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Abstract

Throughout the whole product development process, there is always a question on whether the proposed product is “up to its task”, and often it
is up to the engineer or designer to answer these questions. In many cases, this calls for experiments in form of prototype testing, to explore,
verify, and validate the product performance. This paper connects the overall approach of the development process, in form of point-based, set-
based, and agile strategies, and connects them to what seems to be the fundamental tradeoff in prototype experiments, exemplified by real cases

from an industrial-academic development project.
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1. Background and introduction

As product development methodologies come and go, some
aspects of product development remain invariant. Redesign,
rework or iterative work cycles in its simplest form exists in all
engineering activities [1], as changing measures of a machine
drawing due to interference of parts, choosing different color
of a part after seeing a rendered CAD model, or larger failures
as rebuilding a late-stage prototype due to a weak design.

Going back to the basics, engineering design is about
fulfilling a need. Some of these can be parametrized into
equations, and mathematically solved, resulting in a solution
that will work. An example could be deciding the needed cross
section for a cantilever beam to hold a certain load without
overshooting its yield strength. However, the transition from
needs to design for something as simple as a bar stool proves
difficult when considering all possible inflicting parameters as
fatigue life, material defects and user preferences and behavior.

When digging into the problem, designers and engineers
therefore introduce simplifications and assumptions to confine
the problem into a neater package of solvable bits and pieces of
problems and sub-problems. Based on these models, a qualified
(or unqualified) guess for a suitable solution is composed and
evaluated against its requirements through some form of

experiment. As these are in fact guesses, the resulting design
will sometimes fail, either due to lack of understanding of what
the product should do or withstand, or due to overly crude
simplifications and assumptions. The solution must therefore
subsequently be redesigned and tested again. The cost of such
rework often depends on the level of commitment introduced
after the initial work is done, and tend to be more expensive the
further you get into the process [2]. Or more accurately; the
sunk cost of the initial faulty work that must be discarded could
have been substantial, while rework is the means of correcting
those faults.

These, almost unavoidable, cycles are the background for
the term iterative design cycles, which are celebrated and
formalized in some cultures (as design thinking [3] and agile
development [4]) and doomed in others (as quality function
deployment [S] and fotal quality management [6]). The
difference is not whether they exist in different cultures, but
how they are perceived. Does the culture emphasize tuning
each design decision to perfection before committing to it, or
do they acknowledge that early design decisions will be flawed,
and therefore iterates with larger changes between each cycle?
Do the culture lean towards “do it right the first time” or “just
do it”?
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To increase confidence in solutions, engineers often utilize
different dimensioning tools as allowable stress design and
limit state design. In addition to this, engineers and designers
try to reduce the cost of rework through design strategy and
improved analysis/tests of design proposals. Elverum, Welo
and Tronvoll [7] have earlier proposed guidelines for choosing
prototyping methods for design and evaluation, based on
contextual factors. To be able to expand on these contextual
guidelines, this paper investigates and clarifies the trade-offs
associated with choosing approach for experimenting with
prototypes. Two examples from an academic/industrial
collaborative project are displayed, to show how the iterative
nature of product development, together with the strategy of the
product development task, affects the experiment trade-off.

2. The four strategies

Before going into how prototype experiments are
conducted, it is important to set their purpose in a strategic
context. In what overall development strategy are the
experiments utilized? There are in in principle four different
approaches to progress a design task. The choice depends on
the extent to which a proposed solution is refined/fixated, and
what backup plans are built into the product or the process:

1. Point-based design - Make sure that the chosen
solution would be suitable/work, and stick with it. Use
as much resources as needed to be able to proceed with
a design, only when you have achieved a very high
confidence in its performance. If the design appears to
be missing its target, redo the process (no backup plan),
similar to trying to implement the stage/phase-gate
approach as a development process rather than a
management tool [8].

2. Set-based solution array - Create an array (set) of
solutions/designs that potentially could perform at
certain level and hope that at least one would be
suitable. Screening/convergence is based on continuous
or stage-wise estimation of performance and gradual
elimination of weak alternatives (as opposed to
searching for the best alternatives) [9].

3. Performance set investigation - Instead of choosing
multiple solutions, choose the most promising one, and
investigate its performance thoroughly so that it’s
capability could be represented as a range of
performance rather than the traditional compliance with
requirements. Postpone committing to design decisions,
which will constrain the design, until they can be
validated. This will eventually lead to a gradual
convergence of the design [9,10]. The capabilities and
performance ranges are also named sets in some
literature.

4. Flexible design - Design a best-guess solution so that
eventual necessary design changes are easily
implementable. Fixate, but allow for change (for
example through extensive use of modularization).
Validate when possible and change direction if needed
[4]. This is the only strategy actually designed for

iterating, while the others try to mitigate uncertainty in
other ways.

The twofold use of ‘set’ is only to point out that they are
essential to set-based concurrent engineering, in which they are
combined [11]. As strategy 2 and 3 stems from studies of
Toyota, they are naturally described as components of Lean
Product Development [9,12]. There is currently a lack of
naming convention on the two aspects of set-based strategies,
so their naming in this paper does only reflect their function.

The term flexible could as well be replaced by agile, as used
in the software industry. However, the second and third
principle are also useful tools to achieve an agile development
process [13] for physical goods.

Although the strategies have been graphically presented in
various ways in earlier work (as set-based in Smith [13] and
agile-like in Steinert and Leifer [14]), the essential difference
between the strategies boils down to how the concepts evolve
in a design space/time diagram, as seen in figure 1.
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Figure 1: Design progress of the four different strategies. 1) Point based
design, 2) Set based solution array, 3) Performance set investigation, 4)
Flexible design.

Design teams rarely stick with one of the strategies
exclusively, as this would be mentally difficult and impractical.
Furthermore, the differences between the strategies are fuzzy
when it comes to real-world application as they are mostly
combined. What is certain is that designers and engineers tend
to intentionally or unintentionally change between the different
strategies. It would be rational to differentiate between systems
design and component design, where systems are often
designed and evaluated using strategy 3 and 4, while the
components are designed using strategies 1-3. This is due to the
number of variables/components in larger systems, which
introduces a lot of uncertainty in the start and would need the
flexibility of performance set investigation and flexible design
to handle this uncertainty. On the other hand, keeping a
sufficient set-based solution array for large systems is
cumbersome, and point based design would likely fail due to
the uncertainty. Contrary, functions of sub-components are
easier to identify, easier to create solution sets of, cheaper to
replace, and less cumbersome to fully redesign if they fail.
Other researchers have also identified that as the development
process is getting closer to finish, the process often tends to
approach point-based [13].
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3. Iteration through prototype experiments

Iterative development cycles have been a widespread
concept for a long time (see Figure 2), probably first formally
introduced by Simon [15] as the generate-test cycle for
explaining how artificial intelligence might contribute to
engineering and design. This has later been expanded to the
design-build-test cycle from [16] to fit for the problem solving
cycles in the Japanese automotive industry, or the design-build-
run-analyze cycle from Thomke [17] stressing the analyze part
as an essential activity to learn from the cycle.

The basic of iterative development is however the fact that
design tasks consist of cycles with divergent and convergent
activities, where one propose, create and test solutions, and
subsequently re-create, re-design and re-test if the initial results
are not satisfying.

Experimentation, borrowing Smith’s description [13] can be
described as “you provoke a situation and see how it responds”.
The reason for explicitly using the term prototype experiments
rather than prototypes as an isolated artefact, is that a prototype
is made for evaluation through some form of experiment. A
prototype experiment often targets generating knowledge about
different attributes of a proposed design which is not identified
by simple reflection. This could be screening of solutions,
milestone tests, fulfilment of requirements, proof of
concept/manufacturing, integration etc.

In contrast to many researchers which are using the term
prototype as a tangible artefact, as opposed to virtual
prototypes, we choose in this paper to keep the term as open as
possible. Ulrich and Eppinger’s definition of prototypes as ...
an approximation of the product along one or more
dimensions.” [18] would to a large extent cover most product
development experiments.

Clark et al. [16] identified that different prototype
experiments were used in the Japanese automotive industry,
during so called “problem solving cycles”, in classical set-
based engineering; “Inside the problem solving cycles,
alternative solutions are created or retrieved, and their
consequences are simulated through physical, mental, or
computer experiments”. It must be noted that the term
computer experiment should be rephrased to analytic
calculations, as this is what they are, only as a system of many
calculations done at the same time. In this paper we disregard
investigating mental experiments, although probably the least
cost intensive, as this is a matter of brain power and not
strategic experimentation.

The choice of arms would depend on the problem, the
wanted form of the output and the capability of the
development team, but the main goal must be finding the
consequence of a solution through the most favorable type of
experiment.

An important fact about prototype experiments is that in
addition to including an incomplete model of the product (the
prototype), the test also most often includes an incomplete
model of its environment [19], and unanticipated behavior
often tend to happen when either of the models are replaced by
a more comprehensive one [17,18]. The test environment, in
contrast to the prototype, can in theory span over an infinite
range of scenarios, as it is difficult for a product developer to
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know in advance how the product will be used. In addition to
the variety of the scenarios and load cases, the uncertainty of
their duration and occurrence throughout their life span makes
all prototype testing incomplete. This is especially significant
for consumer durables, as they in contrast to capital goods, are
rarely designed for each individual buyer/user and also suffer
from less contact with producer/designer, both before, under
and after purchase.

Generalized, the test environment attributes are possible to
fit within one or more of the categories of human interaction,
physical environment, and product structure. Often, many
experiments must be performed to target the span of anticipated
scenarios and types of environment the product is supposed to
be subjected to. Drawing the analogy to the iterative design-
build-test cycle, this would be extended with a parallel loop
with iterations around the test environment [20] (see figure 2),
to illustrate how the environment is iteratively changed to test
a prototype for different cases.

1

Design product

1 Create test
Build Prototype  environment

Test

!

Analyze

Figure 2: The iterative prototype experiment cycle

Some test setups are created for being able to test multiple
prototypes, which allows for experimenting with different
solutions which has been shown to be useful for set-based
techniques [10].

4. Dimensions of experimental tests in product
development

Assessing the important attributes of an experimental test,
we could say that the most important result is the increase in
the industrial performance parameters, or the general (not
project specific) usefulness of the experiment. An experiment
should therefore aim for either of these improvements:

Reduce development cost
Shorten development time
Increase total product quality
Create reusable physical assets
Create reusable knowledge

Point 1-3 are the general product development performance
parameters introduced by Clark and Fujimoto [21], which
target the single project performance, while parameter 4 and 5
target the project-to-project asset transfer emphasized in
knowledge based engineering [22], and front loading tactics
[23]. All these factors are also emphasized in Lean Product
Development [12], focusing on project performance,
knowledge, and asset generation, especially for the use in
continuous improvement (Kaizen).
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However, these are the measures of an outcome, and not the
dimensions of the experiment itself, and are difficult to assess
on forehand. The dimensions of an experiment should capture
how the experiment recreates its real physical counterpart. To
what cost, in what way and to what extent does an experiment,
present the behavior and performance of the real product in a
real environment. The factors of influencing this are:

. Iteration cost (What is the cost of the experiment)

. Iteration time (What is the time used on an experiment)

. Approximation level (How correct is the result)

. User level (How easy is it to use)

. Result presentation implicit/explicit (How easy it is to
draw conclusions from the data)

6. Experiment flexibility (How easy it is to change

conditions)

wm AW N =

Dimension 1-3 are quite directly linked to general process
performance, while 4-5 are parameters less focused on through
research. However, dimension 4-6 might hold the key to why
designers, engineers, and managers choose the approach they
do.

4.1. Iteration cost

As one of the attributes directly linked to general product
development performance, this is a natural component of the
experimentation trade-off. However, it must be noted that the
overall process performance and the experiment iteration cost
is not necessarily directly correlating. If taking into account
that approximately 80% of the life cycle costs of a product are
committed to after spending 20% of the product development
cost [2], there are reasons to believe that somewhat costly
experiments in the early phase, that could be giving high
learning value could often be beneficial.

Some forms of experimentation, as simulations, can often be
iterated again and again, with negligible marginal cost, while
destructive testing of physical prototypes often have the same
marginal as initial cost.

4.2. Iteration time

As with iteration cost, this is a quite obvious part of any
performance measure. And as identified by Thomke et. al.[23],
using time and resources on extensive testing and knowledge
creating in the start of a project (termed front-loading), could
result in time savings for the overall project performance.

Reproducing all loads and durations acting on a consumer
durable throughout it’s safe-life is rarely done in product
development, as their safe--life do often extend the product
development phase by orders of magnitude. One does therefore
often create a more compact load scheme (or scenario), or test
multiple similar prototypes on different cases in parallel.
Especially in software industry, where users are often granted
permission to use not-yet-launched products (as a part of the
later stages of the development; beta testing), and in return get
user statistics, error messages, and bugs which the software
exhibits. As an example, Windows 7 had 8 million individual,
non-paid, testers [24]. That did not only free up time for the

development team, but made a much more extensive test than
any in-house testing facilities could have done.

4.3. Level of approximation

This is one the main counterarguments against computer
simulations. Engineers, and maybe especially managers will
often prefer tangible experiments for tangible artefacts as
exemplified by lansiti and MacCormack [25]. The world is
transient, non-linear, non-conservative, —multi-physical,
stochastic, and continuous in extent. Reducing this to a, very
often, single physics, steady state simulation, is an extreme
simplification, and often requires very high knowledge about
the situation and limitations of the simulation procedure. If
these qualifications are not present, this would often lead to
crude results (crap-in, crap out).

Lean management relies heavily on observing the real
problems in order to understand and solve them. This has been
named San-Gen Shugi (the three reals): Gemba, Gembutsu and
Genjitsu, which translates to the real place, real item and real
situation/data [26]. In case of production, this is possible, as
these are physical entities, while for product development it can
be a bit more difficult due to the fact that all the “real physicals”
only exist in the future, after product deployment.

Some have given “dimensions” to the approximation on
whether the prototype is either rich/low on functions/attributes
and how accurate the representation of these functions are. This
has been named by some as fidelity vs. resolution [27] or
horizontal vs. vertical prototyping [28,29]. Ulrich and Eppinger
[18] has a different way of describing prototypes, as whether
they are focused/comprehensive (the amount of functions
implemented), and analytical/physical, giving a dimension on
whether they are to be tested in the real world, or by analytic
calculations/estimations.

4.4. User level

What knowledge and capabilities is needed to conduct the
experiment is important when choosing mode of
experimentation. This would often be one of the main
indicators for whether the experiment can be conducted in-
house or must be outsourced to other companies. This is where
physical experiments have one of its great advantages. As
physical prototyping methods and physical testing most often
consists of familiar and tangible processes, it will be a higher
possibility that the whole product development team
understands the construction of the prototype, the design of the
experiment and the implications of the results.

Choosing a toolset common for the whole design team (or
the team is able to learn within reasonable time) for
experimentation, could be beneficial as it not only allows the
team to ask questions about the product performance, but also
enables them to answer them.

4.5. Results presentation
Although performance measures, qualitative analysis and

visual appearance can be described in words and numbers, a
thorough analysis and understanding of the results often require
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a more graphical appearance, in form of graphs, plots, videos
and statements. Often, to get a feel for how the prototype
performs, the result is then frequently showcased against some
baseline performance (market leaders, nominal values,
legislative values etc.), which often calls for experimenting
with in market products also.

4.6. Experiment flexibility

This parameter targets the possibility of changing the
experiment, either in terms of the product or the test
environment. Fully functional prototypes facilitate testing a
large part of their life-cycle scenarios, while a focused
prototype might only fit for a very specific case.

5. Examples from an academic-industrial collaborative
project

As a part of improving and developing products for property
level flood protection, two parallel development tasks were
performed, where one was mainly targeting improving water
tightness of temporary flood barriers which could be
implemented into the already existing product and new
products, and the other case targeted developing all-new type
of flood protection barriers.

6. Improving water tightness

This was a project initiated to improve the water tightness
of self-stabilizing bookstand flood barriers, as shown in
Bjerkholt and Lindholm [30]. The first round of experiments
was done as a screening of sealing solutions against each other,
in a set-based solution array driven development phase.

Figure 3 - First experiment setup of investigating sealing performance

The first experimental setup was designed to be able to
replicate a general flood barrier, and the team used a plywood
tank and half scale flood barrier. The ground was replicated
using pebbles glued on with bed-liner, and the replica of the
modules was constructed to accommodate a wide range of
sealing solutions. There was no measuring of the leakage, but
rather a visual estimation of much/less/no leakage, which was
found to be sufficient for the experiment.

The team found two distinct sealing solutions which they
favored, but in addition, gained a lot of knowledge about the
coupling between leakage and structural stability.

The second experiment was based on the results from the
first one, using one of the sealing solutions (a foam gasket), and
explored the influence of water pressure vs. gasket pressure, in
addition to being able to test different widths of the gasket. The
new setup isolated the key sealing mechanism, to be able to
draw quantifiable data, and neglected the overall failure effects
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observed when testing with a more realistic setup. The setup
consisted of a bucket with a texture plate encircling a draining
hole in the bottom, and on top of this a plate with a glued on
circular gasket as seen in figure 8. The setup also incorporated
automatic water leveling and input water measuring to be able
to log performance data.

Solenoid Flow i |

valve  meter|

Float switch Measuring tape

/ Flood bucket

Water~__|

/

Added weight —_|

Plate with gasket—_|

uteig

Surface replication

Figure 4: Second experiment setup [31], giving a more rigorous testing of
performance parameters of a more constrained type of sealing solution.

The latter experiment reduced the flexibility of the setup,
and would only accommodate seals of “gasket like”
functionality. But in return allowed for exploring the effect of
gasket pressure and water pressure on the leakage rate, [31].
This makes the latter experiment more of an investigation of
the performance set of the chosen solution, rather than the set-
based solution array nature of the first experiment.

So in terms of tradeoffs committed, somewhat higher
iteration time and iteration cost of the setup (due to the data
logging system), heightened user level, reduced flexibility, in
trade of more explicit data. The approximation in the setup is
decreased in terms of data extraction, but it neglects the
potential instability issues found using the first setup, making
it less accurate in terms of overall accuracy.

6.1. All new concept

This was a project initialized to develop a flood barrier for
the consumer market (rather than business to business which is
the company’s main market segment). The proposed product
consisted of tripods holding a canvas (as seen in figure 5).

Figure 5: First prototypes, and tests, of canvas-tripod solution.

The first round of experiments was a classical proof-of-
concept prototype. As there were uncertainties about the
structural integrity of the concept, the overall purpose was to
investigate whether it would work or not. The product was built
in half scale, and tested in a steel tank. Due to the number of
uncertainties, as a potential need of a rod for holding the canvas
between the modules, length of canvas, tripod feet spread,
flexibility of tripod, flexibility in all these factors were
designed into the product. This was achieved using a high
degree of modularity, allowed for features to be altered,
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removed and introduced in multiple iterations (although
keeping most of the concept fixed) throughout the experiment.

CanvLength = 1100 mm Depth = 400 mm
0.1 Force =562 N/m Angle = 113.23 deg

Width =400 mm Touchdown point = -386 mm
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Figure 6: Second round of experimentation — Computer simulation of
geometry and loading of canvas.

After getting some peculiar failure modes in the physical
testing, the team wanted to know more about the loads and
geometry of canvas subjected to a hydraulic pressure.
Especially what canvas lengths would be safe, or alternatively
introduce unstable behavior.

Although a simplified 2D form of the problem is governed
by a very simple equation (cylindrical hoop stress equation) it
results in a non-linear partial differential equation. Due to the
apparent complexity in the problem, this could not be solved
easily in normal structural simulation software, and was
therefore hard coded in MATLAB. The results gave a clear
overview of the limit between unstable and safe behavior of the
barrier. As this experiment was limited to a single solution, for
exploring its capabilities thoroughly, this leans toward a
performance-set investigation type of experiment.

The tradeoff committed was increased user level, decreased
flexibility, increased approximation, in trade of a more
extensive results presentation, including canvas tension in
addition to instability, less iteration cost and time.

7. Concluding remarks

Throughout a development project, designers and engineers
shift their strategy to be able to answer the questions at hand.
A lot of potential might lie in choosing the most appropriate
method of experimentation within that strategy, which in turn
calls for investigating their advantages, pitfalls, limitations and
implications. The trade-oft given when confining a real world
problem into a prototype experiment, is characterized by six
attributes; iteration time, iteration cost, approximation level
user level, result presentation and experiment flexibility. These
factors do not say much about the success of the overall product
development, but they do give some key points for how the
experiment can transform design parameters into valid data to
support decision-making.
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