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Abstract: This paper presents a reconfigurable nonlinear model predictive control (NMPC)
scheme for handling of incipient actuator faults in nonlinear plants. The scheme seeks to
ensure recoverability from an incipient actuator fault in plants where the input redundancy
is insufficient to stabilize the faulty system at the nominal operating point, thereby requiring
transition to a safe control-invariant set. To this end, the proposed scheme takes into account
an estimate of the decrease in remaining actuator capacity from the time of detection of an
incipient actuator fault, and minimizes the required control input to steer the plant to the safe
set. We provide conditions for stability and fault recoverability of the proposed scheme, and
demonstrate its applicability on a numerical example with two CSTRs in series.
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1. INTRODUCTION

Model predictive control (MPC) has emerged as an at-
tractive control scheme for embedding fault tolerance,
from its ability to both optimize performance of complex
constrained systems while accommodating system faults
through online adaptation of the internal MPC model
(Maciejowski, 1999). While several robust, passive fault-
tolerant MPC (FTMPC) approaches have been devel-
oped, e.g. Maciejowski (1999), the majority of FTMPC
schemes belong to the class of active (reconfigurable)
fault-tolerant control (FTC) schemes. A variety of active
FTMPC schemes have been developed to handle actuator
and system faults, e.g. Yetendje et al. (2013); Franzè et al.
(2015); Knudsen (2016), and sensor faults (Yetendje et al.,
2010; Xu et al., 2014; Knudsen et al., 2016).

While fault accommodation through online reconfigura-
tion makes MPC attractive for FTC, there are many
systems with structures or control policies that impede
such simple reactive fault accommodation: An NMPC con-
troller may require availability of a sufficient control input
in order to robustly operate a plant in a small region about
the nominal steady state. If an actuator fails or the input
capacity decreases, then a small disturbance may cause a
finite time escape of some of the plant’s states. An example
of the latter is process systems with exothermic reactions,
where it is often desirable to operate the plant at an
unstable steady state to achieve sufficient conversion rates
while avoiding high temperatures (El-Farra et al., 2005).
Moreover, economic operation of a plant, e.g. through

economic MPC, tends to drive the system close to the
boundary of the feasible region (Lucia et al., 2014), in
which an actuator fault may reduce the MPC feasible
region and hence cause constraint violations.

Guaranteeing recoverability from an actuator fault for
an NMPC controlled plant may require a high degree
of control-input redundancy, or operation of the plant a
conservative state that warrants recovery from any fault
scenario. As an alternative, several preventive or proactive
FTMPC schemes have been proposed (Lao et al., 2013;
Bø and Johansen, 2014; Knudsen, 2016; Albalawi et al.,
2016). Proactive FTMPC schemes seek to enable a plant
to operate in nominal mode, relying on a fault detection
and isolation (FDI) unit to be designed so as to detect
sufficiently early the onset of an incipient fault, upon
which the FTMPC controller proactively steers the plant
to a safe set or steady state. These schemes, however,
as well as the related reactive safe-parking schemes, e.g.
Amui and Mhaskar (2009), all assume sufficient remaining
controllability of the healthy actuators to steer the plant
to the safe set or steady state. Yet, such safe transition of
the operating point of a plant may require using the faulty
actuator, in which the controller must take into account
the gradual decrease in remaining available input capacity.

In this paper, we propose a fault-tolerant NMPC (FTN-
MPC) scheme that takes into account a gradual decreasing
input-capacity resulting from an incipient actuator fault.
The main contribution is the design of a reconfigurable,
stabilizing NMPC scheme for plants that require using



the faulty actuator in order to steer the plant from a
nominal setpoint to a safe park. The remainder of the
paper is structured as follows: In Section 2 we present
the system and problem structure. Section 3 describes the
design of the proposed FTNMPC scheme, with stability
properties described in Section 4. In Section 5, we illustrate
the proposed scheme through simulations of a two-series
CSTR. Section 6 ends the paper with concluding remarks.

2. PROBLEM STATEMENT

2.1 System Description

In this paper, we consider nonlinear discrete-time systems

xk+1 = f(xk, uk), (1)

where xk ∈ Rnx is the state of the system, uk ∈ Rnu

with nu > 1, the input, and where f : Rnx × Rnu 7→ Rnx

is twice continuously differentiable. We denote the set
I := {1, . . . , nu} as the set of inputs for (1). The control of
the plant described by (1) is subject to state constraints,

xk ∈ X ⊆ Rn, (2)

and input box constraints of the form

−ū ≤ uk ≤ ū, (3)

where ū ∈ Rm is a vector of capacity constraints on the
inputs. The set X is assumed compact and time invariant.
We denote x(t) as the state of the system at time t, and we
assume that the full state can be measured. Furthermore,
we use k ∈ Z[a,b] to denote the discrete time-index for the
predictions, where Z is the set of integers on the interval
[a, b]. During nominally conditions, we assume that the
system (1) is stabilized at a feasible steady state (xs, us) by
a nominal NMPC controller, see e.g. Mayne et al. (2000).
Consequently, we focus in the sequel on the formulation
and design of the FTNMPC scheme.

2.2 Problem Description

We consider the problem of stabilizing the plant described
by (1) subject to an incipient fault in actuator uj j ∈ I.
Incipient faults, in contrast to abrupt step-wise faults, are
characterized by slowly developing performance degrada-
tion of the faulty component. This performance degra-
dation can be described by a time profile (or decrease
function) (Zhang et al., 2002) which we will denote as
ψ(t, tfa) ∈ [0, 1]. As we focus on the design of an NMPC
controller that properly accommodates an incipient actu-
ator fault, we make the following fault-detectability as-
sumption:

Assumption 1. At time tfa (fault alarm), an FDI unit
detects the onset of an incipient fault in actuator uj , j ∈ I,

and provides a worst-case estimate ψ̂(t, tfa) ≤ ψ(t, tfa),

with ψ̂ : t 7→ R monotonically decreasing, of the decrease
in remaining capacity of the faulty actuator. The incipient
fault occurs in one control input only.

For incorporation in a discrete-time NMPC formulation,

we denote ψ̂t+k as the discrete-time values of the estimate

ψ̂(t, tfa) predicted k timesteps ahead from time t. The
time profile of incipient faults, and hence the decrease in
remaining actuator capacity, is often modeled as exponen-
tial relations, see e.g. Zhang et al. (2002); Demetriou and

Polycarpou (1998). Other models may also be considered,
including linear and Sigmoidal profiles, as well as proba-
bilistic approaches (Salfner, 2007).

The decreasing capacity of actuator j naturally affects the
input box constraints (3). Let Θk ∈ Rm×m be a time-
dependent matrix defined as

Θk = diag
([

1, . . . , 1, ψ̂t+k, 1, . . . , 1
])
, (4)

i.e. with element Θkjj equal to ψ̂t+k. The reduced input
capacity of actuator j can then be simply incorporated by
modifying (3) as

−Θkū ≤ uk ≤ Θkū. (5)

Remark 1. Note that instead of (5), we may define

uk := Θkũk, (6)

and equivalently characterize the reduced input capacity
by modifying the plant model and input box constraints
as

xk+1 = f(xk,Θkũk), (7)

−ū ≤ ũk ≤ ū. (8)

This latter form is particularly useful for detection of
incipient faults, as it enables the use of parameter esti-
mation techniques or dedicated observer schemes for fault
diagnosis. For methods on diagnosis of incipient actuator
faults, see e.g. Demetriou and Polycarpou (1998); Zhang
et al. (2002); Armaou and Demetriou (2008). We further

note that one way of obtaining an estimate ψ̂(t, tfa) is
through parameter estimation on past input data in a time
window prior to the time of fault alarm tfa.

As discussed in Section 1, conventional reactive FTNMPC
schemes may fail in recovering a plant from an actuator
fault if the faulty system looses stabilizability at the
current operating point. This motivates the following
problem definition:

Problem 1. Upon detection of an incipient fault in actua-
tor j, stabilize the system (1) at a given safe steady state
xsafe
s ∈ Xsafe

f , where Xsafe
f is a safety set for (1), taking

explicitly into account the remaining capacity of the faulty
actuator.

3. PROPOSED FTNMPC SCHEME

In order to accommodate the incipient fault in actuator j,
we resort to a switching of operation mode from a nominal
to a safe-transition NMPC controller. The appropriate
control action for steering the system from xs to the safety
set Xsafe

f lends itself to a trade-off between the control effort
and transition time. Using a large control input decreases
the transition time to Xsafe

f , which in the extreme case
resorts to minimum-time control. On the other hand, using
the control input aggressively may cause additional dam-
age to the faulty actuator, thereby advancing the complete
failure of the actuator. Minimizing the control input of
the faulty actuator in a safe-transition to a safety set thus
alleviates the danger of sudden actuator breakdown. Con-
sequently, the NMPC safe-transition mode should enable
optimization of the desired control action as a function
of the characteristics of the incipient fault such as the
observed decrease of actuator capacity at the time of
detection and operation time of the faulty component.



While safety sets for (1) may be formulated based on
known properties of the plant or through the maximum
controlled invariant set with the faulty actuator inactive,
such safety sets may be computationally intractable for
nonlinear models or difficult to prove invariant. To for-
mulate a generic safety set, we thus propose to impose the
safety set Xsafe

f through computation of an NMPC terminal
constraint set. To this end, we first precompute a shifted
steady-state xsafe

s by solving the steady-state problem

(xsafe
s , usafe

s ) = arg min{g(x, u) | x = f(x, u), x ∈ X,
− ūi ≤ ui ≤ ūi,∀i ∈ I \ j, uj = 0}, (9)

where g(x, u) is some, typically economic, performance
measure of the plant set by a supervisory level, seeking
to preserve a minimum level of economic performance
when operating the plant inside the safety set of the faulty
actuator. We assume that the plant described by (1)–(3)
admits a steady state pair (xsafe

s , usafe
s ) with uj = 0, and

that xsafe
s is in the interior of X with −ū < usafe

s < ū.
Observe that we must compute the solution to (9) for
each set of actuator fault-scenarios, however, by an offline
procedure. Note also that by Assumption 1, we restrict our
study to single actuator faults.

To steer the plant into the safety set Xsafe
f by means of

the provided estimate of remaining input capacity, we
update the setpoints and switch from the nominal NMPC
controller to solving the safe-transition problem P safe(x, t):

V safe
N (x, t) = min

x,u,ξ,γ

N−1∑
k=0

l(xk − xsafe
s , u− usafe

s )

+
1

2

(
ργγ

2 + ρξξ
2
0

)
+ V safe

f (xN − xsafe
s )

(10a)

s.t. xk+1 = f(xk, uk), k ∈ Z[0,N−1], (10b)

x0 = x(t), (10c)

xk ∈ X, k ∈ Z[0,N−1], (10d)

−ūi ≤ uik ≤ ūi, ∀i ∈ I \ j, k ∈ Z[0,N−1], (10e)

|ujk| ≤ ūjξkψ̂t+k, k ∈ Z[0,N−1], (10f)

ξk+1 ≤ γξk, k ∈ Z[0,N−1], (10g)

0 ≤ ξk ≤ 1, k ∈ Z[0,N ] (10h)

0 ≤ γ ≤ 1, (10i)

xN ∈ Xsafe
f . (10j)

In (10), l(x, u) := 1
2 ||x| |

2
Q + 1

2 ||x| |
2
R is a quadratic stage

cost with positive definite matrices Q and R, ξk ∈ R are
auxiliary variables for penalizing the input usage, required
through (10g) to be exponentially decreasing, while the
nonnegative variable γ ∈ R controls the decrease rate
in use of uj . By including the term 1/2(ργγ

2 + ρξξ
2
0) in

(10a), where ργ ≥ 0 and ρξ ≥ 0 are tuning parameters,
we enable tuning with respect to the trade-off between
short transition time or low input usage. In particular,
P safe(x, t) enables a safe-transition control policy that
assures the plant to be steered to a safe set Xsafe

f within
the prediction horizon, while at the same time optimizing
on the exponential decay constant γ and the margin ξ0 to
the current remaining capacity of the faulty actuator. The
values of ργ and ρξ would normally be set by a supervisory
level as a function the severity and time of detection of the

incipient fault. Observe that by Assumption 1, ψ̂t+k is a

worst-case decrease of the remaining capacity of actuator
j, and that this estimate is kept constant and only shifted
forward in time in P safe(x, t).

3.1 Terminal Safety Set

In order for P safe(x, t) to stabilize the faulty system at the
safe steady state xsafe

s , we must construct an appropriate
terminal set Xsafe

f and terminal cost V safe
f (·). To ease this

design, we make a change of coordinates,

z = x− xsafe
s , (11a)

v = u− usafe
s , (11b)

from which we redefine the plant dynamics (1) as

zk+1 = f
(
zk + xsafe

s , vk + usafe
s

)
− xsafe

s ,

:= f̄(zk, vk),
(12)

such that f̄(0, 0) = 0. The state and input constraints
are updated accordingly, where we denote X̄ and v̄ as
the shifted state and input box-constraints, respectively.
Moreover, for notational convenience, we define a modified
stage cost

l̄ (z, v, γ, ξ0) := l(z, v) +
ρ

N − 1
(γ2 + ξ2

0), (13)

with l̄(0, 0, 0, 0) = 0. For the design of the terminal set, we
invoke the following stabilizability assumption:

Assumption 2. The pair (A,Bf
j) of the linearized system

zk+1 = Azk + Bf
jvk is stabilizable, where A = ∂f̄

∂z (0, 0)

and Bf
j = B · diag([1, 1, . . . , βj , 1, . . . , 1]), with βj = 0 and

B = ∂f̄
∂v (0, 0). Furthermore, f̄(·, ·) is twice continuously

differentiable.

This latter assumption enables construction of a linear
state-feedback controller vk = Kjzk that exponentially
stabilizes the linearized system zk+1 = (A + Bf

jKj)zk.
Observe that Kj sets the faulty input to 0. By ensuring
that the terminal cost V safe

f (·) satisfies

V safe
f (f̄(z,Kjz), t)− V safe

f (z, t) ≤ −l̄(z,Kjz, 0, 0),

∀z ∈ X̄safe
f , (14)

and choosing X̄safe
f ⊂ X̄ with 0 ∈ X̄safe

f as a suitable
ellipsoidal level set of V safe

f (·),

X̄safe
f :=

{
z ∈ Rn

∣∣∣∣ 1

2
z′Pz ≤ α

}
, (15)

where α is a positive constant and P a positive definite
matrix, we can assure that the linear state feedback vk =
Kjzk stabilizes the origin of the closed-loop system zk+1 =
f̄(zk,Kjzk) inside X̄safe

f . By designing X̄safe
f as a level set of

V safe
f (·), we further assure that X̄safe

f is positively invariant
under the control law vk = Kjzk (Mayne et al., 2000). To
design the terminal set X̄safe

f and cost V safe
f (·) that satisfies

(14) and (15), we adopt a discrete-time variant of Chen
and Allgöwer (1998) as outlined in Johansen (2004), with
an iterative procedure for computing a value of α that
satisfies (14).

It is worth pointing out that while we do not necessarily
have sufficient actuator redundancy to stabilize the faulty
system at the nominal equilibrium point, we require the
system to be stabilizable by the nu − 1 healthy actuators
at the safe steady state.



4. PROPERTIES OF PROPOSED FTNMPC SCHEME

In this section, we establish conditions for stability and
recursive feasibility of P safe(x, t), using the translated
system (12). To this end, we denote zs = xs − xsafe

s as
the nominal steady state in the translated system.

For the safe-transition problem P safe(x, t), the following
nominal stability property holds:

Theorem 3. (Stability of safe steady state).
If

(i) Assumption 1 and 2 hold.
(ii) P safe(x, t) is feasible at time tfa.

Then P safe(x, t) is recursively feasible, and (xsafe
s , usafe

s ) is
a locally asymptotic stable steady state of the closed-loop
system under the safe-transition NMPC control law.

Proof. Feasibility of P safe(x, t) at time tfa implies reach-
ability of X̄safe

f from zs. Within X̄safe
f , the linear feedback

v = Kjz with ξk = 0 is admissible for problem P safe(x).
By Assumption 1, then at time tfa + 1, the optimal input
sequence {v0, v1, . . . , vN−1}, shifted one step ahead and
appended with KjzN satisfies the shifted time-varying

input constraints |vjk| ≤ ξkv̄jψ̂t+1+k, since Kj is designed
with vj = uj = 0, ensuring that KjzN is feasible with
ξN = 0. Similarly, the sequence {ξ0, ξ, . . . , ξN−1, ξN} com-
puted at time tfa shifted one step ahead and appended with
0 is feasible for P safe(x) at time tfa + 1. The monotonicity

assumption of ψ̂ with the required exponential decrease
of ξk assures that the optimal decay rate γ computed
at time tfa is also feasible at time tfa + 1. Hence, using
standard arguments, the construction of the positively
invariant terminal region X̄safe

f implies recursive feasibility

of P safe(x, t), cf. Chen and Allgöwer (1998, Lm. 2).

For stability, we first note that V safe
f (·) and X̄safe

f are
by design time invariant, X̄safe

f contains the origin in
its interior, and l̄(·) is convex with l̄(0, 0, 0, 0) = 0.
Furthermore, the additional variables γ and ξ0 in the
stage cost are both bounded, and can be considered as
additional input variables to v. Inside X̄safe

f , γ = 0 and
ξk = 0,∀k ∈ Z[0,N ] is feasible. By Assumption 2, V safe

f (·)
can be bounded above by a class K function in X̄safe

f .
Moreover, if P safe(x) is feasible at time tfa, the cost of
steering the system from zs to X̄safe

f is bounded. We can
thus apply Prop. 2.35 of Rawlings and Mayne (2009) to
establish time independent lower and upper bounds on the
optimal cost V safe

N (x, t) by class K functions. This ensures
that V safe

N (x, t) satisfies a value function also in the time-
varying case, as well as by design of the terminal cost
and constraints, satisfies a Lyapunov-like cost decrease.
Hence, we can by Th. 2.37, p.131 in Rawlings and Mayne
(2009), conclude asymptotic stability of the origin for the
translated closed-loop system under the NMPC control
law, and hence for (xsafe

s , usafe
s ) by (11). 2

Observe that solving (9) does not necessarily render a
steady state with a stabilizable linearization as defined
in Assumption 2. This must be checked a posteriori and,
if necessary, with tightening of the state and input con-
straints in (9) in order to achieve a stabilizable lineariza-
tion around (xsafe

s , usafe
s ). Furthermore, one may encounter

situations where (xsafe
s , usafe

s ) and (xs, us) coincide, that
is, the nominal steady state is actually optimal and safe
stabilizable with uj = 0.

The following proposition follows from Theorem 3.

Proposition 4. (Fault recoverability). The NMPC prob-
lem P safe(x, t) solved on a receding horizon with X̄safe

f and
V safe

f (·) described in Section 3.1 solves Problem 1.

Remark 5. Infeasibility of P safe(x, t) at time tfa implies a
failure of the proposed FTNMPC scheme in stabilizing the
faulty system. That is, the fault-tolerant controller fails in
preventing a fault from developing into an actuator failure.
In this case, some emergency mode must be activated.

Remark 6. For abrupt-like faults, ψ(t, tfa) approaches or is
equal to the unit step function. The proposed framework
also covers this scenario, leaving ξk = 0 and γ = 0,
with conditions for stability and fault recoverabilty equal
to Theorem 3. However, while we consider fault recovery
that explicitly requires use of the faulty actuator, fault
recoverability by P safe(x, t) from abrupt fault depends on
whether the plant actually can be stabilized at xsafe

s by
means of the healthy inputs only.

5. NUMERICAL EXAMPLE

Coolant in

CSTR 1

Coolant out

F0, T0, CA0

Coolant in
Coolant out

F1, T1, CA1

T2, CA2

F3, T03, CA03

CSTR 2

Fig. 1. Illustration of two CSTRs in series.

To illustrate the proposed FTNMPC controller, we con-
sider an example with two non-isothermal continuous
stirred-tank reactors (CSTRs) in series, adopted from El-
Farra et al. (2005). The interconnections of the two CSTRs
are illustrated in Fig. 1. In each CSTR, three parallel
irreversible elementary exothermic reactions of the form

A
k1−→ B, A

k2−→ U and A
k3−→ R take place, where A

is the reactant and B is the desired product. U and R
are undesired byproducts. Individual jackets are used to
remove heat from or supply heat to each reactor. We as-
sume that the temperature and composition of the CSTRs
are uniform. The feed to CSTR 1 consists of pure A at a
flow rate F0, molar concentration CA0, and temperature
T0, while the feed to CSTR 2 consists of the output
from CSTR 1, together with an additional fresh stream
feeding pure A at flow rate F3, molar concentration CA03,
and temperature T03. The resulting interconnected CSTR
model reads

dT1

dt
=
F0

V1
(T0 − T1)

+

3∑
i=1

(−∆Hi)

ρcp
ri(CA1, T1) +

Q1

ρcpV1
,

(16a)
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Fig. 2. Closed loop states of the proposed FTNMPC
scheme applied to (16) with small (dashed lines) and
large (solid lines) values for ργ and ρξ, respectively.

dCA1

dt
=
F0

V1
(CA0 − CA1)−

3∑
i=1

ri(CA1, T1), (16b)

dT2

dt
=
F1

V2
(T1 − T2) +

F3

V2
(T03 − T2)

+

3∑
i=1

(−∆Hi)

ρcp
ri(CA2, T2) +

Q2

ρcpV2
,

(16c)

dCA2

dt
=
F1

V2
(CA1 − CA2) +

F3

V2
(CA03 − CA2)

−
3∑
i=1

ri(CA2, T2),

(16d)

where

ri(CAd, Td) = ki0e
− Ei

RTd CAd, d = 1, 2 (17)

are the reaction rates. The inputs of (16) are the jacket
heat rates, ui = Qi for i = 1, 2, with available control
energy |Q1| ≤ Q̄1 = 2.7× 103 kJ/h and |Q2| ≤ Q̄2 = 2.8×
103 kJ/h. For numerical values of the parameters in(16),
we refer the reader to El-Farra et al. (2005).

The CSTR model (16) is discretized in time using the
backward Euler method. We initialize the system at
the nominal steady-state xs = (T1s, CA1s, T2s, CA2s) =
(463.71, 3.24, 410.00, 2.93), which is an unstable steady
state for CSTR 1 while stable for CSTR 2, and assume that
the control system receives a warning about an incipient
fault in actuator u1 = Q1 at tfa = 1 min. To compute
xsafe
s through (9), we set the economic objective g(x, u) =

−
∑2
d=1 r1(CAd, Td), that is, we compute xsafe

s as a steady
state where the reaction rates of the desired product B
can be safely maximized with Q1 = 0. This approach
yields xsafe

s,j = (300.17, 3.99, 394.00, 3.38), which is verified
to be a stabilizable steady state for (16) with Q1 = 0. We
implement the NMPC in GAMS, using IPOPT (Wächter
and Biegler, 2005) with a prediction horizon of N = 150
(i.e. 9 min) and a sampling time of 3.6s to solve the NLPs.
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Fig. 3. Control inputs with an incipient fault in the cooling
for CSTR 1. The dashed lines shows the simulation
with small values for ργ and ρξ, while the solid lines
shows simulations with corresponding large values for
ργ and ρξ. The time decrease-profile of the faulty
actuator is shown with a cyan dashed-dotted line.

In the considered example, incipient actuator faults take
may place include a slowly decrease in available cool-
ing/heating capacities due to leakages in the jacket sys-
tem, and fouling in the jacket control-valves. For the
simulations, we consider a scenario where an incipient
fault is detected the first reactor when 70% of the heat-
rate of capacity Q1 is remaining. Following Zhang et al.
(2002), we further assume that the worst-case estimate
of the reaming cooling capacity can be characterized by

ψ̂t = µ1e
−µ2(t−tfa), with µ1 = 0.7 and µ2 = 0.02. For

the terminal set and cost described in Section 3.1, we
compute Kj as the LQR optimal gain matrix and P from
the associated Lyapunov equation for the linearized closed-
loop system, see Chen and Allgöwer (1998) and Rawlings
and Mayne (2009, Ch. 2.6) for details.

Fig. 2 and 3 show the states and inputs for (16) from
simulations of the FTNMPC scheme with two sets of
values for ργ and ρξ. Imposing large values for ργ and ρξ is
seen to render a cautious use of the faulty control input Q1

with a large margin ξ0 to Q̄1ψ̂t. In comparison, imposing
small values to ργ and ρξ causes a more aggressive use
of the faulty actuator with an input for a short time-
window equal or close to the estimate of the decrease in
cooling capacity. This trade-off in utilization of the faulty
actuator is clearly reflected in the transition time of T1

from nominal to safe steady-state, seen in the upper-left
plot of Fig. 2. Note that the slow concentration dynamics
are less affected by the aggressive and cautious usage of
the faulty input, respectively.

For the two CSTRs (16) in series, an abrupt fault in the
jacket for CSTR 1 with a conventional reactive FTNMPC
strategy (see e.g. Yetendje et al. (2013)), where the internal
NMPC model is updated first after the fault occurs, would
destabilize the plant. To illustrate this, we show in Fig. 4
a simulation where the cooling Q1 is rendered completely
useless after time t = 1 min. As Q1 at nominal steady state
is 0, cf. Fig 3, the plant remains at xs, while the controller
is unable to steer the plant xsafe

s since the stabilizability of
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Fig. 4. Simulation of an abrupt fault in the cooling of
CSTR 1 with a reactive FTNMPC scheme.

CSTR 1 is lost. For the purpose of illustration, we add a
small disturbance to the plant after t = 4 min, which is
seen to eventually cause a runaway of the temperature T1.
This highlights the necessity for this application to detect
an incipient actuator fault sufficiently early, and transfer
the plant to a safe steady state.

6. CONCLUDING REMARKS

This paper has presented an FTNMPC scheme for han-
dling of incipient actuator faults in nonlinear plants, where
stabilization of the faulty plant requires a safe transition
with use of the faulty actuator. The proposed scheme can
efficiently complement existing FTC schemes for nonlinear
plants. The proposed framework naturally lends itself to
an extension with a probabilistic approach for explicitly
incorporating uncertainty in the decrease function of the
faulty actuator.

7. ACKNOWLEDGMENT

BRK and BF gratefully acknowledges financial support
from Cybernetica AS. TF thanks the Baden-Württemberg
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