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Abstract: Keeping the pressure within predefined bounds is essential for the safety of managed
pressure drilling operations, but drill string movements can induce pressure fluctuations that
violate these margins. We extend previous results on disturbance rejection for a 2×2 hyperbolic
model of the fluid dynamics in the borehole. We perform a simulation study, in which we
illustrate the controller performance for heave induced oscillations and compare it to the
previously available controller. The stochasticity of sea waves induces limitations on the
achievable performance. Further, the controller is applied to intended string movements, where
control can be used to remove conservative limitations on the speed of the movement.
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1. INTRODUCTION

Maintaining the pressure in a borehole above the pore
pressure and below the fracture pressure of the formation
is essential for the safety of drilling operations. Therefore,
a fluid called drilling mud is pumped down through the
drill string, through the bit and up the annulus. The
mud is designed such that the pressure remains within
tolerable margins. For wells where the pressure margins are
tight, so-called managed pressure drilling was developed,
enabling fast active control of the annular pressure using a
choke and backpressure pump at the outlet of the annulus,
without having to change the mud properties (Godhavn
et al. (2010)). However, drill string movements disturb
the system and must be compensated for. Drill string
movements occur due to the wave-induced heaving motion
of a floating drilling rig, and during tripping. Tripping is
the intentional movement of the string into or out of the
well, e.g. in order to change the drilling equipment. We
consider the attenuation of such string-movement induced
pressure fluctuations using the choke and measurements
that are available on the rig. This is one of several ap-
plications within drilling where the distributed dynamics
of the system must be taken into account (Di Meglio and
Aarsnes (2015)).
While drilling from a floating rig, a mechanical system
decouples the rig’s movement from the string. However,
every 30 m the drill string must be fixed to the rig in
order to extend it by another segment, and the string
moves with the rig. The distributed dynamics of the heave
problem were first addressed in Landet et al. (2013), and
a controller was designed based on a discretized model.
The heave disturbance is modeled as an inflow at the bot-
tom. Most relevant to this work, a backstepping controller
based on the 2 × 2 hyperbolic PDEs was developed in
Aamo (2013), and this method was generalized in Anfinsen
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and Aamo (2015) to control the pressure at an arbitrary
position in the well. However, their model neglects that
the disturbance affects the system throughout the do-
main because fluid sticks to the drill string. Further, they
consider only simplistic harmonic oscillations, and neglect
that the heave can actually be measured on the rig using
accelerometers. Thus, the disturbance does not need to
be estimated from pressure and flow measurements, which
improves the performance of the observer significantly.
String movements when tripping the drill string, or placing
casing in the borehole, are actually more common, as they
occur also when drilling from fixed platforms. A common
procedure is to calculate the maximum velocity that re-
sults in tolerable pressure fluctuation (Mitchell (1988)).
Active pressure control could increase the allowable speed,
saving time.
The paper is organized as follows. In Section 2, we intro-
duce the model, and in Section 3 we present the controller
design. Three relevant simulation scenarios are discussed
in Section 4. Finally, concluding remarks are given in
Section 5.

2. MODELING

We consider the following model for the annular pressure
and flow:

pt(z, t) = − β
A
qz(z, t) (1)

qt(z, t) = −A
ρ
pz(z, t)−

F

ρ
q(z, t) +

Fd
ρ
vd(z, t)−Ag (2)

q(0, t) = −Advd(0, t) (3)

where z ∈ [0, l], t ≥ 0, l is the length of the well, p(z, t) is
pressure, q(z, t) the volumetric flow rate, vd(z, t) is the
drill string velocity, A the cross sectional area of the
annulus, Ad is the area replaced by the drill string, β
bulk modulus, ρ density, g the gravitational constant, F



and Fd are friction factors, and subscripts z and t denote
derivatives with respect to space and time, respectively.
The parameters A, β, ρ, F , and Fd can vary with z, but
we omit this dependency for the sake of readability. The
control objective is to control the bottomhole pressure to
a given setpoint psp, i.e.

p(0, t) = psp. (4)

The topside boundary condition is left as a control input.
Model (1)-(2) for the annular dynamics was used in
Aarsnes et al. (2013) for studying resonances and is an
extension of the model that was used in Aamo (2013). The
last term on the right-hand side of momentum balance
(2) is added to model the “mud-clinging” effect: like in
Couette flow, fluid sticks to the drill string, and via the
viscous forces in the fluid the moving string induces a
momentum on the fluid. We assume linear friction, which
was shown to be reasonable for laminar flow of Newtonian
fluids, and a limited frequency range in case of oscillations
(Stecki and Davis (1986a), Stecki and Davis (1986b)).
Thus, the drill string movement/disturbance enters the
system not only as the inflow at the bottom of the hole,
i.e. through a boundary condition, but also throughout
the domain. The significance of the mud-clinging effect is
illustrated in Section 4.1.
Simulations of the model in Aarsnes et al. (2013), which
also contains drill string elasticity, have shown that the
drill string is approximately rigid in most situations, unless
the string’s resonance frequency is excited for an extended
period. Therefore, we assume that the velocity of the drill
string equals the velocity at the rig, vd(z, t) = vd(l, t)
∀z ∈ [0, l], in which case the drill string velocity can
be obtained from measurements on the rig. Thus, the
estimation problem is significantly simplified compared to
Aamo (2013).

2.1 Disturbance model

Due to the length of the well and the hyperbolic nature
of the model, there is a delay between topside actuation
and downhole effect. Therefore, the control involves feed-
forward using a prediction of the disturbance. This will be
made precise in Section 3.2.
We consider two distinct cases of string movement. First,
the string movement is intentional. In this case, the veloc-
ity is determined by the operator, i.e. it is known a priori.
Second, we consider heave-induced oscillations. Here, the
string velocity depends on the waves and the drilling rig’s
response. For this case, we consider the linear model

Ẋ(t) = ĀX(t), (5)

vrig(t) = C̄X(t), (6)

with

Ā = diag

([
0 ω1

−ω1 0

]
, . . .

[
0 ωn
−ωn 0

])
, (7)

C̄ = [0 1 . . . 0 1] (8)

and vd(l, t) = vrig(t). X(t) can be estimated from mea-
surements of vrig using the observer

˙̂
X(t) = ĀX̂(t) + L (vrig(t)− v̂rig(t)) , (9)

v̂rig(t) = C̄X̂(t), (10)

where the observer gain L is chosen such that Ā − LC̄
is Hurwitz. Heave prediction by this model is imperfect

because sea waves are stochastic, and the n chosen frequen-
cies ω1, . . . , ωn do not cover the wave spectrum completely.
However, we will assume that it suffices for obtaining short
term predictions.

2.2 State transformation

In order to use previous results on backstepping controller
design, it is desirable to bring system (1)-(3) on diagonal
form. In Aamo (2013), Lemma 10, the coordinate trans-
formation

u(x, t) =
1

2

(
q(xl, t) +

A√
βρ

(p(xl, t)− psp + ρglx)

)
× e

lF

2
√
βρ
x
,

(11)

v(x, t) =
1

2

(
q(xl, t)− A√

βρ
(p(xl, t)− psp + ρglx)

)
× e
− lF

2
√
βρ
x
,

(12)

where x ∈ [0, 1], was given. In the presence of the
additional term in (2) we get

ut(x, t) = −ε1(x)ux(x, t) + c1(x)v(x, t) + d1(x, t) (13)

vt(x, t) = ε2(x)vx(x, t) + c2(x)u(x, t) + d2(x, t) (14)

u(0, t) = qv(0, t) + d(t) (15)

v(1, t) = U(t) (16)

with

ε1 = ε2 =
1

l

√
β

ρ
, d(t) = −Advd(0, t), (17)

c1(x) = − F
2ρ
e
lF√
βρ
x
, c2(x) = − F

2ρ
e
− lF√

βρ
x
, (18)

d1(x, t) =
Fd
2ρ
eγxvd(l, t), d2(x, t) =

Fd
2ρ
e−γxvd(l, t), (19)

γ = lF

2
√
βρ

and q = −1. U is the control input to be

designed. The control objective becomes

u(0, t) = rv(0, t) (20)

with r = 1. For (1)-(2), the control law is realized by

ql(t) =
A√
βρ

(pl(t)− psp + ρgl) + 2U(t)e
lF

2
√
βρ . (21)

The first term is in the form of a “passive” boundary
condition and is responsible for avoiding reflections of
pressure waves, while the latter term involving U is the
active control input.
The model for vd remains unchanged. In case of a linear
model of the form (5)-(6), the disturbance model is

Ẋ(t) = AX(t), (22)

d(t) = CX(t), (23)

d1(x, t) = C1(x)X(t), (24)

d2(x, t) = C2(x)X(t), (25)

where A = Ā, C = −AdC̄, C1(x) = Fd
2ρ e

lF

2
√
βρ
x
C̄, and

C2(x) = Fd
2ρ e
− lF

2
√
βρ
x
C̄ in our case, and X can be estimated

using (9) - (10). More generally, the method in this paper
can also be applied for any nonlinear disturbance model
that provides a prediction of the disturbance. The require-
ments on the prediction are made precise in Section 3.2.



3. CONTROLLER DESIGN

3.1 Backstepping transformation

The backstepping transformation

α(x, t) =u(x, t)−
∫ x

0

Kuu(x, ξ)u(ξ, t)dξ

−
∫ x

0

Kuv(x, ξ)v(ξ, t)dξ,
(26)

β(x, t) =v(x, t)−
∫ x

0

Kvv(x, ξ)v(ξ, t)dξ

−
∫ x

0

Kvu(x, ξ)u(ξ, t)dξ
(27)

was introduced in Vazquez et al. (2011) to map the system
without disturbances into a target system, where the
kernels satisfy the partial differential equations

ε1(x)Kuu
x (x, ξ) + ε1(ξ)Kuu

ξ (x, ξ)

= −ε′1(ξ)Kuu(x, ξ)− c2(ξ)Kuv(x, ξ)
(28)

ε1(x)Kuv
x (x, ξ)− ε2(ξ)Kuv

ξ (x, ξ)

= ε′2(ξ)Kuv(x, ξ)− c1(ξ)Kuu(x, ξ)
(29)

ε2(x)Kvu
x (x, ξ)− ε1(ξ)Kvu

ξ (x, ξ)

= ε′1(ξ)Kvu(x, ξ) + c2(ξ)Kvv(x, ξ)
(30)

ε2(x)Kvv
x (x, ξ) + ε2(ξ)Kvv

ξ (x, ξ)

= −ε′2(ξ)Kvv(x, ξ) + c1(ξ)Kvu(x, ξ)
(31)

on T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1} and boundary conditions

Kuu(x, 0) =
ε2(0)

qε1(0)
Kuv(x, 0) (32)

Kuv(x, x) =
c1(x)

ε1(x) + ε2(x)
(33)

Kvu(x, x) = − c2(x)

ε1(x) + ε2(x)
(34)

Kvv(x, 0) =
qε1(0)

ε2(0)
Kvu(x, 0). (35)

In the presence of the disturbances, and using the control
input

U(t) = V (t) +

∫ 1

0

Kvu(1, ξ)u(ξ, t) +Kvv(1, ξ)v(ξ, t)dξ,

(36)
transformation (26)-(27) maps the system (13)-(16) into

αt(x, t) =− ε1(x)αx(x, t)− ε1(0)Kuu(x, 0)d(t)

+ d1(x, t)−
∫ x

0

Kuu(x, ξ)d1(ξ, t)dξ

−
∫ x

0

Kuv(x, ξ)d2(ξ, t)dξ,

(37)

βt(x, t) =ε2(x)βx(x, t)− ε1(0)Kvu(x, 0)d(t)

+ d2(x, t)−
∫ x

0

Kvu(x, ξ)d1(ξ, t)dξ

−
∫ x

0

Kvv(x, ξ)d2(ξ, t)dξ,

(38)

α(0, t) = qβ(0, t) + d(t), (39)

β(1, t) = V (t), (40)

which can be shown by following the steps in the proof
of Lemma 1 in Aamo (2013). Since α(0, t) = u(0, t) and
β(0, t) = v(0, t), the control objective becomes

α(0, t) = rβ(0, t). (41)

Using Lemma 2 in Aamo (2013), the explicit solution to
(37) and (38) can be obtained. With

hα(z) =

∫ 1

z

1

ε1(γ)
dγ, dα = hα(0), (42)

hβ(z) =

∫ 1

z

1

ε2(1− γ)
dγ, dβ = hβ(0), (43)

fβ(x, t) = −ε1(0)Kvu(x, 0)d(t) + d2(x, t)

−
∫ x

0

Kvu(x, ξ)d1(ξ, t)dξ −
∫ x

0

Kvv(x, ξ)d2(ξ, t)dξ,

(44)
the solution to (38) satisfies

β(0, t)− β(1, t− dα) =

t∫
t−dα

fβ(1− h−1
β (t− γ), γ)dγ. (45)

For the linear disturbance model (22)-(25), fβ becomes lin-
ear in the disturbance state X(t), and there is a separation
between space and time-varying terms:

fβ(x, t) =

[
− ε1(0)Kvu(x, 0)C + C2(x)

−
∫ x

0

Kvu(x, ξ)C1(ξ) +Kvv(x, ξ)C2(ξ)dξ

]
X(t)

=:Kβ(x)X(t).
(46)

Using this, the analogue to (45) is

β(0, t)−β(1, t−dβ) =

∫ dβ

0

Kβ(1−h−1
β (τ), 0)e−AτdτX(t).

(47)
Similar calculations can be done for the α-system, but they
are not required here.

3.2 Controller design

Using (39), (40), and (45), we get

α(0, t) =qβ(0, t) + d(t)

=rβ(0, t) + (q − r)β(0, t) + d(t)

=rβ(0, t) + (q − r)V (t− dβ) + d(t)

+ (q − r)
∫ t

t−dβ
fβ(1− h−1

β (t− γ), γ)dγ.

(48)

The control objective (41) is achieved if and only if (setting
the sum of all but the first term on the right-hand side zero
and shifting time)

V (t) =− 1

q − r
d(t+ dβ)

+

∫ t+dβ

t

fβ(1− h−1
β (t+ dβ − γ), γ)dγ.

(49)

Thus, the control input at time t requires knowledge of
the disturbances at all times τ ∈ [t, t+ dβ ], i.e. dβ into the
future. This can be implemented using a disturbance pre-
diction as discussed in Section 2. For the linear disturbance



model, V can be implemented as (using the predicted

disturbance X̃(t+ τ) = eAτ X̂(t))

V (t) = − 1

q − r
CeAdβ X̂(t)

−
∫ dβ

0

Kβ(1− h−1
β (τ))eA(dβ−τ)dτX̂(t).

(50)

As mentioned earlier, there can be a mismatch between
predicted and actual disturbances, resulting in an error in
the control objective. For the linear case, inserting (50)
into (48) yields

u(0, t) =rv(0, t) +
(
d(t)− CeAdβ X̂(t− dβ)

)
+ (q − r)

(∫ t

t−dβ
fβ(1− h−1

β (t− γ), γ)dγ

−
∫ dβ

0

Kβ(1− h−1
β (τ))eA(dβ−τ)dτX̂(t− dβ)

)
.

(51)
This illustrates how a prediction error in the disturbance
imposes limitations on the achievable controller perfor-
mance.

3.3 Observer

To implement (36), u and v are required throughout
the domain. In practice, only measurements at the right
boundary are available. Therefore, we use the observer

ût(x, t) = −ε1(x)ûx(x, t) + c1(x)v̂(x, t) + d1(x, t)

+ p1(x)(u(1, t)− û(1, t)) (52)

v̂t(x, t) = ε2(x)v̂x(x, t) + c2(x)û(x, t) + d2(x, t)

+ p2(x)(u(1, t)− û(1, t)) (53)

û(0, t) = qv̂(0, t) + d(t) (54)

v̂(1, t) = U(t), (55)

where p1 and p2 are output injection gains to be designed.
Forming error equations by subtracting (52)-(55) from
(13)-(16) yields the error system

ũt(x, t) = −ε1(x)ũx(x, t) + c1(x)ṽ(x, t)− p1(x)ũ(1, t)
(56)

ṽt(x, t) = ε2(x)ṽx(x, t) + c2(x)ũ(x, t)− p2(x)ũ(1, t) (57)

ũ(0, t) = qṽ(0, t) (58)

ṽ(1, t) = 0. (59)

Note that the disturbance terms cancel. Therefore, the
observer in Vazquez et al. (2011) can be applied. The
observer error becomes zero within dα + dβ . The output
injection gains p1 and p2 are obtained by solving ob-
server kernel PDEs similar to (28)-(35). They are given
in Vazquez et al. (2011).

4. SIMULATIONS

In this section, we present examples to illustrate the
performance of the controller. The following common
parameters are used

β = 1.6× 109 Pa, ρ = 1420 kg/m
3
,

Ad = 0.0127 m2, µ = 42 mPas,

A = 0.0198 m2, F = 700 kg/m3s,

The friction factor F was calculated using a modification
of the Hagen-Poisseuille law for the annular geometry and
viscosity µ , and Fd = 0.5AF . The length l varies in the
examples. The pressure setpoint was set to a value slightly
above the hydrostatic pressure, psp = 1.05ρgl, but this
does not affect the dynamics.

4.1 Mud-clinging effect

In this example, we compare the controller (50) with
the controller from Aamo (2013) in the presence of the
mud-clinging effect. In order to isolate the effect of the
additional momentum term, we assume a sinusoidal (i.e.
predictable) heave motion with period 12 s and amplitude
1 m, vrig = 2πa sin(ωt) (ω = 2π

12 and a = 1), and use
l = 2000 m.

In Figure 1, the downhole pressure regulation error p(0, t)
is depicted for three cases: controller (50), the controller
from Aamo (2013), and U(t) ≡ 0 for comparison. The
controller neglecting the mud-clinging effect achieves a
clear reduction compared to no control, but significant
pressure fluctuations remain.

Fig. 1. Downhole pressure oscillations using controller (50),
the controller from Aamo (2013), and using no control
(U = 0).

4.2 Real heave data

Heave measurements from a semisubmersible rig are de-
picted in Figure 2. This is a typical heave spectrum for
a rig operated in the North Sea, where high-frequency
components are dampened by the rig. The heave velocity is
estimated using (9) - (10), where the frequencies ω1, . . . , ω5

are chosen according to the velocity’s frequency spectrum,
see Figure 3. In practice, the spectrum can be updated
regularly to match the current sea state. A time series
of the resulting pressure oscillations in a 5000 m long
well is depicted in Figure 4. The controller succeeds in
reducing the pressure fluctuations at the bottom of the
well, but some oscillations remain due to the error in the
disturbance prediction. Motivated by (51), measured and
predicted rig velocities are compared in Figure (2), where
the predicted velocity is given by

ṽrig(t) = C̄eĀT X̂(t− T ) (60)



Fig. 2. Measured heave velocity and predicted velocity
using (60) for T = 3, 6 s.

for the prediction horizon T . The cummulative distribu-
tion functions of the downhole pressure oscillations for
different well lengths are depicted in Figure 5. Clearly,
the pressure variations increase with well length, because
of the longer prediction. Note that these values can be
computed directly from Equation (51). The distribution
function without active control (U = 0), which is almost
independent from l, is depicted for comparison. Consid-
ering that uncertainties and practical challenges in the
implementation of controller (50) increase the pressure
variations, one needs to assess the advantages compared
to the simpler strategy U = 0 for long wells. The root
mean square as another measure of the downhole pressure
variation is depicted in Figure 6. More relevant in practice
is the maximum deviation from psp. The figure shows that
the maximum varies little with l and attains already a
high value at short lengths. However, maxima over a short
time might have little effect due to the plasticity of the
formation. Therefore,

1

T

∫ T

0

(|p(0, t)− psp| − 2.5)× 1|p(0,t)−psp|>2.5dt (61)

can be used as a measure for the “energy” per time beyond
the margin psp ± 2.5 bar that is applied to the formation.
The figure shows that this energy increases significantly for
l > 6000 although the maximum remains approximately
constant. Figures 5 and 6 can be used to judge if the
pressure oscillations are tolerable based on the expected,
or currently observed, heave motion.

4.3 Intended drill string movements

Another interesting scenario is when running the drill
string, or casing, into or pulling it out of the borehole.
A common procedure is to estimate the maximum ve-
locity that results in a tolerable surge or swab pressure,
respectively, see e.g. Mitchell (1988). Control could be used
to actively attenuate these pressure fluctuations, allowing
a higher tripping speed. This case serves as an example
where the string velocity is known a priori. The controller
in this paper is designed on the assumption that string
movement causes a flow at the bottom. This assumption
is satisfied at least for the lowermost string segments.

Fig. 3. Heave velocity spectrum and chosen frequencies.

Fig. 4. Pressure deviation from steady conditions for real
heave data and l = 5000 m.

Fig. 5. Cummulative distribution function of the downhole
pressure regulation error for different well lengths and
U = 0 for comparison.



Fig. 6. Root mean square, maximum value and “energy”
as defined in (61) of the downhole pressure regulation
error over well length.

Fig. 7. Bottomhole pressure when pulling the drill string
with and without control.

For a given string velocity, pressure fluctuations increase
with decreasing clearance between drill string and borehole
wall. The clearance is smallest in deep parts of a well,
because the well diameter decreases with each casing that
is installed. Also, the bottom is the most pressure sensitive
part of a well, because the upper parts have been protected
by casing and cement. Therefore, the most relevant case
is when the bit is relatively close to the bottom, see also
Mitchell (2004). Judging how far the string may be off
bottom is beyond the scope of this paper. Figure 7 shows
the bottomhole pressure where the drill string is pulled by
one segment (30m) with a maximum velocity of 1 m/s. The
pressure deviation without control would be too severe in
certain cases, while the backstepping controller attenuates
all pressure fluctuations.

5. CONCLUSIONS

We have extended previous results on backstepping control
of 2× 2 linear hyperbolic PDEs to attenuate disturbances
appearing at the boundary and throughout the domain.

The method was applied to pressure control in drilling.
The control law requires a prediction of the disturbance
that can be obtained either from a schedule of an in-
tentional string movement or from a model. Limits on
controller performance due to unpredictability of the dis-
turbance have been investigated. Further work could in-
clude improving the prediction of the velocity in the heave
problem, e.g. by heave measurements in some distance
around the rig. The drill string dynamics could be included
in the model and controller design to relax the assumption
of rigidity. For this purpose, results in Hu et al. (2015)
might be exploited. To allow control when the string is far
off bottom, the controller could be modified to allow inflow
within the domain. Finally, uncertainty in bulk modulus
and friction parameters should be explored.
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