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Abstract. This work describes logistical planning of offshore wind farm
(OWF) installation through linear programming. A mixed integer linear
programming (MILP) model is developed to analyze cost-effective port
and vessel strategies for offshore installation operations. The model seeks
to minimize total costs through strategic decisions, that is decisions on
port and vessel fleet and mix. Different vessels, ports and weather re-
strictions over a fixed time horizon are considered in the model. Several
deterministic test cases with historic weather data are implemented in
AMPL, and run with the CPLEX solver. The results provide valuable
insight into economic impact of strategic decisions. Numerical experi-
ments on instances indicate that decision aid could be more reliable if
large OWFs are considered in fractionated parts, alternatively by devel-
oping heuristics.

Keywords: offshore wind installation, mixed integer linear program-
ming, fleet optimization

1 Introduction

Renewable energy is a growing industry within the energy sector. The growth
is motivated by issues like the challenge of global climate change, the increasing
need for energy, and new market opportunities. Harvesting energy from the
wind is becoming a developed renewable energy technology. Operating offshore
involves greater challenges than onshore, and electricity production from offshore
wind farms (OWFs) is today considered expensive.

Offshore construction of a wind farm requires a lot of logistical planning. Ves-
sels and/or barges must transport and install large components in a demanding
environment. The challenges include restrictive weather conditions contribut-
ing to delays on very costly operations. Farm sites and turbine components are
expected to keep growing in size, and wind farm locations are expected to be
placed further away from shore. In addition, an increasing number of specialized
installation vessels are becoming available on the market. Crucial decisions in
planning the installation process include choosing the most cost-effective vessels,
figuring out how components should be loaded and installed, and choosing which
port to operate from to minimize expenses and delays.
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Operational research models for OWFs are focused on operation and main-
tenance (O&M) of fully commissioned farms. Some work is also done to support
vessel scheduling of OWF installation [6, 7]. To the authors’ knowledge, limited
published research is focusing on the installation fleet size and mix problem
through linear programming. This work seeks to aid decisions for installation
fleet size and mix, by means of a mixed integer linear programming (MILP)
model.

Section 2 describes the framework of the model in detail, and its mathe-
matical formulation is given in Section 3. Section 4 presents realistic numerical
experiments run with the model, and the paper is concluded in Section 5.

2 Problem Description

The model, to be detailed in the next section, considers the offshore installation
stage of a given number of wind turbines.

Each turbine consists of components that can mainly be split into three cat-
egories: sub-structures, cables and top-structures. In addition, OWFs consist of
one or more sub-stations collecting all the energy generated by the turbines. The
options are few on how to perform installation of sub-structures, cables and sub-
stations, thus the problem considered concerns installations of top-structures.
These structures mainly consist of tower, nacelle, hub and blades. Top-structures
for a complete turbine can be partly assembled onshore, and will usually be in-
stalled by the same vessel.

All components must be loaded and transported by some vessel to the OWF.
Next, the transported components are installed at turbine locations. Before each
installation, vessels commonly lower pillars into the seabed (jack-up) to raise
their deck above the sea, creating stable platforms where lifting operations can
be performed safely given satisfactory weather conditions. After installation is
complete, the vessel performs jack-down, and transits to the next turbine or back
to port. Depending on the possible onshore assembly of certain components, a
number of loading and installation lifts will take place for each turbine.

Vessels can differ in effectiveness and costs, and usually perform several cycles
of loading, transportation and installation. The same vessel may load different
numbers of turbines on different cycles. Any vessel transit, jack-up/jack-down
and installation is restricted by weather conditions.

Chartering vessels is expensive, and there are thus high costs of weather
delays. The main decisions we want to support are which vessels and ports to
use, how many cycles each vessel performs and how many turbines each vessel
loads on each cycle. These decisions will depend on vessel and port costs, transit
distances, vessel specifications and weather realizations causing potential delays.

Upon planning installation of an OWF, the goal is to perform the complete
installation with the least amount of costs.
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3 Model Formulation

The current section presents the mathematical formulation of the MILP model
dealing with the problem presented in Section 2.

Section 3.1 introduces the model framework in terms of input data, and
Section 3.2 presents variables representing decisions supported by the model. The
objective function is defined in Section 3.3, and Section 3.4 introduces constraints
ensuring operation assignment and time tracking. Finally, weather windows are
introduced in Section 3.5.

3.1 Model Framework

The model supports decisions on which vessel(s) to use, and which port vessel(s)
are to operate from. Vessels are contained in the set V , and ports are contained
in the set K.

Offshore operations can be categorized into four tasks: jack-up, installation,
jack-down and turbine transit, and they will henceforth be referred to as O1,
O2, O3 and O4, respectively.

Input data in the model represent the following operation durations, which
are dependent on vessel and port:

tLv : Time needed to load one turbine on vessel v ∈ V ,

tKkv: Time needed for vessel v ∈ V to transit between port k ∈ K and farm,

tiv: Time to perform operation Oi with vessel v ∈ V , i = 1, ..., 4.

The model considers each turbine to be completely installed by exactly one
vessel, which means the model does not have to consider each component ex-
plicitly. Vessels also represent a defined way of assembling components of one
complete turbine, e.g. assemble nacelle, hub and two blades together in one
piece. Time consumption for loading and installation is mainly dependent on
the number of lifts needed. The assembly of components is therefore reflected
through the input data identifying loading time (tLv ) and installation time (t2v).
All components are assumed available at potential ports, so the model does not
consider possible inventory delays. There are no restrictions on the number of
vessels loading at the same port simultaneously.

The transit durations (tKkv, t4v) are not dependent on turbine locations. This
is because the model considers transit time to a turbine from port k ∈ K,
and transit time from a turbine to its neighbouring turbine, to be equal for all
turbines for vessel v ∈ V . Simplifications on the transit times can be defended
with arguments that the distance from port to farm is significantly greater than
the distance across the farm, and that the turbines installed on one cycle is likely
to be neighbouring.

Vessel v ∈ V is limited to carry Yv turbines per cycle, and limited to perform
at most Uv cycles.

The entire OWF must be installed within a given time horizon. The model
considers continuous time. This means that the length of the time horizon is
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given as a parameter, which we denote P . The total number of turbines in the
OWF is denoted R.

3.2 Decision Variables

Because time is modelled continuously, all variables representing the time at
which operations take place are defined separately from the variables concern-
ing operation assignment. The dimensions of the variable vectors are therefore
smaller than what is likely to be the case in a discrete-time model.

The following assignment variables are binary:

δk =

{
1, if port k ∈ K is in use,

0, otherwise,

γv =

{
1, if vessel v ∈ V is used,

0, otherwise,

xkvu =


1, if vessel v ∈ V operates from port k ∈ K

on cycle u = 1, ..., Uv,

0, otherwise,

θvuy =


1, if vessel v ∈ V installs y = 1, ..., Yv or more turbines

on cycle u = 1, ..., Uv,

0, otherwise.

The variables θvuy and xkvu are represented in terms of special ordered sets
of type 2 (SOS2) [3]. This means that if vessel v ∈ V installs y′ ≤ Yv turbines
on cycle u′ = 1, ..., Uv, that is if θvu′y′ = 1, we have that θvu′y = 1 for all
y = 1, ..., y′, and for some k ∈ K, we have that xkvu = 1 for all u = 1, ..., u′.

Continuous variables are defined to keep track of time:

qvu ∈ R+: Time when vessel v ∈ V starts cycle u = 1, ..., Uv,

evu ∈ R+: Time when vessel v ∈ V ends cycle u = 0, ..., Uv,

sivuy ∈ R+: Time when vessel v ∈ V starts operation Oi at the yth turbine

on cycle u = 1, ..., Uv, y = 1, ..., Yv, i = 1, ..., 4,

Ev ∈ R+: Total time vessel v ∈ V is chartered.

Note that the variables evu are defined for u = 0, where ev0 represents the
charter start of vessel v ∈ V .

The variables s4vuy are defined as the time when vessel v ∈ V leaves turbine y
on the uth cycle, which may be a transit to a turbine (if y < Yv and θvu,y+1 = 1)
or to port (if y = Yv or θvu,y+1 = 0).
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3.3 Costs and Objective Function

The following costs relate to ports and vessels:

cKk : Cost incurred if port k ∈ K is used,

cTC
v : Time charter cost per time unit for vessel v ∈ V ,
cMv : Mobilization cost for starting chartering of vessel v ∈ V .

The goal of the model is to minimize the costs introduced above. Conse-
quently, the objective function is defined in the following way:

min
∑
k∈K

cKk δk +
∑
v∈V

(
cMv γv + cTC

v Ev

)
. (1)

The first sum in (1) measures total port operation costs, while the last sum
measures total costs of chartering and mobilizing vessels.

It can be argued that there are more costs related to OWF installation, e.g.
fuel and crew costs. However, the charter cost of a jack-up vessel may include
several operational costs depending on the contract [4]. The total jack-up vessel
charter cost can also be identified as the dominant cost related to jack-up vessels
for OWF O&M activities [5]. The terms in (1) are therefore assumed to be
sufficient in the context of optimization, where the aim is to support strategic
decisions.

3.4 Constraints

The following constraints ensure that all installation operations are assigned to
a vessel and a cycle. Further, they make the assignment variables introduced in
Section 3.2 consistent with each other:

∑
v∈V

Uv∑
u=1

Yv∑
y=1

θvuy = R, (2)

θvuy ≤ γv, v ∈ V, u = 1, ..., Uv, y = 1, ..., Yv, (3)

xkvu ≤ δk, k ∈ K, v ∈ V, u = 1, ..., Uv, (4)∑
k∈K

xkvu ≤ 1, v ∈ V, u = 1, ..., Uv, (5)

xkvu ≤ xkv,u−1, k ∈ K, v ∈ V, u = 2, ..., Uv, (6)

θvu1 ≤
∑
k∈K

xkvu, v ∈ V, u = 1, ..., Uv, (7)

θvuy ≤ θvu,y−1, v ∈ V, u = 1, ..., Uv, y = 2, ..., Yv, (8)

θvuy ≤ θv,u−1,1, v ∈ V, u = 2, ..., Uv, y = 1, ..., Yv. (9)

Constraint (2) ensures all turbines are installed by some vessel v ∈ V on
some cycle u.
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Constraints (3) make sure that vessels are assigned operations only if they are
mobilized, and constraints (4) ensure ports are open if a vessel cycle is initiated
there.

Ensuring that each vessel operates from at most one port, constraints (5)
and (6) state, respectively, that a vessel cycle can start from at most one port,
and that the succeeding cycle, if any, starts from the same port. Constraints (7)
say that if vessel v ∈ V installs at least one turbine on its uth cycle, then it also
leaves some port.

Consistently with the SOS2-representation of θvuy, constraints (8) say that
vessel v ∈ V installs at least y − 1 turbines if it installs y turbines or more on
a cycle. Likewise, constraints (9) state that if vessel v installs y turbines on its
uth cycle, it also installs at least one turbine on cycle u− 1.

The next constraints ensure correct time tracking:

ev,u−1 + tLv

Yv∑
y=1

θvuy ≤ qvu, v ∈ V, u = 1, ..., Uv, (10)

qvu +
∑
k∈K

tKkvxkvu ≤ s1vu1, v ∈ V, u = 1, ..., Uv, (11)

si−1vuy + ti−1v θvuy ≤ sivuy, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, i = 2, ..., 4, (12)

s4vu,y−1 + t4vθvuy ≤ s1vuy, v ∈ V, u = 1, ..., Uv, y = 2, ..., Yv, (13)

s4vuYv
+
∑
k∈K

tKkvxkvu ≤ evu, v ∈ V, u = 1, ..., Uv, (14)

evu ≤ P, v ∈ V, u = 0, ..., Uv, (15)

evu − ev0 ≤ Ev, v ∈ V, u = 1, ..., Uv. (16)

Recall that evu is defined for all v ∈ V and u = 0, ..., Uv, where ev0 represents
the charter start of vessel v.

Constraints (10) ensure that vessel v ∈ V finishes loading before leaving port
and starting its uth cycle, and constraints (11) make sure vessel v arrives at the
first turbine after the transit from port is complete.

Constraints (12) ensure that vessel v ∈ V performs operation Oi−1 before the
successive operation Oi at the yth turbine. To connect the time tracking between
turbines, constraints (13) make sure vessel v arrives at the yth turbine after the
transit from the preceding turbine is complete. All operations are repeated until
all loaded turbines are installed on a cycle.

Constraints (14) make sure vessel v ∈ V returns to port before ending its
uth cycle. Constraints (15) ensure all cycles end within the time horizon, and
constraints (16) ensure the continuous time variable Ev is no less than the total
charter length of vessel v.
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3.5 Weather Windows

The model deals with weather restrictions through time intervals, referred to as
weather windows, in which certain operations are feasible.

The model considers transit, jack-up, jack-down and installation to be weather
restricted, and these operations must be performed within some weather window.
The following input data are defined:

W i
v: Number of weather windows for operation Oi with vessel v ∈ V , i = 1, ..., 4,

aivn: Start of weather window n = 1, ...,W i
v for operation Oi with vessel v ∈ V ,

i = 1, ..., 4,

bivn: End of weather window n = 1, ...,W i
v for operation Oi with vessel v ∈ V ,

i = 1, ..., 4.

Note that the weather windows are only dependent on vessel and operation.
Recall from Section 3.1 that vessels also represent a way of assembling compo-
nents.

Binary decision variables are introduced to identify in which weather window
which operation is performed:

N i
vuyn =


1, if vessel v ∈ V performs operation Oi at the yth turbine

on cycle u in weather window n = 1, ...,W i
v, u = 1, ..., Uv,

y = 1, ..., Yv, i = 1, ..., 3,

0, otherwise,

N4
vuyn =


1, if vessel v ∈ V transits to the yth turbine on cycle u

in weather window n = 1, ...,W 4
v , u = 1, ..., Uv,

y = 1, .., Yv + 1,

0, otherwise.

Note that the binary variables N4
vuyn represent the weather windows in which

transit to the yth turbine for y = 1, ..., Yv + 1 is performed. Thus, the transit
to the first turbine to be installed on a cycle is a transit from port to farm.
Analogously, the transit to the (Yv + 1)th turbine represents a transit to port.

The binary decision variables above are dependent on the assignment vari-
ables introduced in Section 3.2:

W 4
v∑

n=1

N4
vuyn = θvuy, v ∈ V, u = 1, ..., Uv, y = 1, ..., Yv, (17)

W i
v∑

n=1

N i
vuyn = θvuy, v ∈ V, u = 1, ..., Uv, y = 1, ..., Yv, i = 1, ..., 3, (18)

W 4
v∑

n=1

N4
vu,Yv+1,n = θvu1, v ∈ V, u = 1, ..., Uv. (19)
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Constraints (17)-(19) make sure assigned operations must happen within
exactly one weather window. In particular, constraints (19) state that if vessel
v ∈ V installs at least one turbine on cycle u, then it transits back to port in
exactly one weather window.

Transits can be from port to farm, in between turbines or from farm to port,
and all transits are subject to the same weather restrictions:

W 4
v∑

n=1

N4
vu1na

4
vn ≤ qvu, v ∈ V, u = 1, ..., Uv,

(20)

qvu +
∑
k∈K

tKkvxkvu − P (1− θvu1) ≤
W 4

v∑
n=1

N4
vu1nb

4
vn, v ∈ V, u = 1, ..., Uv,

(21)

W 4
v∑

n=1

N4
vu,y+1,na

4
vn ≤ s4vuy, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, (22)

s4vu,y−1 + t4v − P (1− θvuy) ≤
W 4

v∑
n=1

N4
vuynb

4
vn, v ∈ V, u = 1, ..., Uv,

y = 2, ..., Yv, (23)

s4vuYv
+
∑
k∈K

tKkvxkvu − P (1− θvu1) ≤
W 4

v∑
n=1

N4
vu,Yv+1,nb

4
vn, v ∈ V, u = 1, ..., Uv.

(24)

Constraints (20)-(21) make sure all transits from port to farm are scheduled
within the chosen weather window, and constraints (22)-(23) have an analogous
function for transits between turbines.

Constraints (24), together with (22) for y = Yv, make sure all transits from
farm to port are scheduled within their chosen weather window. Note that con-
straints (22) for y = Yv and (24) restrict the transit back to port through the
time variable s4vuYv

, because s4vuYv
equals the time at which vessel v ∈ V starts

its transit back to port on its uth cycle. This is accomplished by constraints
(12)-(13).



IX

Constraints concerning operation Oi for i = 1, .., 3 are defined in a similar
way:

W i
v∑

n=1

N i
vuyna

i
vn ≤ sivuy, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, i = 1, ..., 3 (25)

sivuy + tiv − P (1− θvuy) ≤
W i

v∑
n=1

N i
vuynb

i
vn, v ∈ V, u = 1, ..., Uv,

y = 1, ..., Yv, i = 1, ..., 3 (26)

Constraints (25)-(26) ensure vessel v ∈ V executes operation Oi on cycle u
within the weather window chosen for the operation.

Note that some constraints, e.g. (26), are only constraining if an operation
is assigned to vessel v ∈ V , that is if θvuy = 1.

4 Numerical Experiments

Several test instances with the model introduced in Section 3 are presented
in this section. Instances are inspired by realistic data gathered from relevant
literature [1, 8], and the main purpose of these numerical experiments is to test
how large instances the model can handle.

The model is implemented in AMPL, and the solver used is CPLEX version
12.5.1. Default values [10] on all the parameters of the solver is used to solve the
MILP instances. All experiments where run on a computer with 2 Intel Core2
6600 Duo E6550 processors with a frequency of 2.33 GHz and 3.7 GB memory.

4.1 Test Instances

Cost data for charter rates are mainly inspired by [1], and vessel mobilization
cost is assumed to be 5 times the charter cost.

The physical reality behind some vessel v ∈ V , is that transportation and
installation operations are performed by two different barges. Involvement of
more than one barge in such a collaboration is however irrelevant to the model,
and consequently, we refer to their combined use as one vessel contained in V .

Henceforth, each vessel under consideration is of either of the following types:

1. The ”feed” strategy (FS)
2. The ”bunny transit” strategy (BTS)
3. The ”unmounted transit” strategy (UTS)

The ”feed” strategy (FS) represents two barges that need two towing tugs to
be mobilized. One barge only transports (feeds) components from port to farm,
and the other barge, located in the wind farm, only performs installations. The
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FS can carry up to 10 turbines in 5 parts on each cycle. The FS is vulnerable to
wave conditions [1].

The ”bunny transit” strategy (BTS) consists of one self-propelled installation
vessel performing all operations. The BTS can load up to 4 turbines in 3 parts
(in a ”bunny-ear” configuration [1, 8]) on each cycle. The BTS is sensitive to
installation lifts and transits due to wind forces acting on the partly assembled
rotor.

The ”unmounted transit” strategy (UTS) is identical to the BTS, except that
each turbine is loaded and installed in 5 parts. Therefore, the UTS can carry up
to 8 turbines on each cycle. Charter rate is assumed lower than the BTS since
each lift requires less crane capacity, and wind restrictions are less strict because
of the unmounted components.

Specifications of the three vessels are given in Tab. 1. Time is scaled to
working days, where one working day is 12 hours. Loading/installation duration
is dependent on the number of lifts, i.e., how components are assembled.

Three ports are defined with increasing distance to farm site and decreasing
costs in Tab. 2.

Table 1. Input data for the considered strategies.

Strategy FS BTS UTS

Charter rate [$/day] 144,000 200,000 180,000
Mobilization cost [$] 720,000 1,000,000 900,000
Time, load [day] 0.83 0.5 0.83
Time, setup [day] 0.125 0.083 0.083
Time, install [day] 1.00 0.67 1.00
Time, turbine transit [day] 0.011 0.004 0.004
Turbines per cycle [pcs] 10 4 8
Wind restriction, transit [m/s] 20 15 20
Wind restriction, jack-up/down [m/s] 20 15 20
Wind restriction, install [m/s] 10 8 12
Wave restriction, transit [m] 1.5 3.0 3.0
Wave restriction, jack-up/down [m] 1.5 2.0 2.0
Wave restriction, install [m] 5.0 5.0 5.0

Table 2. Input data for the considered ports.

Port Fixed cost cKk [$] Transit FS [day] Transit BTS [day] Transit UTS [day]

Port 1 1,000,000 2.67 1.08 1.08
Port 2 2,000,000 1.58 0.67 0.67
Port 3 3,000,000 0.42 0.25 0.25

The resolution of weather data is one working day, i.e. vessel v ∈ V either can
or cannot perform a given operation during one entire working day. A weather
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window for an operation is implemented as a closed time interval, in which wind
speed and significant wave height are below their respective maximum values (see
Tab. 1), during one or more working days. In all the current instances, historical
wind and wave data for an offshore site from the year 2000 are supplied by Metno
[9] from the NORA10 reanalysis with a 10 km horizontal resolution.

We assume that the weather restrictions that apply to jack-up operations are
identical to those applying to jack-down (see Tab. 1). Hence, W 1

v = W 3
v , and

also a1vn = a3vn and b1vn = b3vn.
We consider three hypothetical OWFs: 20 turbines to be installed in 1 month

(OWF 1), 40 turbines to be installed in 3 months (OWF 2), and 100 turbines to
be installed in 5 months (OWF 3).

In the first set of experiments, we let V consist of one vessel of each of the
types specified in Tab. 1-2 (|V | = 3). In the second set, V consists of two vessels
of each type (|V | = 6).

4.2 Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FS

Cycle 1

Turbine

1 2 3 4 5 6

BTS

Cycle 1 2 3 4 5

Turbine

1 1 2 3 1 2 12 34 1 23 4

Fig. 1. Gantt chart presenting optimal installation schedule (Sol. 1.1 in Tab. 3) from
OWF 1.

Results from the first set of experiments, with |V | = 3, are summarized in
Tab. 3.

For OWF 1, with 20 turbines and 1 month time horizon, the CPLEX solver
finds the optimal solution in 4 seconds with a total cost of $ 11, 106, 600 (see
Sol. 1.1 in Tab. 3). The optimal vessel choice is a combination of the BTS and
the FS operating from Port 3.
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The timing for turbine installations is presented in a Gantt chart (see Fig.
1). The top of the chart represents time, and the duration of each vessel charter
period is represented by the black lines. The white boxes with numbers repre-
sent cycle durations, and the black milestones, along with the numbers above,
represent the start of installation of turbines on a given cycle. Note that most
cycles are completed without fully loading the vessels, which is also the case in
larger instances.

In OWF 2, we consider 40 turbines and a 3 months time horizon. The CPLEX
solver has a harder time finding and/or proving an optimal solution, compared
to OWF 1. A feasible solution is obtained within seconds.

After running for 20, 000 seconds, an optimal solution is not proven. The
best feasible solution obtained is an upper bound to our minimization problem.
Because the CPLEX solver is a branch-and-bound algorithm, we also obtain a
lower bound to the problem. The difference between these two bounds compared
to the best feasible solution is referred to as the optimality gap: The maximum
potential improvement in the objective function value in the optimal solution.
The best upper bound may very well be the optimal solution even though an
optimality gap exists, because the potential reduction in costs may not be feasi-
ble.

An optimality gap of 12.4 % is obtained in OWF 2 with a combination of
the BTS and the UTS operating from Port 3, and the objective cost measures $
19, 639, 480 (see Sol. 2.1 in Tab. 3).

For OWF 3, with 100 turbines and 5 months time horizon, no optimal solu-
tion is proven within a time frame of 30, 000 seconds. After 30, 000 seconds, an
optimality gap of 30.5 % is realized, and the total costs measure $ 47, 858, 700
(see Sol. 3.1 in Tab. 3). In this solution, all strategies are mobilized operating
from Port 3. The FS is chartered longest and assigned most turbine installations.

Table 3. Results from OWF 1,2 and 3. The fourth column represents the total number
of turbines installed with vessel v ∈ V .

OWF Sol. Objective Turbines Port CPU time/Gap
FS BTS UTS

1 1.1 $ 11,106,600 6 14 0 3 4 s/0.0 %

2 2.1 $ 19,639,480 0 10 30 3 20,000 s/12.4 %

3 3.1 $ 47,858,700 38 36 26 3 30,000 s/30.5 %

Results from the second set of experiments, where |V | = 6, are summarized
in Tab. 4.

The optimal solution for OWF 1 is found after 76 seconds, and total costs are
reduced to $ 10, 958, 000 (see Sol. 1.2 in Tab. 4). The FS is no longer optimal,
and the BTS is duplicated, still operating from Port 3. All vessel operations in
the duplicated solution happen within the same weather windows.

If we shorten all weather windows for installation operations for the BTS by
one working day, the optimal solution is found after 103 seconds (see Sol. 1.3 in
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Tab. 4). The UTS is duplicated with a total project cost increase of 5.4 % from
Sol. 1.2. In this case, it proves optimal to operate from Port 1.

If we decrease the charter rate of the UTS to $ 160, 000 /day (−11 %) and the
mobilisation cost to $ 800, 000, the optimal solution is found after 13 seconds,
and the total costs are reduced by 5.2 % from Sol. 1.2 (see Sol. 1.4 in Tab. 4).
The UTS is duplicated with the same schedule as Sol. 1.3 operating from Port
1.

With the possibility of duplications of identical vessels in OWF 2, the opti-
mality gap reaches 7.2 % after 20, 000 seconds, and the total costs sum up to
$ 19, 204, 740 (see Sol. 2.2 in Tab. 4). Note that Sol. 2.2 has a lower objective
and a lower optimality gap compared to Sol. 2.1 (see Tab. 3), even though the
instance is larger.

Since the FS is not mobilized in OWF 2, we try to simplify the instance
by eliminating the FS entirely (we impose γFS = 0). In this case, optimality is
proven for OWF 2 after 6, 000 seconds, and the objective is reduced by 1.0 %
compared to Sol. 2.2 (see Sol. 2.3 in Tab. 4).

For OWF 3, a feasible solution is found after 2, 200 seconds. After 30, 000
seconds, this solution is improved by 4.5 % and has a cost of $ 51, 216, 768 with
an optimality gap of 34.4 % (see Sol. 3.2 in Tab. 4).

In OWF 3, no feasible solution is found after 30, 000 seconds for only the FS
(γBTS = γUTS = 0). By using only the BTS (γFS = γUTS = 0 is imposed), the
total costs measure $ 55, 045, 400 with an optimality gap of 39.0 % after 30, 000
seconds (see Sol. 3.3 in Tab. 4). For only the UTS (γFS = γBTS = 0), the total
costs drop below Sol. 3.1 (see Tab. 3) with an objective of $ 44, 673, 060, and an
optimality gap of 6.0 % after 30, 000 seconds (see Sol. 3.4 in Tab. 4).

Table 4. Results from OWF 1,2 and 3 with possibility of duplication. The fourth
column represents the total number of turbines installed with vessel v ∈ V .

OWF Sol. Objective Turbines Port CPU time/Gap
FS1 FS2 BTS1 BTS2 UTS1 UTS2

1
1.2 $ 10,958,000 0 0 10 10 0 0 3 76 s/0.0 %
1.3 $ 11,555,200 0 0 0 0 10 10 1 103 s/0.0 %
1.4 $ 10,382,400 0 0 0 0 10 10 1 13 s/0.0 %

2
2.2 $ 19,204,740 0 0 14 13 13 0 3 20,000 s/7.2 %
2.3 $ 19,019,520 - - 13 13 14 0 3 6,000 s/0.0 %

3
3.2 $ 51,216,768 25 29 5 11 29 0 3 30,000 s/34.4 %
3.3 $ 55,045,400 - - 45 55 - - 3 30,000 s/39.0 %
3.4 $ 44,673,060 - - - - 54 46 3 30,000 s/6.0 %

4.3 Discussion

Because the model is deterministic, uncertainty is not considered in each in-
stance. The trait of not dealing with uncertainty explicitly is demonstrated to
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be unfortunate through OWF 1 (see Sol. 1.2-1.4 in Tab. 4). With a small change
in uncertain input data concerning weather and costs, the solution output is al-
tered completely in terms of both port and vessel decisions. Conclusions drawn
to aid strategic decisions from a single instance are thus rather speculative, even
with optimality proven.

The seemingly nice benefit of being able to carry many wind turbines per trip
turns out to be of small significance, since most cycles are performed without
fully loading the vessels. This may be a consequence of the weather sensitive
installation lifts being the bottlenecks of the process, as concluded by [2].

The suggested port choice for most instances is Port 3 with highest fixed
costs and shortest travel distance to wind farm. The port decision changes from
Port 3 to Port 1 in OWF 1 for instances where the UTS is proven the optimal
strategy. This is probably due to longer weather windows for the UTS for instal-
lation operations, which makes longer transits and lower port handling costs a
preferable choice. Potential growth of port handling costs with OWF size is not
considered.

The UTS, with the benefit of long weather windows, seems to be a good
option for large farms in OWF 3 (see Sol. 3.4 in Tab. 4). However, OWF 3 also
show that including more vessel possibilities for the same wind farm does not
necessarily produce better solutions (compare Sol. 3.1 in Tab. 3 and Sol. 3.2 in
Tab. 4). Thus, our ability to draw conclusions from solutions obtained without
proving optimality might be limited, although in some cases (see Sol. 2.2-2.3 in
Tab. 4), the proven optimal solution (Sol. 2.3) has the same port and vessel fleet
as the solution obtained without proving optimality (Sol. 2.2).

5 Conclusions

The instances in Section 4 can be used to support arguments for which factors
are the most critical during the installation of OWFs, and which vessel and port
strategy is the preferable choice for a specific OWF. Several instances ought to
be implemented for the same OWF to somehow deal with uncertainty.

The framework of the problem in this model calls for drastic simplifications if
large instances are to be tackled with an exact solver in a reasonable time frame.
Further work can be done on developing heuristic methods to solve instances
of the current model, however, proving optimality might still be challenging.
Stochastic extensions will further complicate the model, so on a strategic and
aggregated level, several scenario analyses may be a better alternative to aid the
project decisions considered in this work.

Considering smaller fractions of a large wind farm can be a way of proving
optimality with the CPLEX solver. Whether the strategic choices are altered
when considering large wind farms in an aggregated versus fractionated manner,
depends on how the different input data scale for growing instances, especially
port handling costs.
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