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Abstract— We present a distributed extremum seeking algo-
rithm for the problem of production optimization of multiple
gas lifted wells. The algorithm is based on ”synchronization”
of production performance gradients for all individual wells. It
mimics the manual optimization method employed by produc-
tion engineers in industry. Thus due to better understanding
by industrial specialists, this method may have higher chances
of being accepted in the oil and gas industry compared to other
data-driven optimization methods. Performance of the proposed
algorithm is illustrated by simulations.

I. INTRODUCTION

Naturally flowing oil production takes place when the
pressure in the oil reservoir is sufficiently high to provide
economically reasonable flow rates from wells. When this
is not the case, e.g. due to reservoir depletion or high den-
sity/viscosity of the produced fluid, artificial lift technologies
are employed to increase the production rates. They include
use of pumps and injection of gas into the well – usually
referred to as gas lift. The injected gas reduces the density
of the fluid column downstream the gas injection point. The
corresponding reduction in the hydrostatic pressure has a
positive effect on the production rate from the reservoir.
However, gas injection also increases flow rate through the
pipe section downstream the injection point, leading to an
increased frictional pressure drop over this pipe section.
This might have a negative effect on the production rate.
The overall effect of the gas lift is thus a combination of
the positive effect from the reduced fluid density, and the
negative effect of the increased frictional pressure drop.

For relatively small gas injection rates, the positive effect
is dominant. After a certain point (optimal injection rate), the
negative effect becomes dominant and makes further increase
of the gas injection rate unreasonable. Finding and operating
at this optimal gas injection rate is one of the production
optimization tasks. Of course, there are maximal and minimal
limitations on the gas injection rates for each well, dictated
by the limitations of the production facility.

A typical production curve that correlates the gas injection
rate with the corresponding oil production rate is shown in
Figure 1. The production curves are uncertain as the fluid
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composition (the ratio of oil, water and gas flowing from the
reservoir) changes over time. The unique optimum point and
the uncertainty in the production curves makes this problem
an ideal candidate for extremum seeking methods. In fact,
using extremum seeking optimization for individual wells
was proposed in [13], while some practical issues related to
this application were addressed in [8].

A production facility consists of multiple wells and the
total gas rate available for injection for all the wells is
usually limited. Therefore there is a natural extension of
the single well optimization problem to multiple wells. This
problem fits into the framework of distributed optimization
and extremum seeking control extensively studied in recent
literature, see e.g. [12], [10], [2], [3], [5], [9]. It can be
considered as a particular case of the optimal resource
allocation problem studied in [14], [15], with the limited total
available gas injection rate being the resource to be allocated
between different wells. While the methods proposed in the
literature provide effective solutions for generic problems,
for the gas lift optimization we need to take into account
specifics of practical implementation and use of automatic
systems in the oil and gas industry.

Manual production optimization is done by production
engineers and operators, who hold responsibility for the
process. Implementation of an automatic optimization system
means that certain control and optimization functions are
taken away from them, while they still keep the respon-
sibility. In this situation, people tend to be very cautious,
often sceptical and reluctant to accept new automation
technologies if they do not understand them, cannot easily
keep track of their performance and cannot easily intervene
and tune the system. From this point of view, an ideal
situation is when the automation optimization system mimics
an already established manual way of optimization. The
operators already know it by experience and trust it.

In oil and gas production optimization, there is already
a manual optimization method accepted and utilized by
engineers [11]. Although in that reference the optimization
problem is somewhat different, the analogy to the gas-lift
optimization studied in this paper is straightforward. The
method is based on a very simple fact. For the optimum
allocation of gas injection rates, the gradients of the indi-
vidual production curves must be equal, see, e.g. [11]. As
we will show in the paper, under mild assumptions, this
is a necessary and sufficient condition for optimality. In
practice, the operators use the level of consensus between
the gradients as a measure of optimality and steer the gas
injection rates to reach this consensus [11].

In this paper we present an automatic production opti-



mization algorithm which mimics this manual optimization
method. It consists of two components: a novel gradient
synchronization scheme that steers the injection rates to reach
consensus between the gradients of the production curves,
and a gradient estimation algorithm from [7]. Since the
operators already know the concept of this solution, it is
expected that it will be easier for them to accept it and use
compared to other data-driven optimization methods.

The paper is organized as follows. In Section II we
formalize the problem and state assumptions. Necessary and
sufficient conditions for optimality based on the consensus of
the gradients is presented in Section III. The same section
presents a gradient synchronization algorithm. Section IV
unites this algorithm with a gradient estimation method. The
performance of the algorithm is illustrated in Section V.
Conclusions are presented in Section VI.

II. PROBLEM DESCRIPTION

We consider a production system with N individual wells
with gas lift. For each well i, oil production rate qi as a
function of the gas injection rate ui is determined by the
production curve

qi = fi(ui), (1)

with a typical form as in Figure 1. The gas injection rates
are subject to constraints

0 ≤ umin
i ≤ ui ≤ umax

i , i = 1, . . . , N. (2)

The total gas injection rate is subject to the constraint

N∑
i=1

ui ≤ Umax. (3)

The optimization problem is to maximize the total production
rate from all the wells

N∑
i=1

f(ui) → max (4)

subject to constraints (2), (3).
We assume that the functions fi are C2 and that they are

strictly concave, i.e.

d2fi

du2
i

(ui) < 0, ∀ui ∈ [umin
i , umax

i ], i = 1, . . . N. (5)

Under these assumptions, the optimization problem (2), (3),
(4) has a unique solution.

Before solving this problem, we modify its formulation
in the following way. We first introduce the fictitious input
uN+1 which denotes the available gas rate not injected into
the wells: uN+1 = Umax −

∑N
i=1 ui. It must satisfy the

constraint 0 = umin
N+1 ≤ uN+1 ≤ umax

N+1 = Umax.1 The
corresponding fictitious function fN+1(uN+1) is set to zero.

1Note that since ui ≥ 0 for i = 1, . . . , N , then the inequality with
umax

N+1 is always satisfied and thus becomes obsolete. However, for the sake
of uniformity of the presentation, we will keep this inequality.

Then the optimization problem (2), (3), (4) is equivalent
to the problem

N+1∑
i=1

f(ui) → max (6)

under the constraints
N+1∑
i=1

ui = Umax, (7)

umin
i ≤ ui ≤ umax

i , i = 1, . . . , N + 1. (8)

The reason for the modification from the inequality constraint
in (3) to equality constraint in (7) will be explained below.

Further, we modify the problem formulation to handle
the case when the optimum can lie on the boundary of the
constraints (8). We augment the functions fi with logarithmic
barrier functions:

f̂i(ui) =


fi(ui) + µ ln(ui − umin

i )
+ µ ln(umax

i − ui), if ui ∈ (umin
i , umax

i ),
−∞, otherwise,

(9)
for i ∈ {1, 2, . . . , N + 1}, where µ > 0 is a tuning constant,
and rewrite the optimization problem in a compact form:

Q(u) =
N+1∑
i=1

f̂i(ui) → max, (10)

over the domain

U := {u| ui ∈ (umin
i , umax

i ), i = 1, . . . N + 1} (11)

and subject to the equality constraint

1T · u = Umax, (12)

where 1 = (1, . . . , 1)T and u = (u1, . . . , uN+1)T .
Since the logarithmic functions are strictly concave and

the functions fi are concave, then the functions f̂i(ui) are
strictly concave on the set (umin

i , umax
i ). Moreover, due to

the barrier functions, f̂i(ui) → −∞ as ui → umin
i or ui →

umax
i . Thus the optimization problem (10) - (12) has a unique

optimum point u∗ ∈ U .
By choosing parameter µ small enough, the solution to the

optimization problem (10) - (12) can be chosen arbitrarily
close to the optimum of the original optimization problem
(2), (3), (4). In the sequel we assume that the parameter
µ is chosen and we will focus on solving the modified
optimization problem (10) - (12).

III. SYNCHRONIZATION-BASED OPTIMIZER

First, we derive a simple technical result that constitutes
a foundation for the optimizer design.

Lemma 1: Point u∗ ∈ U is a solution to the optimization
problem (10) - (12) if and only if

∂f̂i

∂ui
(u∗i ) =

∂f̂j

∂uj
(u∗j ), ∀i, j = 1, . . . , N + 1. (13)



Proof: We parametrize the hyperplane (12), by the equation
uN+1 = Umax −

∑N
i=1 ui. Substituting this parametrization

in the definition of Q(u), we obtain

Q(u)|1T ·u=Umax =
N∑

i=1

f̂i(ui) + f̂N+1(Umax −
N∑

i=1

ui)

=: Q̃(u1, . . . uN ). (14)

Since Q(u) is strictly concave, Q̃(u1, . . . uN ) is strictly
concave as well. Thus the necessary and sufficient condition
for its optimal point is ∂Q̃/∂ui(u∗) = 0 for i = 1, . . . N .
Substituting this condition into (14), we obtain

∂f̂i

∂ui
(u∗i )−

∂f̂N+1

∂uN+1
(u∗N+1) = 0, ∀i = 1, . . . N. (15)

This, in turn, is equivalent to (13).�
Corollary 1: There is only one point u∗ ∈ U satisfying

(13) and (12) and this point is the solution to the optimization
problem (10) - (12).
Based on this corollary, we construct the following update
law for u:

u̇i =
∑
j 6=i

γi,j

(
∂f̂i

∂ui
(ui)−

∂f̂j

∂uj
(uj)

)
, (16)

for i = 1, . . . , N + 1, where γi,j = γj,i ≥ 0 are synchro-
nization gains. The right hand side of (16) equals zero when
all the gradients are equal to each other (”synchronized”).
When this is not the case, (16) will steer the components of
u towards gradients synchronization.

To show this, let us rewrite the update law (16) in the
following compact form:

u̇ = Γ∇Q(u), (17)

where

Γ = 

∑
j 6=1 γ1,j −γ1,2 · · · −γ1,N+1

−γ2,1

∑
j 6=2 γ2,j · · · −γ2,N+1

−γ3,1 −γ3,2
. . .

...
...

...
. . . −γN,N+1

−γN+1,1 −γN+1,2 · · ·
∑

j 6=N+1 γN+1,j

 .

Theorem 1: Under the assumptions on the function Q(u)
from Section II, if rankΓ = N , then for any initial condition
u(0) ∈ U satisfying (12), the solution u(t) will satisfy (12)
for all t ≥ 0 and

u(t) → u∗, as t → +∞ (18)

where u∗ is the unique optimal solution to the optimization
problem (10) - (12).

Proof: Due to its structure, the matrix Γ = ΓT is positive
semidefinite [17], and satisfies

1T Γ = 0. (19)

From (19) and (17), we obtain

d

dt
1T u(t) = 1T Γ∇Q(u) ≡ 0. (20)

Thus if 1T u(0) = Umax, then 1T u(t) = Umax (i.e. (12) is
satisfied) for all t ≥ 0.

To prove (18), consider the storage function V (u) =
Q(u∗)−Q(u). Then

d

dt
V (u(t)) = −∇QT (u)Γ∇Q(u) ≤ 0 ∀u ∈ U . (21)

Therefore V (u(t)) ≤ V (u(0)) for all t ≥ 0. Hence, the
set Ω := {u| V (u) ≤ V (u(0))} is a positively invariant,
compact subset of U . Since rankΓ = N , (for the (N +
1) × (N + 1) matrix), and since 1T Γ = 0 and Γ1 = 0,
then the set S := {u| V̇ (u) = 0} consists of points
where ∇Q(u) = α(u)1, for some scalar α(u), i.e. condition
(13) is satisfied. According to LaSalle’s invariance principle,
u(t) converges to the largest invariant subset of S. By the
corollary to Lemma 1, under the assumptions on the function
Q(u) from Section II, there is only one point satisfying both
(13) and (12) and this point is the optimum u∗. This proves
(18). �

Remark 1. The matrix Γ determines the structure for the
synchronization of the gradients in the form of a graph: node
j affects the update dynamics of node i (there is an edge
between them) if γi,j > 0. The requirement rankΓ = N is
satisfied if this graph is connected, i.e. any two nodes can
be connected by a path of edges with nonzero gains γi,j .

Remark 2. The requirement that u(0) is initiated at the
hyperplane 1T · u = Umax can always be satisifed by the
choice of the fictitious variable uN+1.

Remark 3. It can also be shown that in the reduced coordi-
nates u1, . . . , uN , the convergence to the optimal u∗1, . . . , u

∗
N

is exponential. This results in certain robustness needed when
the gradients in (16) are substituted with their estimates, as
described in the next section.

IV. EXTREMUM-SEEKING METHOD

Because the functions fi are unknown, the gradients of
the augmented functions f̂i in (9) cannot be used by the
controller to solve the optimization problem. We estimate
the gradients using a perturbation-based approach that is
common to extremum-seeking control [1], [16]. Consider the
following coordinate transformation:

ui(t) = ūi(t) + αωi(t), ωi(t) = sin
(

ηt +
2π(i− 1)

N

)
(22)

for i ∈ {1, 2, . . . , N}, where ûi is the nominal part of the
input and αωi is a perturbation with amplitude α > 0 and
angular frequency η > 0. The phase of the perturbations is
chosen such that

N∑
i=1

αωi(t) = 0 ⇒
N∑

i=1

ui(t) =
N∑

i=1

ūi(t) (23)

for all t ∈ R. This implies that the total gas injection
rate is not affected by the perturbation signals. This is a



practically important property, since perturbations on the
total injection rate can cause undesirable negative effects for
the overall production/processing system. We slightly modify
the augmented functions in (9) such that u remains in the
set U if ū = [ū1, ū2, . . . , ūN ]T remains in the set

Uα =

{
ū ∈ RN : umin

i + α < ūi < umax
i − α,

∀i ∈ {1, 2, . . . , N + 1}

}
. (24)

We note that, if the set U is nonempty, the set Uα is nonempty
for sufficiently small α > 0. The modified augmented
functions are given by

f̄i(ūi) =


fi(ūi) + µ ln(ūi − umin

i − α)
+ µ ln(umax

i − α− ūi),
if ūi ∈ (umin

i + α, umax
i − α),

−∞, otherwise,
(25)

for i ∈ {1, 2, . . . , N} and

f̄N+1(ūN+1) = f̂N+1(ūN+1). (26)

Due to these modifications, we aim at finding the solution
of the optimization problem

Q̄(ū) :=
N+1∑
i=1

f̄i(ūi) → max (27)

over the domain ū ∈ Ua and subject to the constraint
1T · ū = Umax. We note, however, that the solution of
the optimization problem (27) can be made arbitrarily close
to the solution of the optimization problem (10) - (12) by
choosing a sufficiently small value of α > 0. To find an
approximate solution of the optimization problem (27), we
estimate the gradients of the augmented functions f̄i in (25).
Contrary to the constrained extremum-seeking method in [4]
which estimates the gradients of the augmented functions
directly, we estimate the gradients of the functions fi and use
these gradient estimates to approximate the gradient of the
modified augmented functions f̄i; the known contributions of
the logarithmic barrier functions are added to the estimated
gradients of fi to obtain the gradients of f̄i. This has the
advantage that the logarithmic barrier functions prevent the
nominal input ū from leaving the set Uα even if the gradient
estimates are bad. For each i ∈ {1, 2, . . . , N}, we apply the
observer from [7] to estimate the gradient of the function fi.
The observer estimates the vector

mi(t) =
[

fi(ūi(t))
α dfi

dui
(ūi(t))

]
. (28)

The time derivative of this vector is given by

ṁi(t) = Ai(t)mi(t) + wi(t), Ai(t) =

0
˙̄ui(t)
α

0 0

 ,

with wi(t) = O(α ˙̄ui(t)) as α ˙̄ui(t) → 0, where O is the Big
O notation. From Taylor’s theorem and (22), it follows that

yi(t) = fi(ui(t)) = fi(ūi(t)) + αωi(t)
dfi

dui
(ūi(t)) + vi(t)

where vi(t) = O(α2) as α → 0 is the remainder of the
Taylor series expansion around ūi(t). Using the definition of
the vector mi, this equality can be written as

yi(t) = Ci(t)mi(t) + vi(t), Ci(t) =
[
1 ωi(t)

]
. (29)

The corresponding observer is given by

˙̂mi(t) = Ai(t)m̂i(t) + λPi(t)CT
i (t)(yi(t)−Ci(t)m̂i(t))

Ṗi(t) = λPi(t) + Ai(t)Pi(t) + Pi(t)AT
i (t),

− λPi(t)CT
i (t)Ci(t)Pi(t),

(30)
where Pi is a symmetric positive-definite matrix and λ > 0
is a tuning parameter. Noting that m̂i is an estimate of the
vector mi in (28), we obtain that

ḡi(t) = Dm̂i(t) +
αµ

ūi(t)− umin
i − α

− αµ

umax
i − α− ūi(t)

(31)
for i ∈ {1, 2, . . . , N}, with D = [0, 1], is an estimate for the
gradient of the function f̄i in (25) scaled by the perturbation
amplitude α. For notational convenience, we define

ḡN+1(t) =
αµ

ūN+1(t)
, (32)

which is the product of the gradient of the function f̄N+1 in
(26) and the perturbation amplitude α.

Similar to (16) in Section III, we use the optimizing
control law

˙̄ui(t) = ν
∑
j 6=i

γi,j (ḡi(t)− ḡj(t)) (33)

to drive the nominal input ū to the solution of the optimiza-
tion problem (27), where ν > 0 is a tuning parameter. Note
that, contrary to the control law (16), scaled estimates of
the gradients of the functions f̄i are used instead of the real
gradients.

A. Tuning of the controller parameters

The accuracy of the estimates ḡi in (31) of the gradients
of the functions f̄i depends to a large extent on the tuning of
the extremum-seeking controller. There are four parameters
to tune: the perturbation amplitude α in (22); the perturbation
frequency η in (22); the tuning parameter λ of the observers
in (30); and the tuning parameter ν of the dynamic optimizer
in (33). As mentioned previously, the perturbation amplitude
should be chosen sufficiently small to ensure that solution
of the optimization problem (27) is sufficiently close to the
solution of the optimization problem (10) - (12). However,
in practice, the perturbation amplitude is required to be
sufficiently large to ensure that the gradient estimates are
not driven by disturbances such as measurement noise.
Especially disturbances in the same frequency range as the
perturbation frequency are harmful is this regard; see [6],
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Fig. 1. Well-performance curves.

[16]. To obtain accurate gradient estimates with the observers
in (30), the remaining tuning parameters should be chosen
such that extremum-seeking controller roughly exhibits three
time scales [6], [7]:

• fast – the perturbations;
• medium – the observers;
• slow – the dynamic optimizer.

For any fixed value of α > 0, this can be achieved by
choosing the tuning parameters η, λ and ν such that ν �
λ � η. Detailed convergence analysis is given in [7].
Without system dynamics, as we assume in this work, the
perturbation frequency η can be chosen arbitrarily large. In
practical applications, the perturbation frequency should be
chosen sufficiently low such that, after initial transients, the
output of the systems remains close to the steady-state output
of the systems despite system dynamics.

V. SIMULATION EXAMPLE

Consider two wells with gas lift. Let the gas injection rates
of the two wells be given by u1 and u2, respectively. The re-
lation between the gas injections rates and the corresponding
oil rates q1 and q2 is given by the well-performance curves

f1(u1) = −3.9× 10−7u4
1 + 2.1× 10−4u3

1

− 0.043u2
1 + 3.7u1 + 12,

f2(u2) = −1.3× 10−7u4
2 + 1× 10−4u3

2

− 0.028u2
2 + 3.1u2 − 17.

(34)

The well-performance curves are visualized in Fig. 1, where
the maximum of the curves at (u∗1, u

∗
2) ≈ (83.7, 98.3)

is indicated by dashed lines. The gas injection rates are
bounded by the lower limits umin

1 = umin
2 = 20 and the upper

limits umax
1 = umax

2 = 140. We consider two scenarios: for
the first scenario, the maximal combined gas injection rate
is bounded by Umax = 200; for the second scenario, it is
bounded by Umax = 160. We use the extremum-seeking
control method in Section IV to maximize the combined
oil rate of the two wells. The tuning parameters of the
extremum-seeking controller are set to α = 2, η = 1, λ =
0.5, γ12 = γ13 = γ21 = 1, γ23 = 0 and ν = 1. In addition,
we set µ = 10−3. Simulation results for u1(0) = 100 and
u2(0) = 40 are presented in Figs. 2-7.

The trajectory of the gas injection rates u1 and u2 for
Umax = 200 is depicted in Fig. 2. The solid black contour
in Fig. 2 represents the boundary of the feasible region; the

u1

20 60 100 140

u
2
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60

100

140

Fig. 2. Trajectory of the gas injection rates u1 and u2 for Umax = 200.
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200
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u2(t)

u1(t) + u2(t)

Fig. 3. Gas rates u1, u2 and their sum vs. time t for Umax = 200.

dashed black line in Fig. 2 is the line for which ∂f1
∂u1

(u1) =
∂f2
∂u2

(u2). We observe in Fig. 2 that using the synchronization-
based control law in Section III, the trajectory of the gas
injection rates converges to the line ∂f1

∂u1
(u1) = ∂f2

∂u2
(u2)

before it converges to a neighborhood of the optimum.
The corresponding time signals of the gas injection rates
are depicted in Fig. 3. The values of the gas injection rates
converge to a neighborhood of the optimal values u∗1 ≈ 83.7
and u∗2 ≈ 98.3 indicated by the dashed lines in Fig. 3. It is
easy to see in Fig. 3 that the perturbations in the gas injection
rate signals have the same amplitude and frequency, but an
opposite phase, as defined in (22). As the gas injection rates
converge to a neighborhood of the optimum, it is shown in
Fig. 5 that the well performance converges to a value that is
very close to its optimal value of Q(u∗) ≈ 224.5 indicated
by the dashed line.

In Figs. 5-7, we see similar results for Umax = 160 as
for Umax = 200 in Figs. 2-4. However, contrary to the
scenario Umax = 200, the constraint u1 + u2 ≤ Umax is
active at the optimum for Umax = 160. This can be clearly
observed in Fig.5, where the trajectory of the gas injection
rates is held back by the diagonal line of the solid black
contour representing the constraint u1 + u2 ≤ Umax. The
constrained optimum Q(u∗) ≈ 222.7 is achieved for gas
injection rates u∗1 ≈ 73.5 and u∗2 ≈ 86.5. Figs. 6 and 7
display that convergence to a small neighborhood of these
values is achieved.

Notice that in both simulations, due to a deliberate choice
of phase shifts in the dither signals, the total gas injection
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Fig. 4. Total oil production rate Q(u) vs. time t for Umax = 200.
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Fig. 5. Trajectory of the gas injection rates u1 and u2 towards the optimum
at (u∗1, u∗2) ≈ (73.5, 86.5) for Umax = 160.

rate and the total oil production rate corresponding to all
wells are not subject to the variations due to dither signal.
This is especially important since topside facilities can be
sensitive to frequent changes of the total injected gas rates
and produced oil rates. This is another practical benefit of
the proposed method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a distributed extremum
seeking algorithm for the optimal resource allocation prob-
lem, with the main motivation for the study being production
optimization for multiple gas lifted wells. The proposed
solution is based on a novel extremum seeking scheme utiliz-
ing synchronization of the performance functions’ gradients
as a measure of optimality. This scheme is then united
with a gradient estimation method. The overall solution
has demonstrated good performance in simulations. More
importantly, it automatically mimics the manual optimization
methods employed by operators and production engineers in
the oil and gas industry. Thus due to better understanding of
this method by industrial specialists, it has higher chances
of being accepted and used for production optimization in
the oil and gas industry compared to other data-driven opti-
mization methods. Future work will be focused on practical
aspects related to implementation, tuning and running of the
proposed solution on a production platform.
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