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Abstract

We present an adaptive dual model predictive controller (dmpc) that uses current and future parameter-estimate errors
to minimize expected output error by optimally combining probing for uncertainty reduction with control of the nominal
model. Our novel approach relies on orthonormal basis-function models to derive expressions for the predicted distributions
for the output and unknown parameters, conditional on the future input sequence. Propagating the exact future statistics
enables reformulating the original stochastic problem into a deterministic equivalent that illustrates the dual nature of
the optimal control but is nonlinear and nonconvex. We further reformulate the nonlinear deterministic problem to pose
an equivalent quadratically-constrained quadratic-programming (qcqp) problem that state-of-the-art algorithms can solve
efficiently, providing the exact solution to the probabilistically constrained finite-horizon dual control problem. The adaptive
dmpc solves this qcqp at each sampling time on a receding horizon; the adaptation is a result of updating the parameter
estimates used by the dmpc to decide the control input. The paper demonstrates the application of dmpc to a single-input
single-output (siso) system with unknown parameters. In the simulation example, the parameter estimates converge quickly
and the probing vanishes with increasing accuracy and precision of the estimates, improving the future control performance.

Key words: Dual control; model predictive control; adaptive control; optimal control; stochastic control; probabilistic
constraints; parameter estimation; system identification; excitation; active learning.

1 Introduction
This paper addresses the problem of optimal control and
learning in the context of stochastic systems and models
with stochastic parametric uncertainty and probabilis-
tic constraints. Dual control, as introduced by Feldbaum
(1961), is the optimal control under decision-relevant,
reducible uncertainty. Dual control problems include the
mechanisms for both control and learning in the formu-
lation, and the solution optimally incorporates both as-
pects in the input to the process.
Using data to progressively reduce uncertainty is of-

ten framed as a learning process, in the control commu-
nity primarily studied in the field of adaptive control.
Most adaptive control algorithms are passively adaptive
in the sense that learning takes place only as a side ef-
fect of the control action. These controllers learn from
normal operating data, which can contain very little in-
formation. Informally, a control that with nonzero prob-
ability affects not only the system state but also the un-
certainty (specifically, error covariances or higher-order
central moments) has a dual effect on the system; sys-
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tems in which the control cannot affect this uncertainty
are called neutral (see Bar-Shalom and Tse (1974) for a
rigorous definition). Note that dual effect and neutral-
ity are properties of the system rather than the control
algorithm. For systems in which the control has a dual
effect, operating data can be made more informative by
actively probing the process (Bar-Shalom, 1981), also
known as excitation (Mareels et al., 1987), experimenta-
tion (Gevers and Ljung, 1986), exploration (Sutton and
Barto, 1998), or active learning (Tse and Bar-Shalom,
1973). An actively adaptive controller is designed to im-
prove the learning by accounting for the dual effect and
increasing the amount of information generated. While
active learning may fail to improve performance if the
level of excitation is insufficient or excessive, the dual
control is the optimal control with respect to expected
system performance through endogenizing the dual ef-
fect in the problem formulation.
Adaptive model predictive control (mpc) has received

relatively little attention in the literature (Mayne, 2014).
As withmost adaptive control approaches, adaptivempc
may suffer from signals that are insufficiently exciting for
the controller or model parameters to converge to appro-
priate values, which may lead to problems such as burst-
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ing (Anderson, 1985), pole-zero cancellations or inadmis-
sible models (Mareels and Polderman, 1996), and turn-
off (Wieslander and Wittenmark, 1971). One way of ap-
proaching this issue is to design a controller that actively
explores the system by ensuring a certain level of exci-
tation, either constantly or when needed. Shouche et al.
(1998), Marafioti et al. (2014), and Larsson et al. (2015)
develop algorithms that ensure a prescribed amount of
information or excitation be generated, with the poten-
tial disadvantage of suboptimal performance resulting
from excessive excitation of the process.
Several proposed controllers generate excitation with-

out a specific requirement. Rather, they include a func-
tion of information or uncertainty in the mpc cost func-
tion and optimize this function together with standard
control objectives. Heirung et al. (2015a) propose and
compare two such formulations that converge to a stan-
dard adaptive certainty-equivalence (ce; Åström and
Wittenmark, 1995) mpc formulation as the uncertainty
is reduced, and show that the excitation can improve
closed-loop performance. Tanaskovic et al. (2014) sug-
gest the addition of an exploring property as a possi-
ble extension of their adaptive mpc for finite-impulse-
response (fir) systems. Their approach involves modi-
fying the nominally optimal input sequence by solving
a second-stage optimization problem, the objective of
which is decreasing the set of possible models at the next
time step. Common to these approaches is that the ex-
citation is a consequence of a heuristic modification of
the controller, based on the assumption that the result-
ing excitation will improve overall performance. While
this type of algorithm may work well in practice and im-
prove performance over passive-learning approaches (see
Heirung et al., 2015a), the excitation is not an implicit
consequence of optimizing for performance, which is the
case for dual control in the sense of Feldbaum. The al-
gorithm type does, however, illustrate an important dis-
tinction: superimposing excitation on a nominally opti-
mal control signal does not generally result in optimal
performance, and the inputs are consequently not dual.
Feldbaum (1961) identified (stochastic) dynamic pro-

gramming as an appropriate solution method for dual
control problems in his pioneering papers on optimal
integration of active learning with multistage decision
making under uncertainty. Åström and Helmersson
(1986) solved a scalar dual control problem with one
unknown parameter, but the “curse of dimensionality”
prevents dynamic programming from being a viable
solution approach for most dual control problems. This
has motivated the use of modern approximate meth-
ods (Lee and Lee, 2009; Bayard and Schumitzky, 2010)
that directly approximate the dynamic programming
equations rather than the problem formulation.
In this article we derive an adaptive dual mpc (dmpc)

for systems modeled with orthonormal basis functions
with probabilistic parametric uncertainty and process
noise. We formulate a stochastic optimal-control prob-
lem for minimizing expected performance cost, which
involves the use of future information to evaluate the
conditional expected future tracking error. This sto-
chastic problem is transformed into an equivalent de-

terministic form that enables exact evaluation of both
the objective function and the probabilistic constraints.
The reformulation relies on the future decisions for
propagation of the exact conditional distributions over
the prediction horizon, which enables determination of
the learning outcome of the decision sequence. Conse-
quently, the learning is correctly rewarded in the control
algorithm, avoiding heuristic additions to the cost func-
tion (as opposed to earlier work by Heirung et al., 2015a,
e.g.). We transform the reformulated problem into
a quadratically-constrained quadratic-programming
(qcqp) problem that can be solved efficiently using
state-of-the-art solvers. The proposed dmpc ensures
that the system is sufficiently excited for accurate and
precise parameter estimation but does not generate a
persistently exciting input. Some results in this article
are generalizations of ideas by Heirung et al. (2015b),
a portion of which are given there without proof. Pri-
marily, this paper considers a more general system type
and includes probabilistic output constraints.
The act of exciting, or probing, a system for learning is

often seen as conflicting with the control objective (see,
e.g., Tse and Bar-Shalom, 1973), and a trade-off between
control and probing is frequently discussed (Åström and
Kumar, 2014, e.g.). However, based on the derivations
in this article we argue that this is not a correct inter-
pretation and show that excitation is an intrinsic part
of the optimal control. That excitation is an inextrica-
ble part of the input in dual control means it cannot be
derived or rewarded heuristically. Furthermore, the ex-
citation and the nominal output error-minimization are
not conflicting goals that can be traded off against each
other; rather, they are inseparable components that to-
gether constitute the optimal control. Uncertainty re-
duction cannot be sacrificed for increased control per-
formance.
This article is organized as follows: Section 2 pro-

vides the formulation of the stochastic control prob-
lem (P) and briefly reviews some necessary statistical
background. The main contributions of the paper are in
Section 3, where we state and prove the results necessary
to reformulate the stochastic optimal-control problem
as the equivalent deterministic problem (P′) and subse-
quently transform this formulation into the qcqp prob-
lem (P′′). Section 4 contains the dual control algorithm,
followed by a simulation example in Section 5. Section 6
concludes the paper with some thoughts for future work.
Notation: E[x | y] denotes the expected value of x,

given y. Pr[A | y] is the probability of an event A, given
y.
2 Problem formulation and background
This paper considers the output tracking problem for a
class of systems of the form

ϕ(t+ 1) = Aϕ(t) +Bu(t) (1a)
y(t) = θ>ϕ(t) + v(t) (1b)

where ϕ(t) ∈ Rnp is a deterministic regression vector
whose elements are functions of past control inputs (de-
terministic decision variables) u, and A ∈ Rnp×np and
B ∈ Rnp are known matrices determined by basis func-
tions. The variable y(t) ∈ Rnp is the process output
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and v(t) ∈ Rnp is an additive, stationary process dis-
turbance assumed to be a sequence of independent and
identically distributed Gaussian random variables with
zero mean and variance r. The vector θ ∈ Rnp contains
the unknown parameters, θ =

[
θ1, θ2, . . . , θnp

]>, where
{θj}

np
j=1 are drawn from a multivariate Gaussian distri-

bution at initial time t = t0 with mean θ̂(t0) and co-
variance P (t0). The model (1b) is often referred to as a
linear regression.
The system (1) is a linear, time-invariant, single-input,

single-output (siso) system, and we assume that the pair
(A,B) is controllable and stab; this formulation includes
systems modeled by orthogonal basis functions (obfs).
The most well-known member of this model class is the
fir model; other common formulations include the La-
guerre (Wahlberg, 1991) and Keutz (Wahlberg, 1994)
models; see also Finn et al. (1993) for a combination of
the fir and Laguerre structures. Heuberger et al. (2005)
provide a comprehensive overview of modeling and iden-
tification with obfs and demonstrate several of their ad-
vantages, including highly accurate models represented
by few parameters where high-order fir models are nec-
essary for acceptable approximations. Linearly parame-
terized systems of this form continue to find applications
related to modeling, identification, and control; one re-
cent example is data-driven andmodel-based formal ver-
ification (Haesaert et al., 2017). This system class is also
considered by Sbarbaro et al. (1999), who extend the
results of Kulcsár et al. (1996) for fir systems and de-
rive an unconstrained actively adaptive controller using
one-dimensional line search and propagation of future
parameter-error covariances. Their approach assumes ei-
ther that the future controls have one constant value
over the control horizon or that they are determined by a
certainty-equivalence strategy, which in contrast to the
algorithm developed here ignores the learning effect of
the future controls.
A standard definition of information (Ljung, 1999)

recorded up to and including time t is the set of all past
decisions and measurements:

Y(t)={u(t), u(t−1),...,u(t0), y(t), y(t−1),...,y(t0)} (2)

This definition of information can be expanded to in-
clude the initial distribution of θ given by θ̂(t0) and
P (t0). The parameter estimate is θ̂(t) := E

[
θ | Y(t)

]
=[

θ̂1(t), . . . , θ̂np(t)
]> and the parameter-estimate-error

covariance matrix is P (t) := E
[
θ̃(t)θ̃>(t) | Y(t)

]
with

θ̃(t) := θ − θ̂(t). Let {u(k | t)}t+N−1
k=t be a sequence of

future control inputs decided at time t (k ≥ t unless
otherwise noted). The output predictor, which provides
the nominal model output, is

ŷ(k + 1 | t) = E
[
y(k + 1)

∣∣ Y(t)
]
, k ≥ t

= θ̂>(t)ϕ(k + 1 | t) (3)

where ϕ(k | t) is the decision regressor defined such that

ϕ(k + 1 | t) = Aϕ(k | t) +Bu(k | t), k ≥ t (4)

with ϕ(t | t) := ϕ(t) and u(t | t) := u(t).

The results in this work depend on extending the def-
inition of Y(t) to include future decisions (first intro-
duced by Heirung et al., 2015b). We define

Y(k | t) =
{
u(k | t), u(k−1 | t), . . . , u(t+1 | t), u(t | t)︸ ︷︷ ︸

anticipated information, k≥t

,

u(t−1), u(t−2), . . . , u(t0), y(t), y(t−1), . . . , y(t0)︸ ︷︷ ︸
past information

}
(5)

Note that the future input sequence {u(i | t)}i=k
i=t consists

of exogenous decisions and is deterministic at time t, as
opposed to uncertain signals like future system outputs,
which can be predicted based on Y(t) (see Equation (3)).
Hence, Y(k | t) contains no information from the system
beyond time t, and the future regressors ϕ(k | t) in Equa-
tion (4) contain deterministic decisions only.
2.1 Optimal control problem
The finite-horizon performance cost considered in this

paper is

JN (t) =

t+N−1∑
k=t

{
E
[
(y(k + 1)− y∗(k + 1 | t))2

∣∣ Y(k | t)
]

+ w2u
2(k | t) + w3(∆u(k | t))2

}
(6)

where N ≥ 1 is the length of the prediction horizon,
y∗(k + 1 | t) is the output reference sequence at time t,
∆u(k | t) := u(k | t)−u(k−1 | t) is the control-input rate
of change, with u(t − 1 | t) := u(t − 1), and w2 ≥ 0,
w3 ≥ 0 are tuning weights. Taking the expectation of
the output error with respect to the current information
Y(t), as opposed to the future information Y(k | t), re-
sults in an output cost that does not reward excitation
since future parameter covariances P (k | t), k ≥ t, do not
appear (see Section 3.1). The current covariance P (t)
does appear, and provides a rationale for caution since
large uncertainties heavily penalize current and future
inputs. In contrast, the objective function we develop in
this paper takes into account how future decisions affect
uncertainty and as result captures the dual nature of the
optimal control. Note that we use only finite N in this
paper, and that JN may be unbounded for an infinite
horizon length.
This paper considers minimization of JN (t) in (6) sub-

ject to probabilistic output constraints and determinis-
tic bounds on the rate of change and magnitude of the
inputs. The predicted outputs and the decision variables
are related through the model (3)–(4). The resulting sto-
chastic optimal-control problem is

min JN (t) (P.a)
subject to

ϕ(k + 1 | t) = Aϕ(k | t) +Bu(k | t) (P.b)
ŷ(k + 1 | t) = θ̂>(t)ϕ(k + 1 | t) (P.c)
Pr[ymin ≤ y(k + 1) | Y(k | t)] ≥ py,min (P.d)
Pr[y(k + 1) ≤ ymax | Y(k | t)] ≥ py,max (P.e)
umin ≤ u(k | t) ≤ umax (P.f)
∆u(k | t) = u(k | t)− u(k − 1 | t) (P.g)
∆umin ≤ ∆u(k | t) ≤ ∆umax (P.h)

3



k ∈ {t, t+ 1, . . . , t+N − 1} (P.i)
ϕ(t | t), u(t− 1 | t), θ̂(t), P (t) given

where Pr[ymin ≤ y(k + 1) | Y(k | t)] and Pr[y(k + 1) ≤
ymax | Y(k | t)] are the probabilities, conditioned on
Y(k | t), that the system outputs stay above ymin and
below ymax, respectively, and py,min, py,max ∈ (0, 1) are
the minimum probabilities of chance-constraints satis-
faction in (P.d)–(P.e).
The stochastic optimal-control problem (P) is solved

with initial values ϕ(t | t) = ϕ(t), u(t−1), θ̂(t), and P (t);
the solution includes an optimal sequence of predicted
control inputs {uo(k | t)}t+N−1

k=t .
We now describe the evolution and prediction of the

parameter-estimate statistics performed at every time t,
and then discuss how we evaluate the objective function
JN (t) and the chance constraints (P.d)–(P.e) to trans-
form (P) into a tractable, deterministic problem for fi-
nite N .
2.2 Parameter estimation and statistics
We now derive (after Ljung, 1999) a standard recur-

sive least-squares algorithm for estimating θ using ob-
served data. Let R(t) be the information matrix

R(t) =

t∑
k=t0+1

r−1R λt−kϕ(k)ϕ>(k) + r−1R λt−t0R(t0) (7)

with t > t0, the forgetting factor λ ∈ (0, 1], and R(t0) =
P−1(t0) given; rR = r when r 6= 0 and rR = 1 when
r = 0. R(t) is recursively expressed as

R(t) = λR(t− 1) + r−1R ϕ(t)ϕ>(t), t > t0 (8a)

The conditional mean of θ, given Y(t), is then

θ̂(t) = θ̂(t−1) +R−1(t)ϕ(t)
(
y(t)− θ̂>(t−1)ϕ(t)

)
(8b)

The inverse of the information matrix R(t) is the co-
variance matrix P (t). With the given assumptions, the
conditional distribution of θ given Y(t) is Gaussian with
mean θ̂(t) and covariance P (t); see Theorem 6 in Appen-
dix A, fromwhich the equation set (A.1) with r = rR can
be used to calculate the conditional distribution without
inverting R(t) in (8b).

3 Reformulation to a deterministic QCQP
The process (1) belongs to a class of systems in which
the output is dependent on past inputs but not past out-
puts. Thus, as noted in Section 2, the predicted future
regressors are deterministic since they do not contain
future outputs, which are stochastic variables. That is,
the future inputs are decision variables, meaning the de-
cision maker is free to decide the future components of
Y(k | t) for any k ≥ t. This allows the following theorem
(cf. Theorem 6 in Appendix A) for propagation of the
future conditional parameter-estimate covariance.
Theorem 1 For a system of the form (1), the predicted
conditional covariance of θ, P (k | t), can be propagated
forward in time with k ≥ t through the recursive relations

K(k+1|t) =P (k |t)ϕ(k+1|t)×

(
r+ϕ>(k+1|t)P (k |t)ϕ(k+1|t)

)−1 (9a)
P (k+1|t) =

(
I−K(k+1|t)ϕ>(k+1|t)

)
P (k |t) (9b)

given Y(k | t) and initial covariance P (t | t) := P (t).

PROOF. The proof of Theorem 1 is identical to a text-
book proof of the Kalman Theorem (see Åström and
Wittenmark, 1995), except we here state the result for
future time. The equivalence follows from the fact that
Y(k | t) is deterministic and determines ϕ(k | t), which
means that K(k | t) and P (k | t) are deterministic for
k ≥ t given the observed outputs and the past and de-
terministic future decisions in Y(k | t). 2

The following theorem, here used to reformulate the
optimal-control problem (P), is a consequence of the fact
that the deterministic future inputs determine the future
covariances P (k | t).
Theorem 2 For a stochastic process of the form (1),

E
[
y2(k + 1) | Y(k | t)

]
= ŷ2(k + 1 | t)

+ ϕ>(k + 1 | t)P (k | t)ϕ(k + 1 | t) + r (10)

for all k ≥ t.

PROOF. From the model (1b), the left-hand side
of (10) is E

[(
θ>ϕ(k + 1) + v(k + 1)

)2 ∣∣ Y(k | t)
]
. After

expanding the square, using the fact that ϕ(k + 1) is
deterministic, that E

[
v2(k + 1)

∣∣ Y(k | t)
]

= r, that
v(k + 1) and θ are uncorrelated, and Theorem 8 in
Appendix A, this reduces to

E
[
y2(k + 1)

∣∣ Y(k | t)
]

= ϕ>(k + 1 | t)
(
θ̂(t)θ̂>(t)

+ P (k | t)
)
ϕ(k + 1 | t) + r (11)

Equation (10) follows after expanding the parenthesis
and substituting the model (3) for θ̂>(t)ϕ(k + 1 | t). 2

The following corollary extends Theorem 2 to tracking
of a time-varying output reference y∗(k + 1 | t).
Corollary 3 For a stochastic process of the form (1),

E[(y(k + 1)− y∗(k + 1 | t))2 | Y(k | t)]
= (ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ ϕ>(k + 1 | t)P (k | t)ϕ(k + 1 | t) + r (12)

for all k ≥ t.

PROOF. By expanding the square and using Theo-
rem 2, the left-hand side of (12) becomes ŷ2(k + 1 | t) +
ϕ>(k + 1 | t)P (k | t)ϕ(k + 1 | t) + r − 2ŷ(k + 1 | t)y∗(k +
1 | t) + (y∗(k + 1 | t))2 which is easily rearranged to the
right-hand side of (12). 2

We now define the future conditional output variance
σ2
y(k+1 | t) := E

[
(y(k+1)− ŷ(k+1 | t))2

∣∣ Y(k | t)
]
; the

following corollary follows from Theorem 2 and states
the exact output variance predicted at time t ≤ k.
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Corollary 4 For a stochastic process of the form (1),
the future output variance predicted at time t is

σ2
y(k + 1 | t) = ϕ>(k + 1 | t)P (k | t)ϕ(k + 1 | t) + r (13)

for all k ≥ t given Y(k | t).

PROOF. By definition,

σ2
y(k+1 | t) = E

[
(y(k+1)− ŷ(k+1 | t))2

∣∣ Y(k | t)
]

= E
[
y2(k+1)

∣∣ Y(k | t)
]
− ŷ2(k+1 | t) (14)

which follows from expanding the square and collecting
the terms. The expression for σ2

y(k+1 | t) is then obtained
directly from Theorem 2. 2

3.1 Evaluation of the objective function
Corollary 3 allows the stochastic objective (6) to be

reformulated into the equivalent deterministic function
in the following theorem.
Theorem 5 For a stochastic process of the form (1), the
objective function JN (t) in Equation (6) can be written

JN (t) =

t+N−1∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ ϕ>(k + 1 | t)P (k | t)ϕ(k + 1 | t) + r

+ w2u
2(k | t) + w3(∆u(k | t))2

}
(15)

PROOF. This result follows directly from Corol-
lary 3. 2

Note that this objective function rewards probing pro-
vided N ≥ 2. P (t | t) = P (t) is not an optimization
variable; it is the current covariance determined prior to
evaluating the objective function. On the other hand,
P (t+1 | t) is a variable, is included in the objective when
N ≥ 2, and represents the covariance one step ahead.
The objective function thus rewards uncertainty reduc-
tion through the selection of control inputs that reduce
future covariances. Furthermore, if the uncertainty rep-
resented by P (k | t), k ≥ t, goes to zero, the formulation
of the output cost JN (t) in (15) converges to a certainty-
equivalence-type output cost (except for the constant
term r). This implies that the excitation reward induced
by the parameter uncertainty vanishes as the uncertainty
is resolved.
3.2 Evaluation of the chance constraints
We now transform the probabilistic constraints (P.d)–

(P.e) into deterministic form using Corollary 4. From
Åström andWittenmark (1995) and implied fromCorol-
lary 4, the conditional distribution of y(t+1) given Y(t)

is Gaussian with mean ŷ(t+1) = θ̂>(t)ϕ(t+1) and vari-
ance σ2

y(t+1) = ϕ>(t+1)P (t)ϕ(t+1)+r. Similarly, the
future conditional distribution of y(k + 1) given Y(k | t)
for k ≥ t is Gaussian with mean ŷ(k+ 1 | t) and variance
σ2
y(k+1 | t), given in equations (3) and (13), respectively.

Hence, the probabilistic output constraints (P.d)–(P.e)
have their respective deterministic equivalents

ymin ≤ ŷ(k + 1 | t)− sminσy(k + 1 | t) (16a)

ŷ(k + 1 | t) + smaxσy(k + 1 | t) ≤ ymax (16b)

where Φ(smin) = py,min and Φ(smax) = py,max with
Φ the cumulative distribution function (cdf) for
the standard normal distribution. The parameters
smin and smax are determined once and offline. Ex-
tending this formulation to time-varying probabili-
ties py,min(k | t) and py,max(k | t) is straight-forward.
The only change required is that a larger num-
ber of equations Φ(smin(k | t)) = py,min(k | t) and
Φ(smax(k | t)) = py,max(k | t) be solved offline.
3.3 The deterministic optimal-control problem
The objective function JN (t) in Equation (15) can now

be minimized by augmenting the constraint set of (P)
with (9) from Theorem 1 and (13) from Corollary 4, and
replacing the probabilistic constraints (P.d)–(P.e) with
their deterministic equivalents (16a)–(16b). The result
is a deterministic optimal-control problem that is equiv-
alent to (P):

min JN (t) (P′.a)
subject to
ϕ(k + 1 | t) = Aϕ(k | t) +Bu(k | t) (P′.b)
ŷ(k + 1 | t) = θ̂>(t)ϕ(k + 1 | t) (P′.c)
σ2
y(k + 1 | t) = ϕ>(k+1 | t)P (k | t)ϕ(k+1 | t) + r (P′.d)
K(k + 1 | t) = P (k | t)ϕ(k + 1 | t)

×
(
rR + ϕ>(k + 1 | t)P (k | t)ϕ(k + 1 | t)

)−1 (P′.e)
P (k + 1 | t) =

(
I−K(k+1 | t)ϕ>(k+1 | t)

)
P (k | t) (P′.f)

ŷ(k + 1 | t) ≥ ymin + sminσy(k + 1 | t) (P′.g)
ŷ(k + 1 | t) ≤ ymax − smaxσy(k + 1 | t) (P′.h)
umin ≤ u(k | t) ≤ umax (P′.i)
∆u(k | t) = u(k | t)− u(k − 1 | t) (P′.j)
∆umin ≤ ∆u(k | t) ≤ ∆umax (P′.k)
k ∈ {t, t+ 1, . . . , t+N − 1} (P′.l)
ϕ(t | t), u(t− 1 | t), θ̂(t), P (t | t), smin, smax given

Here u(t − 1 | t) = u(t − 1) and P (t | t) = P (t). The
constraints (P′.c)–(P′.d) and (P′.e)–(P′.f) deterministi-
cally propagate the complete statistics (the two first mo-
ments) of the system output and the variance (the sec-
ond moment) of the parameters, respectively.
Although the solution to (P′) exactly minimizes JN (t)

in (6) over the finite horizon, the feasible area is non-
convex because of the inclusion of the nonlinear equal-
ity constraints (P′.d)–(P′.f). This motivates investiga-
tion of reformulation approaches that facilitate solving
the optimal-control problem. We consider this reformu-
lation a main contribution of the paper.
3.4 Reformulation as a qcqp
In order to reduce the complexity of the deterministic

optimal-control problem (P′) we introduce a set of new
variables. First, let the scaled, noise-invariant, predicted
information matrix R̄(k + 1 | t) be
R̄(k + 1 | t) := rRR(k + 1 | t) (17)

which is recursively expressed as (cf. Equation (8))

R̄(k + 1 | t) = R̄(k | t) + ϕ(k + 1 | t)ϕ>(k + 1 | t) (18)
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Accordingly, the covariance matrix P (k+ 1 | t) (which is
positive definite) can be expressed in terms of R̄(k+1 | t)
as P (k + 1 | t) = rRR̄

−1(k + 1 | t). By introducing the
variable z(k | t) defined through

R̄(k | t)z(k | t) = ϕ(k + 1 | t) (19)
or equivalently rRz(k | t) = P (k | t)ϕ(k + 1 | t), we write

ϕ>(k + 1 | t)P (k | t)ϕ(k + 1 | t)
= rRϕ

>(k + 1 | t)z(k | t) (20)
This equation allows simplification of both the objective
function (15) from Theorem 5 and the predicted output-
variance constraint (P′.d). Furthermore, the nonlinear
uncertainty-propagation constraints (P′.e)–(P′.f) can be
replaced with the quadratic equations (18) and (19).
The objective function (15) can now be written

JN (t) =

t+N−1∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1 | t))2+

σ2
y(k + 1 | t) + w2u

2(k | t) + w3(∆u(k | t))2
}

(21)
Accordingly, the optimal-control problem (P′) is equiv-
alent to

min JN (t) (P′′.a)
subject to
ϕ(k + 1 | t) = Aϕ(k | t) +Bu(k | t) (P′′.b)
ŷ(k + 1 | t) = θ̂>(t)ϕ(k + 1 | t) (P′′.c)
σ2
y(k + 1 | t) = rRϕ

>(k + 1 | t)z(k | t) + r (P′′.d)

R̄(k + 1 | t) = R̄(k | t) + ϕ(k + 1 | t)ϕ>(k + 1 | t) (P′′.e)
R̄(k | t)z(k | t) = ϕ(k + 1 | t) (P′′.f)
ŷ(k + 1 | t) ≥ ymin + sminσy(k + 1 | t) (P′′.g)
ŷ(k + 1 | t) ≤ ymax − smaxσy(k + 1 | t) (P′′.h)
umin ≤ u(k | t) ≤ umax (P′′.i)
∆u(k | t) = u(k | t)− u(k − 1 | t) (P′′.j)
∆umin ≤ ∆u(k | t) ≤ ∆umax (P′′.k)
k ∈ {t, t+ 1, . . . , t+N − 1} (P′′.l)
ϕ(t | t), u(t− 1 | t), θ̂(t), R̄(t | t), smin, smax given

where R̄(t | t) = rRP
−1(t).

The parameters rR and r both appear in the objec-
tive function (21), and can there be interpreted as pa-
rameters determining the performance cost incurred by
the noise sequence. In addition, rR can be interpreted
as the optimal choice for how reduction of uncertainty,
represented by the term ϕ>(k + 1 | t)z(k | t), is weighted
against reducing the nominal output tracking error.
The formulation (P′′) with (21) is nonlinear, but

all nonlinearities are quadratic (i.e., either bilinear or
square). Specifically, the objective function (21) con-
tains square terms only (ŷ2(·), σ2

y(·), u2(·), and (∆u(·))2)
while the constraints (P′′.d), (P′′.e), and (P′′.f) con-
tain both square (σ2

y(·) and the diagonal elements of
ϕ(·)ϕ>(·)) and bilinear (ϕ>(·)z(·), the off-diagonal ele-
ments of ϕ(·)ϕ>(·), and R̄(·)z(·)) terms. The optimal-
control problem (P′′) is therefore a standard qcqp
problem (see, e.g., Misener and Floudas, 2013).

Although the quadratic equality constraints ren-
der (P′′) nonconvex, there are several algorithms that
efficiently solve qcqp problems to ε-global optimality
(Tawarmalani and Sahinidis, 2002). Two such algo-
rithms are baron (Tawarmalani and Sahinidis, 2005)
and glomiqo (Misener and Floudas, 2013).
The complexity of the optimal-control problem (P′′)

increases moderately with the number of unknown
model parameters np and the length of the predic-
tion horizon N . The output-variance constraint (P′′.d)
contains N square terms and npN bilinear terms,
while there are n2pN quadratic terms in each of the
uncertainty-propagation constraints (P′′.e) and (P′′.f).
The symmetric nature of the quadratic equality con-
straints can be exploited to reduce the number of added
terms, but the quadratic growth cannot be avoided.

4 Dual control algorithm
We now propose a dual control algorithm based on mpc
(Mayne et al., 2000). Like in standard mpc, the con-
trol input is determined by solving an optimal-control
problem at each sampling instant in a receding-horizon
fashion. With our dmpc algorithm, the dual control in-
put at time t, u(t) = uo(t | t), is contained in the so-
lution {uo(k | t)}t+N−1

k=t to the finite-horizon stochastic
optimal-control problem (P); the solution is obtained
by solving the equivalent qcqp problem (P′′). In con-
trast to standard mpc, where there is feedback from the
system state (estimate), our adaptive dmpc depends on
feedback from the hyperstate (ϕ(t), u(t−1), θ̂(t), P (t))
(Åström and Wittenmark, 1995). Furthermore, (P′′) is
not a true open-loop problem since the uncertainty pre-
dictions implicitly anticipate a partially closed loop. The
(indirect) adaptive feature of the algorithm is a conse-
quence of solving the optimal-control problem using the
latest parameter estimate θ̂(t). Note that this does not
make the dmpc a ce controller, since the control action
also depends on the current and future estimate covari-
ances, meaning the estimates are not used as if they were
the true values. The algorithm is illustrated in Figure 1
and can be summarized as follows:
(1) Initialize at time t = t0: specify the hyperstate

(ϕ(t0), u(t0 − 1), θ̂(t0), P (t0)).
(2) At time t, collect system data: measure y(t) and

u(t−1).
(3) Update the hyperstate

(
ϕ(t), u(t − 1), θ̂(t), P (t)

)
(the conditional distribution of θ is updated us-
ing (A.1)).

(4) Solve (P′′) to obtain the solution {uo(k | t)}t+N−1
k=t .

(5) Implement u(t) = uo(t | t).
(6) Set t← t+ 1 and go to step 2.

5 Example
We now demonstrate our dmpc algorithm on a small
simulation test case that highlights some of its main fea-
tures. The example system is of fir type (in the formu-
lation (1), A is a matrix with all elements set to one on
the first subdiagonal and all other elements zero, while
B is a vector with the first element set to one and the
other elements zero) with np = 4 parameters. In order
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Parameter
estimation

Uncertain
system

u(t) y(t)

v(t)y∗(k | t)
k ∈ {t, t + 1, . . . , t + N − 1}

θ̂ (t), P(t)

Dual MPC

ŷ(k+ 1 | t), u(k | t), P(k+ 1 | t)

Fig. 1. Block diagram illustrating the adaptive dmpc struc-
ture. The dashed line represents variables predicted by the
dmpc.

to isolate the capabilities of the dmpc algorithm and
better demonstrate its features, no disturbance is in-
cluded in the simulations, meaning r = 0 and rR = 1.
The unknown system parameters are first θ = θ1 =
[2.5, 1.8, 1.6, 0.9]> for t ≤ −3 and then change so that
θ = θ2 = [4.2, 2.2, −0.2, 0.6]> for t ≥ −2. Given perfect
information on θ, the optimal steady-state input for the
example system is uss(t; θ) = y∗(t)

/ (∑np
j=1 θj

)
, with∑np

j=1 θj 6= 0. The initial hyperstate at time t = ti = −5

is given by u(t) = uss(t; θ
1) for all t ≤ ti (meaning all el-

ements in the initial regressor are uss(t; θ
1)), θ̂(ti) = θ1,

and P (ti) = 0np×np , with y(ti) = 5.0. The system con-
straints are specified as ymin − 3.0, ymax = 6.0, py,min =
py,max = 0.5 (which corresponds to smin = smax = 0),
−umin = umax = 1.0, and −∆umin = ∆umax = ∞. The
dmpc and estimation parameters are N = 8, w2 = 0,
w3 = 10−3, and λ = 1.
We consider a scenario with the system having been

in steady state for some time to best demonstrate the
qualitative behavior of the dmpc and to show the effect
of reinitializing the controller with different sets of values
in the covariance matrix P (t0). The simulations start at
t = ti and end at t = tf = 20; they are are identical
up to time t = t0 = 0, with the history from t = ti
shown for clearer illustration of the decisions made by
the dmpcs. The initial parameter estimates are exact
(θ̂(ti) = θ1) with a point distribution (P (t) = 0 for
t < t0). This means the dmpc reduces to a ce mpc,
which gives optimal control performance in this situation
(correct parameter estimates with no uncertainty). A
shift in the system parameters from θ1 to θ2 occurs at
t = −2, after which the dmpc and the ce mpc are both
able to keep the output at the reference without changing
the input. Consequently, the parameter estimates do not
change. The dmpc is reinitialized at t = t0 by setting
P (t0) to a positive-definite matrix. At time t = 12 the
output reference setpoint changes from the initial value
y∗(t) = 5.0 to y∗(t) = −2.
The simulations compare dmpc to adaptive ce mpc

and also show how dmpc performance is affected by dif-
ferent initial error-covariance magnitudes P (t0). For il-
lustration purposes we show one case with very large
variances in a dmpc at time t0 to trigger a strong prob-
ing action that results from uncertainty (Figure 2). This

behavior is contrasted with that resulting from more
moderate variance values of P (t0) (Figure 3).
Figures 2 and 3 together show the consequence of

reinitializing the dmpc at time t0 by changing P from
a zero-matrix to a positive-definite matrix, and how the
resulting probing action reduces parameter-estimate er-
ror enough for the controller to perform well at a subse-
quent change in output reference.

reference
DMPC
CE MPC

uss(t; θ)
DMPC
CE MPC

θ1

θ2

θ3

θ4

P11(t)

P22(t)

P33(t)

P44(t)

t

P i
i(

t)
θ̂
(t
)

u(
t)

y(
t)

−4 −2 0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

0

1

2

3
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−1.0

−0.5

0.0

0.5

1.0

−3

0

3

6

Fig. 2. A comparison of dmpc (solid, heavy lines for all vari-
ables) and ce mpc (dashed, heavy lines for all variables).
From top to bottom, the four plots show the outputs, includ-
ing the reference y∗(t) and the bounds ymin and ymax (dotted
lines); the inputs, including the optimal steady-state input
uss(t; θ) and the bounds umin and umax (dotted lines); the
true parameters θ (solid lines with circles) and both sets of
estimates θ̂(t); and the diagonal elements of the covariance
matrix P (t), which are the variance terms.

Figure 2 shows how a dmpc with P (t0) = 500I di-
verges from an identically-tuned ce mpc, provided the
same operational history at t = t0. The ce mpc (dashed
red line) continues applying a control identical to the op-
timal steady-state input uss(t; θ) after the change in pa-
rameter values, keeping the output at the reference with-
out changing the control signal. A consequence of the
status-quo input-output situation is that no new data is
generated with the result that there is no indication that
a change occurred in the system. Hence, the parameter
estimates (dashed lines) do not change and are wrong
when the subsequent change in output reference occurs
at t = 12, resulting in a violation of the lower output
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Fig. 3. A dmpc setup reinitialized with a smaller covariance
at t = t0: P (t0) = 50I (solid, heavy lines) as opposed to 500I
(Figure 2). See the caption of Figure 2 for further description
of the plots.

bound and significant oscillations before the output set-
tles at the new reference value. Note that none of the
controllers have prior knowledge of the reference change.
The consequence of reinitializing the dmpc (solid blue

line) with P (t0) = 500I is clear when contrasted with
the ce mpc. The output from the dmpc is reduced in
magnitude at t = t0 in order to reduce the future covari-
ances, in turn reducing the cost incurred from the term
ϕ>(k | t)P (k | t)ϕ(k | t) over the prediction horizon in the
objective (15). This probing action causes a reduction in
output magnitude and thus generates data, which leads
to a change in the parameter estimates (solid lines) and a
reduction of the variance (the diagonal elements of P (t)
are shown in bottom plot). The probing action continues
until about t = 5, which can be understood as a conse-
quence of P (5) being sufficiently small (the variances are
two orders of magnitude smaller than at t = t0) so that
the expected reward from further uncertainty reduction
is not higher than the cost of increased reference-tracking
error for the nominal output. At this time, the parame-
ter estimates are very close to their true values and the
input from the dmpc is converging back toward the opti-
mal steady-state value. Consequently, the output is con-
verging back to the reference setpoint. When the subse-
quent change in output reference occurs, the dmpc has
learned enough about the new system-parameter values

to successfully move the output toward the new refer-
ence, without the constraint violation and oscillations in
the output seen with the ce mpc.
Figure 3 shows how the dmpc performs when reinitial-

ized with smaller variances (P (t0) = 50I) and all other
factors kept identical. Compared with the above case of
P (t0) = 500I, the dmpc with less model uncertainty,
represented by smaller variances, exhibits the same qual-
itative behavior, but the probing is lower in magnitude
and vanishes sooner. As a consequence there is less infor-
mation in the generated data, which leads to parameter
estimates that are further from their true values than
those obtained when reinitializing with a larger P (t0).
Despite the moderate excitation, the dmpc is able to di-
rect the output to the new reference with no constraint
violations or oscillations.
The example simulations are implemented in matlab

and the qcqp problems are solved using the local nlp
solver snopt 7.2 (Gill et al., 2005) under gams (gams
Development Corporation), which uses automatic dif-
ferentiation to provide gradients to the solver. A stan-
dard laptop computer runs the simulations and theqcqp
problems all take between 0.05 s and 5.02 s to solve, with
a mean of 0.47 s and more than 90 % of the solutions ob-
tained in less than 0.70 s. Using baron for verification,
all local solutions found by snopt are within a 1 % rel-
ative global-optimality gap.

6 Conclusions and future work
Our reformulation (P′) of the probabilistically-constrained
stochastic optimal-control problem (P) provides insight
into how specific functions of excitation and nominal
output error together result in dual control when their
sum is minimal, as well as a foundation for practical
control-algorithm design. The reformulated objective
can furthermore guide the design of approximate or
suboptimal dual controllers for systems where determin-
istic expressions for the stochastic objective function
cannot be derived. Further reformulation of the con-
trol problem leads to the qcqp problem (P′′) that can
be solved efficiently. Solving this qcqp on a receding
horizon using the future and current information re-
sults in the dmpc algorithm. The reformulation allows
for easy incorporation of exact probabilistic constraints
with a moderate increase in problem complexity. Note
that unlike deterministic mpc on an infinite horizon for
systems with no uncertainty, the proposed dmpc does
not recover the dynamic programming solution since
the effect of the future outputs on the future parameter
estimates are not predicted by the controller.
The results presented here rely on the assumption that

both the parameters θ and the process noise v(t) are
Gaussian; the reformulations are not valid if these as-
sumptions are not met. However, we can trivially extend
the framework developed here to time-varying parame-
ters modeled as the Gauss-Markov process θ(t + 1) =
Θθ(t) + w(t) where Θ is a known, constant matrix and
w(t) is a sequence of independent and identically dis-
tributed Gaussian random vectors with zero mean and
known variance.
While the number of quadratic terms in (P′′) grows

quadratically in the number of model parameters np, one
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of the advantages of using obf models other than fir is
that the required number of parameters is typicallymuch
lower without sacrificing prediction accuracy (Heuberger
et al., 2005). One possible approach for extending the
control algorithm to multivariable systems is to use ideas
similar to those presented by Kumar et al. (2015), where
an approximate dual mpc for scalar systems is extended
to the multivariable case.
While the expected value of the system output is

bounded when the control inputs are bounded, stability
analysis of the algorithm is complicated by the infinite
support of the stochastic disturbance and the bounded-
ness of the controls, and is the subject of a future pa-
per. Another topic of future work is derivation of tight
variable bounds and careful exploitation of problem
structure to efficiently solve (P′′) to global optimality.
A Parameter statistics and least-squares esti-

mation
For the systems we consider here the covariance of θ
at time t given Y(t), P (t), becomes as a special case of
P (k | t) in Equation (9b).WithY(t) available we can also
determine the conditional mean θ̂(t). These two quan-
tities fully describe the temporal evolution of the con-
ditional distribution of θ at time t, as described in the
following theorem.
Theorem 6 For a system of the form (1), the condi-
tional distribution of θ given Y(t) is Gaussian with mean
θ̂(t) and covariance P (t), satisfying the recursive equa-
tion set
θ̂(t) = θ̂(t− 1) +K(t)

(
y(t)− θ̂>(t− 1)ϕ(t)

)
(A.1a)

K(t) = P (t−1)ϕ(t)
(
rλ+ ϕ>(t)P (t−1)ϕ(t)

)−1 (A.1b)
P (t) =

(
I −K(t)ϕ>(t)

)
P (t− 1)(1/λ) (A.1c)

with λ = 1 and the initial conditions θ̂(t0) and P (t0).

PROOF. The proof is found many standard texts on
stochastic and adaptive control; see, e.g., Åström and
Wittenmark (1995). 2

Note that with λ = 1 the equation set (A.1) can be
interpreted as a Kalman filter for estimating the state of
a system with the constant state variable θ (no dynamics
and no process noise) and output equation (1b).
The expected value of the unknown parameter vector

θ given current information and future decisions,Y(k | t),
is the same as given only current information. The fol-
lowing lemma states this formally.
Lemma 7 For a stochastic process of the form (1),

E
[
θ
∣∣ Y(k | t)

]
= E

[
θ
∣∣ Y(t)

]
= θ̂(t), k ≥ t (A.2)

PROOF. From (A.1a) it is apparent that the condi-
tional mean of θ at time t depends on y(t). Thus, Y(k | t)
does not contain any information relevant for θ̂(k), k ≥
t, beyondY(t), so the conditional mean of θ givenY(k | t)
is simply E

[
θ
∣∣ Y(t)

]
= θ̂(t). 2

A consequence of Lemma 7 is that
θ̂(k | t) := E

[
θ
∣∣ Y(k | t)

]
= θ̂(t), k ≥ t (A.3)

The following theorem states an expression for the
expected value of the matrix θθ> given the anticipated
information Y(k | t) in terms of deterministic quantities.
Theorem 8 For a stochastic process of the form (1),

E
[
θθ>

∣∣ Y(k | t)
]

= θ̂(t)θ̂>(t) + P (k | t), k ≥ t (A.4)

PROOF. Using Lemma 7, Equation (A.3), and the fact
that θ̂(t)θ> is symmetric, we start from the definition of
the anticipated covariance matrix P (k | t) and get

P (k | t) := E
[(
θ − E

[
θ | Y(k | t)

])
×(

θ − E
[
θ | Y(k | t)

])> ∣∣ Y(k | t)
]

= E
[
θθ>| Y(k | t)

]
− θ̂(t)θ̂>(t) (A.5)

through simple algebra. Rearranging the equation com-
pletes the proof. 2
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