
Partially distributed optimization for mobile sensor path-planning

Lars Imsland1

Abstract— Mobile sensor platforms may provide low-cost,
versatile means for obtaining high resolution information from
spatially distributed processes. The aim of this paper is to
efficiently calculate receding horizon-type motion plans that
optimize information retrival by mobile sensors from dis-
tributed processes. Formulating the problem in a rather general
framework as minimization of entropy, gives a huge, non-
convex, in general intractable optimization problem for path
planning. Based on this formulation, using approximation and
decomposition strategies, we propose a new, more computation-
ally tractable framework. In the case of multiple mobile sensors,
the framework allows a partially distributed setup where each
mobile sensor optimize its path using an economic-type Model
Predictive Controller, where the ”economic” (in the sense of
information) objective is constructed based on simulation of
covariances for the distributed process, performed by a central
entity.

I. INTRODUCTION
Using mobile sensor platforms such as unmanned aerial

vehicles for information retrieval has been studied widely
over the last decades, and a plethora of applications and
approaches exist. In this paper, we will be interested in using
mobile sensors to monitor distributed processes that involve
transport and possibly generation of substance, typically gov-
erned by advection-diffusion-reaction (ADR) mechanisms.
Examples of applications of such technology may range from
metocean purposes to transport of physical quantities at or
under sea, or in the air (monitoring of transport of sea ice,
oil spill at sea, gaseous plumes in air, etc.), e.g. [1]–[5].

We will assume that the process of interest is monitored
using a state estimation scheme, perhaps updated using a
mixture of stationary measurements and measurements from
mobile sensors. From this state estimation scheme, typically
of Kalman-filter type, we assume there is an accompanying
state uncertainty measure in the form of a covariance matrix.
We will use this measure of uncertainty distribution, together
with a linear(-ized) prediction model for the process, to plan
sensor paths that maximize future information retrieval in
the form of minimizing a prediction of the future covariance
matrix (entropy). As such, our starting point is similar to
e.g. [1], [6]–[8]. In an information-theoretic setting, this
can be interpreted as minimization of mutual information
between sensor measurements and predicted states of inter-
est [9], [10].

The problem formulation is related to approaches mini-
mizing the Fischer Information Matrix (FIM) for parameter
estimation in distributed systems, both for placement of
stationary sensors and mobile sensors, see e.g. [11], [12] and
references therein. The approach in [13] estimates diffusion

*In part sponsored by the Research Council of Norway through the
Centres of Excellence funding scheme grant number 223254 - AMOS.

1Lars Imsland is with the Department of Engineering Cybernetics,
Norwegian University of Science and Technology, Trondheim, Norway.
lars.imsland@itk.ntnu.no

in advection-diffusion field by a distributed online passive
identifier approach, where sensor paths are decided by a
concensus algorithm based on performance of the distributed
filters.

On other approaches in similar problem settings, we men-
tion [4], [5] that also uses a state-estimator framework based
on advection-diffusion equations, to estimate concentration
from a moving gaseous source. The motion of the single
aerial sensor is given by a Lyapunov-based control law
improving the performance of a Luenberger state estimator.

We also mention [3] that avoids the complexity of prop-
agating the covariance matrix dynamics (the Riccati equa-
tions) in a receding horizon framework, by instead propa-
gating an uncertainty measure using the advection-diffusion
process directly. Motion planning is done by formulating a
receding horizon optimization problem for possibly multiple
sensors.

After the problem definition in Section II, we propose a
reformulation and approximation in Section III, which, inte-
grated with model predictive motion control in Section IV,
allows the decomposition strategy in Section V. In Section VI
we propose a partially distributed algorithm for multiple
sensors, before we illustrate the algorithm in a simple ADR
example using two sensors, in Section VII.

II. PROBLEM FORMULATION
We will use mobile sensors to obtain information about

spatially distributed processes, in a state-estimation frame-
work. The typical example is a process governed by conser-
vation laws of advection-diffusion-reaction (ADR)-type,

∂c

∂t
+∇Tf = s, (1)

where, generally, the flux vector f consists of advection and
diffusion,

f = uc+ d∇c.
Here, c is the conserved variable to be estimated, s is a source
(reaction) term, u is the velocity field (assumed known) and
d is the diffusion coefficient.

We assume that the process has a state estimator attached,
with an uncertainty measure in the form of a covariance
matrix for the state estimate. Typically this will be a form of
Kalman filter. The present value of the covariance matrix will
be an input to a receding horizon path planning optimization.

We assume that the process to be estimated is linear (or
linearized for planning purposes). Furthermore, we assume
the partial differential equations are discretized to a finite
spatial dimension and described by a linear ODE,

ξ̇(t) = Fξ(t) +Gν(t) + w(t) (2)

where ξ ∈ Rnξ is the discretized state variable (c in the
case above), F and G are (large) matrices from spatial

discretization of (1), and ν(t) is a (known) vector of time-
varying boundary conditions and sources. To conform with
Kalman filter setups, we have added Gaussian white process
noise, w(t) ∼ N (0, Q).

The mobile sensor will navigate the field and take mea-
surements

z(t) = H(x(t))ξ(t) + v(t) (3)

where H(x(t)) is the time-varying measurement matrix
induced by the placement of the sensor(s) at time t, x(t), and
v(t) is Gaussian white measurement noise, v(t) ∼ N (0, R).

Similarly to e.g. [1], [14], our goal will be to con-
struct paths that maximize the information we get of our
process (2), or alternatively, minimize the uncertainty, or
entropy. In an information-theoretic framework [1], the un-
certainty reduction by one random variable (e.g. the state
in (2)) by another random variable (e.g. the measurement (3))
can be quantified by the mutual information between them.
In our case, the random variables of interest will be the
state at some future time T2, ξ(T2), and the information
gathered by measurements from now until time T1, ZT1

=
{z(t), t ∈ [0, T1)}. Herein we will consider the case where
T1 = T2 = T , unlike [1] which considers T2 > T1.

Under the assumptions here (linear, Gaussian), the mutual
information is given as

I(ξ(T),ZT) =
1

2
log detP (T)− 1

2
log det P̄ (T) (4)

where P (T) and P̄ (T) are endpoint solutions of the Riccati
equations

Ṗ (t) = FP (t) + P (t)FT +Q

− P (t)HT(x(t))R−1H(x(t))P (t), (5a)
˙̄P (t) = FP̄ (t) + P̄ (t)FT +Q. (5b)

We will approach this as an optimal control problem, that
is, we want to optimize over sensor paths to maximize the
mutual information. As the sensor paths will not affect the
second term in (4), this term can be removed and we can
somewhat informally state our optimal control problem as1

min
sensor paths

1

2
log detP (T)

subject to (5a)
(6)

where the sensor path x influences the objective through
the measurement matrix H(x(t)). The problem should be
augmented with dynamic sensor motion models and mea-
surement models, which will be addressed later. We will
employ a direct transcription (first-discretize-then-optimize)
approach to solving this optimal control problem [15], that
is, the ODEs involved will be discretized such that the
resulting (large) optimization problem can be formulated in
a mathematical programming framework.

1This is the “filter form” considered in [1]. If we consider information
reward in the far future of the sensor path in near future, according to [1]
using a smoother form instead is advantageous.

III. AN APPROXIMATION AND REFORMULATION

The problem (6) is nonlinear both in objective and con-
straints. Coupled with the huge dimension of the optimiza-
tion variables (mainly the discretized P (·)), this makes this
formulation rather untractable. We will introduce an approx-
imation to remove the nonlinearity in the objective, and we
will use an equivalent formulation of the Riccati dynamics
to remove some of the nonlinearities in the constraints. We
start with the latter, which is based on a classical theorem,
found e.g. in [16], [17]:

Theorem 1 Consider the matrix differential equations

Ṗ (t) = F (t)P (t) + P (t)FT(t) +Q(t)

− P (t)HT(t)R−1(t)H(t)P (t),

P (t0) = V0U
−1
0 (7)

and(
U̇(t)

V̇ (t)

)
=

(
−FT(t) HT(t)R−1(t)H(t)
Q(t) F (t)

)(
U(t)
V (t)

)
,(

U(t0)
V (t0)

)
=

(
U0

V0

)
(8)

where P (t), F (t), Q(t), U(t), V (t) are all in Rn×n and
H(t) and R(t) are real matrices of appropriate dimensions.
If the solution of (7) exists on a time interval, then the solu-
tion of (8) exists on the same interval with U(t) nonsingular
and

P (t) = V (t)U−1(t). (9)

Conversely, if the solution of (8) exists on some interval with
U(t) nonsingular, then the solution of (7) exist on the same
interval, and is given by (9).

Replacing (5a) with (8) in (6), the dynamic constraint is no
longer nonlinear in the covariance matrix, but the objective
is still nonlinear,

log detP (T) = log detV (T)U−1(T)

= log detV (T) detU−1(T)

= log detV (T) + log detU−1(T)

= tr log V (T) + tr logU−1(T)

= tr log V (T)− tr logU(T) (10)

where we have used detAB = detA detB for square
matrices, log ab = log a + log b, log detA = tr logA for
invertible matrices [18], and logA−1 = − logA.

For a quadratic matrix Γ with λi(Γ) ≤ 1, we have that

log Γ = −(I − Γ)− 1

2
(I − Γ)2 − 1

3
(I − Γ)3 − (11)

We use the first term2 in this series together with (10) for
an approximation, to obtain

log detP (T) ≈ trV (T)− trU(T) (12)

which is linear in the elements of V (T) and U(T).

2We should divide by the largest eigenvalue to fulfill the requirement that
the spectral radius should be less than 1, but since we use only the first,
linear, term, this is redundant: log detαΓ = n logα+ log det Γ.

Remark 1 Note that (12) in general is a very coarse ap-
proximation (unless P (T) is close to the identity matrix),
not even of first order. However, we can also view this
approximation as an alternative measure on the size of
the covariance matrix. The function log detP is monotone
increasing with respect to the positive semidefinite cone, as
is trP , and minimizing trV − trU gives a small V and
large U , which gives a small trP = trV U−1. Note also
that the tr function (modulo a constant) is an upper bound
of the log det function,

log det Γ ≤ tr(Γ− I),

where the upper bound is tight in the sense that it holds with
equality for Γ = I .

Remark 2 An alternative approximation of first order could
be based on
δ log detP = δ log detV U−1 = trV −1δV − trU−1δU

but as this would require inversion of the large matrices V
and U , we choose to not pursue this.

Let us now discretize the dynamic Riccati equation, using
some linear discretization scheme (explicit or implicit), giv-
ing Vk, Uk, k = 1, . . . , N , such that VN (UN) corresponds
to V (T) (U(T)). Assume (for simplicity) that the mobile
sensor dynamics is discretized on the same grid, into xk, k =
1, . . . , N . We proceed to stack the matrices Uk and Vk into
a large matrix W = (UT

0 , V
T
0 , U

T
1 , V

T
1 , . . . , U

T
N , V

T
N)T, and

similarly stack xk into x (see next section). The optimization
problem (6) can then compactly be written

min
W,x

trCTW s.t. Φ(x)W = B (13)

where Φ is determined by the discretization scheme, C =
(0, 0, . . . , 0,−I, I)

T and B is a function of the initial covari-
ance. Note that Φ(x)W = B is nothing else than a compact
way to write the discretized Riccati simulation, and that for
fixed x, this is linear in W . In the next section, we will
augment this problem with mobile sensor dynamics to get
implementable sensor paths.

IV. MOBILE SENSOR MOTION PLANNING
We will assume linear discrete-time mobile sensor dynam-

ics, on the form
xk+1 = Axk +Buk, (14)

where xk ∈ Rn and uk = Rm. The motion is subject
to linear constraints (e.g. feasible region for the sensor,
actuation constraints, etc.) summarized as

Cxk +Duk ≤ d. (15)

We stack the path variables in x = (x0, x1, . . . , xN)T

and all variables related to the sensor motion in z =
(x0, u0, x1, u1, . . . , uN−1, xN)T, where we note that x is a
subset of z. A MPC-type control problem for one sensor
(not yet taking uncertainty/entropy reduction into account)
can then be stated as

min
z

N−1∑
k=0

xTk+1QMPCxk+1 + uTkRMPCuk

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1

Cxk+1 +Duk ≤ d, k = 0, . . . , N − 1

which can compactly be formulated as

min
z

zTSz

s.t. Aeqz = beq

Aineqz ≤ bineq

We assume QMPC positive semi-definite (typically the zero-
matrix) and RMPC positive definite, which makes S block-
diagonal positive semi-definite.

The overall motion planning problem (for one sensor) is
then formulated as joint minimization of uncertainty and
control performance, subject to sensor dynamics:

min
W,z

trCTW + zTSz (16a)

s.t. Φ(x)W = B (16b)
Aeqz = beq (16c)
Aineqz ≤ bineq (16d)

The magnitude of S trades off uncertainty minimization vs
control performance. This problem is nonlinear and noncon-
vex (due to (16b)), and huge (due to the dimension of W), but
highly structured. We will exploit this structure to construct
efficient solvers for the problem using decomposition.

V. A PRIMAL DECOMPOSITION STRATEGY

If we could fix the variable x, the optimization prob-
lem (16) (both objective and constraints) would become
separable, that is, it could be solved by solving two different
problems. Moreover, it separates into convex problems that
in principle are tractable to solve, even for large dimensions.
For such problems, a common decomposition strategy (see
e.g. [19] for an introduction) amounts to iteratively fixing
the “complicating variable” (x in this case) and solving
the two slave problems for W and the remaining parts of
z, and thereafter use gradient information from the slave
problems to update the complicating variable in a master
problem. However, straightforward decomposition is not a
good avenue for our problem, due to the somewhat large
dimension of the “complicating variable” and since the
MPC-type sub-problem is likely to become infeasible during
iterates. Therefore, we choose to merge the MPC slave
problem with the master problem using a gradient update
algorithm for z.

The solution to (13) for fixed x is the solution of a huge
linear system, since Φ(x) is quadratic and invertible (if a
suitable integration scheme for the Riccati dynamics is used).
We can in theory write this solution explicitly as a function
of x as

π(x) = trCTΦ−1(x)B, (17)

noting that in practice we do not want to invert the huge
matrix Φ(x) to obtain an explicit form of this function.

If we had this function explicitly available, we could
write (16) as

min
z

π(x) + zTSz

s.t. Aeqz = beq

Aineqz ≤ bineq

(18)

which is a much smaller optimization problem. Our de-
composition strategy will be to iteratively find the gradient
of π(x) and use this to solve a linearization of (18). The
procedure for obtaining the gradient of the π(x)-problem
is given by Lemma 1. Since we are essentially finding the
gradient of a scalar function with respect to many parameters,
it is intuitive that the adjoint gradient method (see e.g. [20])
should be the most efficient method:

Lemma 1 The gradient of π(x) can be calculated as
dπ(x)

dxi
= − tr ΛT dΦ(x)

dxi
W (19)

where Λ and W are found by solving

Φ(x)W = B and ΦT(x)Λ = C. (20)

Proof: Rewrite (17) as

π(x) = trCTW where Φ(x)W = B,

and by direct differentiation, we find that the (“forward”)
derivative with respect to element i of x is

dπ(x)

dxi
= trCTΠi where Φ(x)Πi = −dΦ(x)

dxi
W.

where Πi = dW
dxi

. Now, use the second equation to eliminate
Πi in the first, to obtain

dπ(x)

dxi
= − trCTΦ−1(x)

dΦ(x)

dxi
W,

and use ΦT(x)Λ = C to replace CTΦ−1(x) with ΛT.
Note that by using the adjoint formulation we avoid having

to calculate the Πi matrices of the forward derivative, each
the solution of a huge linear system (namely, a covariance
simulation).

The interpretation of this result is that to calculate the
gradient of the (scalar) objective, we have to perform two
covariance simulations. One simulation forward in time,
Φ(x)W = B, and as inspection of ΦT(x)Λ = C reveals, one
simulation backwards in time, initialized at ΛN = (−I, I)

T.
Noteworthy, due to the linear structure of the Riccati dy-
namics and objective of (13), the two simulations are (for
given x) independent of each other, and can be performed
in parallel.

Remark 3 The problem structure implies that (19) can be
further simplified. If xi corresponds to an element in xk,
and we split Λ = (ΛT

0 ,Λ
T
1 , . . . ,Λ

T
N)T corresponding to

the backward (adjoint) simulation, then, if explicit Euler
integration is used for simulating the Riccati dynamics,

dπ(x)

dxi
= − tr ΛT

k+1

(
ΨiVk

0

)
(21)

where Ψi = h d
dxi

HT(xk)R−1H(xk), and h is the inte-
gration timestep used in the Euler algorithm. Other linear
(explicit or implicit) integration schemes will give similar
simplifications.

Having a procedure for finding the gradient of π(x), we
can outline an algorithm to solve (18) based on sequential
linearization, see Algorithm 1. This is similar to the use
of Sequential Quadratic Programming (SQP) for nonlinear
programming. However, differently from SQP, we only use

while Not converged do
1. Solve (20): Φ(x)W = B and ΦT(x)Λ = C.
2. Use (19) to find f = dπ(xi)

dx .
3. Solve QP

min
∆z

fT(xi + ∆x) + (zi + ∆z)TS(zi + ∆z)

s.t. Aeq(zi + ∆z) = beq

Aineq(zi + ∆z) ≤ bineq

4. Use a linesearch method to update

zi+1 = zi + α∆z

5. i = i+ 1
end

Algorithm 1: Algorithm for SQP-type solution

first-order information about π(x), so local convergence
properties will be inherited from first-order methods for
unconstrained optimization (that is, linear). This could be
improved by maintaining an approximation to the Hessian
of π(x) using some Quasi-Newton method [21], but this is
not investigated further here.

To ensure convergence far from the optimal solution, some
type of line-search (as indicated in Algorithm 1) or trust-
region method should be used to ensure sufficient decrease
in each iteration. A trust-region constraint is easily added
to (18), and can be monitored and updated as in traditional
trust-region methods [21].

However, we will not use Algoritm 1 directly at each time-
step. Instead we will, to limit computations, take one iteration
per time-step. Moreover, we will extend the framework to be
able to use several mobile sensors.

VI. A PARTIALLY DISTRIBUTED FRAMEWORK
FOR MULTIPLE SENSORS

Extending the problem above to several sensors in a
centralized setup is straightforward: Add more rows to the
measurement matrix H(x), typically one row for each sensor,
and include dynamics of all mobile sensors in the MPC-
type problem. Note that the Riccati dynamics does not
become larger, meaning the main complexity of the gradient
computation (Lemma 1) remains the same.

However, the framework lends itself easily to a partially
distributed setup where each sensor can solve its own MPC
problem, and the centralized computation consist of simulat-
ing the Riccati dynamics forward and backward in time, and
use of Lemma 1 to calculate gradients for each sensor.

In doing this, we will, as mentioned above, take one
SQP-type iteration per time-step. This can be interpreted as
a simplified version of a “real-time iteration scheme”, see
e.g. [22]. We will also dispense with the use of linesearch
or trust region-methods, basically assuming that the sensor
motion constraints are restrictive enough to act as a type
of trust-region constraint. If this is not the case, it is rather
straightforward to augment the algorithm with a “real” trust
region which can be adjusted online based on the objective
function decrease in each time-step. Note that no additional
covariance simulations are necessary for this, as the objective
function is computed while computing the gradient of π(x).

In the following, assume that x(tk) = xk contains the
(planned) sensor trajectories for all sensors at time tk, and
that the trajectory for sensor j is xjk (and similarly for
zk). We also assume for simplicity that all the sensors
have identical dynamics and constraints. Our algorithm for
multiple sensors is then summarized in Algorithm 2. Step
2 is the central computation, mainly consisting of forward
and backward covariance simulation, while the distributed
optimizations consist of the MPC problems in step 3.

for each timestep tk do
1. Obtain a covariance P (tk) for (2), for instance

from a state estimator. Find U0 and V0 such that
P (tk) = V0U

−1
0 .

2. Solve Φ(xk−1)W = B and ΦT(xk−1)Λ = C.
3. for j = 1 to nsensors do

3a. Use (19) to find f j = dπ(x)
dxj .

3b. Measure sensor j position, xjk, and solve

min
zj

(f j)Txj + (zj)TSzj

s.t. Aeqz
j = beq

Aineqz
j ≤ bineq

3c. Implement first part of the trajectory for
sensor j. Update xk.

end
end

Algorithm 2: Partially distributed optimization for path-
planning for nsensors mobile sensors

If boundedness of trajectories and recursive feasibility of
the distributed MPC-type algorithms is of concern (e.g. due
to a tight admissible region for sensor movement), it is
rather straightforward to add terminal constraints to the MPC
problem (15) that guarantee that an infinite horizon solution
without constraint violations can be constructed.

VII. SIMULATION EXAMPLE
As an illustration, consider an advection-diffusion sys-

tem (1) in one spatial dimension, with drift velocity u = 0.05
and diffusion coefficient d = 0.0001. We discretize over the
spatial domain [0, 1] using the explicit finite volume method
in [23] using nξ = 100 volumes, to obtain a system on the
form (2).

We will use two mobile sensors, both with dynamics

ẋ = u, −1 ≤ u ≤ 1,

discretized using explicit Euler with time-step h = 0.05.
Each sensor is controlled by a distributed MPC controller as
in Section VI with Q = 0 and R = 0.1. We use a prediction
horizon of 1, discretized into 20 elements.

To obtain a continuous measurement function from the
spatially discretized measurements, we use spatial interpola-
tion based on sums of Gaussian functions,

y(x) = α(x)

nξ∑
i=1

exp

(
(x− xi)2

s2

)
ξi =: H(x)ξ

where α(x) is a normalization factor, and s is a “variance”
parameter deciding the size of the sensor’s “field-of-view”

(FOV). In the optimizations herein, we used s = 0.2. Similar
measurement functions are used in e.g. [1], [3].

We implement a discrete-time Kalman filter to provide
the sensor path-planning with initial covariance uncertainty.
This Kalman filter is updated using measurements from the
mobile sensors. The covariance matrix is initialized at time
t = 0 with a sinusoid plus bias on the diagonal, and expo-
nentially decaying elements off-diagonal. The Kalman filter
covariance evolution without mobile sensor measurements is
shown in Figure 1.

The Kalman filter covariance matrix when using the two
mobile sensor measurements is illustrated in Figure 2, with
the sensor trajectories resulting from path planning using
Algorithm 2 superimposed.

The distributed MPC optimizations at each time-step (Step
3b. in Algorithm 2) are solved in ca. 10 ms on a recent laptop
computer, using a standard QP solver. The main work per
time step is the central forward and backward simulation of
the Riccati dynamics (Step 2 in Algorithm 2), which each
takes (for nξ = 100) about 100 ms.

As a measure of complexity savings, using a state-of-the-
art nonlinear programming solver to solve the open loop
problem (6) subject to one sensor3, optimizations take about
4 minutes for nξ ≈ 20, and this increase very quickly for
increasing nξ. It should be noted that using such coarse
spatial discretizations, in addition to giving discretization
errors of the advection-diffusion problem, is problematic for
being able to use measurement functions that give reasonable
FOV-approximations.

VIII. CONCLUDING REMARKS

We have put forward a partially distributed approach to
path planning for information retrieval for distributed sys-
tems. The main complexity is the central computations con-
sisting of simulating Riccati dynamics forward and backward
in time, while the distributed optimization that compute the
actual sensor paths, consists of small MPC-type optimization
problems. The information from the central entity to the
mobile sensors are gradients computed using an adjoint-
based method. In this respect, the approach has similarities
with adjoint PDE-constrained optimization [26, e.g.].

The approach could easily be extended to account for
nonlinear (nonholonomic) sensor dynamics, resulting in Non-
linear Model Predictive Controllers for each sensor. It is also
easy to imagine variants of the approach, for instance doing
several iterations at each time-step, or updating the Riccati
simulations after each sensor has completed its optimization.

The approximation (12) for the objective gives reasonable
solutions for the simple case studied herein, but the general-
ity of this is an issue for further investigation. In this regard,
it is relevant to note that the alternative approximation/bound
log detP ≈ trP , along with using the standard Riccati

3This was done using the AD-framework CasADi [24], and the solver
IPOPT [25]. To implement the log det-function, we used Cholesky de-
compositions, which gives complex gradient computations for large nξ .
Using the symbolic derivative (not presently implemented in CasADi for
the log det-function), would give similar complexity issues, as it involves
the inverse of the covariance matrix. It would likely be faster for large nξ
to use finite difference approximations for the gradient, but this has its own
issues.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

5

10

15

t

x

V
ar
ia
n
ce

Fig. 1. Time evolution of the diagonal elements of the Kalman filter
covariance matrix, without measurements. The sharp gradient on the left
corresponds to advection of small uncertainty “boundary conditions” into
the domain.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

5

10

15

t

x

V
ar
ia
n
ce

Fig. 2. Time evolution of the diagonal elements of the Kalman filter
covariance matrix. The two mobile sensor trajectories are plotted just above
the corresponding covariance matrix value.

equation (7) instead of (8), will benefit from using adjoint
gradients in a similar way to that presented here. However,
the resulting simulations forward and backward in time will
be nonlinear and no longer independent in this case.

REFERENCES

[1] H.-L. Choi and J. P. How, “Continuous trajectory planning
of mobile sensors for informative forecasting,” Automatica,
vol. 46, no. 8, pp. 1266–1275, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109810002104

[2] Y. Wang, R. Tan, G. Xing, J. Wang, and X. Tan, “Profiling aquatic
diffusion process using robotic sensor networks,” IEEE Transactions
on Mobile Computing, vol. 13, no. 4, pp. 880–893, April 2014.

[3] J. Haugen and L. Imsland, “Monitoring an advection-diffusion process
using aerial mobile sensors,” Unmanned Systems, vol. 3, no. 3, pp.
221–238, 2015.

[4] T. Egorova, N. A. Gatsonis, and M. A. Demetriou, “Estimation
of gaseous plume concentration with an unmanned aerial vehicle,”
Journal of guidance, control, and dynamics, vol. 39, no. 6, pp. 1314–
1324, 2016.

[5] M. A. Demetriou, N. A. Gatsonis, and J. R. Court, “Coupled controls-
computational fluids approach for the estimation of the concentration
from a moving gaseous source in a 2-d domain with a lyapunov-
guided sensing aerial vehicle,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 3, pp. 853–867, May 2014.

[6] I. Hussein, “Kalman filtering with optimal sensor motion planning,”
in Proc. Amer. Contr. Conf., Seattle, WA, 2008, pp. 3548–3553.

[7] J. A. Burns, E. M. Cliff, and C. Rautenberg, “A distributed parameter
control approach to optimal filtering and smoothing with mobile
sensor networks,” in Proceedings of 17th Mediterranean Conference
on Control and Automation, Thessaloniki, Greece, 2009.

[8] J. A. Burns, E. M. Cliff, C. Rautenberg, and L. Zietsman, “Optimal
sensor design for estimation and optimization of PDE systems,” in
Proc. Amer. Contr. Conf., Baltimore, MD, USA, 2010.

[9] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte, “Information-
theoretic coordinated control of multiple sensor platforms,” in IEEE
international conference on robotics and automation, Taipei, Taiwan,
2003, pp. 1521–1526.

[10] G. M. Hoffmann and C. J. Tomlin, “Mobile sensor network control
using mutual information methods and particle filters,” IEEE Trans-
actions on Automatic Control, vol. 55, no. 1, pp. 32–47, Jan 2010.

[11] D. Uciński and M. Patan, “Sensor network design for the estimation
of spatially distributed processes,” Int. J. Appl. Math. Comput. Sci.,,
vol. 20, no. 3, pp. 459–481, 2010.

[12] C. Tricaud and Y. Chen, Optimal Mobile Sensing and Actuation
Policies in Cyber-physical Systems. Springer London, 2012.

[13] J. You and W. Wu, “Online passive identifier for spatially distributed
systems using mobile sensor networks,” IEEE Transactions on Control
Systems Technology, vol. PP, no. 99, pp. 1–9, 2017.

[14] B. Grocholsky, “Information-theoretic control of multiple sensor plat-
forms,” Ph.D. dissertation, University of Sydney, 2002.

[15] J. T. Betts, Practical methods for optimal control using nonlinear
programming, ser. Advances in design and control. Philadelphia,
PA: Society for Industrial and Applied Mathematics, 2010.

[16] W. T. Reid, Riccati differential equations, ser. Mathematics in Science
and Engineering. Burlington, MA: Elsevier, 1972.

[17] C. H. Choi and A. J. Laub, “Efficient matrix-valued algorithms for
solving stiff riccati differential equations,” IEEE Transactions on
Automatic Control, vol. 35, no. 7, pp. 770–776, July 1990.

[18] C. S. Withers and S. Nadarajah, “log det a = tr log a,” Interna-
tional Journal of Mathematical Education in Science and Technology,
vol. 41, no. 8, pp. 1121–1124, 2010.

[19] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decom-
position methods,” 2008, notes for EE364B, Stanford University.

[20] Y. Cao, S. Li, L. Petzold, and R. Serban, “Adjoint sensitivity analysis
for differential-algebraic equations: The adjoint DAE system and its
numerical solution,” SIAM J. Sci. Comput, vol. 24, no. 3, pp. 1076–
1089, 2003.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York: Springer, 2006.

[22] M. Diehl, H. Bock, J. P. Schlder, R. Findeisen,
Z. Nagy, and F. Allgwer, “Real-time optimization and
nonlinear model predictive control of processes governed by
differential-algebraic equations,” Journal of Process Control,
vol. 12, no. 4, pp. 577–585, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0959152401000233

[23] J. ten Thije Boonkkamp and M. Anthonissen, “The finite volume-
complete flux scheme for advection-diffusion-reaction equations,”
Journal of Scientific Computing, vol. 46, no. 1, pp. 47–70, 2011.

[24] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” PhD thesis, Arenberg Doctoral School, KU Leuven,
Department of Electrical Engineering (ESAT/SCD) and Optimization
in Engineering Center, Kasteelpark Arenberg 10, 3001-Heverlee, Bel-
gium, October 2013.

[25] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–
57, 2006.

[26] M. Gunzburger, Perspectives in Flow Control and Optimization, ser.
Advances in design and control. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 2003.

