
Classifying Subcategories in Quotients of
Exact Categories
Classifying Triangulated and Thick

Triangulated Subcategories of an Algebraic

Triangulated Category

Emilie B Arentz-Hansen

Master of Science in Mathematical Sciences

Supervisor: Petter Andreas Bergh, IMF

Department of Mathematical Sciences

Submission date: December 2017

Norwegian University of Science and Technology



 



Abstract

The goal of this thesis is to prove a one-to-one correspondence between (thick) triangulated sub-
categories of the stable category associated with a Frobenius category and certain subcategories
of the Frobenius category. The result is also generalized in the setting of an exact category and a
quotient category. This thesis starts with an introduction to exact categories, quotient categories,
Frobenius categories and the stable category of a Frobenius category. After this, the main results
are explained and proved. Finally, a few applications are given.

Sammendrag

Målet med denne masteroppgaven er å konstruere en en-til-en korrespondanse mellom (tykke)
triangulerte underkategorier av den stabile kategorien tilhørende en Frobenius-kategori og visse
underkategorier av Frobenius-kategorien. Resultatet er videre generalisert slik at det holder for en
eksakt kategori og en kvotientkategori. Oppgaven begynner med en introduksjon av eksakte kate-
gorier, kvotekategorier, Frobenius-kategorier og den stabile kategorien av en Frobenius-kategori.
Deretter blir hovedresultatene forklart og bevist. Avslutningsvis gis det noen anvendelser.
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Notation

In this thesis we normally denote general categories by C , (pre)additive and abelian categories
by A , exact categories by (E ,S), Frobenius categories by (F ,S) and triangulated categories by
(T , T,∆), where T is the autoequivalence and ∆ is the collection of distinguished triangles. We
assume the reader to be familiar with additive, abelian and triangulated categories. However, a
short introduction of the latter is given in Appendix B. We do not assume any prior knowledge
about exact or Frobenius categories.
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Preface

This thesis was written in 2017 under the supervision of Professor Petter Bergh at the Norwegian
University of Science and Technology. It treats exact categories, quotient categories, Frobenius
categories and the stable category of a Frobenius category. The reader needs no prior knowledge
about these subjects to understand this thesis. However, it is assumed that the reader is familiar
with additive, abelian and triangulated categories. Nevertheless, a short introduction of the latter
is given in Appendix B. This includes the definition and some results, but no proofs.

The stable category of a Frobenius category is triangulated, and several authors have studied
the (thick) triangulated subcategories of such a category. In [7] Takahashi considers the category
of maximal Cohen-Macaulay modules over a Gorenstein ring R, which is Frobenius, and the
associated stable category. He classifies the thick triangulated subcategories of the stable category.
The motivation of this thesis was to prove a similar classification theorem for arbitrary Frobenius
categories. This has been accomplished, and generalized further in the case of an exact category.

Chapter 1 introduces exact categories and quotient categories. Section 1.1 defines exact cate-
gories and gives some results. Our definition of an exact category is equivalent with the one given
by Quillen in [9], and the prof of this is given. Section 1.2 treats quotient categories, especially
what we mean with A /N for a preadditive category A and a subcategory N . A Frobenius
category is an exact category satisfying some extra assumptions, and the stable category of a
Frobenius category is a quotient category. The purpose of this chapter is therefore to prepare for
Chapter 2 on Frobenius categories, and Chapter 3 containing the main results of this thesis.

Chapter 2 introduces Frobenius categories and their stable categories. The definitions are given
in section 2.1, while section 2.2 is concerned with the triangulated structure of the stable category.
Section 2.3 explains how the short exact sequences in a Frobenius category are closely related to
the distinguished triangles in the stable category.

Chapter 3 contains the main results of this thesis. Section 3.1 treats the most general case in
the setting of an exact category. First, the definitions of complete and thick subcategories of an
exact category E and of a quotient category E /N are given. Then we provide the necessary
assumptions to construct a one-to-one correspondence between complete/thick subcategories of
E and complete/thick subcategories of E /N . In section 3.2 we treat the special case when the
exact category is Frobenius and the quotient category is the associated stable category. This results
in a one-to-one correspondence between complete/thick subcategories of the Frobenius category
and triangulated/thick triangulated subcategories of the stable category.

Chapter 4 gives some examples of Frobenius categories and applies the main results from
Chapter 3 to these. Section 4.1 defines Gorenstein projective objects in an abelian category A and
proves that the full subcategory consisting of these objects, Gproj A , is Frobenius. Section 4.2
treats the special case where the abelian category is modR, the category of finitely generated
modules over a commutative ring R. In this case the Gorenstein projective objects are precisely
the totally reflexive R-modules. Furthermore, we consider the case where the ring R is a Goren-
stein local ring. In this case the Gorenstein projective objects are the maximal Cohen-Macaulay
modules over R. As mentioned, the classification of the thick triangulated subcategories of the
stable category associated with this category is already given by Takahashi in [7]. While working
on this thesis I visited Professor Ryo Takahashi at the University of Nagoya, Japan. Chapter 4 is
a result of the work done under his guidance.
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1. Exact categories and quotient
categories

1.1. Exact categories

The content of this section is taken from [9], [5] and [2]. We normally denote an additive category
by A and an exact category by E . However, we will use the notation E leading up to the definition
of an exact category.

Definition 1.1. Let E be an additive category and A
f−→ B

g−→ C a sequence in E . We call
(f, g) a kernel-cokernel pair if f is a kernel of g and g is a cokernel of f . Let S be a family of
kernel-cokernel pairs in E . If (f, g) ∈ S, then we call f an admissible monomorphism and g
an admissible epimorphism.

We use the notations A B
f

and B C
g

to specify that f is an admissible monomorphism
and g is an admissible epimorphism, respectively.

Definition 1.2. Let E be an additive category and S a family of kernel-cokernel pairs in E .
Assume that S is closed under isomorphisms and satisfies the following:

Ex0 For all A ∈ E the identity morphism 1A is an admissible monomorphism.

Ex0op For all A ∈ E the identity morphism 1A is an admissible epimorphism.

Ex1 The class of admissible monomorphisms is closed under composition.

Ex1op The class of admissible epimorphisms is closed under composition.

Ex2 Admissible monomorphisms are stable under pushout along arbitrary morphisms:

A B

A′ B′

f

h PO h′

f ′

Ex2op Admissible epimorphisms are stable under pullback along arbitrary morphisms:

B′ C ′

B C

g′

h′ PB h

g

In this case S is an exact structure on E and (E ,S) is an exact category. The elements of S are
called short exact sequences.
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1. Exact categories and quotient categories

Remark 1.3. (1) We will soon see that the axioms can be weakened and that they are equivalent
to the classical definition given by Quillen in [9].

(2) By the duality of the axioms, S is an exact structure on E if and only if Sop is an exact
structure on E op.

(3) Isomorphisms are both admissible monomorphisms and admissible epimorphisms. As the
diagram below illustrates, this follows from the fact that S is closed under isomorphisms and
axiom Ex0 and Ex0op, respectively.

A B 0

A A 0

f

∼=
1A∼= f−1∼= ∼=

1A

(4) Assume that we have A B C
f g ∈ S and h : A→ D. Then by axiom Ex2 there exists

a pushout given by the left square of the following diagram

A B C

D P C

f

h PO

g

h′

f ′ g′

By Lemma A.1 there exists a morphism g′ : P → C such that the diagram commutes and
(f ′, g′) ∈ S. Dually, given i : D → C, then we have a pullback

A P D

A B C

f ′ g′

i′ PB i

f g

and a morphism f ′ : A→ P such that (f ′, g′) ∈ S.
(5) An admissible epimorphism is always an epimorphism since it is a cokernel. Indeed, let

A B C
f g ∈ S and assume that ag = bg for morphisms a, b : C → D. Then agf = 0, so

the cokernel property gives a unique morphism c : C → D such that cg = ag. However, both a
and b satisfies this, hence a = b and g is an epimorphism.

A B C

D

f g

ag

Dually, an admissible monomorphism is always a monomorphism since it is a kernel.

Example 1.4. Let A be an abelian category and define

S :=
{
X

f−→ Y
g−→ Z

∣∣∣ 0→ X
f−→ Y

g−→ Z → 0 exact
}
.

Then S is an exact structure on A and we call it the standard exact structure on A . Another
exact structure on A is given by

S ′ :=

X
[
1
0

]
−−−→ X ⊕ Y

[
0 1
]

−−−−→ Y

∣∣∣∣∣∣∣ X,Y ∈ A

 .
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1.1. Exact categories

Let axiom Ex0’ be that 10 is an admissible epimorphism, where 0 denotes the zero object. In [5,
Appendix A] Keller defines S to be an exact structure on E if it S is closed under isomorphisms
and satisfies our axioms Ex0’, Ex1op, Ex2 and Ex2op. In our terminology, Quillen defines in [9]
that (E ,S) is an exact category if S is a family of kernel-cokernel pairs in E which is closed
under isomorphisms and satisfies the following:

a) For all A,B in E , A A⊕B B

[
1
0

] [
0 1
]

is short exact.

b) The axioms Ex1, Ex1op, Ex2 and Ex2op hold.

c) If g : B → C has a kernel in E and if there exists a morphism h : D → B such that
gh : D C is an admissible epimorphism, then g is an admissible epimorphism.

c)op If f : A → B has a cokernel in E and if there exists a morphism i : B → E such that
if : A E is an admissible monomorphism, then f is an admissible monomorphism.

Proposition 1.5. Our definition of an exact category as given in Definition 1.2, Keller’s definition
and Quillen’s definition are all equivalent.

Before we prove the theorem we need the following lemma.

Lemma 1.6. Assume that S is a family of kernel-cokernel pairs that satisfies Ex2 and Ex2op and
which is closed under isomorphisms. Then in the setting of Ex2 and respectively Ex2op, i.e.

A B

A′ B′

f

h PO h′

f ′

resp.
B′ C ′

B C

g′

h′ PB h

g

the sequence A B ⊕A′ B′,

[
−f
h

] [
h′ f ′

]
respectively B′ C ′ ⊕B C

[
−g′
h′

] [
h g
]

is in S.
Moreover, Lemma A.3 gives that the squares are both pushouts and pullbacks.

Proof. We prove it in the case of Ex2op. Let (f, g) ∈ S. From the dual part of Remark 1.3 (4) we
have a commutative diagram

A B′ C ′

A B C

f ′ g′

h′ PB h

f g

with (f ′, g′) ∈ S. Using Remark 1.3 (4) again, we get the following commutative diagram, to the
left, with rows and columns in S.

A B C

B′ E C

C ′ C ′

f

f ′ PO

g

j′

j

g′

e

e′

A B

B′ E C

C ′ C ′ ⊕B

f

f ′ PO
g

j′

[
0
1B

]
j

g′

[
−g′
h′

]

e

e′
α

3



1. Exact categories and quotient categories

Since
[
−g′
h′

]
f ′ =

[
0

1B

]
f , the pushout property gives a morphism α : E → C ′ ⊕B with

αj′ =

[
0

1B

]
, αj =

[
−g′
h′

]
.

Moreover, since (j′h′−j)f ′ = 0 and g′ is the cokernel of f ′, there exists a morphism γ : C ′ → E
such that

γg′ = j′h′ − j.
Furthermore, α is an isomorphism with inverse β =

[
γ j′

]
. To see this, first note that we have

αγg′ =
[
1C 0

]t
g′. Since g′ is an epimorphism by Remark 1.3 (5), this gives that αγ =

[
1C
0

]
.

Thus αβ =
[
αγ αj′

]
= 1C′⊕B . To get the second part, note that

βαj′ =
[
γ j′

] [ 0
1B

]
= j′ = 1E ◦ j′,

βαj =
[
γ j′

] [−g′
h′

]
= j = 1E ◦ j.

The pushout property then gives that βα = 1E .
Moreover, eγ = h since eγg′ = hg′ and g′ is an epimorphism. Hence we therefore have that

eα−1 =
[
eγ ej′

]
=
[
h g

]
. Because S is closed under isomorphisms and (j, e) ∈ S , we get

(αj, eα−1) ∈ S, which equals

B′ C ′ ⊕B C.

−g′
h′

 [
h g

]

Proof of Proposition 1.5. Quillen’s definition gives our definition: axiom a) gives axiom Ex0 and
Ex0op by letting B and A be the zero object, respectively. Our definition clearly gives Keller’s
definition. So the only thing remaining to prove is that Keller’s definition gives Quillen’s defini-
tion. We follow the proof given by Keller in [5, Appendix A].

1st step: axiom a) holds. First note that 1A is an admissible epimorphism by axiom Ex0’ and
Ex2op because of the pullback

A A

0 0

1A

PB

10

The fact that axiom a) holds follows now from Lemma 1.6 since

A A

B B

−1A

0 0

1B

is a pullback, giving that A A⊕B B

[
1
0

] [
0 1
]

is short exact.

2nd step: axiom c) and c)op hold. Let D h−→ B
g−→ C be as in c) and let f be the kernel of g.

By Lemma 1.6
[
g gh

]
: B ⊕D → C is an admissible epimorphism and so is[

g 0
]

=
[
g gh

] [1B −h
0 1D

]

4



1.1. Exact categories

since S is closed under isomorphisms. The kernel of
[
g 0

]
is f ⊕ 1D, so f ⊕ 1D is therefore an

admissible monomorphism. Thus, because of the pushout

A⊕D B ⊕D

A B

f⊕1

[
1 0

]
PO

[
1 0

]
f

we can conclude that f is also an admissible monomorphism. Since
[
g 0

]
is the cokernel of

f ⊕ 1D, g is a cokernel of f . Hence (f, g) ∈ S. The proof of c)op is done dually.

3rd step: axiom b) holds. Proving Ex1 is the only thing remaining. Let A B C
f g

be short

exact and let B B′h be an admissible monomorphism. From Ex2 we get the following pushout

B B′

C C ′

h

g g′

k

(1.1)

By Lemma 1.6 this is also a pullback and
[
g′ k

]
is an admissible epimorphism. The following

diagram is a pullback

B′ ⊕B B′ ⊕ C

B C

1⊕g

[
0 1

]
PB

[
0 1

]
g

Hence by axiom Ex2op, 1B′ ⊕ g is an admissible epimorphism as well. So by Ex1op

[
g′ k

] [1B′ 0
0 g

]
=
[
g′ kg

]
is also an admissible epimorphism. Since

[
g′ kg

]
= g′

[
1B′ h

]
, the second step gives that g′

is an admissible epimorphism if it has a kernel. Moreover, hf is the kernel of g′, following from
the fact that f is the kernel of g and the pullback property of (1.1). Hence (hf, g′) ∈ S , so hf is
an admissible monomorphism.

Corollary 1.7. Let A B
f

be an admissible monomorphism and A C
g

be an admissible
epimorphism and consider the pushout

A B

C D

f

g PO g′

f ′

Then g′ is an admissible epimorphism. Moreover, if g is an isomorphism, so is g′.

Proof. The fact that g′ is admissible epimorphism follows directly from the 3rd step in the proof
of Proposition 1.5. To get the moreover part, assume that g is an isomorphism with inverse
h : C → A. Note that fhg = f ◦ 1A = 1B ◦ f , so the pushout property gives a unique morphism
h′ : D → B such that h′f ′ = fh and h′g′ = 1B . We get g′h′g′ = g′ ◦ 1B = 1D ◦ g′, which
implies that g′h′ = 1D since g′ is an (admissible) epimorphism. Hence h′ is the inverse of g′.

5



1. Exact categories and quotient categories

Proposition 1.8. Let

K :

A B

A′ B′

i

f f ′

i′

be commutative with i and i′ admissible monomorphisms. Then the following are equivalent:

(i) The square K is a pushout.

(ii) The sequence A B ⊕A′ B′

[
−i
f

] [
f ′ i′

]
is short exact.

(iii) The square K is both a pushout and a pullback.

(iv) The square K is part of a commutative diagram of the form

A B C

A′ B′ C

i

f f ′

p

i′ p′

with short exact rows.

Proof. (i)⇒ (ii) follows from Lemma 1.6, (ii)⇒ (iii) follows from Lemma A.3 and (iii)⇒ (i) is
obvious.

(i)⇒ (iv) follows from Lemma A.1: Since i is an admissible monomorphism it is the kernel
of a morphism p : B → C with (i, p) ∈ S. Hence by the lemma, there exists p′ : B′ → C
such that the diagram commutes and with p′ the cokernel of i′. Moreover, i′ is an admissible
monomorphism by assumption, hence (i′, p′) ∈ S.

(iv) ⇒ (ii) Since p, p′ are admissible epimorphisms there exists a pullback as in the diagram
below.

A A

A′ P B

A′ B′ C

j i

j′

q

q′

PB p

i′ p′

From the dual of the implication (i) ⇒ (iv), we get the rest of the commutative diagram above

with short exact rows and columns. Our goal is to prove that A P B′
j q ∈ S is isomorphic

to the sequence

A

[
−i
f

]
−−−−→ B ⊕A′

[
f ′ i′

]
−−−−−→ B′.

Since p = p′f ′ : B → C, the pullback property gives a unique morphism k : B → P such that

q′k = 1B and qk = f ′.

Now q′(1P − kq′) = 0, so since j′ is the kernel of q′, there exists a unique l : P → A′ with

j′l = 1P − kq′.

6



1.1. Exact categories

By Remark 1.3 (5) j′ is a monomorphism, hence

j′lk = (1P − kq′)k = 0 =⇒ lk = 0,

j′lj′ = (1P − kq′)j′ = j′ =⇒ lj′ = 1A′ .

Similarly, since i′ is a monomorphism, we get

i′lj = (qj′)lj = q(1P − kq′)j = qj − (qk)(q′j) = −f ′i = −i′f =⇒ lj = −f.

The morphisms [
k j′

]
: B ⊕A′ → P and

[
q′

l

]
: P → B ⊕A′

are inverses of each other:[
k j′

] [q′
l

]
= kq′ + j′l = 1P and

[
q′

l

] [
k j′

]
=

[
q′k q′j′

lk lj′

]
=

[
1B 0
0 1A′

]
.

Note that [
f ′ i′

]
= q

[
k j′

]
and

[
i −f

]
=
[
q′ l

]
j.

Hence we get an isomorphism

A P B′

A B ⊕A′ B′

j

−1A

q[
q′

l

][
−i
f

] [
f ′ i′

]

Thus A

[
−i
f

]
−−−−→ B ⊕A′

[
f ′ i′

]
−−−−−→ B′ ∈ S.

Definition 1.9. Let E ′ be a subcategory of an exact category (E ,S). Then E ′ is extension closed

if whenever X Y Z
f g

is in S with X,Z ∈ E ′, then Y ∈ E ′.

Proposition 1.10. Let E ′ be a full subcategory of an exact category (E ,S) with 0 ∈ E ′. Assume
that E ′ is extension closed and define

S ′ :=

{
X Y Z

f g ∈ S
∣∣∣∣ X,Y, Z ∈ E ′

}
.

Then (E ′,S ′) is an exact category and E ′ closed under isomorphisms. We say that the exact
structure on E ′ is induced by the exact structure on E .

Proof. E ′ is additive: Since E ′ is a full subcategory of an an additive category and contains the
zero object, E ′ is preadditive. For any objects X,Y in E ′, X X ⊕ Y Y is short exact.
Hence X ⊕ Y ∈ E ′ since E ′ is extension closed. Thus E ′ is additive.

By Proposition 1.5 it is enough to show that the axioms Ex0’, Ex1op, Ex2 and Ex2op are
satisfied. Axiom Ex0’ follows immediately from 0 ∈ E ′ and the definition of S.

Ex2: Let A B C
f g

be in S ′ and let h : A → D be in E ′. Since E is exact, the pushout
along f and h exists, thus we get the following commutative diagram in E :

A B C

D P C

f

h PO

g

h′

f ′ g′

7



1. Exact categories and quotient categories

By Proposition 1.8 the second row is in S. Since E ′ is extension closed and D,C are in E ′, so is
P. Thus the pushout along f and h lies in E ′. Ex2op is done dually.

Ex1op: Let A B C
f g

and P B′ B
p h be in S ′. Note that gh is an admissible epimor-

phism in (E ,S) since the category is exact. Hence gh is an admissible epimorphism in (E ′,S ′)
as well if it has a kernel which lies in E ′. By Ex2op there exists a pullback along h and f with
objects in E ′:

A′ B′ C

A B C

f ′

h′ PB

gh

h

f g

By the dual of Lemma A.2 f ′ is the kernel of gh, so (f ′, gh) ∈ S ′.
Closed under isomorphisms: Let f : X → Y be an isomorphism and assume that X ∈ E ′.

Then X Y 0
f

is in S, hence Y ∈ E ′ since E ′ is extension closed.

The next proposition consider the special case when the exact category is an abelian category.

Proposition 1.11. Let E be a full additive subcategory of an abelian category A . Suppose that
E is extension closed and define

S :=

{
X Y Z

f g
in E

∣∣∣∣ 0 X Y Z 0
f g

exact in A

}
.

Then (E ,S) is an exact category.
Conversely, if (E ,S) is an essentially small exact category, then there exists an abelian cate-

gory A such that E is an extension closed, full additive subcategory of A and with S as above,
i.e. consisting of the sequences in E that are exact in A .

Proof. Part I: This follows immediately from Proposition 1.10 where A has the standard exact
structure as defined in Example 1.4.

Part II: Let A be the category of left-exact contravariant functors from E into the category of
abelian groups. Then A is abelian, and E becomes a subcategory of A via the Yoneda embed-
ding. It can be shown that E is extension closed, and that a sequence X → Y → Z in E is in S
if and only if 0 → X → Y → Z → 0 is exact in A . The detailed proof of this can be found in
both [5, Appendix A] and [2, Appendix A].

1.2. Quotient categories

The content of this section is mostly taken from [4].

Definition 1.12. Let A be a preadditive category. A collection of morphisms I is a (two-sided)
ideal of A if

(i) I(X,Y ) := I ∩Hom(X,Y ) is a subgroup of the abelian group Hom(X,Y ), and

(ii) whenever f ∈ Hom(X,Y ), g ∈ I(Y,Z), h ∈ Hom(Z,W ), then hgf ∈ I(X,W ).

Remark 1.13. Given f, g ∈ Hom(X,Y ), we say that f is related to g if f − g ∈ I(X,Y ). It is
clear that this is an equivalence relation on Hom(X,Y ).

8



1.2. Quotient categories

Definition 1.14. Let A be a preadditive category and I an ideal of A . We define the quotient
category A /I by

obj A /I := obj A

HomA /I(X,Y ) := HomA (X,Y )/I(X,Y ).

This means that A /I has the same objects as A and that the morphisms in A /I are the equiv-
alence classes of the morphisms in A . The equivalence class of a morphism f : X → Y in A
will be denoted by f in A /I. When it is clear from the context, the notation HomA (X,Y ), or
simply Hom(X,Y ), will be used instead of HomA /I(X,Y ).

Note that composition in the quotient category A /I is in fact well defined. Indeed, assume
that f − f ′ ∈ I(X,Y ) and g − g′ ∈ I(Y,Z). Then

gf − g′f ′ = gf − gf ′ + gf ′ − g′f ′ = g(f − f ′) + (g − g′)f ′ ∈ I(X,Z),

which implies that gf = g′f ′. Associativity of composition in the quotient category A /I follows
directly from the associativity in A . Thus A /I is indeed a category.

Proposition 1.15. Let A be a (pre)additive category and I an ideal of A . Then the quotient
category A /I is (pre)additive.

Proof. Since I(X,Y ) is a subgroup of the abelian group Hom(X,Y ), the factor group

Hom(X,Y ) = HomA (X,Y )/I(X,Y )

is also an abelian group. The bilinearity of composition in A /I follows directly from the bilin-
earity of composition in A . If 0 is a zero object in A , then it is a zero object in A /I as well
since Hom(0, X) and Hom(X, 0) will contain only one morphism. If a biproduct of X,Y in A
is given by

X
i1
�
p1

X ⊕ Y
i2
�
p2

Y

then it is trivial to see that a biproduct of X,Y in A /I is given by

X
i1

�
p1

X ⊕ Y
i2

�
p2

Y.

Definition 1.16. We define Σ : A → A / I to be the functor given by

X 7→ X

(f : X → Y ) 7→ (f : X → Y )

We may refer to f as the image of f .

It is trivial to see that Σ is in fact an additive functor.

Example 1.17. We say that a morphism f : X → Y factors through the object N if there exist
morphisms such that the diagram below commutes.

X Y

N

f

α β

9



1. Exact categories and quotient categories

Let A be a preadditive category and N a (full) subcategory which is closed under finite direct
sums. Define I(X,Y ) ⊆ Hom(X,Y ) to be the collection of all morphisms which factor through
some object in N , and denote by I the union of all I(X,Y ). Then I is an ideal of A . To see
this, first assume that f1, f2 ∈ I(X,Y ) factors through N1, N2, respectively, with fi = βiαi for
i = 1, 2. Then the diagram

X Y

N1 ⊕N2

f1−f2[
α1
−α2

] [
β1 β2

]
commutes. Since N is closed under finite direct sums, this means that f1− f2 ∈ I(X,Y ). Thus
I(X,Y ) is a subgroup of Hom(X,Y ). Now assume that we are in the setting of axiom (ii). Then
we have

X Y Z W

N

f g

α

h

β

Hence hgf ∈ I(X,W ) since it factors through N via hgf = (hβ)(αf).

Definition 1.18. Let A be a preadditive category. Assume that N is a (full) subcategory which
is closed under finite direct sums and let I be as in the example above. Then we define A /N to
be the quotient category A /I.

10



2. Frobenius categories and the
associated stable categories

The main sources of this chapter are [3] and [4].

2.1. Definition

In this section, we define what it means for an exact category to be a Frobenius category. We
normally denote a general exact category by (E ,S) and a Frobenius category by (F ,S). How-
ever, we use the notation (F ,S) in the next definitions leading up to the definition of a Frobenius
category.

Definition 2.1. Let S be a family of kernel-cokernel pairs in an additive category F . An object
P in F is S-projective if for all admissible epimorphisms g : Y Z and for all morphisms
a : P → Z there exists a (not necessarily unique) morphism b : P → Y such that a = gb:

P

X Y Z ∈ S

a∃b
f g

Dually, an object I in F is S-injective if for all admissible monomorphisms f : X Y and
for all morphisms a : X → I there exists a morphism b : Y → I such that a = bf :

X Y Z ∈ S

I

f

a
∃b

g

Example 2.2. Any initial object is S-projective and any terminal object is S-injective. In partic-
ular, the zero object is both S-projective and S-injective.

Definition 2.3. Let S be a family of kernel-cokernel pairs in an additive category F . We define
proj F , resp. inj F , to be the full subcategory of F consisting of all S-projective objects, resp.
S-injective objects.

Definition 2.4. An exact category (F ,S) has enough S-projectives if for all objects X in
F there exists an admissible epimorphism g : P X with P an S-projective object in F ,
and enough S-injectives if for all objects X in F there exists an admissible monomorphism
f : X I with I an S-injective object in F .

Definition 2.5. An object A is a direct summand of X if there exist morphisms A
f−→ X

g−→ A
such that gf = 1A.

Lemma 2.6. The direct sum of two S-injective objects is S-injective and a direct summand of an
S-injective object is S-injective. Dually, the direct sum of two S-projective objects is S-projective
and a direct summand of an S-projective object is S-projective.

11



2. Frobenius categories and the associated stable categories

Proof. The first part about direct sum is trivial, so we only prove the second part about direct
summand. Let J be a direct summand of an S-injective object I . Then there exist morphisms

J
i

�
p
I with pi = 1J .

X Y

J I

∀f

∀a ∃b
i

p

Since I is S-injective we have that for all admissible monomorphisms f : X Y and mor-
phisms a : X → J there exists a morphism b : Y → I such that ia = bf . Let c : Y → J with
c = pb. Then cf = pbf = pia = a. Hence J is an S-injective object.

Remark 2.7. A sequence X Y Z
f g ∈ S is right split whenever Z is S-projective and left

split whenever X is S-injective. To see this, simply let a in the definition of S-projective and
S-injective objects be the identity morphism.

Definition 2.8. An exact category (F ,S) is a Frobenius category if it has enough S-projectives,
enough S-injectives and if proj F = inj F .

Let (F ,S) be a Frobenius category unless otherwise stated. For a pair of objectsX , Y in F let
I(X,Y ) denote the additive subgroup of Hom(X,Y ) consisting of the morphisms which factor
through an S-injective object. The stable category F associated with F is the category whose
objects are the objects of F and the set of morphisms from X to Y is HomF (X,Y )/I(X,Y ).
In other words, F is the quotient category F/ inj F as defined in Definition 1.18. We use the
notation Hom(X,Y ) instead of HomF (X,Y ) to denote the set of morphisms from X to Y in
F . The equivalence class of a morphism f : X → Y in F is denoted by f in F .

Remark 2.9. Assume that f : X → Y factors through some S-injective object J as in the
diagram below. Let µ : X I be an admissible monomorphism, I an S-injective. Then there
exists α : I → Y such that αµ = f .

X Y

I

J

f

µ

g

α

β

h

Namely, since J is an S-injective object and µ is an admissible monomorphism, there exists
β : I → J such that βµ = g. Let α := hβ. Then αµ = hβµ = hg = f .

2.2. Triangulation of the stable category

The stable category of a Frobenius category is triangulated in a very natural way, as we will see
in this section. The triangulated categories that arise in this way are called algebraic, and the
ones that appear naturally in homological algebra (homotopy categories of complexes, derived
categories) are all of this form. Given a stable category F , we construct an autoequivalence
T : F → F , a collection of triangles ∆, and prove that this give a triangulated structure on F .
Appendix B gives a short introduction to triangulated categories. It is assumed that the reader is

12



2.2. Triangulation of the stable category

familiar with the content of that appendix. We will therefore refer to the axioms (TR1) to (TR4)
without explaining their content.

Lemma 2.10. Let X I X ′
µ π and Y I ′ Y ′

µ′ π′ be exact in (F ,S) with I ′ (but not neces-
sarily I) an S-injective object. Given any morphism f : X → Y there exist morphisms such that
the following diagram commutes.

X I X ′

Y I ′ Y ′

µ

f

π

I(f) f ′

µ′ π′

Proof. We have that µ is an admissible monomorphism and I ′ is S-injective, so there exists a
morphism I(f) : I → I ′ such that I(f)µ = µ′f . Since 0 = π′µ′f = π′I(f)µ and π is the
cokernel of µ, there exists a morphism f ′ : X ′ → Y ′ such that f ′π = π′I(f).

Lemma 2.11. Let X I X ′
µ π and X I ′ X ′′

µ′ π′ be in S, where I and I ′ are S-injectives.
Then X ′ and X ′′ are isomorphic in F .

Proof. From Lemma 2.10 we get morphisms such that the following diagram commutes

X I X ′

X I ′ X ′′

X I X ′

µ π

f g

µ′ π′

f ′ g′

µ π

Since 0 = (f ′f−1I)µ and π is the cokernel of µ, there exists h : X ′ → I such that hπ = f ′f−1I .
Thus πhπ = π(f ′f−1I) = πf ′f−π = g′gπ−π = (g′g−1X′)π, and since π is an epimorphism
it follows that πh = g′g − 1X′ . This means that g′g − 1X′ factors through the S-injective object
I , hence g′g = 1X′ . Similarly, gg′ = 1X′′ .

For an object X in F , let [X] denote the isomorphism class of X in F . Let X I X ′

be in S with I an S-injective object. Then the lemma states that [X ′] is independent of the choice

of X I X ′. For each object X in F choose a sequence X I(X) TX
µ(X) π(X) ∈ S

with I(X) an S-injective object, and define T (X) := TX . Given f : X → Y we get from
Lemma 2.10 a commutative diagram

X I(X) TX

Y I(Y ) TY

µ(X)

f

π(X)

I(f) T (f)

µ(Y ) π(Y )

Moreover, the next lemma shows that the equivalence class of T (f) is independent of the choice
of I(f).

13



2. Frobenius categories and the associated stable categories

Lemma 2.12. Given a commutative diagram

X I(X) TX

Y I(Y ) TY

µ(X)

f

π(X)

Ii(f) Ti(f)

µ(Y ) π(Y )

for i = 1, 2, then T1(f) = T2(f) in F .

Proof. We have [I1(f)− I2(f)]µ(X) = µ(Y )f −µ(Y )f = 0, so the cokernel property of π(X)
gives that there exists a unique g : T (X)→ I(Y ) such that gπ(X) = I1(f)− I2(f). Hence

π(Y ) ◦ g ◦ π(X) = π(Y ) ◦ [I1(f)− I2(f)] = [T1(f)− T2(f)] ◦ π(X).

Since π(X) is an epimorphism, this implies that π(Y )g = T1(f)− T2(f). Thus T1(f)− T2(f)
factors through the S-injective object I(Y ), so T1(f) = T2(f) in F .

As a consequence of this, T : F → F is a well-defined functor, and the next theorem shows
that T is an autoequivalence. Furthermore, T is an automorphism if we are able to choose TX
such that T : [X]→ [X ′] is a bijection for all X . Readers who only want to consider triangulated
categories where the functor is an automorphism would have to make this assumption throughout
this thesis.

Theorem 2.13. T : F → F is an autoequivalence. Moreover, if T : [X] → [X ′] is a bijection
for all X , then T is an automorphism.

Proof. T is dense: Let Y ∈ F . Since F has enough S-projectives there exists X P Y
µ π

in S with P an S-projective object. The S-projectives coincide with the S-injectives, so P is also
injective. Hence T (X) and Y are isomorphic in F by Lemma 2.11. Moreover, if T : [X]→ [Y ]
is a bijection, then there exists a unique X ′ ∈ [X] with T (X ′) = Y .
T is full: Assume that we have g : T (X) → T (Y ). We want to construct f : X → Y such

that T (f) = g.

X I(X) TX

Y I(Y ) TY

µ(X)

f

π(X)

g′ g

µ(Y ) π(Y )

Since I(X) is S-projective there exists g′ : I(X) → I(Y ) such that π(Y )g′ = gπ(X). Hence
π(Y )g′µ(X) = gπ(X)µ(X) = 0, so by the kernel property of µ(Y ), there exists f : X → Y
such that g′µ(X) = µ(Y )f . Thus by Lemma 2.12, T (f) = g in F and T is full.
T is faithful: Assume that T (f1) = T (f2). We want to prove that f1 = f2.

X I(X) TX

Y I(Y ) TY

µ(X)

f1−f2

π(X)

h I(f1)−I(f2) T (f1)−T (f2)=0

µ(Y ) π(Y )

Note that π(Y )[I(f1) − I(f2)] = [T (f1) − T (f2)]π(X) = 0, so the kernel property of µ(Y )
gives a unique morphism h : I(X) → Y such that I(f1) − I(f2) = µ(Y )h. Furthermore,
π(Y )[I(f1) − I(f2)]µ(X) = 0 as well, so there exists a unique morphism α : X → Y such
that [I(f1)− I(f2)]µ(X) = µ(Y )α. Both f1 − f2 and hµ(X) satisfies the condition of α, hence
f1 − f2 = hµ(X), giving f1 = f2 in F .

14



2.2. Triangulation of the stable category

Remark 2.14. (1) The construction of the functor T involves a choice for each object X . If the
functors T1 and T2 are obtained from different choices, then it is possible to show that T1 and T2
are naturally isomorphic functors. See for example Happel’s proof in [3, Section 2.2] for details.

(2) To simplify notation we will useX I(X) TXx x instead ofX I(X) TX
µ(X) π(X)

.

Take a morphism u : X → Y in F and let X I X ′
µ π ∈ S with I an S-injective object.

Consider the solid part of the following diagram in F

X I X ′

Y Cu X ′ TX

µ

u PO

π

u

v w′

w:=g′w′

g′

where Cu is the pushout along µ and u, and w′ is the cokernel of v as given in Lemma A.1. Note

that Y Cu X ′v w′ ∈ S by Proposition 1.8. Lemma 2.11 provides a morphism g′ : X ′ → TX
such that g′ is an isomorphism in F . Define w := g′w′ : Cu → TX .

Definition 2.15. Using the notation as above, we call the triangle X u−→ Y
v−→ Cu

w−→ TX and
its image in F a standard triangle. We define ∆ to be the collection of all triangles in F which
are isomorphic to a standard triangle, and we call such triangles distinguished triangles.

Remark 2.16. Some authors have a different definition of a standard triangle, which we call
strictly standard: A triangle X u−→ Y

v−→ Cu
w−→ TX is strictly standard if it is obtained from

the pushout

X I(X) TX

Y Cu TX

x

u PO

x

u

v w

We will see in Corollary 2.18 that every standard triangle is isomorphic to the strictly standard
triangle constructed from the same morphism u : X → Y . Hence the collection of all triangles
which are isomorphic in F to a strictly standard triangle equals ∆. Thus both definitions of a
standard triangle will give the same triangulation on F .

We shall now prove that F is a triangulated category. However, we will need the Triangu-
lated Five Lemma (Lemma B.4) in order to prove (TR4). Therefore, we first prove that F is
pretriangulated.

Theorem 2.17. The triple (F , T,∆) is a pretriangulated category.

Proof. (TR1). It is clear from the definition that ∆ is closed under isomorphisms and that every
morphism is part of a triangle. Consider the following commutative diagram of triangles:

X X I(X) TX

X X C1X TX

1

1

x

1 PO

x

1 1

1 v w

Since 1X : X → X is an isomorphism, so is 1X by Corollary 1.7. Hence we have in fact an
isomorphism of triangles. The bottom row is a standard triangle, thus the image in F of the top

15



2. Frobenius categories and the associated stable categories

row is distinguished. It is clear that X
1−→ X

x−→ I(X)
x−→ TX ∈ ∆ and X

1−→ X → 0 → TX
are isomorphic in F , making the latter triangle distinguished.

(TR2’). Note that (TR2’) is half of (TR2), i.e. rotating only one way: see Appendix B. We
only need to prove the axiom for standard triangles. Let X

u−→ Y
v−→ Cu

w−→ TX be a standard
triangle given by the following diagram

X I X ′

Y Cu X ′ TX

µ

u PO

π

u

v w′

w=g′w′

g′

From Lemma 2.10 we get u′ : I → I(Y ) and u′′ : X ′ → TY such that the following diagram
commutes

X I X ′

Y I(Y ) TY

µ

u

π

u′ u′′

y y

Since yu = u′µ, the pushout property of Cu gives a unique morphism θ : Cu → I(Y ) such that
the following diagram commutes

X Y

I Cu

I(Y )

µ

u

PO v
y

u

u′

θ

Note that yθv = yy = 0 = u′′w′v and yθu = yu′ = u′′π = u′′w′u. Hence yθ = u′′w′ by the
pushout property of Cu. We get the following commutative diagram

Y Cu X ′

I(Y ) I(Y )⊕X ′ X ′

TY TY

v

y

w′[
θ
w′

][
1
0

]
y

[
0 1
]

[
y −u′′

] (2.1)

As mentioned before Definition 2.15, the first row is exact. It follows from Quillen’s axiom a)
that the second row is exact. Hence from Proposition 1.8 the upper left square is a pushout. Since[

y −u′′
][ θ
w′

]
= yθ − u′′w′ = 0,

Diagram 2.1 yields that

Y
v−−→ Cu

 θ
w′


−−−−→ I(Y )⊕X ′

[
y −u′′

]
−−−−−−−→ TY

16



2.2. Triangulation of the stable category

is a standard triangle.
Now consider the following diagram:

Y Cu I(Y )⊕X ′ TY

Y Cu TX TY

v

[
θ
w′

] [
y −u′′

]
[
0 g′
]

v w −Tu

We have
[
0 g′

][ θ
w′

]
= g′w′ = w, making the middle square commutative. It is possible to use

Lemma 2.12 to prove that (Tu)g
′

= u′′ in F . Hence the square to the right commutes in F since
−Tu

[
0 g′

]
=
[
0 −(Tu)g′

]
=
[
y −u′′

]
. Moreover, we know that g′ is an isomorphism

in F , hence the diagram above is an isomorphism of triangles, thus Y
v−→ Cu

w−→ TX
−Tu−−−→ TY

is distinguished.
(TR3). Consider two standard triangles

X I X ′

Y Z X ′ TX

µ

u

π

u

v s τ

and

A I ′ A′

B C A′ TA

µ′

u′

π′

u′

v′ s′ λ

with τ , λ isomorphisms. Let w := τs and w′ := λs′. Assume that we have the following
commutative diagram in F

X Y Z TX

A B C TA

u

ϕ

v

ψ

w

Tϕ

u′ v′ w′

From Lemma 2.10 and 2.11 we know that we can construct the following commutative diagram
with ν : TX → X ′ the inverse of τ : X ′ → TX

X I(X) TX

X I X ′

A I ′ A′

A I(A) TA

µ(X) π(X)

ν′ ν

µ

ϕ

π

ϕ′ ϕ′′

µ′ π′

λ′ λ

µ(A) π(A)

We get that Tϕ = λϕ′′ν from Lemma 2.12. By assumption ψu = u′ϕ, hence there is a morphism
α : I → B such that ψu = u′ϕ+ αµ. Now

v′ψu = v′(u′ϕ+ αµ) = v′u′ϕ+ v′αµ = u′µ′ϕ+ v′αµ = u′ϕ′µ+ v′αµ = (u′ϕ′ + v′α)µ.
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2. Frobenius categories and the associated stable categories

Since Z is a pushout we get a morphism θ : Z → C such that θu = u′ϕ′ + v′α, θv = v′ψ as in
the diagram below.

X I

Y Z

C

µ

u u
u′ϕ′+v′α

v

v′ψ

θ

The pushout property of Z gives that s′θ = ϕ′′s since

(s′θ − ϕ′′s)u = s′(u′ϕ′ + v′α)− ϕ′′π = π′ϕ′ − ϕ′′π = 0,

(s′θ − ϕ′′s)v = s′θv − ϕ′′sv = s′v′ψ − ϕ′′sv = 0− 0 = 0.

Hence we get a commutative diagram

X Y Z X ′

A B C A′

u

ϕ

v

ψ

s

θ ϕ′′

u′ v′ s′

giving us the following morphism of triangles

X Y Z TX

X Y Z X ′

A B C A′

A B C TA

u v w=τs

ν

Tϕ=λϕ′′ν

u

ϕ

v

ψ

s

θ ϕ′′

u′ v′ s′

λ

u′ v′ w′=λs′

Thus (TR3) holds for standard triangles.

Corollary 2.18. Let u : X → Y be a morphism in F . The two standard triangles given by

X I X ′

Y Z X ′ TX

µ

u PO

π

u

v s τ

and

X I ′ X ′′

Y Z ′ X ′′ TX

µ′

u PO

π′

u′

v′ s′ τ ′

are isomorphic in F . Moreover, every standard triangle is isomorphic to the strictly standard
triangle constructed from the same morphism u : X → Y .

Proof. This follows immediately from (TR3) and the Triangulated Five Lemma (Lemma B.4)
applied to the following commutative diagram:

X Y Z TX

X Y Z ′ TX

u v w

u v′ w′
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2.2. Triangulation of the stable category

Theorem 2.19. The triple (F , T,∆) is a triangulated category.

Proof. (TR4). We only need to consider the case of standard triangles. By Corollary 2.18 we
may take the triangles to be strictly standard, as defined in Remark 2.16. Assume that we have
three standard triangles given by

X Y

I(X) Z ′

TX TX

u

x i

u

x i′

,

Y Z

I(Y ) X ′

TY TY

v

y j

v

y j′

and

X Z

I(X) Y ′

TX TX

w:=vu

x k

w

x k′

Our goal is to prove that there exist morphisms such that the diagram below commutes in F with

Z ′
f
−→ Y ′

g
−→ X ′

(Ti)j′

−−−−→ TZ ′ ∈ ∆.

X Y Z ′ TX

X Z Y ′ TX

X ′ X ′ TY

TY TZ ′

u i

v

i′

f

w=vu k

j

k′

g Tu

j′ (Ti)j′

j′

Ti

(2.2)

Let Z ′ I(Z ′) TZ ′l l ∈ S with I(Z ′) S-injective. Since i and l are admissible monomor-
phisms, so is li, thus there exists p : I(Z ′) → M such that (li, p) ∈ S. Now, by Corollary 2.18,

we may take Y I(Z ′) Mli p
instead of Y I(Y ) TY

y y
. Hence we may assume that

I(Y ) = I(Z ′) and y = li. Then yu = liu = lux. Define Iu := lu : I(X)→ I(Y ) as in the dia-
gram below. Then there exists Tu : TX → TY with Tux = yIu = ylu. Let 1 : I(Y )→ I(Z ′),
giving a morphism Ti : TY → TZ ′ with Tiy = l. In other words the following diagrams
commute:

X I(X) TX

Y I(Y ) TY

x

u

x

Iu=lu Tu

y y

Y I(Y ) TY

Z ′ I(Z ′) TZ ′

y

i

y

1 Ti

l l

Since wx = kw = kvu and jw = jvu = vyu = vliu = vlux, we get the following pushouts:

X Y

I(X) Z ′

Y ′

x

u

i
kv

u

w

f

X Z

I(X) Y ′

X ′

w

x k
j

w

vlu

g
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2. Frobenius categories and the associated stable categories

By the pushout property of Z ′ we get that gf = vl, since gfi = gkv = jv = vy = vli and
gfu = gw = vlu.

We now want to show that with f and g as defined above, diagram 2.2 commutes. We note that
fi = kv and gk = j by construction. Hence we have to prove that i′ = k′f and (Tu)k′ = j′g.
Now k′f = i′ follows from the pushout property of Z ′ since

k′fi = k′kv = 0 = i′i,

k′fu = k′w = x = i′u.

Similarly (Tu)k′ = j′g follows from the pushout property of Y ′ since

(Tu)k′k = 0 = j′j = j′gk,

(Tu)k′w = (Tu)x = ylu = j′vlu = j′gfu = j′gw.

The only thing left to prove is that Z ′
f
−→ Y ′

g
−→ X ′

(Ti)j′

−−−−→ TZ ′ is a standard triangle. Look at
the following two commutative diagrams

X I(X)

Y Z ′

Z Y ′

x

u

w=vu

PO u

w=ufi

v (a) f

k

Y Z

Z ′ Y ′

I(Z ′) = I(Y ) X ′

v

i

li

(a) k

j=kgf

l (b) g

v

In the diagram to the left, the outer square and the top square are pushouts. Hence by Lemma A.4,
so is the bottom square, square (a). Furthermore, since the outer square of the diagram to the right
is a pushout we can now use Lemma A.4 again and conclude that (b) is a pushout. Recall that
l = (Ti)y = (Ti)j′v. Hence we get the following commutative diagram

Z ′ Y ′

I(Z ′) X ′

TZ ′ TZ ′

f

l PO g

v

l (Ti)j′

which proves that Z ′
f
−→ Y ′

g
−→ X ′

(Ti)j′

−−−−→ TZ ′ is a standard triangle.

2.3. Correspondence between short exact sequences and
distinguished triangles

Short exact sequences in F are closely related to the distinguished triangles in F , as the follow-
ing two theorems describe.

Theorem 2.20. Any short exact sequence is part of a distinguished triangle in the following

sense: Let X Y Zu u′ ∈ S . Then there exists a morphism u′′ : Z → TX such that X
u−→

Y
u′−→ Z

−u′′−−−→ TX ∈ ∆.

20



2.3. Correspondence between short exact sequences and distinguished triangles

More precisely, we have by Lemma 2.10 the following commutative diagram with exact rows,
which gives us the morphism u′′.

X Y Z

X I(X) TX

u u′

i u′′

x x

Proof. Let X u−→ Y
v−→ Cu

w−→ TX be the strictly standard triangle given by the following
commutative diagram

X Y

I(X) Cu

TX TX

u

x v

u

x w

Our goal is to prove that X
u−→ Y

u′−→ Z
−u′′−−−→ TX and X u−→ Y

v−→ Cu
w−→ TX are isomorphic

triangles in F . Consider the pushout

X Y

I(X) Cu

Z

u

x v

u′u

0

h

Since u′u = 0 = 0 ◦ x the pushout property of Cu gives a unique h : Cu → Z such that hv = u′

and hu = 0. We claim that (1X , 1Y , h) is an isomorphism of triangles. First we will prove that h
is an isomorphism in F .

Since (v − ui)u = vu − uiu = ux − ux = 0, the cokernel property of u′ gives a unique
morphism g : Z → Cu such that gu′ = v − ui:

X Y Z

Cu

u u′

v−ui
g

Moreover, we get that

hgu′ = h(v − ui) = hv − hui = u′ − 0i = u′ = 1Zu
′.

Note that u′ is an epimorphism by Remark 1.3 (5), hence hg = 1Z . We shall now see that
gh− 1Cu

factors through an S-injective object, giving gh = 1Cu
in F . This will prove that h is
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2. Frobenius categories and the associated stable categories

an isomorphism. Consider the pushout

X Y

I(X) Cu

I(X)

u

x v

iu

1

j

Let j : Cu → I(X) be the unique morphism such that jv = i and ju = 1. If ghv = (1Cu −uj)v
and ghu = (1Cu − uj)u, then gh = 1Cu − uj since Cu is a pushout. We have

(1Cu
− uj)v = v − ujv = v − ui = gu′ = ghv,

(1Cu
− uj)u = u− uju = u− u ◦ 1 = 0 = g0 = ghu.

Thus gh = 1Cu
− uj, which gives gh = 1Cu

in F .
Now consider the diagram

X Y Cu TX

X Y Z TX

u v w

h

u u′ −u′′

This is an isomorphism of triangles if the diagram commutes. We have hv = u′ by construction,
hence we only have to prove that w = −u′′h in F . Let β = w − (−u′′h) = w + u′′h and let j
be as above. The pushout property of Cu gives that β = xj if βv = xjv and βu = xju. We have

βv = (u′′h+ w)v = u′′hv + wv = u′′u′ + 0 = xi = xjv,

βu = (u′′h+ w)u = u′′hu+ wu = u′′0 + x = x = xju.

Hence X
u−→ Y

u′−→ Z
−u′′−−−→ TX is a distinguished triangle.

The next theorem is the converse of Theorem 2.20.

Theorem 2.21. For any distinguished triangle X
u−→ Y

v−→ Z
w−→ TX in F there exist in F a

short exact sequence X ′ Y ′ Z ′u′ v′ and a morphism w′ : Z ′ → TX ′ such that X
u−→ Y

v−→
Z

v−→ TX and X ′
u′−→ Y ′

v′−→ Z ′
w′−→ TX ′ are isomorphic as triangles in F .

Proof. Assume that the triangle X
u−→ Y

v−→ Z
w−→ TX is distinguished, then so is the rotated

triangle T−1Z
T−1w−−−−→ X

u−→ Y
v−→ Z by (TR2). By the definition of ∆ and Corollary 2.18

we have that T−1Z
T−1w−−−−→ X

u−→ Y
v−→ Z ∈ ∆ is isomorphic to a strictly standard triangle

Z ′′
w′′−−→ X ′

u′−→ Y ′
v′−→ TZ ′′, arriving from the following diagram

Z ′′ I(Z ′′) TZ ′′

X ′ Y ′ TZ ′′

µ

w′′ PO

π

u′ v′
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2.3. Correspondence between short exact sequences and distinguished triangles

Note that X ′ Y ′ TZ ′′u′ v′ is short exact in F by Proposition 1.8. Define Z ′ := TZ ′′ and
w′ := T (w′′) : Z ′ → TX ′. Then the distinguished triangles X

u−→ Y
v−→ Z

v−→ TX and

X ′
u′−→ Y ′

v′−→ Z ′
w′−→ TX ′ are isomorphic as triangles in F with X ′ Y ′ Z ′u′ v′ ∈ S.
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3. Classifying subcategories

3.1. Subcategories of an exact category and a quotient
category

Let (E ,S) be an exact category and N a full subcategory which is closed under finite direct
sums, and let E /N be the quotient category as defined in Definition 1.18. We denote morphisms

in E /N by f . Denote by SN the collection of all sequences X
f
−→ Y

g
−→ Z in E /N for which

there exists an isomorphism of sequences

X Y Z

X ′ Y ′ Z ′

f

∼= 	

g

∼= 	 ∼=
f ′ g′

with X ′ Y ′ Z ′
f ′ g′ ∈ S.

We shall establish a bijection between certain subcategories of the exact category E and the
quotient category E /N .

Definition 3.1. A nonempty subcategory E ′ of an exact category (E ,S) is called a complete
subcategory if the following hold

(i) E ′ is a full subcategory,

(ii) 2 out of 3: If X Y Z
f g ∈ S and two of X,Y, Z are in E ′, then so is the third.

Moreover, E ′ is a thick subcategory if in addition the following holds

(iii) E ′ is closed under direct summands, i.e. if A is a direct summand of X , then X ∈ E ′

implies A ∈ E ′.

Remark 3.2. Let E ′ be a complete subcategory of E . Take X ∈ E ′: such an object exists since

E ′ is nonempty. Then 0 ∈ E ′ sinceX X 0
1X is short exact. Hence by Proposition 1.10 E ′ is

additive, closed under isomorphisms and admits an exact structure induced by the exact structure
on E .

By Proposition 1.5 all sequences of the form A A⊕B B

[
1 0
]t [

0 1
]

are short exact.
Hence if two of A, B and A⊕B are in E ′, then so is the third by axiom (ii). We will use this fact
repeatedly without referring to Proposition 1.5 every time.

Definition 3.3. A nonempty subcategory E ′N of the quotient category E /N is called a complete
subcategory if the following hold

(i) E ′N is a full subcategory,

(ii) 2 out of 3: If X
f
−→ Y

g
−→ Z ∈ SN and two of X,Y, Z are in E ′N , then so is the third.

25



3. Classifying subcategories

Moreover, E ′N is a thick subcategory if in addition the following holds

(iii) E ′N is closed under direct summands.

Our goal is to establish a one-to-one correspondence between the complete/thick subcategories
of E containing N and the complete/thick subcategories of E /N , under the right assumptions.
First we need to prove that complete and thick subcategories of E containing N are closed under
isomorphisms when we pass to E /N . This is always true in the case of a thick subcategory, as
the corollary of the next proposition shows. However, we need some extra assumptions in the
case of a complete subcategory.

Proposition 3.4. Let E ′ be a thick subcategory of E containing N . If Y is a direct summand of
X in the quotient category E /N , then X ∈ E ′ implies Y ∈ E ′.

Proof. Assume that we have Y
g
−→ X

f
−→ Y with fg = 1Y in E /N . Then there exists a

commutative diagram

Y Y

N

fg−1Y

α β

with N ∈ N . Now define morphisms i, p by

Y X ⊕N Y
i:=

[
g
α

]
p:=
[
f −β

]
Then pi =

[
f −β

][
g
α

]
= fg − βα = 1Y , so Y is a direct summand of X ⊕N . Moreover, since

X,N ∈ E ′ the 2 out of 3 property gives that X ⊕N ∈ E ′. Hence Y is a direct summand of an
object in E ′, implying Y ∈ E ′.

Corollary 3.5. Let E ′ be a thick subcategory of E containing N . Then E ′ is closed under
isomorphisms in the quotient category E /N : if X and Y are isomorphic in E /N , then X ∈ E ′

implies Y ∈ E ′.

We now state the additional assumptions we need to prove the above for complete (not neces-
sarily thick) subcategories containing N .

Definition 3.6. A (full) subcategory N of E is factorization admissible if it is closed under
finite direct sums, direct summands, and if whenever a morphism f : X → Y factors through an
object in N , then there exists a factorization

X Y

N

f

α β

with N ∈ N such that either α is an admissible monomorphism or β is an admissible epimor-
phism.

As the following example shows, such subcategories appear naturally.

Example 3.7. If E has enough S-injective objects, then inj E is a factorization admissible sub-
category. Indeed, we may take α to be an admissible monomorphism µ : X I as described in
Remark 2.9. Moreover, inj E is closed under finite direct sums and direct summands. Similarly,
if E has enough S-projective objects, then proj E is a factorization admissible subcategory of E .
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3.1. Subcategories of an exact category and a quotient category

The other technical condition we need when we deal with complete subcategories is an adapted
version of the Five Lemma.

Definition 3.8. We say that the quotient category E /N satisfies the Weak Five Lemma for SN

if whenever we have a morphism of sequences in SN

X Y Z ∈ SN

X ′ Y ′ Z ′ ∈ SN

f g h

then the following hold:

(i) If f and g are isomorphisms and Z ′ = 0, then h is an isomorphism (i.e. Z ∼= 0).

(ii) Dually, if g and h are isomorphisms and X = 0, then f is an isomorphism.

Lemma 3.9. If X ∼= 0 in E /N , then X is a direct summand of an object in N .

Proof. We have 1X = 0 in E /N , so there is a factorization

X X

N

1X−0

α β

in E with N ∈ N . Hence βα = 1X , so X is a direct summand of N .

Proposition 3.10. Assume that N is a factorization admissible subcategory of E and that E /N
satisfies the Weak Five Lemma for SN . If E ′ is a complete subcategory of E containing N , then
E ′ is closed under isomorphisms in the quotient category E /N .

Proof. Assume that X ∈ E ′ is isomorphic to Y in E /N , and that X
f

�
g
Y are inverse isomor-

phisms. Then fg − 1Y factors through some object N ∈ N as in the diagram below.

Y Y

N

fg−1Y

α β

We may assume that either α is an admissible monomorphism or that β is an admissible epimor-
phism. If α is an admissible monomorphism, consider the pushout

Y X

N C

g

α PO a

g′

By Lemma 1.6 we get that

Y X ⊕N C

g
α

 [
a −g′

]
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3. Classifying subcategories

lies in S. Hence we get the following morphism of sequences in SN

Y X ⊕N C ∈ SN

X X 0 ∈ SN

[
g
α

]
g 	

[
a −g′

]
[
1 0
]
	

1X

Since g and
[
1 0
]

are isomorphisms in E /N , so is the map C → 0 by the Weak Five Lemma
for SN . By Lemma 3.9, C ∼= 0 implies that C ∈ N since N is closed under direct summands.
Furthermore, E ′ contains N , so this gives that C ∈ E ′. We have X ⊕N ∈ E ′ by the 2 out of 3
property, since X,N ∈ E ′. Hence the 2 out of 3 property applied to Y X ⊕N C implies
that Y ∈ E ′.

If instead β is an admissible epimorphism consider the pullback

C X

N Y

b

f ′ PB f

β

We get C X ⊕N Y

 b
f ′

 [
f −β

]
∈ S and a morphism of sequences in SN

0 X X ∈ SN

C X ⊕N Y ∈ SN

1X[
1
0

]
f[

b
f ′

] [
f −β

]
As before, the fact that f and

[
1
0

]
are isomorphisms in E /N implies that C ∈ N ⊆ E ′, which

again implies that Y ∈ E ′.

Recall that N is a full subcategory of the exact category E , and that this subcategory is closed
under finite direct sums. We assume that N is factorization admissible only when stated. We
now construct the maps

{complete subcategories of E containing N } {subcategories of E /N }F

{subcategories of E containing N } {complete subcategories of E /N }G

that will induce inverse bijections in several cases.

Definition 3.11. (a) For a complete subcategory E ′ of E containing N , define FE ′ to be the
full subcategory of E /N whose objects are the objects of E ′.

(b) For a complete subcategory E ′N of E /N , define GE ′N to be the full subcategory of E
whose objects are the objects in E ′N (including N ).

We first prove that F and G are maps between the two collections of complete subcategories,
under the right assumptions.
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3.1. Subcategories of an exact category and a quotient category

Theorem 3.12. If E ′N is a complete subcategory of E /N , then GE ′N is a complete subcategory
of E containing N . Moreover, if E ′N is thick, then so is GE ′N .

Proof. The subcategory GE ′N is full by definition. Now assume that X Y Z
f g

is in S.

Then X Y Z
f g

is in SN . Hence the 2 out of 3 property of GE ′N follows from 2 out of 3
property of E ′N since objGE ′N = obj E ′N . Furthermore, if A is a direct summand of X in E ,
then A is also a direct summand of X in E /N . Hence GE ′N is closed under direct summands in
E since E ′N is closed under direct summands in E /N . Note that all objects in N are isomorphic
to the zero object in E /N . Since E ′N is closed under isomorphisms and 0 ∈ E ′N , this implies
that N is contained in E ′N , and therefore also in GE ′N .

Lemma 3.13. Let E ′ be a complete subcategory of E (containing N ) and assume that E ′ is
closed under isomorphisms in E /N . Then FE ′ is a complete subcategory of E /N .

Proof. The subcategory FE ′ is full by definition. Let the sequence X
f
−→ Y

g
−→ Z be in SN . By

the definition of SN there exists an isomorphism

X Y Z

X ′ Y ′ Z ′

f

∼=

g

∼= ∼=
f ′ g′

of sequences in E /N with X ′ Y ′ Z ′
f ′ g′

short exact in E . By assumption, E ′ is closed
under isomorphisms in E /N . Thus the 2 out of 3 property of FE ′ follows directly from the
2 out of 3 property of E ′. Indeed, assume for example that X,Y ∈ objFE ′ = obj E ′. Then
we have X ′, Y ′ ∈ obj E ′ since E ′ is closed under isomorphisms in E /N . Furthermore, since

X ′ Y ′ Z ′
f ′ g′

short exact in E , the 2 out of 3 property of E ′ implies that Z ′ ∈ obj E ′. Again,
E ′ is closed under isomorphisms in E /N , so this implies that Z ∈ obj E ′ = objFE ′.

Theorem 3.14. (1) Assume that N is a factorization admissible subcategory of E and that
E /N satisfies the Weak Five Lemma for SN . If E ′ is a complete subcategory of E containing
N , then FE ′ is a complete subcategory of E /N .

(2) If E ′ contains N and is thick, then so is FE ′.

Proof. The subcategory E ′ is closed under isomorphisms in E /N in both cases by Proposi-
tion 3.10 and Corollary 3.5, respectively. Thus by Lemma 3.13 FE ′ is a complete subcategory
of E /N . Moreover, if E ′ is closed under direct summands in E , then FE ′ is closed under direct
summands in E /N by Proposition 3.4.

We now have the following main result, which follows from the above.

Theorem 3.15. Let E be an exact category. Assume that N is a factorization admissible sub-
category of E and that E /N satisfies the Weak Five Lemma for SN . Then there is a one-to-one
correspondence between complete subcategories of E containing N and complete subcategories
of the quotient category E /N given by

{complete subcategories of E containing N } {complete subcategories of E /N }.

F

G
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3. Classifying subcategories

When we consider thick subcategories, we can drop the technical assumptions.

Theorem 3.16. Let E be an exact category. Then there is a one-to-one correspondence between
thick subcategories of E containing N and thick subcategories of the quotient category E /N
given by

{thick subcategories of E containing N } {thick subcategories of E /N }.

F

G

3.2. Subcategories of a Frobenius category and the stable
category

In this section we look at the special case where (F ,S) is Frobenius and N = inj F , i.e. the
quotient category F/N is the stable category F . Note that inj F is a factorization admissible
subcategory of F as described in Example 3.7.

Lemma 3.17. A sequence X
f
−→ Y

g
−→ Z is in SN if and only if there exists a morphism

h : Z → TX such that X
f
−→ Y

g
−→ Z

h−→ TX is in ∆.

Proof. Assume that X
f
−→ Y

g
−→ Z ∈ SN . Then there exists an isomorphism of sequences given

by the solid part of the diagram

X Y Z TX

X ′ Y ′ Z ′ TX ′

f

∼=ϕ1

g

∼=ϕ2 ∼=ϕ3

Tϕ−1
1 h′ϕ3

∼=Tϕ1

f ′ g′ h′

with X ′ Y ′ Z ′
f ′ g′ ∈ S. By Theorem 2.20 there exists a morphism h′ : Z ′ → TX ′ such that

X ′
f ′

−→ Y ′
g′

−→ Z ′
h′−→ TX ′ ∈ ∆. Define h := (Tϕ1)−1 ◦ h′ ◦ ϕ3. Then (ϕ1, ϕ2, ϕ3) is an

isomorphism between the triangles X ′
f ′

−→ Y ′
g′

−→ Z ′
h′−→ TX ′ ∈ ∆ and X

f
−→ Y

g
−→ Z

h−→ TX .
Hence the latter triangle is also in ∆.

Now assume that X
f
−→ Y

g
−→ Z

h−→ TX ∈ ∆. Then by Theorem 2.21 there exists a short exact

sequence X ′ Y ′ Z ′
f ′ g′

and a morphism h′ : Z ′ → TX ′ such that X
f
−→ Y

g
−→ Z

h−→ TX and

X ′
f ′

−→ Y ′
g′

−→ Z ′
h′−→ TX ′ are isomorphic as triangles. This isomorphism of triangles clearly

gives an isomorphism of the sequences X
f
−→ Y

g
−→ Z and X ′

f ′

−→ Y ′
g′

−→ Z ′ ∈ SN , hence

X
f
−→ Y

g
−→ Z ∈ SN .

Recall that a nonempty subcategory T ′ of a triangulated category (T , T,∆) is a triangulated
subcategory if the following hold

(i) it is a full subcategory,

(ii) 2 out of 3: If X
f−→ Y

g−→ Z
h−→ TX is a distinguished triangle in T and two out of three

of X,Y, Z are in T ′, then so is the third.
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3.2. Subcategories of a Frobenius category and the stable category

Moreover, T ′ is a thick triangulated subcategory if in addition the following holds

(iii) it is closed under direct summands.

The stable category F of a Frobenius category F is triangulated by Theorem 2.19. The fol-
lowing proposition gives an equivalent definition of (thick) triangulated subcategories of F .

Proposition 3.18. A subcategory F ′ of F is a triangulated subcategory if and only if it is a
complete subcategory. Furthermore, F ′ is a thick triangulated subcategory if and only if it is a
thick subcategory as in the sense of Definition 3.1.

Proof. It follows directly from Lemma 3.17 that the following are equivalent

(a) If X
f
−→ Y

g
−→ Z

h−→ TX ∈ ∆ and two of X,Y, Z are in F ′, then so is the third.

(b) If X
f
−→ Y

g
−→ Z ∈ SN and two of X,Y, Z are in F ′, then so is the third.

Remark 3.19. The Triangulated Five Lemma (Lemma B.4) implies that F satisfies the Weak
Five Lemma for SN .

We are now ready to state the two main Theorems 3.15 and 3.16 in the case of a Frobenius
category and the associated stable category. The results follow from above.

Theorem 3.20. Let F be a Frobenius category. Then there is a one-to-one correspondence
between complete subcategories of F containing inj F and triangulated subcategories of the
associated stable category F given by

{complete subcategories of F containing inj F} {triangulated subcategories of F}.

F

G

Theorem 3.21. Let F be a Frobenius category. Then there is a one-to-one correspondence
between thick subcategories of F containing inj F and thick triangulated subcategories of the
associated stable category F given by

{thick subcategories of F containing inj F} {thick triangulated subcategories of F}.

F

G
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4. Applications

In this chapter we consider certain Frobenius categories and apply the main theorems from last
chapter, Theorem 3.20 and Theorem 3.21, to these. In Section 4.1 we regard Gorenstein projective
objects in an abelian category and prove that this gives a Frobenius category. In Section 4.2 we
take the abelian category to be the category of all finitely generated modules over a commutative
Noetherian ring. In this case, the Gorenstein projective objects are the totally reflexive modules.
Specializing further, we let the ring be a Gorenstein local ring. Then the Gorenstein projective
objects are the maximal Cohen-Macaulay modules.

4.1. Gorenstein projective objects in abelian categories

Recall from Example 1.4 that an abelian category A is equipped with the standard exact structure

if a sequence X Y Z
f g

is short exact if and only if 0 → X
f−→ Y

g−→ Z → 0 is exact. We
call an object projective if it is projective with respect to this exact structure. In this section, let A
be an abelian category with the standard exact structure, and assume that A has enough projective
objects.

For a subcategory A ′ of A , define

S ′ := {X Y Z
f g

short exact in A | X,Y, Z ∈ A ′}.

Define by proj A ′, resp. inj A ’, the full subcategory of A ′ consisting of all S ′-projective, resp.
S ′-injective, objects. Note that (A ′,S ′) need not to be an exact category.

Let X be an object in A . Then a sequence

P = (· · · → P2
d2−→ P1

d1−→ P0 → 0)

is a projective resolution of X if Pn is projective for all n and the sequence is exact, except for
in position 0, where Cok d1 = X . Note that every object has a projective resolution since A has
enough projectives.

Definition 4.1. An object X ∈ A is a Gorenstein projective object if there exists an exact
sequence

P = (· · · → P2 → P1 → P0
f−→ P−1 → P−2 → . . . )

of projective objects in A , such that X = Im f and

HomA (P, Q) = (· · · → HomA (P−1, Q)→ HomA (P0, Q)→ HomA (P1, Q)→ . . . )

is exact for all Q ∈ proj A . In this case P is called a complete projective resolution of X .
We denote by Gproj A the full subcategory of A consisting of all Gorenstein projective objects

in A .

Lemma 4.2. All projective objects in A are Gorenstein projective objects, i.e.

proj A ⊆ Gproj A .
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Proof. Let P ∈ proj A , then it is easily seen that

P = (· · · → 0→ 0→ P
1P−−→ P → 0→ 0→ . . . )

is a complete projective resolution of P .

Remark 4.3. If X ∈ Gproj A and Q ∈ proj A , then Exti(X,Q) = 0 for all i > 0. This can
be proved in the following way. Let P be a complete projective resolution of X . Then

HomA (P, Q) = (· · · → HomA (P−1, Q)→ HomA (P0, Q)→ HomA (P1, Q)→ . . . )

is exact. Hence

Exti(X,P ) = Hi
(
0→ HomA (Q0, P )→ HomA (Q1, P )→ . . .

)
= 0

for all i > 0.

Lemma 4.4. For any short exact sequence 0 → X → Y → Z → 0 in A with Z ∈ Gproj A ,
the sequence

0→ Hom(Z,P )→ Hom(Y, P )→ Hom(X,P )→ 0

is exact whenever P ∈ proj A .

Proof. It follows from Remark 4.3 that Ext1(Z,P ) = 0. By applying Hom(−, P ) to the exact
sequence 0→ X → Y → Z → 0 we get the following exact sequence:

0→ Hom(Z,P )→ Hom(Y, P )→ Hom(X,P )→ Ext1(Z,P ) = 0.

Corollary 4.5. All projective objects in A are injective objects in Gproj A , i.e.

proj A ⊆ inj(Gproj A ).

Proof. This follows immediately from Lemma 4.2 and Lemma 4.4.

Recall that a subcategory E ′ of an exact category (E ,S) is extension closed if whenever

X Y Z
f g

is in S with X,Z ∈ E ′, then Y ∈ E ′.

Proposition 4.6. The subcategory Gproj A is extension closed in A .

Proof. Assume that 0 → X
u−→ Y

v−→ Z → 0 is exact in A with X,Z ∈ Gproj A . Let P
and Q be complete projective resolutions of X and Z, respectively. By the Horseshoe Lemma
(Lemma A.6), there exists a projective resolution

R≥0 = (· · · → P2 ⊕Q2 → P1 ⊕Q1 → P0 ⊕Q0 → 0)
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4.1. Gorenstein projective objects in abelian categories

of Y such that the solid part of the following diagram commutes.

0

. . . P1 P0 P−1 P−2 . . .

X

. . . P1 ⊕Q1 P0 ⊕Q0 P−1 ⊕Q−1 P−2 ⊕Q−2 . . .

Y

. . . Q1 Q0 Q−1 Q−2 . . .

Z

0

[
1
0

] [
1
0

] fX [
1
0

] [
1
0

]gX

u

[
0 1
] [

0 1
] fY [

0 1
] [

1 0
]gY

v

fZ gZ

Since Z ∈ Gproj A and P−1 ∈ proj A , Lemma 4.4 gives that there exists a : Y → P−1 such

that au = gX . Let b := gZ ◦ v : Y → Q−1 and define gY :=

[
a
b

]
: Y → P−1 ⊕Q−1. Then this

morphism makes the diagram commute.
Now consider the following diagram.

0 Ker gX Ker gY Ker gZ

0 X Y Z 0

P−10 P−1 ⊕Q−1 Q−1 0

Cok gX Cok gY Cok gZ 0

u v

gX gY gZ

[
1
0

] [
0 1
]

The Snake Lemma (Lemma A.5) applied to the solid part of the diagram gives that the dashed
morphisms exist and give an exact sequence. Since gX and gZ are (admissible) monomorphisms,
this implies that Ker gY = 0. That is gY is an (admissible) monomorphism as well. It follows
that Y = Im(gY ◦ fY ) and that

P1 ⊕Q1 → P0 ⊕Q0
gY fY−−−→ P−1 ⊕Q−1

is exact. Furthermore, 0 = Ker gZ → Cok gX → Cok gY → Cok gZ → 0 is exact. Thus we get
by induction that there exists a morphism Pi ⊕Qi → Pi−1 ⊕Qi−1 for all i ≤ 0 such that

R = (· · · → P1 ⊕Q1 → P0 ⊕Q0 → P−1 ⊕Q−1 → P−2 ⊕Q−2 → . . . )

is an exact sequence. This is a complete projective resolution of Y if HomA (R, S) is exact for
all S ∈ proj A . Note that since Qi is projective, Ext(Qi, S) = 0 for all i. Thus

0→ Hom(Qi, S)→ Hom(Pi ⊕Qi, S)→ Hom(Pi, S)→ Ext(Qi, S) = 0
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is exact. Therefore we get an exact sequence of chain complexes

0→ Hom(Q, S)→ Hom(R, S)→ Hom(P, S)→ 0

of abelian groups. The resulting long exact sequence in homology implies that Hom(R, S) is
exact since Hom(Q, S) and Hom(P, S) are exact.

Definition 4.7. Define S be the collection of all short exact sequences in A with objects in
Gproj A , i.e.

S = {0→ X → Y → Z → 0 exact in A | X,Y, Z ∈ Gproj A }.

Corollary 4.8. The collection S is an exact structure on Gproj A .

Proof. Proposition 1.11 states that (Gproj A ,S) is exact if Gproj A is extension closed in A
and 0 ∈ Gproj A . The first part holds by Proposition 4.6 and the second part is trivial.

Definition 4.9. Given X ∈ A and a projective resolution

P = (· · · → P2
d2−→ P1

d1−→ P0 → 0)

of X , we define the n-th syzygy of X with respect to P to be ΩnPX := Im dn for all n ≥ 1 and
Ω0

PX := X .
If X is in Gproj A and

P = (· · · → P2
d2−→ P1

d1−→ P0
d0−→ P−1

d−1−−→ P−2 → . . . )

is a complete projective resolution ofX , then we extend the definition to negative integers as well.
That is, we define the n-th syzygy of X with respect to P to be ΩnPX := Im dn for all n ∈ Z.

Remark 4.10. (1) Note that Ω0
PX = X when P is a complete projective resolution of X .

(2) We use the notation ΩPX for Ω1
PX .

(3) The n-th syzygy ΩnPX depends on the (complete) projective resolution P. If we do not
want to specify the (complete) projective resolution we use the notation ΩnX . However, ΩnX is
not uniquely determined in this case.

(4) Let X ∈ Gproj A . The complete projective resolution P of X shifted n times to the right
(or −n times to the left) is a complete projective resolution of ΩnPX , so ΩnPX ∈ Gproj A .

(5) Let X ∈ Gproj A . We have ΩnPX = Cok dn+1 = Im dn = Ker dn−1 since the complete
projective resolution P is exact. Thus it breaks down into short exact sequences

P = . . . P1 P0 P−1 P−2 . . .

ΩPX X Ω−1P X

d1 d0 d−1

Hence the sequence 0→ Ωn+1
P X → Pn → ΩnPX → 0 lies in S for all n ∈ Z.

Proposition 4.11. The S-projective objects of Gproj A coincide with the projective objects of
A , that is proj(Gproj A ) = proj A .

Proof. It is trivial to see that if P ∈ proj A lies in a subcategory C ⊆ A , then P ∈ proj C .
Hence proj A ⊆ proj(Gproj A ) follows from the inclusion proj A ⊆ Gproj A given by
Lemma 4.2.

Now assume thatX ∈ proj(Gproj A ). By Remark 4.10 (5) there exists a short exact sequence
0→ ΩX → P → X → 0 ∈ S . Since X is an S-projective object this implies that the sequence
is right split, as shown in Remark 2.7. Thus X is a direct summand of P ∈ proj A , which gives
X ∈ proj A by Lemma 2.6. Hence proj(Gproj A ) ⊆ proj A .
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4.2. Gorenstein projective objects over modR

Proposition 4.12. The S-injective objects of Gproj A coincide with the projective objects of A ,
that is inj(Gproj A ) = proj A .

Proof. Assume that X ∈ inj(Gproj A ). Just as in the proof of Proposition 4.11 there exists a
sequence 0 → X → P → Ω−1X → 0 ∈ S, which is left split since X is S-injective. Hence X
is a direct summand of P ∈ proj A , which impliesX ∈ proj A . Thus inj(Gproj A ) ⊆ proj A .
Furthermore, proj A ⊆ inj(Gproj A ) by Corollary 4.5.

Corollary 4.13. (a) The S-projective and S-injective objects of Gproj A coincide, and equals
the projective objects of A . That is, proj(Gproj A ) = proj A = inj(Gproj A ).

(b) The exact category (Gproj A ,S) has enough S-projective objects and enough S-injective
objects.

(c) The exact category (Gproj A ,S) is Frobenius.

Proof. (a) This is Proposition 4.11 and Proposition 4.12 combined.
(b) This follows immediately from Remark 4.10 (5) and (a).
(c) By Corollary 4.8 (Gproj A ,S) is exact, hence it is Frobenius by (a) and (b).

From Theorem 3.20, Theorem 3.21 and the above we deduce the following result.

Theorem 4.14. Let A be an abelian category, Gproj A the Frobenius category of Gorenstein
projective objects, and Gproj A the corresponding stable category. Then we have the following
one-to-one correspondences

{complete subcategories of Gproj A containing proj A }

{triangulated subcategories of Gproj A }

1−1

{thick subcategories of Gproj A containing proj A }

{thick triangulated subcategories of Gproj A }

1−1

4.2. Gorenstein projective objects over modR

Let R be a commutative Noetherian ring and denote by modR the abelian category of all finitely
generated R-modules. It is well known that modR has enough projective objects. We define
GprojR := Gproj modR and projR := proj modR to simplify notation. The dual of a module
M ∈ modR is defined to be M∗ := Hom(M,R). Note that P ∈ projR implies P ∗ ∈ projR,
and that the natural homomorphism P → P ∗∗ is an isomorphism. In this section we show that
the Gorenstein projective objects in modR are the totally reflexive modules, as defined below.

Definition 4.15. A module M ∈ modR is totally reflexive if the following hold

(i) the natural homomorphism M →M∗∗ is an isomorphism,

(ii) Ext>0
R (M,R) = 0,

(iii) Ext>0
R (M∗, R) = 0.

We define G(R) to be the full subcategory of modR consisting of all totally reflexive modules.
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Remark 4.16. (1) A module P ∈ modR is projective if and only if there exist Q ∈ modR and
n ≥ 0 such that P ⊕Q ∼= Rn. Thus since ExtR commutes with finite direct sums, we have that
Ext>0

R (M,R) = 0 implies Ext>0
R (M,P ) = 0 for all P ∈ projR.

(2) Assume that

P = (· · · → P2 → P1 → P0 → P−1 → P−2 → . . . )

is an exact sequence with projective terms, and that it breaks down into short exact sequences in
the following way

P = . . . P1 P0 P−1 P−2 . . .

ΩPX X Ω−1P X

d1 d0 d−1

If for an object Q ∈ modR we have that ExtR(ΩnPX,Q) = 0 for all n ∈ Z, then Hom(P, Q) is
exact as well.

Proposition 4.17. The Gorenstein projective objects of modR are precisely the totally reflexive
modules, i.e. G(R) = GprojR. Thus G(R) is a Frobenius category.

Proof. Assume that M is a Gorenstein projective object with a complete projective resolution P,
and let 0 → ΩPM → P0 → M → 0 be exact. Then 0 → M∗ → P ∗0 → (ΩPM)∗ → 0 is exact
by Lemma 4.4. Thus 0→ (ΩPM)∗∗ → P ∗∗0 →M∗∗ → Ext((ΩPM)∗, R)→ Ext(P ∗0 , R) = 0
is exact as well.

Let f, g, h in the diagram below be the natural homomorphisms. The Snake Lemma (Lemma A.5)
applied to the solid part of the diagram below gives that the dashed arrows exist and form an exact
sequence.

0 Ker f Ker g Kerh

0 ΩM P0 M 0

0 (ΩM)∗∗ P ∗∗0 M∗∗

Cok f Cok g Cokh Cok a 0

f g h

a

Since P0 is projective, the map g : P0 → P ∗∗0 is an isomorphism. Moreover, Ker g = 0 = Cok g
implies that Ker f = 0. By using the same argument on the short exact sequence 0 → M →
P−1 → Ω−1P M → 0 we get that Kerh = 0. Furthermore, this implies that Cok f = 0 since
0 = Kerh → Cok f → 0 is exact. Again, the same argument applied to 0 → M → P−1 →
Ω−1P M → 0 gives that Cokh = 0. Thus h : M →M∗∗ is an isomorphism.

Moreover, Cok(P ∗∗0 → M∗∗) = Cok a = 0, since Cokh = 0. Note that this implies that
Ext((ΩPM)∗, R) = 0 since

0→ (ΩPM)∗∗ → P ∗∗0
a−→M∗∗ → Ext((ΩPM)∗, R)→ 0
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4.2. Gorenstein projective objects over modR

is exact. Similarly, Ext((ΩnPM)∗, R) = 0 for all n. Thus it follows that Ext>0(M∗, R) = 0
since 0 = Ext((ΩnPM)∗, R) = Extn(M∗, R) for all n ≥ 0. Moreover, Extn(M,R) = 0 by
Remark 4.3. Hence M is a totally reflexive module.

Now assume that M ∈ G(R). Let

· · · → P2 → P1 → P0 →M → 0 (4.1)

· · · → Q2 → Q1 → Q0 →M∗ → 0 (4.2)

be projective resolutions of M and M∗ respectively. By applying (−)∗ = Hom(−, R) to the
sequence 4.2, we get the sequence

0→M∗∗ → Q∗0 → Q∗1 → Q∗2 → . . . (4.3)

which is exact since Ext>0
R (M∗, R). Since M ∼= M∗∗, it follows that we can combine the

sequences 4.1 and 4.3 into the following sequence

P = . . . P1 P0 Q∗0 Q∗−1 . . .

ΩM M ∼= M∗∗ (ΩM∗)∗

Moreover, P is exact: Note that since M is totally reflexive we get that the following sequence is
exact:

0→ (ΩnM∗)∗ → Q∗n → (Ωn+1M∗)∗ → ExtR(ΩnM∗, R) = ExtnR(M∗, R) = 0.

Thus P is exact with M = Im(P0 → Q∗0). Furthermore, it is fairly easy to show that G(R) is
closed under taking duals and syzygies, thus (ΩnM∗)∗,ΩnM ∈ G(R). Hence by Remark 4.16
(1) and (2), Hom(P, S) is exact for all S ∈ projR. Thus P is a complete projective resolution
of M .

Note that if a subcategory C of G(R) is closed under finite direct sums and direct summands,
then it contains projR if and only if it contains the object R. Thus the condition that a thick
subcategory must contain projR can be replaced by the condition that it must contain the object
R. Consequently, in this setting, Theorem 4.14 takes the following form.

Theorem 4.18. Let R be a commutative Noetherian ring, G(R) the Frobenius category of totally
reflexive modules, and G(R) the corresponding stable category. Then we have the following
one-to-one correspondences

{complete subcategories of G(R) containing projR}

{triangulated subcategories of G(R)}

1−1

{thick subcategories of G(R) containing R}

{thick triangulated subcategories of G(R)}

1−1

Specializing further, we now consider at a special type of rings, called Gorenstein local rings.
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Definition 4.19. Let (R,m, k) be a commutative Noetherian local ring, where m is the maximal
ideal and k := R/m is the residue field.

(1) The (Krull) dimension of R is

dimR := sup{n ≥ 0 | ∃ chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn}.

(2) The depth of M ∈ modR is

depthM = inf{n ≥ 0 | ExtnR(k,M) 6= 0}.

(3) M ∈ modR is a maximal Cohen-Macaulay module if M = 0 or depthM = dimR.

(4) R is a Gorenstein local ring if it has finite injective dimension as a module over itself.

(5) CM(R) is the full subcategory of modR consisting of all maximal Cohen-Macaulay mod-
ules over R.

The following characterization of maximal Cohen-Macaulay modules over a Gorenstein local
ring is well known, and the proof can be found in [8, Theorem 4.8] or [1].

Proposition 4.20. For a Gorenstein local ring a module M ∈ modR is maximal Cohen-
Macaulay if and only if it is totally reflexive. Thus CM(R) = G(R) = GprojR and CM(R)
is a Frobenius category.

By the above, Theorem 4.18 takes the following form. The “thick” part of this result is known,
c.f. [7].

Theorem 4.21. Let R be a Gorenstein local ring, CM(R) the Frobenius category of maximal
Cohen-Macaulay modules, and CM(R) the corresponding stable category. Then we have the
following one-to-one correspondences

{complete subcategories of CM(R) containing projR}

{triangulated subcategories of CM(R)}

1−1

{thick subcategories of CM(R) containing R}

{thick triangulated subcategories of CM(R)}

1−1

40



A. Basic results

This section contains several basic results, which we use throughout this thesis. Unless otherwise
stated we work in a general category C .

Lemma A.1. Assume that g is a cokernel of f and that the right-hand square of the diagram
below is a pullback along g and h.

A P D

A B C

f ′ g′

h′ PB h

f g

Then there exists a morphism A
f ′−→ P such that the diagram commutes and f ′ is the kernel of g′.

Dually, assume that f is a kernel of g and that the left-hand square of the diagram below is a
pushout along f and h.

A B C

D P C

f

h PO

g

h′

f ′ g′

Then there exists a morphism P
g′−→ C such that the diagram commutes and g′ is the cokernel

of f ′.

Proof. We prove the first part. Let f ′ be the unique morphism such that h′f ′ = f and g′f ′ = 0,
which exists since P is a pullback and gf = 0 = h ◦ 0. Assume that we have a morphism
α : M → P with g′α = 0. Then f ′ is the kernel of g′ if there exists a unique β : M → A such
that f ′β = α.

M

A P D

A B C

β
α 0

f ′ g′

h′ PB h

f g

M

P D

B C

fβ

γ

0

g′

h′ PB h

g

Since g is the cokernel of f and gh′α = hg′α = 0, there exists a unique β : M → A such
that h′α = fβ = h′f ′β. Moreover, the pullback property gives a unique γ : M → P satisfying
g′γ = 0 and h′γ = fβ. However, both α and f ′β satisfies this, so f ′β = α.

Lemma A.2. Assume that g is a cokernel of f and that the right-hand square of the diagram
below is a pushout along g and h.

A B C

A B′ P

f g

h PO h′

hf g′

Then g′ is the cokernel of hf .
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Proof. Assume that a : B′ → E with ahf = 0. Since g is the cokernel of f , there exists a unique
b : C → E with bg = ah. Hence the pushout property gives that there exists a unique c : P → E
with cg′ = a and ch′ = b.

A B C

A B′ P

E

f g

h PO h′
b

hf

0

g′

a

c

For g′ to be the cokernel of hf we need a unique c′ : P → E with c′g′ = a, but not necessarily
c′h′ = b. Assume therefore that c′g′ = a and define b′ := c′h′. Then b′g = c′h′g = c′g′h = ah.
Since b is unique with the property that bg = ah, this implies that b′ = b. Thus c′g′ = a and
b = c′h′, hence by the uniqueness of c, c = c′.

Lemma A.3. In an additive category A , consider A B ⊕ C D

[
−f
g

] [
h i

]
and

K :

A B

C D

f

g h

i

Assume that K is a commutative square, i.e. that
[
h i
][−f

g

]
= 0. Then

(i) K is a pullback if and only if
[
−f
g

]
is a kernel of

[
h i
]
.

(ii) K is a pushout if and only if
[
h i
]

is a cokernel of
[
−f
g

]
.

Proof. It is trivial to see that (i) holds by regarding the following two diagrams and recalling the
definition of pullback and kernel:

A′

A B

C D

f ′

g′

φ

f

g h

i

A′

A 0

B ⊕ C D

[
−f ′
g′

]
φ

[
−f
g

] [
h i

]
Part (ii) holds by duality.

Lemma A.4. Assume that we have the following commutative diagram

A B

C D

E F

i

f

h=gf

f ′

h′=g′f ′
j

g g′

k
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with the outer square and the top square being pushouts, i.e. F is a pushout along i and h = gf
and D is a pushout along i and f . Then the bottom square is a pushout too, i.e. F is a pushout
along j and g.

Proof. Assume that we have α : E → G and β : D → G with αg = βj. Then αgf = βjf =
βf ′i, so by the pushout property of the outer square, there exists a unique γ : F → G such that
γk = α and γh′ = γg′f ′ = βf ′:

A B

C D

E F

G

i

f f ′

βf ′
j

g g′
β

k

α

γ

By the pushout property of the top square, γg′ = β if γg′f ′ = βf ′ and γg′j = βj. The first
equality holds by assumption, hence we only need to prove that γg′j = βj. However, this holds
since γg′j = γkg = αg = βj.

Now assume that γik = α and γig′ = β for i = 1, 2. Then γih′ = γig
′f ′ = βf ′ and γik = α,

so by the uniqueness of γ, γ = γ1 = γ2.

Some well-known results

We will only state the remaining well-known results.

Lemma A.5 (Snake Lemma). In an abelian category A , assume that we are given the solid part
of the diagram below. Then the dotted arrows exist and form an exact sequence.

0 Ker f Ker a Ker b Ker c

A B C 0

A′0 B′ C ′

Cok a Cok b Cok c Cok g′ 0

d

f g

a b c

f ′ g′

Lemma A.6 (Horseshoe Lemma). Let A be an abelian category. Assume that X Y Z
is a short exact sequence in A and that PX and PZ are projective resolutions for X and Z,
respectively. Then there exists a projective resolution PY of Y with PYi = PXi ⊕ PZi such that
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the following diagram commutes

. . . PX2 PX1 PX0 X

. . . PX2 ⊕ PZ2 PX1 ⊕ PZ1 PX0 ⊕ PZ0 Y

. . . PZ2 PZ1 PZ0 Z

[
1
0

] [
1
0

] [
1
0

]

[
0 1
] [

0 1
] [

0 1
]

Lemma A.7 (Five Lemma). Let A be an abelian category and assume that we have the following
commutative diagram with exact rows.

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

α0

f0

α1

f1

α2

f2

α3

f3 f4

β0 β1 β2 β3

Then the following holds

(i) If f0 is an epimorphism and f1, f3 are monomorphisms, then f2 is a monomorphism.

(ii) If f4 is a monomorphism and f1, f3 are epimorphism, then f2 is an epimorphism.

Combining these two results, we get that if f0, f1, f3, f4 are isomorphisms, then so is f2.
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B. Triangulated categories

In this Appendix we give a short introduction to triangulated categories. This includes the defini-
tion and some results, but no proofs.

Definition

Definition B.1. Let T be an additive category and T : T → T an additive autoequivalence. A
triangle is a sequence of the form

X
f−→ Y

g−→ Z
h−→ TX.

A morphism of triangles φ is a triple φ = (φX , φY , φZ) of morphisms such that the diagram

X Y Z TX

X ′ Y ′ Z ′ TX ′

f

φX

g

φY

h

φZ TφX

f ′ g′ h′

commutes. Furthermore, φ is an isomorphism of triangles if φX , φY and φZ are isomorphisms
in T .

Definition B.2. A pretriangulated category is an additive category T together with an additive
autoequivalence T and a collection of triangles ∆, called distinguished triangles, which satisfies
the following axioms.

(TR1) (a) ∆ is closed under isomorphisms of triangles.

(b) For every object X ∈ T , we have X 1X−→ X −→ 0 −→ TX ∈ ∆.

(c) For every morphism f : X → Y there exists a distinguished triangle of the form

X
f−→ Y −→ Z −→ TX .

(TR2) ∆ is closed under rotations, meaning that if X
f−→ Y

g−→ Z
h−→ TX is a distinguished

triangle, then so is Y
g−→ Z

h−→ TX
−Tf−→ TY and T−1Z −T

−1h−→ X
f−→ Y

g−→ Z.

(TR3) Given a commutative diagram

X Y Z TX ∈ ∆

X ′ Y ′ Z ′ TX ′ ∈ ∆

f

φX

g

φY

h

TφX

f ′ g′ h′

then there exists a (not necessarily unique) φZ : Z → Z ′ such that (φX , φY , φZ) is a
morphism of triangles.
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The category T is triangulated if in addition the following axiom holds.

(TR4) Assume that we have distinguished triangles

X
f−→ Y −→ Z ′ −→ TX ,

Y
g−→ Z −→ X ′

h−→ TY and

X
gf−→ Z −→ Y ′ −→ TX.

Then there exists a distinguished triangle Z ′ −→ Y ′ −→ X ′ −→ TZ ′ such that the
following diagram commutes

X Y Z ′ TX

X Z Y ′ TX

X ′ X ′ TY

TY TZ ′

f

1X g 1TX

gf

Tf

1X′

h

h

We say that T and ∆ give a triangulated structure on T . An additive category may have several
triangulated structures. However, when there is no fear of confusion, we will often refer to the
triangulated category as T instead of (T , T,∆).

Note that many authors require the additive functor T to be an automorphism, not only an
autoequivalence. The triangulated categories we consider in this thesis are the stable categories
of Frobenius categories. In this case, the functor T is always an autoequivalence. However, an
extra assumption is needed for T to be an automorphism. The details are given in Chapter 2, and
readers who prefer T to be an automorphism are free to make the necessary assumption.

Some results for pretriangulated categories

In this section, we list some well-known results about pretriangulated categories without proof.
Therefore, let (T , T,∆) be a pretriangulated category unless otherwise stated.

Proposition B.3. Let X
f−→ Y

g−→ Z
h−→ TX be a distinguished triangle. Then g ◦ f = 0 and

h ◦ g = 0.

Lemma B.4 (Triangulated Five lemma). Assume that we have a morphism of distinguished tri-
angles

X Y Z TX

X ′ Y ′ Z ′ TX ′

f

α

g

β

h

γ Tα

f ′ g′ h′

Then if two of the morphisms α, β and γ are isomorphisms, then so is the third.

Corollary B.5. Given a morphism X
f−→ Y , then there exists exactly one distinguished triangle

of the form X
f−→ Y

g−→ Z
h−→ TX up to isomorphism.
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Definition B.6. The direct sum of two triangles X
f−→ Y

g−→ Z
h−→ TX and A α−→ B

β−→
C

γ−→ TA is the triangle

X ⊕A Y ⊕B Z ⊕ C TX ⊕ TA.

[
f 0
0 α

] [
g 0
0 β

] [
h 0
0 γ

]
Proposition B.7. The direct sum of two distinguished triangles is distinguished.

Definition B.8. The triangle A α−→ B
β−→ C

γ−→ TA is a direct summand of the triangle

X
f−→ Y

g−→ Z
h−→ TX if there exists two morphisms of triangles (ψ1, φ1, θ1) and (ψ2, φ2, θ2)

such that the diagram below commutes and such that ψ2 ◦ ψ1 = 1A, φ2 ◦ φ1 = 1B and
θ2 ◦ θ1 = 1C .

A B C TA

X Y Z TX

A B C TA

α

ψ1

β

φ1

γ

θ1 Tψ1

f

ψ2

g

φ2

h

θ2 Tψ2

α β γ

Proposition B.9. A direct summand of a distinguished triangle is distinguished.

Weakening of the axioms

The axioms for a (pre)triangulated category can be weakened. In fact, it can be shown that it
suffices with half of (TR2), and that (TR3) is redundant. The latter was first proven by J.P. May
in [6].

Proposition B.10. Axiom (TR3) follows from axiom (TR1) and (TR4).

Axiom (TR2’). If X
f−→ Y

g−→ Z
h−→ TX is a distinguished triangle, then so is the triangle

Y
g−→ Z

h−→ TX
−Tf−→ TY .

Lemma B.11. A category satisfying the axioms (TR1), (TR2’) and (TR3) is pretriangulated.

Theorem B.12. A category satisfying the axioms (TR1), (TR2’) and (TR4) is triangulated.

Triangulated subcategories

Definition B.13. A nonempty subcategory T ′ of a triangulated category T is a triangulated
subcategory if the following hold

(i) T ′ is a full subcategory,

(ii) 2 out of 3: If X
f−→ Y

g−→ Z
h−→ TX is a distinguished triangle in T and two out of

three of X,Y, Z are in T ′, then so is the third.

Moreover, T ′ is a thick triangulated subcategory if in addition the following holds

(iii) T ′ is closed under direct summands, meaning that if A is a direct summand of X and
X ∈ T ′, then A ∈ T ′ as well.
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Remark B.14. (1) T ′ is additive. Let X ∈ T ′: such an object exists since T ′ is nonempty.
Then X → X → 0 → TX ∈ ∆ by (TR1) (b). Hence by (ii), 0 ∈ T ′. Note that by (TR1) (b),
(TR2) and Proposition B.7, X → X⊕Y → Y → TX is distinguished. Thus by (ii), X,Y ∈ T ′

implies that X ⊕ Y ∈ T ′. The additivity of T ′ follows now immediately from the additivity
of T .

(2) T ′ is closed under isomorphisms. Assume that f : X → Y is an isomorphism. Then it

follows from (TR1) (a) and (b) that X
f→ Y → 0 → TX ∈ ∆. Hence we have that Y ∈ T ′ if

X ∈ T ′ by (ii), since 0 ∈ T ′.

(3) T ′ is closed under T and T−1. This follows directly from (TR2) and (ii) applied to X →
X → 0→ TX ∈ ∆.

(4) T induces a triangulated structure on T ′. Let T ′ be the functor T restricted to T ′. It
can easily be shown that this is in fact an autoequivalence on T ′. Let ∆′ be the collection of all
distinguished triangles with entries in T ′. Then (T ′, T ′,∆′) is triangulated.

(5) Some authors requires a thick triangulated subcategory to be closed under direct summands
of distinguished triangles instead of being closed under direct summands of objects. However, it
is easy to show that these two definitions are equivalent.
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