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Abstract. Motions of virtual characters in movies or video games are
typically generated by recording actors using motion capturing methods.
Animations generated this way often need postprocessing, such as improv-
ing the periodicity of cyclic animations or generating entirely new motions
by interpolation of existing ones. Furthermore, search and classification
of recorded motions becomes more and more important as the amount of
recorded motion data grows.

In this paper, we will apply methods from shape analysis to the process-
ing of animations. More precisely, we will use the by now classical elas-
tic metric model used in shape matching, and extend it by incorporating
additional inexact feature point information, which leads to an improved
temporal alignment of different animations.
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1 Introduction

Animations. Virtual characters in movie and TV special effects or video games are
most commonly animated using skeletal animation, where a character’s motion is de-
scribed in terms of joint-angles in an approximation of a human skeleton. Motion
capturing is a typical way to generate such animations, whereby an actor or stuntman
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performs the requested motion while being recorded from multiple angles. From this,
the underlying skeletal pose can then be reconstructed. While motion capturing can
produce very life-like animations, it has a number of drawbacks, some of which can be
addressed algorithmically [24, 10].

In [14], methods from shape analysis were applied to a number of problems in com-
puter animation: periodicity of animations, interpolation between animations and mo-
tion recognition. A central component in this is the modelling of curve reparametriza-
tions as elements of the diffeomorphism group on the circle or the unit interval, Diff(S1)
and Diff([0, 1]) respectively. For animations, such reparametrizations can be used to
align them in time, similar to the concept of timewarp curves in [16, 17]. Note that
the skeletal animation approach is very different in concept and applications from
silhouette-based representations of motions, as for example in [1].

In this paper we will demonstrate how feature point information can be incorporated
into shape matching techniques, and how this can be applied in the context of computer
animations in order to improve the temporal alignment of related actions.

Shape matching. The field of shape analysis concerns itself with the study and clas-
sification of similarities and dissimilarities within certain classes of shapes. In order to
achieve this objective, a variety of different methods has been developed, each tailored
to the actual class of shapes under consideration. A particularly important example
for a shape space, which is also the main focus of this article, is the space of un-
parametrized curves,1 and, in recent years, Riemannian methods for shape spaces of
curves have been deeply explored both theoretically [33, 22, 28, 21, 15, 26, 20, 27, 11, 9]
as well as from an application oriented point of view [23, 25, 19, 30]. See [7] for an
overview of these topics.

Although the main contribution of this article is not limited to a specific Riemannian
metric on the shape space of unparametrized curves, we will focus for simplicity on a
particular one that is related to the so called Square Root Velocity (SRV) framework
[29, 6]. This metric is given as the pullback of the L2–metric via a transformation called
the SRVT. This allows for the development of extremely efficient numerical methods
and, as a consequence, it has been successfully used in a series of applications [32, 14].
See also [34, 8] for other reparametrization invariant metrics that can be represented
in a similar way.

Our main addition to this standard setting will be the incorporation of point cor-
respondences between two curves one wants to match. In the particular application
of animation processing, these correspondences will describe similar poses at different
points in time in the two animations. We assume here that the point correspondences
are manually entered pieces of information that are possibly error-prone. Thus we are
interested in an exact matching of the unparametrized curves, but only an inexact
matching of the point correspondences. Our approach differs from the one presented
in [31], where feature information is included in the form of auxiliary functions that are
combined with the geometric curve to form higher dimensional curves that can then be
matched by the usual methods. Instead, we augment the matching energy functional

1Closed curves can be used, for example, to represent outlines of objects in recognition applications.
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with an extra feature matching term, leaving the elastic matching terms unchanged.
In comparison to [18], which focused on matching three dimensional surfaces, we al-
low inexact matching of landmarks in our model. We will discuss in this article both
the theoretical framework of shape matching with feature points and computational
aspects.

Overview In Sect. 2 we give an overview of the general framework for shape matching
with additional feature point information and will then apply this framework to one
particular choice of metric: the metric that is induced by the SRV transformation.
We then present the basics of two algorithms that can be used to determine the
optimal parametrization to match two curves: In Sect. 3.1 we derive all the formulas
necessary to find the parametrization using a gradient descent approach. In addition,
in Sect. 3.2, we discuss the application of a dynamic programming based algorithm. In
Sect. 4 we apply the previously presented framework to process human motion data.
Moreover, we show some examples of an application to two-dimensional curves, where
the workings of the method can be better visualized.

2 The general framework

Problem formulation. We will start this article by formulating our main problem:

Problem 1. Given two unparametrized curves [c0] and [c1] and a number of n point
correspondences between the curves – i.e., points Ci0 and Ci1 that should be matched
onto each other – we want to find an optimal deformation between the two curves, that
also respects the alignment of the feature points.

In order to achieve this goal, we will first choose representatives of the shapes [c0] and
[c1], i.e., parametrized curves c0 and c1. Each representative cj determines parameter
values θij that correspond to the feature points Cij in the sense that

cj(θ
i
j) = Cij .

Thus we can represent any shape [c0] with additional feature point information as a tu-
ple (c0,θ0), with c0 ∈ Imm(S1,Rd) and θ0 = (θi0)i ∈ (S1)n. One way to tackle Problem
1 is then to construct a similarity measure on the product space Imm(S1,Rd)× (S1)n

that has certain invariance properties with respect to the action of the diffeomorphism
group.

To do this mathematically rigorously we will need some results and definitions from
infinite dimensional Riemannian geometry first.

2.1 The manifold of parametrized curves

In this article we will consider the space of regular curves from a parameter space M
into some – possibly high dimensional – Rd:

Imm(M,Rd) :=
{
c ∈ C∞(M,Rd) : |c′| > 0

}
. (1)
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Here M stands for the circle S1 in the case of closed curves and for the interval [0, 2π]
for open curves.

The space Imm(M,Rd) is a smooth infinite dimensional Fréchet manifold with tan-
gent space Tc Imm(M,Rd), the set of all vector fields along the curve c. Using the
trivialization of Rd we can identify the tangent space with

Tc Imm(M,Rd) :=
{
h ∈ C∞(M,Rd)

}
. (2)

On the manifold Imm(M,Rd) we consider reparametrization invariant metrics Gc,
i.e., Riemannian metrics that satisfy

Gc(h, k) = Gc◦ϕ(h ◦ ϕ, k ◦ ϕ) for all ϕ ∈ Diff(M). (3)

Here, Diff(M) denotes the group of orientation preserving diffeomorphisms of M ,
which consists of all reparametrizations of the curves under consideration.

The most prominent example of such a metric is the elastic metric Ga,b that is
defined by

Ga,bc (h, k) =

∫
M

a2|(Dsh)⊥||(Dsk)⊥|+ b2|(Dsh)>||(Dsk)>|ds. (4)

Here a2, b2 are positive constants, Ds = 1
|c′|∂θ denotes the arc length derivative, ds =

|c′|dθ is arc length integration, v = Dsc is the unit length tangent vector, |(Dsh)>| =
〈Dsh, v〉 denotes the tangential component of Dsh and |(Dsh)⊥| = Dsh − |(Dsh)>|v
the normal component. Note that constant vector fields h are in the kernel of Ga,b,
thus (4) defines only a metric on the manifold of immersions modulo translations.

Other metrics that have been introduced include higher order Sobolev metrics, i.e.,
metrics of the form

Glc(h, k) =

∫
M

∑
j

aj〈Dj
sh,D

j
sk〉

 ds, (5)

with coefficients aj possibly depending on the foot point c. Depending on the order
of the metric G, local and global well-posedness of the geodesic equation have been
shown and the metric completions of the corresponding spaces have been studied [11].
Recently a numerical framework for these metrics has been developed [3, 4, 5] and in
future work we plan to combine this algorithm with the framework introduced in this
article.

In the experimental part of this article we will focus on one particular member of
this family, namely the elastic metric that corresponds to the parameters a = 1, b = 1

2 .
This metric has the advantage that it has a very helpful representation as a pullback of
the flat L2–metric. To see this we introduce the so-called square root velocity transform
(or short SRVT ):

R :


Imm(M,Rd) 7→ C∞(M,Rd \ {0}),

c → c′√
|c′|

.
(6)
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The SRVT, when regarded for curves modulo translations, has an inverse, which is
given by:

R−1 :

C
∞(M,Rd \ {0}) 7→ Imm(M,Rd),

q →
∫ τ

0

|q|q dθ.
(7)

On C∞(M,Rd) we can consider the flat L2–metric. In [29] it has been shown, that
the pullback via R of the L2–metric is exactly the elastic metric (4). The situation for
open curves is particularly easy, as one has then explicit formulas for geodesics and
geodesic distance:

Theorem 1. The image of the R-map of the manifold of open curves is an open subset
of C∞([0, 2π],Rd):

Im(R) =
{
q ∈ C∞([0, 2π],Rd) : |q| 6= 0

}
. (8)

Two open curves c0, c1 can be connected by a geodesic if and only if there exist no
θ ∈ [0, 2π] and no λ > 0 such that c′0(θ) = −λc′1(θ). In this case, the unique geodesic
connecting them is given by

c(t, θ) = R−1 ((1− t)R(c0) + tR(c1)) . (9)

Moreover, the induced geodesic distance on Imm([0, 2π],Rd) is given by

d(c0, c1) =

√∫ 2π

0

‖R(c0)−R(c1)‖2Rddθ . (10)

For a proof of this theorem see [6]. The situation for closed curves is less explicit. We
have the following characterization of the image of the SRVT, which will build the
fundament of our algorithms:

Theorem 2. The image R(Imm(S1,Rd)) of the manifold of closed curves under the
SRVT-transform is a codimension d submanifold of the flat space C∞(S1,Rd). A basis

of the orthogonal complement
(
TqR(Imm(S1,Rd)

)⊥
is given by the d vectors

Ui(q) =
1

|q|
(
qiq1, . . . , q

2
i + |q|2, . . . , qiqd

)
. (11)

Using this basis, efficient numerical methods for calculating geodesics between closed
curves have been developed, see [29, 6].

2.2 The matching functional on the space of parametrized curves

To define our similarity measure on the product space Imm(M,Rd)×Mn, we will first
introduce an energy functional that is defined for arbitrary paths in Imm(M,Rd). We
will then define the similarity measure as the minimal energy over all paths with given
boundary shapes [c0] and [c1]. The important features of the similarity measure on
the space of unparametrized curves will be:
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(a) The similarity measure does not depend on the choice of representatives (ci,θi)
of the observed shapes ([ci],C

i).

(b) The optimal deformation is guided by both the shape of the boundary curves
and by the feature point information.

(c) The similarity measure forces an exact matching of the unparametrized curves,
but only an inexact matching of the feature point information.

Given a curve ĉ ∈ Imm(M,Rd), we denote in the following by ĉ(θ) the whole vector
of points ĉ(θi) ∈ Rd, 1 ≤ i ≤ n.

For parameter values θ0 = (θi0)i ∈ Mn and feature points C1 = (Ci1)i ∈ (Rd)n we
define the energy functional for a given path c : [0, 1]→ Imm(M,Rd) as:

E(θ0,C1)(c) =

∫ 1

0

Gc(ct, ct)dt+ λFM (c(1,θ0),C1) . (12)

Here Gc(·, ·) is any reparametrization invariant metric on Imm(M,Rd) and FM denotes
some similarity measure on Rd×n. The only conditions on FM we impose at the
moment are that FM is lower semi-continuous and FM(C,C) = 0. The first condition
is necessary for the subsequent energy minimization, while the second condition implies
that constant paths actually have zero energy. When we discuss later the actual
computation of energy minimizing paths, we will introduce further conditions that
make their numerical approximation possible.

Lemma 3. The energy functional (12) satisfies the invariance property

E(ϕ−1(θ0),C1)(c ◦ ϕ) = E(θ0,C1)(c). (13)

Remark 4. The meaning of this invariance property will become clear in Sect. 2.3,
where we will consider the action of the diffeomorphism group on the quotient space
Imm(M,Rd)×Mn. �

Proof. Using the reparametrization invariance of the metric Gc we calculate

E(ϕ−1(θ0),C1)(c ◦ ϕ) =

∫ 1

0

Gc◦ϕ((c ◦ ϕ)t, (c ◦ ϕ)t)dt+ λFM
(
(c ◦ ϕ)(1, ϕ−1(θ0)),C1

)
=

∫ 1

0

Gc(ct, ct)dt+ λFM (c(1,θ0),C1) = E(θ0,C1)(c). �

Using this energy functional we define our similarity measure on the product space
Imm(M,Rd)×Mn of parametrized curves with feature points as

dP ((c0,θ0), (c1,θ1)) := inf
c:[0,1]→Imm

E(θ0, c1(θ1))(c) (14)

where the infimum is taken over all paths c in Imm(M,Rd) that satisfy

c(0, ·) = c0 and c(1, ·) = c1 . (15)
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Remark 5. We do not call the similarity measure a distance, since it is not symmetric
in general. However, it would be straightforward to construct a symmetric version of
this. This will be described in Sect. 2.4. �

Because we fix the endpoint c(1, ·) = c1, we can write the similarity measure dP as

dP ((c0,θ0), (c1,θ1)) = inf
c:[0,1]→Imm

[∫ 1

0

Gc(ct, ct) dt
]

+ λFM(c1(θ0), c1(θ1)).

That is, we only minimize the first term of the energy functional, and we do not allow
to change the value of the second term at all. The meaning of the second term, will
become clear when we consider it on the shape space of unparametrized curves.

2.3 The similarity measure on the shape space of unparametrized,
feature curves.

In this section we want to use the previously defined similarity measure on parametrized
curves to induce a similarity measure on the shape space of unparametrized curves with
feature point information. Therefore we have to determine the induced action of the
diffeomorphism group on the product space Imm(M,Rd) ×Mn. On the first factor
Imm(M,Rd) it is simply given by composition from the right. To compute the action
on the second factor Mn we need to compute the effect of a reparametrization on the
feature points. We have:

Ci0 = c0(θi0) = c(ϕ(ϕ−1(θi0))) = (c ◦ ϕ)(ϕ−1(θi0)). (16)

Thus the induced action on the product space is given by

(c0,θ0) ◦ ϕ = (c0 ◦ ϕ,ϕ−1(θ0)). (17)

Using the invariance of our similarity measure – cf. Lemma 3 – we obtain the following
result:

Theorem 6. The similarity measure (14) on Imm(M,Rd)×Mn induces a similarity
measure on the shape space of unparametrized curves with additional feature point
information. The induced functional is given by:

d (([c0],C0), ([c1],C1)) := inf
ϕ∈Diff(M)

dP
(
(c0,θ0), (c1 ◦ ϕ,ϕ−1(θ1)

)
. (18)

Here (cj ,θj) are arbitrary representatives of the shapes ([cj ],Cj).

Remark 7. Note, that the energy functional will force an exact matching of the un-
parametrized curves, but only an inexact matching of the feature points. The reason
for this is that we assume the feature points to be an additional manually entered
information that is possibly error-prone. �
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Proof. We need to show that d does not depend on the actual choice of representatives
c0 and c1. Any other representatives of [ci] can be written as ci ◦ ϕ for some diffeo-
morphism ϕ. Since we are minimizing over all possible reparametrizations of c1, the
functional clearly does not depend on the choice of the representative c1. It remains
to verify the independence of reparametrizations of c0. Therefore we calculate

inf
ϕ∈Diff(M)

dP
(
(c0 ◦ ψ,ψ−1(θ0)), (c1 ◦ ϕ,ϕ−1(θ1)

)
= inf
ϕ∈Diff(M)

(
inf

c:[0,1]→Imm
E
(
ψ−1(θ0), c1(θ1)

)
(c)

)
,

where the infimum is taken over all paths c that satisfy the boundary conditions

c(0, ·) = c0 ◦ ψ, c(1, ·) = c1 ◦ ϕ .

Using the invariance property of the functional – cf. Lemma 3 – we can rewrite this as

inf
ϕ∈Diff(M)

dP
(
(c0 ◦ ψ,ψ−1(θ0)), (c1 ◦ ϕ,ϕ−1(θ1)

)
= inf
ϕ∈Diff(M)

(
inf

c:[0,1]→Imm
E (θ0, c1(θ1)) (c ◦ ψ−1)

)
= inf
ϕ∈Diff(M)

(
inf

c̃:[0,1]→Imm
E (θ0, c1(θ1)) (c̃)

)
such that

c̃(0, ·) = c0 ◦ ψ ◦ ψ−1 = c0, c(1, ·) = c1 ◦ ϕ,

which concludes the proof. �

We note that the similarity measure d can also be written as

d(([c0],C0), ([c1],C1))

= inf
ϕ∈Diff(M)

(
inf

c:[0,1]→Imm

[∫ 1

0

Gc(ct, ct) dt

]
+ λFM(c1 ◦ ϕ(θ0),C1)

)
,

where the inner infimum is taken over all paths c that satisfy the conditions c(0, ·) = c0
and c(1, ·) = c1 ◦ ϕ.

Remark 8. Due to the invariance with respect to the reparametrization group, all the
metrics Gc descend to the shape space of unparametrized curves, i.e., they induce a
metric on the quotient space S := Imm(M,Rd)/Diff(M) such that the projection

π : Imm(M,Rd)→ Imm(M,Rd)/Diff(M)

is a Riemannian submersion. For a detailed discussion of this topic we refer to the
article [21]. For λ = 0 – i.e., no feature point matching – the similarity measure
(18) is then given by the induced geodesic distance on the quotient space. If we
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assume existence of a minimizer, it would be given by a horizontal geodesic on the
top space, the manifold of parametrized curves. For λ > 0 minimizers of (18) will
still be geodesics on Imm(M,Rd), however their initial velocity will in general not be
horizontal anymore. The induced curve on the quotient space Imm(M,Rd)/Diff(M)
will thus not be a geodesic. In [2] such curves have been called ballistic curves. �

Remark 9. In certain applications, there exist natural reference parametrizations ci,ref ∈
[ci] of the curves one is interested in. For instance, if one deals with skeletal animations
(for details see Section 4 below), the curves are mappings from a time interval into the
so-called joint space. In this case, the reference parametrization of a given animation
uses a uniform frame rate, and reparametrizations correspond to local speed-ups or
slow-downs. In such a setting, it makes sense to define the feature matching term
based on the similarity of parameter values rather than the points on the curve. Given
some distance measure F̂M on Mn, this can be achieved in our setting by defining

FM(C1,C2) :=

{
F̂M(c−1

0,ref(C0), c−1
1,ref(C1)) if Ci ∈ ci,ref(M)n,

+∞ else.

Then the similarity measure d can be written as

d(([c0],C0), ([c1],C1))

= inf
ϕ∈Diff(M)

(
inf

c:[0,1]→Imm

[∫ 1

0

Gc(ct, ct) dt

]
+ λ F̂M(ϕ(θ0,ref),θ1,ref)

)
,

where we consider in the inner infimum only paths satisfying c(0, ·) = c0,ref and c(1, ·) =
c1,ref ◦ ϕ. �

2.4 Symmetrization of the feature matching term

With the definition in (12), the energy is not symmetric with respect to the two shapes,
because the feature points are treated differently. It is, however, straightforward to
symmetrize the energy functional by defining

Esym(θ0,C0,θ1,C1)(c) =

∫ 1

0

Gc(ct, ct)dt+ λ
(
FM(c(1,θ0),C1) + FM(c(0,θ1),C0)

)
.

This energy functional satisfies the invariance property

E(ϕ−1(θ0),C0, ϕ
−1(θ1),C1)(c ◦ ϕ) = E(θ0,C0,θ1,C1)(c)

for any diffeomorphism ϕ of M . From this energy functional we obtain a distance on
the space of parametrized curves with feature points,

dP,sym

(
(c0,θ0), (c1,θ1)

)
:= inf

c:[0,1]→Imm
Esym

(
θ0, c0(θ0),θ1, c1(θ1)

)
(c),
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where the infimum is taken over all paths c such that c(0, ·) = c0 and c(1, ·) = c1.
Now, the invariance property of E implies that

dP,sym

(
(c0 ◦ ψ,ψ−1(θ0)), (c1 ◦ ψ,ψ−1(θ1))

)
= dP,sym

(
(c0,θ0), (c1,θ1)

)
,

whenever ψ is a diffeomorphism of M . This allows, similar to Theorem 6, to define
a symmetric similarity measure on the shape space of unparametrized curves with
feature points by

d(([c0],C0)), ([c1],C1)) = inf
ϕ∈Diff(M)

d
(
(c0, c

−1
0 (C0)), (c1 ◦ ϕ,ϕ−1 ◦ c−1

1 (C1))
)
. (19)

The problem of this similarity measure is that the computation of the infimum in (19)
requires the evaluation of terms of the form FM(ϕ−1 ◦ c−1

1 (C1),C0), which involve
the inverse of the diffeomorphism ϕ. In particular for derivative based optimization
methods like gradient descent, this poses problems, as they would require in addition
to ϕ−1 also its derivative. For this reason we have used only the non-symmetric
similarity measure in all the computational examples below. We note, however, that
discretizations of the symmetric term can, in certain cases, be minimized efficiently
with an approach based on dynamic programming (see Sect. 3.2).

3 Matching feature curves with the elastic metric.

In the following, we will study one particular choice for both the Riemannian met-
ric and the feature matching term. Our choice of the Riemannian metric G on
Imm(M,Rd) is the elastic metric with coefficients a = 1, b = 1

2 , see equation (4).
This is particularly beneficial if we work on open curves. In this case, we have an
explicit formula for the induced geodesic distance of the metric G, cf. Theorem 1. For
the feature point matching we use the squared `2–norm on the parameter space M
with respect to some reference curves ci,ref =: ci. We will discuss different choices for
the feature matching term below in Remarks 16 and 17.

As a direct consequence, we obtain the following formula for the matching functional
for feature curves:

Corollary 10. Using the elastic metric G with coefficients a = 1, b = 1
2 and the `2–

norm error term the similarity measure (18) on the set of open feature curves reads
as:

d (([c0],C0), ([c1],C1))

= inf
ϕ∈Diff(S1)

(∫ 2π

0

‖ c′0√
|c′0|
−
√
ϕ′

c′1 ◦ ϕ√
|c′1| ◦ ϕ

‖2Rddθ + λ

n∑
i=1

|ϕ(θi0)− θi1|2
)
. (20)

Here, (cj ,θj) are arbitrary representatives of the shapes ([cj ],Cj).

This observation yields the following strategy for solving the feature curves matching
problem:
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• Minimize

Eop
1 (ϕ) :=

∫ 2π

0

‖ c′0√
|c′0|
−
√
ϕ′

c′1 ◦ ϕ√
|c′1| ◦ ϕ

‖2Rddθ + λ

n∑
i=1

|ϕ(θi0)− θi1|2 , (21)

over ϕ ∈ Diff([0, 2π]).

• Calculate the geodesic connecting c0 to c1 ◦ ϕ using the explicit formula from
Theorem 1.

Remark 11. Note, that the minimizer of (21) will in general not be a diffeomorphism,
but will only have a non-negative derivative, cf. [34] To guarantee existence of the
minimizer in the diffeomorphism group one would need to use a stronger metric on
Imm(M,Rd) see [11]. �

For closed curves the situation is more complicated, since there is no explicit formula
for the geodesic distance. Thus the matching functional does not simplify and the
algorithm for closed curves reads as:

• Minimize

Ecl
1 (ϕ) := dist(c0, c1 ◦ ϕ)2 + λ

n∑
i=1

|ϕ(θi0)− θi1|2. (22)

over ϕ ∈ Diff([0, 2π]).

• Numerically calculate the geodesic connecting c0 to c1 ◦ ϕ.

Remark 12. Note, that the first minimization involves the calculation of the geodesic
distance on the space of closed curves for each evaluation of the energy functional. In
contrast to the case of open curves, there exists no explicit formula for it. However,
due to the characterization of the image of the SRVT, there are fast and efficient ways
to numerically calculate the geodesic distance, which are described in detail in [29, 6].
The same algorithms can then be used to calculate the minimizing geodesic of step
2. �

In the following we will present two methods to minimize these functionals: a dy-
namic programming approach and a gradient descent algorithm.

3.1 A gradient descent approach

The integral component of the gradient descent algorithm – the variation of the energy
functional (21) – will be derived in the following lemma. To simplify the exposition
we introduce the notation

q ? ϕ :=
√
ϕ′(q ◦ ϕ), (23)

for the action of the diffeomorphism group on the space of SRV-transformed functions.
Then we have:
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Lemma 13. The variation of Eop in direction δϕ is given by:

δE1(ϕ)(δϕ) =

∫ 2π

0

〈q0 − q1 ? ϕ, δϕ
′.(q1 ? ϕ)− 2(q1 ? ϕ)′.δϕ〉Rddθ

+ 2λ

n∑
i=1

(ϕ(θi0)− θi1)δϕ(θi0).

(24)

The L2–gradient of the energy functional (21) is then given by:

grad(E1(ϕ)) = −
〈
q0,

(q1 ? ϕ)′

ϕ′

〉
Rd

+

〈
q′0,

q1 ? ϕ

ϕ′

〉
Rd

+ 2λ

n∑
i=1

(ϕ(θ)− θi1)δθi0(θ),

where δθi0 denotes the delta distribution and qj = R(cj).

Proof. Using the notation qj = R(cj) the Energy functional can be written as

E1(ϕ) = ‖q0 − q1 ? ϕ‖2L2 + λ

n∑
i=1

|ϕ(θi0)− θi1|2 .

We will calculate the variation of the two parts separately. For the first part we have:

δ
(
‖q0 − q1 ? ϕ‖2L2

)
(δϕ) = δ

(
‖q0 −

√
ϕ′(q1 ◦ ϕ)‖2L2

)
(δϕ)

= −2

∫ 2π

0

〈q0 −
√
ϕ′(q1 ◦ ϕ),

δϕ′

2
√
ϕ′
q1 ◦ ϕ+

√
ϕ′q′1 ◦ ϕ δϕ〉Rddθ

= −2

∫ 2π

0

〈q0 − q1 ? ϕ,
δϕ′

2ϕ′
q1 ? ϕ+ (q′1 ? ϕ) δϕ〉Rddθ .

To read off the L2-gradient we have to integrate by parts the δϕ′ term. Since δϕ
vanishes at the boundary we have

− 2

∫ 2π

0

〈q0 − q1 ? ϕ,
δϕ′

2ϕ′
q1 ? ϕ〉Rddθ = 2

∫ 2π

0

δϕ

(
〈q0 − q1 ? ϕ,

q1 ? ϕ

2ϕ′
〉Rd

)′
dθ

=

∫ 2π

0

δϕ〈q′0 − (q1 ? ϕ)′,
q1 ? ϕ

ϕ′
〉Rddθ

+

∫ 2π

0

δϕ〈q0 − (q1 ? ϕ),
(q1 ? ϕ)′ϕ′ − (q1 ? ϕ)ϕ′′

ϕ′2
〉Rddθ.

Using that

q′1 ? ϕ =
(q1 ? ϕ)′

ϕ′
− 1

2
(q1 ? ϕ)

ϕ′′

(ϕ′)2
, (25)
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we obtain the gradient of the first term:

grad
(
‖q0 − q1 ? ϕ‖2L2

)
=

〈
q0 − q1 ? ϕ,−2q′1 ? ϕ+

(q1 ? ϕ)′

ϕ′
− (q1 ? ϕ)ϕ′′

ϕ′2

〉
Rd

+

〈
q′0 − (q1 ? ϕ)′,

q1 ? ϕ

ϕ′

〉
Rd

=

〈
q0 − q1 ? ϕ,−

(q1 ? ϕ)′

ϕ′

〉
Rd

+

〈
q′0 − (q1 ? ϕ)′,

q1 ? ϕ

ϕ′

〉
Rd

= −
〈
q0,

(q1 ? ϕ)′

ϕ′

〉
Rd

+

〈
q′0,

q1 ? ϕ

ϕ′

〉
Rd

.

For the second summand we calculate

δ

(
n∑
i=1

|ϕ(θi0)− θi1|2
)

(δϕ) = 2

n∑
i=1

(ϕ(θi0)− θi1)δϕ(θi0)

= 2

n∑
i=1

∫ 2π

0

δθi0(θ)(ϕ(θ)− θi1)δϕ(θ)dθ .

Putting everything together, the formula for the gradient follows. �

Remark 14. Since Ecl
1 can be seen as the restriction of Eop

1 to a co-dimension d sub-
manifold, the gradient of Ecl

1 is simply given by the projection onto the tangent space
of this submanifold, cf. Theorem 2. �

Using the above formulas, the implementation of the gradient descend algorithm
is straightforward. In [29], however, it has been shown that it can be beneficial to
represent diffeomorphisms ϕ as the tuple ϕ = (x0,

√
ϕ′). If one works with open

curves the initial value x0 is always zero. Then there is a one to one correspondence
between ϕ and

√
ϕ′. Denoting ψ =

√
ϕ′, the energy functional on open curves reads

as:

E2(ψ) = ‖q0 − ψ.(q1 ◦ (

∫ θ

0

ψ2dτ))‖2L2 + λ

n∑
i=1

|
∫ θi0

0

ψ2dτ − θi1|2 .

We can now also derive the variation of E in the ψ–representation:

Lemma 15. The variation of E2(ψ) in direction δψ is given by:

δE2(ψ)(δψ)

= −2

∫ 2π

0

(
δψ

〈
q0 − q1 ? ϕ,

q1 ? ϕ

ψ

〉
Rd

+

(∫ θ

0

ψδψdτ

)
〈q0 − q1 ? ϕ, 2q

′
1 ? ϕ〉Rd

)
dθ

+ 4λ

n∑
i=1

(ϕ(θi0)− θi1)

∫ θi0

0

ψδψ dτ

(26)
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Proof. For a variation δψ we calculate

δ
(∥∥∥q0 − ψ.

(
q1 ◦

(∫ θ

0

ψ2dτ
))∥∥∥2

L2

)
(δψ)

= 2

∫ 2π

0

〈
q0 − ψ.q1◦

(∫ θ

0

ψ2dτ
)
,−δψ.q1 ◦

(∫ θ

0

ψ2dτ
)

− 2ψ.
(
q′1 ◦

(∫ θ

0

ψ2dτ
))∫ θ

0

ψδψ dτ
〉
Rd
dθ

= −2

∫ 2π

0

δψ
〈
q0 − ψ.q1 ◦

(∫ θ

0

ψ2dτ
)
, q1 ◦

(∫ θ

0

ψ2dτ
)〉

Rd
dθ

− 4

∫ 2π

0

∫ θ

0

ψδψ dτ
〈
q0 − ψ.q1 ◦

(∫ θ

0

ψ2dτ
)
, ψ.
(
q′1 ◦

(∫ θ

0

ψ2dτ
))〉

Rd
dθ .

Using that
∫ θ

0
ψ2dτ = ϕ we obtain the formula for the first part. For the second

summand we calculate

δ

(
n∑
i=1

∣∣∣∫ θi0

0

ψ2dτ − θi1
∣∣∣2) (δψ) = 2

n∑
i=1

(∫ θi0

0

ψ2dτ − θi1
)∫ θi0

0

2ψδψ dτ . �

Remark 16. We do note that a gradient descent based algorithm can also be applied
if the feature matching term FM is not the squared `2-norm but rather a general
differentiable function, the only difference being a corresponding modification of the
last terms in the variations (24) and (26), respectively. For instance, in the case of a

feature matching term F̂M defined on the parameter space Mn, the last term in (26)
becomes

2λ

n∑
i=1

∂i F̂M(ϕ(θ0)− θ1)

∫ θi0

0

ψδψ dτ.
�

3.2 Dynamic Programming

As an alternative to the gradient descent method discussed above, Dynamic Program-
ming (DP) is often used to determine a piecewise linear approximation of the optimal
parametrization. We begin by introducing a local version of the energy functional (21).

Let I = {τ0, . . . , τM} be a discretization of the interval [0, 2π]. Given k < i ∈ I and
l < j ∈ I and a strictly increasing function ϕ satisfying ϕ([k, i]) = [l, j], we define

Ē1(ϕ; k, l; i, j) :=

∫ i

k

∣∣∣ c′0√
|c′0|
−
√
ϕ′

c′1 ◦ ϕ√
|c′1| ◦ ϕ

∣∣∣2
Rd
dθ + λ

∑
m:l<θm1 ≤j

|ϕ(θm0 )− θm1 |2. (27)

In the special case where ϕ is the linear function

ϕk,l;i,j(τ) := l + (τ − k)
j − l
i− k

,

14



and

qk,l;i,j(τ) :=
c′1 ◦ ϕk,l;i,j√
|c′1 ◦ ϕk,l;i,j |

√
j − l
i− k

,

is the corresponding SRV transform of the reparametrized curve, the energy functional
reduces to

E(k, l; i, j) := Ē1(ϕk,l;i,j ; k, l; i, j) =

∫ i

k

|q0−qk,l;i,j |2Rd dθ+λ
∑

m:l<θm1 ≤j

|ϕk,l;i,j(θm0 )−θm1 |2.

(28)
Denote now by Φ the set of all piecewise linear and increasing homeomorphisms

ϕ : [0, 2π]→ [0, 2π] with vertices on the grid I × I. Denote moreover by Φk,l the set
of all ϕ ∈ Φ satisfying ϕ(k) = l. Now let for i, j ∈ I

H(i, j) := min
ϕ∈Φi,j

Ē1(ϕ; 0, 0; i, j)

and denote by ϕi,j the (any) corresponding minimizer. That is, H(i, j) is the min-
imal energy required for matching the curve segments c0|[0,i] and c1|[0,j] using a
piecewise linear reparametrization defined on the given grid. In order to find a
global reparametrization, we need to find H(2π, 2π) and a corresponding optimal
reparametrization ϕ̄ := ϕ2π,2π.

Now note that H satisfies the recursion

H(i, j) = min
k,l∈I, k<i, l<j

E(k, l; i, j) +H(k, l), (29)

because of the additivity of Ē1. Thus ϕi,j is given by

ϕi,j(τ) =

{
ϕk,l;i,j(τ) τ ∈ [k, i],

ϕk,l(τ) τ ∈ [0, k],
with (k, l) ∈ arg min

k,l∈I, k<i, l<j
E(k, l; i, j) +H(k, l).

(30)
In practice, this computation consists of two steps. In a first step, we create the

M × M matrix H inductively while keeping track of the minimizing indices k and
l (see (29)). In the second step, we determine the function ϕ̄ by backtracking the
minimizing indices and using formula (30).

In order to speed up the computation, we can restrict the set of admissible indices
in (29) and consider only indices k, l close to i, j. In practice, this corresponds to a
restriction of the possible slopes of the piecewise linear reparametrization ϕ̄. See Fig.
1 for an example.

Remark 17. The minimization approach based on dynamic programming can also be
applied for non-quadratic feature matching terms, as long as they decompose as

FM(C0,C1) =
∑
m

FMm(Cm0 , C
m
1 ),

15



(i, j)

i

j

i− 1

j − 1

Figure 1: The dynamic programming algorithm can be sped up massively by only
considering predecessor indices (k, l) close to the current index (i, j) in (29).

with FMi : Rd × Rd → R≥0. For this, one only has to replace in (28) the last sum by∑
m:l<θm1 ≤j

FMm

(
c0(ϕk,l;i,j(θ

m
0 )), c1(θm1 )

)
.

Note that this can be also used to implement hard constraints on the deviation of the
feature points by setting

FMm(Cm0 , C
m
1 ) =

{
+∞ if ‖Cm0 − Cm1 ‖ > dm,

0 if ‖Cm0 − Cm1 ‖ ≤ dm,

for some hard bounds dm ≥ 0.
In addition, the dynamic programming approach readily extends to the symmetriza-

tion discussed in Section 2.4, again as long as the feature matching terms decompose.
Here, the last sum in (28) has to be replaced by∑

m:l<θm1 ≤j

FMm

(
c0(ϕk,l;i,j(θ

m
0 )), c1(θm1 )

)
+

∑
p:k<θp0≤i

FMp

(
c1(ϕ−1

k,l;i,j(θ
p
1)), c0(θp0)

)
.

We stress here that the function ϕk,l;i,j is linear on the interval [k, i], and thus its
inverse, which appears in the formula above, can be trivially computed. �

4 Applications

As demonstrated in [14], shape matching techniques can be applied to certain com-
puter animations such as, for instance, human walking motions. This has uses in the
entertainment industry (movie and TV production, and especially video games) as
well as potential biomedical applications.

We will be working with skeletal animations, where motions are described in terms
of bones and joints in an approximation of a human skeleton. A typical approach to
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Figure 2: This skeleton, which is based on data from the CMU Graphics Lab Motion
Capture Database [12], was used for the animation experiments. Figure
taken from [14].

generate such animation data is to use motion capturing methods, where a stuntman’s
motions are recorded by multiple cameras in a studio. By tracking a multitude of
points on the stuntman’s body as he moves, the corresponding skeletal animation
can be recovered. These animations face a number of limitations, however, and often
require additional postprocessing. We refer to [24, 10, 16, 17, 14] for more details and
examples.

A skeleton is a directed acyclic graph where vertices and edges represent bones
and joints, respectively. A joint represents a transformation relationship between two
bones. In the case of human motions, transformations between bones are restricted to
rotations. Joints can have one to three degrees of freedom. For example, the knee has
one degree of freedom while the foot has two, and the shoulder has three. Fig. 2 shows
the skeleton used for our numerical experiment. A character?s pose is then specified by
assigning values to all degrees of freedom in the skeleton (i.e., all the joints). Formally
each such configuration is an element of joint space J = SE(3)d. An animation is then
a curve from a time interval I = [a, b] into joint space J , specifying a character pose
for every point in time. In this article decided to ignore the manifold structure of the
joint space J , but instead representing rotations using Euler angles, and thus we can
collect all degrees of freedom of all joints in the skeleton as a high-dimensional torus,
i.e.,

J := Td,

where d denotes the total number of degrees of freedom in the skeleton.
We can now unroll the joint-space torus in Rd and thus an animation is then a

path from the time interval [a, b] to Rd, so that for every point in time we get a pose
of the skeleton. Thus we have represented animations as parametrized curves with
values in Rd. Then the shape matching techniques developed previously can then be
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No. of points Elastic reparam. Correct features Incorrect features
100 17 s (6) 11 s (3) 22 s (6)
200 32 s (6) 22 s (3) 50 s (6)
400 67 s (6) 48 s (3) 95 s (8)

Table 1: Computation times for Fig. 4.

applied to these curves. In [13] the authors tackled the problem of matching curves
with values in a Lie-group and applied it to animations. The main difference from
the work presented here to the work in [14, 13] is the incorporation of feature points
into the numerical framework. In Sect. 4.2, we will show how feature matching can
be successfully used to complement such existing shape matching methods. It would
be interesting to combine the manifold valued framework with our framework allowing
for feature point information.

We will begin, however, with a few examples of feature matching for planar curves
to demonstrate the effects the additional feature term has on the curve matching.

4.1 2d-curves

As would be expected, adding feature points to shape matching can have a big impact
on the resulting paths.

As a first example, we consider the matching of two open curves, the first of which
has three maxima and minima, while the second only has two (see Fig. 3). Using only
the elastic matching term without any specification of feature points, the resulting
minimum energy path between the two curves approximately maps the first and the
last extremum of the first curve to the first and the last extremum of the second curve,
while the extremum in the middle vanishes slowly.

Adding feature points, one can change the behavior of the optimal path significantly.
If, for instance, feature points are set on the last extremum of the first curve but in
the vicinity of only the last extremum of the second curve, then the optimal path
tries, during its evolution, to merge the last extrema of the first curve, while its lower
portion is matched quite closely to the lower half of the second curve (see Fig. 3, upper
left). Different behaviors follow from different choices of the feature points.

Fig. 4 shows similar behavior for closed curves. When using a purely elastic matching
term, moving from the first hand-pose to second one seen in Fig. 4, we end up with
visually unappealing interpolations. By picking to corresponding fingertips on both
hands as feature points, the algorithm achieves a much more natural looking transition
from one shape to the other. However, feature points need to be selected carefully, as
the last row in Fig. 4 shows. By attempting to match for example the thumb in one
hand shape to the midway point between index and middle finger on the second hand
shape, we induce a physically implausible interpolation that involves growing a new
thumb.

To give an indication of the computational performance of the method, Table 1
shows the time needed to calculate the geodesics in Fig. 4. The numbers in parenthe-
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Figure 3: Effect of picking different feature points when matching two shapes. The
top left figure shows results for shape matching using only an elastic energy
functional without feature points. The remaining figures show matching
results for different combinations of feature points. Corresponding markers
on the left and right are matched, resulting in different paths between the
given curves.
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Elastic reparametrization

Correct feature points

Incorrect feature points

Figure 4: Effect of picking different feature points when matching two different hand
shapes. In the top row, no feature points were set. The purely elastic
matching produces distorted shapes along the geodesic path between the
two hand shapes. In the middle row, feature points were set to match the
tips of ring and index fingers correspondingly. This results in more natural
interpolated shapes. In the bottom row, we see how incorrect feature matches
cause some fingers to merge and new fingers to grow along the interpolation
between the two shapes. Corresponding markers on the left and right are
matched, resulting in different paths between the given curves. Colors along
the curves indicate parametrization.
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ses indicate the number of iterations that were necessary to achieve a specified level
of accuracy. Note that the numerical experiments were implemented in Python, with
no focus on optimization. We expect a re-implementation in, e.g., C++, to provide
massive performance improvements. Furthermore, for the illustrations in Fig. 4, we
have chosen very small tolerances; if necessary, these could be relaxed to further im-
prove performance. The results in the table also indicate that a good choice of feature
points can yield to a speed up in optimization (compared to a pure elastic method),
whereas a bad choice of feature point might result in a slow down.

We refer to the supplementary material2 for videos demonstrating the differences.

4.2 Applications to animations

We now turn to the use of feature point matching for animations. Human animations
come in an immensely large variety. Walking motions alone can vary in speed, rhythm,
step length, motions of the arms and so on. Traditional elastic matching methods
(i.e., without feature points) can be applied to a large number of animations, but can
sometimes struggle with animations that have large differences in rhythm, for example
when matching a walking animation to a limping animation. Feature points can be
used to help with determining an optimal reparametrization to align two animations
in time.

Fig. 5 shows an example of using feature point information to aid in animation
interpolation. The goal is to calculate interpolations between two different walking
animations. These can be seen in the top row of Fig. 5. The animations differ in the
number of steps, rhythm and arm motions. In addition, the character in the second
animation starts walking forward only after a short delay compared to the first.

The results of four different interpolation schemes (linear interpolation of the Euler
angles, elastic matching with and without reparametrization and elastic and feature
matching with reparametrization) can be seen on the bottom of Fig. 5. The two
superimposed lines show the trajectories of the left and right feet for each calculated
interpolation. We can see how especially the varying numbers of steps in the two initial
animation causes problems for the matching algorithms. Especially in the linear case,
it can be seen how the right leg sometimes takes two steps during one step with the
left leg. In the elastic case without reparametrization, we see that the character takes
very uneven steps compared to the input data.

As feature points we picked the first three times when the left knee moves forward
and past the right knee. This is already enough information for the shape matching
algorithm to determine a “good” (i.e., visually convincing) interpolation.

Similar results can be seen in the second example, which shows two walking ani-
mations stepping over an obstacle of different height as seen in Fig. 6. Again, the
superimposed lines represent the trajectories of the feet, with noticeable bumps as
the character steps over the obstacle. As before, we have picked the first three times
when the left knee moves forward and past the right knee as feature points. With

2Supplementary material available at https://wiki.math.ntnu.no/optimization/skeletal_

animations.
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Linear No reparam.

Elastic reparam. Feature reparam.
t

Figure 5: Example of using various methods to interpolate between two walking an-
imations. The blue and orange lines are the trajectories of the left and
right feet respectively. Note in particular how the two walking animations
have different numbers of steps and how the various interpolated anima-
tions struggle with that. We have from left to right and top to bottom the
following methods: linear interpolation of the Euler angles, elastic match-
ing without reparametrization, elastic matching with reparametrization and
finally elastic and feature point matching with reparametrization.
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Linear No reparam.

Elastic reparam. Feature reparam.
t

Figure 6: Example of using various methods to interpolate between two walking an-
imations stepping over an obstacle. The blue and orange lines are the
trajectories of the left and right feet respectively. We have from left to
right and top to bottom the following methods: linear interpolation of the
Euler angles, elastic matching without reparametrization, elastic matching
with reparametrization and finally elastic and feature point matching with
reparametrization.
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this additional information, the feature point matching algorithm manages to produce
a visually convincing interpolation between the two animations, whereas the other
matching algorithms fail and produce only garbled results.

We refer to the supplementary material3 for a video, which demonstrates the differ-
ences and advantages of our method more clear.
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