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Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range
of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different
parameter sets. We studied a larger variety of sequences compared to previous studies that only
consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and
strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of
the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we
applied an adaptation of the PBD model to study hairpin denaturation for which experimental data
are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD
model have been compared with experiments. Our results show that present parameterized models,
although giving good results regarding thermodynamic properties, overestimate denaturation rates
by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for
verifying DNA models and for developing next generation models that have higher predictive power
than present ones. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922519]

I. INTRODUCTION

Gaining knowledge and understanding of the structure
and function of DNA, our genetic material, is crucial for
dealing with diseases related to DNA. In 2004, the mapping
of the complete human genome was accomplished,1 leading
to a better understanding of DNA-related diseases. However,
knowledge of the DNA structure is not enough to sufficiently
understand biological processes.2 For this, we also need to
understand how the structure affects the equilibrium properties
and the dynamics of the DNA molecule. In fundamental ge-
netic processes, such as transcription and replication, DNA
must undergo dynamical changes.3 Due to their high degree
of complexity, the details of transcription and replication
are not adequately understood and a satisfactory descrip-
tive model is difficult to design. However, these processes
initiate with the formation of local “denaturation” bubbles
in a similar way as the process of DNA denaturation, or
DNA melting, which is a considerably simpler process to
study theoretically and experimentally. Thus, studying DNA
denaturation is, in addition to being very interesting in itself,
considered a well-grounded step towards the full compre-
hension of the mechanisms involved in transcription and
replication.

There are two main objectives of this article. First, we
extend the study of Ref. 4 by examining the denaturation rate
constant as a function of a wider range of sequences and
temperatures. Second, we look at a simple adaption of the PDB
model to study hairpins for which experimental denaturation
rates are available.

a)Electronic address: oda.dahlen@ntnu.no
b)Electronic address: titus.van.erp@ntnu.no

II. THE PEYRARD-BISHOP-DAUXOIS (PBD) MODEL

The PBD model is a well-known mesoscopic model for
describing the thermodynamics and dynamics of DNA. It sim-
plifies the geometry of the DNA double helix by describing
it as a one-dimensional chain, where each base pair (bp) is
represented as a point-mass along the chain. A DNA chain
of N bps has potential energy U({yi}) = V1(y1) +N

i=2 Vi(yi)
+W (yi, yi−1), where

Vi(yi) = Di(e−aiyi − 1)2, (1)

W (yi, yi−1) = 1
2

K(1 + ρe−α(yi+yi−1))(yi − yi−1)2. (2)

The transverse displacements of the nucleotides from equilib-
rium are denoted yi, i being the bp-index. Vi is the Morse poten-
tial, describing the repulsive interaction due to the hydrogen
bonds between two bases on opposite strands, the repulsion of
phosphate groups, as well as the screening by the surrounding
solvent. The depth of the potential is represented by Di and
the width by ai. The depth Ds and the width as for strong GC
bps are larger than the depth Dw and the width aw for weak
AT bps. W represents the stacking potential that describes the
interaction between neighboring bps and includes a harmonic
and a nonlinear term. The term ρe−α(yi+yi−1) was introduced
in the improvement of the original PB-model,5 leading to the
PBD model,6 and this term is the reason why the PBD model
can reproduce sharp phase transitions observed in denaturation
experiments.7–11 If one of the bps stretches far beyond α−1,
ρe−α(yi+yi−1) ≈ 0, and the effective strength of the potential
drops from K(1 + ρ) to K , which resembles the decline in the
overlapping π-electrons occurring as one of two neighboring
bases breaks and moves out of stack.

There are of course also some limitations that should be
considered. (i) The PBD model does not distinguish between
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A and T bases or between G and C bases. In other words, the
AT bp has the same physics as the TA bp and the same is true
for the GC and CG bps. (ii) The stacking potential W (yi, yi−1)
depends on the positions of the bps i and i − 1 but not on their
identity. (iii) The model does not contain helical stress. (iv)
The PBD model includes solvent effects only implicitly via
the effective interaction parameters. (v) The one-dimensional
character of the model becomes less trustable at very large
bp separations. Despite these approximations, several studies
have shown that, after fitting of the PBD parameters, dena-
turation experiments can be reasonably well described.7,9 In
addition, the PBD model has also been shown to reproduce
specific features seen in experiments, such as bubble formation
in DNA strands12 and the previously mentioned sharp phase
transitions observed in denaturation experiments.10 A strong
point of the PBD model is that it is very fast. Molecular
dynamics (MD) simulations of long DNA chains up to several
hundreds of bps can be run up to the microsecond time scale
which would not be feasible for full-atom simulations. Yet,
the model has more detail than Ising-type models such as the
Poland-Scheraga model.13 This allows studying more realistic
dynamics. Besides computational efficiency, the simplicity of
the model has another advantage. It allows gaining intuition
and insight that is more difficult to get from a full-atomistic
simulation if it would be feasible. A minimal model that is
describing the experimental features is, therefore, extremely
valuable.

However, due to a lack of experimental evidence, it is
yet uncertain whether present parameterized PBD models can
really give qualitative correct denaturation dynamics or that
extensions are required. Two parameter sets frequently used for
the PBD-model are the one by Campa and Giansanti7,8 having
K = 0.025 eV/Å2, ρ = 2, α = 0.35 Å−1, Dw = 0.05 eV, Ds

= 0.075 eV, aw = 4.2 Å−1, and as = 6.9 Å−1, and the more
recent set by Theodorakopoulos,9 where K = 0.000 45 eV/Å2,
ρ = 50, α = 0.20 Å−1, Dw = 0.1255 eV, Ds = 0.1655 eV,
aw = 4.2 Å−1, and as = 6.9 Å−1. In the following, we will
call these parameter sets PBD-CaGi and PBD-Th, respectively.
The most noticeable differences between these two parameter
sets is the value of the nonlinear stacking parameter, ρ, and the
strength of the potential, K . The large ρ-value was advocated
by Theodorakopoulos based on the large differences in stiffness
of single stranded and double stranded DNA (dsDNA).9 The
effective coupling constants with two consecutive bps in stack
K(1 + ρ) are closer but still deviating by more than a factor
of 3: 0.075 eV/Å2 versus 0.023 eV/Å2. The two parameter
sets are based on completely different physics with the DNA
model PBD-Th being much more flexible than PBD-CaGi, but
they both give reasonable results when compared to data from
actual denaturation experiments. This shows that there is a
need for additional experimental and theoretical data to verify
mesoscopic DNA models.

III. PBD ADAPTATION FOR HAIRPINS

A DNA hairpin is a secondary structure of DNA and RNA,
found most frequently in RNA, where it is one of the entities
of many RNA configurations. A hairpin consists of a bp stem,
which is a dsDNA chain, and a base loop at the end of the stem,

which is a single stranded DNA chain. Hairpins are highly dy-
namic structures, and in a simplified definition, we can say that
they fluctuate between two main states, the closed state, where
the bps of the stem are paired, and the open state, where the bps
of the stem are free. Hairpins are vital for several of the func-
tions of DNA and RNA. They are involved in regulation of the
transcription by binding to proteins,14 the regulation of gene
expression,15 and intermediary hairpin structures participate in
replication and recombination.16–18 With respect to DNA based
molecular nano-devices, DNA/RNA hairpins have in particular
been proposed suitable for storing molecular memory19 and as
engines to drive nano-devices.20,21

Two possible ways to adapt the PBD model for studying
DNA hairpins have been proposed. Errami et al.22 used the
PBD model for describing the stem in combination with the
Kratky-Porod model for describing the loop. For reasons of
computational efficiency, however, we adopted the simpler
approach by Hanne et al.23 in which the flexibility of bp at
the end of the stem, just before the loop starts, is restricted
by an additional confining potential that is added to the Morse
potential. In our case, we applied an exponential potential to
the terminal bp of the dsDNA stem to mimic the “hairpin-
effect,”

V (yN) =



eV

Å6
(yN − τ)6, when yN > τ

0, when yN < τ
. (3)

Naturally, τ should in principle depend on the actual loop
length of the hairpin since that determines the maximum sepa-
ration of this bp. However, also steric hindrance and interac-
tions with solvents will be important.

IV. RATE CONSTANTS

Despite the fact that mesoscopic character of the PBD
model allows running much longer simulations than one can
achieve with full-atom models, it is generally still not possible
to study denaturation of long DNA polymers at temperatures
that are significantly lower than the denaturation temperature
using MD. The reason is that denaturation is a rare event on
the time scale that can be achieved by brute force MD, even
for such a simplified model. Henceforth, in order to study
the denaturation transition, we need to invoke special rare
event simulation techniques. Several simulation techniques
have been developed that are able to reproduce the exact same
rate constant as brute force MD, but orders of magnitude faster.
The Reactive Flux (RF) method is one of them, developed
last century by Eyring,24 Wigner,25 and Keck26 based on the
concepts of a transition state dividing surface, the free energy
as a function of a reaction coordinate, and the transmission
coefficient. The transmission coefficient corrects for the transi-
tion state theory (TST) expression. There are several methods
to calculate the free energy and the transmission coefficient
(See, e.g., Refs. 27 and 28). Alternative methods are based
on transition path sampling (TPS)29 which became an effec-
tive method for calculating rate constant when the transition
interface sampling (TIS) algorithm30 was developed. Popular
methods based on variations of the TIS algorithm are forward
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flux sampling (FFS)31 and replica exchange TIS (RETIS).4

Both these methods are in principle exact methods though FFS
can have severe sampling problems with transition paths not
moving along the most likely pathway.32 RETIS can be more
efficient than the reactive flux method in complex systems
when hysteresis27 can hamper the standard free energy calcula-
tion methods and, in addition, many trajectories are needed to
determine small transmission coefficients. For the PBD model,
however, the RF method is by far the most efficient method
due to the fact that it only has first-neighbor interactions which
allows an extremely efficient and accurate free energy calcu-
lation method. In this method, the multidimensional partition-
function integrals are solved in an iterative algorithm.33 The
free energy barrier can, hence, be determined without any
statistical error. Only a small systematic error due to the step-
size in the numerical integration scheme remains, but overall
the free energy barrier can be determined up to several digits.
Giving this beneficial approach for determining the free en-
ergy, the overall efficiency of the method is very good even
if the transmission coefficient is rather low (for all sequences
around 0.02).

The RF method writes the rate constant as the following
product: k = κkTST. Here, kTST is the transition theory expres-
sion for the rate constant that only requires information of the
free energy profile along the reaction coordinate.27 κ is the
correction to the TST expression and always has a value be-
tween 0 and 1. This factor corrects for fast correlated recrossing
and can be calculated by releasing many trajectories from the
top of the free energy barrier. Although several expressions
have been used for calculating κ, the one based on the effective
positive flux expression34,35 is probably the most efficient and
used in this work. Thus, the rate constant calculation was
obtained in a two-step procedure. First, the free energy was
calculated along the reaction coordinate λ which was chosen
as λ = MIN({yi}) just like in previous publications.4,33 The
integration of the partition function integrals was carried out
using the iterative direct integration method.4,12,33,36 The step-
size for the numerical integration was set to dy = 0.05 Å and
the integration boundaries were set according to Ref. 12 using
a tolerance of ϵ = 10−40. The transmission coefficients were
obtained by running 106 trajectories, using a time step of 1
fs and bp masses of 300 amu. In all simulations, Langevin
dynamics were applied. The friction coefficient, γ, was set to
50 ps−1, which is considered a suitable value for the friction of
water.37

Experimental denaturation rate constants are mainly avail-
able from DNA-hairpins. In Ref. 38, the authors obtained
kinetic and thermodynamic data on folding and unfolding of
individual DNA hairpins. The hairpins were unzipped and re-
folded at constant force by using an ultrastable, high-precision
optical force clamp. The two ends on the hairpin were attached
to dsDNA handles bound to polystyrene beads held in two
independently controlled laser traps. The unfolding rates were
measured by monitoring the extension of the molecule as the
hairpin folded and unfolded under constant force. In Ref. 23,
the authors performed single-molecule measurements of the
opening rate of DNA hairpins under mechanical stress. The
opening rate for zero force is obtained by measuring how the
opening rate depends on a applied external force field acting on

the hairpin. Bonnet et al.39 determined experimental reaction
rates using a combination of fluorescence energy transfer and
fluorescence correlation spectroscopy.

V. RESULTS AND DISCUSSION

A. dsDNA chains

We investigated DNA chains of lengths ranging from 4
to 100 bps with a GC-content of 1/3, 1/2, and 2/3. For each
of these chains, we examined how the order of the sequence,
i.e., the distribution of weak and strong bps, influenced the
denaturation rate. We considered four different ways to order
the sequences which we will denote “AAGG”-, “AGGA”-,
“GAAG”-, and “AGAG”-sequences. This shorthand notation
refers to 4 bp sequence having that order. For larger sequences,
this notation is explained in Table I. In words, the “AGGA”-
chain is the chain with a strong block in the middle, the
“GAAG”-chain is the one with the weak block in the middle,
the “AAGG”-chain has the weak and strong bps at either side,
and finally “AGAG” is the alternating chain, having the most
even distribution of weak and strong bps. Figure 1 shows
the rate constant of the “AGAG” chain with 33%, 50%, and
66% GC-content for the PBD-CaGi parameters. The results
show that at low temperatures, the shortest chains have the
highest denaturation rates, whereas at the high temperatures,
it is reverse with the longer chains denaturating faster. The
transition between the two regimes seems to occur at the
critical melting temperature, i.e., where the denaturation phase
transition occurs in the infinite chain limit (325 K and 365 K for
homogeneous AT and GC, respectively12). The same trend was
found in Fig. 2 of Ref. 33, where the denaturation constant as a
function of chain-length was plotted for different temperatures
in the range of 300–350 K. This could seem surprising since
one might intuitively expect that the longer chains open up
more slowly than the short ones at all times. Apparently, that
is not the case at temperatures above the melting tempera-
ture. This can be explained as follows. Since a denaturation
event begins with openings of single bps, which develops to

TABLE I. Explanation of the notation used in this article to denote a cer-
tain bp ordering. “AAGG,” “AGGA,” “GAAG,” and “AGAG” refer to the
sequences of four bps having this specific order. In the right column, we show
what we mean by this order for a 12-bps sequence having either 1/3, 1/2, or
2/3 of the bps being GC.

Sequence notation Percentage GC-bps (%) Sequences of 12 bps

“AAGG” 33 AAAAAAAAGGGG
“AAGG” 50 AAAAAAGGGGGG
“AAGG” 66 AAAAGGGGGGGG
“AGGA” 33 AAAAGGGGAAAA
“AGGA” 50 AAAGGGGGGAAA
“AGGA” 66 AAGGGGGGGGAA
“GAAG” 33 GGAAAAAAAAGG
“GAAG” 50 GGGAAAAAAGGG
“GAAG” 66 GGGGAAAAGGGG
“AGAG” 33 AGAAGAAGAAGA
“AGAG” 50 AGAGAGAGAGAG
“AGAG” 66 GAGGAGGAGGAG



235101-4 O. Dahlen and T. S. van Erp J. Chem. Phys. 142, 235101 (2015)

FIG. 1. Rate constant of a DNA chain with sequence “AGAG” and GC-
content of 33%, 50%, and 66% plotted as a function of the temperature and
chain length. Insets show the same results in a logplot from 300 to 350 K.

bubbles and larger domains, the creation of the first bubble
is an important initiation event. In a long chain, there are
more places where this initial bubble could initiate, but on
the other hand, the lifetime of the bubble will be small at low
temperatures since the closed bps will pull the open bps back
into the stack. In other words, at low temperatures and in long
DNA polymers, a sequence of rare events is needed in which
bubbles are first created and then they extend or new bubbles
should form before the initiating bubble collapses. Extending
an existing bubble is more likely than creating a new bubble
due to a cooperative effect since the closed bps at the edges
of a bubble open up more easily as they are pulled by an
open neighbor. Still, the chance the bubble collapses will be
higher than that it will grow at low temperatures. Once an open
domain is formed that is beyond a critical fraction of the chain
length, the remaining closed bps will have insufficient power
to pull the others back into the stack but will be pulled out
themselves. This implies that the longer the chain the bigger
the open domain has to be to let this happen and, therefore,
the rate constant decreases exponentially as a function of chain
length.33 At the higher temperatures, the lifetime of the bubbles
is much higher. This implies that there is a longer time-window
in which other bps can open and assist an existing bubble.
Especially when the lifetime of bubbles becomes similar in
magnitude as the expectation time for new bp opening events to
occur, the initial bubble formation basically induces a kind of

domino effect. The rate limiting step is then determined by the
formation of the initiation bubble, and since large molecules
have more sites where this could happen, the rate constant
actually increases as a function of chain length.

Fig. 2 shows the relative rate constants of the “AAGG,”
“AGGA,” and “GAAG” sequences as a function of tempera-
ture and chain length relative to the “AGAG”-chain. For short
sequences, the relative rates are close to 1 for all temperatures.
This is not unexpected since the number of bases in which the
small polymers differ is limited. For all chains, “AGAG” has
the largest rate constant when the temperature is below∼370 K,
which corresponds with the results from Ref. 33 for the chains
having 50% AT. When the temperature is increased, we see
that the relative rates for the long chains pass first through a
minimum and then increase again. The minimum corresponds
to the temperature where the sequence specific order matters
the most. At the higher temperatures, the rate constants become
more similar to the “AGAG” results which is logical from the
thermodynamics perspective that says that potential energy
differences become less important at high temperatures. Un-
expectedly, however, we see that “AGGA” actually surpasses
“AGAG” at about 370 K. The turnover in the relative opening
rates of these DNA sequences suggests that temperature might
be an effective parameter to tune molecular switches based on
DNA. Temperature driven DNA switches might give an easier
reversible control to molecular operations than the pH driven
switches that have been suggested in the literature.40

Despite that mesoscopic DNA models are not yet suffi-
ciently accurate for very reliable quantitative predictions, the
qualitative trend that we predict based on relative denaturation
rates is an interesting phenomenon that deserves experimental
efforts to test it. However, measuring denaturation rates of
dsDNA is an experimental tour-de-force. The determination
of hairpin denaturation rates is technically somewhat easier
and, therefore, much more experimental data are available on
hairpins than on dsDNA. In Sec. V B, we will therefore investi-
gate the adapted PBD model to study hairpin denaturation and
compare it with available experimental results.

B. DNA hairpins

1. Loop size dependence

As mentioned above, τ in Eq. (3) will depend not only
mainly on the loop length but also slightly on the sequence as
steric hindrance and solvent interactions will be important as
well. Therefore, it is not straightforward to determine which
value τ should have. To investigate the dependence of our
model on the value of τ, we ran several simulations with
different τ values and compared this trend with experimental
results in which the denaturation rate constant was measured
for different hairpins having the same stem but different loop-
sizes. In Ref. 38, the authors measured room temperature
rate constants for a series of hairpins having the same stem
(GAGTCCTGGATCCTG) and loops with only T-bps but with
different lengths. Fig. 3 shows the experimental denaturation
rate constants as a function of the loop-length (bottom x-
scale) together with the PBD calculations using the same stem
as a function of τ (top x-scale). The experiments show a
huge variation in measured rate constants ranging from 10−8
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FIG. 2. Rate constant of chains “AGGA,” “AAGG,” and “GAAG” relative to chain “AGAG.” In the first row, all chains have a GC content of 33%, in second
row 50%, and third row 66%. The relative rate constant is along the z-axis, the temperature along the y-axis, and the chain length along the x-axis.

to 10−4 s−1 with an overall average tendency to increase as
a function of loop-length. However, given the experimental
errors, it is actually possible to fit a horizontal line striking
through almost all error bar intervals (especially if we ignore
the very last point having the largest error, there is only a
slight increasing trend). This agrees with the statement by
Bonnet et al.39 that while the closing rate very much depends
on the loop, the denaturation rate is much less affected by
it. If we compare these experimental results with theoretical
PBD calculations, we can observe the same trend; the rate
constants increase moderately as a function of τ. A more
elaborate approach has been developed in Ref. 22, where the
loop is described by a Kratky-Porod model. However, this
would make the calculations more expensive. Despite that we
model the effect of the loop in a rather crude, simplistic manner,
it seems sufficient to reproduce the main experimental feature
and its orders of magnitude more efficient.

The absolute differences between the two PBD param-
eter sets and between the PBD and the experiments are huge.
There are approximately seven orders of magnitude difference
between the PBD-CaGi and the PBD-Th model. The PBD-
Th results are again 8–4 orders of magnitude higher than the
experimental values. When we focus on the theoretical results,
we see that the PBD-CaGi parameters give a rate constant
which converges very fast as a function of τ. Already for
τ > 10 Å, there is no noticeable change in the rate constant
for increasing τ and their values correspond to that of the
dsDNA model. The PBD-Th model is more flexible which

results in a longer range of τ values in which the rate constant
continues to increase. Although difficult to see in the log-plot,
up to τ = 90 Å, the rate constant is still somewhat increasing.
However, at τ = 19 Å, the rate constant is already 70% of that
of the dsDNA value. In the forthcoming calculations, we will
stick to the values τ = 10 and 19 Å for the PBD-CaGi and
PBD-Th parameters, respectively. This choice is somewhat
arbitrary but apparently also not so influential on the results
of our calculations.

FIG. 3. Experimentally obtained rate constant (from Ref. 38) of hairpins with
a 15-bps stem of 60% GC content and a T-base loop, plotted as a function of
loop size. PBD model results are plotted as a function of τ.
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FIG. 4. Rate constant of hairpins with a stem of 50% GC-content and a loop
of T4, as a function of increasing stem length, from Ref. 38. PBD model
results shown together with experimental results.

2. Stem size dependence

Fig. 4 shows how the denaturation constant depends on the
stem length for a DNA chain containing 50% strong GC-bps.
The experimental results are taken from the same reference as
before, Ref. 38. Both theoretical calculations and experiments
show that the denaturation constant decreases exponentially
as a function of stem length. The straight lines in Fig. 4 are
exponential fits through the linear part in the log-plot. As
shown in Ref. 33, the rate constant below the critical melting
temperature can be expressed as

k ≈ ab(AT)NATb(GC)NGC, (4)

with NAT and NGC are the number of AT- and GC-bps, respec-
tively, and b(AT) and b(GC) are the parameters that depend
mainly on temperature. Hence, k ≈ abN where a and b are the
constants that depend mainly on temperature and GC-content.
For 50% GC-chain, the b value follows from the homogeneous
parameters as b(50% GC) = b(GC)b(AT) and was found to
be 0.778 for the PBD-CaGi parameters at 300 K.33 Our fit to
the PBD-CaGi results in Fig. 4 resulted in a = 109 s−1 and
b = 0.71.

This somewhat lower value of b is most likely due to the
slightly lower temperature (298 vs 300 K) rather than due to
the hairpin-effect or bp specific order. For the PBD-Th model,
the exponential fit gives the values a = 1.054 × 107 s−1 and
b = 0.38 while they are a = 5.50 × 107 s−1 and b = 0.095 for
the experimental results. Hence, beside that the PBD-CaGi
and PBD-Th models give an overall overestimation by orders
of magnitude for all sequences, also the exponential decay
as a function of chain length is too slow in comparison to
experiments.

3. GC-content dependence

Reference 23 gives experimentally measured rate con-
stants for two hairpins that differ with only one bp in the stem.
The stems were 10 bps long and their sequence is shown in
Table II together with their experimental and calculated rate

TABLE II. Rate constants (1/s) for two hairpins from Ref. 23. In the sec-
ond sequence, one A is changed to a G with respect to the first sequence.
PBD model simulations using the two parameter sets are compared with the
experimental values.

Hairpin stem PBD-CaGi PBD-Th Experimental value

GAAGAGGGAG 5.44 × 107 9.36 × 102 (1.16 ± 0.14) × 10−1

GAAGAGGGGG 4.14 × 107 3.47 × 102 (2.08 ± 0.52) × 10−2

Ratio 1.31 2.70 5.58 ± 1.55

constants. The loop was the same for both hairpins (GGGGA-
GAAAGAGAGAAAGAA). The theoretical rate constants are
again orders of magnitude higher than the experimental ones;
however, it is interesting to compare the ratio of the rate con-
stants of the two DNA polymers that differ only in the 9th
bp. These ratios are 1.31, 2.70, and 5.58 for the PBD-CaGi,
PBD-Th, and experimental rate constants, respectively. This
shows again that PBD-Th is closer to the experimental value,
but still a factor of 2 off regarding the relative change in rate
constant when an AT-bp is changed to a GC-bp. The PBD-
CaGi is another factor of 2 lower than PBD-Th. The factor
1.31 for b(AT)/b(GC) is close to the value 1.32 at 300 K that
was reported in Ref. 33 which agree well with the approximate
formula in Eq. (4) for temperatures below the melting tempera-
ture.33 Also, the experimental study of Ref. 38 reports on dena-
turation experiments using a series of hairpins having a loop of
four T-bases with a 20-bps stem with different GC-contents.
Fig. 5 shows the results together with the PBD results for the
same sequences. We refer to Ref. 38 for the specific bp order of
the sequences that were studied. Based on Eq. (4), we expect
the following proportionality relation k(%GC|20 bp) ∝ q%GC

with q = [b(GC)/b(AT)].19 By fitting linear lines in Fig. 5,
we obtain q = 0.052, 3.547 × 10−9, and 2.612 × 10−12 for the
PBD-CaGi, PBD-Th, and the experimental results, respec-
tively. Hence, based on this plot, the b(AT)/b(GC) ratios are
1.16, 2.65, and 3.79. These values are very close to the ratios
listed in Table II concerning the PBD results but also the

FIG. 5. Rate constant of hairpins with a 20-bps stem and a loop of T4 as a
function of increasing GC-content of stem. PBD model results shown together
with experimental results of Ref. 38.
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experimental values agree quite well given the experimental
uncertainty and the fact that these were obtained from different
experiments. Combining the values for b(AT)/b(GC) obtained
from Fig. 5 and the values of


b(AT)b(GC) obtained from

Fig. 4, we calculated b(GC) and b(AT), being 0.66 and 0.76
for PBD-CaGi, 0.23 and 0.63 for PBD-Th, and 0.05 and 0.185
for the experimental results. The PBD values a little bit lower
than the ones reported in Ref. 33 (b(GC),b(AT) = 0.68,0.90
and 0.24, 0.64 for PBD-CAGI and PBD-Th, respectively). It
is due to the fitting at shorter chain lengths and the somewhat
lower temperature compared to that work.

4. Temperature dependence

In Ref. 39, Bonnet et al. investigated the denaturation rate
constant as a function of temperature for two hairpins with
identical five base-pair stem GGGAA but with one having a 21-
bps loop of pure T bases and the other having a 21-bps loop of
pure A bases. The experiments were performed at temperatures
ranging from 285 to 310 K, and both the opening rate constant
and the closing rate constant were obtained. The authors report
on a slight increase in the opening rate when the loop is altered
from T21 to A21, with a factor of 1.4-1.7, while the closing
rate is much more affected, increasing with a factor of 2-12
when changing the loop from T21 to A21. Similar to what we
noticed regarding the loop length, changing the content of the
loop has a much stronger effect on the closing rate than on the
denaturation rate.

As discussed in Sec. IV and shown by relation (4) is the
chance that a DNA molecule denatures at low temperatures
similar in terms of scaling behavior to a system in which N
independent events need to occur within a short time interval;
each of such events can be associated to the opening of an AT
or GC bp. Naturally, this view is an oversimplification since it
ignores cooperative effects or the fact that denaturation might
occur in a more complex pathway in which bubbles grow, then
party collapse, but then regrow again. However, these effects
seem to have little influence on the overall qualitative scaling
behavior of the rate constant as a function of chain length, GC-
fraction, or temperature, at least for temperatures sufficiently
below the melting temperature. Now, since we can associate
b(AT) and b(GC) to the opening events of single AT- and GC-
bps, it makes sense to assume Arrhenius behavior so that

b(AT; T) ≈ cAT exp(−EAT/kBT),

b(GC; T) ≈ cGC exp(−EGC/kBT),
(5)

where cAT and cGC are the proportionality constants, and EGC
and EGC are the activation energies for the AT- and GC-bp
opening, respectively. By substitution in Eq. (4), we get

k = acNAT
AT cNGC

GC exp(−[NATEAT + NGCEGC]/kBT). (6)

This implies that the slope in Fig. 6 corresponds to −(2EAT
+ 3EGC)/kB. Now, if we assume that the proportionality con-
stants are approximately equal in Eq. (5), cAT ≈ cGC, we can
actually find all unknown parameters based the previously
derived values at T = 298 K for b(AT)/b(GC) which should
be equal to exp(−[EAT − EGC]/kB298 K).

FIG. 6. Plot of rate constant for hairpins with loop of T21 and A21 as a
function of the inverse temperature (from Ref. 39). PBD model results for
the PBD-CaGi and PBD-Th parameter sets are presented together with the
experimentally obtained results, linear fits in dashed lines.

Table III lists the different activation energies which were
obtained in this way.

The top and bottom values in each block show the resulting
values when we use, respectively, Table II or Fig. 5 for the ratio
b(AT)/b(GC) at 298 K. We see that the empirically derived
activation energies correspond very well with the values of
Dw and Ds, the energy barrier of the on-site Morse potentials.
Hence, this suggest that in order to accurately reproduce the
experimental trend, these values need to be increased till 0.29
eV for Ds and 0.25 for Dw. However, one must then take
into consideration how other properties of the PBD model are
affected by increasing these parameters such as denaturation
curves.

5. Discussion on possible model improvements

As for all the hairpins we have investigated until now,
both the PBD-CaGi parameter set and the PBD-Th parameter
set yield denaturation rate constants that are orders of magni-
tude higher than experiments. However, we need to consider
that there is an additional parameter, the friction coefficient
γ, which determines the results. In this work, we have set γ
= 50 ps−1 since it is a common value for studying biomolecules
in aqueous systems. However, it is not easy to decide whether
this value could be adopted for these types of mesoscopic

TABLE III. Values for EAT and EGC for the two parameter sets and the
experimental results. All energies are given in eV.

EGC EAT Ds Dw

PBD-CaGi
0.0531 0.0493

0.075 0.05
0.0527 0.0499

PBD-Th
0.1630 0.1377

0.1655 0.1255
0.1632 0.1375

Expt.
0.2870 0.2525
0.2910 0.2465
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systems. From Stokes law, γ = 6πηa, where a is the radius
of the particles and η the viscosity of the fluid. As the friction
coefficient increases with the size of the particles in the system,
one could argue that we need a significantly larger value for γ in
these types of mesoscopic systems where each bp is described
by a single coarse-grained one-dimensional particle. In high
friction limit, Kramers behavior applies κ ∝ 1/γ. Thus, the
rate constant scales inversely proportional to the value of γ.
Changing the friction parameter will not change the thermo-
dynamics of the system which implies, for instance, that all
theoretical denaturation curves remain the same. Since present
PBD models are mostly fitted to these denaturation curves and
give reasonably good results, changing the friction coefficient
might seem a quick fix to our problem. However, for our partic-
ular case, we would need to enlarge the friction coefficient
by several orders of magnitude to get rate constants that are
in the same range as the experiments. Such a large friction
coefficient is much larger than presently used in molecular
simulations and is probably unphysical even for these types
of mesoscopic low-dimensional models. In addition, since κ is
rather insensitive to chain-length, sequence, and temperature,33

this will not cure the incorrect scaling behavior as a function of
chain length, GC content, and temperature that we observed.
Still, it is a very interesting and useful question what value the
friction coefficient should have for these type of models.

Improving mesoscopic models for DNA is a continuous
challenge for researches in the field. A more complicated adap-
tation of the PBD model has been developed that includes
helicity.41 Ref. 42 extended the original PBD model to include
a sequence-dependent stacking term for describing AT and
GC rich regions of DNA molecules, and they derived stacking
force constants for each possible stacking interaction using
Monte Carlo (MC) simulations. Another adjustment is to add
a narrow bulge on top of the Morse potential around the inflec-
tion point where it starts to flatten43–45 or by replacing the
Morse to get a similar overall potential.46 If this additional
potential is relatively narrow, it has the same advantage as the
friction coefficient that it will not affect the thermodynamic
properties a lot whereas, depending on the height of the bulge,
dynamical rate constants can easily decrease by orders of
magnitude.

The inclusion of this bulge has as a result that the model
obtains a closing barrier which can be explained based on phys-
ical arguments. As a base moves out of stack, it gains entropy
and, in addition, it will form hydrogen bonds with the solvent.
In order for the base to move back into the stack, it needs
to break its hydrogen bonds with the solvent and reduce its
entropy again. Hence, there is a significant free energy barrier
to be overcome to let this happen. In Ref. 47, the existence of
this barrier was observed in free energy calculations deduced
from all-atom MD simulations of DNA, and it is believable that
including such a barrier in the Morse potential will result in a
more realistic PBD model, but likely not sufficient. The bulge
height of the potential introduced in Ref. 44 was 0.33 and 0.35
eV for AT and GC-bps, respectively, and 0.21 and 0.32 eV in
Ref. 45. Reference 46 only considers pure AT-chains, using
a potential with a bulge height of 0.31 eV. These values are
close or even higher than the values 0.29 and 0.25 eV which
we presented in Table III. Still, Ref. 46 found that the lifetime

often open bps was about 30 times too low and the lifetime
of closed bps was about three orders of magnitude too low
compared to experiments.48 The disagreement of several or-
ders of magnitude suggests that including the reclosing barrier
in the PBD model is also not sufficient to describe dynamics
of DNA correctly. Adding a bulge to the on-site potential also
implies that base pairs that open up tend to stay open. This
enhances the denaturation rate. In future work, we plan to
investigate whether modifications of the Morse potential could
lead to more reliable results.

VI. CONCLUSION

By exploring the nature of dsDNA with the PBD model
as a function of chain length, sequence order and temperature,
we found, contrary to Ref. 33, that an evenly distribution of
the bps does not always have the highest denaturation rate.
Especially for large sequences and at high temperatures, the
dynamics change, and chains having large blocks of AT bps
at the ends of the chain show favorable opening rates. We
also studied a small adaptation of the PBD model in order to
study denaturation of hairpins of which experimental data are
available. The two parameter sets by Campa and Giansanti7,8

and by Theodorakopoulos9 both show denaturation rates that
are orders of magnitude higher than experimental values. We
also examined the denaturation rate constant as a function of
loop-length, stem-length, GC-content, and temperature in the
temperature range below the critical melting temperature. The
PBD models give qualitatively the correct behavior regard-
ing denaturation rates being relatively insensitive to the loop-
length, exponentially decreasing as a function of stem-length,
GC-content, and inverse temperature.

Our results suggests that in order for the PBD model to
describe dynamics correctly, fundamental changes have to be
made to the model. Further and more extensive comparison to
experimental data is needed to create improved mesoscopic
DNA models. This implies that besides theoretical devel-
opment, also experimental progress regarding rate constant
measurements is highly desired. The present experimental
accuracy is presently insufficient to distinguish more subtle
effect like sequence order. Our findings significate the impor-
tance of investigating dynamical quantities like the rate con-
stant instead of only using equilibrium data for fitting model
parameters on the way towards a new approach for developing
more accurate mesoscopic models for DNA. The development
of such a model is a prerequisite for the modeling of more
complex processes like replication and transcription.
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