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The hydroelastic interaction between an underwater
explosion and an elastic plate is investigated num-
erically through a domain-decomposition strategy.
The three-dimensional features of the problem require
a large computational effort, which is reduced through
a weak coupling between a one-dimensional radial
blast solver, which resolves the blast evolution
far from the boundaries, and a three-dimensional
compressible flow solver used where the interactions
between the compression wave and the boundaries
take place and the flow becomes three-dimensional.
The three-dimensional flow solver at the boundaries
is directly coupled with a modal structural solver
that models the response of the solid boundaries
like elastic plates. This enables one to simulate the
fluid-structure interaction as a strong coupling, in
order to capture hydroelastic effects. The method has
been applied to the experimental case of Hung et al.
(2005 Int. ]. Impact Eng. 31, 151-168 (doi:10.1016/
j-ijimpeng.2003.10.039)) with explosion and structure
sufficiently far from other boundaries and successfully
validated in terms of the evolution of the acceleration
induced on the plate. It was also used to investigate
the interaction of an underwater explosion with the
bottom of a close-by ship modelled as an orthotropic
plate. In the application, the acoustic phase of the
fluid-structure interaction is examined, highlighting
the need of the fluid-structure coupling to capture
correctly the possible inception of cavitation.
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1. Introduction

Explosions in fluids represent an important topic in many research fields. In medicine, for
example, implosions of micro-bubbles can be caused by the ultrasound used to remove kidney
stones. For marine applications, two relevant dangerous examples are underwater explosions,
which can damage close-by vehicles, and cavitating bubbles on propeller blades possibly leading
to erosion. Either when we are talking of micro- or macro-explosions, the common features are:
(i) generation of an air bubble, (ii) propagation of a compression wave from the surface of the
bubble, and (iii) eventual interaction of the compression wave with the surrounding structures.

Here, this phenomenon is investigated in the framework of underwater explosions, which
represents one of the most important causes of loss of navy vessels and it is a danger for close-by
submarines, surface ships and offshore structures. This work continues the research proposed in
[1]. There, a numerical solution strategy is proposed and described in detail. It is based on a one-
dimensional-three-dimensional fluid-dynamic domain-decomposition (DD) coupling. A radial
solver is used to study the initial stages of the phenomenon, before the acoustic waves reach
a structure, then, locally, a three-dimensional method handles the fluid-structure interaction.
The three-dimensional sub-domain is limited by the body boundaries and the one-dimensional—
three-dimensional interface across which information is transmitted. In [1], the structure was
modelled as rigid and preliminary studies of the fluid-structure interactions accounting for elastic
structural behaviour and an approximated coupling with the fluid were performed using only
the radial solver over the whole fluid domain and for the whole evolution. On the contrary, in the
present contribution the fluid-dynamic problem is described with the same hybrid method but the
fluid—elastic structure coupling is fully simulated. This enables one to investigate the hydroelastic
behaviour, which destroys any radial symmetry in the flow. Some preliminary results have been
documented in [2]. The paper is structured as follows. The proposed method is illustrated in §2,
with emphasis on the new aspects. Two selected important cases are analysed in §3. Finally, some
conclusions and lines for future research are proposed in §4.

2. The numerical solver

Underwater explosions are characterized by several complex phenomena: (i) multi-phase flow,
involving at least water and gas cavities resulting from the blast, (ii) flow compression, involving
the propagation of acoustic waves during cavity expansion, and (iii) transition from compressible
to incompressible flow dynamics during the later cavity oscillations.

The developed solution strategy focuses on underwater explosions and their interaction with
structures far from other boundaries, such as the sea floor or the sea surface. The method
introduced in [1,3] combines two solvers within a zonal approach to capture the complex and
detailed flow features described above. Here, the main aspects of the solver are described,
while more details can be found in [1], where, also accuracy and convergence properties of the
two involved fluid-dynamic solvers and the structural modelling are assessed. Moreover, the
scalability of the parallelized part of the method, i.e. the relationship between required CPU time
and number of processors, is provided. Thus, these aspects are not discussed here.

(@) The compressible solver for two-phase flows: three-dimensional and radial solutions

We examine the flow caused by an underwater explosion assuming that the chemical reactions
and the detonation phase have ended and have generated a gas cavity with known initial physical
properties. This flow involves at least two phases, gas and water, and it is, in general, three-
dimensional and compressible. We neglect viscous effects and solve the problem in a Cartesian
Earth-fixed coordinate system (x, y, z). We retain flow nonlinearities since nonlinear features are
in general important to properly capture the initiation and propagation of the acoustic waves
which, at the first stages, are always rather strong and that can still be important also during
a wave-body interaction if the explosion occurs sufficiently close to the wall and/or if the
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explosion is sufficiently strong. Moreover, nonlinear flow features could be induced by strong
hydrodynamic—structural coupling. Under these assumptions, the governing equation can be
formally written as

ou

— + V- -F=0. 2.1

ot * @1

Here, V = (u, v, w) is the velocity, p the pressure, p the density, E = p[e + (U2 + v + w?)/2] the

total energy, U = [u, pu, pv, pw, E]T the vector of fluid variables and F = [F,C,Fy,Fz]T the vector
of fluxes with Fy = [pu, pu? + p, puv, puw, (E + p)u]T, Fy =1lpv, puv, pv* 4+ p, pvw, (E + p)v]T and
E, = [pw, puw, pvw, pw* + p, (E+ p)w]T. To complete the problem, an equation of state (EOS) of
the form

pe=fi(p)p + gt(p) (22)

is assumed for the specific internal energy e. The functions f; and g¢ depend on the fluid properties,
as indicated by the subscript f. In particular, for the gas generated by the explosion, they are set
in agreement with the Jones—Wilkins—-Lee EOS [4] and for the water they follow an isentropic
Tait relation [5]. Equations (2.1) and (2.2) must be complemented by the initial and boundary
conditions which apply in the examined case.

Within the three-dimensional framework, equation (2.1) is solved numerically with a second-
order finite-difference scheme in space and integrated in time with a total variation diminishing
third-order Runge-Kutta scheme (see [6]), with the fluxes in each fluid modelled with a Harten—
Lax—van Leer contact Riemann solver (see [7]).

A two-shock approximation to the Riemann problem is enforced at the gas—cavity interface
as proposed in [8] solving for the two nonlinear characteristics intersecting at the interface
and using mass and momentum jump conditions for the transmitted and reflected shocks. The
resulting equation system is nonlinear and it is solved iteratively with a Newton-Raphson
method providing values of (V -n); =u;, p;, sz and piR, respectively, the normal velocity and
pressure at the interface and the left and right density. Here, ‘left’ means ‘inside the gas cavity’ and
‘right’ means ‘in water’. The estimated values for piL and pl.R are corrected by enforcing an isobaric
condition across the interface so to avoid numerical errors in the pressure. This interface algorithm
is based on a ghost fluid method (see [8]) and provides the conditions across the interface to each
fluid. Once all interface variables are known, the fluxes F can be calculated in each fluid and the
problem can be stepped forward in time. To follow the evolution of the gas—water interface, the
use of the three-dimensional Eulerian solver requires an additional technique. In the present case,
a colour-function method is adopted, advecting in time the signed distance (positive in one fluid
and negative in the other) from the interface. This is known as level-set function ¢ and its zero
value identifies the interface, which can be reconstructed in time by interpolating the ¢ values at
the centre of the cells. ¢ is advected in time using the equation

?‘)_qﬁ +V;-V¢=0, (2.3)
ot
where Vj is the interface velocity calculated like in [8]; in particular the normal velocity comes
from the interface solution strategy described above, while the two tangential components are
obtained as averages between the solutions in the two fluids. Once the instantaneous interface
position is identified as ¢ =0, the Riemann problem described above is solved across the
interface to ensure proper reflection and transmission of shock waves.

To make the solution efficient in time, an adaptive mesh refinement is used according to [9].
The grid is subdivided in blocks and each block can be dynamically (i.e. during the simulation)
split into eight smaller blocks in case a finer mesh is locally required, or neighbouring blocks can
be merged into one single, larger block when the flow variations become sufficiently small. This
splitting /merging process is controlled by a criterion which monitors the intensity of the fluid
variable Vp. Within such an adaptive algorithm, an interpolation strategy can be required; here,
a second-order polynomial expression is chosen consistently with the order of accuracy of the
three-dimensional numerical scheme.
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The described solver can incorporate the presence of solid and deformable boundaries like,
respectively, the sea floor and the sea surface. For both of them, a level-set technique can be
applied when the grid is not adapted to the boundary, as may occur for the evolving air-water
interface. One must, however, note that special care must be taken when the acoustic wave
resulting from an explosion reaches the sea surface, because the interaction involves, among
others, partial reflection and cavitation phenomena (e.g. [10]).

Within the radial solver, the governing equation (2.1) of the problem reduces to a one-
dimensional Euler equation in the radial direction, r, of the form

ol  oF

s + = S, (2.4)
with U = [p, pu, E]Y, F=[pu, pu® + p,(E+ p)u]T and S =2[pu/r, pu?/r, u(E + p)/r]T. Here, u is the
radial velocity, p the pressure, p the density and E the total energy p(e + u%/2). The same EOSs of
the three-dimensional case are used for the specific internal energy e to close the problem for gas
and water. The numerical implementation of the one-dimensional formulation is based on a first-
order, finite-difference scheme in space and time, which proved to be also very accurate when
compared with other numerical solutions, for fully one-dimensional problems and problems
with radial symmetry, even for long-time evolutions [1]. For this reason, no attempt was made
to implement a second-order formulation to improve the solution efficiency. The fluxes and the
interface conditions are handled as in three dimensions.

For both three-dimensional and radial formulations of the solver, the time step is dynamically
chosen on the basis of a Courant-Friedrichs-Lewy stability condition, which in our case reads
At <k-CFL. CFL is min(Ar/max(Jlu — c|, |u + c|)) for the one-dimensional solution and it is
similarly defined for the three-dimensional solution. The safety factor k is chosen to avoid
diverging behaviours of the solution. Here, Ar is the local spatial discretization, and c the local
speed of sound, so min() and max(), respectively, mean minimum and maximum values in the
computational domain.

If the explosion occurs very far from the solid boundaries, a spherical gas cavity is formed,
whose evolution is well approximated by a radial symmetry, as gravity does not play a relevant
role and the hydrostatic pressure enters the problem only in terms of the surrounding background
pressure for the bubble. This has motivated the implementation of a ‘one-dimensional” radial
solution. When the explosion interacts with a structure, the one-dimensional solver can be still
combined with a structural model, as long as hydroelastic effects are negligible. This allows a
simplified study of the fluid—structure interactions. In particular, this means that a radial solver
can be applied until the acoustic wave reflected from the structure reaches the blast bubble and
goes back to the body. This alternative has been implemented and assessed in [1] and is also
analysed in the physical investigation documented in §3.

Here, a three-solvers coupling is used. The one-dimensional method can be applied at any time
in a sub-domain sufficiently far from the region where three-dimensional effects caused by the
fluid-body interaction are important, while the three-dimensional method is used to model the
near-body flow. In this way, a composite solver, able to describe the whole stages of the fluid-body
interaction, can be built and, at the same time, the computational costs (CPU time) are limited as
much as possible.

(b) One-way time—space domain decomposition for compressible two-phase flows

The two compressible solvers described in §2a can be combined within a DD strategy to
investigate underwater explosions with initial radial symmetry. Here, this hybrid method is
proposed as a one-way, time—space coupling, which means that the radial solver is thought to be
used over the whole domain for time ¢ < t*, where t* represents the time at which the compression
wave approaches the one-dimensional-three-dimensional boundary. At t = t*, the DD is switched
on and the three-dimensional solver is introduced in a zone containing the structure where three-
dimensional effects are expected to be important, with initial conditions provided by the radial
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solver. The latter is still used in the rest of the fluid domain and provides also the boundary
conditions for the three-dimensional solver at the common interface. The position of the one-
dimensional-three-dimensional boundary can be stated at the beginning of the simulation or it
can be changed to reduce as much as possible the three-dimensional domain.

The one-dimensional-three-dimensional solver—solver interface is not meant to be a sharp
surface but it is conceived as an overlapping region between the spherical sub-domain of the
radial solution and the prismatic sub-domain of the three-dimensional solution. Within this
overlapping layer, the fluid variables are forced to smoothly vary from the values provided by
one solver to those estimated by the other. The use of an overlapping region has been found to
give a more robust numerical solution than the use of a sharp interface. On the other hand, inside
the overlapping region both solvers are applied, so the thickness of this layer must be as small
as possible. Here, this thickness is set 4Axjoc, Axjo. being the local size of the three-dimensional
computational grid, and a cosine function is used for the smooth variation of the solution across
the overlapping region itself. The DD strategy significantly limits the computational costs with
respect to using a compressible three-dimensional solver over the whole domain and for the entire
time evolution. This can be easily understood if one considers that the computational cost and
memory space for the three-dimensional solver increase with N2, N being the number of points
per spatial direction; they increase instead with N for a radial solution.

If the explosion occurs sufficiently close to boundaries, such as the sea surface, the sea floor,
a marine structure, so that no radial symmetry can be assumed even near the bubble, then the
above-proposed DD strategy cannot be applied and the fully three-dimensional solver must be
used from the beginning of the simulation and everywhere in the fluid domain.

(c) Structural modelling

A marine structure exposed to a blast can experience elastic and plastic deformations even leading
to rupture. The initial phase, i.e. the acoustic phase, of the incident flow is important for the local
forcing on the structure and is analysed by this study. The aim is to investigate the importance
of hydroelastic effects and other involved phenomena. This is done assuming only elastic
deformations of the body can take place. It means the use of a simplified structural modelling,
which has, nevertheless, proved to be able to capture the inception for plastic deformations, as
well as the maximum strain rate and dynamic yield stress at hand [1]. Assuming the structure to
be the bottom of a vessel, it is modelled as a rectangular orthotropic plate with length L and width
B in the x and y directions, respectively. The plate is assumed to undergo a linear deformation
w(x,y,t) governed in time and space by the equation
a2 4 Py a4
m% +Dx% +2BBB;%1/2 +Dy(;—;: = p(x,y,w,b). 25)
Here, m is the average plate mass per unit area, D, and Dy are its flexural rigidities in
the two main directions and BB is its effective torsional rigidity (e.g. [11]). On the right-hand
side, p is the local hydrodynamic pressure acting on the plate which depends on space, time
and w, in particular on its time derivatives. This equation is solved with a modal approach by
using separation of variables and expressing the deformation w as bi-linear combinations of
the eigenfunctions of vibrating beams satisfying the plate boundary conditions in both x and
y directions. Each of these combinations represents a plate mode and it is associated with an
unknown amplitude depending on time. The number of eigenfunctions in x and y is taken to
be finite, say Ny and Ny, leading to N = Ny - Ny plate modes, then the modal expression of w
is introduced in equation (2.5) and the resulting equation is projected along each of the N plate
modes. This leads to a linear ordinary differential (in time) equation system for the N unknown
amplitudes of the modes.
For simplicity purposes, we have here used a ‘thin-plate” theory (e.g. Kirchhoff-Love plate
theory). However, nothing prevents the use of a more complicated model valid for thick plates
(e.g. Mindlin—Reissner plate theory). In fact, the DD strategy is independent of the chosen plate
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theory. Hence, the mentioned strategy can be applied also in combination with higher order
plate theories, as long as the plate model gives both the displacement and the displacement
velocity back to the fluid solver and receives as input from it the fluid pressure on the plate.
When the DD strategy is used, and the three-dimensional solver is used in the fluid region
containing the structure, p is obtained by solving the fluid—structure coupled problem, i.e. it is
affected by the plate elastic behaviour. In more detail, the structure represents a solid deformable
interface immersed in the fluid domain. This interface is identified at any instant by a level-set
function, similarly to what is done for the gas—water interface. Inside the body, ‘guard’ cells
[9] are introduced which can be considered as a sort of ‘ghost cells’. In those cells, the velocity
component vn(P) normal to the body surface at point P is made equal to —vN(Pmirror) + 2UN wall,
where vnjwa is the normal velocity of the wall and Ppjrror is the mirror point of P inside the fluid.
For the tangential components, it is v (P) = v¢ (Pmirror)- Then, the fluid-dynamic problem (2.1) can
be prolonged in time and provides the pressure. The latter can be extrapolated on the structure,
i.e. along the iso-surface with zero value of the level-set function associated with the body and
used in the structural problem (2.5) to find w. Once this is known, the position of the body can
be updated in time through use of the level-set technique so that the new body—fluid boundary
condition can be enforced again in the fluid dynamic problem. As we assume elastic and small
deformations, the errors are very limited if the body-boundary condition is applied on the mean
plate configuration.

If the radial solution is used for simulating the incident acoustic wave, the direct full fluid—
structure interaction cannot be examined. The coupling is, then, approximated assuming that the
linear superposition principle is valid for the fluid—body interaction. Therefore, the pressure p is
decomposed as

pc  dw

P o + added-mass contribution, (2.6)

p(x/ y,w, t) = 2pil‘1(rl t) -

where p and c are the density and speed of sound in calm water, pi, is the incident wave pressure
and @ is the angle between the direction of the incident wave reaching locally the plate and the
plate normal vector. The first two terms on the right-hand side of equation (2.6) are important
during the acoustic phase and represent the sum of the incident and reflected (from the wall)
wave pressure. This leads to twice pin for a fixed wall ‘plus’ an acoustic wave-radiation damping
in the case of rigidly moving or deformable plate, consistent with the theory developed in [12] for
explosion waves interacting with plates. The last term represents an incompressible added-mass
contribution, which is important when the water behaves as an incompressible fluid and if the
plate oscillates as a consequence of the interaction with the incident acoustic wave. In the present
implementation, the acoustic wave-radiation damping term is switched off when pi, becomes
half of the acoustic pressure associated with the incident wave and, then, the added-mass term is
switched on.

The added-mass contribution for each plate mode is estimated in an approximate way,
studying the radiation problem for each plate mode and assuming that the plate is surrounded
by a fixed wall and then by a flat ‘free surface’ with velocity potential ¢ = 0. This means thatitis a
high-frequency added mass estimate and introduces, in general, some inaccuracies. For example,
for a ship the structure of interest could be the bottom of the vessel, eventually exposed to an
explosion. In this case, the plate would be used to model the grillage on the bottom and this
means that it cannot be at the same level of the free surface. The surrounding ‘free surface” used
in the added mass solution is meant to avoid a purely Neumann-type problem, which would lead
to a solution in general dependent on an arbitrary constant. The dimensions of the fixed wall are
assumed to be large enough that by increasing them there is no significant influence on the added
mass. The problem has been solved numerically with a zero-order boundary element method by
discretizing the plate, the fixed wall and the flat ‘free surface’ with quadrilateral panels and using
an indirect source formulation as in [13]. The added-mass calculations have been successfully
assessed against reference solutions for the case of added mass in heave of a rigid plate and for a
case of added mass for the elastic modes of a simply-supported uniform plate [1].
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Figure 1. Underwater-explosion experiments of Hung et al. [14]. (a) Experimental set-up. (b) Evolution of the gas cavity as
obtained by the radial solution and radial extension of the one-dimensional and three-dimensional solvers in the DD strategy
used for this test case. (Online version in colour.)

t (ms)

3. Physical investigations

Here, two cases of underwater explosions are examined, with specific focus on the evolution and
characteristics of hydroelastic fluid-structure coupling.

(@) Underwater explosion: interaction with a uniform plate

The examined case refers to the underwater-explosion experiment of Hung ef al. [14] and the
study is performed using both (i) the radial fluid-dynamic solution and approximate coupling
with the structure and (ii) applying the DD strategy and the full fluid-structure coupling. In the
tests, a mixture of DP60 detonator and Datasheet causes an underwater explosion interacting
with an air-backed aluminium plate mounted on a steel frame (figure 1a). Different standoff
distances rp, of the charge centre from the plate were studied but the time histories of the incident-
wave pressure and induced plate acceleration are only available for the distance of 0.7 m. Hence,
the latter is examined here. To reproduce correctly the incident-wave pressure, the parameters
for the EOS (2.2) and, in particular, the initial radius, pressure and density of the gas cavity
resulting from the explosion should be identified. The challenge is the unconventionality of the
explosive; therefore the following identification strategy for the equivalent TNT parameters was
implemented. In [14], Hung and co-authors assumed a radial symmetry of the explosion because
of the large distance of its centre from the tank boundaries and expressed the incident-wave
pressure at a given radial distance as follows:

plt, 7, W) = pmax(W, ) e =00V, (3.1)

Here, W is the charge weight and r the standoff distance of the chosen fluid location from the
core of the explosion. Moreover, empirical formulae were proposed for the maximum pressure
Pmax and the pressure rate of decay 6 as functions of W and r.

In our model, we take as valid the EOS (2.2) both for water and gas, but, as we do not
know the values of the involved coefficients for the used explosive mixture, as well as all
required initial conditions, we model the explosion as due to an equivalent TNT charge, for
which the coefficients of the related EOS are known. The equivalent explosion is identified
enforcing that pmax obtained by using the TNT charge at a given distance r is the same as
that provided by equation (3.1). In particular, r =0.0895m was chosen as the target location
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Figure 2. Underwater-explosion experiments of Hung et al. [14]: in each plot, time history of the empirical (dashed line) and
radial numerical (solid line) incident-wave pressure at a fixed radial distance r. From left to right: r = 0.0895, 0.1590, 0.3593
and 0.7 m. p is the ambient pressure. (Online version in colour.)

because it is relatively close to the explosion source and, further, is the smallest distance for
which tabulated values for pmax and # are provided in [14]. This resulted in a cavity with initial
radius rp = 0.03 m, density ppg = 1630.0 kg m~2 and pressure Pog =2 X 10'° Pa. Figure 2 shows the
comparison between the incident-wave pressure as predicted by the radial numerical solution
and by the empirical formula (3.1) at four radial distances from the initial explosion. The results
reveal a good description of the pressure decay in time. With reference to the maximum pressure,
as expected, the two predictions are identical at » =0.0895 m while the present solution tends to
underestimate more and more the empirical pmax for increasing distances from the charge. This
does not mean that the numerical solution necessarily provides a less accurate pressure prediction
moving far from the initial explosion. In fact, the good comparison with the incident-wave
pressure observed at » = 0.7 m, which corresponds to the radial distance of the plate, highlights
the good performances of the model. In more detail, figure 3 reveals that, once the rising times
of the two solutions are synchronized (this involving a shift of 0.018 ms), the time history of the
numerical pressure reproduces very well the experimental one of Hung et al. [14]. This means that
the numerical explosion has a small error in terms of propagation speed, i.e. it is slightly faster
than the physical one, but it can capture better the maximum experimental pressure than the
empirical formula proposed in [14] and behaves similarly to such a formula in terms of time decay.
Moreover, despite the simplifications used in modelling the explosion, the numerical prediction
of 30.5 ms for the first oscillation period of the gas cavity (figure 1b) is not far from the value of
26.7 ms observed in the model tests.

The interaction between the underwater explosion and the target plate was studied using, for
the fluid dynamic problem, both the full radial solution and the DD strategy. In the latter case,
the radial solver extended from the position of the initial explosion up to a radial distance of
0.42m and the three-dimensional sub-domain overlapped with it within a layer of about four
local cells and, thus, included the plate with the steel casing. This means that the gas cavity was
always inside the radial sub-domain during the examined evolution (figure 1b), therefore the one-
dimensional solver simulated a two-phase flow while the three-dimensional method examined
a one-phase flow interacting with the structure. In the case of the full radial solution, only the
aluminium plate is modelled as a uniform elastic plate; in the DD case, also the steel casing is
modelled, but, for numerical convenience (i.e. to make the thickness to be a multiple of the block
size), it is assumed slightly thicker than it is in reality, with a thickness of 0.35m. Since during
the examined evolution, the pressure wave does not reach the back side of the real steel casing, the
error connected with using a thicker structure is expected to be negligible. In addition, to limit
the CPU-time requirements, the symmetry of the problem is accounted for and only one-fourth
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Figure 3. Underwater-explosion experiments of Hung et al. [14]: experimental and radial numerical incident-wave pressure at
r = 0.7 m. (Online version in colour.)

of the fluid domain is simulated in the three-dimensional sub-domain. In both cases, i.e. using
the one-dimensional or the DD fluid-dynamic solver, the simulations were carried out assuming
either a restrained or a simply-supported plate with Ny = Ny = 10 beam modes, leading to N = 100
plate modes.

In the experiments, the acceleration at the centre of the plate was measured during the initial
stage of the wave-body interaction. This is examined in figure 4, which shows a much better
comparison of both the radial solution with approximated fluid-structure coupling and the DD
solution with full fluid—structure coupling with the experimental acceleration than that given
by a recent numerical simulation documented in [15], which employs an analytical technique
for the fluid-dynamic problem and an elastic dynamic response of the structure. In particular,
both the solvers here proposed: (i) consistently reproduce the rising phase of the measured
acceleration and (ii) indicate the inception of oscillations which characterize the experimental
data. In addition, the measurements indicate a high-frequency behaviour, which cannot be
explained on the basis of the information available from the work in [14]. The one-dimensional
and three-dimensional solutions show a similar behaviour during the first stages of the evolution,
involving a fast rise of the acceleration up to a maximum value which is followed by a decay.
This suggests that at the beginning of the interaction, the radial symmetry is still valid and the
coupling between fluid and structure is weak. Data of maximum acceleration at the centre of the
plate are summarized in table 1 together with the maximum velocity at the centre of the plate,
both referring to the initial phase of the incident-wave pressure interaction with the structure.
As in the experiments only the acceleration was measured, and the maximum velocity has been
estimated by integrating in time the measured acceleration. In this context, the high-frequency
behaviour of the recorded acceleration represents a source of error both for the maximum
acceleration and for the maximum velocity. An inspection of the results reveals that both one-
dimensional and DD maximum accelerations agree better with the measurements in [14] than the
finite element method (FEM) predictions reported in the same paper. The DD results are slightly
worse than the one-dimensional predictions. However, such a slightly poorer performance can
be explained in view of: (i) the high-frequency oscillatory behaviour in the measurements, (ii) the
sensitivity during this first stage of the fluid—body interactions to the physical conditions, and
(iii) the numerical choices. The same arguments hold also for the maximum velocity, which is
overpredicted by the DD solution. In this case, an additional source of error is related with the
time-integration procedure possibly used for the measured accelerations.
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Figure 4. Underwater-explosion experiments of Hung et a/. [14]: evolution of the acceleration at the centre of the plate as
measured in [14], predicted in [15] and by the present one-dimensional (1D) and DD solutions for both restrained and simply-
supported plate. The four time instants labelled from 1to 4 and indicated by the vertical dotted lines correspond, respectively,
to the top-centre, top-right, bottom-left and bottom-right panels of the DD simulation given in figures 5 and 6. (Online version
in colour.)

Table 1. Maximum velocity and acceleration (given in terms of gravity acceleration G) induced at the centre of the plate.
Experiments and FEM results are from [14]; 1D and DD refer to the present solutions obtained using, respectively, the radial
and the DD strategy for the fluid-dynamic solver; RP, restrained plate; SSP, simply-supported plate.

experiments FEM 1DRP 1D SSP DDRP DD SSP
Vinax (Ms™) 2.63 246 2.48 257 370 357
nax (G % 10%) 3.08 3.54 319 319 278 276

The time evolutions of the one-dimensional and DD accelerations start to diverge as the curves
approach the first minimum and this leads to clear differences in the later oscillations (figure 4).
At this stage, the two DD solutions, assuming either restrained or simply-supported plate, are
more consistent with the experiments, better capturing the second oscillation peak and indicating
a more complex fluid—structure interaction than that described by the one-dimensional solver.

To better understand the features involved in such a coupling, the DD solution is examined
in further detail. The restrained-plate condition is focused upon, as representative of both plate
edge conditions (restrained and simply-supported) which behave rather similarly. Figures 5
and 6 illustrate the evolution of the pressure iso-surfaces with p=73.6 x 10* Pa together with,
respectively, the pressure and normal velocity on the plate.

As time goes by, the wave pressure interacts with the plate, leading to pressure and velocity
which increase on the structure with radial symmetry (see top-left and top-centre panels of
figures 5 and 6). At this stage, the acceleration at the plate centre is still limited, but quickly
increases (see time labelled as ‘1’ in figure 4). The radial symmetry loosens in time due to
the finite dimensions of the plate (see top-right panels of figures 5 and 6). This corresponds,
approximately, to the first minimum of the acceleration at the plate centre (see time labelled
as ‘2" in figure 4). When the pressure wave reaches the edges of the plate, the pressure and
velocity of the structure are characterized by important contributions from the higher modes (see
bottom panels of figures 5 and 6) and this suggests the possible need of more modes in the plate
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Figure 5. Underwater-explosion experiments of Hung et al. [14]: numerical DD evolution of the pressure iso-surfaces with
p =T73.6 x 10* Pa together with the pressure on the plate. Here, p indicates p — po, with p, the ambient pressure. Time
increases from left to right and from top to bottom and corresponds to: t = 0.32, 0.45, 0.48, 0.492, 0.510 and 0.514 ms. The
simulation has been performed with minimum cell size of 0.00625 m and assuming N' = 100 for the plate modes. The plate is
restrained. (Online version in colour.)

modelling, to properly describe the structural behaviour. An identical need can be found for the
simply-supported plate, as confirmed by the similar evolution of the acceleration in figure 4. The
need for the increase of modes is confirmed by the solution of figure 7, obtained with N =400
plate modes and for two different discretizations. There the acceleration of the plate is compared
with the experimental one. The initial behaviour of the acceleration is similarly represented by
the two simulations; the shorter duration of the initial peak obtained with the finer mesh is due to
the lower numerical dissipation undergone in this case. After t = 0.47 ms, higher modes play an
important role (see also figure 4) and cause a weaker deceleration of the plate. For higher modes,
a finer mesh is necessary to capture the hydroelastic coupling.

At this stage, the acceleration at the plate centre reaches a second maximum, which is smaller
than the first peak due to the hydroelastic effects (see time labelled as ‘3" in figure 4).

The reflected compression wave and the propagating one have different intensities because of
the effect of the plate motion on the former. Moreover, the transmitted wave changes its curvature,
in particular it tends to become cylindrical with axis around the edge of the plate. The combination
of these three ingredients causes the interaction between the reflected and transmitted wave to
determine the profile illustrated in the bottom-right panels of figures 5 and 6.

At this stage (see the bottom-right panel of figure 6), the plate velocity is very large near the
corners as a consequence of the pressure wave reflection from the wall. The last instant shown
for the DD prediction of the acceleration at the centre of the plate (see time labelled as ‘4" in
figure 4) corresponds to the last instant of the pressure iso-surfaces evolution discussed here.
This corresponds to the time when the pressure wave reflected from the structure has almost
reached the interface between the one-dimensional and three-dimensional sub-domains, so the
simulation has been stopped. To prolong the solution in time, a dynamic enlargement of the three-
dimensional sub-domain at the expenses of the one-dimensional sub-domain should be used, as
discussed in §2.
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Figure7. Underwater-explosion experiments of Hung et /. [14]: numerical DD evolution acceleration at the centre of the simply
supported plate, for two different discretizations and N = 400. (Online version in colour.)

arrangement from full-scale experiments by Smith [16]

Figure 8. Steel-grillage arrangement for the bottom of navy ships as studied experimentally in [16]. Here, L and B are
the longitudinal and transversal length of the grillage, respectively, a and b are the distances between two transverse
frames and two longitudinal stiffeners, respectively. Grillage 1a of [16] with four transverse frames and four longitudinal
stiffeners is here examined. The parameters are L = 6.096 m, 8 = 3.048 m, t = 0.008 m, h,,, = 0.15367 m, t,,,, = 0.00721 m,
b = 0.07899 m, ty, = 0.01422 m, hy,, = 0.25756 m, t,,, = 0.00937 m, by, = 0.12548 m and t, = 0.01829 m.

Table 2. Equivalent orthotropic plate for the steel-grillage arrangement 1a of [16] documented in figure 8. The values are given
in Sl units. L and B are the plate extensions in x- and y-direction, respectively. oy is the yield stress of the plate.

L B m ) D, B oy
6.069 3.048 85.785 1262 x 10 3517 x 107 2614 x 10* 250.4  10°

(b) Underwater explosion: interaction with a navy-ship bottom

Here, the possible consequences of an underwater explosion on the bottom of a navy ship are
examined using the DD decomposition and the full fluid-structure coupling.

The bottom grillage arrangement is chosen to be that of configuration 1a among those studied
experimentally in [16] (see the sketch of figure 8) and an equivalent orthotropic plate has been
identified with main parameters given in table 2 and taken to be restrained at all edges.

The modelled plate has been forced by the underwater explosion caused by a TNT charge
documented in [17], which is used as a representative sample of typical explosions, to assess
possible ship damages. For this explosion, all parameters needed for the gas and liquid EOSs
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Figure 9. Case of a plate equivalent to the bottom of a navy ship. Left: pressure iso-surfaces with p =10 Pa and plate
deformation at t >~ 2.2 ms indicated by the vertical solid line in the right-hand panels. Right: evolution of the deformation
(top sub-panel) and pressure (bottom sub-panel) at the middle of the plate. Here, p indicates p — py, with p, the ambient
pressure. (Online version in colour.)

(2.2) are available and, in particular, the initial conditions of the gas cavity in terms of pressure,
density and radius are, respectively, poo = 8.381 x 10° Pa, pog =1630.0kg m~2and rp=0.16 m.

A systematic parametric analysis, in terms of the standoff distance rp, i.e. the minimum
distance of the plate from the initial charge, has been performed in [1] using the radial solver
for the fluid-dynamic problem combined with the approximate fluid—structure coupling. For the
shortest distance, 7p = 4m, stresses much larger than the yield value were recorded, suggesting
inception of plastic deformations and possible damage of the structure. A decrease of the
plate pressure down to the vapour pressure was also documented, suggesting some risk of
cavitation. Here, the condition rp, =4m is further examined by the DD solver by means of the
full fluid-structure coupling. Although this is an academic study, with major simplifications of
the geometrical and structural properties, it can still provide useful insights of the phenomena
involved when a strong fluid—structure interaction occurs due to the closeness of the blast to
the structure.

The left panel of figure 9 illustrates the solution in terms of iso-surfaces of pressure with
p=10Pa and contour plots of the plate deformation at time t~2.2ms, corresponding to the
arrival of the acoustic wave on the plate. Taking advantage of the symmetry, only one-fourth of
the physical domain is simulated, thus reducing the CPU time and memory space requirements.
The plot also indicates the radial extension of the radial (one dimension) sub-domain, which is set
within a distance of 1 m from the centre of the initial explosion, while the three-dimensional sub-
domain represents the rest of the fluid domain containing the plate. On the right of figure 9, the
evolutions of deformation (top sub-panel) and pressure (bottom sub-panel) at the middle of
the plate are illustrated. From the results, it is clear that the impact of the compression wave on
the wall induces a rapid pressure rise and an upward velocity of the plate. At this stage, the plate
displacement is, on the other hand, rather small and tends to increase monotonically. As time goes
by, the hydroelastic coupling becomes stronger, the pressure reaches a maximum value and then
decreases rather quickly, becoming negative, i.e. smaller than the ambient pressure, at t 2.7 ms
and reaching values close to the vapour pressure, which suggests the possible occurrence of
cavitation. Then the pressure rises again.

As the incident wave interacts with the structure, the radial symmetry in the pressure iso-
surfaces is lost and the iso-surfaces stretch along the main direction of the plate, due to the lower
influence of the restrained plate condition with respect to the orthogonal axis (figure 10).
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Figure 10. Case of a plate equivalent to the bottom of a navy ship: contour plots of the velocity on the plate (left) and pressure
iso-surfaces with p = 10 Pa (darker) and p = 0 Pa (lighter) from a side view (left and middle) and a top view (right) at time
t =~ 2.85 ms. Here, p indicates p — po, with po the ambient pressure. (Online version in colour.)
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Figure T1. Case of a plate equivalent to the bottom of a navy ship. Left: pressure iso-surfaces with p =10 Pa and plate
deformation att ~ 2.85 msindicated by the vertical solid line in the right-hand panels. Right: evolution of the deformation (top
sub-panel) and pressure (bottom sub-panel) at the middle of the plate, as obtained with the fully coupled and approximated
coupled solutions. (Online version in colour.)

This is clearer from the top view of the pressure iso-surfaces, showing better the stretching
of such surfaces and, therefore, the growth of three-dimensional effects in the pressure (compare
the middle and right panels of figure 10). Here, the lighter iso-surface corresponds to p =0Pa.
Its dimension along the plate main axis is about one-tenth of the plate length, and its presence
highlights the inception of a cavitation zone on a smaller surface of the plate inside this
iso-surface. Once cavitation occurs, a state change, from liquid to gas, is forced and this affects
the structural loads. These phenomena cannot be handled by the present method and require an
extension of the solution strategy.

Figure 11 illustrates the same case, by comparing the fully coupled solution with the
approximate coupled fluid—structure solution described in §2. During the pressure rise, the two
results are very close and predict similar maxima, while later on the approximate solution predicts
a pressure decrease with lower rate. As a result, the inception of cavitation is not predicted as it
is by the fully coupled solution. Only at a later stage (not shown here) does the pressure from the
approximate solution reach values close to the vapour pressure.
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4. Conclusion

A hybrid numerical solver has been proposed to investigate underwater explosions occurring
sufficiently far from the sea floor and the free surface so as to lead to radial symmetric acoustic
waves and their interactions with marine structures. The method is based on a one-way time—
space DD strategy coupling a radial and a fully three-dimensional solution for compressible
inviscid multiphase flows. This is done in a way to achieve a good compromise between
capability, accuracy and efficiency. The three-dimensional solver is based on an adaptive mesh
refinement technique and a parallelization process which helps to reduce the computational
costs (CPU-time and memory-space requirements). The fluid-structure interaction has been
implemented both as an approximated coupling and as a full coupling so as to highlight the
importance of hydroelastic phenomena. The target structure was modelled as a uniform or
orthotropic plate. The latter is a reasonable approximation of the grillage arrangement on the
bottom of surface ships. The fluid-dynamic model was used both as a purely radial solver
and as a DD-based solver, to investigate two underwater explosion cases. The first example
refers to a uniform plate and allowed one to successfully validate the solver for the acoustic
(compressible) phase of the fluid—structure interaction. The second case examined an idealized
ship bottom and provides a significant assessment of the importance of hydroelastic effects and
related consequences. Presently, only the compressible phase has been focused upon, which is
relevant for the local consequences on the structure. The later incompressible stage, with eventual
gas cavity oscillating and imploding on the structure, is important for global consequences on the
vessel and will be examined in a future step of the present research activity. However, excluding
the cavity collapse in very tiny bubbles, such a later phase is considered to be less demanding in
terms of modelling and implementation, as the authors have already experience in this framework
(e.g. [18]). Before moving in this direction, the dynamic DD algorithm will be assessed and the
passage of the gas cavity from the radial to the three-dimensional domain will examined, because
these two aspects are required to investigate the later incompressible stage.
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