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Abstract. We prove that if an algebra is either selfinjective, local or graded,

then the Hochschild homology dimension of its trivial extension is infinite.

1. Introduction

Let A be a finite dimensional algebra over an algebraically closed field. It is well
known that if its global dimension is finite, then its Hochschild cohomology and
homology groups HHn(A) and HHn(A) vanish for all sufficiently large n. In his
classical paper [Hap] on the cohomology of path algebras, Happel remarked that
the converse was not known for Hochschild cohomology. As shown in [AvI], it does
hold for commutative algebras. However, noncommutative counterexamples were
given in [BGMS]: there exist algebras of infinite global dimension for which the
Hochschild cohomology groups vanish in high degrees.

The Hochschild homology groups of the algebras studied in [BGMS] do not be-
have as the cohomology groups; they do not vanish in high degrees. This led
Han to conjecture in [Han] that if the Hochschild homology groups of an alge-
bra vanish in high degrees, then the algebra is necessarily of finite global dimen-
sion. Han proved that this holds for monomial algebras, and just as for cohomol-
ogy it also holds for commutative algebras, by [AV-P]. In the subsequent papers
[BHM, BM1, BM2, SV-P], the conjecture has been shown to hold for several classes
of algebras, including Koszul algebras, cellular algebras and local graded algebras.

In this paper, we study the Hochschild homology groups of trivial extensions
of algebras. The trivial extension of any algebra is a non-semisimple symmetric
algebra, and therefore it always has infinite global dimension. For symmetric al-
gebras, the vector space dimensions of the Hochschild homology groups equal the
dimensions of the cohomology groups. Thus, for trivial extension algebras, Han’s
conjecture states that the Hochschild homology and cohomology groups do not all
vanish in high degrees. We prove that this holds for trivial extensions of selfinjective
algebras, local algebras and graded algebras.

2. Trivial extension algebras

Throughout this paper, let k be an algebraically closed field, and A a finite
dimensional k-algebra. Any such algebra is Morita equivalent to a basic algebra,
and these again are isomorphic to quotients of path algebras by admissible ideals.
Thus we may without loss of generality assume that our algebra A is of the form
kQ/I for some finite quiver Q and admissible ideal I ⊆ kQ.
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Denote by DA the k-dual Homk(A,k) of A, considered as a bimodule. The trivial
extension of A by DA, denoted T (A) = A n DA, is the algebra with underlying
vector space A⊕DA, and multiplication given by

(a, f) · (b, g) = (ab, ag + fb)

for all a, b ∈ A and f, g ∈ DA. For any finite dimensional algebra, the trivial
extension is symmetric. Moreover, there is a close relationship between the quiver

Q̃ of T (A) and the defining quiver Q of A; we recall here this relationship as
described in [FeP].

The radical of T (A) is r ⊕ DA, where r is the radical of A. Consequently, the
quotient T (A)/ radT (A) is isomorphic to A/r, from which it follows that the sizes
of the complete sets of primitive orthogonal idempotents of A and T (A) are the

same. This means Q and Q̃ have the same number of vertices.
Next, consider the square of the radical of T (A). It is given by

rad2 T (A) = r2 ⊕ (rDA+DAr),

and so
radT (A)/ rad2 T (A) = r/r2 ⊕DA/(rDA+DAr).

The quotient DA/(rDA+DAr) is isomorphic to D(socAe A), where Ae denotes the
enveloping algebra A⊗kA

op of A, and socAe A denotes the socle of the A-bimodule
A. Consequently, there is an isomorphism

radT (A)/ rad2 T (A) ' r/r2 ⊕D(socAe A)

of A-bimodules. The presence of the summand r/r2 shows that the arrows of Q

can be regarded as arrows also of Q̃, whereas the summand D(socAe A) represents

additional arrows. The number of such additional arrows in Q̃ from a vertex i
to a vertex j is equal to dimk ej(D(socAe A))ei, where ei denotes the primitive

idempotent in A corresponding to the vertex i in the quiver Q. Let Q̃+ denote
the collection of all new arrows; this set is non-empty since D(socAe A) 6= 0. If

Q1 denotes the set of arrows of Q and Q̃1 denotes the set of arrows of Q̃, then

Q̃1 = Q1 ∪ Q̃+.

Denote by ξ the surjection DA → D(socAe A). For every arrow β ∈ Q̃+ from i
to j, choose an element xβ ∈ ej(DA)ei such that the set

{ξ(xβ) | β ∈ Q̃+, β : i→ j}
forms a k-basis for ej(D(socAe A))ei. Now define a surjective ring homomorphism

φ : kQ̃ → T (A) as follows. For a primitive idempotent ei we set φ(ei) = (ei, 0),

while φ(α) = (α, 0) for all α ∈ Q1. For all β ∈ Q̃+ we set φ(β) = (0, xβ). Then the

kernel Ĩ of φ is an admissible ideal in kQ̃, and T (A) ' kQ̃/Ĩ. While the quiver Q̃ is

an invariant of the algebra T (A), the ideal Ĩ may depend on the choices made; the
algebra might admit several presentations as a bounded path algebra. Nevertheless,
the following always holds.

Lemma 2.1. Suppose β1 and β2 are arrows in Q̃+. Then β2β1 ∈ Ĩ.

Proof. Using the ring homomorphism φ : kQ̃→ T (A), we obtain

φ(β2β1) = φ(β2) · φ(β1) = (0, xβ2
) · (0, xβ1

) = 0,

where xβ1
, xβ2

∈ DA. Hence β2β1 ∈ kerφ = Ĩ. �
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3. Hochschild homology dimension

In this main section we prove that the Hochschild homology groups of the trivial
extension algebra T (A) ofA do not all vanish in high degrees, provided the algebraA
is either local, selfinjective or graded. We define the Hochschild homology dimension
of an algebra B as

HHdimB
def
= sup{n | HHn(B) 6= 0},

and so what we shall prove is that HHdimT (A) = ∞ when A is either local,
selfinjective or graded.

We recall first a key result from [BHM], which shows that the existence of a
certain kind of cycle in the quiver of an algebra forces the Hochschild homology
dimension to be unbounded. Let Γ be a finite quiver, J an admissible ideal in kΓ,
and consider the algebra kΓ/J . A cycle in Γ is a path p of length at least one,
starting and ending at the same vertex. Let p = αn . . . α2α1 be a cycle in Γ with
αi ∈ Γ1 for all 1 ≤ i ≤ n. We say that p is a 2-truncated cycle in the algebra kΓ/J
if αi+1αi ∈ J for all 1 ≤ i ≤ n− 1 and also α1αn ∈ J .

Theorem 3.1 ([BHM, Theorem 3.1]). Let Γ be a finite quiver and J an admissible
ideal in kΓ. If kΓ/J admits a 2-truncated cycle, then HHdimkΓ/J =∞.

In [BHM], this result was actually proved in a more general setting. Namely, the
coefficients need not be taken from a field, they can be taken from any commutative
ring. Moreover, the quiver need not be finite, it only has to have a finite number
of vertices.

We are now ready to prove our three results, proving that HHdimT (A) = ∞
whenever A is local, selfinjective or graded. We divide these three cases into sep-
arate subsections. Recall that we may without loss of generality assume that A
is the quotient kQ/I of a path algebra, where Q is a finite quiver an I ⊆ kQ an

admissible ideal. We keep the notation from the previous section, in particular Q̃
denotes the quiver of T (A).

3.1. The local case. When the algebra A is local, the proof is short since the
underlying quiver contains only a single vertex.

Theorem 3.2. If A is a local finite dimensional k-algebra, then HHdimT (A) =∞.

Proof. The quiver Q, and therefore also Q̃, has only one vertex. Let β be an arrow

in Q̃+. By Lemma 2.1, the path p = β is a 2-truncated cycle in kQ̃/Ĩ, and this
algebra is isomorphic to T (A). Hence HHdimT (A) =∞ by Theorem 3.1. �

3.2. The selfinjective case. Next, we treat the case when the algebra A is self-
injective. Before the proof, we establish the following result, showing that every

vertex in the quiver Q̃ of T (A) is the target of at least one new arrow. That is, given

any vertex, there exists one arrow in Q̃ which does not correspond to an arrow in
the quiver Q of A, and having the vertex as target. We denote by r the number of
vertices in the quiver Q.

Proposition 3.3. Suppose that A is a selfinjective k-algebra. Then for every 1 ≤
i ≤ r, there is an arrow in Q̃+ ending at vertex i.

Proof. Since A is selfinjective, there exists a permutation

π : {1, . . . , r} → {1, . . . , r}
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of the vertices such that Aei ' D(eπ(i)A) for all 1 ≤ i ≤ r. So for any given i,
the Loewy length of the left A-module Aei is equal to the Loewy length of the
right A-module eπ(i)A. Denote this common length by Li, and choose a nonzero

element x ∈ rLi−1ei. Now rLi−1ei equals socAAei, which in turn is isomorphic to
D(topAop eπ(i)A), where topAop eπ(i)A denotes the top of the right A-module eπ(i)A.
Therefore x = eπ(i)xei, giving

x ∈ eπ(i)rLi−1 = socAop eπ(i)A.

Let α be any arrow in Q1. Then αx = 0 since x belongs to the socle of the
left A-module Aei, and xα = 0 since x belongs to the socle of the right A-module
eπ(i)A. Thus x is an element of socAe A, showing that eπ(i)(socAe A)ei is nonzero.
But then ei (D(socAe A)) eπ(i) must also be nonzero, and so there exists an arrow

in Q̃+ from vertex π(i) to i. �

Remark 3.4. As can be seen from the proof of this proposition, the result does
not require the algebra A to be selfinjective. Namely, the result holds under the
weaker assumption that socAA ⊆ socAe A, that is, when the socle of A as a left
module is contained in its bimodule socle.

Proposition 3.3 guarantees that the quiver of the trivial extension of a selfinjec-
tive algebra contains “enough” arrows. This is what we need in order to prove the
result on the Hochschild homology dimension for such algebras.

Theorem 3.5. If A is a selfinjective k-algebra, then HHdimT (A) =∞.

Proof. From Proposition 3.3, we know that for any vertex in Q̃ there is at least

one arrow in Q̃+ ending at that vertex. It follows from this that there exists a

cycle p = βt . . . β2β1 in Q̃ consisting entirely of arrows in Q̃+. By Lemma 2.1, the
composition of any two such arrows is zero in T (A), hence p is a 2-truncated cycle
in the trivial extension algebra. Theorem 3.1 now gives HHdimT (A) =∞. �

Since the trivial extension of any algebra is symmetric, we obtain the following.

Corollary 3.6. If A is any finite dimensional k-algebra, then HHdimT (T (A)) =
∞.

3.3. The graded case. In this final subsection, we treat the case when the algebra
A is positively graded, so that A = A0 ⊕ A1 ⊕ · · · ⊕ As. Many of the algebras
one normally studies are gradable, and they are therefore covered by the result.
However, our proof requires the characteristic of the ground field k to be zero, and
the degree zero part A0 of A to be isomorphic to a product k × · · · × k = k×r as
a k-algebra. Let 1A = e1 + · · · + er be the corresponding decomposition of the
identity.

Example 3.7. We do not require the generators of A to be in degree 1. For
example, let A be the path algebra A = kQ/I, where Q is the quiver

Q : •2
β

##
•1

α
;;

γ
��

•3

•4
δ
// •5

ε

EE
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and I is the ideal in kQ generated by the single relation εδγ − βα. This ideal is
not homogeneous with the path length grading, where every arrow is assigned the
degree one. However, if we let degα = deg β = 3 and deg γ = deg δ = deg ε = 2,
then A is a positively graded algebra.

There are finite dimensional algebras that do not admit a positive grading with
semisimple degree zero part, see [BBFS] for examples.

Returning now to the general case, for 0 ≤ l ≤ s, let ClA be the r×r-matrix with
entries (ClA)i,j = dimk ejAlei. The graded Cartan matrix of A is defined to be the
r × r-matrix

CA(x) = C0
A + C1

Ax+ C2
Ax

2 + · · ·+ CsAx
s

with entries in Z[x]. Its determinant detCA(x) is the graded Cartan determinant
of A. The following result from [BM1] establishes a connection between this deter-
minant and the Hochschild homology dimension of A.

Theorem 3.8 ([BM1, Corollary 3.5]). If detCA(x) 6= 1, then HHdimA =∞.

Now we show how to give the trivial extension T (A) of A a positive grading,
based on the grading of A. By definition, there is a vector space decomposition
T (A) = A⊕DA. We keep the original grading of A, so that

degAl = l; 0 ≤ l ≤ s,

and then we give D(A) the following grading:

degD(Al) = s+ 1− l; 0 ≤ l ≤ s.

In this way, T (A) becomes a positively graded k-algebra with top degree s+ 1.
Next, we analyze the graded Cartan matrix

CT (A)(x) = C0
T (A) + C1

T (A)x+ C2
T (A)x

2 + · · ·+ CsT (A)x
s + Cs+1

T (A)x
s+1

of T (A). The matrices C0
T (A) and Cs+1

T (A) must both be identity matrices, since

dimk ej(T (A)0)ei = dimk ejA0ei = δij

and

dimk ej(T (A)s+1)ei = dimk ejD(A0)ei = δij ,

where δij denotes the Kronecker delta. It follows from this that the graded Cartan
matrix of T (A) has the shape

CT (A)(x) =


1 + p1,1(x) + xs+1 p1,2(x) · · · p1,r(x)

p2,1(x) 1 + p2,2(x) + xs+1 · · · p2,r(x)
...

...
. . .

...
pr,1(x) pr,2(x) · · · 1 + pr,r(x) + xs+1

 ,

where the entries pi,j(x), 1 ≤ i, j ≤ r, are integer polynomials of degree at most s
and with zero constant term. This is the key ingredient when we now prove that
the Hochschild homology dimension of T (A) is infinite.

Theorem 3.9. Suppose that the characteristic of k is zero, and let A = A0⊕A1⊕
· · · ⊕ As be a positively graded finite dimensional k-algebra, where A0 is a product
of copies of k. Then HHdimT (A) =∞.
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Proof. The product of the diagonal entries in the graded Cartan matrix CT (A)(x)
is a monic polynomial of degree r(s + 1), and with constant term 1. All other
products in the expression for the determinant involve off-diagonal entries, so they
have degrees less than r(s+ 1) and zero constant term. Therefore the determinant
is of the form

detCT (A)(x) = 1 + · · ·+ xr(s+1).

Then HHdimT (A) =∞ by Theorem 3.8. �
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