
Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

LIVE CONVOLUTION WITH TIME-VARIANT IMPULSE RESPONSE

Øyvind Brandtsegg ∗

Department of Music,
Norwegian University of Technology and Science

Trondheim, Norway
oyvind.brandtsegg@ntnu.no

Sigurd Saue †

Department of Music,
Norwegian University of Technology and Science

Trondheim, Norway
sigurd.saue@ntnu.no

ABSTRACT
This paper describes methods for doing convolution of two live
signals, without the need to load a time-invariant impulse response
prior to the convolution process. It was developed in the context
of creative live electronic music performance, but can be applied
to more traditional use cases for convolution as well. The process
allows parametrization of the convolution parameters, by way of
real-time transformations of the IR, and as such can be used to
build parametric convolution effects for audio mixing and spatial-
ization as well.

1. INTRODUCTION

Convolution has been used for filtering, reverberation, spatializa-
tion and as a creative tool for cross-synthesis ([1], [2] and [3] to
name a few). Common to most of them is that one of the inputs is a
time-invariant impulse response (characterizing a filter, an acoustic
space or similar), allocated and preprocessed prior to the convolu-
tion operation. Although developments have been made to make
the process latency free (using a combination of partitioned and
direct convolution [4]), the time-invariant nature of the impulse re-
sponse (IR) has inhibited a parametric modulation of the process.
Modifying the IR traditionally has implied the need to stop the au-
dio processing, load the new IR, and then re-start processing using
the updated IR.

2. CONTEXT

The current implementation was developed in the context of our
work with cross-adaptive audio processing (see [5] and also the
project blog http://crossadaptive.hf.ntnu.no/) and live processing
(previous project blog at [6] and the released album "Evil Stone
Circle" at [7]). Our previous efforts on live streaming convolution
area are described in ([8], [9]). We also note that the area of flex-
ible convolution processing is an active field of research in other
environments (for example [10], in some respects also [11] and
[12] due to the parametric approach to techniques closely related
to convolution).

Our primary goal has been to enable the use of convolution
as a creative tool for live electronic music performance, by allow-
ing two live sources to be convolved with each other in a stream-
ing fashion. Our current implementation allows this kind of live
streaming convolution with minimal buffering. As we shall see,
this also allows for parametric transformations of the IR. Examples
of useful transformations might be pitch shifting, time stretching,
time reversal, filtering, all done in a time-variant manner.
∗ Thanks to NTNU for generously providing a sabattical term, within

which substantial portions of this research have been done
† NTNU: this guy needs more time to do undisturbed research

3. PREVIOUS IMPLEMENTATIONS

Convolution of two finite sequences x(n) and h(n) of length N is
defined as:

y(n) = x (n) ∗ h (n) =

N−1∑
k=0

h (k)x (n− k) (1)

This is a direct, time-domain implementation in a FIR filter struc-
ture with filter length N. A few observations can be made at this
stage:
• There are no parameters involved.
• There is no latency: y(0) = x(0)h(0).
• Output length is Ny = Nx +Nh − 1 = 2N − 1

• Computational complexity is of the order O(N2).
It should also be noted that the convolution output exhibits a very
characteristic time smearing. The computational complexity is
prohibiting with the segment sizes we normally work with (1-2
seconds or more). A far more efficient solution is fast convolution
using FFT and multiplication in the frequency domain [13]:

F [x(t) ∗ h(t)] = F [x(t)] · F [y(t)] = X(f) ·H(f) (2)

This implementation also calls for some observations:
• Computational complexity is reduced to O(N logN).
• Latency has increased to the full filter length.

It is now obvious that convolution is simply multiplication in the
frequency domain. From which we may further observe that:
• Output amplitude strongly depends on degree of frequency

overlap between the two inputs
• We may expect a relative loss of high frequency energy.

Figure 1: Example of partitioned convolution with 3 partitions [8]

The increased latency is undesirable for real-time applications.
Partitioned convolution reduces the latency by breaking up the in-
put signal into smaller partitions [14]. A trivial example of the
computation with only 3 partitions is shown in Figure 1. Partition
size should be adjusted to make an optimal compromise between
computational efficiency and latency.

From this implementation we observe:

DAFX-1

https://www.ntnu.edu/music
mailto:oyvind.brandtsegg@ntnu.no
https://www.ntnu.edu/music
mailto:sigurd.saue@ntnu.no
http://crossadaptive.hf.ntnu.no/

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

• Latency is reduced to the partition size

• The first partition output Y1 depends only on X1 and H1

• Partition output YN+1 does not depend on X1 and H1, out-
put YN+2 does not depend on X2 and H2, and so on.

The latter two observations play an important role for our stream-
ing approach. It should also be added that techniques combining
partitioned and direct-form convolution can eliminate processing
latency entirely [4].

Traditionally convolution is an asymmetric operation where
the two inputs have different status: input signal and impulse re-
sponse (IR) respectively. Typically the latter is a reasonably short
segment, a time-invariant representation of a system (e.g. a filter or
a room response) onto which the input signal is applied. Hence the
impulse response in equation 1 can be formulated using constant
scaling coefficients a0 to aN−1:

y(n) = x (n) ∗ h (n) =

N−1∑
k=0

akx (n− k) (3)

Instead we are searching for more flexible tools for musical
interplay and have previously presented a number of strategies for
dynamic convolution [9]. Our aim has been to:

• Attain dynamic parametric control over the convolution pro-
cess in order to increase playability.

• Investigate methods to avoid or control dense and smeared
output

• Provide the ability to update/change the impulse responses
in real-time without glitches.

• Provide the ability to use two live audio sources as inputs
to a continuous real-time convolution process.

With existing tools we haven’t been able to get around the
time-invariant nature of the impulse response. In order to make
dynamic updates of the IR during convolution without audible ar-
tifacts, we had to use two (or more) concurrent convolution pro-
cesses and then crossfade between them whenever the IR should
be modified. The IR update could be triggered explicitly, at regular
intervals or based on the dynamics of the input signal (i.e. transient
detection). Every update of the IR triggered a reinitialization of the
convolution process.

We have also done work on live convolution of two audio sig-
nals of equal status: neither signal is the IR of the other [8]. In-
stead both audio streams are segmented at intervals triggered by
transient detection and each pair of segments convolved in a sep-
arate process. With frequent triggering the number of concurrent
processes could grow substantially due to the long convolution tail
(N-1 partitions) of each process.

4. OUR IMPLEMENTATION: TIME-VARIANT IMPULSE
RESPONSE

In this paper we present a simple, but efficient implementation of
convolution with a time-variant impulse response. In this case the
coefficients of the IR are no longer constants (ref equation 3), but
are themselves depending on the time variable n:

y(n) = x (n) ∗ h (n) =

N−1∑
k=0

ak(n)x (n− k) (4)

The goal is to be able to dynamically update the impulse re-
sponse without reinitializations and crossfades of parallel convo-
lution processes. The key to our approach is the previously noted
property of partitioned convolution:

An output partition Yn only depends on input
partitions Xk and Hk for n, k ≥ 1 and k ∈ [n+ 1−N,n],
where N is the number of partitions of the impulse
response.

An immediate consequence of this property is that we can load
the impulse response partition by partition in parallel with the in-
put. A fully loaded IR is not necessary to initiate the convolution
process. This drastically reduces the latency for application of live
sampled impulse responses. In addition the computational load
associated with FFT calculations on the IR is nicely spread out
in time, hence avoiding bursts of CPU usage when loading long
impulse responses. The only actions necessary during initializa-
tion of the convolution algorithm, are to allocate memory for the
chosen IR length, clear buffers and initialize variables.

The opposite also holds true: We can unload the impulse re-
sponse partition by partition without audible artifacts, even while
the convolution process is running. Unloading a partition simply
means clearing it to zero, and it should progress in the same order
as the loading process. The shortest possible load/unload interval
is a single partition, which is actually equivalent to segmenting out
a single partition of the input signal and convolve it with the full
impulse response. Figure 2 illustrates the effect.

Figure 2: Example of minimal load/unload interval

The combination of the two strategies, stepwise loading and
unloading, naturally leads to stepwise replacement of the impulse
response. At any time during the running convolution process we
can trigger an update of the IR and start filling in new partitions
from the beginning of the IR buffer. Figure 3 shows a simplified
example of the procedure. The impulse response H1,k is replaced
by H2,k. In a transition period equal to N − 1 (where N is the IR
length) the output is a mix of two convolution processes.

Figure 3: Example of dynamic IR update

It should be apparent that triggering a new IR update is also a
segmentation of the input signal. No input partitions buffered be-
fore the trigger will be convolved with the new IR, and similarly,
no input partitions buffered after the trigger will be convolved with
the old IR. To avoid discontinuities in the IR and hence audible
clicks in the output signal, the impulse response buffer should al-
ways be completely refilled when updated (all N partitions).

DAFX-2

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

We have implemented convolution with time-variant IR as a
plugin opcode titled liveconv in the audio programming language
Csound1. A Csound opcode normally provides three programming
components: An internal data structure, an initializing function
and a processing function [15]. The internal data structure is allo-
cated in the initialization function, including all dynamic memory.
In liveconv partition length and impulse response table are speci-
fied during this step. The content of the IR table may be updated
at any time, but not its memory location or size.

The outline of the processing function is as follows (details on
overlap-add are omitted):

• Check the update control signal. If set to "load", prepare
to reload the IR. If set to "unload", prepare to unload the
IR. A data structure maintains control of each load/unload
process. In theory there could be a new process for every
partition.

• Read audio inputs into an internal circular buffer in chunks
given by the control rate of Csound (ksmps is the number
of samples processed during each pass of the processing
function).

• When an entire partition is filled with input data:

– Calculate the FFT of the input partition

– For every running load process fetch a specified par-
tition from the IR table and calculate its FFT. Note
that several parts of the IR may be updated in paral-
lel.

– Do complex multiplication of input and IR buffers in
the frequency domain

– Calculate the inverse FFT of the result and write to
output

– For every running unload process clear a specified
partition to zero.

• Increment load/unload processes to prepare for the next par-
tition. If a process has completed its pass through the IR
table, it is set inactive.

No assumptions have to be made on the impulse responses
involved. The load process can be signaled as soon as one ksmps
chunk of new data has been filled into the IR table.

Figure 4: Example of dynamic convolution with pulse train as in-
put signal and three different impulse responses.

Figure 4 shows a simple example of convolution between a
pulse train and three different impulse responses. The three IRs are
placed at their point of triggering. Notice how the output amplitude
gradually transforms for each new IR.

A special case appears when the IR’s are sampled from the
same continuous audio stream, one partition apart. Then we get

1More information at http://csound.github.io/

a result similar to cross-synthesis, pairwise multiplication of par-
titions from two parallel audio streams, but still with the effect of
long convolution filters. It should be added that there are more ef-
ficient ways to implement this particular condition, but that will be
deferred to another paper.

The interval between IR updates is provided as a parameter
available for performance control, which increases the playability
of convolution. There is still a risk of huge dynamic variations
due to varying degrees of frequency overlap between input signal
and impulse response. The housekeeping scheme introduced to
maintain the IR update processes could be exploited for smarter
amplitude scaling. This is ongoing work. We would also like to
look at integration of some of the extended convolution techniques
proposed by Donahue & al [10].

5. USE CASE: PLUGIN FOR LIVE PERFORMANCE

A dedicated VST plugin has been implemented to show the use
of the new convolution methods, built around the liveconv opcode.
Even though the incremental IR update allows for a vast array of
application areas, we have initially focused on realtime convolu-
tion of two live signals. As an indication of its primary use, we’ve
named it "Live convolver". The plugin is implemented with a "dual
mono" input signal flow, as shown in figure 5, allowing it to be
used on a stereo track of a DAW. The left stereo signal will be used
to record the IR, while the right stereo signal will be used as input
to the convolution process.

Figure 5: Plugin signal flow overview

The signal on the IR record input channel is continuously writ-
ten to a circular buffer. When we want to replace the current IR,
we read from this buffer and replace the IR partition by partition.
The main reason for the circular buffer is to enable transformation
(for example time reversal) of the audio before making the IR. As
an attempt to visualize when the IR is taken from, we use a circu-
lar coulouring scheme to display the circular input buffer. We also
represent the IR using the same colours. Time (of the input buffer)
is thus represented by colour. As the color of now continuously

DAFX-3

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

and gradually changes from red to green to blue, it is possible to
identify time lag as an azimuthal distance on the color circle 2. Fig-
ure 6 shows the plugin gui, with a representation of the coloured
input buffer and a live sampled IR. Similarly, a time reversed IR
is shown in figure 7. Note the direction of color change (green to
red) of the reversed IR as compared with the color change in the
normal (forward) IR (blue to red).

Figure 6: Liveconvolver plugin GUI

Figure 7: Visualization of time reversed IR

The plugin has controls for manual triggering of the IR record-
ing, or the IR can be automatically updated by a periodic trigger
(using IR update rate and IR size controls). Methods for triggering
IR update via transient detection has also been implemented. Pitch
modification and time reversal is available by dedicated gui con-
trols. In addition, we have simple lowpass and highpass filtering,
as this can be very useful for quickly fixing spectral problems of
using convolution in a live setting. Since convolution can lead to
a certain loss of high frequency content, we also have the option
of "brightening" each input by applying a low-q high shelf filter.
Finally, there is a significant potential for audio feedback using
convolution in a live setting, when the IR is sampled in the same
room where the convolver output is played back. To alleviate this
risk, we have implemented a frequency shifter with relatively small
amounts of shift as suggested by [16]. The amount of frequency
shift is also controllable from the gui. By shifting the convolver
output with just a few Hz, the feedback potential is significantly
reduced.

6. USE CASE: LIVE PERFORMANCES

The liveconvolver plugin has been used for several studio sessions
and performances from late 2016 onwards. Reports from some of
these experimental sessions can be found at [17] and [18]. These
reports also contain reflections on the performative difference ex-
perienced in the roles of recording the IR and playing through it. It
is notable that a difference is perceived, since in theory the math-
ematical output of the convolution process is identical regardless
of which one signal is used as the IR. The buffering process al-
lows continuous updates to the IR with minimal latency, and sev-
eral methods for triggering the IR update has been explored. This

2https://en.wikipedia.org/wiki/Color_wheel

should ideally facilitate a seamless merging of the two input sig-
nals. However, the IR update still needs to be triggered, and the
IR will be invariant between triggered updates. In this respect,
the instrument providing the source for the IR will be subject to
recording, and the live input to the convolution process is allowed
a continuous and seamless flow. It is natural for a performer to
be acutely aware of the distinction between being recorded and
playing live. Similar distinctions can assumably be made in the
context of all forms of live sampling performance, and in many
cases of live processing as an instrumental practice. The direct
temporal control of the musical energy resides primarily with the
instrument playing through the effects processing, and to a lesser
degree with the instrumental process creating the effects process
(recording the IR in our case here).

7. OTHER USE CASES, FUTURE WORK

The flexibility gained by our implementation allows parametric
control of convolution also in more traditional effects processing
applications. One could easily envision a parametric convolution
reverb with continuous pitch and filter modulation for example.
Parametric modulation of the IR can be done either by applying
transformations on the audio being recorded to the IR, or directly
on the spectral data. Such changes to the IR could have been done
with traditional convolution techniques too, by preparing a set of
transformed IR’s and crossfading between them. The possibilities
inherent in the incremental IR update as we have described allows
direct parametric experimentation, and thus is much more immedi-
ate. It also allows for automated time-variant modulations (using
LFO’s and random modulators), all without introducing artifacts
due to IR updates.

8. CONCLUSIONS

We have shown a technique for incremental update of the impulse
response for convolution purposes. The technique provides time-
variant filtering by doing a continuous update of the IR from a
live input signal. It also opens up possibilities for direct paramet-
ric control of the convolution process and as such enhancing the
general flexibility of the technique. We have implemented a sim-
ple VST plugin as proof of concept of the live streaming convo-
lution, and documented some practical musical exploration of its
use. Further applications within more traditional uses of convolu-
tion has also been suggested.

9. ACKNOWLEDGMENTS

We would like to thank the Norwegian Artistic Research Programme
for support of the research project "Cross-adaptive audio process-
ing as musical intervention", within which the research presented
here has been done. Thanks also to the University of California,
and performers Kyle Motl and Jordan Morton for involvement in
the practical experimentation sessions.

10. REFERENCES

[1] Mark Dolson, “Recent advances in musique concrète at
CARL,” in Proceedings of the 1985 International Computer
Music Conference, ICMC 1985, Burnaby, BC, Canada, Au-
gust 19-22, 1985, 1985.

DAFX-4

Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

[2] Curtis Roads, “Musical sound transformation by convolu-
tion,” in Opening a New Horizon: Proceedings of the 1993
International Computer Music Conference, ICMC 1993,
Tokio, Japan, September 10-15, 1993, 1993.

[3] Trond Engum, “Real-time control and creative convolution,”
in 11th International Conference on New Interfaces for Mu-
sical Expression, NIME 2011, Oslo, Norway, May 30 - June
1, 2011, 2011, pp. 519–522.

[4] William G. Gardner, “Efficient convolution without input-
output delay,” Journal of the Audio Engineering Society, vol.
43, no. 3, pp. 127, 1995.

[5] Øyvind Brandtsegg, “A toolkit for experimentation with sig-
nal interaction,” in Proceedings of the 18th International
Conference on Digital Audio Effects (DAFx-15), 2015, pp.
42–48.

[6] Øyvind Brandtsegg, Trond Engum, Andreas Bergs-
land, Tone Aase, Carl Haakon Waadeland, Bernt Isak
Wærstad, and Sigurd Saue, “T-emp communication
and interplay in an electronically based ensemble,”
https://www.researchcatalogue.net/view/48123/48124/10/10,
2013.

[7] Øyvind Brandtsegg, Trond Engum, Tone Aase, Carl Haakon
Waadeland, and Bernt Isak Wærstad, “Evil stone circle,”
https://www.cdbaby.com/cd/temptrondheimelectroacou,
2015.

[8] Lars Eri Myhre, Antoine H Bardoz, Sigurd Saue, Øyvind
Brandtsegg, and Jan Tro, “Cross convolution of live audio
signals for musical applications,” in International Sympo-
sium on Computer Music Multidisciplinary Research, 2013,
pp. 878–885.

[9] Øyvind Brandtsegg and Sigurd Saue, “Experiments with dy-
namic convolution techniques in live performance,” in Linux
Audio Conference, 2013.

[10] Chris Donahue, Tome Erbe, and Miller Puckette, “Extended
convolution techniques for cross-synthesis,” in Proceedings
of the International Computer Music Conference 2016, 2016,
pp. 249–252.

[11] Jonathan S Abel, Sean Coffin, and Kyle S Spratt, “A
modal architecture for artificial reverberation,” Journal of
the Acoustical Society of America, vol. 134, no. 5, pp. 4220–
4220, 2013.

[12] Jonathan S Abel and Kurt James Werner, “Distortion and
pitch processing using a modal reverberator architecture,” in
International Conference on Digital Audio Effects (DAFx-
15), Trondheim, Norway, November/2015 2015, .

[13] H.J. Nussbaumer, Fast Fourier Transform and convolution
algorithms, Springer, 1982.

[14] Thomas G. Stockham, “High-speed convolution and corre-
lation,” in Proceedings of the April 26-28, 1966, Spring joint
computer conference, 1966, pp. 229–233.

[15] Victor Lazzarini, “Extensions to the csound language: from
user-defined to plugin opcodes and beyond,” in Proceedings
of the 3rd Linux Audio Conference, 2005.

[16] Carlos Vila, “Digital frequency shifting for electroacoustic
feedback suppression,” in Audio Engineering Society Con-
vention 118, May 2005.

[17] Øyvind Brandtsegg and Kyle Motl,
“Session ucsd 14. februar 2017,”
http://crossadaptive.hf.ntnu.no/index.php/2017/02/15/session-
ucsd-14-februar-2017/, 2017.

[18] Øyvind Brandtsegg and Jordan Morton, “Con-
volution experiments with jordan morton,”
http://crossadaptive.hf.ntnu.no/index.php/2017/03/01/convolution-
experiments-with-jordan-morton/, 2017.

DAFX-5

	1 Introduction
	2 Context
	3 Previous implementations
	4 Our implementation: Time-variant impulse response
	5 Use case: plugin for live performance
	6 Use case: live performances
	7 Other use cases, future work
	8 Conclusions
	9 Acknowledgments
	10 References

