
FlashRL: A Reinforcement Learning Platform
for Flash Games

Per-Arne Andersen Morten Goodwin
Ole-Christoffer Granmo

University of Agder, Faculty of Engineering and Science
Serviceboks 509, NO-4898 Grimstad, Norway

Abstract
Reinforcement Learning (RL) is a research area that has blossomed
tremendously in recent years and has shown remarkable potential in
among others successfully playing computer games. However, there only
exists a few game platforms that provide diversity in tasks and state-
space needed to advance RL algorithms. The existing platforms offer
RL access to Atari- and a few web-based games, but no platform fully
expose access to Flash games. This is unfortunate because applying RL
to Flash games have potential to push the research of RL algorithms.

This paper introduces the Flash Reinforcement Learning platform
(FlashRL) which attempts to fill this gap by providing an environment
for thousands of Flash games on a novel platform for Flash automation.
It opens up easy experimentation with RL algorithms for Flash games,
which has previously been challenging. The platform shows excellent
performance with as little as 5% CPU utilization on consumer hardware.
It shows promising results for novel reinforcement learning algorithms.

This paper was presented at the NIK-2017 conference; see http://www.nik.no/.



1 Introduction
There are several challenges related to developing algorithms that can interact
with human-level performance in real-world environments, such as computer games.
Researchers often use toy experiments when working with Reinforcement Learning
(RL), because it is easier, cheaper and consumes less time to orchestrate. With
several applications for RL in daily life, it has become an essential field of research
[13, 4]. However, existing learning platforms for games have major limitations such
as few game environments and little environment control.

OpenAI is a non-profit company that is currently one of the leading researchers
of RL. OpenAI Universe is a software platform that has several game environments
aimed at artificial research. The problem with this software is that individual
developers are not directly permitted to supplement new environments to the
repository, and there is little documentation on how to contribute to new
environments. FlashRL changes this with our proposed architecture as the control
is given back to each researcher.

Adobe Flash is a multimedia software platform used for the production of
applications and animation. The Flash run-time was recently declared deprecated
by Adobe, and by 2020, no longer supported. Flash is still frequently used in
web applications, and there are several thousand games created for this platform.
Several browsers have removed support for Flash, making it impossible to access
the mentioned game environments. Games have proven to be an excellent area of
machine learning benchmarking, due to size and diversity of its state-space. It is
therefore essential to preserve Flash as an environment for reinforcement learning.

Automating Flash applications is a relatively untouched area. The technology
has been succeeded by several better options for web development, for example,
HTML5. This makes it hard for algorithms to control Flash environments
programmatically. There are already reinforcement learning platforms that support
Flash games as part of their game library, but these use browsers to execute the
Flash run-time.

Figure 1: Interacting with Flash through browser automating

Figure 1 illustrates how interaction with the Flash environment would typically
be carried out through browser automation software such as Selenium. Selenium can
automate most modern browsers. It does not directly support Flash automation,
but can easily be used for this purpose with minimal customisation [3]. With the
loss of browser support, the difficulty of controlling Flash applications increases,
and there is a significant risk that excellent game environments for reinforcement
learning are lost.

FlashRL is unique for reinforcement learning as it allows researchers to use any
desired Flash environment. It gives full control of the game environment and is not
based on running Flash applications in the browser.



FlashRL is targeted research in reinforcement learning, but can also be used in
other machine learning algorithms. It supports all kinds of Flash applications but
is primarily used for agent-based gameplay. Several thousand game environments
are included in the first release of the software1. Multitask 2 is a Flash game that is
excellent for reinforcement learning as it requires the agent to perform several tasks
simultaneously. We show in this paper that our learning platform can be used to
train novel reinforcement algorithms without any customisation.

In Section 2, we discuss related work for existing learning platforms in machine
learning. We also argue why web browsers are no longer viable as Flash run-
time. Section 3 briefly outline what reinforcement learning is and explains how Q-
Learning works. Section 4 outlines the proposed platform and thoroughly describe
its underlying architecture. In Section 5 we show initial results of utilizing the
proposed learning platform for reinforcement learning. At Section 6 summarises
the work and argue why the proposed learning platform is used for reinforcement
learning research. Section 7 outlines a road-map for further development of the
platform.

2 Related Work
With the increasing popularity in RL, there is a need for flexible learning platforms.
Several learning platforms exist that can run a limited number of games, but no
platform that features an open-source interface with possibility to run any Flash
game.

Bellemare et al. provided in 2012 a learning platform Arcade Learning
Environment (ALE) that enabled scientists to conduct edge research in general
deep learning [1]. The package provided hundreds of Atari 2600 environments that
in 2013 allowed Minh et al. to do a breakthrough with Deep Q-Learning and A3C.
The platform has been a key component in several breakthroughs in RL research.
[11, 9, 8]

In 2016, Brockman et al. from OpenAI released GYM which they referred
to as "a toolkit for developing and comparing reinforcement learning algorithms"
[2]. GYM provides various types of environments from following technologies
[2]: Algorithmic tasks, Atari 2600, Board games, Box2d physics engine, MuJoCo
physics engine, and Text-based environments. OpenAI also hosts a website where
researchers can submit their performance for comparison between algorithms. GYM
is open-source and encourages researchers to add support for their environments.

OpenAI recently released a new learning platform called Universe. This
environment further adds support for environments running inside VNC. It also
supports running Flash games and browser applications. However, despite OpenAI’s
open-source policy, they do not allow researchers to add new environments to the
repository. This limits the possibilities of running any environment. Universe is,
however, a significant learning platform as it also has support for desktop games
like Grand Theft Auto IV, that allow for research in autonomous driving [7].

Selenium is a software for automating web browsers and is used primarily for unit-
testing of web content. There were some efforts to create a version that allowed to
interact with Flash content, but it was quickly abandoned. There is limited support
for interacting with Flash, by selecting the DOM-Element in HTML and sending

1Author of this paper takes no credit for any game environments



key-presses via Javascript. Several learning platforms utilize this method, but due
to the deprecation of Flash in browsers, it is no longer a viable option.

3 Reinforcement Learning
Reinforcement learning can be considered hybrid between supervised and unsuper-
vised learning. We implement what we call an agent that acts in our environment.
This agent is placed in the unknown environment where it tries to maximize the
environmental reward [14].

Markov Decision Process (MDP) is a mathematical method of modeling decision-
making within an environment. We often use this technique when utilizing model-
based RL algorithms. In Q-Learning, we do not try to model the MDP. Instead,
we try to learn the optimal policy by estimating the action-value function Q∗(s, a),
yielding maximum expected reward in state s executing action a. The optimal policy
can then be found by

π(s) = argmaxaQ
∗(s, a) (1)

This is derived from Bellman’s Equation, because we can consider U(s) =
maxaQ(s, a), the utility function to be true. This gives us the ability to derive
following update-rule equation from Bellman’s work:

Q(s, a)← Q(s, a) + α︸︷︷︸
LearningRate

(
R(s)︸︷︷︸
Reward

+ γ︸︷︷︸
Discountfactor

maxa′Q(s
′
, a

′
)︸ ︷︷ ︸

NewEstimate

− Q(s, a)︸ ︷︷ ︸
OldEstimate

)
(2)

This is an iterative process of propagating back the estimated Q-value for each
discrete time-step in the environment. It is guaranteed to converge towards the
optimal action-value function, Qi → Q∗ as i →∞ [14, 10]. At the most basic level,
Q-Learning utilize a table for storing (s, a, r, s

′
) pairs. But we can instead use a

non-linear function approximation in order to approximate Q(s, a; θ). θ describes
tunable parameters for approximator. Artificial Neural Networks (ANN) are a
popular function approximator, but training using ANN is relatively unstable.

4 Flash Reinforcement Learning (FlashRL)
The proposed platform is an interface that acts as a bridge between the Gnash Flash
player and the reinforcement learning algorithms. Flash Reinforcement Learning
(FlashRL) is a new platform that allows researchers to run algorithms on any Flash-
based game efficiently.

The learning platform is developed primarily for the operating system Linux but
is likely to run on Cygwin with few modifications. There are several key components
that FlashRL uses to operate adequate, see Figure 2. It uses a Linux library called
XVFB to create a virtual frame-buffer that is used for graphics rendering [6]. Inside
this frame-buffer, a Flash game chosen by the researcher is executed by a third party
flash player, for example, Gnash. A VNC server serves the XVFB frame-buffer and
allows FlashRL to access it by utilizing a VNC Client. The VNC Client can then
issue commands like keyboard presses and mouse movements. The VNC Client
pyVLC was specially made for this learning platform. The code base originates
from python-vnc-viewer [15]. The last component of FlashRL is the Reinforcement



Figure 2: FlashRL Architecture Overview

Learning API that allows the developer to access the input/output of the VNC client.
This makes it easy to develop sequenced algorithms by using the API callbacks or
manually by threading.

Figure 3: Frame-buffer Access Methods

Figure 3 illustrates two methods of accessing the frame-buffer from the Flash
Game. Both approaches are sufficient to perform reinforcement learning, but each
has its strength and weaknesses. Method 1, seen in Figure 3 allows the developer to
get frames served at a fixed rate, for example, 60 frames per second. Method 2 does
not restrict the frequency of how fast the frame-buffer is captured. This is preferable
for developers that do not require images from fixed time-steps as it requires less
processing power per frame. The framework was developed with deep learning in
mind and is proven to work with Keras and Tensorflow.

Several thousand game environments are shipped with the initial version of
FlashRL. These game environments were gathered from different sources on the
web. FlashRL has a relatively small code-base and to preserve this size, all of the
Flash games are hosted remotely. The quality varies, and some of the games are not
tested or labeled. Most games are however tested and can be played without issues,



Figure 4: Selected environments from the FlashRL game repository

see Figure 4.

5 Experiments
This section presents experiments of reinforcement learning algorithms applied in
FlashRL. We use the game Multitask 2 2 to test the learning platform. Multitask 2
was chosen because it challenges the algorithm to master four different mini-games
simultaneously.

The experiments are grouped in two. The first experiment determines the
hardware requirements of the platform and benchmarks the speed of critical
operations. The second experiment is an implementation of standard Deep Q-
Learning trained on raw state images from Multitask 2 to perform game actions.
The latter is meant as a proof of concept that RL algorithms can be applied in
FlashRL.

All experiments were conducted on Ubuntu Linux 17.04 x64 running Python
3.5.3. The machine has 64GB memory, Nvidia GeForce 1080TI, and Intel I7-7770k
as hardware.

Multitask 2
Figure 5 illustrates the game-play of Multitask 2. The game is split into four-game
phases. The first phase (lower right corner in Figure 5) is a single paddle that the
player must balance a ball on. In state two (lower left corner in Figure 5) , the
player must control the second paddle to avoid arrows traveling towards it. The
third phase (upper right corner in Figure 5) consist of an arrow with mechanics
relatable to the game Flappy Bird [12]. In the final phase (upper left corner in
Figure 5), the player must additionally jump over holes on the ground. For the
player to succeed the game, he must control eight actions simultaneously. The score
is calculated by adding a single point for each second survived in the game.

Experiment 1: Hardware Requirements
Recall from section 4 that there are two methods of accessing the frame-buffer.
The first method (Method 1) is based on retrieving the frame-buffer at fixed time

2Multitask 2 - http://multitaskgames.com/multitask-2.html



Figure 5: In-game footage of the game Multitask

intervals. The second method (Method 2) does not have any interval restriction.
This makes Method 2 faster because it does not require sleep between frames. This
causes the framework to consume all available CPU, which is not always preferable.

We can see from Figure 6 that using Method 1 with the interval set to 30 fps
uses approximately 5% of the CPU. Increasing the interval to 300 increases it to
13%. We gradually increased the interval until the CPU ran at maximum. A single
I7-7700k can compute approximately 6300 fps images from the frame-buffer before
struggling to keep up.

The GPU Did not recognize any load during these test because the Flash
environment is software rendered. Memory consumed were between 200MB and
500MB depending on the speed. We believe that the reason for memory increase is
that Python does not garbage collect old frame-buffer snapshots between iterations,
and therefore gets an increased memory load.

Experiment 2: Reinforcement Learning
Deep Q-Network (DQN) is a novel algorithm architecture developed by Minh et al.
at Google DeepMind. It combines Q-Learning estimating Q-Values from a neural
network. [11]

In our tests we used Double Q-Learning from Hasselt et al. [5]. We also
used Dueling from Wang et al. that increases the learning precision by using
two estimators: state-value and action-advantage function [16]. We used a
discount factor of 0.99, learning rate of 0.001 and mini-batch of 16. We used
exploration/exploitation strategy with ε-greedy where it started at 0.9 and finished
at 0.1. The ε annealing was set to 10 000 steps. This is a relatively low epsilon
phase. But it seemed to work well in this environment.

Figure 7 illustrates the training of DQN, where the x-axis represents episodes



Figure 6: Hardware benchmark

Figure 7: Deep Q-Learning Training



of the game and y-axis score before reaching the terminal state. The agent had
troubles adapting to the third phase (see Section 5). Phase 3 is relatively hard to
master because it requires the user balance the arrow in the air. At around 230
episodes we saw a drop in score. This is because the network seems to prioritize the
first phase of the game. It reached the second phase a few times but was not able
to successfully control the paddle for longer periods of time. This is why it stales
at approximately 400 episodes. We believe that the network could have performed
better with additional training time. It trained for a total of two days. Hopefully,
it will be easier to train the network when FlashRL can speed-forward games, see
section 7. The results are overall acceptable as we can see that FlashRL deliver
quality states that a reinforcement learning agent can learn from.

6 Conclusion
FlashRL offers an easy-to-use architecture for performing RL in Flash-based games.
It is demonstrated to work well for Multitask 2, one of the environments included.
FlashRL fills the gap that emerged with the deprecation of Flash, Its main focus is
RL, but can also be used for other machine learning genres. This paper shows that
FlashRL can be used to train RL algorithms, in particular, Multitask 2. The work
shows promising results and continuing to expand the game repository may provide
new insights about RL in the future.

FlashRL will be kept alive as long as flash environments are an asset to the
machine learning community. It is available to the public at https://github.com/
UIA-CAIR/FlashRL, and can easily be adapted to every research requirement.

7 Future Work
Several improvements are planned for FlashRL. This paper outlined features of the
initial version of the FlashRL, and it is by far sufficient for simple reinforcement
learning research. As seen in section 5, a Deep Q-Learning based agent can
successfully learn from the environment Multitask and gradually perform better.

Speed-forward Option
Learning algorithms often require several thousand episodes to gain expert
knowledge of the environment. FlashRL is currently limited to the speed of which
the game loop is executed (usually 30 fps in real-time). An important improvement
would be to lift this restriction and allow algorithms to train at an accelerated rate.
This would certainly improve training duration of feedback based algorithms.

Game Repository Analysis
The game repository features many unlabeled, unrated and untested games. Some
games are potentially useless in a machine learning setting and require a review.
The review phase is time-consuming, and authors of this paper did not have enough
time to analyze each of the environments manually. The goal is to add labels and
categorize all games in the repository gradually.

https://github.com/UIA-CAIR/FlashRL
https://github.com/UIA-CAIR/FlashRL


Website
A future goal is to allow execution of algorithms from a web interface and to
add gamification aspects to the library. This would potentially create competition
between researchers much like Kaggle and OpenAI Universe.

Cross-Platform Support
FlashRL is in the initial version, only supported in Python 3 on the Linux platform.
The goal is to extend it so that it also can run without modifications on Microsoft
Windows operating systems.



References
[1] Marc G. Bellemare et al. “The Arcade Learning Environment: An Evaluation

Platform for General Agents”. In: CoRR abs/1207.4708 (2012). url: http:
//arxiv.org/abs/1207.4708.

[2] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[3] Flash Testing with Selenium. Aug. 2017. url: https://www.guru99.com/
flash-testing-selenium.html.

[4] Michael E. Grost et al. “Applications of Artificial Intelligence”. In: CAD/CAM
Robotics and Factories of the Future: Volume II: Automation of Design,
Analysis and Manufacturing. Ed. by Birendra Prasad, S. N. Dwivedi, and
K. B. Irani. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 165–
229. isbn: 978-3-642-52323-6. doi: 10.1007/978-3-642-52323-6_3. url:
https://doi.org/10.1007/978-3-642-52323-6_3.

[5] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement
Learning with Double Q-learning”. In: CoRR abs/1509.06461 (2015). url:
http://arxiv.org/abs/1509.06461.

[6] Harold L Hunt and II Jon Turney. “Cygwin/X Contributor’s Guide”. In:
(2004).

[7] Yuxi Li. “Deep Reinforcement Learning: An Overview”. In: CoRR
abs/1701.07274 (2017). url: http://arxiv.org/abs/1701.07274.

[8] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement
Learning”. In: CoRR abs/1602.01783 (2016). url: http://arxiv.org/abs/
1602.01783.

[9] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. issn: 00280836. url:
http://dx.doi.org/10.1038/nature14236.

[10] Volodymyr Mnih et al. “Playing Atari With Deep Reinforcement Learning”.
In: NIPS Deep Learning Workshop. 2013.

[11] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:
CoRR abs/1312.5602 (2013). url: http://arxiv.org/abs/1312.5602.

[12] Matthew Piper. “How to Beat Flappy Bird: A Mixed-Integer Model Predictive
Control Approach”. PhD thesis. The University of Texas at San Antonio, 2017.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. isbn:
0136042597, 9780136042594.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An
Introduction. MIT Press, 1998.

[15] Techtonik. python-vnc-viewer. https://github.com/techtonik/python-
vnc-viewer. 2015.

[16] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Network
Architectures for Deep Reinforcement Learning”. In: CoRR abs/1511.06581
(2015). url: http://arxiv.org/abs/1511.06581.

http://arxiv.org/abs/1207.4708
http://arxiv.org/abs/1207.4708
arXiv:1606.01540
https://www.guru99.com/flash-testing-selenium.html
https://www.guru99.com/flash-testing-selenium.html
https://doi.org/10.1007/978-3-642-52323-6_3
https://doi.org/10.1007/978-3-642-52323-6_3
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1312.5602
https://github.com/techtonik/python-vnc-viewer
https://github.com/techtonik/python-vnc-viewer
http://arxiv.org/abs/1511.06581

	Introduction
	Related Work
	Reinforcement Learning
	Flash Reinforcement Learning (FlashRL)
	Experiments
	Multitask 2
	Experiment 1: Hardware Requirements
	Experiment 2: Reinforcement Learning

	Conclusion
	Future Work
	Speed-forward Option
	Game Repository Analysis
	Website
	Cross-Platform Support


