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Abstract

This work presents a way of simulating the operation of an anion exchange

membrane module. A CFD simulation of this module was made in OpenFOAM

software. The membrane module contains an ion exchange membrane and is

used for separation of organic acids. It consists of an dilute and a concentrate

compartments, separated by the mentioned membrane. In the model, only

acetic acid was taken into account. A movement of acetic acid ions from the

dilute compartment, trough the membrane and to the concentrate compartment

under the effect of an electric field was assumed. Electrochemical reactions

were not taken into account. First, a mesh describing the membrane module

geometry is build. Two meshes have been built, a simplified one and a more

detailed one. Then, pre-process utilities that have been used in this work are

explained followed by boundary conditions. After that, the solver of this model

is explained along with post-processing tools. The results present a simple,

functioning membrane module model. Lastly, a number of future development

possibilities are discussed.

Keywords: CFD, simulation, model, membrane module



Abstrakt

Predložená práca sa zaoberá vytvoreńım CFD modelu a simuláciami mebránového

modulu. Všetky výpočty a simulácie boli uskutočnené v programe OpenFOAM.

Tento membránový modul sa skladá z dvoch nádob oddelených iónovou membránou

a slúži na separáciu zmesi organických kyseĺın. Model pracuje s kyselinou oc-

tovou. Konkrétne sa jedná o prestup záporne nabitých iónov, ktoré vznikli

jej disociáciou, cez iónovú membŕanu pod vplyvom elektrického pǒla. Model

pracuje s koncentráciou octových aniónov, elektrochemické reakcie nie sú brané

do úvahy. Základom CFD simulácíı je vytvorenie mriežky. V práci sú oṕısané

dve mriežky membránového modulu, zjednodušená a presná varianta. Nasleduje

opis použitých utiĺıt, ktoré zahŕňajú vytvorenie mriežky a priradenie okrajových

podmienok. Potom je oṕısaný proces vytvorenia solvera a samotný výpočet.

Výsledky potvrdzujú vytvorenie jednoduchého modelu membránového modulu.

Následne sú oṕısane možné vylepšenia v budúcnosti.

Kľúčové slová: CFD, simulácia, model, membránový modul
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Nomenclature

Greek Symbols

η̄ electro-chemical potential in membrane [J.mol−1]

η electro-chemical potential [J.mol−1]

Λ molar conductivity [S.m2.mol−1]

µ chemical potential [J.mol−1]

ν kinematic viscosity [m2.s−1]

φ electric potential [V]

ρ fluid density [kg.m−3]

σdc dc conductivity [S.m−1]

Roman Symbols

A membrane surface [m2]

a activity [−]

C Courant number [−]

c concentration [mol.m−3]

D diffusion coefficient [m2.s−1]

E electric field strength [V.m−1]

F Faraday constant [C.mol−1]
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h compartment height [m]

I electric current [A]

k Boltzmann constant [J.K−1]

P pressure [Pa]

R electrical resistance [Ω]

Rg gas constant [J.mol−1.K−1]

T temperature [K]

t time [s]

u fluid velocity [m.s−1]

V electric potential [V]

Vmol partial molar volume [m3.mol]

z charge number [−]

j electrical current density [A.m−2]

Superscripts

0 standard

Subscripts

aa acetic anion

anode anode

c concentrate compartment

comp compartment

d dilute compartment

i component

m membrane
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Chapter 1

Introduction

1.1 Computational fluid dynamics

Computational fluid dynamics (CFD) is an analysis of a system involving fluid

flow and other associated phenomena such as heat transfer or chemical reactions

by computer simulation. It is a very powerful process which spans a wide range

from industrial to non-industrial applications. Examples include:

• aerodynamics of vehicles and aircraft

• flows inside rotating passages in various engines

• distribution of pollutants and effluents

• hydrodynamics of ships

• cooling of electrical equipment or microcircuits

• flows in rivers or oceans

• weather prediction

• blood flow trough veins and arteries
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The first CFD techniques have been integrated into designs in 1960s by the

aerospace industry in manufacture of aircraft and jet engines. The usage of

these methods have more recently been broadened to the design of combustion

chambers of gas turbines and combustion engines. Nowadays, it is a common

practice of many motor vehicle manufactures to predict under-bonnet air flows

or drag forces with CFD tools. CFD is becoming one of the vital components

in designing of industrial products and processes.

The ultimate aim of CFD development field is to provide an option that

is comparable to other computer-aided engineering tools. It is true that CFD

has lagged behind and the reason for that is tremendous complexity of the

case behaviour. There has been an increase to affordable high-performance

computing hardware in the recent 20 years, which together with introduction of

user-friendly interfaces led to recent rise of interest.

CFD also provides multiple unique advantages over common experiment

based approaches for fluid system designs:

• significant decrease of lead times as well as costs of new designs

• ability to work with systems where experiments are difficult or impossible

to perform (large systems)

• ability to work with systems under dangerous conditions at or beyond

normal performance limits (safety and accident studies)

• unlimited level of result details

12



In terms of facility and personnel costs, the cost of an experiment is roughly

proportional to the number of data or configurations tested. On the contrary,

CFD techniques are able to provide extremely large quantities of results at no

extra expense. It is also very cheap to optimize equipment performance. [1]

1.2 Goals of this work

The first goal of this work was to acquire a basis of CFD knowledge and prac-

tices. This also includes basic know-how about mesh generation, conversion and

usage. The second goal was to explore ways of CFD implementation to create

a model of an anion exchange membrane module, which is used for organic acid

separation. Here, a few simplifications had to be made since this was the first

mapping of the mentioned device and related processes. With further develop-

ment, this model could be validated with experimental data in the future and

possibly predict the behavior of similar systems.

1.3 Membrane module

The membrane module setup comprises a two-chambered electrochemical cell

with an anode and a cathode on each side of the device. The frames are bolted

together with stainless steel bolts between two square endplates. Inlet and outlet

for liquid recirculation are provided in each compartment. An anion exchange

membrane is placed between the cathode and the anode.

13



Figure 1.1: Membrane module schematic drawing

In the figure 1.1, 1 is dilute compartment inlet, 2 is dilute compartment out-

let, 3 is concentrate compartment inlet, 4 is concentrate compartment outlet, 5

is anode, 6 is concentrate compartment, 7 is membrane, 8 is dilute compartment

and 9 is cathode.

The whole membrane module setup consists of a membrane unit, two peri-

staltic pumps, a power source and feed and product tanks. This module is a

part of a larger setup. The aim is to develop a new integrated biotechnological

production process for butyl butyrate which is a promising substitute for diesel

or jet engine fuels. The membrane module is shown on figure 1.2.

14



Figure 1.2: Anion exchange membrane module
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1.4 Description of the case

The following conditions and simplifications were assumed in the model. The

simulations were preformed in isothermal state with laminar flow regime. Al-

though there is a mixture of acids in the experimental setup, only acetic acid

is considered in the model. Mentioned acid is dissolved and the acetic anions

then migrate trough the membrane into the other compartment. The model

operates with a concentration of these dissolved species. The driving force of

anions across the membrane is a difference in chemical potential and an electric

field.

1.5 Software used

Geometry, meshing and all calculations were performed in OpenFOAM 4.1 soft-

ware. OpenFOAM (Open source Field Operation And Manipulation) is a C++

toolbox used for the development of numerical solvers, pre- and post-processing

utilities for continuum mechanics problem solving, including CFD. A number of

OpenFOAM utilities and practices used in the membrane module development

are described in this work.

16



Chapter 2

Theoretical part

2.1 Ion exchange membranes

Ion exchange technology has been receiving growing attention in various in-

dustrial sectors for several decades. This technology is used to purify various

solutions by removal of the dissolved ions using electrostatic sorption. Ions are

absorbed into ion exchange materials which come in various physical shapes and

forms. The absorbed ions are replaced by an equivalent amount of different ions

with the same charge in the solution. The use of ion exchange membrane mod-

ules allows either a complete removal of all ions from a solution or a selective

separation of a particular ions.

There are numerous application of ion exchange membranes ranging from

industrial ones to households. Although they mainly cover purification pur-

poses, their usage also covers extraction and separation of valuable substances.

Another significant application is deionization of water and water softening.

17



The principle of ion exchange process is the exchange of ions between elec-

trolyte solution in aqueous phase and ions that are immobilized in solid phase,

the ion exchange material. A stoichiometric reversible ion exchange reaction

takes place here. Mentioned ion exchange materials are the main part of the

whole process. They fall into various categories as mineral and polymeric or

anionic and cationic. [2]

There is a difference in the chemical potential across the ion exchange mem-

brane. It can be caused by an applied current or by permeability difference.

Only a certain types of ions are able to pass trough the membrane depending

on their size, mobility and charge. The ion exchange membrane has one com-

partment on each of its sides. The dilute is the compartment the ions are being

removed from while the concentrate is the compartment the ions are transported

to. [3]

2.1.1 Donnan equilibrium

Donnan, or Gibbs-Donnan, equilibrium describes the equilibrium between two

solutions separated by a membrane. The principle of the membrane is that is al-

lows certain charged components in solution to pass trough. But the membrane

does not allow all the ions present in solution to pass through which makes it a

selectively permeable membrane.

The membrane selectivity is typically related to the particular ion size. The

pores of the membrane can be too small to let an anion or cation pass through.

The concentration of ions that can pass through the membrane should be the

same on each side. The total number of ions should be equal on either side of

the membrane as well.

18



A selective permeability membrane consequence is the formation of an elec-

trical potential difference between the two membrane sides. The two solution

also differ in osmotic pressure because one solution usually has more ions of a

certain type than the other one. [4]

For compomemt i in a solution, the electro-chemical potential is defined

ηi = µ0
i +RgT ln(ai) + (P − P 0)Vmol,i + ziFφ (2.1)

where µ0
i is the standard chemical potential, Rg is the gas constant, T is the

absolute temperature, ai is the activity, P is the pressure, P 0 is the standard

pressure, Vmol,i is the partial molar volume, zi is the charge number, F is the

Faraday constant, and φ is the electric potential.

Equation 2.2 represents the Donnan equilibrium state. It implies that the

electro-chemical potential of component i, ηi, in a solution and the electro-

chemical potential of the same component in membrane are equivalent, η̄i. [5]

ηi = η̄i (2.2)

2.1.2 Electric field diffusion

When an external driving forse is applied, diffusing particles experience drift

motion in addition to standard diffusion. A most common example of an exter-

nal force is an electric field.

The electrical conductivity is a result of the transport of ions rather than

electrons for many ionic solids. This is different from metals or semiconductors.

19



When ions are the charge carriers in an electronically insulating material, the

ionic motion under the influence of an electric field is described by the ionic

conductivity. The dc (direct charge) conductivity, σdc, related with the electrical

current density, j, and electric field strength, E, via Ohm’s law. [6]

j = σdcE (2.3)

2.1.3 Teorell, Meyer and Sievers Theory

Teorell, Meyer and Sievers Theory (TMS theory) can also be generally applicable

in understanding the mechanisms of transport phenomena. This theory is based

on the Nernst-Planck equation and the Donnan equilibrium theory. The TMS

theory dicusses membrane phenomena in electrolyte solutions and reveals the

mechanisms of characteristics such as diffusion coefficient, membrane potential,

electric conductiviy, etc. The difference is that the ionic mobility and activity

coefficient are taken as constants. Despite the differences, the results produced

by the TMS theory are essentially equivalent to results produced by Donnan

equilibrium theory. [5]

2.1.4 Electrochemical reactions

A closed circuit with an anode and a cathode is necessary to apply an electrical

current to the system. The ions will then carry the charge across the system.

Depending on the system setup or conditions the electrical potential varies.

If the electrical potential is high enough, hydrogen and oxygen gases will be

produced at the electrodes. [7]
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Acetic acid is a weak acid and the dissociation in water will occur.

CH3COOH(aq) +H2O(l) � H3O
+
(aq) + CH3COO

−
(aq) (2.4)

On the surface of cathode, a reduction will take place. Hydrogen ions will

receive electrons and form hydrogen in gaseous state. This half reaction is:

2H+
(aq) + 2e− −→ H2(g) (2.5)

The negatively charged remnant from an acetic acid molecule travels trough

the anion exchange membrane to the other side of the membrane module. There,

the second half reaction on the surface of the cathode occurs. This is an oxida-

tion reaction where gaseous oxygen is formed after surplus electrons are taken

away. The reaction is: [8]

2H2O(l) −→ O2(g) + 4H+
(aq) + 4e− (2.6)

The negatively charged remnant from acetic acid then reacts with the pro-

tone, forming acetic acid:

H+
(aq) + CH3COO

−
(aq) −→ CH3COOH(aq) (2.7)
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2.1.5 Water transport trough the membrane

Water transport across ion exchange membranes accompanies this process. This

water migration occurs when a charged membrane under the influence of an

electrical potential difference is used, and it has been termed electro-osmosis. It

may consist of water transport corresponding to primary hydration of the ions

or, also, as an additional quantity. The total water transport caused by the

current is generally referred to as electro-osmosis. Water transport by osmosis

is also a natural phenomenon in electrodialysis and the transport takes place

in the same direction as the mass transport. Both electro-osmosis and osmosis

are unavoidable side effects and they limit the usefulness of electrodialysis as a

method of concetrating electrolyte solutions. The transport of ions with water

trough a membrane is caused by pressure and osmotic forces. [9]

Two models of solver transport were distinguished:

• osmotic flow which may give rise to a streaming potential

• electro-osmotic flow which accompanies the migration of ions trough

the membrane [10]

The main two methods for investigating water transport are based on weight

and volume changes. The former one is suitable for flexible membranes and

it requires meticulous care in transferring the solutions as well as rinsing the

apparatus. The latter is much more easier and simpler. [9]
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2.2 Equations used

All the CFD calculations were performed in the OpenFOAM software. The

following subsection will discuss the applied equations in each part of the mem-

brane module.

2.2.1 Velocity

For the computation of velocity profiles in the system, Navier - Stokes equa-

tions are implemented. Since the flow is considered to be a laminar flow of an

incompressible liquid, the equation takes the following form

∂u

∂t
+ (u.O)u− νO2u = −O

(
p

ρ

)
(2.8)

where u stands for fluid velocity, t is time, ν is kinematic viscosity, p is

pressure and ρ is fluid density.

For the same set of assumptions, the continuity equation yields

O · u = 0 (2.9)

2.2.2 Pressure

Pressure is solved together with velocity. The standard method in multiple

OpenFOAM solvers is the PISO (Pressure Implicit with Splitting of Operators)

method. This algorithm is an efficient method for solving the Navier-Stokes

equations in unsteady state cases. It roughly consists of solving the momentum,

mass and pressure equation followed by correction of these calculated values.
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The pressure equation can by solved multiple times if the given geometry has a

higher degree of non-orthogonality.

2.2.3 Concentration

Ions, the dissolved species in the liquid flow trough the membrane module,

move trough the module via multiple mechanisms which include convection and

diffusion. The latter consists of standard diffusion in liquid and diffusion caused

by the electric field.

This movement is described by equation 2.10, where the first element on the

right side stands for convection, the second one for standard diffusion and the

last one stands for diffusion caused by the effect of the electric field. [11]

∂c

∂t
= −O(uc) + O2(Dc)− O ·

(
DceE

kT

)
(2.10)

In equation 2.10, c is concetration, D is diffusion coefficient, k is Boltzmann

constant, e is elementary charge and E is electric field strength.

2.2.4 Electric field

Since the membrane module is under the effect of an electric field, it has to

be calculated. First, a resistance of a compartment is calculated according to

equation 2.11 [12]

R =
h

AΛcd
(2.11)
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where R is Electrical resistance, h is height of a membrane module compart-

ment, A is membrane surface area, Λ is molar conductivity and cd is concentra-

tion in the dilute compartment.

Taking into account the the electric current in system is stable, the electric

potential drop across a compartment will be calculated with equation 2.12.

4V = RI (2.12)

4V is the electric potential drop in compartment or membrane and I is

electric current.

Lastly, the strength of an electric field, E is calculated from the potential

drop in the given compartment and the compartment height. [13]

E =
4V
h

(2.13)

In the case of the membrane itself, the electrical resistance is not calculated

but taken from the membrane module provider web page [14]. The electrical

potential drop as well as the electrical field are then calculated in the same way

as previously.
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Chapter 3

Practical part

3.1 OpenFOAM case file structure

There is a defined file structure in OpenFOAM software that needs to be followed

in order to successfully run an application. The file structure of electroMembrane

case is shown on figure 3.1. All the files can be also found in the appendix.

3.1.1 Constant directory

Constant directory contains full description of the case mesh in the polyMesh

subdirectory. All the used constants are stored in the transportProperties

file. The regionProperties file contains information on how to assign regions

to categories. FluidRbot and fluidRtop are regions in fluid region category

and solidR is a region in solid regions category. The dictionaries with the

same names as the regions contain their own polyMesh dictionaries, where the

geometry of each given region is stored. They also contain all the constants

26



used in the separate regions.

Figure 3.1: ElectroMembrane case file structure

3.1.2 System directory

The bare minimum of files that the System directory can contain is three and

they are controlDict, fvSchemes and fvSolution. In the controlDict file,

information that concern data output, run control as start time, end time or time
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step are stored. In the fvSchemes (finite volume schemes) file, discretisation

schemes used in the solutions are selected. The fvSolution file contains a

selection of solvers together with tolerances or other algorithm controls for all

the used equations. All the remaining dictionaries store information on how

each of the utilities, with the same name as the given dictionary, are set up

to perform. Mentioned utilities are described in more detail in the following

sections. Just as in the Constant directory, dictionaries sharing the names of

separate regions contain same base files as the System directory apart from

controlDict, as well as utility dictionaries used in each given region.

3.1.3 Time directories

Time directories contain individual data for particular fields for the given time.

In the case of 0 time directory, initial values as well as boundary conditions

describing the case are stored here. The rest of time directories contain results

written to the files by OpenFOAM. Directories with specific region names con-

tain 0 and different time directories as well. They too store initial values and

boundary conditions as well as boundary condition between separate regions

which describe how should a given field behave on a face between regions.

3.2 Mesh

In order to perform a simulation, a proper geometry has to be built. This is

achieved by building a mesh, which is an integral part of a numerical solution.

A mesh that satisfies certain criteria ensures a valid and accurate solution. In

OpenFOAM, mesh is by default made of arbitrary polyhedral 3D cells.

28



3.2.1 CFD meshes

Fluid flow or heat transfer problems are generally governed by partial differential

equations. Only very simple cases lead to analytical solutions and that is why

in order to analyze a fluid flow, the geometry needs to be split into smaller do-

mains. The mentioned equation are discretized and then solved in each of these

smaller domains. Three typical methods used for solving these equations: finite

volumes, finite elements and finite differences. Mesh generation is a process of

obtaining an appropriate mesh and it has been long considered to be a bottle-

neck in the CFD analysis due to the lack of fully automatic mesh generation

procedures.

3.2.2 Mesh components

A mesh is build by specifying points. A point represents a location in 3D space

and it is defined by a vector in meters. The points are then compiled into a list,

while each one is referred to by a numeric label that represents its position in

the list. The numbering starts from zero.

The points are then ordered into faces, which are created by calling the point

labels in a way that each two neighbouring points are connected by an edge.

Faces can also be compiled into a list and are referred to by labels. There are

two different types of a face. Internal faces connect exactly two faces and cannot

hold boundary conditions. Boundary faces belong only to one cell, they coincide

with the boundary of the domain. A boundary face is addressed by a boundary

patch.

The faces are then built into cells. Cells must completely cover given com-
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putational domain and must not overlap each other. Also, every cell has to be

closed. [15]

3.2.3 Mesh types

Most common 3D mesh cell shapes are tetrahedron and hexahedron. A tetra-

hedron consists of 4 vertices, 6 adges bound by 4 triangular faces. Tetrahedral

meshes can be generated automatically in most cases but they do not provide

the best accuracy of solutions. Hexahedron, or simply a brick, has 8 vertices

and 12 edges bounded by 6 quadrilateral faces. The accuracy of a solution with

a hexahedral mesh is the highest for the same cell amount.

Two types of mesh grids include structured and unstructured grids. Struc-

tured grid is identified by regular connectivity. This grid model is highly space

efficient since the neighborhood cell relationships are defined by storage arrange-

ment. Also, this type of grid provides better convergence and higher resolution.

The unstructured grid is defined by irregular connectivity and compared to

structured grid, it is highly space inefficient. [16]

3.2.4 Meshes used in this work

Two meshes were build for simulations of the membrane module process. Both

of the meshes consist of main three blocks, two for the compartments and one

for the membrane. The first mesh takes a simpler approach which means that

the whole sides of the two compartment blocks are used as inlet and outlet.

This can be seen on figure 3.2.
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Figure 3.2: Simple version of membrane module mesh

The second mesh is more detailed. It takes into account, that inlets and

outlets of the compartments are circular holes and not the whole faces as can

be seen on figure 3.3. This means that there is a cylinder along the whole

compartment, connecting the circle inlet and outlet. Naturally, the geometry

around this cylinder has to be adapted to the shape. This brings a good deal

of nonorthogonality to the mesh.
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Figure 3.3: More detailed version of membrane module mesh

In both mesh cases, the same dimensions were used. A schematic membrane

module with dimensions can be seem on figure 3.4.
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Figure 3.4: Drawing of the membrane module with dimensions

3.2.5 Courant number

Courant number provides a measure for the convergence. It is used in solving

partial differential equations numerically. The condition states that given a

certain space discretization, a time step should not be bigger than some a certain

time, given by the equation 3.1. The typical Cmax value is 1. [17]

C =
u M t
M x

≤ Cmax (3.1)

In equation 3.1, C is Courant number, u is fluid velocity, M t is time step

and M x is spacing of the grid.
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3.3 Pre-processing

Pre-processing consists of generating and modifying the mesh as well as fields

and boundary conditions so the simulation may run. The whole pre-processing

step along with explanation of used utilities is discussed in the following sections.

3.3.1 blockMesh

After all the points, edges, faces and blocks are declared in the appropri-

ate dictionary (in this case blockMeshDict), the blockMesh utility is called.

BlockMesh is a mesh generation utility used for creating parametric meshes

with curved edges and grading. It decomposes the geometry of the domain into

a set of 3D, hexahedral blocks. Each of these blocks is defined by 8 points,

one at each corner of given block. The blocks can also have a label assigned, if

desired.

3.3.2 topoSet

The mesh, created with blockMesh utility, contains two internal faces. One on

each side of the membrane, connecting it to the dilute and concentrate compart-

ments. It is desired that the internal faces would be converted into boundary

faces because boundary faces can have various boundary conditions assigned.

These two faces represent the contact of the membrane with the compartments.

Firstly, a set of faces has to be created using topoSet utility using the

boxToFace source. All the specifications are given in the given dictionary,

topoSetDict. The utility then takes every internal face that has its center in-

side the given box and assigns it into a faceSet with a specified name. The next
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step is converting the mentioned faceSet into a labeled faceZoneSet. The cre-

ated faceZoneSet, which contains the internal faces of the mesh, can be later

used by other utilities.

3.3.3 splitMeshRegions

The next step is splitting the geometry into multiple regions. In this case, three

regions are created, two for the compartments and one for the membrane. This

is achieved by splitMeshRegions utility, which is used with −cellZones and

−overwrite options. The−cellZones option uses previously created faceZoneSets

to created desired regions.

3.3.4 createBaffles

Then, the internal faces contained in the faceZoneSet are converted into bound-

ary ones. Internal faces are the ones connecting different regions in the geometry.

This is achieved with createBaffles utility. The utility will convert internal

faces into boundary faces of types specified in the createBafflesDict dictio-

nary. The specific boundary condition types are discussed more in the following

sections.

3.3.5 changeDictionary

After using utilities mentioned above, the boundary conditions are set to de-

fault and have to be changes to the desired ones. This is accomplished by the

changeDictionary utility which simply edits the appropriate dictionaries and

changes default boundary conditions to the specified ones.

35



3.3.6 decomposePar

There is an option to run OpenFOAM applications in parallel on distributed

processors. This means that the geometry is broken down into pieces which are

then assigned to separate processors for solving. The geometry is broken down

according a set of parameters that are specified in the decomposeParDict. This

includes the specification of how the geometry should be broken down (x,y and

z axis) as well as method of decomposition.

3.3.7 Other approaches

There are many other ways how to approach a geometry of any given Open-

FOAM case. One would be the usage of snappyHexMesh utility. This utility

creates a mesh by approximate conformations to the surface. It chooses a start-

ing mesh and then iteratively refines it to fit the given geometry.

Another option would be to use a different software to create a geometry and

then convert it to an OpenFOAM format. A commonly used software includes

Fluent, Salome or Gambit.

3.4 Boundary conditions

The boundary conditions play a very important role in every OpenFOAM ap-

plication. The role of a boundary condition is not only as a geometric entity

but also as integral part of the solution. The boundary faces also represent a

”connection” between different regions. A list of boundary conditions on spe-

cific patches used in this word is presented in tables 3.1, 3.2 and 3.3. These

boundary conditions are discussed in the following sections.
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p conc U E

Inlet zeroGradient fixedValue fixedValue fixedValue

Outlet fixedValue zeroGradient zeroGradient fixedValue

Walls zeroGradient zeroGradient noSlip fixedValue

Cathode zeroGradient zeroGradient noSlip fixedValue

Table 3.1: Boundary conditions for the fluidRbot region

p conc U E

fluidRbot-solidR zeroGradient zeroGradient noSlip fixedValue

solidR-fluidRbot zeroGradient mappedFixedInternalValue - fixedValue

solidR-fluidRtop zeroGradient zeroGradient - fixedValue

fluidRtop-solidR zeroGradient mappedFixedInternalValue noSlip fixedValue

walls zeroGradient zeroGradient - fixedValue

Table 3.2: Boundary conditions for the solidR region

p conc U E

Inlet2 zeroGradient outletMappedUniformInlet fixedValue fixedValue

Outlet2 fixedValue zeroGradient zeroGradient fixedValue

Walls zeroGradient zeroGradient noSlip fixedValue

Cathode zeroGradient zeroGradient noSlip fixedValue

Table 3.3: Boundary conditions for the fluidRtop region
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3.4.1 fixedValue

This boundary condition is one of the standard ones. As the name suggests

it simply supplies a fixed value to the given boundary face. It is required to

provide the value in appropriate, scalar or vector, form.

3.4.2 zeroGradient

ZeroGradient boundary condition is a OpenFOAM version of a Newmann con-

dition, where the value of the derivate is given. In this case, the value is zero.

This means that a point of a boundary face with this condition will be given

the same value as the last point in geometry before the boundary face.

3.4.3 noSlip

NoSlip is a boundary condition used with fluid velocity. It is a common type of

idealized boundary condition found in the applications of fluid dynamics. The

fluid is flowing along an impenetrable wall. The overall boundary for viscous

fluid flowing along this impenetrable wall is that there is no motion between the

wall and the fluid that is in immediate contact with the wall. [18]

3.4.4 mappedFixedInternalValue

Boundary condition mappedF ixedInternalV alue maps the boundary values of

a neighbor patch field to the boundary values of desired patch field. This bound-

ary condition enables calculated fields to move from one region to another.
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3.4.5 outletMappedUniformInlet

OutletMappedUniformInlet boundary condition averages the field values of

the specified outlet patch and applies it as an uniform value to the field over

this patch. This boundary in used with the inlet patch of the concentrate

compartment. The reasoning behind this is that after concentrate flow leaves

the membrane module, it will get perfectly mixed in the concentrate tank before

entering the module again.

3.5 Solver

Solver with a name membraneSolver was used to preform the simulation. Cus-

tom solver in OpenFOAM are usually developed based on one of the default

solvers. The same procedure was used in this work. MembraneSolver is based

on a solver named icoFoam.

3.5.1 icoFoam

This is a transient solver for incompressible laminar flow of Newtonian flu-

ids. The code requires an initial conditions and boundary conditions. The

icoFoam solver can take mesh non-orthogonality into account with a num-

ber of non-orthogonality iterations. The number of PISO corrections and non-

orthogonality corrections are controlled through user input.

OpenFOAM applications are organized using a standard convention. The

source code of each application is placed in a directory that shares name with the

application. The source code of icoFoam solver resides in a directory icoFoam

as is shown on figure 3.5. The top level file also shares the name, icoFoam.C.
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Figure 3.5: IcoFoam solver file structure

The createF ields.H file consists all the information on created and used

fields. Here, the constants, scalar and vector fields have to be stated via

IOobject (input output object) classes. The information concerning reading

and writing of the fields is also stated in this file.

An OpenFOAM solver also has to contain a Make directory in its main

directory. There are files named files and options in this directory. The files file

contains information on where the solver executables should be written. The

options file contains the full directory paths to locate other files used in the

solver.

3.5.2 membraneSolver

As was mentioned previously, membraneSolver solver is based on the icoFoam

solver. That means that the pressure and velocity calculations are handled the

same way, with the PISO algorithm. This solver also calculates the concen-

tration of the dissolved ionic species as well as handles multiple regions of the

geometry. Concentration is calculated as it is stated in the theory part of this

work.

As multiple regions are used in membraneSolver, the file structure of this
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solver is a bit more complex than the file structure of icoFoam solver. This can

be seen on figure 3.6.

Figure 3.6: MembraneSolver solver file structure

All the regions are sorted into two categories, fluid and solid regions, each

category has a dictionary with the same name. The fluid dictionary contains

createF luidF ields.H, createF luidMeshes.H and setRegionF luidF ields.H files.

The workflow of this solver is as it follows. Firstly, the meshes are created.

This is handled by createF luidMeshes.H file. The program will retrieve a list

of all region names in the fluid region category. Then, a mesh of an appropriate

name is created for each of the regions. Secondly, all fields are created with the

contents of createF luidF ields.H file. Here, a pointer list ,with the same size
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as given field, is assigned to each of the computed fields. The next step is a

creation of IOobjects for each field in each region. Lastly, with the contents of

setRegionF luidF ields.H file, the values in the pointer lists are allocated into

the appropriate fields. This means that a given computed fields will have the

same label in every region of both region categories.

3.6 Post-processing

3.6.1 Mesh reconstruction

Cases that have been run in parallel can either be reconstructed or each of

the geometry segments can be processed individually. Here, the former option

was used. After all the calculations in parallel are finished, the mesh is rebuilt

together again. This is achieved by reconstructPar utility, which merges the

time directories from each processor into single set of time directories.

3.6.2 paraFoam

ParaFoam is the main post-processing tool provided with OpenFOAM. It is

an open-source, visualization application. This tool was used to create all visu-

alizations of the geometry and meshes as well as graphs.

Another alternative is conversion of data into VTK format so it can be read

not only by paraFoam but any VTK-based graphic tool.
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Chapter 4

Results and discussion

The parameters of simulations can be seen in Table 4.1. The electric strength

values were calculated outside of the model and set as a constant value.

Parameter Value Parameter Value

cd 10 mol.m−3 ρ 998,2 kg.m−3

T 293.15 K Dc 1, 089.10−9m2.s−1 [19]

Ec 61.125 V.m−1 Dm1 1, 089.10−9m2.s−1

Em 2500 V.m−1 Dm2 1, 089.10−10m2.s−1

ν 1, 004.10−6m2.s−1 Dm3 1, 089.10−11m2.s−1

u 0.04 m.s−1 e 1, 6022.10−19C

k 1, 3806.10−23m2.kg.s−2.K−1 Λaa 40, 9.10−4S.m2.mol−1 [19]

I 0,05 A Vanode 5 V

Table 4.1: Input parameters sued in simulations
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4.1 Simulation results

The diffusion coefficient of acetic anions in the membrane was not provided by

the manufacturer. Multiple simulation were performed with different values of

this diffusion coefficient. In first case, value of diffusion coefficient of acetic

anions in membrane Dm1, was the same as the diffusion coefficient of acetic

anions in water Dc. In the second and third simulations, Dm2 and Dm3 are 10

and 100 times smaller than Dc.

4.1.1 Pressure

The pressure profile of a cross section of the membrane module can be seen

on figure 4.1. The values of p in the simulations represent pressure divided by

fluid density. In both lower (dilute) and upper (concentrate) compartments, a

pressure decrease is formed. A slight decrease of pressure is to be expected from

flowing fluids.

Figure 4.1: Cross section of the pressure profiles in the mesh with dilute com-
partment at the bottom and concentrate compartment at the top

The value of pressure was not set in the simulation. Instead, the inlet value
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was set as zero gradient and the outlet value as zero. Zero pressure represents a

reference pressure, which can be for example standard pressure. Because inlet

velocity is set, the inlet pressure calculation is based on that value.

The same pressure drop for dilute compartment as on figure 4.1 but in terms

of plot is shown on figure 4.2. Here, the x represents the distance on x axis from

the dilute compartment inlet.

Figure 4.2: Pressure profile of dilute compartment

4.1.2 Velocity

Cross section trough the velocity profiles in the membrane module is shown

on figure 4.3. In both dilute and concentrate compartment inlets, the velocity

profile in not formed as the inlets are set to have uniform velocity distribution.

It can be seen that the velocity near walls is zero which agrees to wall boundary

conditions set for the simulation.
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Figure 4.3: Cross section of the fluid velocity profiles in the mesh with dilute
compartment at the bottom and concentrate compartment at the top

The figure 4.4 shows velocity profiles at dilute compartment at more detail.

The lines represent cuts of the compartment in the direction of z axis. The cuts

are made on three different positions on the x axis.

Figure 4.4: Velocity profiles at different locations on the compartment

It can be clearly seen that laminar flow regime is being formed. A fully
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formed laminar flow regime would likely form if the membrane module would

be longer.

4.1.3 Concentration

The membrane concentration profiles are shown on figures 4.5, 4.6 and 4.7. The

0 value on the z axis represent contact with the dilute compartment, hence the

concentration 10 mol.m−3. The other end of the z axis represents contact with

the concentrate compartment. In all three cases, data in 7 different times were

taken.

Figure 4.5: Membrane concetration profile using Dm1

It takes less than an hour for the membrane in the first simulation to have

the same concentration of acetic ions as the dilute compartment. That is not

the case in the second and third simulations. The real value of Dm is most likely

between the three used values. This statement is based on diffusion coefficient

of other ions in water and ion exchange membranes. The value of mentioned

47



diffusion coefficient in ion exchange membrane is usually up to 100 times lower

than in water [20] [21]. A diffusion coefficient for a specific membrane can be

calculated from the correlation of current efficiency based on experiments [12].

Figure 4.6: Membrane concetration profile using Dm2

Figure 4.7: Membrane concetration profile using Dm3
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4.2 Future development

There is a room for significant improvement of this model since many simplifi-

cations and conditions were assumed.

4.2.1 Geometry

Two geometry approaches were presented, a simple and a more detailed one.

In the case of the simple model, the x, y and z axis point spacing is different.

Although this can be seen in the membrane as well as in the compartments, it is

more prominent in the membrane. Since the membrane is very thin, the distance

between two points in the z axis direction is 0.1 mm whereas the distances

between two points in the x a y axis directions are 1.33 mm and 1.67 mm. Since

the mesh grid is structured, these distances in between the points in membrane

cannot be decreased without doing the same in the compartments. For this

reason, the decrease of the distance between two points in the direction of x or

y axis would significantly prolong the computation time.

In the case of more detailed geometry, the fields were not calculated properly.

As was described in the previous sections, the mesh is not orthogonal. This can

have effect on the precision of the calculations. Since inlet and outlet are circles

in the middle of rectangular walls, it is possible that the fluid creates swirls when

flowing trough. For this reason, a laminar flow regime may not be optimal and

simulations with more turbulent flow regime could be performed.

4.2.2 Other acids and ions

Only acetic anions were taken into account in this model. Possible broadening of

this models capabilities would be to accompany the electrochemical reactions.
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This would mean calculations of other ion concentrations. The model could

also the into account multiple acids dissociation, which would also mean more

complex calculations of necessary diffusion coefficients.

4.2.3 Chemical reactions

Another matter to include could be generation of hydrogen and oxygen gasses

on the electrodes, which would requite addition of multiphase layers and calcu-

lations and also geometry modification to include the gas outlets. A different

approach would be to assume different set of reactions, meaning a different

chemicals than hydrogen and oxygen would be produced.

4.2.4 Electric potential

A simplified approach to the calculation of electric field strength was taken. The

values were calculated outside of the model and set as a constant value. A more

sophisticated approach would be to calculate electric potential and electric field

strength in the model. This could also take into account changes in the solution

conductivity with different concentrations of ions.
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Chapter 5

Conclusion

A simple CFD model for simulating the operation of an ion exchange membrane

was created in this work. The geometry consists of a dilute and a concentrate

compartment separated by an ion exchange membrane. Two different meshes

were created, a simplified one and a more precise one. The simplified one was

used in the simulations. A number of pre-process utilities used in this work

are described along with applied boundary conditions. Then, a creation of used

solver is described and results are shown. This model is able to calculate pres-

sure, fluid velocity and acetic anion concentration fields. The model also takes

into account the effect of an electric field. There is also room for future devel-

opment. The more precise mesh could be reworked, since it did not produce

accurate results. Other ions as well as other dissociating acids could also be

taken into account. This would mean implementation of electrochemical reac-

tions on the electrodes. If production of hydrogen and oxygen gasses is assumed,

multiple phases along with multiphase layers have to be calculated. Lastly, elec-
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tric potential could be calculated in more sophisticated way, taking into account

current concentration of ions in solutions.
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Chapter 6

Resumé

Ciělom predloženej diplomovej práce bolo źıskať zakladné znalosti o CFD mod-

eloch a simuláciach. To zahŕňa aj znalosti o vytvárańı a prácou s mriežkami.

Následne bolo potrebné použǐt źıskané vedomosti na návrh modelu membránového

modulu. Tento model obsahuje iónovú membránu, ktorá oddeluje dve nádoby

a slúži na separáciu zmesi organických kyseĺın. Model membránového mod-

ulu pracuje s kyselinou octovou. Konkrétne sa jedná o iónovú membránu, cez

ktorú difundujú anióny kyseliny octovej. Membránový modul sa skladá z dvoch

nádob oddelených membránou. Každá z nádov má vstup a výstup a uspori-

adanie prúdov je protiprúdne. V práci boli použité nasledujúce zjednodušenia.

Aj keď sa v skutočnosti v systéme nachádza viacero kyseĺın, model pracuje iba

s aniónmi kyseliny octovej. V celom systéme sa predpokladá laminárny režim

prúdenia a konštantná teplota.

Mriežka je neoddelitelnou súčasťou CFD modelovania. Je možné ju vytvorǐt

priamo v programe OpenFOAM funkciou blockMesh. Druhá možnosť je im-
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portovať už hotovú mriežku z iných programov na vytváranie 3D geometríı. V

tejto práci boli vytvorené dve mriežky. Obe sa skladajú z vělkého počtu malých

šesťstranných elementov a obe sú štruktúrované. Prvá, zjednodušená varianta

zanedbáva kruhové vstupy a výstupy z nádob, za vstupy a výstupy sa považujú

celé steny ako je znázornené na obrázku 3.2. Zložiteǰsia mriežka presne opisuje

spomı́nané kruhové vstupy a výstupy a je znázornená na obrázku 3.3. Simulácie

so zložiteǰsou verziou mriežky však vykazovaly chybné výsledky, a preto bola v

simuláciách použitá jednoduchšia mriežka.

Pred samotným výpočtom je potrebné model pripravǐt použit́ım viacerých

funkcíı. Prvá je už spomı́naná funkcia blockMesh, ktorá zostav́ı mriežku. Nasle-

duje funkcia topoSet, ktorá v mriežke vytvoŕı tri oblasti, dve pre nádoby a jednu

pre membránu. Funkcia splitMeshRegions potom na základe vytvorených

oblast́ı vytvoŕı tri regióny. Regióny sú nezávislé časti v mriežke, v jednotlivých

regiónoch môžu byť poč́ıtané rôzne rovnice alebo zadané iné okrajové pod-

mienky. Steny medzi regiónymi je vhodné pretvorǐt na okrajové steny použit́ım

funkcie createBaffles. To umožńı priradenie okrajových podmienok k týmto

stenám. Okrajové podmienky na stenách medzi regiónmy sú podstatné, pretože

určujú správanie sa jednotlivých poč́ıtaných poĺı. Napr. z poȟladu rýchlosti

tekutiny a tlaku je rozhranie nádoby a membrány brané ako nepriechodná

stena, no z ȟladiska koncentrácie preieha difúzia čast́ıc do membrány. Konkrétne

použitie okrajových podmienok je uvedené v tabǔlkách 3.1, 3.2 and 3.3.

Nasleduje samotný výpočet. Solver s názvommembraneSolver bol vytvorený

na základe solvera icoFoam. Ten rieši neustálené laminárne prúdenie nestlačitělných

Newtonovských tekut́ın. MembraneSolver je rozš́ırený o výpočet koncentrácie

a tiež pracuje s viacerými regiónmi. Intenzita elektrického pǒla je vypoč́ıtaná

mimo programu a dosadená ako konštantná hodnota.
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Výsledky prezentujú jednotlivé vypoč́ıtané polia, a to tlak, rýchlosť a kon-

centráciu. V pŕıpade tlaku sa naprieč modulom vytvoril jemný klesajúci gradi-

ent. Pole rýchlosti vykazuje postupné vytvorenie laminárneho režimu prúdenia.

Boli uskutočnené tri simulácie s rôznymi hodnotami difúzneho koeficienta pre

prestup octových aniónov v membráne. Presná hodnota tohto koeicienta nebola

od výrobcu membŕany poskytnutá. Ako bolo očakávané, prestup látky membránou

bol pomaľśı s nižš́ımi hodnotami spomı́naného difúzneho koeficienta. Tieto

výsledky prezentujú funkčný jednoduchý model chodu membránového modulu.

Vytvorený model má vělký potenciál vývoja v budúcnosti. V prvom rade

by bolo možné prerobǐt zložiteǰsiu mriežku modulu tak, aby vykazovala správne

výsledky. Takisto by bolo možné model rozš́ırǐt o koncentrácie viacerých iónov,

pŕıpadne viacerých kyseĺın. To by znamenalo zakomponovať do modelu aj elek-

trochemické reakcie. Model by taktiež mohol obsahovať produkciu plynného

vod́ıka a kysĺıka.
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Appendix A

Solver and case code

membraneSolver

fluid

createFluidFields.H

PtrList<uni formDimensionedScalarFie ld> ep s i l on0F lu id ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> nuFluid ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> DFluid ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> zFlu id ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> bo l t zF lu id ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> TFluid ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<vo lSca l a rF i e l d> pFluid ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<vo lVectorFie ld> UFluid ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<vo lSca l a rF i e l d> concFluid ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<vo lVectorFie ld> EFluid ( f l u i dReg i on s . s i z e ( ) ) ;
PtrList<s u r f a c eS ca l a rF i e l d> phiFlu id ( f l u i dReg i on s . s i z e ( ) ) ;

// Populate f l u i d f i e l d po in t e r l i s t s
f o rA l l ( f lu idReg ions , i )
{
Info<< ”∗∗∗ Reading f l u i d mesh p r op e r t i e s f o r r eg i on ”

<< f l u i dReg i on s [ i ] . name ( ) << nl << endl ;

Info<< ” Adding to ep s i l on0 \n” << endl ;
ep s i l on0F lu id . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

” ep s i l on0 ” ,
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runTime . constant ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)
)

) ;

Info<< ” Adding to nu\n” << endl ;
nuFluid . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

”nu” ,
runTime . constant ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)
)

) ;

Info<< ” Adding to D\n” << endl ;
DFluid . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

”D” ,
runTime . constant ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)
)

) ;

Info<< ” Adding to z\n” << endl ;
zFlu id . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

”z ” ,
runTime . constant ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)
)

) ;

Info<< ” Adding to bo l t z \n” << endl ;
bo l t zF lu id . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

60



IOobject
(

” bo l t z ” ,
runTime . constant ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)
)

) ;

Info<< ” Adding to T\n” << endl ;
TFluid . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

”T” ,
runTime . constant ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)
)

) ;

Info<< ” Adding to p\n” << endl ;
pFluid . s e t
(

i ,
new vo l S c a l a rF i e l d
(

IOobject
(

”p” ,
runTime . timeName ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :AUTOWRITE

) ,
f l u i dReg i on s [ i ]

)
) ;

Info<< ” Adding to U\n” << endl ;
UFluid . s e t
(

i ,
new vo lVecto rF i e ld
(

IOobject
(

”U” ,
runTime . timeName ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :AUTOWRITE

) ,
f l u i dReg i on s [ i ]

)
) ;
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Info<< ” Adding to conc\n” << endl ;
concFluid . s e t
(

i ,
new vo l S c a l a rF i e l d
(

IOobject
(

” conc ” ,
runTime . timeName ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :AUTOWRITE

) ,
f l u i dReg i on s [ i ]

)
) ;

Info<< ” Adding to E\n” << endl ;
EFluid . s e t
(

i ,
new vo lVecto rF i e ld
(

IOobject
(

”E” ,
runTime . timeName ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :AUTOWRITE

) ,
f l u i dReg i on s [ i ]

)
) ;

Info<< ” Adding to phi\n” << endl ;
ph iFlu id . s e t
(

i ,
new su r f a c e S c a l a rF i e l d
(

IOobject
(

” phi ” ,
runTime . timeName ( ) ,
f l u i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :AUTOWRITE

) ,
fvc : : f l u x ( UFluid [ i ] )

)
) ;

l a b e l pRefCel l = 0 ;
s c a l a r pRefValue = 0 . 0 ;
s e tRe fCe l l ( pFluid [ i ] , f l u i dReg i on s [ i ] . s o l u t i onD i c t ( ) . subDict (”PISO”) , pRefCel l , pRefValue ) ;
f l u i dReg i on s [ i ] . setFluxRequired ( pFluid [ i ] . name ( ) ) ;
}
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createFluidMeshes.H

const wordList f luidNames ( rp [ ” f l u i d ” ] ) ;

PtrList<fvMesh> f l u i dReg i on s ( f luidNames . s i z e ( ) ) ;

f o rA l l ( fluidNames , i )
{

Info<< ”Create f l u i d mesh f o r r eg i on ” << f luidNames [ i ]
<< ” f o r time = ” << runTime . timeName ( ) << nl << endl ;

f l u i dReg i on s . s e t
(

i ,
new fvMesh
(

IOobject
(

f luidNames [ i ] ,
runTime . timeName ( ) ,
runTime ,
IOobject : :MUSTREAD

)
)

) ;
}

setRegionFluidFields.H

const fvMesh& mesh = f lu idReg i on s [ i ] ;
uni formDimens ionedScalarFie ld& ep s i l on0 = eps i l on0F lu id [ i ] ;
uni formDimens ionedScalarFie ld& nu = nuFluid [ i ] ;
uni formDimens ionedScalarFie ld& D = DFluid [ i ] ;
uni formDimens ionedScalarFie ld& z = zFlu id [ i ] ;
uni formDimens ionedScalarFie ld& bo l t z = bo l t zF lu id [ i ] ;
uni formDimens ionedScalarFie ld& T = TFluid [ i ] ;
v o l S c a l a rF i e l d& p = pFluid [ i ] ;
vo lVec to rF i e ld& U = UFluid [ i ] ;
v o l S c a l a rF i e l d& conc = concFluid [ i ] ;
vo lVec to rF i e ld& E = EFluid [ i ] ;
s u r f a c e S c a l a rF i e l d& phi = phiFlu id [ i ] ;

l a b e l pRefCel l = 0 ;
s c a l a r pRefValue = 0 . 0 ;
s e tRe fCe l l (p , f l u i dReg i on s [ i ] . s o l u t i onD i c t ( ) . subDict (”PISO”) , pRefCel l , pRefValue ) ;
f l u i dReg i on s [ i ] . setFluxRequired (p . name ( ) ) ;

solid
createSolidFields.H

PtrList<uni formDimensionedScalarFie ld> e p s i l o n 0So l i d ( so l i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> DSolid ( so l i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> zSo l i d ( so l i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> bo l t z S o l i d ( s o l i dReg i on s . s i z e ( ) ) ;
PtrList<uni formDimensionedScalarFie ld> TSolid ( so l i dReg i on s . s i z e ( ) ) ;
PtrList<vo lSca l a rF i e l d> concSo l id ( so l i dReg i on s . s i z e ( ) ) ;
PtrList<vo lVectorFie ld> ESol id ( so l i dReg i on s . s i z e ( ) ) ;
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// Populate s o l i d f i e l d po in t e r l i s t s
f o rA l l ( so l idReg ions , i )
{
Info<< ”∗∗∗ Reading s o l i d mesh p r op e r t i e s f o r r eg i on ”

<< s o l i dReg i on s [ i ] . name ( ) << nl << endl ;

Info<< ” Adding to ep s i l on0 \n” << endl ;
e p s i l o n 0So l i d . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

” ep s i l on0 ” ,
runTime . constant ( ) ,
s o l i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)

)
) ;

Info<< ” Adding to D\n” << endl ;
DSolid . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

”D” ,
runTime . constant ( ) ,
s o l i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)

)
) ;

Info<< ” Adding to z\n” << endl ;
zSo l i d . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

”z ” ,
runTime . constant ( ) ,
s o l i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)

)
) ;

Info<< ” Adding to bo l t z \n” << endl ;
b o l t z S o l i d . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
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(
” bo l t z ” ,
runTime . constant ( ) ,
s o l i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)

)
) ;

Info<< ” Adding to T\n” << endl ;
TSolid . s e t
(

i ,
new uni formDimens ionedScalarFie ld
(

IOobject
(

”T” ,
runTime . constant ( ) ,
s o l i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :NO WRITE

)

)
) ;

Info<< ” Adding to conc\n” << endl ;
concSo l id . s e t
(

i ,
new vo l S c a l a rF i e l d
(

IOobject
(

” conc ” ,
runTime . timeName ( ) ,
s o l i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :AUTOWRITE

) ,
s o l i dReg i on s [ i ]

)
) ;

Info<< ” Adding to E\n” << endl ;
ESol id . s e t
(

i ,
new vo lVecto rF i e ld
(

IOobject
(

”E” ,
runTime . timeName ( ) ,
s o l i dReg i on s [ i ] ,
IOobject : :MUST READ,
IOobject : :AUTOWRITE

) ,
s o l i dReg i on s [ i ]

)
) ;

}
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createSolidMeshes.H

const wordList sol idsNames ( rp [ ” s o l i d ” ] ) ;

PtrList<fvMesh> s o l i dReg i on s ( sol idsNames . s i z e ( ) ) ;

f o rA l l ( sol idsNames , i )
{

Info<< ”Create s o l i d mesh f o r r eg i on ” << sol idsNames [ i ]
<< ” f o r time = ” << runTime . timeName ( ) << nl << endl ;

s o l i dReg i on s . s e t
(

i ,
new fvMesh
(

IOobject
(

sol idsNames [ i ] ,
runTime . timeName ( ) ,
runTime ,
IOobject : :MUSTREAD

)
)

) ;
}

setRegionSolidFields.H

const fvMesh& mesh = so l i dReg i on s [ i ] ;
uni formDimens ionedScalarFie ld& D = DSolid [ i ] ;
uni formDimens ionedScalarFie ld& z = zSo l i d [ i ] ;
uni formDimens ionedScalarFie ld& bo l t z = bo l t z S o l i d [ i ] ;
uni formDimens ionedScalarFie ld& T = TSolid [ i ] ;
v o l S c a l a rF i e l d& conc = concSo l id [ i ] ;
vo lVec to rF i e ld& E = ESol id [ i ] ;

createFields.H

#inc lude ” c r e a t eF l u i dF i e l d s .H”
#inc lude ” c r e a t e S o l i dF i e l d s .H”

createMeshes.H

r e g i onPrope r t i e s rp ( runTime ) ;
#inc lude ” createFlu idMeshes .H”
#inc lude ” createSo l idMeshes .H”
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createMeshesPostProcess.H

#inc lude ” createMeshes .H”
i f ( ! f l u i dReg i on s . s i z e ( ) )
{

Fata lError In ( args . executab l e ( ) )
<< ”No f l u i d meshes pre sent ” << e x i t ( Fata lError ) ;

}
fvMesh& mesh = f lu idReg i on s [ 0 ] ;

membraneSolver.H

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O pera t i on |
\\ / A nd | Copyright (C) 2011−2016 OpenFOAM Foundation
\\/ M an ipu l a t i on |

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
License

This f i l e i s part o f OpenFOAM.
OpenFOAM i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify i t
under the terms o f the GNU General Publ ic L icense as publ i shed by
the Free Software Foundation , e i t h e r ve r s i on 3 o f the License , or
( at your opt ion ) any l a t e r ve r s i on .
OpenFOAM i s d i s t r i bu t e d in the hope that i t w i l l be use fu l , but WITHOUT
ANY WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Publ ic L icense
f o r more d e t a i l s .
You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
along with OpenFOAM. I f not , s ee <http ://www. gnu . org / l i c e n s e s />.

App l i ca t ion
membraneSolver

Desc r ip t i on
This s o l v e r uses PISO algor i thm to compite f l u i d v e l o c i t y and pre s su r e
f o r t r an s i e n t ca s e s .

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
#inc lude ”fvCFD .H”
#inc lude ” p i soContro l .H”
#inc lude ”rhoThermo .H”
#inc lude ” turbulentFluidThermoModel .H”
#inc lude ” f ixedGradientFvPatchFie lds .H”
#inc lude ” r e g i onPrope r t i e s .H”
#inc lude ” solidThermo .H”
#inc lude ” radiat ionModel .H”
#inc lude ” fvOptions .H”
#inc lude ” coordinateSystem .H”
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

i n t main ( i n t argc , char ∗argv [ ] )
{

#de f i n e NOCONTROL
#de f i n e CREATEMESH createMeshesPostProcess .H
#inc lude ” postProces s .H”
#inc lude ” setRootCase .H”
#inc lude ” createTime .H”
#inc lude ” createMeshes .H”
#inc lude ” c r e a t eF i e l d s .H”
#inc lude ” in i tCon t i nu i t yEr r s .H”
whi le ( runTime . loop ( ) )
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{
Info<< ”Time = ” << runTime . timeName ( ) << nl << endl ;

f o rA l l ( f lu idReg ions , i )
{

Info<< ”\ nSolv ing f o r f l u i d r eg i on ”
<< f l u i dReg i on s [ i ] . name ( ) << endl ;

#inc lude ” s e tReg i onF lu idF i e ld s .H”
p i soContro l p i s o ( f l u i dReg i on s [ i ] ) ;
#inc lude ”CourantNo .H”
// Momentum pr ed i c t o r
fvVectorMatr ix UEqn
(

fvm : : ddt (U)
+ fvm : : div ( phi , U)
− fvm : : l a p l a c i a n (nu , U)

) ;

i f ( p i s o . momentumPredictor ( ) )
{

s o l v e (UEqn == −f vc : : grad (p ) ) ;
}
// −−− PISO loop
whi le ( p i so . c o r r e c t ( ) )
{

vo l S c a l a rF i e l d rAU(1 . 0/UEqn .A( ) ) ;
vo lVec to rF i e ld HbyA( constrainHbyA (rAU∗UEqn .H( ) , U, p ) ) ;
s u r f a c e S c a l a rF i e l d phiHbyA
(

”phiHbyA” ,
fvc : : f l u x (HbyA)

+ fvc : : i n t e r p o l a t e (rAU)∗ f vc : : ddtCorr (U, phi )
) ;

adjustPhi (phiHbyA , U, p ) ;

// Update the p r e s su r e BCs to ensure f l ux con s i s t ency
con s t r a inPre s su r e (p , U, phiHbyA , rAU) ;

// Non−orthogona l p r e s su r e c o r r e c t o r loop
whi le ( p i so . correctNonOrthogonal ( ) )
{

// Pressure c o r r e c t o r
fvSca la rMatr ix pEqn
(

fvm : : l a p l a c i a n (rAU, p) == fvc : : div (phiHbyA)
) ;

pEqn . s e tRe f e r ence ( pRefCel l , pRefValue ) ;

pEqn . s o l v e ( f l u i dReg i on s [ i ] . s o l v e r (p . s e l e c t ( p i so . f i n a l I n n e r I t e r ( ) ) ) ) ;

i f ( p i s o . f ina lNonOrthogona l I t e r ( ) )
{

phi = phiHbyA − pEqn . f l ux ( ) ;
}

}
#inc lude ” con t inu i tyEr r s .H”
U = HbyA − rAU∗ f vc : : grad (p ) ;
U. correctBoundaryCondit ions ( ) ;

}
fvSca la rMatr ix concEqn
(

fvm : : ddt ( conc )
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+ fvm : : div ( phi , conc )
− fvm : : l a p l a c i a n (D, conc )
+ D∗ conc∗z/ bo l t z /T∗ f vc : : d iv (E)

) ;

concEqn . s o l v e ( ) ;
}
//SOLID

f o rA l l ( so l idReg ions , i )
{

Info<< ”\ nSolv ing f o r s o l i d r eg i on ”
<< s o l i dReg i on s [ i ] . name ( ) << endl ;

#inc lude ” s e tReg i onSo l i dF i e l d s .H”
fvSca la rMatr ix concEqn
(

fvm : : ddt ( conc )
− fvm : : l a p l a c i a n (D, conc )
+ D∗ conc∗z/ bo l t z /T∗ f vc : : div (E)

) ;

concEqn . s o l v e ( ) ;
}
runTime . wr i t e ( ) ;

Info<< ”ExecutionTime = ” << runTime . elapsedCpuTime ( ) << ” s ”
<< ” ClockTime = ” << runTime . elapsedClockTime ( ) << ” s ”
<< nl << endl ;

}
Info<< ”End\n” << endl ;
r e turn 0 ;

}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

69



membraneSolver

0/fluidRtop

conc

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s v o l S c a l a rF i e l d ;
l o c a t i o n ”0/ f lu idRtop ” ;
ob j e c t conc ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 −3 0 0 1 0 0 ] ;
i n t e r n a l F i e l d uniform 0 ;
boundaryField
{

wa l l s
{

type zeroGradient ;
}
i n l e t 2
{

type f ixedValue ;
va lue uniform 0 ;

}
ou t l e t 2
{

type zeroGradient ;
}
anode
{

type zeroGradient ;
va lue uniform 0 ;

}
f l u i dRtop t o s o l i dR
{

type mappedFixedInternalValue ;
va lue uniform 0 ;
inte rpo lat ionScheme c e l l ;
setAverage no ;
average 0 ;

}
}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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E

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo lVecto rF i e ld ;
l o c a t i o n ”0/ f lu idRtop ” ;
ob j e c t E;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 1 1 −3 0 0 −1 0 ] ;

i n t e r n a l F i e l d uniform ( 0 0 −61.125 ) ;
boundaryField
{

wa l l s
{

type zeroGradient ;
}
i n l e t 2
{

type f ixedValue ;
va lue uniform ( 0 0 −61.125 ) ;

}
ou t l e t 2
{

type f ixedValue ;
va lue uniform ( 0 0 −61.125 ) ;

}
anode
{

type zeroGradient ;
va lue uniform ( 0 0 −61.125 ) ;

}
f l u i dRtop t o s o l i dR
{

type zeroGradient ;
va lue uniform ( 0 0 −61.125 ) ;

}
}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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p

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s v o l S c a l a rF i e l d ;
l o c a t i o n ”0/ f lu idRtop ” ;
ob j e c t p ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 2 −2 0 0 0 0 ] ;
i n t e r n a l F i e l d uniform 0 ;
boundaryField
{

wa l l s
{

type zeroGradient ;
}
i n l e t 2
{

type zeroGradient ;
}
ou t l e t 2
{

type f ixedValue ;
va lue uniform 0 ;

}
anode
{

type zeroGradient ;
va lue uniform 0 ;

}
f l u i dRtop t o s o l i dR
{

type zeroGradient ;
va lue uniform 0 ;

}
}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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U

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo lVecto rF i e ld ;
l o c a t i o n ”0/ f lu idRtop ” ;
ob j e c t U;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 1 −1 0 0 0 0 ] ;

i n t e r n a l F i e l d uniform ( 0 0 0 ) ;
boundaryField
{

wa l l s
{

type noS l ip ;
}
i n l e t 2
{

type f ixedValue ;
va lue uniform ( −0.04 0 0 ) ;

}
ou t l e t 2
{

type zeroGradient ;
}
anode
{

type noS l ip ;
va lue uniform ( 0 0 0 ) ;

}
f l u i dRtop t o s o l i dR
{

type noS l ip ;
va lue uniform ( 0 0 0 ) ;

}
}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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constant
fluidRtop

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s uni formDimens ionedScalarFie ld ;
ob j e c t bo l t z ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 1 2 −2 −1 0 0 0 ] ;
va lue 1.38064852 e−23;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s uni formDimens ionedScalarFie ld ;
ob j e c t D;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 2 −1 0 0 0 0 ] ;
va lue 1 .089 e−9;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s uni formDimens ionedScalarFie ld ;
ob j e c t D;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 2 −1 0 0 0 0 ] ;
va lue 1 .004 e−6;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s uni formDimens ionedScalarFie ld ;
ob j e c t T;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 0 0 1 0 0 0 ] ;
va lue 293 . 1 5 ;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s uni formDimens ionedScalarFie ld ;
ob j e c t z ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 0 1 0 0 1 0 ] ;
va lue 1.60217662 e−19;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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regionProperties

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n ” constant ” ;
ob j e c t r e g i onPrope r t i e s ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
r eg i on s
(

f l u i d ( f lu idRbot f lu idRtop )
s o l i d ( so l idR )

) ;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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system

fluidRtop

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
ob j e c t changeDict ionaryDict ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
U
{

i n t e r n a l F i e l d uniform (0 0 0 ) ;
boundaryField
{

f l u i dRtop t o s o l i dR
{

type noS l ip ;
}
anode
{

type noS l ip ;
}

}
}
p
{

i n t e r n a l F i e l d uniform 0 ;
boundaryField
{

f l u i dRtop t o s o l i dR
{

type zeroGradient ;
}
anode
{

type zeroGradient ;
}

}
}
conc
{

i n t e r n a l F i e l d uniform 0 ;
boundaryField
{

f l u i dRtop t o s o l i dR
{

type mappedFixedInternalValue ;
inte rpo lat ionScheme c e l l ;
setAverage no ;
average 0 ;
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value uniform 0 ;
}
anode
{

type zeroGradient ;
}

}
}
E
{

i n t e r n a l F i e l d uniform ( 0 0 0 ) ;
boundaryField
{

f l u i dRtop t o s o l i dR
{

type zeroGradient ;
}
anode
{

type zeroGradient ;
}

}
}
phiE
{

i n t e r n a l F i e l d uniform 0 ;
boundaryField
{

f l u i dRtop t o s o l i dR
{

type zeroGradient ;
}
anode
{

type zeroGradient ;
}

}
}
rho
{

i n t e r n a l F i e l d uniform 0 ;
boundaryField
{

f l u i dRtop t o s o l i dR
{

type zeroGradient ;
}
anode
{

type zeroGradient ;
}

}
}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n ” system ” ;
ob j e c t decomposeParDict ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
numberOfSubdomains 4 ;
method s imple ;
s imp l eCoe f f s
{

n (4 1 1 ) ;
d e l t a 0 . 0 0 1 ;

}
/∗
h i e r a r c h i c a lC o e f f s
{

n (1 1 1 ) ;
d e l t a 0 . 0 0 1 ;
order xyz ;

}
∗//∗
manualCoeffs
{

dataF i l e ”” ;
}
∗/
d i s t r i b u t ed no ;
r oo t s ( ) ;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n ” system ” ;
ob j e c t fvSchemes ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
ddtSchemes
{

de f au l t Euler ;
}
gradSchemes
{

de f au l t Gauss l i n e a r ;
}
divSchemes
{

de f au l t none ;
div ( phi ,U) bounded Gauss l inearUpwind grad (U) ;
div ( phi , k ) bounded Gauss upwind ;
div ( phi , e p s i l o n ) bounded Gauss upwind ;
div ( phi ,R) bounded Gauss upwind ;
div (R) Gauss l i n e a r ;
div ( phi , nuTilda ) bounded Gauss upwind ;
div ( ( nuEff∗dev2 (T( grad (U) ) ) ) ) Gauss l i n e a r ;
div ( rhoFlux , rho ) Gauss upwind ;
div ( phi , conc ) Gauss l i n e a r ;
div (E) Gauss l i n e a r ;

}
l ap lac ianSchemes
{

de f au l t Gauss l i n e a r co r r e c t ed ;
}
i n t e rpo la t i onSchemes
{

de f au l t l i n e a r ;
}
snGradSchemes
{

de f au l t c o r r e c t ed ;
}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n ” system ” ;
ob j e c t f vSo lu t i on ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
s o l v e r s
{

p
{

s o l v e r GAMG;
to l e r an c e 1e−7;
r e lTo l 0 . 0 1 ;
smoother DICGaussSeidel ;

}
pFinal
{

$p ;
r e lTo l 0 ;

}
”(U| k | ep s i l o n )”
{

s o l v e r smoothSolver ;
smoother symGaussSeidel ;
t o l e r an c e 1e−05;
r e lTo l 0 . 1 ;

}
”(U| k | ep s i l o n ) Fina l ”
{

$U ;
r e lTo l 0 ;

}
conc
{

s o l v e r smoothSolver ;
smoother symGaussSeidel ;
t o l e r an c e 1e−06;
r e lTo l 0 ;

}
phiE
{

s o l v e r PCG;
p r e cond i t i one r DIC ;
t o l e r an c e 1e−05;
r e lTo l 0 . 1 ;

}
rho
{

s o l v e r smoothSolver ;
smoother symGaussSeidel ;
t o l e r an c e 1e−08;
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r e lTo l 0 . 2 ;
}

}
PIMPLE
{

nNonOrthogonalCorrectors 0 ;
nCorrectors 2 ;

}
PISO
{

nCorrectors 1 ;
nNonOrthogonalCorrectors 1 ;
pRefCel l 0 ;
pRefValue 0 ;

}
SIMPLE
{

//momentumPredictor yes ;
nNonOrthogonalCorrectors 0 ;
pRefCel l 0 ;
pRefValue 0 ;

// rhoMin 0 . 2 ;
// rhoMax 2 ;

}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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blockMeshDict simple mesh

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
ob j e c t blockMeshDict ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
convertToMeters 0 . 0 1 ;
v e r t i c e s
(

(0 0 0) //0
(20 0 0) //1
(20 5 0) //2
(0 5 0) //3
(0 0 2) //4
(20 0 2) //5
(20 5 2) //6
(0 5 2) //7
(0 0 2 . 1 ) //8
(20 0 2 . 1 ) //9
(20 5 2 . 1 ) //10
(0 5 2 . 1 ) //11
(0 0 4 . 1 ) //12
(20 0 4 . 1 ) //13
(20 5 4 . 1 ) //14
(0 5 4 . 1 ) //15

) ;
b locks
(

hex (0 1 2 3 4 5 6 7) (150 30 30) simpleGrading (1 1 1)
hex (4 5 6 7 8 9 10 11) (150 30 10) simpleGrading (1 1 1)
hex (8 9 10 11 12 13 14 15) (150 30 30) simpleGrading (1 1 1)

)
edges
(
) ;
boundary
(

wa l l s
{

type wal l ;
f a c e s
(

(0 1 5 4)
(3 2 6 7)
(4 5 9 8)
(5 6 10 9)
(7 6 10 11)
(4 7 11 8)
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(8 9 13 12)
(11 10 14 15)

) ;
}
i n l e t
{

type patch ;
f a c e s
(

(0 3 4 7)
) ;

}
ou t l e t
{

type patch ;
f a c e s
(

(1 2 6 5)
) ;

}
i n l e t 2
{

type patch ;
f a c e s
(

(9 10 14 13)
) ;

}
ou t l e t 2
{

type patch ;
f a c e s
(

(8 11 15 12)
) ;

}
cathode
{

type patch ;
f a c e s
(

(0 1 2 3)
) ;

}
anode
{

type patch ;
f a c e s
(

(12 13 14 15)
) ;

}
) ;
mergePatchPairs
(
) ;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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blockMeshDict detailed mesh

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
ob j e c t blockMeshDict ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
convertToMeters 0 . 0 1 ;
v e r t i c e s
(

(0 0 0) //0
(20 0 0) //1
(20 5 0) //2
(0 5 0) //3
(0 0 2) //4
(20 0 2) //5
(20 5 2) //6
(0 5 2) //7
(20 5 0 .66667) //8
(20 5 1) //9
(20 5 1 .33333) //10
(20 0 1 .33333) //11
(20 0 1) //12
(20 0 0 .66667) //13
(20 2 .5 0 .66667) //14
(20 2.83333 1) //15
(20 2 .5 1 .33333) //16
(20 2.16667 1) //17
(0 5 0 .66667) //18
(0 5 1) //19
(0 5 1 .33333) //20
(0 0 1 .33333) //21
(0 0 1) //22
(0 0 0 .66667) //23
(0 2 .5 0 .66667) //24
(0 2.83333 1) //25
(0 2 .5 1 .33333) //26
(0 2.16667 1) //27
(0 0 2 . 1 ) //28
(20 0 2 . 1 ) //29
(20 5 2 . 1 ) //30
(0 5 2 . 1 ) //31
(0 0 4 . 1 ) //32
(20 0 4 . 1 ) //33
(20 5 4 . 1 ) //34
(0 5 4 . 1 ) //35
(20 5 2 .76667) //36
(20 5 3 . 1 ) //37

85



(20 5 3 .43333) //38
(20 0 3 .43333) //39
(20 0 3 . 1 ) //40
(20 0 2 .76667) //41
(20 2 .5 2 .76667) //42
(20 2.83333 3 . 1 ) //43
(20 2 .5 3 .43333) //44
(20 2.16667 3 . 1 ) //45
(0 5 2 .76667) //46
(0 5 3 . 1 ) //47
(0 5 3 .43333) //48
(0 0 3 .43333) //49
(0 0 3 . 1 ) //50
(0 0 2 .76667) //51
(0 2 .5 2 .76667) //52
(0 2.83333 3 . 1 ) //53
(0 2 .5 3 .43333) //54
(0 2.16667 3 . 1 ) //55
(20 2 .5 0) //56
(0 2 .5 0) //57
(20 2 .5 2) //58
(0 2 .5 2) //59
(20 2 .5 2 . 1 ) //60
(0 2 .5 2 . 1 ) //61
(20 2 .5 4 . 1 ) //62
(0 2 .5 4 . 1 ) //63

) ;
b locks
(

// lower s e c t i o n
hex (0 1 56 57 23 13 14 24) (40 10 5) simpleGrading (1 1 1)
hex (57 56 2 3 24 14 8 18) (40 10 5) simpleGrading (1 1 1)
hex (23 13 14 24 22 12 17 27) (40 10 4) simpleGrading (1 1 1)
hex (22 12 17 27 21 11 16 26) (40 10 4) simpleGrading (1 1 1)
hex (21 11 16 26 4 5 58 59) (40 10 5) simpleGrading (1 1 1)
hex (26 16 10 20 59 58 6 7) (40 10 5) simpleGrading (1 1 1)
hex (25 15 9 19 26 16 10 20) (40 10 4) simpleGrading (1 1 1)
hex (24 14 8 18 25 15 9 19) (40 10 4) simpleGrading (1 1 1)
hex (27 17 14 24 26 16 15 25) (40 4 4) simpleGrading (1 1 1)
//membrane
hex (4 5 58 59 28 29 60 61) (40 10 5) simpleGrading (1 1 1)
hex (59 58 6 7 61 60 30 31) (40 10 5) simpleGrading (1 1 1)
//upper s e c t i o n
hex (28 29 60 61 51 41 42 52) (40 10 5) simpleGrading (1 1 1)
hex (61 60 30 31 52 42 36 46) (40 10 5) simpleGrading (1 1 1)
hex (52 42 36 46 53 43 37 47) (40 10 4) simpleGrading (1 1 1)
hex (53 43 37 47 54 44 38 48) (40 10 4) simpleGrading (1 1 1)
hex (49 39 44 54 32 33 62 63) (40 10 5) simpleGrading (1 1 1)
hex (54 44 38 48 63 62 34 35) (40 10 5) simpleGrading (1 1 1)
hex (50 40 45 55 49 39 44 54) (40 10 4) simpleGrading (1 1 1)
hex (51 41 42 52 50 40 45 55) (40 10 4) simpleGrading (1 1 1)
hex (55 45 42 52 54 44 43 53) (40 4 4) simpleGrading (1 1 1)

) ;
edges
(

arc 14 15(20 2.73566 0 .76434)
arc 15 16(20 2.73566 1 .23566)
arc 16 17(20 2.26434 1 .23566)
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arc 17 14(20 2.26434 0 .76434)

arc 24 25(0 2.73566 0 .76434)
arc 25 26(0 2.73566 1 .23566)
arc 26 27(0 2.26434 1 .23566)
arc 27 24(0 2.26434 0 .76434)

arc 42 43(20 2.73566 2 .86434)
arc 43 44(20 2.73566 3 .33566)
arc 44 45(20 2.26434 3 .33566)
arc 45 42(20 2.26434 2 .86434)

arc 52 53(0 2.73566 2 .86434)
arc 53 54(0 2.73566 3 .33566)
arc 54 55(0 2.26434 3 .33566)
arc 55 52(0 2.26434 2 .86434)

) ;
boundary
(

wa l l s
{

type wal l ;
f a c e s
(

//bottom f r on t
(0 1 13 23)
(23 13 12 22)
(22 12 11 21)
(21 11 5 4)
//bottom r i gh t
(1 56 14 13)
(56 2 8 14)
(14 8 9 15)
(15 9 10 16)
(16 10 6 58)
(11 16 58 5)
(12 17 16 11)
(13 14 17 12)
//bottom back
(3 2 8 18)
(18 8 9 19)
(19 9 10 20)
(20 10 6 7)
//bottom l e f t
(0 57 24 23)
(57 3 18 24)
(24 18 19 25)
(25 19 20 26)
(26 20 7 59)
(21 26 59 4)
(22 27 26 21)
(23 24 27 22)
//membrane wa l l s
(4 5 29 28)
(5 58 60 29)
(58 6 30 60)
(7 6 30 31)
(4 59 61 28)
(59 7 31 61)
// top f r on t
(28 29 41 51)
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(51 41 40 50)
(50 40 39 49)
(49 39 33 32)
// top r i gh t
(29 60 42 41)
(60 30 36 42)
(42 36 37 43)
(43 37 38 44)
(44 38 34 62)
(39 44 62 33)
(40 45 44 39)
(41 42 45 40)
// top back
(31 30 36 46)
(46 36 37 47)
(47 37 38 48)
(48 38 34 35)
// top l e f t
(28 61 52 51)
(61 31 46 52)
(52 46 47 53)
(53 47 48 54)
(54 48 35 63)
(49 54 63 32)
(50 55 54 49)
(51 52 55 50)

) ;
}
i n l e t
{

type patch ;
f a c e s
(

(24 25 26 27)
) ;

}
ou t l e t
{

type patch ;
f a c e s
(

(14 15 16 17)
) ;

}
i n l e t 2
{

type patch ;
f a c e s
(

(42 43 44 45)
) ;

}
ou t l e t 2
{

type patch ;
f a c e s
(

(52 53 54 55)
) ;

}
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cathode
{

type patch ;
f a c e s
(

(0 1 56 57)
(57 56 2 3)

) ;
}
anode
{

type patch ;
f a c e s
(

(32 33 62 63)
(63 62 34 35)

) ;
}

) ;
mergePatchPairs
(
) ;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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controlDict

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n ” system ” ;
ob j e c t con t ro lD i c t ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
app l i c a t i on pimpleFoam ;
startFrom startTime ;
startTime 0 ;
stopAt endTime ;
endTime 100000;
deltaT 0 . 0 1 ;
wr i t eContro l t imeStep ;
w r i t e I n t e r v a l 50 ;
purgeWrite 0 ;
writeFormat a s c i i ;
w r i t eP r e c i s i o n 6 ;
writeCompress ion o f f ;
timeFormat gene ra l ;
t imePrec i s i on 6 ;
runTimeModif iable no ;
adjustTimeStep no ;
maxCo 5 ;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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createBafflesDict

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
ob j e c t c r e a t eBa f f l e sD i c t ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
interna lFacesOnly true ;
b a f f l e s
{

memb1
{

type faceZone ;
zoneName membraneBoundary1 ;
patches
{

master
{

name master1 ;
type mappedPatch ;

sampleMode nearestPatchFace ;
}
s l av e
{

name s l ave1 ;
type mappedPatch ;

sampleMode nearestPatchFace ;
}

}
}
memb2
{

type faceZone ;
zoneName membraneBoundary2 ;
patches
{

master
{

name master2 ;
type mappedPatch ;

sampleMode nearestPatchFace ;
}
s l av e
{

name s l ave2 ;
type mappedPatch ;

sampleMode nearestPatchFace ;
}

}
}

}
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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topoSetDict

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O pera t i on | Vers ion : 4 .1 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
ob j e c t topoSetDict ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
ac t i on s
(

{
name bottomCel lSet ;
type c e l l S e t ;
a c t i on new ;
source boxToCell ;
s ou r c e In f o
{

box (0 0 0 ) ( 0 . 2 0 .05 0 . 0 2 ) ;
}

}
{

name f lu idRbot ;
type c e l lZoneSe t ;
a c t i on new ;
source setToCel lZone ;
s ou r c e In f o
{

s e t bottomCel lSet ;
}

}
{

name topCe l lSe t ;
type c e l l S e t ;
a c t i on new ;
source boxToCell ;
s ou r c e In f o
{

box (0 0 0 . 0 2 1 ) ( 0 . 2 0 .05 0 . 0 4 1 ) ;
}

}
{

name f lu idRtop ;
type c e l lZoneSe t ;
a c t i on new ;
source setToCel lZone ;
s ou r c e In f o
{

s e t topCe l lSe t ;
}

}
{

name topCe l lSe t ;
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type c e l l S e t ;
a c t i on new ;
source boxToCell ;
s ou r c e In f o
{

box (0 0 0 . 0 2 ) ( 0 . 2 0 .05 0 . 0 2 1 ) ;
}

}
{

name so l idR ;
type c e l lZoneSe t ;
a c t i on new ;
source setToCel lZone ;
s ou r c e In f o
{

s e t topCe l lSe t ;
}

}
{

name membraneBoundary1FaceSet ;
type f a c eSe t ;
a c t i on new ;
source boxToFace ;
s ou r c e In f o
{

box (0 0 0 .019999) ( 0 . 2 0 .05 0 . 020001 ) ;
}

}
{

name membraneBoundary1 ;
type faceZoneSet ;
a c t i on new ;
source setToFaceZone ;
s ou r c e In f o
{

f a c eSe t membraneBoundary1FaceSet ;
}

}
{

name membraneBoundary2FaceSet ;
type f a c eSe t ;
a c t i on new ;
source boxToFace ;
s ou r c e In f o
{

box (0 0 0 .020999) ( 0 . 2 0 .05 0 . 021001 ) ;
}

}
{

name membraneBoundary2 ;
type faceZoneSet ;
a c t i on new ;
source setToFaceZone ;
s ou r c e In f o
{

f a c eSe t membraneBoundary2FaceSet ;
}

}
) ;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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