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Abstract—In this work, a decentralized PI passivity-based
controller (PI-PBC) is applied to the Modular Multilevel Con-
verters (MMCs) to ensure global asymptotic stability of a multi-
terminal MT-HVDC system. Since continuous MMC state-space
models naturally have time-periodic steady-state solutions, a first
step towards the derivation of the controller is the formulation
of an equivalent model characterized by constant steady-state
solutions, obtained via a multi-frequency orthogonal coordinates
transformation. For the design of the controller, the overall system
is represented in an appropriate port-Hamiltonian formulation,
which allows the derivation of the stabilizing control law using
passivity-based arguments. The results are validated on a three-
terminal simulation benchmark.

I. INTRODUCTION

The integration of large volumes of renewable energy
systems into the existing power grid constitutes one of the
main pillars towards the much needed low-carbon economy.
However, due to their intermittent nature and uneven geograph-
ical distribution, major developments on the grid infrastructure
are likely required [1]. One possibility is to conceive new
architectures that will take place at the boundary of the existing
infrastructure, both at the low- and high-voltage levels. At the
high-voltage level, a transmission system spanning the whole
planet and connecting most of the large power plants in the
world has been proposed, the so-called global grid or supergrid
concept [2]. In this scheme it would be possible to integrate
remotely located, high potential, aggregated renewable energy
resources providing sustainable energy to the main grids
by means of multi-terminal high-voltage direct-current (MT-
HVDC) transmission systems [3].

MT-HVDC grids are expected to be multi-vendor by nature,
thus posing the problem of interoperability of their compo-
nents, in particular of the power converters and the correspon-
dent controllers [1]. Although the concept of interoperability
has several valid interpretations, it is widely acknowledged that
a key role is played by the analysis of stability and performance
properties [4]. Unfortunately, two practical aspects complicate
the stability analysis. First, since the supergrid is expected to
grow organically and plug & play operation of the components
is likely required, system structural changes may invalidate
the stability results obtained for the original architecture.
Second, the controllers implemented by the vendors are usually
subjected to confidentiality agreements. In this context, it is
necessary to establish well-defined grid codes—to be complied
locally by the vendors—that guarantee an appropriate opera-
tion of the grid. These codes must ensure that the stability
of the overall system is preserved, in presence of structural

changes, and with no need of sharing information on the
protected control strategies.

A possible approach for the assessment of stability for
large-scale, nonlinear, interconnected systems is based on pas-
sivity theory [5]. In particular, for the case of MT-HVDC sys-
tem, it was shown in [6], [7] that—using passivity arguments—
appropriate, decentralized PI controllers, can be designed to
guarantee stability of the closed-loop system. These works
considered MT-HVDC based on two-level voltage source con-
verters (2L-VSCs).

The present paper aims at extending these results for the
MT-HVDC systems based on Modular Multilevel Converters
(MMCs), which are a recent, emerging topology of power
converters [8]. Compared to the 2L-VSC, the MMC is char-
acterized by additional internal dynamics, which are related
to the circulating currents and the internal capacitor voltages
of the upper and lower arms of each phase [9], [10]. The
main contribution of this paper is inspired by the results
originally presented in [11] for a 2L-VSC in single-terminal
configuration—and then generalized in [6], [7] for HVDC
systems. Nevertheless, the application of such methodology to
an MMC is not straightforward for two fundamental reasons.
First, conventional coordinate transformations fail to map the
desired steady-state behavior of the system, which consist of
periodic solutions, to a fixed equilibrium point, thus stimying
the formulation of the control problem as a pure regulation
problem. Second, the results presented in [11] require the
system to be represented in a suitable port-Hamiltonian form
that is not obvious, due to the complexity of the system. To
overcome these problems, an equivalent averaged formulation
that has constant steady-state solutions is obtained (along
the lines of [12], [13]). Then, the model is represented in
port-Hamiltonian form [14], following the procedure used in
[15] for general power converters. Based on the obtained
representation, the results of [11] are then applied to a single
MMC and extended to the case of a general MMC-based MT-
HVDC transmission system with radial topology. The stability
properties of the resulting controllers are validated via time-
domain simulations on a three-terminal configuration.

The remainder of the paper is organized as follows: the
derivation of the averaged model of the MMC with constant
steady-state is presented in Section II. After a brief recall of
the results of [11], the PI-PBC method is applied to the MMC
model in single-terminal HVDC configuration in Section III—
and extended to the multi-terminal case in Section IV. Sim-
ulation results illustrating the performance of the proposed
controller are provided in Section V. We wrap-up the paper
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Figure 1: Topology of the modular multilevel converter under con-
sideration

with conclusions and guidelines for future research in Section
VI.

II. MODELING OF MODULAR MULTILEVEL CONVERTERS

A. Arm Averaged Model in Σ-∆ coordinates

A single MMC with three upper and three lower arms in
half bridge configuration is considered, the topology of which
is represented in full-detail in Fig. 1. Both upper and lower
arms are constituted by an arm inductor—characterized by an
inductance Lσ and resistance Rσ—connected in series with
N sub-modules (SMs). Each SM includes two IGBTs, their
respective free wheeling diode and an equivalent capacitor.
Moreover, an RL element is usually added on the ac side,
in order to take into account the leakage inductance of the
transformer and additional inductive filters.

Due to the complexity of the system, suitable, simplified
models are usually employed in literature, based on the fol-
lowing assumptions—see [10], [16], [17] for more details.

A1. Switching dynamics can be neglected.

A2. All SMs voltage signals in the same arm are identical.

A3. Balanced operation of the phases.

Assumption A1 is justified by the very fast operation of
the switches, compared to the time-scale at which the other
electrical variables evolve. Assumption A2 is justified for
MMC characterized by a large number of levels, see [18],
and whenever a very fast arm capacitor balancing algorithm is
applied. Assumption A3 is justified by appropriate design of
the system components. Under these assumptions, the switched
model of the series-connected SMs can be approximated by
their average, which leads to the following average model for
the upper and lower arms j ∈ {U,L}:

Cσ v̇
j
C = mj ◦ ij

Lσ i̇
j = −Rσij −mj ◦ vjC + vjσ,

(1)

where the symbol ◦ denotes the Hadamard product, i.e. the
element-wise multiplication between vectors, and with: state
vector composed by the three-phase arm voltages vjC ∈ R3

and currents ij ∈ R3; control vector the three-phase insertion
indices mj ∈ R3; input variable the three-phase voltage
vjσ ∈ R3; scalar parameters Cσ, Lσ, Rσ ∈ R+ corresponding
to the arm equivalent capacitance, inductance and resistance
respectively.

In order to interconnect the arms with the RL element pre-
ceding the grid interface, the model (1) can be transformed in
more suitable Σ-∆ coordinates, which are defined as follows:

vΣ
C := vUC + vLC , v∆

C := vUC − vLC
iΣ :=

1

2
(iU + iL), i∆ := iU − iL

mΣ := mU +mL, m∆ := mU −mL,

where currents iΣ and i∆ have clear physical meanings, i.e.
they correspond to the three-phase circulating current and
the three-phase current flowing into the grid through the RL
element respectively. After some manipulations, the arms dy-
namics in Σ-∆ coordinates can be combined with the dynamics
of the RL element, thus leading to:

Cσ v̇
Σ
C = mΣ ◦ iΣ +

1

4
m∆ ◦ i∆;

Cσ v̇
∆
C = m∆ ◦ iΣ +

1

4
mΣ ◦ i∆;

Lσ i̇
Σ =

1

2
13vdc −RσiΣ −

1

4

(
mΣ ◦ vΣ

C +m∆ ◦ v∆
C

)
;

Lδ i̇
∆ = −Rδi∆ −

1

4

(
mΣ ◦ v∆

C +m∆ ◦ vΣ
C

)
− v∆

G ;

(2)

where v∆
G ∈ R3 is the three-phase grid voltage, oscillating at

the fundamental frequency ω ∈ R+ and where the equivalent
ac inductance Lδ = Lσ/2 + Lf and resistance Rδ = Rσ/2 +
Rf have been further introduced. The obtained model (2) is
referred in the sequel as the Arm Averaged Model (AAM) of
the MMC.

B. Steady-state analysis

A fundamental step towards the analysis and the control
design is the identification of the steady-states of interest for
the correct and safe operation of an MMC. The standard
requirements are the following—see [8], [19] for a precise
justification:

R1. The ac grid current must be, at steady-state, a peri-
odic three-phase sinusoidal signal at the fundamental
frequency ω, i.e.

i∆ss = I∆
ss sin(ωt+ ϕ∆

ss ), I∆
ss ∈ R, ϕ∆

ss ∈ S;

with sin(·), cos(·) ∈ R3 denoting three-phase bal-
anced signals.

R2. The upper arm insertion indexes mU
ss must be phase-

shifted approximately of 180 degrees with respect to
the lower arm insertion index mL

ss , resulting in

mΣ
ss ≈ 13, m∆

ss ≈Msssin (ωt) ;

R3. the sum of the circulating current in all phases must
be a dc signal, i.e.

1>3 i
Σ
ss = const;

R4. the sum of all arm capacitor voltages must be a dc



signal, i.e.
1>3 v

Σ
C,ss = const.

These requirements complicate the control design, since the
steady-state of interest does not coincide with a fixed equilib-
rium point. In order to overcome this problem, a possibility is
to employ an additional transformation of coordinates so that
the resulting system is characterized by time-invariant steady-
states. In order to determine the appropriate transformation to
be employed, an analysis of the oscillations of the steady-states
arising from (2) has been carried-out in [12]–[14], further
validated by extensive simulations. In particular, under the
above mentioned requirements, it was shown that the following
approximations hold at steady-state conditions:

• ∆-variables are the sum of a signal oscillating at the
fundamental frequency ω with a signal oscillating at
frequency 3ω.

• Σ-variables are the sum of a dc signal with a signal
oscillating at frequency −2ω.

Notice that special cases of such a classification are the grid
current i∆, which only oscillates at the fundamental frequency
as established by the Requirement R1, and the circulating
current iΣ, that might consists of a simple dc signal, in the case
that a Circulating Current Suppression Controller is adopted,
see for example [20].

Remark 1. In [12], [13] it was demonstrated that, at steady-
sate, Σ- and ∆-variables are further characterized by additional
higher order harmonics. Nevertheless, extensive time-domain
simulations suggested that these are not especially relevant in
the system dynamics and therefore can be neglected.

C. A multi-frequency coordinates transformation

The classification presented in the previous section is useful
to determine a suitable, multi-frequency coordinates transfor-
mation that maps the oscillating steady-states of interest to
constant quantities. This approach, originally presented in [12],
[13], is summarized in Fig. 2 and is based on an appropriate
combination of Park and rotational transformations.

Recall that a Park transformation of a general three-phase
signal x = col(xa, xb, xc) ∈ R3 with tranformation angle
φ(t) = ω0t ∈ R, is defined by:

xdqz :=
2

3

cos(ω0t)
>

sin(ω0t)
>

1
21
>
3

[xaxb
xc

]
= Pω0

x,

with xdqz = col(xd, xq, xz) ∈ R3. Let then x∆ ∈ R3,
xΣ ∈ R3, be general three-phase signals in ∆-, Σ-coordinates
respectively, and define the following transformations:

xΣ
dqz := P−2ωx

Σ, x∆
dqz := Pωx

∆. (3)

An immediate consequence of using these transformations and
of the classification introduced in Section II-B, is that in
steady-state conditions, Σ-variables are mapped to a constant
vector xΣ

ss,dqz . By contrast, ∆-variables are mapped to a vector

x∆
ss,dqz = col(x∆

d,ss, x
∆
q,ss, x

∆
z,ss) ∈ R3,

where x∆
d,ss, x

∆
q,ss are constant quantities, while the corre-

spondent zero-component x∆
z,ss still oscillates at frequency

ω, 3ω 3ω
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Figure 2: Multi-frequency coordinates transformation.

3ω. It is thus possible to rewrite the AAM model (2) in
new coordinates—see [12], [13] for a detailed derivation—as
follows:

Cσ v̇
Σ
Cdqz = J3Cσ2ωvΣ

Cdqz + IΣ
dqz

Cσ v̇
∆
Cdqz = J3Cσωv

∆
Cdqz + I∆

dqz

Lσ i̇
Σ
dqz =

1

2
e3vdc + (J3Lσ2ω −Rσ)iΣdqz − V Σ

dqz

Lδ i̇
∆
dqz = (J3Lδω −Rδ)i∆dqz + V ∆

dqz − v∆
Gdqz

(4)

with

e3 :=

[
0
0
1

]
∈ R3, J3 :=

[
0 1 0
−1 0 0
0 0 0

]
∈ R3×3

and the following definitions:

IΣ
dqz : = P−2ω

[
P−1
−2ωm

Σ
dqz ◦ P

−1
−2ωi

Σ
dqz + P−1

ω m∆
dqz ◦

1

2
P−1
ω i∆dqz

]
I∆
dqz : = Pω

[
P−1
ω m∆

dqz ◦ P
−1
−2ωi

Σ
dqz + P−1

−2ωm
Σ
dqz ◦

1

2
P−1
ω i∆dqz

]
V Σ
dqz : =

1

4
P−2ω

[
P−1
−2ωm

Σ
dqz ◦ P

−1
−2ωv

Σ
Cdqz + P−1

ω m∆
dqz ◦ P

−1
ω v∆

Cdqz

]
V ∆
dqz : = −

1

4
Pω
[
P−1
ω m∆

dqz ◦ P
−1
−2ωv

Σ
Cdqz + P−1

−2ωm
Σ
dqz ◦ P

−1
ω v∆

Cdqz

]
with IΣ

dqz , I∆
dqz and V Σ

dqz , V ∆
dqz corresponding to the three-

phase modulated current and voltages respectively. It is imme-
diate to see that, due to the Park transformations employed,
these variables depend on ω, which imply the generation
of harmonics at steady-state. A more accurate analysis of
these terms shows that, in accordance with the steady-state
analysis previously performed, harmonics are characterized
by frequencies 3ω and 6ω. Although sixth-order harmonics
are negligible, care must be exercised in handling third-order
harmonics. Hence, as illustrated in Fig. 2, a further, rotational
transformation is employed to map these harmonics to constant
values. This type of transformation is usually adopted for the
description of single-phase ac systems in a stationary reference
frame [21] and employs an auxiliary, virtual variable x⊥ ∈ R,



shifted of 90 degrees from the original signal x ∈ R. More
precisely, it is defined as:

xDQ :=

[
cos(ω0t) sin(ω0t)
− sin(ω0t) cos(ω0t)

] [
x
x⊥

]
= Tω0

x,

with xDQ = col(xD, xQ) ∈ R2. Then, we propose to use
this transformation to map the zero component of steady-state
∆-variables to constant quantities using

x∆
zDQ = T3ω

[
x∆
z

x∆⊥
z

]
. (5)

Since an additional component has been introduced by the
transformation, the ∆-variables

v∆
CzDQ := col(v∆

CzD, v
∆
CzQ) ∈ R2,

m∆
zDQ := col(m∆

zD,m
∆
zQ) ∈ R2

are further defined.

D. Overall model with time-invariant solutions

Before presenting the final MMC dqz model with time
invariant solutions, based on the transformations (3)-(5), an ad-
ditional yet simple variables and parameters change is adopted.
This slight modification, will ease the derivation of the system
representation in port-Hamiltonian form that will be carried out
in the next section. We then introduce the following variables

m̂Σ
z := 2mΣ

z , v̂Σ
Cz := 2vΣ

Cz, îΣz := 2iΣz , î∆dq := i∆dq/2

and the reparametrization:

L̂δ := 8Lδ L̂σ := 8Lσ L̂σz := 4Lσ
R̂δ := 8Rδ R̂σ := 8Rσ R̂σz := 4Rσ Ĝdc := 4Gdc/3

Ĉσ := 2Cσ Ĉσz := Cσ Ĉdc := 4Cdc/3

Based on this change of coordinates, the MMC dynamics
can be rewritten in compact form as

P ż = A(m)z +B, (6)

with: state vector

z : = col(vΣ
Cdq, v̂

Σ
Cz, v

∆
Cdq, v

∆
CzDQ, i

Σ
Cdq, î

Σ
Cz, î

∆
dq, vdc) ∈ R13,

control vector

m := col(mΣ
dq, m̂

Σ
z ,m

∆
dq,m

∆
zDQ) ∈ R7,

constant input vector

B := col(02, 0, 02, 02, 02, 0,−8v∆
Gdq,−

4

3
idc,s) ∈ R13,

and matrices:

P = bdiag{ĈσI2, Ĉσz, ĈσI4, L̂σI2, L̂σz, L̂δI2, Ĉdc} ∈ R13×13.

and A(m) ∈ R13×13 defined as in (7).

III. PI-PBC OF A MODULAR MULTILEVEL CONVERTER

A. PI-PBC of generalized power converters [11]

The control methodology of interest consists in exploiting
the results originally presented in [11], applicable to averaged

models of switched power converters with steady-state time-
invariant solutions, which can be generalized in the following
form, also called port-Hamiltonian representation:

ẋ = (J0 +

m∑
h=1

Jhmh −R)∇H(x) + E +Gu, (8)

where x ∈ Rn is the state vector associated to the collection of
charges qj = Cjvj of the capacitors Cj and the magnetic fluxes
φk = Lkik of the inductors Lk; mh ∈ Rm are the duty ratios;
E ∈ Rn is a vector of input sources, u ∈ Rp is the vector
of interconnection variables; Ji = −J>i and R = R> ≥ 0
are the n-dimensional square interconnection and dissipation
matrices denoting respectively the internal configuration and
the dissipation of the converter; G ∈ Rn×p is an input matrix
and

H(x) =
1

2
x>Qx =

1

2

∑
j

q2
j

Cj
+
∑
k

φ2
k

Lk


is the overall energy stored by the converter. As reported in
[6], [7], [11], this representation allows to define the set of
feasible steady-state for the system x? ∈ Rn. Hence, for any
feasible steady-state of interest x? ∈ E , it is possible to define
a simple PI controller of the form

mh = −KPhyh +KIhzh, żh = −yh,
yh = ∇H>(x?)J>h ∇H(x), h = 1 . . .m,

(9)

that guarantees that for all initial conditions (x(0), z(0)) ∈
Rn×Rm the trajectories of the closed loop system are bounded
and

lim
t→∞

y(t) = 0.

B. Port-Hamiltonian modelling of the MMC

For the application of this result to the case of the MMC
it is sufficient to rewrite the system dynamics in the port-
Hamiltonian form (8). For this purpose, we define the new
state vector

x = Q−1z ∈ R13

with Q := P−1 ∈ R13×13 and containing the collection
of charges of the capacitors and the magnetic fluxes of the
inductors, i.e.:

x := col(qΣ
Cdq, q̂

Σ
Cz, q

∆
Cdq, q

∆
CzDQ, φ

Σ
Cdq, φ̂

Σ
Cz, φ̂

∆
dq, qdc) ∈ R13.

Furthermore, let the matrix A(m) be decomposed in a
symmetric positive R = R> ≥ 0 and skew-symmetric part
J = −J>, so that (6) can be rewritten as

ẋ = (J (m)−R)∇H+ E +Gu, H(x) :=
1

2
x>Qx,

where we have further introduced the decomposition B = E+
Gu, with u = idc,s ∈ R3 and E,G ∈ R13 defined in the
Appendix. Moreover it is easy to see that the control variables
appears linearly in (7), so that it is possible to write

J (m) := J0 +

7∑
h=1

Jhmh,

for some appropriate matrices J0,Jh ∈ R13×13. For a detailed
expression of these matrices the reader is referred to the



A(m) := . . . (7)

0 Ĉσ2ω 0 0 0 0 0 m̂Σ
z 0 mΣ

d m∆
d +m∆

zD m∆
zQ −m∆

q 0

−Ĉσ2ω 0 0 0 0 0 0 0 m̂Σ
z mΣ

q m∆
q +m∆

zQ m∆
d −m∆

zD 0

0 0 0 0 0 0 0 mΣ
d mΣ

q

m̂Σ
z

2
m∆
d m∆

q 0

0 0 0 0 Ĉσω 0 0 m∆
d +m∆

zD m∆
q +m∆

zQ m∆
d mΣ

d + m̂Σ
z mΣ

q 0

0 0 0 −Ĉσω 0 0 0 m∆
zQ −m∆

q m∆
d −m∆

zD m∆
q mΣ

q m̂Σ
z −mΣ

d 0

0 0 0 0 0 0 Ĉσ3ω m∆
d −m∆

q m∆
zD mΣ

d −mΣ
q 0

0 0 0 0 0 −Ĉσ3ω 0 m∆
q m∆

d m∆
zQ mΣ

q mΣ
d 0

−m̂Σ
z 0 −mΣ

d −m
∆
d −m∆

zD m∆
q −m∆

zQ −m∆
d −m∆

q −R̂σ L̂σ2ω 0 0 0 0

0 −m̂Σ
z −mΣ

q −m∆
q −m∆

zQ m∆
zD −m∆

d m∆
q −m∆

d −L̂σ2ω −R̂σ 0 0 0 0

−mΣ
d −mΣ

q −
m̂Σ
z

2
−m∆

d −m∆
q −m∆

zD −m
∆
zQ 0 0 −R̂σz 0 0 4

−m∆
d −m∆

zD −m
∆
q −m∆

zQ −m
∆
d −mΣ

d − m̂Σ
z −mΣ

q −mΣ
d −mΣ

q 0 0 0 −R̂δ L̂δω 0

m∆
q −m∆

zQ m∆
zD −m∆

d −m∆
q −mΣ

q mΣ
d − m̂Σ

z mΣ
q −mΣ

d 0 0 0 −L̂δω −R̂δ 0

0 0 0 0 0 0 0 0 0 −4 0 0 −Ĝdc



Appendix. Since the obtained model of the MMC matches
with the port-Hamiltonian system (8), the same result reported
in [11] can be applied. In particular, the passive output can be
computed according to (9). Since the MMC has seven control
inputs, we have

y1 =
[̂
iΣ?z vΣ

Cd −̂i
Σ
z v

Σ?
Cd

]
+
[
iΣ?d v̂Σ

Cz−i
Σ
d v̂

Σ?
Cz

]
+
[
i∆?d

(
v∆
Cd + v∆

CzD

)
−
(
v∆?
Cd + v∆?

CzD

)
i∆d
]
+
[
i∆?q

(
v∆
CzQ−v

∆
Cq

)
−
(
v∆?
CzQ−v

∆?
Cq

)
i∆q

]
,

y2 =
[̂
iΣ?z vΣ

Cq − vΣ?
Cq î

Σ
z

]
+
[
iΣ?q v̂Σ

Cz − v̂Σ?
Czi

Σ
q

]
+
[
i∆?q

(
v∆
Cd − v∆

CzD

)
−
(
v∆?
Cd − v∆?

CzD

)
i∆q
]
+
[
i∆?d

(
v∆
Cq + v∆

CzQ

)
−
(
v∆?
Cq + v∆?

CzQ

)
i∆d

]
,

y3 =
[
iΣ?d vΣ

Cd − vΣ?
Cdi

Σ
d

]
+
[
iΣ?q vΣ

Cq − vΣ?
Cqi

Σ
q

]
+
[
i∆?d v∆

Cd − v∆?
Cd i

∆
d

]
+ 1

2

[̂
iΣ?z v̂Σ

Cz − v̂Σ?
Cz î

Σ
z

]
+
[
i∆?q v∆

Cq − v∆?
Cq i

∆
q

]
,

y4 =
[
i∆?d

(
vΣ
Cd + v̂Σ

Cz

)
−
(
vΣ?
Cd + v̂Σ?

Cz

)
i∆d
]
+
[
i∆?q vΣ

Cq − vΣ?
Cqi

∆
q

]
+
[
iΣ?d

(
v∆
Cd + v∆

Cd

)
−
(
v∆?
Cd + v∆?

Cd

)
iΣd
]
+
[̂
iΣ?z v∆

Cd − v∆?
Cd î

Σ
z

]
+
[
iΣ?q

(
v∆
Cq + v∆

CzQ

)
−
(
v∆?
Cq + v∆?

CzQ

)
iΣq

]
,

y5 =
[
i∆?q

(
v̂Σ
Cz − vΣ

Cd

)
−
(
v̂Σ?
Cz − vΣ?

Cd

)
i∆q
]
+
[
i∆?d vΣ

Cq − vΣ?
Cqi

∆
d

]
+
[
iΣ?q

(
v∆
Cd − v∆

CzD

)
−
(
v∆?
Cd − v∆?

CzD

)
iΣq
]
+
[
iΣ?d

(
v∆
CzQ − v∆

Cq

)
−
(
v∆?
CzQ − v∆?

Cq

)
iΣd

]
+
[̂
iΣ?z v∆

Cq − v∆?
Cq î

Σ
z

]
,

y6 =
[
i∆?d vΣ

Cd − vΣ?
Cdi

∆
d

]
−
[
i∆?q vΣ

Cq − vΣ?
Cqi

∆
q

]
+
[
iΣ?d v∆

Cd − v∆?
Cd i

Σ
d

]
−
[
iΣ?q v∆

Cq − v∆?
Cq i

Σ
q

]
+
[̂
iΣ?z v∆

CzD − v∆?
CzD îΣz

]
,

y7 =
[
i∆?q vΣ

Cd − vΣ?
Cdi

∆
q

]
+
[
i∆?d vΣ

Cq − vΣ?
Cqi

∆
d

]
+
[
iΣ?q v∆

Cd − v∆?
Cd i

Σ
q

]
+
[
iΣ?d v∆

Cq − v∆?
Cq i

Σ
d

]
+
[̂
iΣ?z v∆

CzQ − v∆?
CzQ îΣz

]
.

(10)

IV. MT-HVDC BASED ON MMCS IN RADIAL
CONFIGURATION

We now extend the result obtained in the previous sec-
tion to the case of a generalized MT-HVDC system based
on MMCs, in radial configuration. An example of such a
configuration is illustrated in Fig. 3. For the derivation of
the interconnected model, we assume that the system is
characterized by c MMCs and that the dc transmission lines
can be described by standard single-cell π-models, converging
at a point of common connection (PCC). The procedure for
deriving the controller mimics the procedure adopted for the

single-terminal case, i.e. the system is first represented using
a port-Hamiltonian description, that allows to determine a
passive output. Then, a simple PI control, based on this output,
is designed, in order to ensure global asymptotic stability of
the closed-loop system.

A. Port-Hamiltonian representation of the transmission lines

As illustrated in Fig. 3, in a radial configuration each
MMC associates a different π-section. Hence, at any point
of connection between and MMC and the correspondent line,
two capacitors result connected in parallel [6]. For simplicity
we assume then to replace such capacitors with an equivalent
capacitor Cdc,i ∈ R+, which is considered as a part of the
MMC. Similarly, c capacitors are connected in parallel at
the PCC, which can be described by an equivalent capacitor
C0 ∈ R+. Based on these considerations, the dynamics of the
lines are then described by the following system[

LT i̇T
C0v̇0

]
=

[
−RT −1
1> 0

] [
iT
v0

]
+

[
Ic
0

]
VT (11)

with iT ∈ Rc the vector of lines currents, VT ∈ Rc the
vector of input voltages of the lines, v0 ∈ R the voltage at the
PCC, RT ∈ Rc×c a diagonal matrix containing the inductor
resistances. It is easy to show that the dynamics (11) admit
the following port-Hamiltonian representation

ẋnet = (Jnet −Rnet)∇Hnet +Gnetunet

ynet = G>net∇Hnet
(12)

with state vector xnet := col(ψT , q0) ∈ Rc+1, where ψT ∈
Rc corresponds to the collection of lines magnetic fluxes
and q0 to the charge at the PCC; interconnection variables
unet := Vnet ∈ Rc and ynet := Inet ∈ Rc, where Vnet, Inet

correspond respectively to the collection of input voltages and
lines currents; interconnection, dissipation and input matrices

Jnet :=

[
0 −1
1> 0

]
, Rnet =

[
−RT 0

0 0

]
, Gnet :=

[
Ic
0>c

]



and the energy function

Hnet(ψT , q0) :=
1

2
ψ>T L

−1
T ψT +

1

2

q2
0

C0
.

B. Aggregated port-Hamiltonian representation of the MMCs

The port Hamiltonian representation of a single-terminal
MMC station has been identified in Section III. Since we are
considering c MMCs in the multi-terminal configuration, it is
convenient to aggregate all the c port-Hamiltonian models of
the MMCs, thus resulting in

ẋc = (Jc(mc)−Rc)∇Hc + Ec +Gcuc

yc = G>c ∇Hc
(13)

with state vector xc := col(xi) ∈ Rcn, interconnection
variables uc := Ic ∈ Rc and yc := Vc ∈ Rc, where Ic, Vc
correspond respectively to the collection of input currents and
voltages of the MMCs; interconnection, dissipation matrices

Jc :=bdiag{Ji} ∈ R13c×13c, Rc := bdiag{Ri} ∈ R13c×13c,

sources vector and input matrix

E : −col(Ei) ∈ R13c, Gc := bdiag{Gi} ∈ R13c×c

and the energy function

Hc(x) :=

c∑
i=1

Hi(xi).

C. Port-Hamiltonian representation of the MT-HVDC system

To obtain the full interconnected model of the MT-HVDC
system, it is now sufficient to interconnect (12), (13) using
Kirkchhoff’s, power preserving, laws, which can be written in
the following compact form[

Ic
Vnet

]
=

3

4

[
0 Ic

−Ic 0

] [
Vc
Inet

]
(14)

where the scaling factor 3/4 has been further introduced to pre-
serve skew-symmery of the interconnected system. We then in-
troduce the following reparametrization: L̂T := 4LT /3, Ĉ0 :=
4C0/3, such that we can define x̂net := col(L̂T iT , Ĉ0v0) =
col(φ̂T , q̂0). Combining (14) with (12) and (13), we then obtain
the following, overall port-Hamiltonian representation of the
MT-HVDC system

ẋtot = (Jtot(mc)−Rtot)∇Htot + Etot

with state vector xtot := col(xc, x̂net) ∈ R14c+1, interconnec-
tion, dissipation matrices and source vector

Jtot(mc) :=

[
Jc(mc) GcG

>
net

−GnetG
>
c

4
3Jnet

]
,

Rtot := bdiag{Rc,
4

3
RT }, Etot := col(E, 0c+1)

and energy function Htot = Hc +Hnet.

It is now easy to see that the obtained representation
is again equivalent to the port-Hamiltonian representation of
generalized power converter given by (8), thus allowing the
application of the same results. Interestingly, the same output
(10) is obtained for each MMC, which implies that the same

decentralized PI-PBC controllers ensure global asymptotic
stability of the interconnected system.

V. SIMULATION RESULTS

The proposed decentralized passivity-based PI is tested on
a MT-HVDC system based on MMCs with three terminals
in radial topology, i.e. c = 3 MMCs, see Fig. 3. Each
MMC has an apparent nominal power of Sn = 1200MVA,
and a nominal voltage of 380kV . Furthermore each MMC
is characterized by the following parameters: equivalent arm
capacitance Cσ = 21.162µF ; equivalent arm inductance
Lσ = 30mH and equivalent ac inductance Lδ = 78mH . For
the excitation of the MT-HVDC dynamics, an active current
reference step change is given to MMC#1 at t = 5ms from
0.85pu to −0.85pu. Moreover, the active current of MMC #3 is
changed from 0.45pu to −0.45 at 8.5ms. This is illustrated in
Fig. 4, where in addition to the expected behaviour of MMC
#1 and #3, it can be seen that MMC #2 acts by compensating
the power unbalance. The zero-sequence of the circulating
current—or equivalently one third of the dc terminal current—
is illustrated in Fig. 5. Finally, the dc terminal voltages depicted
in Fig. 6 as well as the aggregated voltage of all the MMC
internal capacitors—see Fig. 7—are regulated to their desired
values despite the perturbation. The control method under
study, as expected, ensures global asymptotic stability in a
decentralized manner.

Unfortunately, the PI-PBC gives below par performance for
this application. Similar to the 2L-VSC case reported in [6],
[7], the convergence rate of the system is extremely slow. To
avoid these slow dynamics in the results here presented, we
have added to the PI control its expected value at the desired
equilibrium; i.e., u?. Nonetheless, this solution is but a partial
fix as it seems to cause undesirable high voltage transients, as
shown in Fig. 6. Therefore, future efforts will be directed at
improving the performance of the PI-PBC applied to MMC-
based MT-HVDC systems.

VI. CONCLUSION

We have applied a passivity based PI controller (PI-PBC) to
the Modular Multilevel Converter (MMC) under both, single-
terminal HVDC configuration, as well as for the radial multi-
terminal (MT) case.

The procedure takes as a starting point a convenient
reformulation of the averaged MMC single-terminal model
in dqz coordinates with fixed equilibrium point instead of
the standard formulation based on its natural time-periodic
coordinates. Furthermore, it is shown that this reformulation
admits a Port-Hamiltonian (pH) representation suitable for the
PI-PBC method. After identifying the MMC interconnection,
damping and input matrices, as well as its energy function
or Hamiltonian, it is then straightforward to calculate the so-
called passive output of this converter, upon which a standard
PI around it renders the system globally asymptotically stable.

In addition, the MT-HVDC case in radial configuration was
investigated. Since standard π-models of radially connected
transmission lines admit a pH representation, they have been
combined with the pH model of the c MMCs to form the model
of the full interconnected system, which is itself pH. Surpris-
ingly enough, the passive output of the full MT-HVDC system
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Figure 3: Multi-Terminal HVDC configuration under consideration
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is the union of the passive outputs of each of the individual
MMCs, giving this controller its decentralized feature, while
achieving global asymptotic stability for the interconnected
system.

APPENDIX

The dissipation matrix R of the MMC can be expressed as

R := diag(0>7 , R̂σ, R̂σ, R̂σz, R̂δ, R̂δ, Ĝdc) ∈ R13×13

and the interconnection matrix J0 as:

J0 =

 J0

09
4
02

0>9 −4 0>2 0

 ∈ R13×13

with J0 ∈ R12×12 defined as

J0 := bdiag(J2Ĉσ2ω, 0, J2Ĉσω, J2Ĉσ3ω, J2L̂σ2ω, 0, J2L̂δω),

with J2 :=
[

0 1
−1 0

]
∈ R2×2.

Furthermore, the MMC has 7 control modulated intercon-
nection matrices Jh ∈ R13×13; which can all be directly
identified from (7), and are given in the following lines. Each
of the 7 interconnection matrices can be written as a function
of 4 sub-matrices with the form

Jh :=

 Jh
−Jh

> 012

0>12 0

 ∈ R13×13,

with Jh ∈ R7×5 defined as Jh :=

[
Ah Bh
Ch Dh

]
for some

Ah ∈ R3×3, Bh ∈ R3×2, Ch ∈ R4×3 and Dh ∈ R4×2. Of
these sub-matrices, those which are non-zero are given below
for h = 1...7.

A1 =

[
0 0 1
0 0 0
1 0 0

]
, D1 =

[1 0
0 −1
1 0
0 1

]
A2 =

[
0 0 0
0 0 1
0 1 0

]
, D2 =

[0 1
1 0
0 −1
1 0

]
,

A3 =

[
1 0 0
0 1 0
0 0 1

2

]
, D3 =

[1 0
0 1
0 0
0 0

]
, B4 =

[
1 0
0 1
1 0

]
, C4 =

[1 0 1
1 0 0
1 0 0
0 1 0

]
,

B5 =

[
0 −1
1 0
0 1

]
, C5 =

[ 0 1 0
−1 0 1
0 −1 0
1 0 0

]
, B6 =

[
1 0
0 −1
0 0

]
, C6 =

[1 0 0
0 −1 0
0 0 1
0 0 0

]
,

B7 =

[
0 1
1 0
0 0

]
, C7 =

[0 1 0
1 0 0
0 0 0
0 0 1

]

Finally, the input and the interconnection vectors of the
MMC E ∈ R13 and G ∈ R13, can be directly identified from
the vector B in (6), noting that B = E + Gu. Thus, for the
selected input u = idc,s, they can be respectively defined as

E := col(010,−8v∆
Gdq, 0); G := col(012,−

4

3
).
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