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Abstract

This work presents a way of simulating the operation of an anion exchange
membrane module. A CFD simulation of this module was made in OpenFOAM
software. The membrane module contains an ion exchange membrane and is
used for separation of organic acids. It consists of an dilute and a concentrate
compartments, separated by the mentioned membrane. In the model, only
acetic acid was taken into account. A movement of acetic acid ions from the
dilute compartment, trough the membrane and to the concentrate compartment
under the effect of an electric field was assumed. Electrochemical reactions
were not taken into account. First, a mesh describing the membrane module
geometry is build. Two meshes have been built, a simplified one and a more
detailed one. Then, pre-process utilities that have been used in this work are
explained followed by boundary conditions. After that, the solver of this model
is explained along with post-processing tools. The results present a simple,
functioning membrane module model. Lastly, a number of future development

possibilities are discussed.

Keywords: CFD, simulation, model, membrane module



Abstrakt

Predlozend préca sa zaoberd vytvorenim CFD modelu a simuldciami mebranového
modulu. Vsetky vypocty a simuldcie boli uskuto¢nené v programe OpenFOAM.
Tento membranovy modul sa skladd z dvoch nddob oddelenych iénovou membranou
a slizi na separaciu zmesi organickych kyselin. Model pracuje s kyselinou oc-
tovou. Konkrétne sa jedna o prestup zaporne nabitych iénov, ktoré vznikli
jej disocidciou, cez i6novi membrfanu pod vplyvom elektrického pola. Model
pracuje s koncentraciou octovych aniénov, elektrochemické reakcie nie si brané
do tvahy. Zakladom CFD simulacii je vytvorenie mriezky. V praci si opisané
dve mriezky membranového modulu, zjednodusend a presna varianta. Nasleduje
opis pouzitych utilit, ktoré zahinaju vytvorenie mriezky a priradenie okrajovych
podmienok. Potom je opisany proces vytvorenia solvera a samotny vypocet.
Vysledky potvrdzuju vytvorenie jednoduchého modelu membranového modulu.

Nésledne st opisane mozné vylepsenia v budicnosti.

Klicové slova: CFD, simuldcia, model, membranovy modul



Contents

Nomenclature

1 Introduction

1.1
1.2
1.3
14
1.5

Computational fluid dynamics . . . . . . .. ... ... ... ...

Goals of thiswork . . . . . . . ... ... ... ... ... ....

Membrane module . . . . . . ... ... ... ...

Description of thecase . . . . . . . ... ... ... ........

Software used . . . . . . . . . ...

2 Theoretical part

2.1

2.2

Ion exchange membranes . . . . . . . ... .. ... ...

2.1.1
2.1.2
2.1.3
214
2.1.5

Donnan equilibrium . . . ... ... ... 0L
Electric field diffusion . . . . . ... ... ... ... ...
Teorell, Meyer and Sievers Theory . . . ... ... .. ..
Electrochemical reactions . . . . ... .. ... ... ...

Water transport trough the membrane . . . . . . . .. ..

Equations used . . . . . ... ...

2.2.1

Velocity . . . . . . . o

11
11
13
13
16
16



222 Pressure . . . . .. ... 23

2.2.3 Concentration . . . . . ... ... Lo 24
224 Electricfield . . ... ... . oo oL 24

3 Practical part 26
3.1 OpenFOAM case file structure . . . . . ... .. ... ... ... 26
3.1.1 Constant directory . . . . . . ... ... 26
3.1.2  System directory . . . . ... ..o 27
3.1.3 Time directories . . . . . ... ... ... . 28

3.2 Mesh. .. .. 28
321 CFDmeshes . ... .... ... . ... .......... 29
3.2.2 Mesh components . . . ... ... ... L. 29
3.23 Meshtypes . . . ... ... 30
3.2.4 Meshes used in thiswork . . ... ... ... .. ..... 30
3.2.5 Courant number . . . . ... ... 33

3.3 Pre-processing . . . .. ... ... oo 34
3.3.1 blockMesh . . .. ... .. ... 34
3.3.2 topoSet . . ... 34
3.3.3 splitMeshRegions . . . . ... ... ... ... . 35
3.34 createBaffles . . . ... ... oL 35
3.3.5 changeDictionary . . . . . ... ... oL 35
3.3.6 decomposePar . . ... .. ... ... .. 36
3.3.7 Other approaches . . . . . ... ... ... .. ....... 36

3.4 Boundary conditions . . . . . ... ..o Lo 36
341 fixedValue . . . . . ... ... 38

3.4.2 zeroGradient . . . .. ... ... 38



343 moSHp . . . . . .. 38

3.4.4 mappedFixedInternalValue . . ... .. ... ....... 38

3.4.5 outletMappedUniformInlet . . . ... ... .. ... ... 39

3.5 Solver . . ... 39
3.5.1 dcoFoam . . . . ... ... 39

3.5.2 membraneSolver . . . . ... ... oL 40

3.6 Post-processing . . . . .. ... 42
3.6.1 Mesh reconstruction . . . ... .. ... 42

3.6.2 paraFoam . . . .. ... .. oo 42

4 Results and discussion 43
4.1 Simulation results . . . . .. ... 44
4.1.1 Pressure . . . . . . ... 44

4.1.2 Velocity . . . . . . . 45

4.1.3 Concentration . . . . . . . . . ... ... 47

4.2 Future development . . . . . ... . ... 49
421 Geometry . . . . ... 49

4.2.2 Other acidsandions . . . . ... ... ... ... ..... 49

4.2.3 Chemical reactions . . . . . . .. ... ... ... .. ... 50

4.2.4 Electric potential . . . . . . .. ..o 50

5 Conclusion 51
6 Resumé 53
A Solver and case code 59



Nomenclature

Greek Symbols

n electro-chemical potential in membrane [J.mol™!]
n electro-chemical potential [J.mol™?]

A molar conductivity [S.m2.mol~!]

] chemical potential [J.mol 1]

v kinematic viscosity [m?.s7]

0] electric potential [V]

p fluid density [kg.m~?]

Ode dc conductivity [S.m™!]

Roman Symbols

A membrane surface [m?]

a activity [—]

c Courant number [—]

c concentration [mol.m=3]

D diffusion coefficient [m?.s71]
E electric field strength [V.m™1]
F Faraday constant [C.mol 1]



h compartment height [m]
I electric current [A]
k Boltzmann constant [J.K™}]
P pressure [Pa]
R electrical resistance [{]
R, gas constant [J.mol~1.K™!]
T temperature [K]
t time [s]
u fluid velocity [m.s™}]
Vv electric potential [V]
Vinol partial molar volume [m?.mol]
z charge number [—]
J electrical current density [A.m™?]
Superscripts
0 standard
Subscripts
aa acetic anion
anode anode
c concentrate compartment
comp compartment
d dilute compartment
) component
m membrane

10



Chapter 1

Introduction

1.1 Computational fluid dynamics

Computational fluid dynamics (CFD) is an analysis of a system involving fluid

flow and other associated phenomena such as heat transfer or chemical reactions

by computer simulation. It is a very powerful process which spans a wide range

from industrial to non-industrial applications. Examples include:

aerodynamics of vehicles and aircraft

flows inside rotating passages in various engines
distribution of pollutants and effluents
hydrodynamics of ships

cooling of electrical equipment or microcircuits
flows in rivers or oceans

weather prediction

blood flow trough veins and arteries

11



The first CFD techniques have been integrated into designs in 1960s by the
aerospace industry in manufacture of aircraft and jet engines. The usage of
these methods have more recently been broadened to the design of combustion
chambers of gas turbines and combustion engines. Nowadays, it is a common
practice of many motor vehicle manufactures to predict under-bonnet air flows
or drag forces with CFD tools. CFD is becoming one of the vital components

in designing of industrial products and processes.

The ultimate aim of CFD development field is to provide an option that
is comparable to other computer-aided engineering tools. It is true that CFD
has lagged behind and the reason for that is tremendous complexity of the
case behaviour. There has been an increase to affordable high-performance
computing hardware in the recent 20 years, which together with introduction of

user-friendly interfaces led to recent rise of interest.

CFD also provides multiple unique advantages over common experiment

based approaches for fluid system designs:

e significant decrease of lead times as well as costs of new designs

e ability to work with systems where experiments are difficult or impossible
to perform (large systems)

e ability to work with systems under dangerous conditions at or beyond
normal performance limits (safety and accident studies)

e unlimited level of result details

12



In terms of facility and personnel costs, the cost of an experiment is roughly
proportional to the number of data or configurations tested. On the contrary,
CFD techniques are able to provide extremely large quantities of results at no

extra expense. It is also very cheap to optimize equipment performance. [1]

1.2 Goals of this work

The first goal of this work was to acquire a basis of CFD knowledge and prac-
tices. This also includes basic know-how about mesh generation, conversion and
usage. The second goal was to explore ways of CFD implementation to create
a model of an anion exchange membrane module, which is used for organic acid
separation. Here, a few simplifications had to be made since this was the first
mapping of the mentioned device and related processes. With further develop-
ment, this model could be validated with experimental data in the future and

possibly predict the behavior of similar systems.

1.3 Membrane module

The membrane module setup comprises a two-chambered electrochemical cell
with an anode and a cathode on each side of the device. The frames are bolted
together with stainless steel bolts between two square endplates. Inlet and outlet
for liquid recirculation are provided in each compartment. An anion exchange

membrane is placed between the cathode and the anode.

13
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Figure 1.1: Membrane module schematic drawing

In the figure 1.1, 1 is dilute compartment inlet, 2 is dilute compartment out-
let, 3 is concentrate compartment inlet, 4 is concentrate compartment outlet, 5
is anode, 6 is concentrate compartment, 7 is membrane, 8 is dilute compartment

and 9 is cathode.

The whole membrane module setup consists of a membrane unit, two peri-
staltic pumps, a power source and feed and product tanks. This module is a
part of a larger setup. The aim is to develop a new integrated biotechnological
production process for butyl butyrate which is a promising substitute for diesel

or jet engine fuels. The membrane module is shown on figure 1.2.

14



Figure 1.2: Anion exchange membrane module
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1.4 Description of the case

The following conditions and simplifications were assumed in the model. The
simulations were preformed in isothermal state with laminar flow regime. Al-
though there is a mixture of acids in the experimental setup, only acetic acid
is considered in the model. Mentioned acid is dissolved and the acetic anions
then migrate trough the membrane into the other compartment. The model
operates with a concentration of these dissolved species. The driving force of
anions across the membrane is a difference in chemical potential and an electric

field.

1.5 Software used

Geometry, meshing and all calculations were performed in OpenFOAM 4.1 soft-
ware. OpenFOAM (Open source Field Operation And Manipulation) is a C++
toolbox used for the development of numerical solvers, pre- and post-processing
utilities for continuum mechanics problem solving, including CFD. A number of
OpenFOAM utilities and practices used in the membrane module development

are described in this work.

16



Chapter 2

Theoretical part

2.1 Ion exchange membranes

Ton exchange technology has been receiving growing attention in various in-
dustrial sectors for several decades. This technology is used to purify various
solutions by removal of the dissolved ions using electrostatic sorption. Ions are
absorbed into ion exchange materials which come in various physical shapes and
forms. The absorbed ions are replaced by an equivalent amount of different ions
with the same charge in the solution. The use of ion exchange membrane mod-
ules allows either a complete removal of all ions from a solution or a selective

separation of a particular ions.

There are numerous application of ion exchange membranes ranging from
industrial ones to households. Although they mainly cover purification pur-
poses, their usage also covers extraction and separation of valuable substances.

Another significant application is deionization of water and water softening.

17



The principle of ion exchange process is the exchange of ions between elec-
trolyte solution in aqueous phase and ions that are immobilized in solid phase,
the ion exchange material. A stoichiometric reversible ion exchange reaction
takes place here. Mentioned ion exchange materials are the main part of the
whole process. They fall into various categories as mineral and polymeric or

anionic and cationic. [2]

There is a difference in the chemical potential across the ion exchange mem-
brane. It can be caused by an applied current or by permeability difference.
Only a certain types of ions are able to pass trough the membrane depending
on their size, mobility and charge. The ion exchange membrane has one com-
partment on each of its sides. The dilute is the compartment the ions are being
removed from while the concentrate is the compartment the ions are transported

to. [3]

2.1.1 Donnan equilibrium

Donnan, or Gibbs-Donnan, equilibrium describes the equilibrium between two
solutions separated by a membrane. The principle of the membrane is that is al-
lows certain charged components in solution to pass trough. But the membrane
does not allow all the ions present in solution to pass through which makes it a

selectively permeable membrane.

The membrane selectivity is typically related to the particular ion size. The
pores of the membrane can be too small to let an anion or cation pass through.
The concentration of ions that can pass through the membrane should be the
same on each side. The total number of ions should be equal on either side of

the membrane as well.

18



A selective permeability membrane consequence is the formation of an elec-
trical potential difference between the two membrane sides. The two solution
also differ in osmotic pressure because one solution usually has more ions of a

certain type than the other one. [4]

For compomemt 7 in a solution, the electro-chemical potential is defined

ni = p1d + RyTin(a;) + (P — PO)Vyori + 2:F¢ (2.1)

where 1 is the standard chemical potential, R, is the gas constant, T is the
absolute temperature, a; is the activity, P is the pressure, P° is the standard
pressure, Vi, is the partial molar volume, z; is the charge number, F' is the

Faraday constant, and ¢ is the electric potential.

Equation 2.2 represents the Donnan equilibrium state. It implies that the
electro-chemical potential of component i,1;, in a solution and the electro-

chemical potential of the same component in membrane are equivalent, 7j;. [5]

0 = 7 (2.2)

2.1.2 Electric field diffusion

When an external driving forse is applied, diffusing particles experience drift
motion in addition to standard diffusion. A most common example of an exter-
nal force is an electric field.

The electrical conductivity is a result of the transport of ions rather than

electrons for many ionic solids. This is different from metals or semiconductors.

19



When ions are the charge carriers in an electronically insulating material, the
ionic motion under the influence of an electric field is described by the ionic
conductivity. The dc (direct charge) conductivity, 4., related with the electrical

current density, j, and electric field strength, E, via Ohm’s law. [6]

j =04V (23)

2.1.3 Teorell, Meyer and Sievers Theory

Teorell, Meyer and Sievers Theory (TMS theory) can also be generally applicable
in understanding the mechanisms of transport phenomena. This theory is based
on the Nernst-Planck equation and the Donnan equilibrium theory. The TMS
theory dicusses membrane phenomena in electrolyte solutions and reveals the
mechanisms of characteristics such as diffusion coefficient, membrane potential,
electric conductiviy, etc. The difference is that the ionic mobility and activity
coefficient are taken as constants. Despite the differences, the results produced
by the TMS theory are essentially equivalent to results produced by Donnan
equilibrium theory. [5]

2.1.4 Electrochemical reactions

A closed circuit with an anode and a cathode is necessary to apply an electrical
current to the system. The ions will then carry the charge across the system.
Depending on the system setup or conditions the electrical potential varies.
If the electrical potential is high enough, hydrogen and oxygen gases will be
produced at the electrodes. [7]

20



Acetic acid is a weak acid and the dissociation in water will occur.

CH3COOH (4q) + H20(y S H30(+a o T CH3COO, (2.4)

On the surface of cathode, a reduction will take place. Hydrogen ions will

receive electrons and form hydrogen in gaseous state. This half reaction is:

2H(, ) +2e7 — Hyy) (2.5)

The negatively charged remnant from an acetic acid molecule travels trough
the anion exchange membrane to the other side of the membrane module. There,
the second half reaction on the surface of the cathode occurs. This is an oxida-
tion reaction where gaseous oxygen is formed after surplus electrons are taken

away. The reaction is: [8]

2H>0(1) — Oa(g) +4H |, ) +4e” (2.6)

The negatively charged remnant from acetic acid then reacts with the pro-

tone, forming acetic acid:

H+
(agq

y T CH3;COO,,

(aq)

— CH3CO0H (4 (2.7)
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2.1.5 Water transport trough the membrane

Water transport across ion exchange membranes accompanies this process. This
water migration occurs when a charged membrane under the influence of an
electrical potential difference is used, and it has been termed electro-osmosis. It
may consist of water transport corresponding to primary hydration of the ions
or, also, as an additional quantity. The total water transport caused by the
current is generally referred to as electro-osmosis. Water transport by osmosis
is also a natural phenomenon in electrodialysis and the transport takes place
in the same direction as the mass transport. Both electro-osmosis and osmosis
are unavoidable side effects and they limit the usefulness of electrodialysis as a
method of concetrating electrolyte solutions. The transport of ions with water
trough a membrane is caused by pressure and osmotic forces. [9]

Two models of solver transport were distinguished:

e osmotic flow which may give rise to a streaming potential
e electro-osmotic flow which accompanies the migration of ions trough

the membrane [10]

The main two methods for investigating water transport are based on weight
and volume changes. The former one is suitable for flexible membranes and
it requires meticulous care in transferring the solutions as well as rinsing the

apparatus. The latter is much more easier and simpler. [9]
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2.2 Equations used

All the CFD calculations were performed in the OpenFOAM software. The
following subsection will discuss the applied equations in each part of the mem-

brane module.

2.2.1 Velocity

For the computation of velocity profiles in the system, Navier - Stokes equa-
tions are implemented. Since the flow is considered to be a laminar flow of an

incompressible liquid, the equation takes the following form

%1; + (u.V)u — vViu = -V (i) (2.8)

where u stands for fluid velocity, ¢ is time, v is kinematic viscosity, p is
pressure and p is fluid density.

For the same set of assumptions, the continuity equation yields

V-u=0 (2.9)

2.2.2 Pressure

Pressure is solved together with velocity. The standard method in multiple
OpenFOAM solvers is the PISO (Pressure Implicit with Splitting of Operators)
method. This algorithm is an efficient method for solving the Navier-Stokes
equations in unsteady state cases. It roughly consists of solving the momentum,

mass and pressure equation followed by correction of these calculated values.
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The pressure equation can by solved multiple times if the given geometry has a

higher degree of non-orthogonality.

2.2.3 Concentration

Tons, the dissolved species in the liquid flow trough the membrane module,
move trough the module via multiple mechanisms which include convection and
diffusion. The latter consists of standard diffusion in liquid and diffusion caused

by the electric field.

This movement is described by equation 2.10, where the first element on the
right side stands for convection, the second one for standard diffusion and the

last one stands for diffusion caused by the effect of the electric field. [11]

de _
ot

(2.10)

—vm@+v%D@—v-<D%E)

kT

In equation 2.10, ¢ is concetration, D is diffusion coefficient, k is Boltzmann

constant, e is elementary charge and E is electric field strength.

2.2.4 Electric field

Since the membrane module is under the effect of an electric field, it has to
be calculated. First, a resistance of a compartment is calculated according to

equation 2.11 [12]

h
R= AACd

(2.11)
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where R is Electrical resistance, h is height of a membrane module compart-
ment, A is membrane surface area, A is molar conductivity and ¢4 is concentra-

tion in the dilute compartment.

Taking into account the the electric current in system is stable, the electric

potential drop across a compartment will be calculated with equation 2.12.

AV = RI (2.12)

AV is the electric potential drop in compartment or membrane and I is

electric current.

Lastly, the strength of an electric field, E is calculated from the potential

drop in the given compartment and the compartment height. [13]

E=—— (2.13)

In the case of the membrane itself, the electrical resistance is not calculated
but taken from the membrane module provider web page [14]. The electrical
potential drop as well as the electrical field are then calculated in the same way

as previously.
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Chapter 3

Practical part

3.1 OpenFOAM case file structure

There is a defined file structure in OpenFOAM software that needs to be followed
in order to successfully run an application. The file structure of electroM embrane

case is shown on figure 3.1. All the files can be also found in the appendix.

3.1.1 Constant directory

Constant directory contains full description of the case mesh in the polyMesh
subdirectory. All the used constants are stored in the transportProperties
file. The regionProperties file contains information on how to assign regions
to categories. FluidRbot and fluidRtop are regions in fluid region category
and solidR is a region in solid regions category. The dictionaries with the
same names as the regions contain their own polyMesh dictionaries, where the

geometry of each given region is stored. They also contain all the constants

26



used in the separate regions.

electroMembrane
— 0

conc

E
fluidRbot
fluidRtop

LTTTT

P

solidR

— U

— constant

— fluidRbot
fluidRtop
polyMesh
regionProperties
solidR
transportProperties
stem

FTTT

!

changeDictionaryDict
controlDict
createBafflesDict
decomposeParDict
fluidRbot

fluidRtop

fvSchemes

TvSolution

solidR

— topoSetDict

FTTTTTTTT

Figure 3.1: ElectroMembrane case file structure

3.1.2 System directory

The bare minimum of files that the System directory can contain is three and
they are controlDict, fvSchemes and fvSolution. In the controlDict file,

information that concern data output, run control as start time, end time or time

27



step are stored. In the fvSchemes (finite volume schemes) file, discretisation
schemes used in the solutions are selected. The fuvSolution file contains a
selection of solvers together with tolerances or other algorithm controls for all
the used equations. All the remaining dictionaries store information on how
each of the utilities, with the same name as the given dictionary, are set up
to perform. Mentioned utilities are described in more detail in the following
sections. Just as in the Constant directory, dictionaries sharing the names of
separate regions contain same base files as the System directory apart from

control Dict, as well as utility dictionaries used in each given region.

3.1.3 Time directories

Time directories contain individual data for particular fields for the given time.
In the case of 0 time directory, initial values as well as boundary conditions
describing the case are stored here. The rest of time directories contain results
written to the files by OpenFOAM. Directories with specific region names con-
tain 0 and different time directories as well. They too store initial values and
boundary conditions as well as boundary condition between separate regions

which describe how should a given field behave on a face between regions.

3.2 Mesh

In order to perform a simulation, a proper geometry has to be built. This is
achieved by building a mesh, which is an integral part of a numerical solution.
A mesh that satisfies certain criteria ensures a valid and accurate solution. In

OpenFOAM, mesh is by default made of arbitrary polyhedral 3D cells.
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3.2.1 CFD meshes

Fluid flow or heat transfer problems are generally governed by partial differential
equations. Only very simple cases lead to analytical solutions and that is why
in order to analyze a fluid flow, the geometry needs to be split into smaller do-
mains. The mentioned equation are discretized and then solved in each of these
smaller domains. Three typical methods used for solving these equations: finite
volumes, finite elements and finite differences. Mesh generation is a process of
obtaining an appropriate mesh and it has been long considered to be a bottle-
neck in the CFD analysis due to the lack of fully automatic mesh generation

procedures.

3.2.2 Mesh components

A mesh is build by specifying points. A point represents a location in 3D space
and it is defined by a vector in meters. The points are then compiled into a list,
while each one is referred to by a numeric label that represents its position in

the list. The numbering starts from zero.

The points are then ordered into faces, which are created by calling the point
labels in a way that each two neighbouring points are connected by an edge.
Faces can also be compiled into a list and are referred to by labels. There are
two different types of a face. Internal faces connect exactly two faces and cannot
hold boundary conditions. Boundary faces belong only to one cell, they coincide
with the boundary of the domain. A boundary face is addressed by a boundary
patch.

The faces are then built into cells. Cells must completely cover given com-
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putational domain and must not overlap each other. Also, every cell has to be

closed. [15]

3.2.3 Mesh types

Most common 3D mesh cell shapes are tetrahedron and hexahedron. A tetra-
hedron consists of 4 vertices, 6 adges bound by 4 triangular faces. Tetrahedral
meshes can be generated automatically in most cases but they do not provide
the best accuracy of solutions. Hexahedron, or simply a brick, has 8 vertices
and 12 edges bounded by 6 quadrilateral faces. The accuracy of a solution with
a hexahedral mesh is the highest for the same cell amount.

Two types of mesh grids include structured and unstructured grids. Struc-
tured grid is identified by regular connectivity. This grid model is highly space
efficient since the neighborhood cell relationships are defined by storage arrange-
ment. Also, this type of grid provides better convergence and higher resolution.
The unstructured grid is defined by irregular connectivity and compared to

structured grid, it is highly space inefficient. [16]

3.2.4 Meshes used in this work

Two meshes were build for simulations of the membrane module process. Both
of the meshes consist of main three blocks, two for the compartments and one
for the membrane. The first mesh takes a simpler approach which means that
the whole sides of the two compartment blocks are used as inlet and outlet.

This can be seen on figure 3.2.
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Figure 3.2: Simple version of membrane module mesh

The second mesh is more detailed. It takes into account, that inlets and
outlets of the compartments are circular holes and not the whole faces as can
be seen on figure 3.3. This means that there is a cylinder along the whole
compartment, connecting the circle inlet and outlet. Naturally, the geometry
around this cylinder has to be adapted to the shape. This brings a good deal

of nonorthogonality to the mesh.
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Figure 3.3: More detailed version of membrane

In both mesh cases, the same dimensions were used. A schematic membrane

module with dimensions can be seem on figure 3.4.
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Figure 3.4: Drawing of the membrane module with dimensions
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3.2.5 Courant number

Courant number provides a measure for the convergence. It is used in solving
partial differential equations numerically. The condition states that given a
certain space discretization, a time step should not be bigger than some a certain

time, given by the equation 3.1. The typical Cy,q, value is 1. [17]

uAt
Ax

C = < Crnas (3.1)

In equation 3.1, C is Courant number, w is fluid velocity, A ¢ is time step

and A x is spacing of the grid.
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3.3 Pre-processing

Pre-processing consists of generating and modifying the mesh as well as fields
and boundary conditions so the simulation may run. The whole pre-processing

step along with explanation of used utilities is discussed in the following sections.

3.3.1 blockMesh

After all the points, edges, faces and blocks are declared in the appropri-
ate dictionary (in this case blockMeshDict), the blockMesh utility is called.
BlockMesh is a mesh generation utility used for creating parametric meshes
with curved edges and grading. It decomposes the geometry of the domain into
a set of 3D, hexahedral blocks. Each of these blocks is defined by 8 points,
one at each corner of given block. The blocks can also have a label assigned, if

desired.

3.3.2 topoSet

The mesh, created with blockMesh utility, contains two internal faces. One on
each side of the membrane, connecting it to the dilute and concentrate compart-
ments. It is desired that the internal faces would be converted into boundary
faces because boundary faces can have various boundary conditions assigned.

These two faces represent the contact of the membrane with the compartments.

Firstly, a set of faces has to be created using topoSet utility using the
boxToFace source. All the specifications are given in the given dictionary,
topoSetDict. The utility then takes every internal face that has its center in-

side the given box and assigns it into a faceSet with a specified name. The next
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step is converting the mentioned faceSet into a labeled faceZoneSet. The cre-
ated faceZoneSet, which contains the internal faces of the mesh, can be later

used by other utilities.

3.3.3 splitMeshRegions

The next step is splitting the geometry into multiple regions. In this case, three
regions are created, two for the compartments and one for the membrane. This
is achieved by splitMeshRegions utility, which is used with —cellZones and
—overwrite options. The —cell Zones option uses previously created faceZoneSets

to created desired regions.

3.3.4 createBaflles

Then, the internal faces contained in the faceZoneSet are converted into bound-
ary ones. Internal faces are the ones connecting different regions in the geometry.
This is achieved with createBaf fles utility. The utility will convert internal
faces into boundary faces of types specified in the createBaf flesDict dictio-
nary. The specific boundary condition types are discussed more in the following

sections.

3.3.5 changeDictionary

After using utilities mentioned above, the boundary conditions are set to de-
fault and have to be changes to the desired ones. This is accomplished by the
changeDictionary utility which simply edits the appropriate dictionaries and

changes default boundary conditions to the specified ones.
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3.3.6 decomposePar

There is an option to run OpenFOAM applications in parallel on distributed
processors. This means that the geometry is broken down into pieces which are
then assigned to separate processors for solving. The geometry is broken down
according a set of parameters that are specified in the decompose Par Dict. This
includes the specification of how the geometry should be broken down (x,y and

z axis) as well as method of decomposition.

3.3.7 Other approaches

There are many other ways how to approach a geometry of any given Open-
FOAM case. One would be the usage of snappyHexMesh utility. This utility
creates a mesh by approximate conformations to the surface. It chooses a start-

ing mesh and then iteratively refines it to fit the given geometry.

Another option would be to use a different software to create a geometry and
then convert it to an OpenFOAM format. A commonly used software includes

Fluent, Salome or Gambit.

3.4 Boundary conditions

The boundary conditions play a very important role in every OpenFOAM ap-
plication. The role of a boundary condition is not only as a geometric entity
but also as integral part of the solution. The boundary faces also represent a
”connection” between different regions. A list of boundary conditions on spe-
cific patches used in this word is presented in tables 3.1, 3.2 and 3.3. These

boundary conditions are discussed in the following sections.
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p conc U E
Inlet zeroGradient fixedValue fixedValue fixedValue
Outlet fixedValue | zeroGradient | zeroGradient | fixedValue
Walls zeroGradient | zeroGradient noSlip fixedValue
Cathode | zeroGradient | zeroGradient noSlip fixedValue
Table 3.1: Boundary conditions for the fluidRbot region
P conc U E
fluidRbot-solidR | zeroGradient zeroGradient noSlip | fixedValue
solidR-fluidRbot | zeroGradient | mappedFixedInternalValue - fixedValue
solidR-fluidRtop | zeroGradient zeroGradient - fixedValue
fluidRtop-solidR, | zeroGradient | mappedFixedInternalValue | noSlip | fixedValue
walls zeroGradient zeroGradient - fixedValue
Table 3.2: Boundary conditions for the solidR region
p conc U E
Inlet2 zeroGradient | outletMappedUniformInlet fixedValue fixedValue
Outlet2 fixedValue zeroGradient zeroGradient | fixedValue
Walls zeroGradient zeroGradient noSlip fixedValue
Cathode | zeroGradient zeroGradient noSlip fixedValue

Table 3.3: Boundary conditions for the fluidRtop region
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3.4.1 fixedValue

This boundary condition is one of the standard ones. As the name suggests
it simply supplies a fixed value to the given boundary face. It is required to

provide the value in appropriate, scalar or vector, form.

3.4.2 zeroGradient

ZeroGradient boundary condition is a OpenFOAM version of a Newmann con-
dition, where the value of the derivate is given. In this case, the value is zero.
This means that a point of a boundary face with this condition will be given

the same value as the last point in geometry before the boundary face.

3.4.3 noSlip

NoSlip is a boundary condition used with fluid velocity. It is a common type of
idealized boundary condition found in the applications of fluid dynamics. The
fluid is flowing along an impenetrable wall. The overall boundary for viscous
fluid flowing along this impenetrable wall is that there is no motion between the

wall and the fluid that is in immediate contact with the wall. [18]

3.4.4 mappedFixedInternalValue

Boundary condition mappedFizedInternalV alue maps the boundary values of
a neighbor patch field to the boundary values of desired patch field. This bound-

ary condition enables calculated fields to move from one region to another.
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3.4.5 outletMappedUniformlInlet

Outlet M appedUni formInlet boundary condition averages the field values of
the specified outlet patch and applies it as an uniform value to the field over
this patch. This boundary in used with the inlet patch of the concentrate
compartment. The reasoning behind this is that after concentrate flow leaves
the membrane module, it will get perfectly mixed in the concentrate tank before

entering the module again.

3.5 Solver

Solver with a name membraneSolver was used to preform the simulation. Cus-
tom solver in OpenFOAM are usually developed based on one of the default
solvers. The same procedure was used in this work. MembraneSolver is based

on a solver named icoFoam.

3.5.1 icoFoam

This is a transient solver for incompressible laminar flow of Newtonian flu-
ids. The code requires an initial conditions and boundary conditions. The
icoF'oam solver can take mesh non-orthogonality into account with a num-
ber of non-orthogonality iterations. The number of PISO corrections and non-

orthogonality corrections are controlled through user input.

OpenFOAM applications are organized using a standard convention. The
source code of each application is placed in a directory that shares name with the
application. The source code of icoFoam solver resides in a directory icoFoam

as is shown on figure 3.5. The top level file also shares the name, icoFoam.C'.
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icoFoam
createFields.H
icoFoam.C
Make
files
options

Figure 3.5: IcoFoam solver file structure

The createFields.H file consists all the information on created and used
fields. Here, the constants, scalar and vector fields have to be stated via
IOo0bject (input output object) classes. The information concerning reading

and writing of the fields is also stated in this file.

An OpenFOAM solver also has to contain a Make directory in its main
directory. There are files named files and options in this directory. The files file
contains information on where the solver executables should be written. The
options file contains the full directory paths to locate other files used in the

solver.

3.5.2 membraneSolver

As was mentioned previously, membraneSolver solver is based on the icoFoam
solver. That means that the pressure and velocity calculations are handled the
same way, with the PISO algorithm. This solver also calculates the concen-
tration of the dissolved ionic species as well as handles multiple regions of the
geometry. Concentration is calculated as it is stated in the theory part of this
work.

As multiple regions are used in membraneSolver, the file structure of this
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solver is a bit more complex than the file structure of icoFoam solver. This can

be seen on figure 3.6.

membraneSolver
—— createfFields.H
—— createMeshes.H
—— createMeshesPostProcess.H
— fluid
—— createfFluidFields.H
— createFluidMeshes.H
— setRegionFluidFields.H
— Make
— TfTiles
— options
—— membraneSolver.C
— solid

E createSolidFields.H

createSolidMeshes.H
setRegionSolidFields.H

Figure 3.6: MembraneSolver solver file structure

All the regions are sorted into two categories, fluid and solid regions, each
category has a dictionary with the same name. The fluid dictionary contains

createFluidFields.H, create FluidMeshes.H and set RegionFluidFields.H files.

The workflow of this solver is as it follows. Firstly, the meshes are created.
This is handled by createFluidMeshes.H file. The program will retrieve a list
of all region names in the fluid region category. Then, a mesh of an appropriate
name is created for each of the regions. Secondly, all fields are created with the

contents of create FluidFields.H file. Here, a pointer list ,with the same size
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as given field, is assigned to each of the computed fields. The next step is a
creation of IOobjects for each field in each region. Lastly, with the contents of
setRegionFluidFields.H file, the values in the pointer lists are allocated into
the appropriate fields. This means that a given computed fields will have the

same label in every region of both region categories.

3.6 Post-processing

3.6.1 Mesh reconstruction

Cases that have been run in parallel can either be reconstructed or each of
the geometry segments can be processed individually. Here, the former option
was used. After all the calculations in parallel are finished, the mesh is rebuilt
together again. This is achieved by reconstructPar utility, which merges the

time directories from each processor into single set of time directories.

3.6.2 paraFoam

ParaFoam is the main post-processing tool provided with OpenFOAM. It is
an open-source, visualization application. This tool was used to create all visu-
alizations of the geometry and meshes as well as graphs.

Another alternative is conversion of data into VTK format so it can be read

not only by paraFoam but any VTK-based graphic tool.
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Chapter 4

Results and discussion

The parameters of simulations can be seen in Table 4.1. The electric strength

values were calculated outside of the model and set as a constant value.

Parameter Value Parameter Value

cd 10 mol.m~3 p 998,2 kg.m~3

T 293.15 K D, 1,089.107%m?.s71 [19)
E. 61.125 V.m~! D, 1,089.10 9m?2.s7!
E,, 2500 V.m~! Do 1,089.10719m? s~ 1

v 1,004.107%m?2.s~1 D3 1,089.10 " 1'm?.s~ 1

U 0.04 m.s~! e 1,6022.10~9C

1,3806.10~2*m? kg.s 2. K~! Aoa 40,9.10~4S.m2.mol~* [19]

I 0,05 A Vanode 5V

Table 4.1: Input parameters sued in simulations
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4.1 Simulation results

The diffusion coefficient of acetic anions in the membrane was not provided by
the manufacturer. Multiple simulation were performed with different values of
this diffusion coefficient. In first case, value of diffusion coefficient of acetic
anions in membrane D,,, was the same as the diffusion coefficient of acetic
anions in water D.. In the second and third simulations, D,,s and D,,3 are 10

and 100 times smaller than D..

4.1.1 Pressure

The pressure profile of a cross section of the membrane module can be seen
on figure 4.1. The values of p in the simulations represent pressure divided by
fluid density. In both lower (dilute) and upper (concentrate) compartments, a
pressure decrease is formed. A slight decrease of pressure is to be expected from

flowing fluids.

Figure 4.1: Cross section of the pressure profiles in the mesh with dilute com-
partment at the bottom and concentrate compartment at the top

The value of pressure was not set in the simulation. Instead, the inlet value
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was set as zero gradient and the outlet value as zero. Zero pressure represents a
reference pressure, which can be for example standard pressure. Because inlet
velocity is set, the inlet pressure calculation is based on that value.

The same pressure drop for dilute compartment as on figure 4.1 but in terms
of plot is shown on figure 4.2. Here, the x represents the distance on x axis from

the dilute compartment inlet.
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Figure 4.2: Pressure profile of dilute compartment

4.1.2 Velocity

Cross section trough the velocity profiles in the membrane module is shown
on figure 4.3. In both dilute and concentrate compartment inlets, the velocity
profile in not formed as the inlets are set to have uniform velocity distribution.
It can be seen that the velocity near walls is zero which agrees to wall boundary

conditions set for the simulation.
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Figure 4.3: Cross section of the fluid velocity profiles in the mesh with dilute
compartment at the bottom and concentrate compartment at the top

The figure 4.4 shows velocity profiles at dilute compartment at more detail.
The lines represent cuts of the compartment in the direction of z axis. The cuts

are made on three different positions on the x axis.
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X =0,001lm
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0 0,005 0,01 0,015 0,02
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Figure 4.4: Velocity profiles at different locations on the compartment

It can be clearly seen that laminar flow regime is being formed. A fully
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formed laminar flow regime would likely form if the membrane module would

be longer.

4.1.3 Concentration

The membrane concentration profiles are shown on figures 4.5, 4.6 and 4.7. The
0 value on the z axis represent contact with the dilute compartment, hence the
concentration 10 mol.m 3. The other end of the z axis represents contact with

the concentrate compartment. In all three cases, data in 7 different times were

taken.
10
8_
o
p —1s
E 6
5 —— 10s
£ 50s
v 4 100s
———— 500s
——— 3500s
2_
0 . . T T
0 0,0002 0,0004 0,0006 0,0008 0,001
z[m]

Figure 4.5: Membrane concetration profile using D1

It takes less than an hour for the membrane in the first simulation to have
the same concentration of acetic ions as the dilute compartment. That is not
the case in the second and third simulations. The real value of D,,, is most likely
between the three used values. This statement is based on diffusion coefficient

of other ions in water and ion exchange membranes. The value of mentioned
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diffusion coefficient in ion exchange membrane is usually up to 100 times lower
than in water [20] [21]. A diffusion coefficient for a specific membrane can be

calculated from the correlation of current efficiency based on experiments [12].
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Figure 4.6: Membrane concetration profile using D2
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Figure 4.7: Membrane concetration profile using D3



4.2 Future development

There is a room for significant improvement of this model since many simplifi-

cations and conditions were assumed.

4.2.1 Geometry

Two geometry approaches were presented, a simple and a more detailed one.
In the case of the simple model, the x, y and z axis point spacing is different.
Although this can be seen in the membrane as well as in the compartments, it is
more prominent in the membrane. Since the membrane is very thin, the distance
between two points in the z axis direction is 0.1 mm whereas the distances
between two points in the x a y axis directions are 1.33 mm and 1.67 mm. Since
the mesh grid is structured, these distances in between the points in membrane
cannot be decreased without doing the same in the compartments. For this
reason, the decrease of the distance between two points in the direction of x or
y axis would significantly prolong the computation time.

In the case of more detailed geometry, the fields were not calculated properly.
As was described in the previous sections, the mesh is not orthogonal. This can
have effect on the precision of the calculations. Since inlet and outlet are circles
in the middle of rectangular walls, it is possible that the fluid creates swirls when
flowing trough. For this reason, a laminar flow regime may not be optimal and

simulations with more turbulent flow regime could be performed.

4.2.2 Other acids and ions

Only acetic anions were taken into account in this model. Possible broadening of

this models capabilities would be to accompany the electrochemical reactions.
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This would mean calculations of other ion concentrations. The model could
also the into account multiple acids dissociation, which would also mean more

complex calculations of necessary diffusion coefficients.

4.2.3 Chemical reactions

Another matter to include could be generation of hydrogen and oxygen gasses
on the electrodes, which would requite addition of multiphase layers and calcu-
lations and also geometry modification to include the gas outlets. A different
approach would be to assume different set of reactions, meaning a different

chemicals than hydrogen and oxygen would be produced.

4.2.4 Electric potential

A simplified approach to the calculation of electric field strength was taken. The
values were calculated outside of the model and set as a constant value. A more
sophisticated approach would be to calculate electric potential and electric field
strength in the model. This could also take into account changes in the solution

conductivity with different concentrations of ions.
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Chapter 5

Conclusion

A simple CFD model for simulating the operation of an ion exchange membrane
was created in this work. The geometry consists of a dilute and a concentrate
compartment separated by an ion exchange membrane. Two different meshes
were created, a simplified one and a more precise one. The simplified one was
used in the simulations. A number of pre-process utilities used in this work
are described along with applied boundary conditions. Then, a creation of used
solver is described and results are shown. This model is able to calculate pres-
sure, fluid velocity and acetic anion concentration fields. The model also takes
into account the effect of an electric field. There is also room for future devel-
opment. The more precise mesh could be reworked, since it did not produce
accurate results. Other ions as well as other dissociating acids could also be
taken into account. This would mean implementation of electrochemical reac-
tions on the electrodes. If production of hydrogen and oxygen gasses is assumed,

multiple phases along with multiphase layers have to be calculated. Lastly, elec-
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tric potential could be calculated in more sophisticated way, taking into account

current concentration of ions in solutions.
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Chapter 6

Resumé

Cielom predlozenej diplomovej prace bolo ziskat zakladné znalosti o CFD mod-
eloch a simuldciach. To zahfna aj znalosti o vytvarani a pracou s mriezkami.
Nésledne bolo potrebné pouzit ziskané vedomosti na navrh modelu membranového
modulu. Tento model obsahuje i6novi membranu, ktord oddeluje dve néddoby
a sluzi na separaciu zmesi organickych kyselin. Model membranového mod-
ulu pracuje s kyselinou octovou. Konkrétne sa jednd o iénovii membranu, cez
ktoru difundujui aniény kyseliny octovej. Membranovy modul sa skladd z dvoch
nadob oddelenych membranou. Kazdd z nddov ma vstup a vystup a uspori-
adanie prudov je protipriadne. V praci boli pouzité nasledujice zjednodusenia.
Aj ked sa v skutoénosti v systéme nachddza viacero kyselin, model pracuje iba
s aniénmi kyseliny octovej. V celom systéme sa predpokladéd laminarny rezim
prudenia a konStantné teplota.

Mriezka je neoddelitelnou sti¢astou CFD modelovania. Je mozné ju vytvorit

priamo v programe OpenFOAM funkciou blockMesh. Druhé moznost je im-
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portovat uz hotovii mriezku z inych programov na vytvaranie 3D geometrii. V
tejto praci boli vytvorené dve mriezky. Obe sa skladaji z velkého poctu malych
Seststrannych elementov a obe st struktirované. Prvé, zjednodusend varianta
zanedbava kruhové vstupy a vystupy z nadob, za vstupy a vystupy sa povazuju
celé steny ako je zndzornené na obrazku 3.2. Zlozitejsia mriezka presne opisuje
spominané kruhové vstupy a vystupy a je znazornend na obrazku 3.3. Simulacie
so zlozitejSou verziou mriezky vSak vykazovaly chybné vysledky, a preto bola v
simuléciach pouzita jednoduchsia mriezka.

Pred samotnym vypoétom je potrebné model pripravit pouzitim viacerych
funkcii. Prva je uz spominand funkcia block M esh, ktord zostavi mriezku. Nasle-
duje funkcia topoSet, ktora v mriezke vytvori tri oblasti, dve pre nadoby a jednu
pre membranu. Funkcia splitMeshRegions potom na zaklade vytvorenych
oblasti vytvori tri regiény. Regidény st nezavislé casti v mriezke, v jednotlivych
regiénoch moézu byt pocitané rozne rovnice alebo zadané iné okrajové pod-
mienky. Steny medzi regiénymi je vhodné pretvorit na okrajové steny pouzitim
funkcie createBaf fles. To umozni priradenie okrajovych podmienok k tymto
stenam. Okrajové podmienky na stenach medzi regionmy si podstatné, pretoze
uréuju spravanie sa jednotlivych pocitanych poli. Napr. z pohladu rychlosti
tekutiny a tlaku je rozhranie naddoby a membrany brané ako nepriechodna
stena, no z hladiska koncentrécie preicha difizia astic do membrany. Konkrétne
pouzitie okrajovych podmienok je uvedené v tabulkach 3.1, 3.2 and 3.3.

Nasleduje samotny vypocet. Solver s ndzvom membraneSolver bol vytvoreny
na zéklade solvera icoFoam. Ten riesi neustélené lamindrne pridenie nestlacitelnych
Newtonovskych tekutin. MembraneSolver je rozsireny o vypocet koncentracie
a tiez pracuje s viacerymi regiénmi. Intenzita elektrického pola je vypoéitand

mimo programu a dosadend ako konstantna hodnota.
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Vysledky prezentuji jednotlivé vypoéitané polia, a to tlak, rychlost a kon-
centraciu. V pripade tlaku sa naprie¢ modulom vytvoril jemny klesajici gradi-
ent. Pole rychlosti vykazuje postupné vytvorenie laminarneho rezimu pridenia.
Boli uskutocnené tri simuldcie s réznymi hodnotami difizneho koeficienta pre
prestup octovych aniénov v membrane. Presna hodnota tohto koeicienta nebola
od vyrobcu membrany poskytnutd. Ako bolo oc¢akavané, prestup latky membranou
bol pomalsi s nizsimi hodnotami spominaného difizneho koeficienta. Tieto
vysledky prezentuju funkény jednoduchy model chodu membranového modulu.

Vytvoreny model mé velky potencil vyvoja v buddcnosti. V prvom rade
by bolo mozné prerobit zlozitejsiu mriezku modulu tak, aby vykazovala spravne
vysledky. Takisto by bolo mozné model rozsirit o koncentricie viacerych iénov,
pripadne viacerych kyselin. To by znamenalo zakomponovat do modelu aj elek-
trochemické reakcie. Model by taktiez mohol obsahovat produkciu plynného

vodika a kyslika.
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Appendix A

Solver and case code

membraneSolver
fluid
createFluidFields.H

PtrList<uniformDimensionedScalarField> epsilonOFluid (fluidRegions.size ());
PtrList<uniformDimensionedScalarField> nuFluid (fluidRegions.size ());
PtrList<uniformDimensionedScalarField> DFluid (fluidRegions.size ());
PtrList<uniformDimensionedScalarField> zFluid (fluidRegions.size ());
PtrList<uniformDimensionedScalarField> boltzFluid (fluidRegions.size ());
PtrList<uniformDimensionedScalarField> TFluid(fluidRegions.size ());
PtrList<volScalarField> pFluid(fluidRegions.size ());
PtrList<volVectorField> UFluid (fluidRegions.size ());
PtrList<volScalarField> concFluid (fluidRegions.size ());
PtrList<volVectorField> EFluid(fluidRegions.size ());
PtrList<surfaceScalarField > phiFluid (fluidRegions.size ());

// Populate fluid field pointer lists

forAll (fluidRegions , i)

Info<< 7#x*% Reading fluid mesh properties for region 7
<< fluidRegions[i].name() << nl << endl;

Info<< ” Adding to epsilon0\n” << endl;
epsilon0Fluid . set

i,
new uniformDimensionedScalarField

IOobject

”epsilon0”,
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runTime. constant (),
fluidRegions [i],
IO0object : : MUST_READ,
IOobject : : NO_WRITE

Info<< 7 Adding to nu\n” << endl;
nuFluid . set

new uniformDimensionedScalarField

IOobject
(

” »

nu” ,
runTime. constant (),
fluidRegions [i],
IO0object : : MUST_READ,
IOobject : : NO_WRITE

)
Info<< ” Adding to D\n” << endl;
](DFluidASet

i,
new uniformDimensionedScalarField
IOobject
(
"D,
runTime. constant (),
fluidRegions [i],
IOobject : : MUST_READ,
IOobject : : NO_WRITE

)i
Info<< ” Adding to z\n” << endl;
%Fluid.set

i,
new uniformDimensionedScalarField

IOobject
(

., n
z i

runTime. constant (),
fluidRegions [i],
IOobject : : MUST_READ,
IOobject : : NO_WRITE

)i
Info<< ” Adding to boltz\n” << endl;
E)oltzFluid.set

i,
new uniformDimensionedScalarField
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IOobject

”boltz”,

runTime. constant (),
fluidRegions [i],
IOobject : : MUST_READ,
IOobject : : NO_WRITE

)
Info<< ” Adding to T\n” << endl;
’(TFluid.sct

i

)
new uniformDimensionedScalarField

IOobject

oo
runTime. constant (),
fluidRegions [i],
IOobject : : MUST_READ,
IOobject : : NO_WRITE

)
)
)i
Info<< ” Adding to p\n” << endl;
pFluid. set
C
1,
new volScalarField
IOobject
"p7
runTime . timeName () ,
fluidRegions [i],
I0object : : MUST_READ,
I0object : : AUTO_-WRITE
fluidRegions [i]
)
)
Info<< ” Adding to U\n” << endl;

EJFluid .set

i,
new volVectorField

IOobject

"y,
runTime . timeName () ,
fluidRegions [i],
IOobject : : MUST_READ,
IOobject : : AUTO-WRITE

fluidRegions [i]
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Info<< ” Adding to conc\n” << endl;
concFluid . set
i,
new volScalarField

IOobject
(

» conc”
runTime . timeName () ,
fluidRegions [i],
IO0object : : MUST_READ,
IOobject : : AUTO_-WRITE

fluidRegions [i]

)i
Info<< ” Adding to E\n” << endl;
](-E]FluidASet

i,
new volVectorField

IOobject
(

TR
runTime . timeName () ,
fluidRegions [i],
I0object : : MUST_READ,
IOobject : : AUTO_WRITE

)
fluidRegions [i]

)
)
Info<< 7 Adding to phi\n” << endl;
phiFluid . set
C
17
new surfaceScalarField
IOobject
(
» phi” |
runTime . timeName () ,
fluidRegions [i],
IOobject : : MUST_READ,
IOobject : : AUTO_WRITE
)
fve :: flux (UFluid [i])
)
)

label pRefCell = 0;
scalar pRefValue = 0.0;

setRefCell (pFluid[i], fluidRegions[i].solutionDict ().subDict(?PISO”), pRefCell, pRefValue);
fluidRegions [i].setFluxRequired (pFluid[i].name());

}
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createFluidMeshes.H

const wordList fluidNames(rp[” fluid”]);
PtrList <fvMesh> fluidRegions (fluidNames.size ());
forAll (fluidNames , i)

{
Info<< 7 Create fluid mesh for region ” << fluidNames[i]
<< ” for time = 7 << runTime.timeName () << nl << endl;
fluidRegions . set
i,
new fvMesh
IOobject
(
fluidNames [i],
runTime . timeName () ,
runTime,
IOobject : : MUST_READ
)
)
)i
¥

setRegionFluidFields.H

const fvMesh& mesh = fluidRegions[i];

uniformDimensionedScalarField& epsilon0 = epsilon0Fluid[i];
uniformDimensionedScalarField& nu = nuFluid [i];
uniformDimensionedScalarField& D = DFluid[i];
uniformDimensionedScalarField& z = zFluid [i];

uniformDimensionedScalarField& boltz = boltzFluid [i];
uniformDimensionedScalarField& T = TFluid[i ];
volScalarField& p = pFluid[i];
volVectorField& U = UFluid[i];
volScalarField& conc = concFluid[i];
volVectorField& E = EFluid[i];
surfaceScalarField& phi = phiFluid[i];

label pRefCell = 0;

scalar pRefValue = 0.0;

setRefCell (p, fluidRegions[i].solutionDict ().subDict(”PISO”), pRefCell, pRefValue);

fluidRegions [i].setFluxRequired (p.name ());

solid
createSolidFields.H

PtrList<uniformDimensionedScalarField> epsilon0Solid (solidRegions.size ());
PtrList <uniformDimensionedScalarField> DSolid (solidRegions.size ());
PtrList<uniformDimensionedScalarField> zSolid (solidRegions.size ());
PtrList<uniformDimensionedScalarField> boltzSolid (solidRegions.size ());
PtrList<uniformDimensionedScalarField> TSolid(solidRegions.size ());
PtrList<volScalarField > concSolid (solidRegions.size ());
PtrList<volVectorField> ESolid(solidRegions.size ());
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// Populate solid field pointer lists
forAll (solidRegions , i)

Info<< ”#x* Reading solid mesh properties for region ”
<< solidRegions[i].name() << nl << endl;

Info<< ” Adding to epsilon0\n” << endl;
epsilon0Solid . set

i,
new uniformDimensionedScalarField

IOobject

7epsilon0”,

runTime. constant (),
solidRegions [i],
I0object : : MUST_READ,
IO0object : : NO.-WRITE

)
Info<< ” Adding to D\n” << endl;
DSolid. set
C
1 k)
new uniformDimensionedScalarField

IOobject

"D
runTime. constant (),
solidRegions [i],
IOobject : : MUST_READ,
IOobject : : NO_WRITE

)
Info<< ” Adding to z\n” << endl;
zSolid . set
o
11
new uniformDimensionedScalarField

IOobject
2y
runTime. constant (),
solidRegions [i],
IOobject : : MUST_READ,
IOobject : : NOWRITE

)
Info<< ” Adding to boltz\n” << endl;
boltzSolid . set
C
1!
new uniformDimensionedScalarField

IOobject
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"boltz”

runTime. constant (),
solidRegions [i],
I0object : : MUST_READ,
IOobject : : NO_WRITE

)
Info<< 7 Adding to T\n” << endl;
TSolid . set
C
1)
new uniformDimensionedScalarField

IOobject

»po
runTime. constant (),
solidRegions [i],
I0object : : MUST_READ,
IO0object : : NO.-WRITE

)
)i
Info<< 7 Adding to conc\n” << endl;
concSolid . set

i,
new volScalarField

IOobject

» conc” ,
runTime . timeName () ,
solidRegions [i],
I0object : : MUST_READ,
I0object : : AUTO_-WRITE

solidRegions [i]
)
)
Info<< ” Adding to E\n” << endl;
ESolid. set
C
1,
new volVectorField
IOobject
Ko
runTime . timeName () ,
solidRegions [i],

IOobject : : MUST_READ,
IOobject : : AUTO_WRITE

)
solidRegions [i]
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createSolidMeshes.H

const wordList solidsNames(rp[” solid”]);
PtrList <fvMesh> solidRegions (solidsNames.size ());
forAll (solidsNames, i)

Info<< ” Create solid mesh for region ” << solidsNames[i]
<< 7 for time = ” << runTime.timeName() << nl << endl;
solidRegions . set

i,
new fvMesh

IOobject

solidsNames[i],
runTime . timeName (),
runTime ,

IOobject : : MUST_READ

setRegionSolidFields.H

const fvMesh& mesh = solidRegions[i];
uniformDimensionedScalarField& D = DSolid [i];
uniformDimensionedScalarField& z = zSolid [i];
uniformDimensionedScalarField& boltz = boltzSolid [i];
uniformDimensionedScalarField& T = TSolid[i];
volScalarField& conc = concSolid [i];

volVectorField& E = ESolid[i];

createFields.H

#include
#include

7createFluidFields .H”
”createSolidFields .H”

createMeshes.H

regionProperties rp(runTime);
#include
#include

”createFluidMeshes .H”
”createSolidMeshes .H”
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createMeshesPostProcess.H

#include ”createMeshes .H”
if (!fluidRegions.size ())

FatalErrorIn (args.executable ())
<< ”"No fluid meshes present” << exit(FatalError);

}
fvMesh& mesh = fluidRegions [0];

membraneSolver. H

\
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
A\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |

License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
membraneSolver
Description
This solver uses PISO algorithm to compite fluid velocity and pressure
for transient cases.

#include 7fvCFD.H”
#include ”pisoControl .H”
#include ”rhoThermo.H”
#include ”turbulentFluidThermoModel .H”
#include ”fixedGradientFvPatchFields .H”
#include ”"regionProperties .H”
#include ”solidThermo .H”
#include ”radiationModel .H”
#include 7 fvOptions.H”
#include 7 coordinateSystem .H”
int main(int argc, char xargv([])
{
#define NO.CONTROL
#define CREATEMESH createMeshesPostProcess.H
#include ”postProcess.H”
#include ”setRootCase.H”
#include ”createTime .H”
#include ”createMeshes.H”
#include ”createFields .H”
#include ”initContinuityErrs.H”
while (runTime.loop ())
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Info<< ?Time = ” << runTime.timeName() << nl << endl;
forAll (fluidRegions , i)
Info<< ”\nSolving for fluid region ”
<< fluidRegions[i].name() << endl;
#include ”setRegionFluidFields .H”
pisoControl piso(fluidRegions[i]);
#include ” CourantNo.H”
// Momentum predictor
fvVectorMatrix UEqn

fvm :: ddt (U)
+ fvm::div(phi, U)
— fvm:: laplacian (nu, U)
)
if (piso.momentumPredictor())

{

solve (UEqn == —fvc::grad(p));

// —— PISO loop
while (piso.correct ())

volScalarField rAU(1.0/UEgn.A());
volVectorField HbyA(constrainHbyA (rAU«UEqn.H(), U, p));
surfaceScalarField phiHbyA

( » phiHbyA”

fve :: flux (HbyA)
4+ fvc::interpolate (rAU)xfvc:: ddtCorr (U, phi)
)
adjustPhi (phiHbyA, U, p);
// Update the pressure BCs to ensure flux consistency
constrainPressure (p, U, phiHbyA, rAU);
// Non—orthogonal pressure corrector loop
while (piso.correctNonOrthogonal())

// Pressure corrector
fvScalarMatrix pEqn

fvm:: laplacian (rAU, p) == fvc::div(phiHbyA)
)
pEgn.setReference (pRefCell , pRefValue);
pEqn.solve (fluidRegions[i].solver(p.select (piso.finallnnerIter ())));
if (piso.finalNonOrthogonallter ())

phi = phiHbyA — pEqn. flux ();
}

#include ”continuityErrs . H”
U = HbyA — rAUxfvc::grad(p);
U.correctBoundaryConditions ();

fvScalarMatrix concEqn

fvm::ddt (conc)
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+ fvm::div(phi, conc)

— fvm:: laplacian (D, conc)

+ Dxconcxz/boltz /Txfvec::div(E)
)

concEqgn.solve ();

//SOLID
forAll (solidRegions , i)
Info<< ”\nSolving for solid region ”
<< solidRegions[i].name() << endl;
#include ”setRegionSolidFields .H”
fvScalarMatrix concEqn

fvm::ddt (conc)
— fvm:: laplacian (D, conc)
+ Dxconcxz/boltz /Txfvec::div(E)
)
concEqn.solve ();
}
runTime. write ();
Info<< ”ExecutionTime = ” << runTime.elapsedCpuTime () << 7 s
<< ”  ClockTime = ” << runTime.elapsedClockTime () << 7 s”
<< nl << endl;

9

}
Info<< "End\n” << endl;
return 0;

}
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membraneSolver

0/fluidRtop

conc
1 D |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM . org |
| \\/ M anipulation | |
\* */
f‘oamFile

version 2.0;

format ascii;

class volScalarField;

location 70/ fluidRtop 7

object conc;

}

[/ % % Kk x k ok ok ok ok ok %k ok ok ok ok ok ok ok ok ok Kk k ok k k k k * x k k k %k *x * % x //
dimensions [0-300100 ];
internalField uniform O0;
boundaryField
walls
type zeroGradient ;
inlet2
{
type fixedValue;
value uniform O0;
outlet?2
type zeroGradient ;
anode
type zeroGradient ;
value uniform O0;

¥
fluidRtop-to_solidR

type mappedFixedInternalValue;
value uniform O0;
interpolationScheme cell;

setAverage no;

average 0;

}
}
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=

<l >

gy ———

G+
\
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Version: 4.1
\\ / A nd | Web: www . OpenFOAM. org
\\/ M anipulation |
oamkFile
version 2.0;
format ascii;
class volVectorField;
location 70/ fluidRtop 7;
object E;

dimensions

internalField uniform
boundaryField
walls
type
}
inlet2
{
type
value
}
outlet2
{
type
value
}
anode
type
value

}

/!

¥
fluidRtop_-to_solidR
{

type

value

}

ok KK KRR R R R R R R R R K R K K K oK K K K K K oK oK oK K K oK oK oK oK K K oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK oK ok ok K

[11-300-10];

(00 —61.125 );

zeroGradient ;

fixedValue;
uniform ( 0 0 —61.125

fixedValue;
uniform ( 0 0 —61.125

zeroGradient ;
uniform ( 0 0 —61.125

zeroGradient ;
uniform ( 0 0 —61.125
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p

| | | \\
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\ /
?oamFile

version 2.0;

format ascii;

class volScalarField;

location 70/ fluidRtop 7 ;

object pP;

}

dimensions [ 02 -20000];
internalField uniform O0;
boundaryField
walls
type zeroGradient ;
inlet2
{ .
type zeroGradient ;
outlet?2
{
type fixedValue;
value uniform O0;
}
anode
type zeroGradient ;
value uniform O0;

¥
fluidRtop_-to_-solidR

type zeroGradient ;
value uniform O0;

}
}
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/ — |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
AN / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
\ \\/ M anipulation | ‘
\ /
?oamFilc

version 2.0;

format ascii;

class volVectorField;

location 70/ fluidRtop 7;

object U;

dimensions [01 -10000 ];
internalField uniform ( 0 0 0 );
boundaryField

walls
type noSlip ;
}
inlet2
{
type fixedValue;
value uniform ( —0.04 0 0 );
}
t{)utletZ
type zeroGradient ;
}
anode
type noSlip;
value uniform ( 0 0 0 );

}
fluidRtop_to_solidR
{

type noSlip ;
value uniform ( 0 0 0 );

}
}

// 3k 3k 3k sk sk sk sk sk sk sk sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk 3k sk Sk sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk sk sk sk ok 3k sk 3k sk sk sk sk sk sk ok ok ok sk sk 3k sk k ok ok ok //
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constant
fluidRtop

4 E—— |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ AN / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\ /
?oamFile

version 2.0;

format ascii;

class uniformDimensionedScalarField ;

object boltz;

dimensions [1 2 -2-100 0];
value 1.38064852e —23;

// sk sk 3k sk >k >k 3k 3k k3K sk sk sk sk sk sk sk sk 3k 3k sk sk sk sk sk 3k sk >k sk 3k sk 3k Sk sk sk 3k 3k sk sk sk 3k 3k 3k sk Sk sk sk sk >k >k sk 3k 3k 3k sk sk 3k sk sk >k >k sk 3k 3k 3k sk 3k 3k sk k ok ok ok //

| | : )
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
AN / O peration | Version: 4.1 |
| \\  / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\ /
?oamFile

version 2.0;

format ascii;

class uniformDimensionedScalarField ;

object D;

dimensions [0 2 -1000 0];
value 1.089e—9;

// sk 3k 3k sk >k sk sk 3k sk sk sk sk Sk sk sk sk sk sk 3k 3k sk sk sk sk sk sk sk >k sk 3k 3k sk sk Sk sk sk sk >k sk sk 3k sk sk sk Sk sk sk sk sk >k sk 3k 3k 3k Sk 3k 3k sk sk >k >k sk 3k 3k ok sk 3k 3k sk k k ok ok //
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{ o i
[ AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\* */
foamFi]e

version 2.0;

format ascii;

class uniformDimensionedScalarField;

object D;
dimensions [02 -1000 0];
value 1.004e—6;

/‘* ‘ s— G+ —x *‘\
[ AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ AN / O peration | Version: 4.1 |
| \\ A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\ /
f‘oamFile

version 2.0;

format ascii;

class uniformDimensionedScalarField;

object T;

[/ % k% ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ks k k ok ok ok ok ok ok ok ok ok ok ok % [/
dimensions [00O0O 100 0];
value 293.15;

/ — |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ AN / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | \
v /
?oamFile

version 2.0;

format ascii;

class uniformDimensionedScalarField;

object z

}

dimensions [001 001 0];
value 1.60217662e —19;

// sk 3k 3k sk sk sk sk 3k sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk sk sk sk sk sk sk 3k sk sk sk Sk sk sk sk sk sk sk 3k 3k ok sk Sk 3k sk sk sk sk sk 3k sk 3k sk sk sk sk sk sk sk sk 3k ok ok 3k sk 3k sk k ok ok ok //
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regionProperties

1 p— >
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
\ \\/ M anipulation | \
\x /
?oamFile

version 2.0;

format ascii;

class dictionary;

location ”constant”;

object regionProperties;

}

regions

fluid (fluidRbot fluidRtop)
solid (solidR)
)

// sk 3k sk sk sk sk sk sk sk ok sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk Sk 3k sk sk sk sk sk 3k ok ok sk sk sk sk sk sk sk sk 3k sk ok 3k sk 3k sk k ok ok ok //
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system
fluidRtop

/‘* ‘ s— CH4 —* *‘\
[ AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ \\ / O peration | Version: 4.1 \
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\x */
?oamFile

version 2.0;

format ascii;

class dictionary ;

object changeDictionaryDict;

}

/] * & ok x ok ok ok ok ok ok Kk ok ok ok ok ok ok ok K K Kk ok ok ok ok k ok K k k k k k *k *x * x //
U
{

internalField uniform (0 0 0);
boundaryField

fluidRtop-to-solidR

type noSlip;
anode
type noSlip;
}
}
1%
{
internalField uniform O0;
boundaryField

fluidRtop_-to_solidR

type zeroGradient ;
}
anode
type zeroGradient ;
}
conc
internalField uniform O0;
boundaryField

fluidRtop_-to_solidR

type mappedFixedInternalValue;
interpolationScheme cell;

setAverage no;

average ;

7



value uniform O0;
anode

type zeroGradient ;

}

E

{
internalField uniform ( 0 0 0 );
boundaryField

fluidRtop-to-solidR
{

type zeroGradient ;
anode
type zeroGradient ;
}
}
phiE
internalField uniform O0;
boundaryField

fluidRtop_-to_solidR

type zeroGradient ;
anode
type zeroGradient ;
}
¥
rho
{
internalField uniform O0;
boundaryField

fluidRtop-to-solidR

type zeroGradient ;
}
anode

type zeroGradient ;

}
}
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{ DN i
[ AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\ */
foamFi]e

version 2.0;

format ascii;

class dictionary ;

location ?system”;

object decomposeParDict;

numberOfSubdomains 4 ;

method simple;
simpleCoeffs
n (4 1 1);
delta 0.001;

}
/*

hierarchicalCoeffs

n (11 1);
delta 0.001;
order Xy7%;

}
® [ [ %

manualCoeffs

dataFile nr
*
distributed no;
roots ();
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| DR "
[ AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\* */
foamFi]e

version 2.0;

format ascii;

class dictionary ;

location ?system”;

object fvSchemes;

?dtSchemes

default Euler;

gradSchemes
default Gauss linear;

}

divSchemes
default none ;
div (phi,U) bounded Gauss linearUpwind grad(U);
div (phi, k) bounded Gauss upwind;
div (phi, epsilon) bounded Gauss upwind;
div (phi,R) bounded Gauss upwind;
div (R) Gauss linear;

div (phi,nuTilda) bounded Gauss upwind;
div ((nuEffxdev2(T(grad(U))))) Gauss linear;

div (rhoFlux ,rho) Gauss upwind;
div (phi,conc) Gauss linear;
div (E) Gauss linear;

}

laplacianSchemes
default Gauss linear corrected;

interpolationSchemes

default linear ;
snGradSchemes
default corrected ;

}
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{ o i
[ AN\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\ */
foamFi]e

version 2.0;

format ascii;

class dictionary ;

location ?system”;

object fvSolution ;

solvers
p
{
solver GAMG;
tolerance le—T;
relTol 0.01;
smoother DICGaussSeidel;
pFinal
$p;
relTol 0;

7(Ulk|epsilon)”

solver smoothSolver ;
smoother symGaussSeidel ;
tolerance le —05;

relTol 0.1;

¥
?(Ulk|epsilon)Final”

$U;
relTol 0;

conc
solver smoothSolver;
smoother symGaussSeidel ;
tolerance le —06;
relTol 0;

phiE
solver PCG;
preconditioner DIC;
tolerance le —05;
relTol 0.1;

}

rho

{
solver smoothSolver ;
smoother symGaussSeidel;
tolerance le —08;
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relTol 0.2;

IEIMPLE

nNonOrthogonalCorrectors O0;
nCorrectors

5

}
PISO
{

nCorrectors
nNonOrthogonalCorrectors 1
pRefCell ;
pRefValue 0;

}
?IMPLE

//momentumPredictor yes;
nNonOrthogonalCorrectors 0;

pRefCell 0;
pRefValue 0;
// rhoMin 0.2;
// rhoMax 2;

}

// sk 3k 3k sk >k >k 3k 3k 3k sk sk Sk sk sk sk sk >k sk 3k 3k 3k sk sk 3k sk sk sk >k sk 3k 3k 3k sk Sk sk 3k 3k sk ok sk 3k 3k ok Sk Sk sk sk sk sk >k 3k 3k 3k 3k sk Sk 3k 3k sk >k ok ok 3k 3k 3k sk 3k sk sk sk ok ok ok //
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blockMeshDict simple mesh

| | : )
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ AN / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
\ \\/ M anipulation | \
\# /
?oamFile

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;
}

convertToMeters 0.01;
vertices

(0 0 0)
(20 0 0)
(20 5 0)
(0 5 0)
(0 0 2)
(20 0 2)
(20 5 2)
(0 5 2)

= = O 00O UL WN = O

Y N S
T W —=O

—~
o
o
¥
—
—
B e Y

blocks
(

6 7) (150 30 30) simpleGrading (1 1 1)

10 11) (150 30 10) simpleGrading (1 1 1)
2 13 14 15) (150 30 30) simpleGrading (1 1 1)
)

edges

)
boundary
(

walls

type wall;
faces

NN AN~~~
BN Ok WO
N OO~

=

(=)

©

—
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(8 9 13 12)
(11 10 14 15)

)
}
inlet
type patch;
faces
(0 34 7)
)
outlet
type patch;
faces
(1 2 6 5)
)
inlet2
type patch;
faces
(9 10 14 13)
)
outlet?2
{
type patch;
faces
(8 11 15 12)
)
Eathode
type patchj;
faces
(01 2 3)
)
}
anode

type patch;
faces

(12 13 14 15)
)3
}

)
mergePatchPairs

)3

// sk 3k sk sk >k >k 3k 3k k3K sk sk sk sk sk sk sk sk 3k 3k sk sk sk sk sk sk 3k >k sk 3k 3k 3k sk Sk sk 3k 3k sk sk sk 3k sk 3k sk Sk sk sk sk sk ok sk 3k 3k 3k sk Sk 3k sk 3k >k >k ok 3k 3k 3k sk 3k sk sk k ok ok ok //
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blockMeshDict detailed mesh

www . OpenFOAM. org

OpenFOAM: The Open Source CFD Toolbox
4.1
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ocks

—~g—

edges

(20 5 3.43333)
(20 0 3.43333)
(20 0 3.1)

(20 0 2.76667)
(20 2.5 2.76667)
(20 2.83333 3.1)
(20 2.5 3.43333)
(20 2.16667 3.1)
(0 5 2.76667)

(0 5 3.1

(0 5 3.43333)

(0 0 3.43333)

(0 0 3.1)

(0 0 2.76667)

(0 2.5 2.76667)
(0 2.83333 3.1)
(0 2.5 3.43333)
(0 2.16667 3.1)
(20 2.5 0)

(0 2.5 0)

(20 2.5 2)

(0 2.5 2)

(20 2.5 2.1)
(0 2.5 2.1)
(20 2.5 4.1)

(0 2.5 4.1)
//lower section
hex

hex
hex
hex
hex (
hex (26 16
(
(

(57 56

hex
hex
hex
//membrane
hex
hex (59
//upper
hex (28 29 60
hex (61 60 30
hex
hex
hex
hex (

hex (50 40
hex (

hex

arc
arc
arc

14 15(20 2.73566 O.
15 16(20 2.73566 1.
16 17(20 2.26434 1.

W w
o ©

41
42

T U
e
ot
o

(01 56 57 23 13 14 24)
2 3 24 14 8 18)
14 24 22 12 17 27)
17 27 21 11 16 26)
16 26 4 5 58 59)
10 20 59 58 6 7)
9 19 26 16 10 20)
8 18 25 15 9 19)
14 24 26 16 15 25)

(4 5 58 59 28 29 60 61)
58 6 7 61 60 30 31)
section

42 52)
36 46)

76434)
23566)
23566)

86

5)
5)

simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)
simpleGrading (1 1 1)

4 4) simpleGrading (1 1 1)



arc 17
arc 24
arc 25
arc 26
arc 27
arc 42
arc 43
arc 44
arc 45
arc 52
arc 53
arc 54
arc 55
)

boundary

walls

//bottom front
(0 1 13 23)
(23 13 12 22)
(22 12 11 21)
(21 11 5 4)
//bottom right
(1 56 14 13)
(56 2 8 14)
(14 8 9 15)
(15 9 10 16)
(16 10 6 58)
(11 16 58 5)
(12 17 16 11)
(13 14 17 12)
//bottom back
(3 2 8 18)
(18 8 9 19)
(19 9 10 20)
(20 10 6 7)
//bottom left
(0 57 24 23)
(57 3 18 24)
(24 18 19 25)
(25 19 20 26)
(26 20 7 59)
(21 26 59 4)
(22 27 26 21)
(23 24 27 22)

14(20 2.26434 0.76434)
25(0 2.73566 0.76434)
26(0 2.73566 1.23566)
27(0 2.26434 1.23566)
24(0 2.26434 0.76434)
43(20 2.73566 2.86434)
44(20 2.73566 3.33566)
45(20 2.26434 3.33566)
42(20 2.26434 2.86434)
53(0 2.73566 2.86434)
54(0 2.73566 3.33566)
55(0 2.26434 3.33566)
52(0 2.26434 2.86434)

type wall ;
faces

//membrane walls

(4 5 29 28)

(5 58 60 29)
(58 6 30 60)
(7 6 30 31)

(4 59 61 28)
(59 7 31 61)
// top front
(28 29 41 51)
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(51 41 40 50)
(50 40 39 49)
(49 39 33 32)
//top right

(29 60 42 41)

//top back
(31 30 36 46)
(46 36 37 47)
(47 37 38 48)
(48 38 34 35)
//top left

(28 61 52 51)

outlet

inlet2
{

outlet?2
{

type patch;
faces

(24
)

type patch;
faces

(14
)

type patch;
faces

(42
)

type patch;
faces

(52
)

25

15

43

53

26

16

44

54

27)

17)

45)

55)
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cathode
{

type patch;
faces

(0 1 56 57)
(57 56 2 3)
anode

type patch;
faces

(32 33 62 63)
(63 62 34 35)

}

)
mergePatchPairs

)
[ sk sk skosk sk sk ok sk sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk sk sk ok sk ok SR sk ok sk ok sk ok s sk ok sk ok sk sk sk sk sk sk ok sk sk s sk ok sk ok sk ok R sk ok sk ok skok skok ok ok //
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controlDict

G+

1 \ |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
AN / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
\ \\/ M anipulation | ‘
\ /
?oamFilc

version 2.0;

format ascii;

class dictionary;

location 7system?”;

object controlDict;

application pimpleFoam;
startFrom startTime;
startTime 0;

stopAt endTime;
endTime 100000;
deltaT 0.01;
writeControl timeStep ;
writelnterval 50;
purgeWrite 0;
writeFormat ascii;

writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable no;
adjustTimeStep no;
maxCo 5;
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createBafflesDict

/ — |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
AN / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
\ \\/ M anipulation | ‘
\ /
?oamFilc

version 2.0;

format ascii;

class dictionary ;

object createBafflesDict ;

internalFacesOnly true;

baffles
membl
type faceZone;
zoneName membraneBoundaryl;
patches
master
name masterl;
type mappedPatch;
sampleMode nearestPatchFace;
slave
name slavel;
type mappedPatch;
sampleMode nearestPatchFace;

}

memb2
type faceZone;
zoneName membraneBoundary?2;
patches
master
name master2 ;
type mappedPatch;
sampleMode nearestPatchFace;
slave
name slave?2;
type mappedPatch;
sampleMode nearestPatchFace;

}
}

// sk 3k 3k sk >k >k sk 3k 3k 3k Sk Sk Sk sk sk sk >k sk 3k 3k 3k sk Sk sk sk sk sk >k 3k 3k 3k 3k sk Sk sk 3k sk sk sk sk 3k 3k ok sk Sk sk sk sk sk >k 3k 3k 3k 3k sk sk sk sk 3k 3k >k ok 3k 3k 3k sk 3k sk sk sk ok ok ok //
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topoSetDict

1 D |
[ A\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\ / O peration | Version: 4.1 |
| \\ / A nd | Web: www . OpenFOAM. org |
| \\/ M anipulation | |
\ /
?oamFile

version 2.0;

format ascii;

class dictionary;

object topoSetDict ;

}

actions

{
name bottomCellSet ;
type cellSet ;
action new;
source boxToCell;
sourcelnfo

box (0 0 0)(0.2 0.05 0.02);

~——

name fluidRbot ;
type cellZoneSet ;
action new;

source setToCellZone;
sourcelnfo

set bottomCellSet;

e ad

name topCellSet ;
type cellSet ;
action new;

source boxToCell;
sourcelnfo

box (0 0 0.021)(0.2 0.05 0.041);

~——

name fluidRtop;
type cellZoneSet ;
action new;

source setToCellZone;
sourcelnfo

set topCellSet;

~——

name topCellSet ;
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type cellSet ;
action new;
source boxToCell;
sourcelnfo

box (0 0 0.02)(0.2 0.05 0.021);

RN

name solidR ;

type cellZoneSet ;
action new;

source setToCellZone;
sourcelnfo

set topCellSet;

~——

name membraneBoundarylFaceSet ;
type faceSet ;

action new;

source boxToFace;

sourcelnfo

box (0 0 0.019999) (0.2 0.05 0.020001);

.~

name membraneBoundaryl ;
type faceZoneSet;
action new;

source setToFaceZone;
sourcelnfo

faceSet membraneBoundarylFaceSet;

~——

name membraneBoundary2FaceSet ;
type faceSet ;

action new;

source boxToFace;

sourcelnfo

box (0 0 0.020999) (0.2 0.05 0.021001);

name membraneBoundary?2;
type faceZoneSet;
action new;

source setToFaceZone;
sourcelnfo

faceSet membraneBoundary2FaceSet ;

}
)3

// sk 3k 3k sk ok ok 3k 3k 3k ok sk Sk sk sk sk sk ok 3k 3k 3k 3k sk sk sk sk 3k sk >k 3k 3k 3k 3k Sk Sk 3k 3k 3k sk sk sk 3k 3k 3k sk Sk 3k sk sk >k >k sk 3k 3k 3k sk Sk 3k sk 3k ok >k sk 3k 3k 3k 3k 3k 3k 3k k k ok ok //
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