Post-print version of paper by Sourouri et al.

at SC'17,

November 2017. https://doi.org/10.1145/3126908.3126945

Towards Fine-grained Dynamic Tuning of HPC Applications
on Modern Multi-Core Architectures

Mohammed Sourouri
Norwegian University of Science and
Technology (NTNU)
mohammed.sourouri@ntnu.no

Espen Birger Raknes
Aker BP
espen.birger.raknes@akerbp.com

Nico Reissmann
Norwegian University of Science and
Technology (NTNU)
reissman@idi.ntnu.no

Johannes Langguth Daniel Hackenberg Robert Schone
Simula Research Laboraty Technische Universitit Dresden Technische Universitit Dresden
langguth@simula.no daniel.hackenberg@tu-dresden.de robert.schoene@tu-dresden.de
Per Gunnar Kjeldsberg
Norwegian University of Science and
Technology (NTNU)
pgk@ntnu.no
ABSTRACT 1 INTRODUCTION

There is a consensus that exascale systems should operate within a
power envelope of 20MW. Consequently, energy conservation is
still considered as the most crucial constraint if such systems are
to be realized.

So far, most research on this topic focused on strategies such as
power capping and dynamic power management. Although these
approaches can reduce power consumption, we believe that they
might not be sufficient to reach the exascale energy-efficiency goals.
Hence, we aim to adopt techniques from embedded systems, where
energy-efficiency has always been the fundamental objective.

A successful energy-saving technique used in embedded sys-
tems is to integrate fine-grained autotuning with dynamic voltage
and frequency scaling. In this paper, we apply a similar technique
to a real-world HPC application. Our experimental results on a
HPC cluster indicate that such an approach saves up to 20% of
energy compared to the baseline configuration, with negligible
performance loss.

KEYWORDS

Energy-efliciency; high performance computing; dynamic voltage
and frequency scaling; autotuning; dynamic tuning

Copyright ACM 2017

In order to improve energy-efficiency, hardware vendors increas-
ingly employ techniques from embedded systems. Features such as
decoupled frequency domains, dynamic voltage and frequency scal-
ing (DVFS), ultra-low power states, and the idea of fused CPUs and
FPGAs, indicate a trend that HPC and embedded systems are con-
verging. For example, the latest generations of Intel Xeon CPUs not
only improve performance by adopting additional cores or wider
registers, but also incorporate a series of user-controllable switches
[16, 19, 28]. Access to such switches enables users to influence the
energy characteristics of the CPU. In the Haswell-EP and subse-
quent architectures, programmers can manipulate both individual
core frequencies and the uncore frequency, i.e. the frequency of
the ring connecting the cores to the memory controller [16]. These
user-controllable hardware switches are an effective source for con-
serving energy in embedded systems, and their increasing influx
into HPC begs the question of how they can be used to improve
energy-efficiency.

To answer this question, we look to embedded systems where
fine-grained autotuning at code-level, tightly integrated with user-
controllable switches has been extensively studied. One example are
System-Scenarios [10], where highly tuned system configurations
are created in order to map the underlying hardware architecture
to the application behavior. Other examples include self-aware
compute systems [18] and systems based on the observe-decide-act
principle [29] where a system-monitor picks the best hardware and
software configuration for a given behavior.

Regardless of the approach, a common denominator is the task
of balancing multiple constraints such as performance and energy.
While some of these approaches proved to be successful in embed-
ded systems or other domains, very few were applied to typical
HPC applications. Hence, there is no guarantee that such an ap-
proach works in a performance-first environment, as the funda-
mental objectives are different. Embedded systems typically work
under deadline constraints required by real-time processing, while
in HPC the time-to-solution has to be minimized.

In this paper, we combine fine-grained autotuning with user-
controllable hardware switches and threads, and apply this tech-
nique to a real-world HPC application on a single compute node.
The application solves the elastic wave equation repeatedly in or-
der to create a seismic image of the subsurface of the earth. It is
predominantly memory-bound, which makes it a good candidate
for energy savings on CPUs with decoupled frequency domains,
where the core frequency can be scaled down to conserve energy.

To evaluate our approach, we tune our application for the fol-
lowing three objectives: energy, energy delay product (EDP) and
energy delay product squared (ED2P). Our overall results show
energy savings of up to 20%, with an increase of only 3% in runtime
compared to the reference implementation.

Thus, our primary contributions in this paper are:

e We implement and test an energy-conserving methodol-
ogy inspired by embedded systems, which combines the
strengths of fine-grained autotuning with user-controllable
hardware switches in a real-world HPC application on a
single compute node.

e We present experimental results and compare a reference
implementation with statically and dynamically tuned ver-
sions.

e We evaluate the viability of our approach with respect to
energy-performance trade-offs.

e We present energy results of a test application with and
without AVX2 vectorization enabled.

The work described in this paper is conducted in the context of
the READEX project, which aims at exploiting dynamic application
behavior at runtime for energy-efficient exascale computing.

The remainder of the paper is organized as follows: Section 2
provides background on autotuners and user-controllable switches,
while related work is surveyed in Section 3. We present our target
application in Section 4, followed by an explanation of our dynamic
tuning approach in Section 5. The details of our experimental setup
are presented in Section 6, while results are discussed in Section 7.
The paper concludes with Section 8.

2 BACKGROUND

This section gives a brief overview of state-of-the-art autotuners,
user-controllable hardware switches found on some modern x86
CPUs, and the different energy-efficiency metrics.

2.1 State-of-the-art Autotuning

The primary goal of autotuners is to optimize applications by find-
ing the best combination of tuning parameters for a given system.
Typical examples of tuning parameters are compiler flags, environ-
mental settings, and application specific parameters. In the context
of autotuning, the life cycle of an application is generally split in
design-time and runtime. The actual tuning process either takes
place at design-time, i.e. before the application is executed, or at run-
time, i.e. during its execution. This is referred to offline and online
tuning, respectively. Some autotuners support both approaches.
Furthermore, autotuners can also offer support for static or dy-
namic tuning. In the former, the best combination of tuning pa-
rameters is determined for an entire application, while the latter

Core frequency (GHz)

cores Non-AVX2 AVX2
Cores 1-2 3.3 3.1
Cores 3 3.1 2.9
Cores 4 3.0 2.8
Cores 5+ 2.9 2.8
Base frequency 2.5 2.1
Frequency stepping [MHz] 100 100

Table 1: Frequency distribution of individual cores for the
Intel Xeon E5 2680v3 CPU. Core frequencies listed under
the non-AVX2 column indicate frequencies for workloads
not optimized for AVX2, while frequencies listed under
the AVX2 column indicate frequencies for AVX2 optimized
workloads. Numbers from [20].

permits tuning parameter changes at runtime. Typically, this re-
quires to decompose an application into smaller regions, which
enables fine-grained tuning.

A key assumption of autotuners is that the time and energy
spent on tuning is amortized by the production runs. Thus, long-
running scientific applications, such as weather simulations or
seismic modeling, are ideal target applications for autotuners. A
survey of autotuners is presented in Section 3.

2.2 User-controllable Hardware Switches

Dynamic Voltage and Frequency Scaling (DVFS) is a commonly used
approach to conserve energy. In DVFES, energy savings are realized
by lowering the clock frequency, which automatically results in a
lowering of the supply voltage.

Recent CPUs based on the Intel’s Haswell, Broadwell, and Sky-
lake architecture provide user-access to uncore frequency scaling
(UFS) in addition to conventional core frequency scaling. Moreover,
these CPUs permit to change the frequency for individual cores, pro-
viding a fine level of granularity. For Haswell CPUs, the transition
latency for each core is 20us. However, the actual switching time
can be up to 500us in practice, due to the presence of a switching
window. Our measurements show that the core transition latency is
uniformly distributed between 100-600us, confirming the findings
from [16]. We found the transition latency of UFS to be close to
20us, which is identical to the numbers presented in [12].

The CPU may automatically increase the core and uncore fre-
quencies beyond its base frequency by monitoring heuristics based
on temperature, workload, and the number of idle cores. This is
referred to as turbo boost [17], and the frequencies can be increased
up to the max turbo frequency. However, AVX2 vectorized code uses
the AVX2 units that consume more power, which would exceed the
Thermal Design Power (TDP) if the CPU were running at its base
frequency. In such a scenario, requests for higher frequencies than
what can be guaranteed are ignored by the CPU. Table 1 shows the
different turbo frequencies with and without AVX2 for the CPU
used in our experiments. For the sake of reproducibility and corre-
spondence between user-selected core and uncore frequencies, we
only operate within the boundaries of guaranteed frequencies.

2.3 Reporting Energy-efficiency

The appropriate metric for reporting energy efficiency in HPC is
a much-debated topic. Some researchers prefer to report energy
(Joules), while others prefer power (Watts). However, both are
static metrics that do not capture the energy-performance trade-
off. A widely used metric to assess both power and performance,
is the Energy Delay Product (ED") [11]. This metric relates the
energy product, E, with circuit delay, D, using the positive integer,
n. In simple terms, a lower EDP value indicates that power is more
efficiently converted into performance. The factor n indicates the
relative importance of performance. It is commonly set to either 1,
2 or 3. A higher value of n places more importance on performance.

3 RELATED WORK

Energy-efficiency is a diverse field of research, ranging from power-
reducing techniques for large data centers to analytical energy
models for scratchpad memory. We limit the discussion on auto-
tuners or DVFS tuning in HPC systems, since our work focuses
on the energy-performance tradeoff applied to real-world HPC
applications.

Autotuners. Autotuning is applied extensively in compute in-
tensive applications and libraries [40], but is also used in other
application domains [3]. We present the most recent and notable
autotuning frameworks and libraries.

Active Harmony [37] is an autotuning framework that provides a
domain-specific language (DSL) for tuning applications. It performs
both offline and online tuning [39], but requires modifications to
the source code. It is not clear whether DVFS-tuning is supported.

The Periscope Tuning Framework (PTF) [34] is a static autotuner
that supports user plugins to perform efficient tuning. It provides
a plugin to perform DVFS, and dynamic tuning is planned to be
introduced in the near future. The MATE [26] and ELASTIC [24]
autotuners are the only surveyed frameworks that perform dynamic
tuning, albeit limited to MPI processes. This is a more coarse grained
approach compared to what we propose.

Several multi-objective autotuners were proposed [1, 14, 21]. In
these systems, the user specifies multiple tuning objectives, such
as performance, energy, resource utilization, or time-to-solution.
To the best of our knowledge, none of the currently available au-
totuners supports multi-objective dynamic tuning using DVFES on
modern HPC clusters.

DVFS in HPC. Numerous studies investigated the use of DVFS in
an HPC context. Some focused on the different energy-performance
metrics [7], while others provided an analytical framework for
power-performance tradeoffs [4]. Many studies also explored the
prospect of power/energy profiling [9] and measurement[31]. The
following studies applied DVFS to one or more HPC applications
on large clusters.

Freeh et al. [8] studied the energy-time tradeoff in HPC by using
applications from the NAS parallel benchmark suite on ten nodes
consisting of single-core CPUs. They found that an increase of 3%
in runtime could reduce the CPU’s energy consumption by 20%
on a single node. However, it is not clear how this result would
translate to modern multi-core CPUs.

Li et al. [22, 23] developed a runtime library to exploit regions
where Dynamic Concurrency Throttling or DVFS may be beneficial.
A selection of MPI+OpenMP applications from the NAS parallel
benchmark suite as well as two AMG based proxy applications
from the ASC Sequoia benchmark suite were chosen to evaluate
their approach. Other runtime libraries, such as the one by Cicotti
et al. [5], were also evaluated on proxy applications for energy
efficiency. In contrast to these approaches, we use dynamic tuning
of core and uncore frequencies, as well as threads to find the best
energy-performance tradeoff in a real-world HPC application. In
addition, our energy monitoring is conducted at a higher resolution.
This provides more accurate results and gives further insight into
the energy cost of HPC applications.

4 SEISMIC WAVE PROPAGATION

This section describes the computational building blocks governing
our application as well as key implementation details.

4.1 The Elastodynamic Wave Equation

The elastodynamic wave equation (1) and its source-term, f;, con-
stitutes an important backbone in many computationally complex
applications, such as advanced 3D imaging and inversion of the
earth’s subsurface [27]. If we consider an isotropic elastic medium
(2), Q ¢ R3, parameterized by the density, p, and the Lamé pa-
rameters A and g, then for any (x,t) € (Q,T), where T is the time
interval, an elastic wave propagating in Q is governed by the fol-
lowing elastodynamic wave equation

POx = OxOxx + Oyoxy + 020xz + fx
POy = OxOxy + Oyoyy + 0z0yz + fy (1)
POz = Ox0xz + Oyoyz + 0,022 + f2

Oxx = (A +21)0xvx + A(yvy + 0707)
Gyy = (A +2p)0yvy + A(Oxvx + 0707)
Ozz = (A +201)007 + A(Oxvx + Oyvy)
Gyz = p(Oyvz + 0zvy)
Oxz = (0xvz + 0z0x)
Oxy = p(Oxvy + Oyvx)

A much-used numerical framework used for computing elastic
waves is the staggered-grid explicit finite-difference method on a
3D Cartesian grid. Unlike others [6, 13], we employ a standard eight-
order 16-point stencil for spatial approximations and a second-order
stencil for temporal approximations.

4.2 Multi-core Parallelization Using OpenMP

The main computational flow of the application can be divided
into two parts, as shown in Listing 1. For brevity, loops responsible
for initializing components, such as stress and velocity, are not
shown. However, first touch [38] was employed in these loops
to minimize performance problems associated with Non-Uniform
Memory Access.

The differentiators, as shown in (1), must be computed before
the computation of the velocity (v;) and the stress field (o;;) as
displayed in Listing 1. The kernels within a single iteration have
data dependencies, as well as a loop-carried dependency between

for (int it = 0; it < Nt; it++) {
for (const auto& coordinate: coordinates) {
compute_velocity (v;);
compute_stress(ojj)

1}

Listing 1: Pseudo code displaying the main computational
part of the application along the Cartesian coordinates.

#pragma omp parallel for num_threads(nthreads)

for (int k = 0; k < nz_ghost; k++) {
for (int j = 0; j < ny_ghost; j++) {
for (int i = 0; i < nx_ghost—1; i++) {
vx[k][j][i] += dt » (2.0f / (rho[k][j][i]
[

+ rho[k]%j][i+1])) « (dell[k]

il
jllil
+ del2[k][j1[i] + del3[kI[j1[i]);

1}

Listing 2: Source code for computing the
velocity in x direction. The same computation is repeated
for computations along the other directions.

individual iterations. In total, 25 different kernels are computed
per iteration. Listing 2 displays the source-code for computing the
velocity in x direction. All kernels resemble typical stencil compu-
tations, making them amenable to shared-memory parallelization
using OpenMP [35, 36]. We apply the roofline model [41] to better
understand the performance bounds for the different kernels. This
requires the computation of the operational intensity (OI) by divid-
ing the number of FLOPS by the number of bytes. The OI for the
differentiator kernels is 0.167, while it is 0.250 for the velocity and
stress fields. As three of the stress field kernels iterate over the same
memory region, they are fused in order to improve performance.
The respective OI is 0.286.

Our intuition for tuning this application is to decrease core fre-
quency and increase uncore frequency for kernels with low OI,
and increase core frequency and decrease uncore frequency for
kernels with high OI The challenge is to find the best tradeoff point
between energy efficiency and performance degradation. This re-
quires careful tuning.

We chose three different input sizes for our wave propagation
application: 5123 (small), 768 (medium), and 1024° (large). This
permits to highlight the energy-performance ratio as a function
of different input sizes. The medium size input was chosen due
to its poor memory alignment, which resulted in worse than ex-
pected performance for AVX2 vectorized code. All computations
are executed in single-precision as this is sufficient.

Figure 1 shows the runtimes of all kernels for the reference im-
plementation when using 24 cores and the medium input size. The
slowest kernels compute along the z direction due to unfavorable
memory accesses, leading to large strides between loop iterations.

5 FINE-GRAINED DYNAMIC AUTOTUNING

Figure 1 does not show which system configuration provides the
best performance for the individual kernels, nor does it show the
best system configuration for a given tuning objective. In order to
make full use of the capabilities provided by DVFS, we need to tune
every kernel individually. Current static autotuners do not provide
us with that level of granularity, and even if they did, fined-grained

350 OptEWE: Kernel Runtime Comparison (768°), Threads=24

N N
(=] o
S o

Time (milliseconds)
=
w
o

-
o
S

v
=)

L. |
yexeygo s - - T S - TS I
£ 28K a3 NG 2 a 22333 3L L XRRSS
° T T v T v v 5 T T © © T T T

CSXXSyyszz

Kernel Name

Figure 1: The runtime distribution for each kernel for input
size 768° involving all 24 threads.

autotuning alone is not enough. A runtime system that can apply
the best-found system configuration for each kernel is needed in
addition. To the best of our knowledge, there currently exists no
such tool chain with a full end-to-end pipeline.

To start addressing this issue, we have developed a custom tun-
ing setup that lets us tune each individual kernel. Our approach
consists mainly of using C++ preprocessor directives, which encap-
sulate each kernel, allowing it to be tuned individually. In addition
to enabling hardware tuning inside each directive, we simultane-
ously record the runtime and the timestamp of each kernel. The
timestamp is later used as an offset into an FPGA based energy
measurement infrastructure, which is described in more details in
Section 6.

The use of C++ preprocessor directives means that we avoid
changing the actual code base, which is important since the ap-
plication presented in this work is in daily production. It also lets
us conveniently access the different code versions by passing the
appropriate arguments at compile time.

For the actual tuning, we use a small bash script to traverse over
the required tuning vectors. The tuning results are then stored to
disk. Once the tuning has been completed, the resulting dataset is
fed to a Python post-processing tool, which acts as a recommen-
dation system. The task of the Python tool is to automatically find
the best combination of threads, core and uncore frequency for
each individual kernel. In addition, it also computes the energy-
performance trade-offs compared to other versions of the code.

Based on the user-selected tuning objective, the Python tool
generates the appropriate compile flags including the necessary
preprocessor directives. The code is then recompiled and the end
result is the dynamically tuned version of the code. The overall
workflow is depicted in Figure 2. Listing 3 displays the content
inside each individual preprocessor directive.

For experimental evaluation purposes, we created three versions
of the code which we refer to as: reference, static and dynamic. The
former version is simply the default production version of the code,
i.e. no autotuning is applied. When the reference implementation

— @ ® ®
R

Source code
w/macros

Dynamic
tuning

— © V@
{}

Dynamically tuned Recommendation
version system

Tuning
results

Figure 2: The workflow of our current approach.

is executed using all 24 cores of the test system, the cores run at
2.5 GHz while the uncore frequency is 3.0 GHz.

Static refers to the statically tuned version of the code. For the
sake of completeness, static tuning was performed using an exhaus-
tive search algorithm for the following three tuning vectors: core
frequency, uncore frequency and the number of OpenMP threads.
In the remainder of the paper, we will refer to different system
configurations using the following notation: core | uncore | thread.
Thus, 1.7|2.2|24, corresponds to a system configuration where the
core frequency is 1.7 GHz, uncore frequency is 2.2 GHz and the
number of threads is 24.

We also searched for better compiler flags than the flags used by
the reference version, but this search showed that the best compiler
flags, -02 -qopenmp -ipo, were already being used by the reference
implementation.

In dynamic, i.e. the dynamically tuned version of the code, each
of the 25 compute kernels is tuned individually for the tuning
parameters mentioned above. Like static tuning, an exhaustive
search algorithm is used to find the best system configuration for
each kernel. The choice of the search algorithm is motivated by the
fact that it is easy to grasp. A better search algorithm would e.g.
rely on a domain-specific energy model such as the one described
in [2] that can predict the best combination of core and uncore
frequency for each kernel. Such a prediction would dramatically
reduce the search space to only a handful alternatives, which may
be found through testing or careful analysis.

Once the tuning process is completed, the recommendation sys-
tem will pick the best system configuration for a given tuning
objective function. As an example, let us consider the case where
the tuning objective is ED2P. The recommendation system will
then pick the system configuration for each kernel with the lowest
ED2P number. The same procedure is used for the other tuning
objectives.

Moreover, in the dynamically tuned version, the best DVFS set-
ting found is applied inside the main compute loop and for each
kernel, in contrast to the statically tuned version. When using static
tuning, the best-found DVEFS settings are applied only once, which

Kernel Core [GHz] Uncore [GHz] # Threads
dzb 1.5 2.2 24
cvz 1.5 2.5 24
dyf3 1.3 1.8 24
cvy 2.5 2.1 24
dxf 1.2 2.1 24
cvx 1.4 1.9 23
csxxsyyszz 1.8 1.7 24

Table 2: The best system configurations found for the var-
ious kernels when the tuning objective is energy. Due to
space considerations, only system configurations for a selec-
tion of compute kernels in x, y and z directions from Figure 1
are shown.

is immediately after the application start. The total dynamic DVFS
overhead can be computed by multiplying the number of iterations
with the number of kernels and with the overhead for core and
uncore frequency scaling.

Table 2 shows an example of the best found system configu-
rations used by the dynamically tuned version for the medium
problem size when the tuning objective function is energy. The best
static configuration was 1.7|2.3/24.

The same tuning procedure was repeated for the vectorized ver-
sion of the code where AVX2 instructions are applied. The proce-
dure is the same, except for the fact that the vectorized version also
uses the following compiler flags: -03 -axCORE-AVX2. In the vec-
torized version the -02 flag is discarded. Unlike the non-vectorized
version, the vectorized reference implementation runs at 2.1 and
2.8 GHz for core and uncore, respectively.

6 EXPERIMENTAL PLATFORM

For all our experiments, we use the Taurus [33] cluster which
is located at Technische Universitiat Dresden (TUD), Germany. A
large partition, consisting of 1456 homogeneous compute nodes, is
equipped with Haswell-EP CPUs. Table 3 provides a summary of a
Taurus compute node. For core and uncore clock frequencies, we
refer to Table 1.

Cluster Taurus
Processor Intel Xeon E5-2680v3
Architecture Haswell-EP
Cores 12

Sockets 2

Base core clock freq. [GHz] 2.5

L3 cache/chip [MB] 30

Memory size [GB] 64

Peak DP [GFLOPs] 960

Peak BW [GB/s] 136
STREAM [GB/s] 116
Compiler icpc 16.2.181
Thread layout compact,fine

Table 3: Architectural overview of a Taurus compute node.

#ifdef CVX_NEMI
set_cpu_core_freq(core_freq_setting);
set_uncore_freq(uncore_freq_setting);

hdeem_tstart.time_since_epoch () ;
cvx_time —= std::chrono:: high_resolution_clock ::now() ;
compute_velocity (v;);

cvx_time += std::chrono::high resolution_clock ::now();

hdeem_tstop.time_since_epoch () ;
#endif CVX_NEMI

Listing 3: Example code demonstrating how the energy
usage for individual code regions were captured using
HDEEM. The same excerpt also shows how core and uncore
frequency were changed.

Because each compute node is directly water cooled, no electrical
power is used for cooling. This makes it easier to report precise en-
ergy results for an entire compute node. Furthermore, each compute
node is instrumented using the High Definition Energy Efficiency
Monitoring (HDEEM) infrastructure [15]. By equipping each com-
pute node with an FPGA, the energy usage of various components
such as the CPUs, memory modules and the compute node itself
can be monitored without interrupting the CPU. The benefits of this
approach are many, but for our purpose, the two most important
features are high accuracy (a maximum error rate of 2% is reported)
and the ability to profile individual code regions with high spatial
and temporal granularity (1 kSa/s).

Another important feature of the Taurus cluster is the ability to
use DVFS in the Haswell-EP partition. We have used the low-level
x86_adapt [30] library for this purpose. Listing 3 displays how
x86_adapt and HDEEM was used for DVFS and energy instrumen-
tation in our codes.

140 OptEWE: Performance Comparision

— 512} — 7683 —

10243

Mega Lattice Update Per Second [MLUPs]

2 345 6 7 8 91011121314151617 18 19 20 21 22 23 24
Number of Threads

(a) Baseline performance with AVX2 disabled

7 EXPERIMENTAL RESULTS

In this section, we present experimental results for the following
three tuning objective functions: energy, EDP and ED2P. We do
not tune for runtime because finding a system configuration that
is better than the reference implementation for our application is
not possible. In other words, the highest performance is reached
when the application is executed with the highest core and uncore
frequency, in addition to the maximum number of threads.

While a full production run typically consists of 1000 or more
iterations, it is not necessary to run more than five iterations to
evaluate the tuning objective functions because the iterations have
essentially the same runtime. Since the number of iterations re-
quired for the production runs increases with problem size, the cost
of tuning becomes smaller in comparison. The results presented in
this section are based on five iterations. They measure the energy
consumption of the entire compute node, including CPU, DRAM,
storage, etc.

7.1 Reference Implementation Performance

We start by presenting the performance of the reference implemen-
tation to establish a baseline, before presenting the result of the
statically and dynamically tuned implementations. We use Mega
Lattice Site Updates Per Second (MLUPs) as our performance metric
of choice. The number of MLUPs can be computed by multiplying
the number of grid points with the number of iterations divided by
the runtime in seconds.

Figures 3(a) and 3(b) show the performance scaling of the ref-
erence implementation as a function of the number of OpenMP
threads, with and without vectorization. As previously mentioned,
our application is inherently memory-bound, which explains the
increase in performance when the 12 core (single socket) bound-
ary is crossed. The main benefit of an additional socket lies in the
additional memory channels it adds to the system, which result in

140 OptEWE: Performance Comparision

— 5128 — 768%

— 1024°

Mega Lattice Update Per Second [MLUPs]

2 345 6 7 8 91011121314151617 18 19 20 21 22 23 24
Number of Threads

(b) Baseline performance with AVX2 enabled

Figure 3: The sustained performance results measured in MLUPs for the three model sizes with and without vectorization.

higher memory bandwidth. We also observe that for all problem
sizes, the highest performance is achieved when all 24 cores are
used, and it appears that the memory bandwidth is never saturated.
This behavior is explained by the choice of thread affinity. We use
compact rather than scatter. A similar curve was observed when
running the well-known STREAM Triad benchmark [25].

Recall from Section 5 that the reference implementation operates
at 2.5 and 3.0 GHz for the non-vectorized version and 2.1 and 2.8
GHz for the vectorized version. We observe that despite running at
a lower frequency, all vectorized implementations deliver a similar
result as the non-vectorized versions.

7.2 Tuning for Energy

Figure 4(a) displays the results for the different problem sizes when
tuning for energy. Regardless of the approach or implementation
(vectorization/no-vectorization), both static and dynamic tuning
can save a considerable amount of energy compared to a highly-
optimized reference implementation. In Figure 4(a) (going from the
smallest to the largest problem size), the dynamically tuned version
consumes 20.35%, 24.28% and 21.28% less energy, with an increase in
runtime of 10.85%, 12.91% and 10.11%. For the vectorized version, the
dynamic version consumes 13.19%, 14.39% and 21.28% less energy,
with an increase of 9.16%, 9.32% and 18.49% in runtime compared to
the reference implementation. Moreover, in all cases, the statically
tuned version consumes, on average, 1.97% more energy, with an
increase of 3.56% in runtime compared to the dynamic version.
The reason why the dynamically tuned version can only beat the
statically tuned version with a small margin is simply due to the
high DVES overhead. As previously mentioned, the advantage of the
statically tuned version is that DVFS is called only once, before the
main compute loop is executed. In the dynamically tuned version
however, the DVFS functions are placed inside the compute loop
and are called once for each kernel and in every iteration. Since we
know the DVES overhead, we can exclude it from the runtime to
create an ideal scenario where the cost of DVFS is virtually free.
This version constitutes an upper bound on the potential energy
savings. By comparing the dynamically tuned version with the
ideal scenario, we observe that the DVFS overhead amounts to 10-
50%, depending on the kernel runtime and the position of switches
within the DVES switching window. In practice, this means that for
the current Haswell-EP microarchitecture, performing DVES for
kernels with a short runtime may not be worthwhile. We consider
the task of identifying exactly which kernels to tune as future work
and expect that this will increase the benefit of dynamic tuning.

7.3 Tuning for EDP

Figure 4(b) displays our EDP values for the various implementa-
tions and problem sizes. Compared to the EDP values of the non-
vectorized reference implementation, the dynamically tuned ver-
sion reduces the EDP values by 16.11%, 18.59%, and 16.78% when the
model size is 5123, 7683 and 10243, respectively. For the vectorized
implementation, the reduction in EDP is (going from small model
size to large) 9.24%, 9.98%, and 3.09%. On average, the dynamically
tuned version reduces the EDP by 4.23% for the non-vectorized
implementations and 4.45% for the vectorized implementations,
compared to the statically tuned version.

We observe that for the largest model size, the best static tun-
ing configuration is the same as the reference implementation if
the implementation is vectorized. This behavior is similar to the
one observed in Figure 4(a) for the same problem size. In general,
the spread among the system configurations for the vectorized
implementations is smaller compared to the non-vectorized imple-
mentations. This suggests that running kernels with suboptimal
system configurations for the vectorized implementation is costlier
than for the non-vectorized versions. The reason for this lies in
the fact that AVX2 operations tend to be more power hungry than
conventional instructions. However, because the dynamically tuned
version runs all kernels with the best system configuration, it re-
duces such energy spills, something the statically tuned version is
not capable of.

7.4 Tuning for ED2P

ED2P places more emphasis on performance than the EDP and
energy objectives. Figure 4(c) shows the ED2P values for the var-
ious implementations and problem sizes. For the non-vectorized
implementations, our ED2P values continue the same trend first
observed for the EDP figures, except that the difference between
the dynamically tuned versions and the statically tuned versions
are now larger. The explanation for this is simply because the best-
found static system configuration is very close or identical to the
reference implementation. Although the same situation applies to
the dynamically tuned versions too, there are some kernels that
favor a different system configuration than the default.

The reduction in ED2P is 13.51%, 15.40%, and 14.00%, when com-
paring the dynamically tuned version to the reference implementa-
tion. Moreover, the dynamically tuned version reduces the ED2P
values on average by 6.42% compared to the statically tuned version.

For the vectorized implementations, the dynamically tuned ver-
sion reduces the ED2P values by 7.15%, 15.40% and 2.12%. Compared
to the statically tuned version, the dynamically tuned version re-
duces the ED2P values by 4.87%, which is more than the reduction
for the other two objective functions.

7.5 Tuning for Multiple Nodes

The focal point of our work is on dynamic tuning for a single
node even though the presented application was designed with
multiple nodes in mind. The understanding gained for a single
node is required in order to tackle the increased complexity of
analyzing multi-node codes due to multiple processes and their
communication.

We foresee that the introduction of multiple processes impacts
our work in two important ways. First, unlike core frequency scal-
ing, where each individual core runs at a separate frequency, uncore
frequency scaling can be performed only on a per-socket basis. This
means that a multi-node implementation of our code should prefer-
ably be based on the hybrid MPI+OpenMP programming model.
Moreover, in order to avoid race-conditions with respect to apply-
ing the dynamic settings, the application should be launched using
only a single MPI process per node. Only a single thread within
each process should be responsible for applying DVFS settings.

Other researchers developed generic frameworks for multi-node
tuning [24] that rely on the use of agents to coordinate the tuning

1600

OPTEWE: TUNING OBJECTIVE - ENERGY

1400

1200

1000 |

Joules

600 |-

400 |

200

9000

800

Il Reference
Il Static
HEl Dynamic

No-AVX2
Model Size=512

AVX2

OPTEWE: TUNING OBJECTIVE - EDP

8000 |-

w » v o ~

o o o o o

o o o o o

o o o o o
T

Energy Delay Product [EDP]
S
o
o

1000 |

50000

40000

30000

20000

10000

Energy Delay Product Squared [ED?*P]

Figure 4: Tuning results for the entire compute node with varying problem size. The figures on the top represent results when

Il Reference
I Static
I Dynamic

No-AVX2
Model Size=512

AVX2

OPTEWE: TUNING OBJECTIVE - ED2P

Hl Reference
Il Static
Il Dynamic

No-AVX2 AVX2
Model Size=512

Joules

Energy Delay Product [EDP]

Energy Delay Product Squared [ED?P]

OPTEWE: TUNING OBJECTIVE - ENERGY
6000 T T

5000

4000 |-

3000 |

2000 |

Il Reference
Il Static
HEl Dynamic

1000 |

No-AVX2
Model Size=768

(@)

AVX2

OPTEWE: TUNING OBJECTIVE - EDP

100000 :

80000 -

60000 -

40000 |-

20000 | Il Reference
I Static
Il Dynamic

0

No-AVX2 AVX2
Model Size=768

(b)

OPTEWE: TUNING OBJECTIVE - ED2P
2000000 T T

1500000

1000000

500000 Hl Reference
I Static
Il Dynamic
o —

No-AVX2
Model Size=768

()

AVX2

OPTEWE: TUNING OBJECTIVE - ENERGY

16000 T T
14000 |
12000 +
10000
?
S 8000}
S
6000 |
4000y Il Reference
20001 Il Static
HEl Dynamic
0
No-AVX2 AVX2
Model Size=1024
OPTEWE: TUNING OBJECTIVE - EDP
700000 T T
600000

500000 -
400000
300000

200000 |
Il Reference
Il Static

I Dynamic

No-AVX2 AVX2
Model Size=1024

Energy Delay Product [EDP]

100000 -

OPTEWE: TUNING OBJECTIVE - ED2P
le7

w
o

N
5
T

N
=)
T

g
o
T

Il Reference
Il Static
Il Dynamic

Energy Delay Product Squared [£ED’F]
o =
5 w

o
<)

No-AVX2 AVX2
Model Size=1024

the tuning objective is energy, the figures in the middle, EDP, while the figures displays EDP2 results.

process. Typically, an additional compute node is allocated for the
agent. However, we plan to implement a domain-specific approach
where the load-imbalance between MPI processes located on the
boundary of the partitioned domain as well as the center of the
domain is exploited.

Processes located on the boundaries have a much lighter work-
load, while processes located at the domain center compute a bigger
fraction of the global domain. This means that application perfor-
mance is dominated by processes from the domain center, and the
reduction of core and uncore for the boundary processes could
potentially conserve energy.

8 CONCLUSION

Energy conservation remains a key challenge, both in today’s super-
computing landscape and with respect to future systems. Luckily,
with the increasing proliferation of user-controllable hardware
switches such as dynamic voltage, core, and uncore frequency scal-
ing on modern multi-core architectures, programmers can now
tune their application for improved energy-efficiency.

So far, existing tools generally rely on static tuning, with the ulti-
mate goal of finding a "one system configuration fits all" approach.
However, we believe that the drawback of such a coarse-grained
approach is that it fails to take rapidly changing computational
behavior of an application into account. Instead, we advocate for a
more fine-grained approach were each individual kernel is tuned
and all kernels are executed with the best possible settings.

We have developed a custom dynamic tuning setup that auto-
matically finds the best system configuration for different compute
kernels by executing a small number of trial runs. Once the differ-
ent configurations have been tested, the recommendation system
suggest the best settings for the different kernels. The suggestions
are determined based on a user-specified objective function, and
can therefore change depending on the requirements. Next, the
application is recompiled so that the suggested system configura-
tions are mapped to their corresponding kernels at runtime. The
end result is a dynamically tuned application that is ready to enter
production using energy-conscious system configuration settings.

In order to quantify the impact of our tuning framework with
respect to energy-performance, we have applied it to two versions
of a long-running seismic wave simulator. In one version, the code
is vectorized, and in the other version the code is not vectorized.
Depending on the model size, our overall results show energy
saving of up to 20% at the cost of at most 3.5% loss in performance
compared to the corresponding reference implementation.

So far, many performance programmers targeting multi-core
architectures have been advised to vectorize their code for increased
performance and energy-efficiency. Although this advice still holds,
we have demonstrated that it is possible to unlock new levels of
energy-efficiency using a more fine-grained tuning. Because AVX2
instructions are more energy-hungry, running the application with
a suboptimal system configuration proves to be costlier compared
to the non-vectorized version.

Based on that, there are several different directions for future
work. One direction is to automatically identify kernels that should
not be tuned. Here, we plan to use a tool that performs a series of
analysis to evaluate the operational intensity for different kernels

and their runtime. Performing DVFS is associated with an overhead,
and this overhead must be taken into consideration so that we only
tune and perform DVFS on kernels that contribute substantially to
the overall performance-energy ratio. Moreover, the encouraging
results motivates development of a tool suite to fully automate the
entire workflow. This is in line with work currently being pursued
in the READEX project [32]. We believe that with the aid of this
tool, we can more easily extend our current approach to other
applications and architectures.

ACKNOWLEDGMENTS

The research leading to these results has received funding from
the European Union’s Horizon 2020 Programme in the READEX
project under grant agreement number 671657. We thank the Centre
for Information Services and High Performance Computing (ZIH)
at TU Dresden for providing HPC resources that contributed to
our research. Mohammed Sourouri dedicates his portion of this
research to the memory of Hans Petter Langtangen (1962-2016).

REFERENCES

[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jef-
frey Bosboom, Una-May O’Reilly, and Saman P. Amarasinghe. 2014. OpenTuner:
an extensible framework for program autotuning. In International Conference on
Parallel Architectures and Compilation, PACT 14, Edmonton, AB, Canada. ACM,
303-316. DOI: https://doi.org/10.1145/2628071.2628092

[2] Axel Auweter, Arndt Bode, Matthias Brehm, Luigi Brochard, Nicolay Ham-
mer, Herbert Huber, Raj Panda, Francois Thomas, and Torsten Wilde. 2014.
A Case Study of Energy Aware Scheduling on SuperMUC. In 29th Interna-
tional Conference, ISC 2014, Leipzig, Germany, June 22-26. 394-409. DOI: https:
//doi.org/10.1007/978-3-319-07518-1_25

[3] Protonu Basu, Mary W. Hall, Malik Murtaza Khan, Suchit Maindola, Saurav
Muralidharan, Shreyas Ramalingam, Axel Rivera, Manu Shantharam, and Anand
Venkat. 2013. Towards making autotuning mainstream. International Journal
of High Performance Computing Applications 27, 4 (2013), 379-393. DOI: https:
//doi.org/10.1177/1094342013493644

[4] JeeWhan Choi, Daniel Bedard, Robert J. Fowler, and Richard W. Vuduc. 2013.
A Roofline Model of Energy. In 27th IEEE International Symposium on Parallel
and Distributed Processing, IPDPS, Cambridge, MA, USA. 661-672. DOI:https:
//doi.org/10.1109/IPDPS.2013.77

[5] Pietro Cicotti, Ananta Tiwari, and Laura Carrington. 2014. Efficient speed (ES):
Adaptive DVFS and clock modulation for energy efficiency. In International
Conference on Cluster Computing, CLUSTER Madrid, Spain. 158-166. DOI : https:
//doi.org/10.1109/CLUSTER.2014.6968750

[6] Yifeng Cui, Kim B. Olsen, Thomas H. Jordan, Kwangyoon Lee, Jun Zhou, Patrick
Small, Daniel Roten, Geoffrey Ely, Dhabaleswar K. Panda, Amit Chourasia,
John M. Levesque, Steven M. Day, and Philip Maechling. 2010. Scalable Earth-
quake Simulation on Petascale Supercomputers. In Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC °10, New Orleans, LA,
USA. 1-20. DOI : https://doi.org/10.1109/SC.2010.45

[7] Maja Etinski, Julita Corbalan, Jesus Labarta, and Mateo Valero. 2012. Under-
standing the future of energy-performance trade-off via DVFS in HPC en-
vironments. J. Parallel Distrib. Comput. 72, 4 (2012), 579-590. DOI:https:
//doi.org/10.1016/j.jpdc.2012.01.006

[8] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Robert
Springer, Barry Rountree, and Mark E. Femal. 2007. Analyzing the Energy-Time
Trade-Off in High-Performance Computing Applications. IEEE Trans. Parallel
Distrib. Syst. 18, 6 (2007), 835-848. DOI : https://doi.org/10.1109/TPDS.2007.1026

[9] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W.

Cameron. 2010. PowerPack: Energy Profiling and Analysis of High-Performance

Systems and Applications. IEEE Trans. Parallel Distrib. Syst. 21, 5 (2010), 658—671.

DOI : https://doi.org/10.1109/TPDS.2009.76

Stefan Valentin Gheorghita, Martin Palkovic, Juan Hamers, Arnout Vandecap-

pelle, Stelios Mamagkakis, Twan Basten, Lieven Eeckhout, Henk Corporaal,

Francky Catthoor, Frederik Vandeputte, and Koen De Bosschere. 2009. System-

scenario-based design of dynamic embedded systems. ACM Trans. Design Autom.

Electr. Syst. 14, 1, Article 3 (2009), 45 pages. DOI : https://doi.org/10.1145/1455229.

1455232

Ricardo Gonzalez and Mark Horowitz. 1996. Energy dissipation in general

purpose microprocessors. IEEE Journal of Solid-State Circuits 31, 9 (1996), 1277

1284. DOI :https://doi.org/10.1109/4.535411

[10

[11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[29]

[30]

Corey Gough, Ian Steiner, and Winston A. Saunders. 2015. Energy Efficient
Servers: Blueprints for Data Center Optimization (1st ed.). Apress.

Robert W. Graves. 1996. Simulating seismic wave propagation in 3D elastic
media using staggered-grid finite differences. Bulletin of the Seismological Society
of America 86, 4 (1996), 1091-1106.

Philipp Gschwandtner, Juan José Durillo, and Thomas Fahringer. 2014. Multi-
Objective Auto-Tuning with Insieme: Optimization and Trade-Off Analysis for
Time, Energy and Resource Usage. In 20th International Conference on Par-
allel Processing Euro-Par, Porto, Portugal. 87-98. DOI :https://doi.org/10.1007/
978-3-319-09873-9_8

Daniel Hackenberg, Thomas Ilsche, Joseph Schuchart, Robert Schone, Wolfgang E.
Nagel, Marc Simon, and Yiannis Georgiou. 2014. HDEEM: high definition energy
efficiency monitoring. In Proceedings of the 2nd International Workshop on Energy
Efficient Supercomputing, E2SC ’14, New Orleans, LA, USA. 1-10. DOI:https:
//doi.org/10.1109/E2SC.2014.13

Daniel Hackenberg, Robert Schone, Thomas Ilsche, Daniel Molka, Joseph
Schuchart, and Robin Geyer. 2015. An Energy Efficiency Feature Survey of
the Intel Haswell Processor. In IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop, IPDPSW. 896-904. DOI : https://doi.org/10.1109/
IPDPSW.2015.70

Per Hammarlund, Alberto J. Martinez, Atiq A. Bajwa, David L. Hill, Erik G. Hall-
nor, Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker, Rajesh Kumar,
Randy B. Osborne, Ravi Rajwar, Ronak Singhal, Reynold D’Sa, Robert Chappell,
Shiv Kaushik, Srinivas Chennupaty, Stéphan Jourdan, Steve Gunther, Thomas Pi-
azza, and Ted Burton. 2014. Haswell: The Fourth-Generation Intel Core Processor.
IEEE Micro 34, 2 (2014), 6-20. DOI : https://doi.org/10.1109/MM.2014.10

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant
Agarwal, and Martin C. Rinard. 2011. Dynamic knobs for responsive power-aware
computing. In Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS Newport
Beach, CA, USA. 199-212. DOI : https://doi.org/10.1145/1950365.1950390
Johannes Hofmann, Dietmar Fey, Jan Eitzinger, Georg Hager, and Gerhard
Wellein. 2016. Analysis of Intel’s Haswell Microarchitecture Using the ECM
Model and Microbenchmarks. In International Conference on Architecture of Com-
puting Systems, Nuremberg, Germany. Springer International Publishing, Cham,
210-222. DOI:https://doi.org/10.1007/978-3-319-30695-7_16

Intel Corporation. 2016. Intel Xeon Processor E5 v3 Product Family - Proces-
sor Specification Update. http://www.intel.com/content/dam/www/public/us/
en/documents/specification-updates/xeon-e5-v3-spec-update.pdf. (September
2016). [Online; accessed 08-March-2017].

Herbert Jordan, Peter Thoman, Juan Jose Durillo Barrionuevo, Simone Pelle-
grini, Philipp Gschwandtner, Thomas Fahringer, and Hans Moritsch. 2012. A
multi-objective auto-tuning framework for parallel codes. In Conference on High
Performance Computing Networking, Storage and Analysis, SC ’12, Salt Lake City,
UT, USA. 10. DOI : https://doi.org/10.1109/SC.2012.7

Dong Li, Bronis R. de Supinski, Martin Schulz, Kirk W. Cameron, and Dimitrios S.
Nikolopoulos. 2010. Hybrid MPI/OpenMP power-aware computing. In 24th IEEE
International Symposium on Parallel and Distributed Processing, IPDPS, Atlanta,
GA, USA Proceedings. 1-12. DOI : https://doi.org/10.1109/IPDPS.2010.5470463
Dong Li, Dimitrios S. Nikolopoulos, Kirk W. Cameron, Bronis R. de Supinski,
and Martin Schulz. 2010. Power-aware MPI task aggregation prediction for
high-end computing systems. In 24th IEEE International Symposium on Parallel
and Distributed Processing, IPDPS, Atlanta, Georgia, USA. 1-12. DOI : https://doi.
org/10.1109/IPDPS.2010.5470464

Andrea Martinez, Anna Sikora, Eduardo César, and Joan Sorribes. 2014. ELASTIC:
A large scale dynamic tuning environment. Scientific Programming 22, 4 (2014),
261-271. DOI: https://doi.org/10.3233/SPR-140392

John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec 1995), 19-25.

Anna Morajko, Tomas Margalef, and Emilio Luque. 2007. Design and implemen-
tation of a dynamic tuning environment. J. Parallel Distrib. Comput. 67, 4 (2007),
474-490. DOT : https://doi.org/10.1016/j.,jpdc.2007.01.001

Espen Birger Raknes, Borge Arntsen, and Wiktor Weibull. 2015. Three-
dimensional elastic full waveform inversion using seismic data from the Sleip-
ner area. Geophysical Journal International 202, 3 (2015), 1877-1894. DOI:
https://doi.org/10.1093/gji/ggv258

Barry Rountree, Dong H. Ahn, Bronis R. de Supinski, David K. Lowenthal,
and Martin Schulz. 2012. Beyond DVFS: A First Look at Performance under a
Hardware-Enforced Power Bound. In 26th IEEE International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum, IPDPSW 2012, Shanghai,
China. 947-953. DOI:https://doi.org/10.1109/IPDPSW.2012.116

Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. TAAS 4, 2, Article 14 (2009), 42 pages. DOI:https:
//doi.org/10.1145/1516533.1516538

Robert Schone and Daniel Molka. 2014. Integrating performance analysis and
energy efficiency optimizations in a unified environment. Computer Science -

[31

(32

[33

(34]

[36]

[37

(39

[40

[41

R&D 29, 3-4 (2014), 231-239. DOT : https://doi.org/10.1007/s00450-013-0243-7
Robert Schone, Jan Treibig, Manuel F. Dolz, Carla Guillén, Carmen B. Navarrete,
Michael Knobloch, and Barry Rountree. 2014. Tools and methods for measuring
and tuning the energy efficiency of HPC systems. Scientific Programming 22, 4
(2014), 273-283. DOI : https://doi.org/10.3233/SPR-140393

Joseph Schuchart, Michael Gerndt, Per Gunnar Kjeldsberg, Michael Lysaght,
David Horak, Lubomir Riha, Andreas Gocht, Mohammed Sourouri, Madhura Ku-
maraswamy, Anamika Chowdhury, Magnus Jahre, Kai Diethelm, Othman Bouizi,
Umbreen Sabir Mian, Jakub Kruzik, Radim Sojka, Martin Beseda, Venkatesh
Kannan, Zakaria Bendifallah, Daniel Hackenberg, and Wolfgang E Nagel. 2017.
The READEX formalism for automatic tuning for energy efficiency. Computing
(2017), 1-9. DOI : https://doi.org/10.1007/s00607-016-0532-7

Centre For Information Services and High Performance Computing (ZIH). 2017.
SystemTaurus. https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/
HardwareTaurus. (2017). [Online; accessed 28-February-2017].

Anna Sikora, Eduardo César, Isaias A. Comprés Urenia, and Michael Gerndt. 2016.
Autotuning of MPI Applications Using PTF. In Proceedings of the ACM Workshop
on Software Engineering Methods for Parallel and High Performance Applications,
Kyoto, Japan. 31-38. DOI : https://doi.org/10.1145/2916026.2916028

Mohammed Sourouri, Scott B. Baden, and Xing Cai. 2017. Panda: A Compiler
Framework for Concurrent CPU+GPU Execution of 3D Stencil Computations on
GPU-accelerated Supercomputers. International Journal of Parallel Programming
45, 3 (2017), 711-729. DOI: https://doi.org/10.1007/s10766-016-0454-1
Mohammed Sourouri, Johannes Langguth, Filippo Spiga, Scott B. Baden, and
Xing Cai. 2015. CPU+GPU Programming of Stencil Computations for Resource-
Efficient Use of GPU Clusters. In International Conference on Computational
Science and Engineering, CSE’15, Porto, Portugal. IEEE Computer Society, 17-26.
DOI:https://doi.org/10.1109/CSE.2015.33

Cristian Tapus, I-Hsin Chung, and Jeffrey K. Hollingsworth. 2002. Active har-
mony: towards automated performance tuning. In Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC "02, Baltimore, MD, USA.
43:1-43:11. DOI: https://doi.org/10.1109/SC.2002.10062

Christian Terboven, Dieter an Mey, Dirk Schmidl, Henry Jin, and Thomas Re-
ichstein. 2008. Data and Thread Affinity in OpenMP Programs. In Proceed-
ings of the Workshop on Memory Access on Future Processors: A Solved Prob-
lem?, MAW’08, Ischia, Italy, May 5-7. ACM, New York, NY, USA, 377-384. DOI:
https://doi.org/10.1145/1366219.1366222

Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary W. Hall, and Jeffrey K.
Hollingsworth. 2009. A scalable auto-tuning framework for compiler optimiza-
tion. In 23rd IEEE International Symposium on Parallel and Distributed Processing,
IPDPS, Rome, Italy. 1-12. DOI : https://doi.org/10.1109/IPDPS.2009.5161054

R. Clinton Whaley and Jack J. Dongarra. 1998. Automatically Tuned Linear
Algebra Software. In Conference on High Performance Computing Networking,
Storage and Analysis, SC *98, Orlando, FL, USA. 38. DOI : https://doi.org/10.1109/
SC.1998.10004

Samuel Williams, Andrew Waterman, and David A. Patterson. 2009. Roofline:
an insightful visual performance model for multicore architectures. Commun.
ACM 52, 4 (2009), 65-76. DOI : https://doi.org/10.1145/1498765.1498785

A ARTIFACT DESCRIPTION APPENDIX
A.1 Abstract

The work presented in this paper describes a series of energy-
efficiency techniques applied to a real-world seismic wave propaga-
tion application. The artifacts associated with this work comprise
the source code of the seismic wave propagation, the result datasets
and a post-processing tool. The post-processing tool is used for
computing energy-performance tradeoffs and detecting the best
system configuration for a given problem size and implementation.

A.2 Description
A.2.1 Check-list (artifact meta information).

o Algorithm: The paper details a seismic wave propagation appli-
cation which consists of 25 different kernels. It solves the elastody-
namic wave equation over a 3D Cartesian grid. C++ pre-processor
directives are used to tune the application. The post-processing
tool is used to find best system configuration for a given tuning
objective. The best configuration reported by the tool is used to ex-
ecute the application. The free and open-source x86_adapt library
is used to perform dynamic core and uncore frequency scaling on
Intel Xeon processors. The system was tested on processors based
on the Haswell microarchitecture.

Program: Optimized Elastic Wave Equation (OptEWE) paral-
lelized using the OpenMP programming model. Source code avail-
able online.

e Compilation: Intel C/C++ compiler version (version 16.2.181
tested) and the linking of the x86_adapt library. The following
compiler flags were used for the non-AVX2 version of the code:
-std=c++14 -Wall -02 -qopenmp -ipo and -std=c++14 -Wall
-03 -axCORE-AVX2 -qopenmp -ipo was used for the AVX2 vector-
ized version of the code. Use the designated batch scripts located
in the batch directory to compile and launch the application.

e Binary: Standard single C++ executable for x86 multi-core CPUs

compiled from the sources using GNU Make.

Data set: The application itself does not require any data set to run,

but the tuning process itself will output raw text files containing
tuning results.

e Run-time environment: Any Linux based operating system
with support for Intel core and uncore definitions compiled with
x86_adapt kernel module support.

e Hardware: Any Intel Xeon EP CPU based on the Haswell mi-

croarchitecture or newer (2xIntel Xeon E5-2680v3 for the tests)

and a high-resolution energy measurement infrastructure.

Execution: ./optewe-mp Nx Ny Nz number-of-iterations

Output: Text file reporting runtime for each kernel, the entire

application and the problem size in different dimensions and per-

formance throughput quantified as Mega Lattice Updates Per Sec-
ond.

e Experiment workflow: clone the project using git, compile
the application from the sources using the GNU Makefile, run the
application using the bash scripts attached, use the post-processing
tool to detect better system configurations, use the recommended

system configuration to re-run the application with better system
configurations.

e Experiment customization: number of OpenMP threads, core
frequency and uncore frequency.

e Publicly available?: Yes

A.2.2 How software can be obtained. The complete set of arti-
facts can be found in the OptEWE open source project hosted on

Github. Please visit: https://github.com/mohamso/optewe for
more details. The mentioned git repository contains the application
itself, the result dataset and its companion post-processing tool
plus detailed instructions on how to build and run the application
from the sources.

A.2.3 Hardware dependencies. For complete reproducibility, we
recommend that Intel’s Xeon EP series of CPUs based on the Intel
Haswell microarchitecture or newer is used. It is recommended that
Intel HyperThreading is disabled on the CPU(s). Our experiments
utilize the HDEEM infrastructure for energy measurements. Al-
though not tested, other measurement infrastructure such as Intel
RAPL can be used.

A.2.4 Software dependencies. The OptEWE application requires
a C++11 compliant compiler. Any compiler supporting this stan-
dard works, however, for adequate reproducibility, the Intel C/C++
compiler suite version 16.2.1.81 or newer is recommended. The
x86_adapt library must be installed according to the documentation
found on its associated Github web site. The post-processing tool
requires Python version 2.6, Pandas Data Analysis library version
1.19 and Seaborn visualization library version 0.7.1 or newer. All
artifacts have been tested on a recent version of Red Hat Enterprise
Linux Server release 6.9 (kernel version 2.6.32-x86_64) but it is
expected that it should work on all recent Linux distributions.

A.2.5 Datasets. The result of the autotuning can be found in
the data directory. Use the shell scripts located in this directory to
execute the scripts for the example model size used in the paper.

A.3 Installation

To install OptEWE, use git to clone the optewe repository from
Github on your target machine:

$ git clone https://github.com/mohamso/optewe
$ cd code

Make sure that all required software dependencies are met. Next,
use GNU Make to compile and build the code from the sources:

$ make clean
$ make

Upon successful build, an executable binary will be created in
a directory called bin. To execute the code with a problem size of
5123, using five iterations and 24 threads, type the following:

$ cd bin
$./optewe-mp 512 512 512 5 24 2

The last number indicates the source type. The source type repre-
sents the type of stress exhibited by the stress source. Valid source
type values are 1 (stress monopole), 2 (force monopole) and 3 (force
dipole). Experiments presented in the paper used force monopole.

A.4 Experiment workflow

Three versions of the code are presented in the paper: reference,
static and dynamic. In the first step of the workflow, exhaustive

search is used to tune the application. Next, the post-processing
tools is used to find the best system configuration for the statically
tuned and the dynamically tuned versions. Based on the result of
the tuning, the post-processing tool will also generate the plots
presented in the paper. It is sufficient to perform one exhaustive
search per problem size in order to find the best static and dynamic
system configurations. To tune the application using exhaustive
search, do the following:

cd batch
$ sh static_wrapper.sh

Please note that depending on the problem size, the tuning process
might take a while. It is thus recommended to keep the number
of iterations low and limit the scope of number of threads. For
example, on the tested dual-socket 12-core system, the minimum
thread count for any tuning objective was never below 8 threads.
Once the tuning process is complete, the post-processing tool can
be used to find better system configurations. This can be done as
follows:

cd results
sh create_all.sh

A.5 Evaluation and expected result

The expected results from the post-processing tool include a table
that shows the best-found system configuration for each kernel.
Moreover, it also contains tradeoff computations between the dy-
namically tuned, the statically tuned, and the reference versions.

A.6 Notes

For errata, bug-fixes and updated instructions, please visit the code
web page: https://github.com/mohamso/optewe.

