
Side Channels in Deduplication: Trade-offs between Leakage
and Efficiency

Frederik Armknecht
University of Mannheim, Mannheim, Germany

armknecht@uni-mannheim.de

Colin Boyd, Gareth T. Davies and Kristian Gjøsteen
NTNU, Norwegian University of Science and Technology, Trondheim, Norway

{colin.boyd@item.,gareth.davies@,kristian.gjosteen@math.}ntnu.no

Mohsen Toorani
University of Bergen, Bergen, Norway

mohsen.toorani@uib.no

June 27, 2017

Abstract
Deduplication removes redundant copies of files or data blocks stored on the cloud. Client-

side deduplication, where the client only uploads the file upon the request of the server, provides
major storage and bandwidth savings, but introduces a number of security concerns. Harnik et
al. (2010) showed how cross-user client-side deduplication inherently gives the adversary access
to a (noisy) side-channel that may divulge whether or not a particular file is stored on the server,
leading to leakage of user information. We provide formal definitions for deduplication strategies
and their security in terms of adversarial advantage. Using these definitions, we provide a criterion
for designing good strategies and then prove a bound characterizing the necessary trade-off between
security and efficiency.

1 Introduction

Deduplication is a process used by many cloud storage providers and services to remove redundant
copies of data stored in the cloud. It has been shown [13, 15] to greatly reduce storage requirements
in practice because users, both individuals and corporations, often store identical or similar content.
Deduplication can take place either at the server-side or at the client-side. In server-side deduplication,
the server checks whether a file uploaded by a client has already been stored. If so, the server does
not store it again but instead records the ownership by the client and allows the client to access the
shared file using a suitable index. Server-side deduplication achieves the aim of reducing storage but
still requires the client to upload each file it wishes to store. In client-side deduplication, a user wishing
to upload a file first checks whether the file is already stored in the cloud, for example by sending a
hash of the file to the server which checks against its list of stored file hashes. If the file is already
stored then the file is not sent by the client, but the server allows the client access to the shared file as
before. Thus client-side deduplication greatly reduces the bandwidth requirements in cloud storage in
addition to reducing storage requirements. Since communication costs can be high in comparison with
storage costs, client-side deduplication is generally preferable to server-side deduplication on economic
grounds. Deduplication can take place either with respect to files or with respect to blocks, but we will
not be concerned with this difference since many of the attacks and countermeasures considered in this
paper can be applied to either approach.

1

Secure Deduplication Despite the great saving in storage and bandwidth, deduplication causes at
least two major security and privacy problems, and this has led to extensive recent work on secure
deduplication [15]. The first problem is that deduplication cannot take place if semantically secure end-
to-end encryption is deployed. Under ciphertext indistinguishability the cloud service provider (CSP),
which does not possess the decryption key, would be unable to determine if two ciphertexts correspond
to the same plaintext. Several alternative forms of encryption have been proposed in order to address
this problem [1, 4, 6, 9, 10, 19], deriving the encryption key from the file itself in various ways. These
works often make strong assumptions regarding file unpredictability or key distribution. The second
problem is that client-side deduplication can work as a side channel leaking information under different
attacks [8]. This paper focuses on these side-channel attacks.

Harnik et al. [8] identified three attacks due to side-channels in client-side deduplication. The attacks
apply to the cross-user scenario where different users who upload the same file will have their data
deduplicated. The basic idea of all the attacks is that one user can obtain information about another user’s
file by receiving a signal revealing whether or not the file was previously uploaded. In one example,
sometimes called the salary attack, the adversary attempts to learn private data of Alice (her salary)
in her employment contract which she has stored with the CSP. The adversary inserts guesses on a
template file and uploads it to the CSP where the corresponding file of Alice resides. Occurrence of the
deduplication signal will then allow the adversary to infer correctness of the guess.

Having identified these side-channel attacks, Harnik et al. [8] proposed a countermeasure in which
the signal on whether a file is already uploaded is hidden by randomization. More specifically, for each
file a threshold is chosen uniformly at random and the user is only informed not to upload the file if the
number of previous uploads meets or exceeds the threshold. This will obviously increase the required
bandwidth compared to basic client-side deduplication. The side-channel does not occur in server-side
deduplication because then the client always uploads the file and allows the server to decide whether or
not to deduplicate. The random threshold countermeasure can thus be seen as a compromise between
the efficiency of client-side deduplicaton and the security of server-side deduplication.

Contributions Although the mitigation idea of Harnik et al. [8] has been discussed and developed in
the literature [11, 18], there has been no formal modeling and analysis of threshold-based solutions for
defending side-channel attacks. This has prevented any opportunity to formally compare the effective-
ness of different solutions. The purpose of this paper is to remedy this situation by:

• providing formal definitions for side-channel deduplication strategies, including a natural measure
for effectiveness of countermeasures;

• identifying the conditions required for strategies to optimize bandwidth and security;

• characterizing the trade-off between security and efficiency necessary for all strategies;

• showing that the original proposal of Harnik et al. [8] provides an optimal defence within one
natural security measure.

There are other scenarios in which similar kinds of side-channels are available to attackers. In
independent and concurrent work, Ritzdorf et al. [17] consider the information leaked to a curious cloud
provider in deduplicating storage systems, with particular focus on leakage caused by using content-
defined chunking as the segmentation mechanism. They show empirically that under a number of strong
assumptions on the target files, a cloud provider can infer the contents of low-entropy files with high
probability even if the encryption key is unknown. This attack vector is tangential to the problem tackled
in this paper, but it does emphasize the need for rigour in analyzing security of cloud storage in the
presence of malicious clients and servers. Another closely related area is cache privacy attacks such as
those considered by Ács et al. [2] in Named Data Networking; we believe that our model can also be
applied to such scenarios.

2

The rest of this paper is organized as follows. Side-channel attacks on cloud storage and some ex-
isting countermeasures are reviewed in Section 2. Our security model and optimality of defences are
discussed in Section 3. Section 4 proves our main theorems relating security and efficiency, character-
izing both good dedpulication strategies and the essential trade-off between security and efficiency. In
Section 5 we discuss how our work relates to other countermeasures and approaches.

2 Security for Deduplication

This section reviews the current status of side-channel attacks on client-side deduplication and their
countermeasures. For the rest of this paper, we will discuss client-side deduplication only, unless explic-
itly stated otherwise, and focus only on side-channel issues. We define users as the entities with distinct
logins to a system, and clients as the devices that interact with the server on behalf of their owner, the
user. Users and clients may be adversarially controlled: for the attacks we describe we consider an
adversary that has access (i.e. login credentials) to the cloud storage service and attempts to glean infor-
mation from its interactions with the server. The side-channel attacks we focus on are not the only type
of attack in this scenario. If files can be retrieved using only a (deterministically-derived) index such as
the hash of the file then this introduces the issue of users being able to share files with others, potentially
creating copyright issues [14]. This issue can be solved by incorporating proofs of ownership (PoW) [7]
into the deduplication process.

2.1 Existence-of-File Side-Channel Attack

Harnik et al. [8] identified the side channel inherent in client-side deduplication and discussed its im-
plications in terms of three closely-related attacks performed by an adversary that follows the upload
protocol correctly.

1. Learning file contents. An attacker can guess the contents of a file and infer its existence in the
cloud.

2. Identifying files. The adversary can identify whether an incriminating file that should not be in the
cloud, such as pirated media or a leaked document, is stored. If found, the owner could be later
identified with the help of law enforcement access.

3. Covert channels. The existence of a unique file in the cloud can be used to signal a bit in a covert
communication channel.

These are three outcomes of the same attack mechanism: an adversary wishes to learn whether or
not a file has previously been uploaded to the storage of a CSP and then does something with the single
bit of information it learns. We will therefore use the general term existence-of-file attack to incorporate
any attack in which the adversary aims to learn whether or not a file has been previously uploaded. This
term includes the notion of the aforementioned salary attack because of the following scenario.

• In order to implement client-side deduplication, the client first sends a short identifier to the CSP.
The CSP instructs the client to upload the full file only if it is not already stored in the cloud.

• The adversary creates a template of an employment contract of Bob and attempts a number of
uploads of files that only differ in a specific field (e.g. the salary).

• At some point, the upload will be halted by the CSP. The adversary will then learn that this file is
already stored on the cloud and that her guess on Bob’s salary is correct.

Examples of other sensitive information that an adversary may like to learn via this attack vector are
clinical lab test results, figures in tax returns, pay stubs and contracts, and bank letters including a

3

password or PIN. Note that these attacks are not just an issue if the files are unencrypted, they also apply
if the files are encrypted using a method that allows the server to learn equality of underlying plaintexts,
for example by using a key that is deterministically derived from the file [4, 6, 10, 12].

In Section 3, we will formalize deduplication and give our security definition for the existence-of-file
attack. There are subtleties in the desired outcome of the attack: does the adversary want to know the
answer to “Is Bob’s salary X?” or “What is Bob’s salary?” We address these issues and the challenges
in formally modeling this scenario later on.

In the next section and in the rest of the paper, we will describe a countermeasure used to negate the
effects of these side-channel attacks while still allowing client-side deduplication. We note that other
approaches may also be used to counteract these attacks. For example, the server could ask clients
to separate all files at the point of upload into sensitive or non-sensitive: files with the flag sensitive
are encrypted using semantically-secure encryption before they are uploaded, and others are uploaded
normally. However most users will simply bypass this step by marking all files with one of the flags: This
either increases cost for the CSP by preventing deduplication or leaves the files vulnerable to attack. Any
such countermeasure that requires the user to make decisions about their files is unrealistic in practice.

2.2 Randomized Solution of Harnik et al.

An approach to defending against the side-channel attacks is to require users to upload files even in
the case that they have previously been already uploaded. For a given file, denote as thr the number
of uploads before the server informs clients that it has enough copies. When a user chooses to store
the same file, the server checks whether the thr is reached for that file and if not requires the file to be
uploaded and increments the counter. Any strategy for which Pr[thr = 1] 6= 1 for all files will impose
increased bandwidth until the threshold is reached. In addition, if the adversary knows the threshold thr
for a given file then she can count the number of uploads allowed and still infer whether the file initially
existed depending on whether she is required to upload thr times, or thr − 1 times. If this is the case
then the classic attack is just slowed down. Consequently we assume that adversary A does not know
the value of thr (which would differ per file) but A may know how thr is selected.

Harnik et al. [8] proposed use of a randomized threshold for each file, and this approach has since
been adopted by Liu et al. [12]. Their intuition was as follows: if thr is chosen uniformly from the range
{1, . . . ,B} for some integer B then an adversary launching the existence-of-file attack will learn nothing
if thr ∈ {2, . . . ,B− 1}. For the rest of the paper this value B is the upper bound for the threshold. Note
that for this approach, the expected number of uploads of a file is B+1

2 .
Note that if the system does not attempt to defend against the side-channel attacks, the first up-

loader of a given file will be required to upload but all subsequent uploads will not be required. This
corresponds to the case B = 1 which is then basic client-side deduplication and is optimal in terms of
bandwidth usage. In contrast, if the system wishes to leak no information then the server will always
require upload of each file, which will of course incur a significant bandwidth cost. This corresponds
to an infinite B which is equivalent to server-side deduplication. Thus from an efficiency point of view
using a finite threshold is considerably better than negating the attacks using server-side deduplication.

The interesting cases are where B is finite and B > 1. If thr = 1 and on the first upload A is not
asked to upload the file, then A will learn that the file was already stored. Likewise, if A is asked to
perform B uploads then she will learn that the file was certainly not already stored. We can see a clear
tradeoff between security and efficiency since B indicates the maximum number of times a file may need
to be uploaded and is thus the worst-case overhead for bandwidth.

A uniformly random choice of thr is an intuitively reasonable option for defending against the side-
channel attacks. However, it is not the only option. Even for a fixed upper bound B, it is not immediate
that a uniform probability distribution is best for security. When taking into account the trade-off be-
tween security and efficiency, the question becomes more complex. The threshold thr could be chosen
according to some other probability distribution, for example the geometric distribution. Thus for each
file, the server tosses a biased coin until it sees a tails and uses the number of heads (plus one) as the
upload threshold. The problem here is the potential for infinite bandwidth overhead, so it makes sense to

4

bound the threshold by the finite limit B and truncate the distribution at that point. However this means
that, depending on parameter choices, we could get a high probability of thr = B which could aid the
adversary. Alternative distributions [2,11,18] have been proposed in the literature and we compare some
of the other approaches later in Section 5.

3 Modeling Deduplication

This section presents a formal model of the existence-of-file attack on client-side deduplication by giving
an indistinguishability-based notion of security. Client-side deduplication incorporates the following
interaction between client and server, and the crucial item is the signal sig sent from the server to the
client to indicate whether it wants the client to upload the file (sig = 1) or not (sig = 0).

1. When a client uploads a file, it will send a short description hF to the server (or otherwise enable
the server to decide if it has the file).

2. Server will then communicate a response sig to the client.

3. Client then sends the file if required.

Note that the first and third steps may be preceded by encryption or segmentation, and thus we focus on
file-based deduplication to simplify our results. As we mentioned earlier, this signal potentially gives
the client the ability to learn whether or not a file is already stored.

Note that once the server gives sig = 0 to some client, it should give the signal 0 to every subsequent
upload request for that file. We make this assumption to strengthen our adversary: in practice the
adversary may not be sure that she has been the only person to upload a file in a given time period, but in
our idealized model any requests for upload after the first instance of sig = 0 will only result in wasted
bandwidth.

3.1 Deduplication Strategies

Cloud providers that are concerned with the potential consequences of the existence-of-file attack may
wish to implement a deduplication strategy that chooses the upload threshold based on some probability
distrubution. This approach will ideally reduce an adversary’s ability to gain information from its up-
loads, in a way that does not severely impact the amount of bandwidth required. In Section 4 we discuss
the important tradeoff between the bandwidth overhead and the security gain.

To define client-side deduplication strategies for cloud storage systems, we regard strategies as dis-
tributions on the possible thresholds. By this we mean a strategy DS can be written as a list (p0 =
0, p1, . . .) where pi is the probability that the threshold is value i. The first upload request must be met
with the signal 1 (otherwise the file could not be retrieved) so p0 = 0 for all meaningful strategies: we
will subsequently forego writing p0 when representing strategies. We refer to DS as the probability mass
function for the strategy, and DS.Alg as the algorithm that implements strategy DS. More formally:

Definition 1 (Deduplication Strategy). A deduplication strategy DS is characterized by its probability
distribution

DS(F, λ) = (p1(F, λ), p2(F, λ), . . .)

where pi(F, λ) = Pr [i← DS.Alg(F, λ)]. A threshold selection algorithm DS.Alg is a probabilistic
procedure that on input a deduplication strategy distribution DS, security parameter λ ∈ N and a file
F ∈ {0, 1}∗, outputs a threshold thr ∈ N. Denote this event by thr← DS.Alg(F, λ).

We say that a DS is file-oblivious if the distributions are independent of the file, i.e. DS.Alg(F, λ) =
DS.Alg(F ∗, λ) for all λ ∈ N and all F, F ∗ ∈ {0, 1}∗. Moreover, we say that DS is finite if for all security
parameters λ and files F ∈ {0, 1}∗, there exists an upper bound B = B(F, λ) such that pj(F, λ) = 0
for all j > B(F, λ). While our model does not discount strategies that are file-dependent, we have not

5

found any examples of such a strategy existing in the literature. Consequently, we only consider finite
and file-oblivious strategies for the rest of the paper. For clarity, we omit the file and security parameter
inputs and write pi instead of pi(F, λ).

Note that this definition includes strategies where, for example, the adversary flips a biased coin for
each upload to decide if the server should stop requesting uploads – this strategy is included by flipping
the coin until a threshold is given. Because we only consider finite strategies, this means that for any
strategy that flips coins, the probability of the final threshold value pB is forced to be 1−

∑B−1
i=1 pi. Some

special cases include:

• Server that does not defend against existence-of-file attack DSdnd = (1, 0, 0, . . .)

• Threshold chosen uniformly at random [8] DSU = (1
B ,

1
B , . . . ,

1
B , 0, . . .)

• Fair coin DSfc = (12 ,
1
4 ,

1
8 , . . . ,

1
2B−1 , 0, . . .)

3.2 Security Model for Existence-of-File Attack

We now introduce the notion of indistinguishability under existence-of-file attack (IND-EFA) and give
our security experiment for an adversary mounting an existence-of-file attack. The general IND-EFA
experiment for deduplication schemes is depicted in Figure 1. At the start of the security experiment, A
chooses a file F from the filespace (denoted by F ← A). Here the adversary A attempts to distinguish
the two distributions DS and DS∗, where DS∗ is the deduplication strategy probability function shifted
one position to the left. The experiment keeps a counter ctr to track how many upload requests have
been performed for file F . The challenger, acting as the server, then invokes strategy algorithm DS.Alg
on F and in the b = 1 case increments the counter by one to simulate initial storage of F . A has access
to a store() oracle which increments the storage counter and responds with the appropriate signal sig.
As a consequence of this, if the adversary makes more than B queries to the store() oracle, it will always
receive sig = 0 and thus not gain any information – this gives us an inherent bound on the number of
(useful) queries an adversary can make. The experiment is parameterised by integer λ that is an input to
the DS.Alg algorithm. The line return b′ = b means that the experiment outputs 1 if the adversary has
output b′ = b and thus won the game, and outputs 0 if b′ 6= b.

Definition 2. Indistinguishability under existence-of-file attack (IND-EFA). The advantage of an adver-
sary A in the existence-of-file attack game against deduplication strategy DS is stated as follows:

AdvIND-EFA
DS, A (λ)

def
=

∣∣∣∣2 ·Pr
[
ExpIND-EFA

DS, A (λ) = 1
]
− 1

∣∣∣∣
where the experiment ExpIND-EFA

DS, A (λ) is given in Figure 1.

ExpIND-EFA
DS.Alg, A(λ) :

b
$←− {0, 1}

F ← A
thr← DS.Alg(F, λ)
ctr← b
b′ ← Astore(λ)
return b′ = b

store():
ctr← ctr + 1
if ctr < thr then

sig← 1

else
sig← 0

return sig

Figure 1: The general IND-EFA experiment for deduplication schemes.

As we mentioned earlier, there are multiple side channel attack vectors in the context of cloud
storage, and this security experiment considers the case when the adversary is attempting to learn the
storage status of one particular file. A straightforward hybrid argument extends our model to one with

6

multiple files, but note that this would not accurately model an adversary attempting to learn which file
from a set is stored on a cloud server. To see this, observe that in a multi-file extension of Figure 1, the
challenger either stores or does not store each file that the adversary queries, meaning that an adversarial
win indicates that it can distinguish the scenario when all or none of a set of files are stored.

Note that Definition 2 is expressed in terms of files and implicitly assumes that the CSP uses file-
based deduplication. We could equally express the definition in terms of blocks where the adversary
is aiming to find whether a specific block has been uploaded, and if the storage protocol involves de-
terministic client-side segmentation then our model directly applies. However, we should be careful to
note that if the server does use block-based deduplication, but the adversary is trying to test whether a
specific file made up of different blocks is already uploaded, then a different notion would be needed. It
is conceivable that an adversary could learn that all the blocks of its target file are stored, and mistakenly
conclude that the file is stored. Additionally, a naive server handling unencrypted data may wish to only
defend ‘important blocks’ (e.g. block in a contract that includes the salary field), but this in fact gives
the adversary more power as she can then confirm that her contract template is correct. A full treatment
of the block-based scenario sits outside of the scope of our model and we consider it future work.

One issue that is deliberately omitted from our analysis is the process used by the CSP to handle
deletion. If the threshold is met for a specific file but subsequently all users delete the file from their
storage then the CSP may be tempted to remove the file plus associated data, including thr from its
storage. However, this means that the next time a client uploads that file the CSP would need to send
sig = 1 and randomly choose a new thr. This gives rise to a subtle attack: an adversary creates B
clients, uploads file F B times, observes threshold thr1 then deletes all its instances of F . She then
repeats this procedure by uploading the file B times and observes threshold thr2. If F is stored by
another user then thr1 = thr2 (i.e. actual threshold minus one), but if F is not stored then thr1 6= thr2.
Thus this attack wins the IND-EFA game with probability almost 1 (with uncertainty only when thr2
is randomly chosen to be equal to thr1). For this reason, we suggest that file-storage counters should
be non-decreasing and servers should not delete files once they are uploaded: we understand that the
second criterion is widely deployed already by CSPs.

4 Security and Efficiency Trade-offs

In this section we analyze some desirable properties of effective deduplication strategies. We first show
that non-increasing strategies optimize both efficiency (in terms of bandwidth costs) and security. Thus
all good strategies should be non-increasing. Then we obtain a bound on the product of efficiency
and security, characterizing an essential trade-off between bandwidth overhead and defence against the
existence-of-file attack, for any deduplication strategy. As a corollary we prove that the uniform strategy
proposed by Harnik et al. [8] is optimal, using the product of efficiency and security as a natural efficacy
metric.

Let DS = (p1, p2, . . .) be a deduplication strategy. The expected bandwidth cost (in terms of the
number of expected uploads of each file) can be quantified by computing the expected threshold

E =
∞∑
i=1

ipi.

This is a natural measure of the overhead cost of the deduplication strategy: the strategy that does
not defend against the existence-of-file attack has E = 1. For finite strategies, this sum will always
converge.

The security of a deduplication strategy is measured by the advantage defined in Section 3. The
adversary only gains information when pi 6= pi+1. The scenario described earlier, where the adversary
successfully launches the existence-of-file attack by being told not to upload on its first attempt and
winning, corresponds to the difference between p0 and p1, which equals the probability p1. Since the
adversary’s job is essentially to distinguish two probability distributions (the original distribution and its

7

shift by one), the statistical distance1 of the two distributions

∆ =
1

2

∞∑
i=0

|pi − pi+1|

is an upper bound on the advantage in the IND-EFA game, and hence a useful security measure. In fact
this bound is tight since it is achieved by the maximum likelihood distinguisher (MLD): an adversary
in the IND-EFA game must distinguish the two distributions and the MLD simply looks at the resulting
upload threshold thr and decide for which distribution this value was more likely.

We now state our first theorem, which shows that non-increasing strategies, that is strategies DS′ =
(p′1, p

′
2, . . . , p

′
B, 0, . . .) where p′1 ≥ p′2 ≥ · · · ≥ p′B, minimize both the expected bandwidth cost E

and the security level ∆. This result shows that the deduplication strategy of Lee and Choi [11] is
sub-optimal under any reasonable security metric, meaning one that considers the probability that the
adversary learns some information about a file’s storage status (rather than only considering instances
where the adversary is certain). We discuss their approach in more detail in Section 5.

Theorem 1. Let DS = (p1, p2, . . . , pB, 0, . . .) be any deduplication strategy, and let ∆ andE be the cor-
responding values. Let π be a permutation on {1, 2, . . . ,B} such that DS′ = (pπ(1), pπ(2), . . . , pπ(B), 0, . . .)
is a non-increasing deduplication strategy with corresponding values ∆′ and E′. Then ∆′ ≤ ∆ and
E′ ≤ E.

Proof. We first show that E′ ≤ E. Suppose indexes i, j exist with i < j and pi < pj . Consider the
strategy DS∗ = (. . . , pi−1, pj , pi+1, . . . , pj−1, pi, pj+1, . . .). It is clear that expected value for the two
strategies differ only in the two terms involving pi and pj , respectively ipi + jpj and ipj + jpi. If
pj = pi + δ, then

ipi + jpj = (i+ j)pi + δj > (i+ j)pi + δi = ipj + jpi.

It is then clear that by successive swaps such as this one, we can construct a permutation π on {1, 2, . . . ,B}
such that pπ(1) ≥ pπ(2) ≥ · · · ≥ pπ(B). Since none of these swaps increase the expectation, the first
claim holds.

Next, we show that ∆′ ≤ ∆. Any deduplication strategy DS can be covered by one of the following
cases:

1. There are indexes 0 < j < k < m < B such that pj−1 < pj , pk < pj , pk < pm, pm+1 < pm and
pi is non-decreasing for i = k, . . . ,m and non-increasing for i = j, . . . , k and i = m, . . . ,B.

2. There is an index 1 < k < B such that p1 ≤ p2 ≤ · · · ≤ pk and pk ≥ pk−1 ≥ · · · ≥ pB.

3. The strategy is non-increasing: p1 ≥ p2 ≥ · · · ≥ pB.

4. The strategy is non-decreasing: p1 ≤ p2 ≤ · · · ≤ pB.

In the first case, let π be a permutation leaving {1, 2, . . . , j − 1} fixed and satisfying pπ(j) ≥
pπ(j+1) ≥ · · · ≥ pπ(B), and let DS′′ = (pπ(1), pπ(2), . . . , pπ(B), 0, . . .). If pj ≥ pm, a calculation
shows that

∆−∆′′ = −pk + pm − pk + pm = 2(pm − pk) > 0.

Likewise, if pj < pm, another calculation shows that

∆−∆′′ = (pj − pk) + (pm − pk)− (pm − pj) = 2(pj − pk) > 0.

It is clear that this operation can be applied repeatedly, eventually resulting in a strategy for which
the first case does not apply, and for which the statistical distance is smaller than for DS.

1Note that in the published version of this paper [3] statistical distance was defined to be twice the quantity here. Some
terms in the subsequent theorems are different under this standard notion but all results hold. We thank Hubert Ritzdorf for
pointing this out.

8

We have now shown that there is a sequence of permutations on {1, 2, . . . ,B} that can be composed
into a permutation π such that the strategy DS′ = (pπ(1), . . . , pπ(B), 0, . . .) is non-increasing and has no
greater statistical distance than DS.

In the second case, we have ∆ = 1
2pk + 1

2pk = pk. The non-increasing strategy DS′ in the second
case has pπ(1) = pk. Then, we have ∆ = ∆′ = pk. In the third case, it is trivial to show that
∆ = ∆′ = p1. In the fourth case, we have ∆ = ∆′ = pB . Then for any deduplication strategy, ∆′ ≤ ∆
holds.

We now present our second theorem, which describes a lower bound on the value of ∆E for any
non-increasing deduplication strategy, in terms of the bound B. As may be expected, this shows that
there must be a trade-off between the security level ∆ and the efficiency E.

Theorem 2. Let DS′ = (p′1, p
′
2, . . . , p

′
B, 0, . . .) be a non-increasing deduplication strategy, and let ∆′

and E′ be its corresponding values. Then B+1
2B ≤ ∆′E′.

Proof. First note that for the uniform deduplication strategy, ∆UEU = 1
B ·

B+1
2 = B+1

2B . Our proof
strategy is to show that ‘evening out’ non-increasing strategies in a particular way so that they become
‘more uniform’ minimizes ∆ ·E. The idea here is to start at p1 and move rightwards: For the first j such
that pj > pj+1, we set p∗1 = · · · = p∗j+1 =

(j−1)p1+pj+1

j and show that invoking this procedure does
not increase the value of ∆ · E. If we apply this procedure incrementally we will eventually have the
uniform deduplication strategy DSU = (1

B ,
1
B , . . . ,

1
B , 0, . . .). We start with a non-increasing strategy

DS′ = (p′1, . . . , p
′
B, 0, . . .) p′i = p′i+1 + δi where δi ∈ [0, 1], ∀i ∈ {1, . . . ,B}.

Let j be the first index such that δj 6= 0 and define a new strategy as follows:

p∗i =


p1 − δj

j if i ∈ {1, . . . , j},
pj+1 +

(j−1)δj
j if i = j + 1,

pi otherwise.

This process gives us a new deduplication strategy

DS∗ = (p∗1, . . . , p
∗
j+1, p

′
j+2, . . . , p

′
B, 0, . . .).

We repeat this process until we have the uniform distribution, and will now show that each step does
not increase ∆ · E. Denote ∆old and ∆new as the statistical distance before and after each iteration
of the process described above respectively. We can calculate ∆new as follows. Observe that for any
non-increasing strategy, ∆ = p1. Then for invoking the above process at position r,

∆new = p∗1 = ·(p1 −
δr
r

) = ∆old −
δr
r
.

9

Similarly for the expected threshold,

Enew =
B∑
i=1

i · p∗i

= p∗1 + · · ·+ r · p∗r + (r + 1) · p∗r+1 +
B∑

i=r+2

i · p∗i

= (p1 −
δr
r

) + · · ·+ r · (pr −
δr
r

)

+ (r + 1) · (pr+1 +
(r − 1)δr

r
) +

B∑
i=r+2

i · p∗i

=
B∑
i=1

i · pi −
δr
r

(1 + 2 + · · ·+ r) +
δr
r

(r + 1)(r − 1)

= Eold +
δr
r

[
− r(r + 1)

2
+ (r − 1)(r + 1)

]
= Eold +

(r + 1)(r − 2)δr
2r

.

This means that

∆new · Enew =

[
∆old −

δr
r

]
·
[
Eold +

(r + 1)(r − 2)δr
2r

]
= ∆old · Eold +

(r + 1)(r − 2)δr
2r

·∆old

− δr
r
· Eold −

δ2r
2r2

(r + 1)(r − 2)

and thus if we want to show that the process minimizes the value of ∆ · E then we need to show that
∆new · Enew −∆old · Eold ≤ 0, or equivalently

(r + 1)(r − 2)δr
2r

·∆old −
δr
r
· Eold −

(r + 1)(r − 2)δ2r
2r2

≤ 0

To show this, note that since δr ∈ (0, 1] and r ∈ N+ we can multiply by 2r2

δr
:

r(r + 1)(r − 2)∆old − 2rEold − (r + 1)(r − 2)δr ≤ 0. (1)

Now we use the fact that ∆old = p1 and

Eold =

B∑
i=1

ipi

= p1 +

r∑
i=2

ip1 + (r + 1)pr+1 +

B∑
i=r+2

ipi

= p1 ·
r(r + 1)

2
+ (r + 1)(p1 − δr) +

B∑
i=r+2

ipi

=
(r + 1)(r + 2)

2
p1 − δr − rδr +

B∑
i=r+2

ipi

10

and plug this into equation 1 we get

r(r + 1)(r − 2)p1 − r(r + 1)(r + 2)p1 + 2rδr + 2r2δr − (r + 1)(r − 2)δr − 2r
B∑

i=r+2

ipi ≤ 0

⇔ −4r(r + 1)p1 + (r + 1)(r + 2)δr − 2r

B∑
i=r+2

ipi ≤ 0.

Since the summation term is non-negative and (r + 1) > 0, it is sufficient to show that

4rp1 ≥ (r + 2)δr

We know that the strategy is non-increasing so p1 ≥ δr, and since r ∈ {1, . . . ,B} we are sure that
4r ≥ (r + 2) so we are done.

If we repeat this process until we reach p′B−1 then we will have the uniform strategy DSU as required.

We now claim that ∆ ·E is a natural efficacy metric for deduplication strategies, giving equal weight
to bandwidth efficiency and security against the existence-of-file attack, where the former is measured
by the expected bandwidth cost E and the latter is measured by the upper bound ∆ on the adversary’s
advantage. We remark that other metrics are possible and may even be more appropriate for certain
circumstances, and it is plausible that similar results could be obtained for other metrics. We now bring
together Theorem 1 and Theorem 2 and give the following corollary, which states that the uniform
strategy (i.e. choosing the threshold uniformly at random) is optimal in terms of this particular metric.

Corollary 1. Let DSU = (1
B ,

1
B , . . . ,

1
B , 0, . . .) be the uniform deduplication strategy with corresponding

values EU and ∆U. Then for any deduplication strategy DS = (p1, p2, . . . , pB, 0, . . .) with correspond-
ing values E and ∆,

EU∆U ≤ E∆.

5 Related Work

Lee and Choi [11] suggest using a variable threshold by making a random choice at each upload, but
note that this is equivalent to making all the random choices at the start and simply induces a probability
distribution on the threshold as in our model. Lee and Choi claim that their solution provides better
security than Harnik et al.’s uniform random choice [8] while having the same efficiency (expected
number of uploads is B+1

2). However, their measure of security basically states that the adversary wins
only if she is certain that the file was uploaded or not. This is rather like requiring message recovery
security for encryption rather than the more usual and stronger indistinguishability requirement. The
security measure that we consider in this paper only requires the adversary to learn whether or not the
file was uploaded with significant probability. In this stronger security model, the scheme of Lee and
Choi is in fact weaker than Harnik et al.’s uniform choice of probability.

Shin and Kim [18] discuss related-files attack and claim that both Harnik et al.’s protocol [8] and
Lee and Choi’s protocol [11] are vulnerable to this attack because those schemes assume that all files are
stored independently. By related-files attack, Shin and Kim mean situations where files are correlated
to each other and thus stored at the same server together, e.g. files on a software package or document
files with the same content in different file formats such as doc, pdf and xml. The adversary then tries to
identify whether any one of a number of related files have been uploaded. By uploading not only F but
also other files that are related to F , the adversary may infer the existence of F with higher probability
than the case of independent files. In this scenario the randomization would have to be increased in order
to maintain the same level of security. However, their proposed solution includes using a trusted storage
gateway at the edge of the client’s network, which in general seems impractical to assume. We do not
consider this sort of attack in our model.

11

Wang et al. [20] adopt a game-theoretic approach to model the side-channel attacks in cross-user
client-side deduplication. They consider the scenario as a non-cooperative game played between an ad-
versary and the CSP, which means the players are assumed to share no information with others during
a game. The game is assumed to be dynamic which means that the game is played more than once (as
the players have to learn their opponents’ payoff through repeated game iterations). The players will
focus on optimizing their own payoff. Wang et al. claim that their proposed solution requires signifi-
cantly fewer uploads than those required by Harnik et al.’s randomized threshold-based solution [8], and
conclude that they achieve improved efficiency in terms of reduced bandwidth overhead. However, their
results are based on comparisons using their chosen payoff matrix which puts a specific value on a suc-
cessful attack as well as the cost of uploads. Our results instead give a fixed bound on how security and
efficiency interact and we can increase efficiency arbitrarily by reducing security level in compensation.
In practice, economic aspects will influence the chosen trade-off between security and efficiency.

Ács et al. [2] examine cache privacy attacks on Named Data Networking. Although this is a com-
pletely different application area from deduplication in the cloud, they propose a strongly related mech-
anism designed to prevent the adversary from learning whether a particular data item has been stored in
a local cache. They propose techniques to “randomly decide whether to mimic a cache hit or a cache
miss”. They compare privacy and efficiency, and use (ε, δ)-probabilistic indistinguishability as the pri-
vacy measure, somewhat similar to ∆ in our model. Their measure of efficiency, which they call utility,
relates the number of cache hits with the total number of file requests. This is in contrast to our measure
of efficiency where we do not consider the overall popularity of a file. The Ács et al. [2] model has
some details which our model ignores; however they cannot express the security/efficiency trade-off in
a manner as concise as our results. We expect that there can be some benefit in trying to combine the
advantages of both approaches, in particular relating to the multiple-file IND-EFA extension described
in Section 3.2.

Another similar scenario for data deduplication is memory deduplication. In memory deduplication,
memory pages with the same contents are merged which reduces the memory footprint of a running
system. Memory deduplication has applications both in virtualization solutions (to host more virtual
machines with the same amount of physical memory) and operating systems. It has been adopted as a
default feature in Windows 8.1 (and later versions) [5]. Kernel Same-page Merging (KSM) is the Linux
implementation of memory deduplication that uses a kernel thread for periodically scanning memory
and finding memory pages with the same contents which should be merged [16]. However, memory
deduplication provides side-channel information and causes security problems. The side-channel in-
formation incurred by memory deduplication in virtualized environments has been exploited in recent
work [5,16] and again we expect our model to be of some utility in creating solutions that defend against
these attacks: if the KSM module were to use randomized thresholds for deduplication of memory pages
then the tradeoff between efficiency and security is very similar to the cloud storage scenario covered in
this paper.

6 Concluding Remarks

A secure client-side deduplication scheme should defend against side-channel attacks whereby an at-
tacker attempts to determine whether or not a specific file exists on the cloud. In this paper we showed
how to model such attacks and analyzed solutions based on probabilistic uploads. We gave conditions
on the strategies that servers should employ when defending against these attacks. We then showed that
the uniform distribution for probabilistic uploads provides the optimal solution for a natural measure,
which presents a tradeoff between security and bandwidth usage.

12

7 Acknowledgements

We would like to thank Håvard Raddum for helpful discussions and the anonymous reviewers for their
feedback. We would also like to thank Hubert Ritzdorf for pointing out that our original definition of
statistical distance was not a tight bound on security, and for detailing the MLD. This research was
funded by The Research Council of Norway under Project No. 248166.

References

[1] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked encryption for
lock-dependent messages. In Advances in Cryptology – CRYPTO 2013: 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 374–391,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. Cited on page 2.

[2] G. Ács, M. Conti, P. Gasti, C. Ghali, and G. Tsudik. Cache privacy in Named-Data Networking.
In IEEE 33rd International Conference on Distributed Computing Systems, ICDCS 2013, pages
41–51. IEEE Computer Society, 2013. Cited on pages 2, 5, and 12.

[3] F. Armknecht, C. Boyd, G. T. Davies, K. Gjøsteen, and M. Toorani. Side channels in deduplication:
Trade-offs between leakage and efficiency. In R. Karri, O. Sinanoglu, A. Sadeghi, and X. Yi,
editors, Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 266–274. ACM,
2017. Cited on page 8.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure deduplication.
In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Athens, Greece, volume 7881 of Lecture
Notes in Computer Science, pages 296–312. Springer, 2013. Cited on pages 2 and 4.

[5] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup Est Machina: memory deduplication as
an advanced exploitation vector. In 2016 IEEE Symposium on Security and Privacy (SP), pages
987–1004, May 2016. Cited on page 12.

[6] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming space from
duplicate files in a serverless distributed file system. In ICDCS, pages 617–624, 2002. Cited on
pages 2 and 4.

[7] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of ownership in remote storage
systems. In Proceedings of the 18th ACM Conference on Computer and Communications Security,
CCS ’11, pages 491–500, New York, NY, USA, 2011. ACM. Cited on page 3.

[8] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud services: Deduplication in
cloud storage. IEEE Security & Privacy, 8(6):40–47, 2010. Cited on pages 2, 3, 4, 6, 7, 11, and 12.

[9] T. Jiang, X. Chen, Q. Wu, J. Ma, W. Susilo, and W. Lou. Towards efficient fully randomized
message-locked encryption. In Proceedings of 21st Australasian Conference on Information Se-
curity and Privacy (ACISP 2016), Melbourne, Australia, July 4-6, 2016, pages 361–375, Cham,
2016. Springer International Publishing. Cited on page 2.

[10] S. Keelveedhi, M. Bellare, and T. Ristenpart. Dupless: Server-aided encryption for deduplicated
storage. In Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August
14-16, 2013, pages 179–194. USENIX Association, 2013. Cited on pages 2 and 4.

13

[11] S. Lee and D. Choi. Privacy-preserving cross-user source-based data deduplication in cloud stor-
age. In 2012 International Conference on ICT Convergence (ICTC), pages 329–330, Oct 2012.
Cited on pages 2, 5, 8, and 11.

[12] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted data without additional
independent servers. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015, pages 874–885. ACM, 2015.
Cited on page 4.

[13] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. In G. R. Ganger and J. Wilkes,
editors, 9th USENIX Conference on File and Storage Technologies, pages 1–13. USENIX, 2011.
Cited on page 1.

[14] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl. Dark clouds on the horizon:
Using cloud storage as attack vector and online slack space. In Proceedings of the 20th USENIX
Conference on Security, SEC’11, pages 5–5, Berkeley, CA, USA, 2011. USENIX Association.
Cited on page 3.

[15] V. Rabotka and M. Mannan. An evaluation of recent secure deduplication proposals. Journal of
Information Security and Applications, 27-28:3 – 18, 2016. Special Issues on Security and Privacy
in Cloud Computing. Cited on pages 1 and 2.

[16] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos. Flip feng shui: Hammering
a needle in the software stack. In 25th USENIX Security Symposium (USENIX Security 16), pages
1–18, Austin, TX, Aug. 2016. USENIX Association. Cited on page 12.

[17] H. Ritzdorf, G. O. Karame, C. Soriente, and S. Capkun. On Information Leakage in Deduplicated
Storage Systems. In Proceedings of the 8th Edition of the ACM Workshop on Cloud Computing
Security, CCSW ’16. ACM, 2016. Cited on page 2.

[18] Y. Shin and K. Kim. Differentially private client-side data deduplication protocol for cloud storage
services. Security and Communication Networks, 8(12):2114–2123, 2015. Cited on pages 2, 5,
and 11.

[19] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl. A secure data deduplication scheme for cloud
storage. In N. Christin and R. Safavi-Naini, editors, Financial Cryptography and Data Security -
18th International Conference, FC 2014, Christ Church, Barbados, volume 8437 of Lecture Notes
in Computer Science, pages 99–118. Springer, 2014. Cited on page 2.

[20] B. Wang, W. Lou, and Y. T. Hou. Modeling the side-channel attacks in data deduplication with
game theory. In 2015 IEEE Conference on Communications and Network Security (CNS), pages
200–208, Sept 2015. Cited on page 12.

14

	Introduction
	Security for Deduplication
	Existence-of-File Side-Channel Attack
	Randomized Solution of Harnik et al.

	Modeling Deduplication
	Deduplication Strategies
	Security Model for Existence-of-File Attack

	Security and Efficiency Trade-offs
	Related Work
	Concluding Remarks
	Acknowledgements

