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Abstract—Capsule endoscopy, which uses a wireless camera to 

take images of the digestive track, is emerging as an alternative to 

traditional wired colonoscopy. A single examination produces a 

sequence of approximately 50,000 frames. These sequences are 

manually reviewed, which is time consuming and typically takes 

about 45–90 minutes and requires the undivided concentration of 

the reviewer. In this paper, we propose a novel capsule video 

summarization framework using sparse coding and dictionary 

learning in feature space. Video frames are clustered into 

superframes based on power spectral density, and cluster 

representative frames are used for video summarization. 

Handcrafted and deep features that are extracted for 

representative frames are sparse coded using a learned dictionary. 

Sparse coded features are later used for training SVM classifier. 

The proposed method was compared with state-of-the-art methods 

based on sensitivity and specificity on the KID dataset. The 

achieved results show that our proposed framework provides 

robust capsule video summarization without losing informative 

segments. 

 
Index Terms—capsule endoscopy, deep features, KSVD, 

Dictionary learning, Random forest, informative frame. 

I. INTRODUCTION 

APSULE VIDEO ENDOSCOPY has revolutionized the 

diagnostic work-up in the field of esophagus, small bowel 

and colon imaging. The colon traditionally has been examined 

via optical colonoscopy, a procedure perceived by many to be 

uncomfortable and embarrassing. Colon capsule endoscopy 

(CCE) is an alternative for visualizing the colon. Some of the 

commercially available CCE devices include PillCam COLON 

I and II from Given Imaging [1]. CCE devices are equipped 

with miniaturized camera, LED light source, radio transmitter 

and battery contained in an easy-to-swallow capsule of 

dimension 31x11 mm. PillCam COLON II has adaptive frame 

capture rate of 4 to 35 frames per second depending on its 

location and movement speed, and has capability of recording 

images for approximately 10 hours producing ~50,000 frames 

per procedure [2]. Visual inspection of video sequences is done 

offline by downloading the video from a receiver, which is 

worn by the patient during the procedure, to a workstation. Ideal 

informative (useful) frames depict tissue surface and blood 

vessel structures, which are crucial for diagnosis. However, due 

to capsule’s zigzag or spinning, motion and purgative procedure 

used, a significant number of frames contains no useful 

information for the diagnosis.  These frames contain mainly  

 

 

 

 

 

 

 

 

 

 

fluids, bubbles, fecal materials, foods, turbid fluids or are 

blurred frames (Fig 1). Hence, automatic summarization of 

informative video segments will significantly reduce the 

reviewing time.  For natural  video summarization[3, 4, 5] most 

state-of-the-art methods mainly focus on the summarization of  

structured videos, such as sports, cartoons or surveillance 

videos. In comparison, the automatic summarization of 

unstructured data, e.g., endoscopic videos, is much more 

challenging. First, capsule videos contain deformable and low-

texture context, which makes semantic information extraction a 

rather challenging task. Second, due to power and volume 

limitations, the images are taken under low illumination 

condition, highly compressed, contain noise from CMOS 

(complementary metal-oxide semiconductor) camera sensor 

and arbitrary movement of the camera, thus many of the CCE 

images are of poor quality, which makes accurate video 

summarization difficult. Finally, the objective of CCE video 

summarization is to assist doctors in diagnosis, so the video 

summary should highlight the suspected regions [6]. 

 Many works [7-10, 18, 19] have been proposed to detect 

frames that are informative by anomaly detection. Evaluation is 

difficult as these methods are suitable for removing specific 

types of frames such as out-of-focus  [7], bubble frames [8] and 

redundant frames [9]. These methods usually rely on specific 

image features, which are known to vary between patients due 

to different lighting conditions and uncontrolled capsule motion 

by peristalsis. In addition, non-informative frames contain 

variety of structures that may also be present in informative 

frames. Moreover, there is no publicly available dataset for 

comparing informative and non-informative sequences 

detection [10]. 

In this paper, instead of finding frames containing specific 

pathology or defining a given image content such as bubbles or 

out-of-focus, we generalize non-informative frames through  
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Fig 1. Sample non-informative frames from the KID 

dataset:  Frames with fecal matter, turbid fluids, motion 

blurred and food items. 
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learning discriminative handcrafted and deep features. This is 

different from other works in that, the proposed method does 

not rely on predefined image content. The main contribution of 

the proposed method can be summarized in two parts. First, a 

ground truth dataset is developed with gastroenterologists that 

can be used for further comparison. The database developed 

contains a ground truth for informative and non-informative 

frames. Second, after analyzing CCE frames from different 

patients and different image features, we propose a framework 

for learning discriminative handcrafted and deep features for 

CCE video summarization framework, which improves state-

of-the-art results in terms of sensitivity and specificity.  

The outline of the article is as follows: in Section 2, we 

introduce previous works done to reduce the reviewing time of 

CCE. In Section 3 and 4, we present our approach and a detailed 

outline of the framework along the implementation of the 

proposed method. Evaluation and comparisons are presented in 

Section 5 and finally, in Section 6 we present discussions and 

conclusions respectively.  

II. BACKGROUND 

In the literature, there are two main research approaches to 

reduce the amount of time required by an expert for examining 

CCE video. These are anomaly detection and enabling better 

visualization. Anomaly detection has been identified as an 

indirect approach to reduce the review time. These anomalies 

include detection of causes of bleeding, polyps and other 

pathologies. For bleeding detection, color histograms with 

region growing [11], bag-of-visual-words [12], color wavelet 

features [13], and chrominance moments [14] have been 

applied in experimental settings. These methods rely on a single 

or a couple of image feature descriptors and their performance 

varies greatly when tested on full video sequences and open 

access datasets [15] . For polyps and lesions, similar types of 

feature descriptors such as color and texture [16] with second 

and higher order statistical measures [17], and other feature 

descriptors such as  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

salient pixels and image transformation were applied. 

As an alternative approach to pathology detection, [18] 

proposed a method that can detect frames with content that 

deviates from that of most of the frames in a video segment. 

Another method that is relevant to the current work was 

introduced by [8] to detect the informative frames. The authors 

used two steps in their method: the first step was to isolate 

highly contaminated non-bubbled (HCN) frames, and the 

second step was to signify bubbled frames. They used local 

color moments and the HSV color histogram, which 

characterized HCN frames. Then, a support vector machine 

(SVM) was applied to classify the frames. In the second step, a 

Gauss Laguerre transform (GLT) (based on texture feature) was 

used to isolate the bubble structures. The combinations of their 

proposed color and texture features showed average detection 

accuracies (86.42% and 84.45%).   

Similar works proposed by [19] reveals a capacity for up to 

85% frame reduction without loss of informative frames. 

However, evaluation of similar approaches on larger datasets 

indicates that the accuracy for detection of the most 

representative frames is rather low (66%)[15]. Most recently [6] 

proposed video summarization via similar-inhibition dictionary 

selection. The video summarization process was modeled as a 

problem of dictionary selection, i.e., to select an optimal subset 

of frames from the original video frames via dictionary learning 

under various constraints. The authors then defined similar-

inhibition constraint and attention prior to build the dictionary 

model, which intends to reduce the redundancy between each 

selected element and to reinforce uniqueness. 

III. PROPOSED METHOD 

The proposed approach is based on the observation that CCE 

video frames exhibit high redundancy within and between 

frames. This can be exploited efficiently to find discriminative 

features for informative and non-informative frames. Given a 

video, the framework starts by temporally clustering the frames 

into superframes. Local features based on superpixel and global 

 
 Fig. 2. Sparse coded handcrafted and deep features for colon capsule video summarization block diagram. The dictionary for sparse 

representation of image features is learned based on selected representative frames. 
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features based on deep features as well as textural and color 

features are combined to form a feature vector. Dictionary 

learning is done in feature space, which are later sparse coded 

for compact representation as shown in Fig. 2. The detailed 

description of the proposed method is presented below.  

A. Superframes  

CCE procedure captures many uninformative and redundant 

frames based on the cleanliness of the bowel and the speed of 

the capsule. These uninformative frames usually depict food 

debris, turbid fluids, bubbles and other substances that block the 

view of the camera. In addition, the frames contain out-of-focus 

and blurred frames that are not helpful when visualizing the 

videos. Adopting ideas of over-segmentation in super pixels 

[20], in the proposed method, these frames are over segmented 

temporally using K-means clustering algorithm based on the 

power spectral density of the frames. For N  by N   image x , 

the Cartesian power spectral density is defined using Fourier 

transform as:  
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and 
nmx  is pixel at position  ,n m  in image x .    

The power spectral density is used to cluster frames, as it is a 

good descriptor for representing blurriness and scene statistics. 

The Cartesian power spectral density is later converted to polar 

coordinates to account for capsule rotation as it moves through 

peristalsis. K-means algorithm is used to create temporal video 

segments based on the frames power spectral density. The 

frame, which is closest to the center of the cluster, is later used 

as the representative frame for further processing.  

B. Superpixels 

Starting with representative frames from initial over- 

segmented CCE videos, the representative frames are over- 

segmented using simple linear iterative clustering (SLIC) [20].  

Superpixels provide convenient primitive regions from which 

to compute local image features. They capture redundancy 

within the image and greatly reduce the complexity of 

subsequent image processing tasks. 

C. Handcrafted feature extraction 

Most of the non-informative frames can be characterized by 

color and texture features. Food debris and fluids that hide 

colon walls and tissue surfaces are usually much colorful and 

have smooth textures. In the proposed method, local features 

based on superpixel and global features that represent color and 

texture are concatenated as an image descriptor. The details of 

the features are given below: 

1) Color features 

Color is an important feature for image representation, which 

is widely used for visual and automated CCE image analysis. 

Local and global image color features are extracted for image 

sequence. The average color of each superpixel segmented 

region is computed and aggregated to form local color features. 

The average color of each superpixel is computed in CIELAB 

color space, which is widely considered as a perceptually 

uniform color space. In addition, hue histogram and opponent 

histogram [21] are used for global image color descriptors as 

they are robust to photometric variations (i.e., shadow, shading, 

specular reflection, and light source changes) as well as 

geometrical variations (i.e., viewpoint, zoom, and object 

orientation), which are typical lighting conditions for the 

capsule. However, hue becomes unstable near the grey axis. To 

this end,  [21] proposed a construction of hue histogram, where 

each sample of hue is weighted by its saturation. Given RGB 

image, hue H  and saturation S   can be computed from 

opponent colors 
1 2,O O   as:   
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where 
1 2,O O  are two components from opponent color space, 
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Finally, the opponent angle o , which is specular invariance, is 

defined as:   
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where 
1O   and 

2O  are the spatial derivatives of 
1O and 

2O

respectively. The color histogram is built by taking 42 bins 

histogram of H  and o  resulting in the final 84 bins 

histogram. 

2) Blurred frames  

Blurring occurs in CCE videos as the capsule progresses 

through the colon by peristalsis. Due to motion of the intestinal 

content as well as capsule, some of the frames of CCE video are 

blurred. Moreover, some of the frames are also out of focus 

resulting in obscured tissue and vessels structures. Using the 

fact that blurring an image is equivalent to low-pass filtering the 

frame, we used the power spectral density of the frame as in 

E.q. (1) to represent the degree of blur.  

3) Texture features 

Summarizing CCE videos or any medical data requires a 

robust representation to avoid any false negatives. In order to 

increase the performance we have included Local Binary 

Pattern (LBP), which is a simple, yet very efficient, texture 

operator. The basic LBP operator replaces pixel values with 

labels by binarizing 3×3 neighborhoods around each pixel with 
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the center pixel as a threshold. Pixel labels are then converted 

to decimal numbers. As the capsule moves through the colon, 

frame contents undergo scale and rotation transformation. 

Pyramidal representation is a type of multi-scale representation 

of the image by a set of image approximations from its different 

frequency-band images. This is obtained by subjecting the 

image to a repeated smoothing and subsampling. Image 

pyramidal representation is used to take into account size and 

scale variations. For the proposed method, LBP were applied 

with repeated smoothing and subsampling for three different 

resolutions. 

D. Deep features 

Convolutional Neural Networks (CNN) are biologically 

inspired variants of multilayer perceptron. CNNs are 

considered the state-of-the-art model in image recognition 

tasks. A pre-trained CNN, specifically; GoogleNet [22] is used 

as a feature extraction method. GoogleNet achieved a top-5 

rank with an error rate of 6.67% on the 2014 ImageNet 

classification challenge. The basic building block of 

GoogleNet, the inception module, is a set of convolutions and 

poolings at different scales, done in parallel and then 

concatenated together. The deep features are extracted by 

removing the last fully connected layers.  In particular we took 

the features after dropout in the cls3_pool layer of the 

GoogleNet model. The deep features were extracted using the 

MatConvNet [23] framework. 

E. Dictionary learning and sparse coding   

Visual inspection of many CCE videos shows that different 

segments of the video share similar local features including 

color and texture features. These features can be efficiently 

represented by using sparse coding techniques. Sparse signal 

representation has become very popular in the past decades and 

lead to state-of-the-art results in various applications such as 

face recognition [24], image denoising [25], and image 

classification [26]. The main goal of sparse modeling is to 

efficiently represent the images as a linear combination of a few 

typical patterns, called atoms, selected from a dictionary. 

Here, we intend to use sparse representation of the handcrafted 

and deep features for classification of informative and non-

informative frames. 

1) Sparse coding  

A dictionary is a collection of key feature patterns know as 

atoms. Sparse learning aims at finding a sparse representation 

of the input data in the form of a linear combination of the 

atoms. Given a dictionary matrix, 
nxkD that contains  

k  atoms as column vectors , 1,...,n

j j K d , the sparse 

coding problem of a signal 
ny  can be stated as finding the 

most sparse vector 
kx  such that 

1

k

j j

j

y x d


  or the 

representation error D R y x  is minimized, therefore the 

optimization problem can be formulated as:  
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where  is the reconstruction error of the signal y  using the 

dictionary D  and sparse code x . 

Alternatively, the optimization problem can be reformulated as  
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The minimization problem above is not convex because of the 

0
 norm and solving this problem is NP-hard [27]. Hence, there 

are approximate solutions using greedy approach such as  

Orthogonal Matching Pursuit (OMP) [28]. For this work, we 

used the OMP method for sparse representation [29, 30].   

2) Dictionary learning  

A common setup for the dictionary learning problem starts with 

access to a training vector 
2[ , ..., ]

1 m
Y = y y y , where each 

m

iy  . K-SVD (K-Singular Value Decomposition) is used to 

iteratively solve the optimization problem of Eq. 7, by 

alternatively computing the sparse approximation of X  using 

OMP and then the algorithm proceeds to update the atoms of  

the  dictionary D . K-SVD [31] is an iterative method that 

alternates between sparse coding of the training set based on the 

current dictionary and a process of updating the dictionary 

atoms to better fit the data: 
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As noted earlier visual inspection of informative and non-

informative CCE frames reveals that these images may contain 

similar texture and color features. Hence, the dictionary atoms 

are distinctive. We used the sparse representation of the feature 

space as a feature for classification of informative and non-

informative frames as described in the next section. 

IV. IMPLEMENTATION 

The classification is performed using a Support Vector 

Machine (SVM) classifier [32].  SVM is a discriminative 

classifier formally defined by a separating hyperplane. A non-

linear SVM is used with Radial Basis Kernel function (RBF).  

Superpixel segmentation with required number of regions 90 

and compactness factor of 20. The feature vectors are 

aggregated into column vector of size 2429 for dictionary 

learning. These are summarized as follows, super-pixel 

segmented image region mean color (Fig. 2) (size 300), power 

spectral density (PSD) (size 253), hue histogram and opponent 

histogram (size 84), pyramidal LBP (3 Level, size 768), 

GoogleNet deep features (size 1024) are aggregated and 

normalized as follows: 

 
 min

max(F ) min(F )

k k

ik

k k

F F
F





  (10) 

where 
kF  is sub-feature vector k  of the features for mean 

color, power spectral density, hue and opponent angle 

histogram , LBP features and 
k

iF is the thi  component of 
kF . 

The dictionary was learned with KSVD algorithm for 100 

atoms in the dictionary and 50 atoms for representation.                                 



 5 

V. DATASET 

500 sample images were chosen by a gastroenterologists 

from the KID dataset [33] with pathologies and normal images 

from different parts of the colon. The sample images are 

selected as representative frames for a complete CCE 

procedure.  The images were taken by GivenImaging Pillcam 

COLON capsules with a resolution of 576x576 pixels. Multiple 

images from five different patients were included in the dataset. 

A gastroenterologists was asked to label the images as 

informative and non-informative frames. Non-Informative 

frames are defined as “Video frames that deliver no information 

for diagnosis or further analysis”. After labeling, the dataset 

contains 339 non-informative frames and 161 informative 

frames. 

VI. RESULTS AND EVALUATION  

In this section, we evaluate the proposed video 

summarization system on real CCE videos. A range of 

experiments was performed to assess the strengths and 

weaknesses of the proposed approach. Super-frame 

segmentation based on power spectral density provides 

acceptable clustering of the frames into similar temporal 

regions as it is shown on Fig. 3. Representative frames are 

chosen as described in section III.    

 

 
 

Fig. 3.  Superframes segmentation result using K-means with 

temporal cluster size of 25.   

 

In order to evaluate the accuracy of the proposed method we 

used 10-fold cross validation with four metrics including 

Accuracy, Precision, Sensitivity and Specificity that are 

computed as follows: 

 

     

,    
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Sensitivity Specificity
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Where , , ,TP TN FP FN are true positive, true negative, false 

positive and false negative respectively. We compare our 

method with other methods without super-frame clustering 

algorithm. Namely, the proposed method was compared against 

[34-37]. The results are summarized in (Table I) as reported on 

respective works. Second and third column shows the image 

features used for informative frame detection and the metrics 

used respectively. As it can be seen, exact comparison of the 

methods is difficult as the dataset and the source codes are not 

available.  In addition, the dataset developed in this work is 

general as it contains all artifacts that reduce the 

informativeness of a frame, such as bubbles, food debris, 

blurred frames etc. Moreover, the validation method used in the 

previous works were not reported.  

 
         Fig.4.  The precision-recall curve for SVM classifier. 

 

Nonetheless, the proposed method’s performance gives state 

of the art result for CCE video summarization with 10-fold 

average precision of 0.94 and 95.38 accuracy based on the 

reported scores. For completeness, we also provide the 

precision-recall graph in Fig. 4 and the Receiver operating 

characteristic (ROC) curve in Fig. 5. The area under the ROC 

curve (AUC) is 0.975. 

VII. CONCLUSIONS AND DISCUSSION 

In this paper, we proposed automated CCE video 

summarization framework, which is based on combination of 

handcrafted features and deep features. In addition, dataset is 

developed with gastroenterologists unlike the previous 

methods, which involve subjective decision by the authors in 

classifying the frames into informative and non-informative.  

TABLE I 

COMPARISON OF METHODS FOR REDUCING CAPSULE VIDEO REVIEW TIME 

AS REPORTED ON THE RESPECTIVE WORKS 

Proposed Features 
Best average results 

Metric Value 

[34] Color 

and 
texture 

Accuracy, 

Sensitivity/Specificity 

91.6 

80.1/93.1 

[35] Color Accuracy, 

Sensitivity/Specificity 

93.7 

95.1/92.7 

[36] Colour Sensitivity/Specificity 76.4/87.5 

[37] Color, 

texture 
and 

motion 

Overall, frame 

reduction (%) 

85.6 

Proposed 

Method 

Handcraf
ted and 

deep 

features 

10 Fold cross 
validation average 

Accuracy, 

Sensitivity/Specificity 

95.38 

91.29/97.34 

 

Comparison of different methods for frame reduction. As it can be seen, the 

proposed method performance is robust for summarizing CCE videos as 
indicated by gastroenterologists 
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 Fig. 5. The ROC curve for the final classifier. The area under 

the ROC curve is 0.975. 
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