porosity and other relevant 

http://en.wikipedia.org/wiki/Effective_porosity
http://en.wikipedia.org/wiki/Fluid_dynamics
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information are listed in Table IV. 

 

 

Table IV Porosity and other relevant information 

  

 

Figure.22 illustrates the relationship between ppi and porosities. It can be found that CFFs 

with a higher nominal pore count have lower porosity, e.g. for 80 ppi vs. 30 ppi. A constant 

ceramic thickness deposited on the original polymer substrate is the likely cause of the 

relationship. 

 

 

  

Figure.22 Fractional CFFs porosity versus ppi. 

 

 

ppi Filter Number Volume (cm
3
) A.Weight (kg) T.Weight (kg) ε

30 ppi I 16163 6.21 56.57 0.890

30 ppi II 16132 6.18 56.46 0.891

40 ppi 19 393 0.157 0.137 0.886

50 ppi I 12023 5.84 42.08 0.861

50 ppi II 12082 5.62 42.29 0.867

80 ppi I 16134 7.86 56.47 0.861

80 ppi II 16022 7.61 56.075 0.861

80 ppi III 16121 7.96 56.42 0.859

80 ppi IV 16022 8.16 56.075 0.855
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4.2 Cell, Window & Strut Diameter 

200 measurements of the cell and window, and 40 measurements of the strut diameters were 

taken for each filter type. Averages as well as sample standard deviations have been 

calculated for each filter type. 95% confidence intervals have been estimated for each mean 

using the students-T distribution, based on the number of actual degrees of freedom, to adjust 

for the different sizes of the sample populations. These values are listed in Table V-VII, and 

the measured experimental data are plotted as histogram in Figure.22-24.  

 

Table V Information of cell size, dc 

 

Table VI Information of window size, dw 

 

Table VII Information of strut size, ds 

 

 

Histograms have been made of the 200 counts of window diameter (dw) as can be seen in 

Figure.23 a) through d) for the 30-80 ppi filter types. Median values are indicated by dotted 

lines.  

30 ppi 40 ppi 50 ppi 80 ppi

Measurement Times 200 200 200 200

Mean Size (µm) 1668 1306 1131 683

Minimum Size (µm) 720 525 549 392

Median Size (µm) 1730 1345 1181 689

MaxmiumSize (µm) 2722 1975 1667 953

Standard Deviation 417 251 229 122

95%Confidence 57.8 34.8 31.8 16.9

30 ppi 40 ppi 50 ppi 80 ppi

Measurement Times 200 200 200 200

Mean Size (µm) 962 699 623 384

Minimum Size (µm) 443 273 317 212

Median Size (µm) 962 714 597 381

MaxmiumSize (µm) 1878 1050 1308 689

Standard Deviation 190 151 130 87

95%Confidence 26.4 20.9 18.0 12.0

30 ppi 40 ppi 50 ppi 80 ppi

Measurement Times 40 40 40 40

Mean Size (µm) 185 211 190 119

Minimum Size (µm) 85 127 127 74

Median Size (µm) 191 200 190 117

MaxmiumSize (µm) 254 295 274 170

Standard Deviation 41 46 36 20

95%Confidence 5.7 6.4 5.0 2.8
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Figure.23  Histograms of a) 30, b) 40, c) 50 and d) 80 ppi window sizes (dw) [μm]. Median values are 

marked with dotted lines. 

 

 

Figure.24 Commercial ceramic foam filters cell size (dc) versus window size (dw) [μm]. 

Average cell diameter (dc) has been plotted versus the average window diameter (dw) in 

Figure.24 and the results correlated according to the following equation:  
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 21.787 ,   0.987c wd d R   (30) 

  

The linear relationship between cell and window diameters implies a simple geometric 

relationship, likely originating with the original substrate used during the filter fabrication 

process. Agreement with literature values for both cell and window sizes for similar alumina 

CFFs is excellent.
[80]

 

 

4.3 Pressure Drop Results 

28 pressure drop experiments were done to achieve the following:  

 

1) Develop and validate an adequate experimental procedure and apparatus. 

2) Compare the pressure drop of CFF samples from the same filter and same position, but 

with different diameters, i.e. the 101 and 49 mm filter elements to verify the adequacy 

of the experimental and modelling procedure. 

3) Correlate pressure drop with liquid velocity. 

4) Determine the permeability of different types of filters, i.e. obtain k1 and k2 for 

Equation (2). 

5) Determine the variability of permeability between different filters of the same ppi.  

6) Measure the permeability variation for the same CFF with changes in sample position. 

(In order to describe the sample’s position clearly, different numbers represent 

different positions. Figure.25 shows the detailed information.) 

 

 
Figure.25 CFF sample position code. 
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The details describing each experiment are shown in the Table VIII. The sections 2-21 were 

cut from the whole filters (23’’, 20’’ and 23’’ square).  Sections 22-24 were cut from the 

centre of sections 18, 20 and 21. 

 

Table VIII Strut size and relevant information 

  
 

The section diameter and section thickness in Table VIII were measured by micrometer and 

the average of 4 and 6 readings, were used respectively. The test number 22 which is marked 

in yellow used the same filter as test 21, but in the opposite flow direction. The details of the 

experimental data are presented in Appendix Tables 1-28. The velocity given in the table is 

the calculated superficial velocity, and the temperature, density and viscosity are the fluid (i.e. 

water) properties. In order to determine the effective superficial velocity for the 101 mm 

filters, it was necessary to use computational fluid dynamics (CFD) to solve for average 

diameter of the flow field. An ‘effective’ flow field diameter was initially guessed for use 

with Equation (2), the resulting k1 and k2 terms were then used with the CFD model and the 

Test Section Filter Section Section Inlet Section

No. No. No. Diameter (mm) Thickness (mm) Length (mm) Position

1 2 30 I 48.57 50.18 1 106 6

2 15 80 IV 48.97 49.77 1 106 6

3 14 80 II 48.82 50.44 1 106 6

4 2 30 I 48.57 50.18 2 106 6

5 15 80 IV 48.97 49.77 2 106 6

6 14 80 II 48.82 50.44 2 106 6

7 4 50 I 48.61 50.6 2 106 2

8 4 50 I 48.61 50.6 2 306 2

9 20 50 N/A ~101 49.58 2 106 N/A

10 20 50 N/A ~101 49.58 2 306 N/A

11 1 30 I 48.71 50.48 2 106 1

12 3 50 I 48.95 50.37 2 106 1

13 5 50 I 48.65 50.43 2 106 3

14 6 50 I 48.86 50.56 2 106 4

15 7 50 I 48.80 50.26 2 106 6

16 8 50 I 49.37 50.49 2 106 5

17 11 80 I 48.00 50.59 2 106 6

18 12 80 III 48.94 50.07 2 106 6

19 13 50 II 49.39 49.97 2 106 1

20 16 80 N/A 48.84 50.06 2 106 6

21 17 50 N/A 49.12 50.41 2 106 1

22 17 50 N/A 49.12 50.41 2 106 1

23 18 30 N/A ~101 50.67 2 106 N/A

24 19 40 N/A ~101 47.65 2 106 N/A

25 21 80 N/A ~101 50.31 2 106 N/A

26 22 30 N/A 48.67 50.67 2 106 N/A

27 23 50 N/A 49.15 49.58 2 106 N/A

28 24 80 N/A 49.08 50.31 2 106 N/A

ppi Method



34 
 

pressure gradient determined. If the results were in error, a new ‘effective’ diameter was 

guessed and the procedure repeated until convergence was achieved.
[66]

 The details of the 

CFD model that was used, are introduced in Chapter 5.
 

 

4.3.1 Improvement of Procedures 

As mentioned previously, this research continues work begun during project “Liquid 

Permeability of Ceramic Foam Filters” for course TMT 5500. The procedures used to 

determine the experimental pressure gradient have been modified for these experiments. The 

first method (e.g. Method 1) used this time was to daub thick high viscosity silicon grease 

onto the side surface of CFF, in order to avoid bypassing of the fluid flow and obtain more 

exact, i.e. higher pressure drop data. 

 

The CFF number 2-30 ppi was used for the first test. The data are plot in Figure.26. It can be 

seen that the highest point on the plot deviates significantly from the curve fitting the rest of 

the data. This may be because the high velocity gave a very high pressure, which acted to 

push the grease out of the filter housing, creating fluid bypassing, and resulting in a reduced 

pressure drop. 

 

 

Figure.26 Experiment data of 2-30 ppi by using Method 1. 

 

Two additional tests were done to prove the hypothesis from the first test. Filter numbers 

14-80 ppi and 15-80 ppi were used in these tests. Figure.27 shows the data for 14-80 ppi. The 

last 5 points, which are marked in the red circle, obviously deviate from the curve. It can be 
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concluded that operation at high velocity and high pressure caused a loss of the silicone 

sealant and a reduced reading of the pressure gradient.  

 

 

Figure.27 Experiment data of 14-80 ppi by using Method 1. 

 

Visual observation through the Plexiglas housing showed that the sealant was forced out of 

the channel at the wall, as shown in Figure.28 b). The verification of loss of seal in Figure.27 

was obtained by repeating the measurements, and after the loss of seal, the obtained pressure 

drop data become smaller than was initially measured. These data indicate that the sealing of 

the sides of the filter is critically important to obtaining accurate data, and the use of a high 

viscosity silicone alone is not enough to avoid bypassing. 
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     Figure.28 a) Filter housing before high velocity experiment. 

  b) Filter housing after high velocity experiment. 

 

The final procedure (e.g. Method 2) was suggested by Mark W. Kennedy. Water swollen 

cellulose and silicone were used to provide a very low permeability seal, which was not 

subject to physical removal at pressures of up to 0.8 Bar. This was verified both visually and 

by repeated measurements over the whole pressure range with test filters. Comparison of 

results for the filter using Method 1 and Method 2 is presented in Figure.29 and Figure. 30. 

From these figures it can be seen that, high flow and tight filters created large driving force 

for bypassing. Experimental errors will tend to report lower pressure gradients and greater 

permeability than reality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 
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Figure.29 Comparison of results for the 2-30 ppi filter using Method 1 and Method 2. 

 

 

 

Figure.30 Comparison of results for the 14-80 ppi filter using Method 1 and Method 2. 
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4.3.2 Required Inlet Length to Fully Develop the Flow Regime 

As shown in Figure.9. the filter holders were used in a piping circuit containing ten 90
o
 bends, 

with 5 located before and 5 after the filter holder apparatus. There was a total of 8.3 m of 

piping with a 1.06 m straight section before the filter housing, and the pipe inner diameter was 

0.0464 m. 

 

Using Equation (19), EL=23. 

 

Assumping a water temperature of 7
o
C, a water density of ρ=999.9 kg/m

3
, and a viscosity of 

μ=1.3775×10
-3

 Pa·s, the required entrance length number can be estimated by using Equation 

(17), (23) and (24),. Details are shown in Table IX. 

 

Table IX Required inlet length to fully develop flow 

as a function of pipe Reynolds number 

 

 

From Table IX, it can be seen that except at very low velocity, the inlet length should be 

adequate to achieve fully developed flow (i.e. ‘99% approach’). The impact of back-to-back 

and out–of –phase 90
o
 bends on the flow, will be to promote turbulence even at low Reynolds 

numbers. 

 

Velocity L/D inlet L/D Inlet Estimated

(m/s) Laimanal Turbulent L/D Inlet

0,03 1010 30 N/A 30

0,05 1680 50 9 29,5

0,1 3370 N/A 10 10

0,2 6740 N/A 12 12

0,4 13470 N/A 15 15

0,8 26940 N/A 17 17

1 33680 N/A 18 18

Re
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Figure.31 Entrance length number versus Reynolds number. 

 

The flow regimes during the experiments include laminar flow, transitional flow and turbulent 

flow. As shown in Figure.31, it is hard to determine the entrance length number at the 

transition region, and as a result longer pipes were used in the experiment to verify the 

computation. The total pipe length was then 12.3 m, with 3.06 m of straight section before the 

filter housing. The entrance length number became, EL=66. The long configuration should be 

adequate to achieve fully developed flow at all Reynolds numbers. Filters 4-50 ppi and 18-50 

ppi were used to verify this hypothesis. Figure.32 presents the comparison of the obtained 

pressure drop data of filter 18-50 ppi using the two different circuit configurations. 
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Figure.32 Comparison of results for the 20-50 ppi filter using both the short and long inlet lengths. 

 

The regressions of the experimental data are shown below: 

 

 1.06 m inlet length:
2 25917160.66 83380 , 0.99995y x x R    (31) 

 

 3.06 m inlet length:
2 25837058.41 90658 , 0.99956y x x R    (32) 

 

From the Figure.32, it can be seen that two experiments obtained virtually identical results. 

The second order terms of the Equations (31) and (32) are ~1.35% different. This may be 

caused by the accuracy of the data logger, different tightness of the filter housing or residual 

gas bubbles in the pipes or may in fact be the correct impact of inlet length. Since this 

research has been conducted primarily in order to test the permeability at high velocity, 

second order effects are much more than the first order. So the difference in the first order of 

the two regressions is not very significant. During the long configuration test, it was very 

difficult to empty the gas bubbles from the system, and it was therefore decided to use the 

short configuration for the remainder of the experiments. 

 

4.3.3 Permeability of Different Types of Filters. 

The obtained results from pressure drop experiment for test 23, 24, 9 and 25 are shown in 

Figure.33. They are all for 101 mm diameter filters with 30 ppi, 40 ppi, 50 ppi and 80 ppi. The 
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‘effective’ flow field diameters for computing the superficial velocities are 65.5 mm, 66 mm, 

66.1 mm and 66.5 mm respectively. At higher velocity, the pressure drop increases faster for 

CFFs with a higher nominal pore count, e.g. for 80 ppi vs. 30 ppi, this apparently causes the 

effective flow field diameter to also increase, in order to minimize the total pressure drop. 

 

 

Figure.33 Experimental data for tests 9, 23, 24 and 25. 

 

The regressions of the experimental data are shown below: 

 19-30 ppi: 
2 21903861.95 24661 , 0.99979y x x R    (33) 

 20-40 ppi: 
2 22959253.57 45880 , 0.99966y x x R    (34) 

 18-50 ppi: 
2 25917160.66 83380 , 0.99995y x x R    (35) 

 21-80 ppi: 
2 210036001.67 248300 , 0.99959y x x R    (36) 

 

Using the current equipment in this study, the pressure resolution during flow was 62.5 Pa, or 

a gradient uncertainty of ±625 Pa/m depending on the sample’s thickness. ±625 Pa/m 

represents more than 5% uncertainty at flow rates of <0.03-0.08 m/s, depending on filter type 

(i.e. ppi). It was necessary to determine both k1 and k2 from flow conditions, where both terms 

were simultaneously significant
 [66]

, i.e. it was not possible to operate in a purely ‘Darcy’ 

regime with this pressure measuring apparatus and obtain ‘precise’ results. 
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Three different procedures were explored
[66]

 to derive the Forchheimer coefficients, e.g. k1 

and k2 in Equation (2): 

 

1) An ‘automated’ second order regression, with a zero intercept, using Excel 2003. 

2) Ergun et al.’s procedure of dividing Equation (2) by the velocity and performing a linear 

regression. 
[81] 

3) An iterative procedure to first guess k1 and then correlate the remainder for k2 using an 

exponential regression. 

 

The experimental parameters obtained for tests 9, 10, 23, 24, 25, 26, 27 and 28 were 

calculated by all of the above procedures, and the values summarized in Table X. 

 

Table X Comparison of three mathematical procedures to determine k1 and k2 

 

 

It should be noted that it is clear that the negative coefficient k1 for the 19-40 ppi filter 

obtained from Excel 2003 is physically meaningless. No physically meaningful correlations 

could be performed on the values of k1 and k2 found using Excel, e.g. comparison with total 

porosity or window size. Better results were obtained following the recommended method of 

Ergun. The most physically meaningful results were obtained following the 3
rd

 procedure, 

where k1 was initially guessed, the first order component of Equation (2) subtracted from the 

total and an exponential regression performed on the remainder. When the exponent on the 

velocity became 2.00000, the procedure was deemed converged.  

 

The balance of the experiment parameters were all computed using the 3
rd

 procedure, and the 

values of k1 and k2 are presented in Table XI. 

 

 

 

 

 

 

 

Excel 2003 Excel 2003 Ergun Method Ergun Method Method 3 Method 3

Test Filter Forchheimer Forchheimer Forchheimer Forchheimer Forchheimer Forchheimer

Number Number k1 k2 k1 k2 k1 k2

(m) (m
2
) (m) (m

2
) (m) (m

2
)

26 22-30 ppi 2.141E-08 5.827E-04 4.582E-08 5.481E-04 5.084E-08 5.459E-04

23 18-30 ppi 2.463E-07 5.097E-04 7.187E-08 5.177E-04 5.572E-08 5.252E-04

24 19-40 ppi -2.035E-08 3.047E-04 1.090E-07 3.240E-04 3.099E-08 3.379E-04

27 23-50 ppi 1.836E-08 1.645E-04 1.628E-08 1.653E-04 1.568E-08 1.656E-04

9 20-50 ppi 1.631E-08 1.693E-04 1.244E-08 1.718E-04 1.710E-08 1.690E-04

10 20-50 ppi 4.670E-08 1.638E-04 2.166E-08 1.667E-04 1.525E-08 1.713E-04

28 24-80 ppi 1.897E-08 1.077E-04 8.676E-09 1.111E-04 6.519E-09 1.148E-04

25 21-80 ppi 9.694E-09 9.449E-05 6.583E-09 9.680E-05 5.441E-09 9.963E-05
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Table XI Forchheimer empirical coefficients for Equation (2) 

 

 

The average value of k1 and k2 for different types of filters are shown in Table XII. 

 

Table XII Average value of k1 and k2 for different types of filters 

 

 

The k1 and k2 values from Table XII have been plotted in Figure.34 and Figure.35 as functions 

of the window area, πdw
2
/4. 

 

 

Method 3 Method 3 Method 3 Method 3

Test Filter Forchheimer Forchheimer Test Filter Forchheimer Forchheimer

Number Number k1 k2 Number Number k1 k2

(m) (m
2
) (m) (m

2
)

4 2-30 ppi 3.045E-08 4.404E-04 17 11-80 ppi 5.250E-09 8.819E-05

5 15-8 0ppi 6.166E-09 8.773E-05 18 12-80 ppi 7.786E-09 1.143E-04

6 14-80 ppi 6.762E-09 1.170E-04 19 13-50 ppi 1.679E-08 2.101E-04

7 4-50 ppi 1.551E-08 1.967E-04 20 16-80 ppi 6.543E-09 1.442E-04

8 4-50 ppi 2.326E-08 2.007E-04 21 17-50 ppi 2.537E-08 2.120E-04

9 20-50 ppi 1.710E-08 1.690E-04 22 17-50 ppi 1.629E-08 2.155E-04

10 20-50 ppi 1.525E-08 1.713E-04 23 18-30 ppi 5.572E-08 5.252E-04

11 1-30 ppi 3.656E-08 5.230E-04 24 19-40 ppi 3.099E-08 3.379E-04

12 3-50 ppi 1.296E-08 1.751E-04 25 21-80 ppi 5.441E-09 9.963E-05

13 5-50 ppi 1.477E-08 2.327E-04 26 22-30 ppi 5.084E-08 5.459E-04

14 6-50 ppi 1.381E-08 1.790E-04 27 23-50 ppi 1.568E-08 1.656E-04

15 7-50 ppi 1.814E-08 2.058E-04 28 24-80 ppi 6.519E-09 1.148E-04

16 8-50 ppi 2.229E-08 2.142E-04

Filter Type Forchheimer k1(m) Forchheimer k2 (m
2
)

30 ppi 4.339E-08 5.086E-04

40 ppi 3.099E-08 3.379E-04

50 ppi 1.748E-08 1.960E-04

80 ppi 6.352E-09 1.094E-04
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Figure.34 Correlation of Darcy term, k1  [m
2
] with window area. 

 

 

Figure.35 Correlation of Non-Darcy term, k2 [m] with window area. 

 

Empirical correlations have been developed for k1 and k2 as functions of the window 

diameter: 

 
14 2

2

1

6.34 10
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   (37) 
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7.31 10
,   0.943

4

wd
k R


   (38) 

 

From Figure.34, and Figure.35, Equation (37) and (38), it is concluded that the Sivex
® 

CFFs 

tested in these experiments behave like a series of ‘orifices’. An examination of Figure.36 

would seem to support the concept of ‘orifices’, given the high percentage of closed windows, 

particularly at higher ppi’s.  
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Figure.36 Representative SEM micrographs of 30 (a), 40 (b), 50 (c) and 80 (d) ppi Sivex
® 

CFFs. Cell or 

pore sizes (dc) are indicated by solid circles and window sizes (dw) are indicated by dotted circles. 

 

4.3.4 Correlation of Pressure Drop 

Extensive work has been done to correlate the obtained results. All the equations listed in 

Table II were compared, and only Dietrich’s equation (Equation 12) was found to adequately 

describe the data. Agreement is considered adequate being typically within ±50%, except at 

very low velocity. 

 

Other equations result in much lower estimates of pressure drop than the experimental data 

obtained using the final and well-sealed experimental procedure. Most previously published 

literature did not describe the details of the experiment procedures used, e.g. did they use a 

proper wall seal or correct for an expanding flow field? Since sealing arrangements and 

analysis techniques were generally not explained in sufficient detail, firm conclusions can not 

be drawn from comparisons with most of the previous studies. 

 

The best empirical correlation obtained was a slightly modified version of Ergun’s equation. 

 

22
2

3 2 3

(1 ) (1 )
8.385[150 1.75 ],   0.95s s

w w

V VP
R

L d d

  

 

  
    (39) 

 

Equation (39) is plotted in Figure.37, and comparison is made with 181 measurements. The 
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average absolute error is 10.7 %. 
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Figure.37 Overall correlation Equation (39), comparison to the 181 measured pressure gradients for test 

4-8, 11-22 and 26-28, the absolute average error is 10.7%. Dotted lines in the figure indicate a range of 

±30%. 

 

The Equation (39) is equivalent to using 23.4 and 2 (based on an average CFFs porosity of 

88%), as the empirical constants, instead of the values 110 and 1.45 in Dietrich’s Equation (12) 

or the Ergun equivalent values of 66.7 and 1.17 from Equation (11): 

 

 
2

2 3
23.4 2s s

h h

V VP

L d d

 

 


   (40) 

 

Applying Equation (40) to the obtained data indicates a significant reduction in error 

compared with the original Equation (11), especially at low velocity. The overall error is 

reduced from ~40% to ~30%. 

 

Attempts were made to use cell diameter, strut diameter and tortuosity in various correlations; 

however, no improvement could be made over the accuracy of Equation (39) or (40). 
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4.3.5 Permeability of Different Filters with the Same ppi. 

Experiments 5, 6, 17, 18 and 20 all used 80 ppi filters-15-80 ppi, 14-80 ppi, 11-80 ppi, 12-80 

ppi and 16-80 ppi. The filter sections were cut from the middle of 5 different filters, at 

position No.6, as shown in Figure.25. The 3-50 ppi, 13-50 ppi and 17-50 ppi filter sections 

were all cut from the corners of 3 different filters, at position No.1 as shown in Figure.25, and 

these filters were used in experiments 12, 19 and 21. The pressure drop values obtained from 

these experiments are plotted in Figure.38, and Figure.39. 

 

 

Figure.38 Pressure drop data from experiments 5, 6, 17, 18 and 20, filters were all cut from the middle, 

at position number: 6. 
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Figure.39 Pressure drop data from experiments 12, 19, and 21, filters were all cut from the middle, at 

position number 6. 

 

The regressions of the experimental data are shown below: 

 

 11-80 ppi:
2 211331160.53 219330 , 0.99984y x x R    (41) 

 12-80 ppi: 
2 28750834.44 176662 , 0.99991y x x R    (42) 

 14-80 ppi: 
2 28549569.55 207140 , 0.99989y x x R    (43) 

 15-80 ppi:
2 211397513.56 218830 , 0.99991y x x R    (44) 

 16-80 ppi: 
2 26931935.47 203475 , 0.99931y x x R    (45) 

 3-50 ppi: 
2 25709968.14 107650 , 0.99970y x x R    (46) 

 13-50 ppi: 
2 24758591.52 82210 , 0.99991y x x R    (47) 

 17-50 ppi: 
2 24716067.55 48920 , 0.99994y x x R    (48) 

 

It can be found that the regressions of the same ppi filters are not similar. 11-80 ppi, 15-80 ppi 

and 3-50 ppi filters gave higher pressure drop than other filters with same ppi during the test, 

and the pressure drop value of 16-80 ppi filter is much smaller than the rest 80PPI filters. 
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The k1 and k2 values in Equation (2) of these filters are shown in Table XIII. 

 

Table XIII k1 and k2 values 

 

 

It is clear that the 16-80 ppi filter has a significantly higher k2 value than other 80 ppi filters.  

The 16-80 ppi filter had the lowest measured pressure drop for this type of filter, since the 

pressure drop is inversely proportional to the value of k1 and k2, and k2 is dominant at high 

velocity, i.e. the velocities of primary interest in this study. Filters 11-80 ppi, 15-80 ppi and 

3-50 ppi have lower k2 values and gave higher pressure drops. It should be noted that the 

difference between 17-80 ppi and 18-80 ppi, 6-80 ppi and 16-80 ppi or 3-50 ppi and 13-50 ppi 

are much larger than any error that can be attributed to the experiment procedure and are 

therefore deemed to be caused by variation between the filters themselves. 

 

Results between filters of the same ppi show some variability; however, results from each 

type of filter are statistically different that other types of filters.  This is shown in Table XIV 

by the comparison of the mean and upper and lower 95% confidence intervals for the 50 and 

80 ppi filter types. 

 

Table XIV Average k1 and k2 values and 95% confidence area 

 

 

In conclusion, the permeability of filters with the same ppi are not identical. It is assumed that 

natural variation during the manufacturing process is responsible, and has resulted in 

variations in microstructure and tortuosity (e.g. greater or lesser numbers of blocked 

windows). Visual observation also finds clear differences between the filters, as shown in 

Figure.40. 

Test Number Filter Number k1 (m) k2 (m
2
)

17 11-80 ppi 5.250E-09 8.819E-05

18 12-80 ppi 7.786E-09 1.143E-04

6 14-80 ppi 6.762E-09 1.170E-04

5 15-80 ppi 6.166E-09 8.773E-05

20 16-80 ppi 6.543E-09 1.442E-04

12 3-50 ppi 1.296E-08 1.751E-04

19 13-50 ppi 1.679E-08 2.101E-04

21 17-50 ppi 2.537E-08 2.120E-04

Filter Type 50 ppi 80 ppi

Average k1 (m) 1.838E-08 6.501E-09

95% Confidence 5.570E-09 8.078E-10

 Upper 95% Confidence 2.395E-08 7.309E-09

 Lower 95% Confidence 1.281E-08 5.694E-09

Average k2 (m
2
) 1.991E-04 1.103E-04

95% Confidence 1.820E-05 2.060E-05

 Upper 95% Confidence 2.173E-04 1.309E-04

 Lower 95% Confidence 1.809E-04 8.967E-05
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Figure.40 Photo of 11-80 ppi and 12-80 ppi filters 

 

In Figure.40, it is clear that two filters look different, 11-80 ppi filter has two layers which are 

marked in the red circles. Figure.41 shows the microstructure of the layers. 

 

 

Figure.41 Representative SEM micrographs of 11-80 ppi CFF indicating nearly complete blockage of all 

windows. 

 

From Figure.41, it can be found that in the ‘lines’ from Figure.36 that most of the pores are 

closed, and this makes it difficult for liquid to flow through this region, resulting in a very low 

permeability and a very high pressure drop. 

a) b) 
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From above information, it is concluded that filters of the same ppi vary and that the 

permeability for each type of the filter must be defined in a ‘statistical’ manner, i.e. defined by 

mean, standard deviation and confidence intervals. 

 

4.3.6 Permeability for Different Sample’s taken from the Same Filter. 

8 experiments were conducted to determine the relationship between permeability and sample 

position. These 8 experiment’s numbers are 4, 7 and 11 through 16. The filters used are 1-30 

ppi, 2-30 ppi, 3-50 ppi, 4-50 ppi, 5-50 ppi, 6-50 ppi, 7-50 ppi and 8-50 ppi. The position 

information of these filters is presented in Table VII. The experiment data are plotted in 

Figure.42 and Figure.43. 

 

 

Figure.42 Pressure drop data for experiments 4 and 11, 1-30 ppi: position number 1, 2-30 ppi: position 

number 2. 
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Figure.43 Pressure drop data for experiments 7 and 12-16, 3-50 ppi: position number 1, 4-50 ppi: 

position number 2, 5-50 ppi: position number 3, 6-50 ppi: position number 4, 7-50 ppi: position number6, 

8-50 ppi: position number 5. 

 

The regressions of the experimental data are shown below: 

 

 1-30 ppi: 
2 21911934.44 37360 , 0.99984y x x R    (49) 

 2-30 ppi: 
2 22270285.55 45114 , 0.99985y x x R    (50) 

 3-50 ppi:
2 25709968.14 107650 , 0.99970y x x R    (51) 

 4-50 ppi: 
2 25084123.17 89000 , 0.99973y x x R    (52) 

 5-50 ppi: 
2 24297350.89 92060 , 0.99988y x x R    (53) 

 6-50 ppi:
2 25586066.98 100785 , 0.99993y x x R    (54) 

 7-50 ppi: 
2 24858509.54 78150 , 0.99990y x x R    (55) 

 8-50 ppi: 
2 24667185.24 61325 , 0.99992y x x R    (56) 

 

It can be found that the regressions of the same ppi filters are not similar. 2-30 ppi which cut 

from the centre of the filter gave a higher pressure drop than 1-30 ppi cut from the corner. For 

50 ppi tests, 3-50 ppi cut from the corner of the filter has the highest pressure drop.  
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The k1 and k2 values in Equation (2) of these filters are shown in Table XV. 

 

Table XV k1 and k2 values 

 

 

From above information it is concluded that the permeability of the filters vary both within a 

given filter and even more between filters for a given ppi. There appears to be no correlation 

between position number and permeability, i.e. the variations appear to be random in nature.  

4.3.7 Permeability Changing with Fluid Flow Direction 

Acosta
[9]

 tested his filters in both the forward and reverse directions finding identical results. 

In this study, two experiments were conducted to verify that flow direction would not alter the 

pressure drop for well sealed filters. These two tests are experiments 21 and 22, and the filter 

section used was 17-50 ppi. The experimental data is shown in Figure.44. 

 

 

Figure.44 Pressure drop data for experiments 21 and 22, position number: 1. 

Test Number Filter Number k1 (m) k2 (m
2
)

11 1-30 ppi 3.656E-08 5.230E-04

4 2-30 ppi 3.045E-08 4.404E-04

12 3-50 ppi 1.296E-08 1.751E-04

7 4-50 ppi 1.551E-08 1.967E-04

13 5-50 ppi 1.477E-08 2.327E-04

14 6-50 ppi 1.381E-08 1.790E-04

15 7-50 ppi 1.814E-08 2.058E-04

16 8-50 ppi 2.229E-08 2.142E-04
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The regressions of the experimental data are: 

  

17-50 ppi forward direction: 
2 24716067.55 48920 , 0.99994y x x R   (57) 

 17-50 ppi reverse direction: 
2 24639062.59 76410 , 0.99982y x x R   (58) 

 

From Figure.44, it can be seen that the experimental data of two tests are nearly identical. The 

Equation (57) is also very similar to Equation (58), especially the second order term. The 

difference of the second order term is about 1.6%, this different maybe caused by the 

accuracy of the experiment. Since the error of the pressure drop obtained by the apparatus in 

this study is ±31.25 Pa, thus it will give more errors at very low velocity. This can explain 

why there is a higher difference in the first order term. Table XVI shows the k1 and k2 values 

that calculated by these two tests. 

 

Table XVI k1 and k2 values 

 
 

Again, very similar k2 values were obtained from these two tests.  Larger differences were 

seen in k1 values, which maybe caused by the precision error of the experimental pressure 

measuring equipment. 

 

It can be concluded that the permeability of CFF will not change by the changing of fluid flow 

direction. 

 

4.4 Filter Tortuosity 

Filter tortuosity has been determined for metal impregnated 30, 40, 50 and 80 ppi filters. 

Measurements have been obtained with the metal in both liquid and solid states. The metal 

used was ‘commercially’ pure electrical grade aluminium, which was determined to have 

61.7±0.1% IACS conductivity (average of 10 readings) prior to melting. After melting, the 

solidified metal samples were found to have conductivities of 59.7% (30 ppi), 54.0% (40 ppi), 

60.0% (50 ppi) and 61.0% (80 ppi). The hot metal experiments were conducted using the 

apparatus already shown in Figure. 21. 

 

Hot liquid metal and cold solid filter section measurements (average, vertical and horizontal 

cuts) and calculated tortuosity results (using the hot metal data) are summarized in Table 

XVII
[66]

, for all four filter types. Experimental data have also been plotted in Figure.45.  

 

Test Number Filter Number k1 (m) k2 (m
2
)

21 17-50 ppi 2.537E-08 2.120E-04

22 17-50 ppi 1.629E-08 2.155E-04
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Table XVII Summary of key tortuosity experimental results 

 

 

 

Figure.45 Conductivity ratio of metal (σm) and metal impregnated filter (σf) versus window size (dw) 

[µm]. Comparison is shown between liquid metal values fitted to experimental data using FEM and 

average, vertical, and horizontally cut solid filter sections (cold readings).
[66] 

 

Results show reasonable agreement between hot and average cold conductivity ratio’s, given 

the different equipment, temperatures and frequencies involved in these two sets of 

measurements. The conductivity ratio between the metal and metal impregnated filters for the 

liquid metal experiments was correlated according to the following equation: 

 

 3 25 10 3 8 10 0 981m
w

f

. .  d , R .



    (59) 

 

No correlation could be found between the horizontal or vertical cuts. The observed variations 

may the result of the random location of the sections through the pore structure of the filter 

elements and the low electromagnetic penetration depth of the high frequency cold method, 

which is less than one cell diameter. 

 

Filter Filter Filter FEM Estimate of Cold Average Cold Vertical Cold Horizontal

Type Porosity Tortuosity Conductivity Ratio Conductivity Ratio Conductivity Ratio Conductivity Ratio

(opi) (σm/σf) (σm/σf) (σm/σf) (σm/σf)

30 0.892 1.30 1.40±0.06 1.70 1.64 1.77

40 0.900 2.29 2.54±0.18 2.15 2.27 2.02

50 0.863 2.19 2.54±0.12 2.70 2.34 3.05

80 0.865 3.20 3.70±0.06 2.79 2.91 2.66
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Few measured values have been published previously for tortuosity.  Moreia et al. measured 

tortuosity values using an ionic conduction method equivalent to the induction method 

described here.  Their values for CFFs of 8, 20 and 45 ppi were 1.68, 1.71 and 1.84 

respectively.
[ 82 ]

 Diedericks et al. have theoretically studied tortuosity in some detail, 

proposing a value of ~1.45 at ε=0.88, for ‘foam like’ materials.
[83]

 In P. Habisreuther et al., 

tortuosity has been numerically estimated for high porosity (ε=0.720) ‘solid sponges’ material 

to be 1.317.
[63]

 Methods using water and ionic solutes, will likely underestimate the true filter 

tortuosity, due to penetration of the water and ions into the micro and nano-porosity of the 

filter structure itself.  Liquid metal poorly wets the surface of the ceramic and in the absence 

of intense pressure (e.g. 4000 Bar) will not penetrate the micro porosity. 
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Chapter 5 

CFD Modelling 

5.1 Introduction 

Computational fluid dynamics (CFD) was used in this study to verify the experimental data 

for the 49 mm filter design and to compute ‘effective’ flow field diameter for 101 mm design. 

 

To compute the ‘effective’ flow field diameter for 101 mm design, an ‘effective’ flow field 

diameter was initially guessed for use with Equation (2), the resulting k1 and k2 terms were 

then used with the CFD model and the pressure gradient determined. If the results were in 

error, a new ‘effective’ diameter was guessed and the procedure repeated until convergence 

was achieved. Figure.46 shows this procedure. 

 

 

Measure:  ΔP, Diameter, L, Mass Flow, 

Temperature (i.e. μ and ρ)

Calculate 

k1 and k2

CFD 

flow field,

ΔP/L vs. V

Same as 

measured?

Yes

No

‘Effective’ diameter

is correct

Guess a new 

effective diameter

Guess an 

effective 

diameter



58 
 

Figure.46 FEM CFD procedure applied to the 101 mm experimental results to determine the 

Forchheimer, Equation (2), parameters k1 and k2. 

5.2 Theory 

5.2.1 Materials 

The COMSOL
®

 material data ‘water, liquid’ was used for the fluid properties in these 

simulations.  A new material called ‘filter’ was built in manually for the filter domain, 

containing the actual Darcy permeability and filter porosity. 

 

The equation used to calculate the water dynamic viscosity in the COMSOL is
[84]

: 

 

4 2 7 3

10 4 13 5 16 6

1.3799566804 0.021224019151 1.3604562827 10 4.6454090319 10

8.9042735735 10 9.0790692686 10 3.8457331488 10

T T T

T T T

  

  

     

     
 (60) 

 

The equation for water density is: 

  

1 2 7 3838.466135 1.40050603 0.0030112376 3.71822313 10T T T       (61) 

 

Temperature for use with Equations (60) and (61) were the actual average temperature 

measured during each experiment. 

 

The density and dynamic viscosity for the filter was the actual average water density and 

dynamic viscosity from each experiment, entered manually. The porosities of the filters are 

present in Table VIII. 

5.2.2 Physics  

This section has been extracted in large part from the documentation supplied by COMSOL
®

 

and the associated references. 

 

There are two physics used in the modelling, “Free and Porous Media Flow (fp)” for the filter 

and “Turbulent Flow, k-ε (spf)” for the pipe before and after the filter, covering the length of 

the filter holder apparatus. 

 

 Free and Porous Media Flow 
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The free and porous media flow interface uses the Navier-Stokes equations for describing 

the flow in open regions, and the Brinkman equations are used for the flow in porous 

regions.
[84]

 

 

 

The Navier-Stokes equation for incompressible flow is
[85]

: 

 

 2( )
V

V V P V f
t

 


      


 (62) 

 

Where V is the superficial flow velocity [m/s], P is the pressure [Pa], 2  is the vector 

Laplacian and f represents ‘other’ body forces (per unit volume) acting on the fluid, such 

as gravity or centrifugal force. 

 

The Brinkman equations are: 

 

 ( ) ( ) brV Q
t
 


 


 (63) 
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 (64) 

 

 i

V
V


  (65) 

 

Where Qbr is a mass source or mass sink [kg/m
3
s], which is zero in case of these 

experiments and F is the force term [kg/m
2
s

2
], this term is negligible (but non-zero) in 

this study, due to the experimental equipment being positioned horizontal. Vi is the 

interstitial velocity within the pores of the filter [m/s]. 

 

The Forchheimer drag option was added manually to the model and this option adds a 

viscous force proportional to the square of fluid velocity, see Equation (2). So Equation 

(64) can be written as: 
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3
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 (66) 
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Since the fluid is incompressible, the density is constant, so: 

 

 ( ) 0V
t
 


  


 (67)  

 

 

Combine Equation (66) with Equation (67) get: 
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 
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 (68) 

 

 Turbulent Flow, k-ε (spf) 

 

As mentioned before, the fluid flow regimes experienced during the experiments included 

laminar flow, transitional flow and complete turbulent flow. The maximum velocity 

experienced in the filter during the experiment was ~0.8 m/s, and the Reynolds number, 

Re is ~26000. Since the Re is not large, the “Low Reynolds Number k-ε Turbulence 

Model” was chose for this modelling.  

 

The flow fluid is incompressible and Newtonian, so Equation (62) can be written as: 

 

 [ ( ( ) ]TV
V V P V V F

t
  


        


 (69) 

 0V   (70) 

 

If the flow is turbulent, then all quantities fluctuate in time and space.
[84]

 It is seldom 

worth the extreme computational resources required to obtain details about the turbulent 

fluctuations in time. A time averaged representation often provides sufficient information 

about the flow. 

 

The Reynolds-averaged representation of turbulent flows divides the flow quantities into 

an averaged value and a fluctuation part, 

 

      (71) 

Where   represent any scalar quantity of the flow. The mean value can vary in space 

and time generally. An example is shown for the fluid velocity in Figure.47
[84], shows time 

averaging of one component of the velocity vector for non-stationary turbulence. The 

unfiltered flow has a time scale Δt1. After a time filter with width Δt2>> Δt1 has been 

applied, there is a fluctuation part, u’i, and an average part, Ui. Because the flow field also 
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varies on a time scale longer than Δt2, Ui is still time dependent but is much smoother 

than the unfiltered velocity ui. 

 

 

 

Figure.47 The unfiltered velocity component ui, with a time scale Δt1, and the averaged velocity 

component, Ui, with time scale Δt2. 

 

With Reynolds-averaging, Equation (69) can be re-written as: 

 

 ( ' ') [ ( ( ) ]TV
V V u u P V V F

t
   


          


 (72) 

 

Where V is the averaged velocity field and  is the outer vector product. Compared with 

Equation (69), only the last term on the left side is different. This term represents the 

interaction between the fluctuating velocities, called the Reynolds stress tensor. 

 

Assuming the turbulence to be of a purely diffusive nature, the deviating part of the 

Reynolds stress is expressed by: 

 

 ( ' ') ( ' ') ( ( ) )
3

T

Tu u tracc u u V V


           (73) 

 

Where µT is the eddy viscosity, which is also called turbulent viscosity. The spherical part 

can then be written as: 

 

 
2

( ' ')
3 3

tracc u u k


   (74) 

 

where k is the turbulent kinetic energy. When simulating incompressible flows, this term 

is included in the pressure, but in compressible flows, this term must be explicitly 

included. 
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“The Low Reynolds Number k-ε Turbulence Model” introduces two dependent variables: 

the turbulent kinetic energy, k, and the dissipation rate of turbulent energy, ε.
[86]

 

 

 

 

 

The transport equation for k is
[86]

: 

 

[( ) ]T
k

k

k
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t


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


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
 (75) 

 

The transport equation for ε is
[87]

: 
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Cε1=1.5, Cε2=1.9, Cµ=0.09, σk=1.4, σε=1.4 and lw is the distance to the closest wall. 

 

The damping terms in the equations for k and ε allows a no slip condition to be applied to 

the velocity, so V=0. Since all velocity must disappear on the wall, so k=0 on the wall. 

 

The boundary condition for ε is: 

 

 
2

2
w

k

l





  (77) 

 

5.2.3 Modelling Approach 
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Some pertinent points to achieving adequate agreement between CFD, analytical models and 

measured values were: 

 Iteration between high quality measurements and FEM to ensure validity of 

assumptions and accuracy of final models. 

 Correct and validated boundary conditions, e.g.:  no-slip walls, contiguous 

velocity fields between liquid and porous media domains, and the inlet velocity 

profile. 

 Use of the low Reynolds number k-ε, Reynolds Averaged Navier Stokes (RANS) 

model for turbulence (k0 = 0.005 m
2
/s

2
 and ε0 = 0.005 m

2
/s

3
), to adequately cover 

the difficult range of velocities in the inlet region. 

 Use of dense meshes in regions of high velocity gradients (e.g. boundary mesh at 

the ‘no-slip’ walls). 

 Precise measurement and exact geometric reproduction of the actual apparatus. 

   

5.3 FEM Model Details 

5.3.1 49 mm Filter Finite Element Modelling 

Figure.48 shows the geometry of the model for the 49 mm diameter filter holder apparatus. 

     

Figure.48 Modelling geometry of 49 mm filter holder apparatus.  

 

The mesh used in the FEM model is shown in Figure.49. 
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Figure.49 Modelling mesh used for the 49 mm filter apparatus.  

 

Figure.50 and Figure.51 show the flow fields and the pressure gradients for the 49 mm diameter 

filter apparatus at 7 
o
C and 0.054 m/s inlet water velocity. The filter properties used in this 

simulation are those of 23-50 ppi’s as shown in Table VIII. 

 

Please note in Figure.50 and Figure.51 that the flow field is contiguous over the boundary 

between the turbulent fluid and porous media domains. This required some careful 

manipulation of the FEM model in COMSOL
®

, to force iteration between the inlet and outlet 

conditions over these boundaries.    
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Figure.50 The flow field for the 49 mm diameter filter apparatus. The inlet velocity is 0.054 m/s, filter 

number is 23-50 ppi. 

 

 

Figure.51 The pressure gradient for the 49 mm diameter filter apparatus. The inlet velocity is 0.054 m/s, 

filter number is 23-50 ppi. 
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5.3.2 101mm Filter Finite Element Modelling 

Figure.52 shows the geometry of the model for the 101 mm diameter filter holder apparatus. 

 

 
Figure.52 Modelling geometry of 101 mm filter holder apparatus.  

 

The mesh used in the FEM model is shown in Figure.53. 
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Figure.53 Modelling mesh used for the 101 mm filter apparatus. 

 

Figure.54 and Figure.55 shows the flow fields and the pressure gradient for the 101 mm 

diameter filter apparatus at 7 
o
C and 0.7 m/s inlet water velocity. The filter properties used 

here are those of the 20-50 ppi’s.  
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Figure.54 The flow field for the 101 mm diameter filter apparatus. The inlet velocity is 0.7 m/s, filter 

number is 20-50 ppi. 

 

 
Figure.55 The pressure gradient for the 101 mm diameter filter apparatus. The inlet velocity is 0.7 m/s, 

filter number is 20-50 ppi. 
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5.4 Comparison of CFD Results with Experimental Data 

 

The experimental data obtained from tests 26-28 are compared here with the results from 

CFD modelling. The details of the comparison are shown in Tables 29 through 31 in the 

Appendix. Figure.56 shows CFD results for tests 26-28, compared against the experimental 

pressure gradients. The average error is ~1.74% 

 

 
Figure.56 CFD calculated pressure gradients compared against the measured pressure gradients for test 

26-28. 

 

From Figure.56, it can be found that the CFD modelling results are almost identical with the 

experimental values. It is important to note, that if significant bypassing had occurred during 

these experiments, it would not have been possible to achieve agreement between the CFD 

model and the experimental data for the 49 mm filter design, i.e. it would have been necessary 

to add a ‘bypass’ channel of finite thickness. The close agreement between experimental and 

CFD results is thus taken as confirmation that the wall sealing arrangements were in fact of 

negligible permeability. 

 

For the 101 mm filter experiments, the final ‘effective’ flow field diameters for use with 

Equation (2) obtained by the CFD modelling were: 65.5 mm, 66 mm, 66.1 mm and 66.5 mm 

for the 30 ppi, 40 ppi, 50 ppi and 80 ppi respectively. 

 

Figure.57 shows the CFD results for test 9 and 23 through 25, compared against the 

experimental pressure gradients. The average error is about 2.24%. The detailed information 
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for the comparison of the CFD results and experimental data are shown in Tables 32 through 

35 in the Appendix.  

 

 

Figure.57 CFD calculated pressure gradient compared against the measured pressure gradient for test 9, 

and 23 through 25. 

 

The 22-30 ppi, 23-50 ppi and 24-80 ppi filters were cut from the centre of the 18-30 ppi, 

20-50 ppi and 21-80 ppi filters. Figure.58 shows the comparison of test 9 and 27. The 

superficial velocity values for test 9 were calculated using the ‘effective’ flow field diameter 

determined by the CFD modelling. 
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Figure.58 Comparison between the 101 mm and 49 mm filter results. 

 

The regressions are: 

 20-50 ppi: 
2 25917160.66 83380 , 0.99995y x x R    (78) 

 23-50 ppi: 
2 26036686.76 87890 , 0.99998y x x R    (79) 

 

From Figure.58, Equation (78) and Equation (79), it can be found that the results obtained by 

these two experiments are nearly identical. In the ‘expanding flow field’ 101 mm apparatus 

design, the side wall is a stagnant region and bypassing is low (80 ppi) to negligible (30-50 

ppi) even in the absence of sealing, as shown in Figure.54.  With proper wall sealing (Method 

2 using grease and paper), it can be assumed that bypassing in the 101 mm design is always 

negligible. Since there is nearly no bypassing for 101 mm filters, the agreement shown in 

Figure.58, indicates that nearly no bypassing occurred during the 49 mm filter experiments as 

well.   
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Chapter 6 

Conclusions 

The bypassing during the experiments affects the final results to a critical extent. Only the 

well-sealed procedure gave meaningful pressure gradients. Two ways were found to avoid 

bypassing in this study. The first one is use cellulose and silicon grease packed filters, as 

shown in Figure. 16. A second choice is to use filters with a larger size than the inlet and outlet 

pipes; however, in this case CFD modelling is necessary to compute the ‘effective’ flow field 

diameter in order to obtain the real relationship between fluid velocity and the measured 

pressure gradients. 

 

Different methods of calculating k1 and k2 in Equation (2) can give quite different answers. 

The ‘Method 3’ was found to give the most physically meaningful mathematical results in this 

study, i.e. the iterative procedure to first guess k1 and then correlate the remainder for k2 using 

an exponential regression. 

 

It was established that the porosities of the filters decrease consistently with increasing 

number of ppi, and that when the velocity increased the pressure drop increased even faster 

with CFF’s of higher nominal pore count (e.g. for 80 vs. 30 ppi).  

 

Forchheimer’s equation (2) was found to adequately describe the pressure drop for the CFFs 

used in this study. Both k1 and k2 values vary inversely to filter ppi. The filters with lower ppi 

proved to have lower tortuosities, which in agreement with literature 

 

By testing different filters with the same ppi, it was found that every filter has a slightly 

different k1 and k2 value. Even the filter sections cut from the same filter do not give exactly 

the same k1 and k2 values. Thus there is no specific permeability for each type of filters, only a 

range and a standard deviation can be obtained.  

 

After modifying the Forchheimer and Ergun equations, Equation (39) was obtained. This 

equation works well to predicate the pressure gradients in SIVEX
®

 filters. The average 

absolute error is only 10.7 %.  

 

It was also established that the permeability of a CFF does not change by the changing of 

fluid flow direction (at least for an incompressible fluid like water or aluminium). 
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The COMSOL
®

 2 D axial symmetric CFD model was used in this study to verify the 

experimental methods. Comparing the CFD results with the experimental data, shows a 

maximum error of only about 6.5%. It can be concluded that COMSOL
®

 can be accurately 

used to obtain filter permeability’s using the ‘expanding flow field’ design and can accurately 

simulate results for either type of apparatus, once the correct k1 and k2 values have been 

determined and programmed.  
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Chapter 7 

Further Work 

It is recommended that additional experiments should be executed to explore the change of 

pressure drop with the filter thickness. This would provide further validation that wall 

bypassing has been prevented by the current experimental procedure and also help to 

determine if the filter material is truly isotropic, for example: “Does the original outer surface 

(top and bottom) possess a different permeability than the balance of the filter?” 

 

Additional experiments should be conducted with filters produced from different suppliers 

and with the same range of ppi to validate the correlation obtained by this study, or find a 

more universal correlation suitable for all filters. 

 

Additional experiments could be conducted with a low range, 0-0.1 Bar pressure transducer, 

at low velocity (0-0.05 m/s), in order to study the Darcy and transitional regions in the greater 

detail. 
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Appendix 

Table 1 Test 1 2-30 ppi, Diameter: 48.57 mm, Thickness: 50.18 mm 

 

 

Table 2 Test 2 15-80 ppi, Diameter: 48.97 mm, Thickness: 49.77 mm 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.029 2982 6.4 1000.0 1.401E-03

0.009 823 6.7 999.9 1.388E-03

0.063 12241 7.0 999.9 1.377E-03

0.016 1598 7.3 999.9 1.367E-03

0.084 20299 7.5 999.9 1.358E-03

0.133 46710 7.7 999.9 1.352E-03

0.250 155893 7.8 999.9 1.348E-03

0.334 273426 7.9 999.9 1.344E-03

0.438 493635 7.9 999.9 1.342E-03

0.550 683574 8.6 999.8 1.316E-03

0.654 942796 8.9 999.8 1.307E-03

0.691 1071006 9.0 999.8 1.304E-03

0.425 403214 9.0 999.8 1.302E-03

0.285 191152 9.1 999.8 1.298E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.005 1067 6.9 999.9 1.383E-03

0.022 6091 7.3 999.9 1.367E-03

0.042 15132 7.5 999.9 1.357E-03

0.068 35601 7.8 999.9 1.345E-03

0.094 63438 8.1 999.9 1.336E-03

0.116 95251 8.3 999.9 1.328E-03

0.154 165072 8.4 999.9 1.324E-03

0.218 323551 8.6 999.8 1.318E-03

0.271 488434 8.7 999.8 1.314E-03

0.303 614326 8.9 999.8 1.307E-03

0.356 795660 9.0 999.8 1.303E-03

0.392 893485 9.2 999.8 1.296E-03

0.433 988171 9.5 999.8 1.284E-03

0.482 1123292 9.8 999.7 1.275E-03

0.526 1251507 9.9 999.7 1.270E-03

0.012 3893 10.2 999.7 1.261E-03

0.047 16451 10.4 999.7 1.253E-03

0.083 39055 10.5 999.7 1.248E-03

0.133 85937 10.6 999.7 1.247E-03

0.207 202557 10.7 999.7 1.242E-03
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Table 3 Test 3 14-80 ppi, Diameter: 48.82 mm, Thickness: 50.44 mm 

 
 

Table 4 Test 4 2-30 ppi, Diameter: 48.57 mm, Thickness: 50.18 mm 

 

 

Table 5 Test 5 15-80 ppi, Diameter: 48.97 mm, Thickness: 49.77 mm 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.004 2145 6.6 999.9 1.392E-03

0.030 10046 7.1 999.9 1.374E-03

0.080 38283 7.4 999.9 1.363E-03

0.121 80527 7.6 999.9 1.354E-03

0.150 124960 7.8 999.9 1.345E-03

0.199 220398 8.1 999.9 1.337E-03

0.250 333215 8.2 999.9 1.332E-03

0.304 468173 8.4 999.9 1.325E-03

0.355 597009 8.5 999.8 1.320E-03

0.400 692701 8.7 999.8 1.314E-03

0.458 800349 8.8 999.8 1.308E-03

0.511 937777 9.0 999.8 1.302E-03

0.564 1049960 9.2 999.8 1.297E-03

0.609 1132377 9.2 999.8 1.294E-03

0.634 1145321 9.4 999.8 1.286E-03

0.334 334509 9.6 999.8 1.282E-03

0.189 116546 9.7 999.8 1.278E-03

0.072 21478 9.8 999.7 1.273E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.684 1092146 6.0 1000.0 1.419E-03

0.048 7335 6.3 1000.0 1.407E-03

0.099 26821 6.5 999.9 1.396E-03

0.204 109275 6.7 999.9 1.389E-03

0.290 203839 7.1 999.9 1.373E-03

0.405 385956 7.5 999.9 1.358E-03

0.498 587554 7.7 999.9 1.350E-03

0.592 805953 8.0 999.9 1.338E-03

0.645 974158 8.2 999.9 1.332E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.311 1179700 6.9 999.9 1.381E-03

0.335 1360744 7.3 999.9 1.364E-03

0.297 1069497 7.4 999.9 1.361E-03

0.253 782618 7.6 999.9 1.354E-03

0.193 468132 7.7 999.9 1.350E-03

0.153 299258 7.9 999.9 1.342E-03

0.102 139445 8.0 999.9 1.338E-03

0.074 76229 8.2 999.9 1.331E-03

0.034 20471 8.4 999.9 1.324E-03
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Table 6 Test 6 14-80 ppi, Diameter: 48.82 mm, Thickness: 50.44 mm 

 
 

Table 7 Test 7 4-50 ppi, Diameter: 48.61 mm, Thickness: 50.60 mm 

 
 

Table8 Test 8 4-50 ppi, Diameter: 48.61 mm, Thickness: 50.60 mm 

 
 

Table 9 Test 9 18-50 ppi, Diameter: ~101 mm, Thickness: 49.58 mm 

 
 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.378 1305519 5.7 1000.0 1.431E-03

0.343 1078644 5.9 1000.0 1.421E-03

0.288 774394 6.1 1000.0 1.413E-03

0.246 570100 6.3 1000.0 1.404E-03

0.199 379939 6.5 1000.0 1.398E-03

0.135 181663 6.7 999.9 1.390E-03

0.084 75497 7.0 999.9 1.379E-03

0.033 16655 7.2 999.9 1.370E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.405 877748 6.3 1000.0 1.407E-03

0.043 13810 6.7 999.9 1.391E-03

0.118 78056 6.8 999.9 1.384E-03

0.211 242931 7.0 999.9 1.379E-03

0.285 443618 7.1 999.9 1.374E-03

0.361 692108 7.3 999.9 1.367E-03

0.483 1248950 7.5 999.9 1.360E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.449 1028147 4.5 1000.0 1.483E-03

0.055 18831 5.1 1000.0 1.455E-03

0.152 123763 5.5 1000.0 1.439E-03

0.224 257183 5.7 1000.0 1.430E-03

0.299 474541 5.9 1000.0 1.424E-03

0.370 698184 6.3 1000.0 1.406E-03

0.491 1240875 6.5 1000.0 1.399E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.393 937588 5.1 1000.0 1.454E-03

0.102 69810 5.5 1000.0 1.437E-03

0.156 156059 5.6 1000.0 1.432E-03

0.214 286174 5.8 1000.0 1.425E-03

0.284 505716 5.9 1000.0 1.421E-03

0.333 685889 6.2 1000.0 1.411E-03

0.420 1085478 6.4 1000.0 1.403E-03
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Table10 Test 10 18-50 ppi, Diameter: ~101 mm, Thickness: 49.58 mm 

 

 

Table11 Test 11 1-30 ppi, Diameter: 48.71 mm, Thickness: 50.48 mm 

 
 

Table 12 Test 12 3-50 ppi, Diameter: 48.95 mm, Thickness: 50.37 mm 

 
 

 

 

 

 

 

 

 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.366 816673 5.9 1000.0 1.422E-03

0.016 2992 6.2 1000.0 1.409E-03

0.047 15790 6.4 1000.0 1.401E-03

0.125 98103 6.6 999.9 1.391E-03

0.177 197459 6.9 999.9 1.383E-03

0.417 1074903 7.3 999.9 1.367E-03

0.372 864438 7.4 999.9 1.362E-03

0.302 572042 7.5 999.9 1.356E-03

0.242 359909 7.8 999.9 1.347E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.710 978343 6.5 1000.0 1.398E-03

0.046 5771 6.8 999.9 1.387E-03

0.117 30911 7.0 999.9 1.379E-03

0.218 99618 7.1 999.9 1.373E-03

0.325 215863 7.2 999.9 1.368E-03

0.427 375867 7.7 999.9 1.349E-03

0.523 549073 8.0 999.9 1.341E-03

0.603 690255 8.1 999.9 1.334E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.367 776197 5.7 1000.0 1.431E-03

0.022 5233 6.3 1000.0 1.406E-03

0.067 31815 6.4 1000.0 1.400E-03

0.163 171054 6.6 999.9 1.394E-03

0.229 335865 6.7 999.9 1.389E-03

0.283 503703 6.8 999.9 1.387E-03

0.417 1067479 6.9 999.9 1.381E-03

0.469 1247505 7.0 999.9 1.377E-03
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Table 13 Test 13 5-50 ppi, Diameter: 48.65 mm, Thickness: 50.43 mm 

 

 

Table 14 Test 14 6-50 ppi, Diameter: 48.86 mm, Thickness: 50.56 mm 

 

 

Table 15 Test 15 7-50 ppi, Diameter: 48.80 mm, Thickness: 50.26 mm 

 
 

 

 

 

 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.506 1152868 6.4 1000.0 1.401E-03

0.025 5251 6.9 999.9 1.383E-03

0.057 18846 7.1 999.9 1.373E-03

0.127 78605 7.3 999.9 1.366E-03

0.199 185871 7.5 999.9 1.359E-03

0.285 370994 7.6 999.9 1.355E-03

0.379 652171 7.7 999.9 1.349E-03

0.426 834240 7.9 999.9 1.343E-03

0.477 1034413 8.0 999.9 1.339E-03

0.523 1236086 8.2 999.9 1.333E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.450 1185370 5.7 1000.0 1.428E-03

0.044 15610 6.1 1000.0 1.414E-03

0.102 67181 6.3 1000.0 1.406E-03

0.185 208637 6.4 1000.0 1.400E-03

0.243 352890 6.6 999.9 1.393E-03

0.298 540831 6.8 999.9 1.385E-03

0.362 766017 7.1 999.9 1.374E-03

0.411 971166 7.2 999.9 1.368E-03

0.467 1263214 7.4 999.9 1.361E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.453 1045977 4.8 1000.0 1.468E-03

0.039 10604 5.5 1000.0 1.437E-03

0.112 69538 5.8 1000.0 1.428E-03

0.171 155384 6.0 1000.0 1.419E-03

0.246 317343 6.2 1000.0 1.409E-03

0.314 507861 6.4 1000.0 1.401E-03

0.382 746837 6.6 999.9 1.392E-03

0.507 1239343 6.8 999.9 1.386E-03
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Table 16 Test 16 8-50 ppi, Diameter: 49.37 mm, Thickness: 50.49 mm 

 

 

Table 17 Test 17 11-80 ppi, Diameter: ~48.00 mm, Thickness: 50.59 mm 

 
 

Table 18 Test 18 12-80 ppi, Diameter: 48.94 mm, Thickness: 50.07 mm 

 
 

 

 

 

 

 

 

 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.468 1039446 6.4 1000.0 1.403E-03

0.035 7550 6.7 999.9 1.389E-03

0.075 31264 6.9 999.9 1.381E-03

0.143 105264 7.2 999.9 1.370E-03

0.194 188586 7.4 999.9 1.363E-03

0.250 309131 7.5 999.9 1.358E-03

0.315 488208 7.7 999.9 1.352E-03

0.390 735226 7.8 999.9 1.348E-03

0.514 1241277 7.9 999.9 1.341E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.338 1355909 13.1 999.4 1.164E-03

0.317 1197566 13.2 999.4 1.160E-03

0.277 923720 13.3 999.4 1.158E-03

0.242 713898 13.4 999.4 1.155E-03

0.184 436260 13.6 999.3 1.151E-03

0.120 191626 13.7 999.3 1.148E-03

0.080 90628 13.9 999.3 1.141E-03

0.055 45271 14.0 999.3 1.136E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.338 1355909 13.1 999.4 1.164E-03

0.317 1197566 13.2 999.4 1.160E-03

0.277 923720 13.3 999.4 1.158E-03

0.242 713898 13.4 999.4 1.155E-03

0.184 436260 13.6 999.3 1.151E-03

0.120 191626 13.7 999.3 1.148E-03

0.080 90628 13.9 999.3 1.141E-03

0.055 45271 14.0 999.3 1.136E-03
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Table 19 Test 19 13-50 ppi, Diameter: 49.39 mm, Thickness: 49.97 mm 

 

 

Table 20 Test 20 16-80 ppi, Diameter: 48.84 mm, Thickness: 50.06 mm 

 

 

Table 21 Test 21 17-50 ppi, Diameter: 49.12 mm, Thickness: 50.41 mm 

 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.504 1264101 6.3 1000.0 1.406E-03

0.454 1022439 6.5 1000.0 1.399E-03

0.405 804974 6.6 999.9 1.395E-03

0.310 490138 6.7 999.9 1.388E-03

0.262 350434 7.0 999.9 1.379E-03

0.179 166969 7.1 999.9 1.375E-03

0.139 100367 7.3 999.9 1.366E-03

0.034 8313 7.4 999.9 1.361E-03

0.083 39380 7.6 999.9 1.355E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.356 926569 7.1 999.9 1.376E-03

0.427 1318887 7.8 999.9 1.345E-03

0.368 1012900 8.1 999.9 1.336E-03

0.330 820307 8.2 999.9 1.332E-03

0.257 504143 8.4 999.9 1.326E-03

0.208 369229 8.4 999.8 1.323E-03

0.156 196134 8.5 999.8 1.320E-03

0.095 84645 8.7 999.8 1.312E-03

0.036 16075 8.7 999.8 1.312E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.488 1157648 9.9 999.7 1.271E-03

0.507 1257931 10.4 999.7 1.253E-03

0.434 902559 10.5 999.7 1.248E-03

0.383 700781 10.6 999.7 1.246E-03

0.332 526432 10.7 999.7 1.242E-03

0.276 374688 10.8 999.7 1.239E-03

0.224 247365 10.9 999.6 1.235E-03

0.197 192677 11.0 999.6 1.231E-03

0.140 100579 11.2 999.6 1.227E-03

0.052 15443 11.3 999.6 1.222E-03
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Table 22 Test 22 17-50 ppi, Diameter: 49.12 mm, Thickness: 50.41 mm (opposite direction) 

 
 

Table 23 Test 23 19-30 ppi, Diameter: ~101 mm, Thickness: 50.65 mm 

 
 

Table 24 Test 24 20-40 ppi, Diameter: ~101 mm, Thickness: 47.65 mm 

 

 

 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.313 491832 9.9 999.7 0.00127

0.246 304892 10.1 999.7 0.00126

0.185 169788 10.3 999.7 0.00126

0.136 95532 10.5 999.7 0.00125

0.083 39229 10.6 999.7 0.00125

0.052 16488 10.8 999.7 0.00124

0.426 866361 11.5 999.6 0.00122

0.366 637771 11.6 999.6 0.00121

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.031 2723 6.6 999.9 1.393E-03

0.074 11712 6.7 999.9 1.389E-03

0.156 50272 6.9 999.9 1.380E-03

0.242 116462 7.1 999.9 1.374E-03

0.343 233955 7.3 999.9 1.368E-03

0.445 386486 7.4 999.9 1.362E-03

0.610 735607 7.6 999.9 1.354E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.408 501847 5.1 1000.0 1.456E-03

0.020 2179 5.5 1000.0 1.436E-03

0.093 28841 5.6 1000.0 1.435E-03

0.167 86720 5.8 1000.0 1.428E-03

0.249 187764 5.9 1000.0 1.421E-03

0.326 324686 6.0 1000.0 1.417E-03

0.396 485160 6.2 1000.0 1.411E-03

0.466 684740 6.2 1000.0 1.410E-03

0.511 822209 6.3 1000.0 1.405E-03

0.539 920699 6.5 1000.0 1.399E-03
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Table 25 Test 25 21-80 ppi, Diameter: ~101 mm, Thickness: 50.31 mm 

 

 

Table 26 Test 26 18-50 ppi, Diameter: 49.15 mm, Thickness: 49.58 mm 

 

 

Table 27 Test 27 19-30 ppi, Diameter: 48.67 mm, Thickness: 50.65 mm 

 

 

 

 

 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.295 948953 7.0 999.9 1.378E-03

0.021 9916 7.3 999.9 1.365E-03

0.058 46158 7.5 999.9 1.358E-03

0.091 101936 7.7 999.9 1.352E-03

0.137 217300 7.7 999.9 1.349E-03

0.195 428441 7.8 999.9 1.347E-03

0.236 621747 7.9 999.9 1.342E-03

0.314 1088535 8.0 999.9 1.339E-03

0.326 1181713 8.2 999.9 1.331E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.434 1194904 6.3 1000.0 1.404E-03

0.460 1310433 6.6 999.9 1.395E-03

0.402 1008834 6.7 999.9 1.389E-03

0.341 726048 6.8 999.9 1.384E-03

0.265 445758 7.0 999.9 1.378E-03

0.204 268844 7.1 999.9 1.375E-03

0.172 193182 7.2 999.9 1.368E-03

0.097 65509 7.5 999.9 1.360E-03

0.055 23185 7.6 999.9 1.352E-03

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.637 807100 7.4 999.9 1.361E-03

0.769 1083791 7.9 999.9 1.343E-03

0.719 940447 8.0 999.9 1.338E-03

0.529 519563 8.2 999.9 1.333E-03

0.416 325407 8.3 999.9 1.329E-03

0.273 142851 8.4 999.9 1.324E-03

0.173 60003 8.6 999.8 1.317E-03

0.110 25014 8.7 999.8 1.314E-03

0.057 7345 8.9 999.8 1.307E-03
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Table 28 Test 28 21-80 ppi, Diameter: 49.08 mm, Thickness: 50.31 mm 

 

 

Table 29 Comparison of Experimental Data and CFD Results for Test 26, 22-30 ppi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Velocity (m/s) Pressure Drop (Pa/m) Temperature (
o
C) Density (kg/m

3
) Viscosity (kg/m.s)

0.380 1379323 5.8 1000.0 1.427E-03

0.384 1382511 5.9 1000.0 1.423E-03

0.351 1172774 6.1 1000.0 1.415E-03

0.311 942852 6.1 1000.0 1.414E-03

0.262 629565 5.9 1000.0 1.423E-03

0.198 372652 6.0 1000.0 1.419E-03

0.131 174497 6.1 1000.0 1.414E-03

0.091 88998 6.2 1000.0 1.409E-03

0.036 19485 6.5 1000.0 1.398E-03

0.066 50886 6.8 999.9 1.385E-03

Experiment COMSOL

Velocity Pressure Drop Pressure Drop Error

(m/s) (Pa/m) (Pa/m) %

0.637 807100 754821 6.48

0.769 1083791 1095682 1.10

0.719 940447 959122 1.99

0.529 519563 524132 0.88

0.416 325407 326559 0.35

0.273 142851 143441 0.41

0.173 60003 59490 0.85

0.110 25014 25127 0.45

0.057 7345 7413 0.92
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Table 30 Comparison of Experimental Data and CFD Results for Test 27, 23-50 ppi 

 

 

Table 31 Comparison of Experiment Data and CFD Results for Test 28, 24-80 ppi 

 

 

 

 

 

 

 

 

 

 

Superficial Experiment COMSOL

Velocity Pressure Drop Pressure Drop Error

(m/s) (Pa/m) (Pa/m) %

0.434 1194904 1164648 2.53

0.460 1310433 1302957 0.57

0.402 1008834 1001339 0.74

0.341 726048 726148 0.01

0.265 445758 444351 0.32

0.204 268844 267871 0.36

0.172 193182 192433 0.39

0.097 65509 65689 0.27

0.055 23185 23182 0.01

Superficial Experiment COMSOL

Velocity Pressure Drop Pressure Drop Error

(m/s) (Pa/m) (Pa/m) %

0.380 1379323 1327725 3.74

0.384 1382511 1349328 2.40

0.351 1172774 1136270 3.11

0.311 942852 898688 4.68

0.262 629565 649598 3.18

0.198 372652 382152 2.55

0.131 174497 178352 2.21

0.091 88998 91165 2.43

0.036 19485 18744 3.80

0.066 50886 51944 2.08
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Table 32 Comparison of Experiment Data and CFD Results for Test 23, 18-30 ppi 

 
 

Table 33 Comparison of Experimental Data and CFD Results for Test 24, 19-40 ppi 

 

 

 

 

 

 

 

 

 

 

 

 

 

Superficial Experiment COMSOL

Velocity Pressure Drop Pressure Drop Error

(m/s) (Pa/m) (Pa/m) %

0.031 2723 2622 3.74

0.074 11712 12253 4.62

0.156 50272 49979 0.58

0.242 116462 116984 0.45

0.343 233955 231887 0.88

0.445 386486 387781 0.34

0.610 735607 722911 1.73

Superficial Experiment COMSOL

Velocity Pressure Drop Pressure Drop Error

(m/s) (Pa/m) (Pa/m) %

0.408 501847 519931 3.60

0.020 2179 2110 3.17

0.093 28841 30466 5.63

0.167 86720 91433 5.44

0.249 187764 197494 5.18

0.326 324686 335006 3.18

0.396 485160 488576 0.70

0.466 684740 674114 1.55

0.511 822209 809295 1.57

0.539 920699 896728 2.60
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Table 34 Comparison of Experimental Data and CFD Results for Test 9, 20-50 ppi 

 

 

Table 35 Comparison of Experimental Data and CFD Results for Test 25, 21-80 ppi 

 

Superficial Experiment COMSOL

Velocity Pressure Drop Pressure Drop Error

(m/s) (Pa/m) (Pa/m) %

0.393 937588 953351 1.68

0.102 69810 70079 0.39

0.156 156059 157832 1.14

0.214 286174 290568 1.54

0.284 505716 504841 0.17

0.333 685889 687470 0.23

0.420 1085478 1086506 0.09

Superficial Experiment COMSOL

Velocity Pressure Drop Pressure Drop Error

(m/s) (Pa/m) (Pa/m) %

0.295 948953 966568 1.86

0.021 9916 9539 3.80

0.058 46158 48690 5.49

0.091 101936 106651 4.63

0.137 217300 225474 3.76

0.195 428441 437538 2.12

0.236 621747 629214 1.20

0.314 1088535 1088436 0.01

0.326 1181713 1173106 0.73
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