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Summary

In the modern process of continuous Direct Chill (DC) hot top casting of
aluminium extrusion ingot with gas slip [25], poor surface quality of the cast
ingot can still be a problem. In the worst cases pronounced surface wrinkling
may occur coupled with periodic zones of reduced grain size, macrosegregation
and exudation at the surface. The observed surface irregularities are believed
to be linked to periodic surface oscillations or folding of the meniscus resulting
in varying solidification conditions in the mould.

The focus of this work is to gain a better understanding of the dynamics of
the free aluminium surface, or meniscus, formed in the mould, and the effect
it has on ingot surface formation. Both casting experiments and numerical
simulations of the casting process have been performed. In addition a brief
analytical analysis of oscillations and waves that may influence the meniscus
behaviour has been made, and finally a series of simple meniscus water model
experiments have been performed.

The main part of the work consists of the adaption and implementation of
a two-phase marker chain front tracking technique using cubic spline surface
reconstruction, the Method of Tensions (MOT) [49]. This method is applied
in modelling the free surface meniscus dynamics. The advantage of this type
of model is its accuracy in the calculation of surface tension forces, which
is especially important in the case of modelling the Al meniscus due to the
high metal gas density ratio. Also, with this model wetting conditions may
easily be implemented as boundary conditions on the surface spline function.
Modifications have been made to marker advection, surface reconstruction,
and surface force distribution algorithms of MOT to improve surface stability
and phase conservation.

In the solidification modelling the effect of latent heat release is included
in the heat capacity so that a direct temperature-enthalpy relation is pre-
served. Further a simple model for the solidification contraction is imple-
mented to correctly model both the heat flow across and the slip gas flow
through the air gap.

The modified MOT is implemented together with the solidification model
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in the FLUENT CFD solver, which uses the SIMPLE algorithm [47] together
with the Power Law [1] in the Finite Volume discretization.

The work has lead to two important contributions:

Firstly, a functional numerical method for modelling meniscus dynam-
ics in the casting process has been developed.

Secondly, added insight into the casting process has been achieved,
primarily though the casting tests and casting simulations.

The most important result, indicated by both casting tests and simula-
tions, is that the meniscus oscillations are coupled with significant upward
bubbling through the melt inlet in the mould. This conclusion is based on
both visual observations of bubbling at the melt surface in the mould and
from simulated upward bubbling from the meniscus. Also, the high stability
of the section of the meniscus closest to the mould wall, observed in the cast-
ing experiments and recreated in casting simulations, imply a large meniscus
with at least periodic contact with the melt inlet corner. The results also
indicate that a significant upward gas discharge is necessary to induce the
rapid meniscus collapse observed in the casting tests. It is believed that
the momentum of the fluid flow induced by upward bubbling induces the
collapse.

Based on the results achieved, some suggestions are made for process
modifications. Firstly, to achieve as smooth a behaviour as possible, the
geometry of the inside of the hot top should be smooth. And improved
control of the meniscus may be achieved with a modified mould geometry so
that meniscus oscillations are reduced. Possible modifications are suggested.

To further develop mould geometry and slip gas control, casting tests
should be performed with the modified mould geometry. Also, numerical
simulations should be performed with surface breakup and merging tech-
niques implemented in the simulation program, so that bubble formation
and coalescence may be included. Subsequently, the upward discharge of slip
gas, which is believed to be linked to meniscus collapse, may be properly
simulated.

To conclude, the modified Method of Tensions is shown to be accurate
and stable enough to be applied to modelling of the meniscus dynamics.
And for the casting process, by altering mould geometry and improving slip
gas control, it should be possible to achieve a more stable meniscus, and
subsequently a more stable casting process, which should result in improved
cast ingot surface quality.
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Chapter 1

Al ingot casting

1.0.1 A brief history of aluminium ingot casting

The history of Al ingot casting stretches back to approximately 100 years ago.
At this time the process of casting steel and copper ingots was already well
developed. The ingots were solidified in permanent moulds (book-moulds)
into which the molten metal was poured. Initially this technique was also
used for production of aluminium ingot, but because of the dangers of the
reactivity of the molten aluminium with the atmosphere modifications had to
be made. A technique of tilting the mould [9] was developed (see figure 1.1).
By using this technique a gentler melt flow was achieved making for a safer
casting process.

Increasing industrialization in the early 20th century, and especially the
rapidly growing aviation industry, resulted in a need for increased ingot size.
Larger ingots allowed for production of larger parts so larger planes could be
made. These larger ingot dimensions, however, led to new problems in the
casting process. The considerable air gap produced by shrinkage of the cast-
ing lead to poor heat transfer, slow solidification, and resulted in extremely
coarse grain structures. Large intermetallic particles in the coarse structure
could cause fracture during rolling and forging, or if cracks were avoided in
this process then fractures could appear later in the finished product.

The consequence of the problems connected to large ingot size was the
development of the Direct Chill (DC) ingot casting process [16]. The basic
idea of DC casting is cooling the ingot by a jet of running water as the ingot
emerges from an open mould. Through this open casting technique many of
the problems connected to the slow solidification were avoided and the ingot
quality was greatly improved.

As requirements for ingot quality further increased new casting techniques
were sought to better control the properties of the castings. An important
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Figure 1.1: Permanent mould casting; tilting-mould technique.

factor in ingot quality was found to be the height of the metal head in the
mould. A lower metal surface lead to a shortening of the air gap between
the mould wall and ingot surface and subsequently reduced heat extraction
through the mould wall. Thereby the properties of the ingot were made less
dependent on the primary cooling (see below), which is difficult to control,
and thus improving ingot quality [44]. One of the best ways to achieve a lower
metal surface in the mould was found to be by the use of a header box of
insulating material, a ’hot top’, on the top of a short mould [7]. The method
was further developed in the late 1960’s and early 1970’s resulting in a similar
geometry to the one used in hot top moulds today. With such good control
of metal height, ingot quality could be further improved. Also simultaneous
casting of multiple ingots in a multistrand unit was made possible.

Another problem which needed to be dealt with was the poor surface
quality of the ingots cast with the hot top DC casting process. For ingots
used for rolling poor surface quality is not a problem, since ingots are nor-
mally scalped before the rolling process [5]. But for extrusion ingots, which
are generally not scalped, better surface quality would greatly influence the
finished product. Further developments towards solving the problem of poor
surface quality were suggested by Showa in the late 1970’s. By injecting gas
into the top of the mould a better control of the shape and position of the free
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Figure 1.2: Casting table seen from above. 24 moulds.

melt surface in the mould (also known as the meniscus) could be achieved.
With this technique it was possible to further reduce the air gap and conse-
quently reduce the heat transfer over the gap, thereby further improving the
ingot quality. The technique is known as gas slip or air slip casting.

Several different casting techniques have been developed in parallel with
the development of the process described above. The three other techniques
used today [5] are conventional open DC moulds, air/gas slip moulds with
the original Showa-Denko design, and electromagnetic moulds.

The casting method considered in this work is the hot top DC air/gas
slip method. A better understanding of the meniscus dynamics and solidifi-
cation in the mould is sought mainly through mathematical modelling and
subsequent numerical simulation. The motivation for this work is to further
improve the cast ingot surface quality. The process is described more thor-
oughly in the following section. Through this description the current general
understanding of the casting process is presented. And some new models are
suggested.

1.1 Process description

The contemporary continuous Al hot top DC gas slip extrusion ingot casting
process is schematically described in figures 1.2 to 1.4(b). The molten metal
flows from the holding furnace onto the casting table (figure 1.2) where it is
distributed through channels into a matrix of open moulds. A typical casting
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Figure 1.3: Hot top casting of extrusion ingots.

mould is presented in figure 1.4(a). The melt flows into the mould where it
is initially supported by the mould wall and a bottom block. As the metal
solidifies the bottom block is withdrawn and as the solid ingot emerges it
is further cooled by a water spray which hits the ingot directly below the
mould wall (figure 1.4(b)). This is referred to as Direct Chill . A picture of
an actual casting process is shown in figure 1.3.

1.2 Solidification

The characteristics of the solidification depend on a multitude of variables
such as alloy content, cooling efficiency, mould geometry, melt flow and cast-
ing velocity. The influences and effects of these most important factors are
considered below.

1.2.1 Hot top

As described above the hot top controls the level of the melt in the mould,
thereby improving ingot quality and also stabilizing the casting process. The
hot top is made of an insulating material so that the heat extraction from
the ingot through the hot top will be minimal.

1.2.2 Mould geometry

Several different types of mould geometry are used in the casting process.
The geometry presented here (figure 1.4(a)) is chosen partly to facilitate
gridding of the computational domain in the numerical simulations. One
important aspect of the geometry is the extra space for the gas pocket above
the meniscus. Through developments of the casting process one has found
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(a) Cross section of casting with enlarged mould wall and definition of menis-
cus region. Melt flow direction indicated in melt inlet.

(b) Cross section of meniscus re-
gion. Closed air gap, free menis-
cus.

Figure 1.4: Ingot casting with meniscus.
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that extra space above the meniscus stabilizes the primary solidification. A
partly sloping bottom surface of the hot top is often used.

1.2.3 Lubrication and gas injection

Lubrication systems were developed in parallel with the development of DC
casting [42]. During casting lubricating oil is injected into the top of the
mould to lubricate the mould wall, thereby allowing the ingot to slip. New
methods have gradually been developed for the injection of both gas and oil
into the mould. In the specific process considered here the air and oil are
introduced into the mould through a porous graphite ring (figure 1.4(a)) in
the mould wall. The gas is injected through the upper part of the ring while
the air is injected through the lower part. This technique is used in both the
Wagstaff AirSlip [33] and Hydro Air Cushion techniques, among others.

1.2.4 Cooling

There are two main sources of cooling: the mould wall and the direct water
chill.

The mould wall is composed of two separate regions: a porous graphite
ring and an aluminium casing encapsulating it (figure 1.4(a)). Both these
regions are cooled by a water reservoir inside the mould. As the metal comes
into thermal contact with the mould wall it is cooled and a solid shell may
form, known as the solid lip. This cooling by the mould wall is known as the
primary cooling.

The second and main source of cooling is the Direct Chill. As the ingot
emerges below the mould it is sprayed with water (figure 1.4(b)). The water
cools the ingot as it runs down along its surface. This region of water cooling
is known as the ’secondary cooling’ zone. The water chill efficiency deter-
mines the properties of the bulk of the cast ingot while the primary cooling
mainly effects the ingot surface properties.

1.2.5 Mushy zone

Alloy elements induce a broadening of the solidification temperature range.
Pure aluminium goes from complete liquid to complete solid at a specific
temperature, whereas aluminium alloys, due to segregation, solidify over a
finite temperature range. The temperature range of solidification increases
with the amount of alloy elements added. This is the reason for the so called
’mushy zone’ between the liquid and solid (see figure 1.4(a)). At the top of
the region where the temperature is at its highest, fine ’equiaxed’ grains with
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no preferred growth direction are formed which float freely in the melt. The
extent of grain formation in the melt depends on the particular aluminium
alloy considered. At the lower part of the mushy region dendrites grow from
the solid region extending out into the mushy. Dendrites will also form in
the primary cooling zone growing inward from the mould wall. As the grains
formed in the mushy zone grow and settle around the dendrites growing at the
bottom of the zone the metal grows in strength and eventually becomes rigid.
The temperature at which the solidified metal forms a connected structure
is known as the point of dendrite coherency . Solidification contraction (see
1.2.7) will start at some temperature below this point, depending on the
properties of the specific aluminium alloy.

1.2.6 Heat transfer

Primary cooling

The heat transfer from the melt to the hot top is negligible compared to
the primary and secondary cooling described above. So normally the ingot
will start solidifying only after making thermal contact with the mould wall
(figure 1.4(b)), resulting in the solid lip described above. The heat transfer
from the ingot to the mould in the primary cooling zone will depend on the
amount of physical contact between the ingot and the mould, the width and
length of the air gap, the composition of gas and oil in the air gap and the
emissivity of the mould and ingot surfaces. If the ingot is in physical contact
with the mould then the heat transfer in the region of contact will dominate
the other heat transfer from ingot to mould. In this case the air gap is closed
(as in figure 1.4(b)). When there is no contact between mould wall and ingot
the air gap is open. In this case slip gas passes through the gap and exits
below the mould. Gas flow is discussed in section 1.3.4. The heat conduction
across the air gap is determined by the gap width and the composition of
the oil/gas mixture in the gap. Increased oil content will result in increased
conduction. The emissivity of the mould and ingot surfaces will influence the
radiative heat transfer across the gap. Another factor which might influence
the heat transfer over the air gap could be surface oxide passing through it.
Formation of aluminium oxide (alumina) is discussed below (1.3).

Secondary cooling

With given alloy properties, the direct water chill , being the main cooling
source, determines the solidification rate and extent of the mushy zone in the
bulk of the ingot. The water impingement area can be seen in figure 1.4(b). In
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addition, the secondary cooling can to a lesser extent effect the temperature
field, and consequently the solidification, in the primary cooling zone.

The effect of the secondary cooling depends on the mechanism of heat
transfer between the ingot and the cooling water and on the temperature
difference between the ingot surface and bulk water temperatures. Film
boiling will often occur in the upper area of contact between water and
ingot. This type of boiling produces an insulating layer of water vapour on
the surface of the ingot, thereby reducing the cooling effect of the water.
The transitions from nucleate boiling to unstable film or transitional boiling,
and further to film boiling, [43] are dependent on water properties (see [29]).
Therefore the quality of the water can greatly influence the efficiency of the
secondary cooling.

1.2.7 Contraction

As pure aluminium solidifies it will contract to a considerable extent be-
cause of the reordering of atoms into the metallic crystal lattice structure.
Excessive contraction can cause serious problems in castings, such as large
cracks in the center (hot tearing) or bottom of the ingot (see [19]). There-
fore alloy elements are normally added. Through the formation of eutec-
tic/peritectic/hypoeutectic the crystal lattice is split up into sections ([19]).
Some alloy elements form compounds which contract less than the alu-
minium. Consequently the total contraction is reduced. The alloy content
will to a great extent determine the total radial contraction of the ingot.

The radial contraction in the mould is determined by the balance between
the force of solidification contraction in the solid lip, the force of the total
metallostatic head in the mould and possibly also the pressure in the gas
pocket , which determines the pressure drop through the open air gap. The
mean pressure of the metallostatic head is determined by the mean metal level
at the top of the mould. The instantaneous metal height will however vary
due to both waves on the casting table and to variations in gas pocket volume.
This leads to variations in air gap width. The radial contraction in the mould
also depends on the thickness of the solid lip, which is determined by the
intensity of the primary and secondary cooling. Since the amount of primary
cooling is partly determined by the radial contraction in the mould this
system constitutes a feedback loop, which may lead to a physically unstable
air gap. The thickness of the solid in the vertical cross section directly below
the primary cooling zone, which is mainly determined by secondary cooling,
will also influence the radial contraction, and hence the air gap, in the mould,
since the solid lip is supported by the solid metal below. Consequently the
strength and radial contraction in the in the secondary cooling zone will
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Figure 1.5: Intersection of cast ingot surface showing irregularities.

influence the contraction in the mould.

1.2.8 Segregation

Several kinds of macrosegregation can occur in the surface region of the cast
ingot. The four main types (again from [5]) are periodic segregation, segrega-
tion linked to exudation, depleted bands , and a continuous surface segregation
layer. The characteristic periodic segregation occurs in alloys with a short
solidification temperature range. The effect is probably linked to periodic

Figure 1.6: Typical oscillations marks on surface of cast ingot.
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remelting of the solid lip, described in [16]. The second type, exudation, is
linked to alloys with a broad solidification range. This effect might also be
linked to remelting, but here with resulting bleeding or exudation through
the semi-solid surface. Another possible cause is folding of the meniscus, also
leading to exudation. The third type of segregation, banding, is probably also
linked to meniscus behaviour. The second and third type of exudation are
discussed further below in section 1.3 . The fourth type, the continuous seg-
regation layer, is a naturally occurring enriched layer appearing in ingots of
all alloy types, created by diffusion of alloy elements and melt flow during
solidification. Also see [65].

1.2.9 Grain structure

The grain structure might or might not be linked to segregation. The banded
segregation described above often occurs coupled with a finer grain structure.
A possible explanation for this phenomenon is solidification of the meniscus,
again discussed below (1.3).

1.2.10 Solidified surface

There are at least three typical physical irregularities that occur on the cast
ingot surface. These are oscillation marks (also known as surface marks [2]),
bleed bands , and the grain refined segregated bands . These faults are presented
schematically in figure 1.5. The oscillation marks are regular periodic grooves
in the ingot surface. The bleed bands, caused by exudation (or bleeding)
mentioned above, form segregated bulges on the ingot surface, and will often
cover the oscillation marks (see [5]). Both the oscillation marks and the bleed
bands have the same period as the bands of finer grain structure, suggesting
that these periodic defects are all formed by the same mechanism, which is
discussed further below (1.3). Also see [62] and [2]. A typical cast ingot
surface with oscillation marks is shown in figure 1.6.

1.3 Meniscus dynamics

The meniscus geometry and dynamic properties will greatly influence the
solidification in the primary cooling zone. The mean geometry of the menis-
cus is mainly determined by the mould geometry (particularly the level of
the hot top), the slip gas flow rate, and the casting velocity. The geometry
influences the metal level at the mould wall and consequently also the length
of the air gap. It also influences the periods of open and closed air gap.
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Figure 1.7: Pressure difference related to curvature at top of meniscus. Gas
pressure pg, metallostatic head pressure pm.

By the discussion above (section 1.2), the air gap influences the amount of
primary cooling, and consequently also the ingot surface quality. Therefore
controlling the meniscus is of primary importance in the casting process.

Many factors influence the meniscus properties and dynamics. These in-
clude wetting boundary conditions at the mould wall and hot top, surface
tension coefficient and oxidation on the meniscus. Both the solid lip and
the extent of the mushy zone below the meniscus will influence its move-
ment. Subsequently meniscus dynamics and ingot solidification is a two-way
interaction. If there is solidification up onto the meniscus the movement is
constrained, otherwise the meniscus is here defined as a free meniscus (see
figure 1.4(b)).

1.3.1 Surface tension and Wetting

The curvature of the free molten metal surface is determined by the surface
tension forces and the pressure difference over the surface (by Laplace’s for-
mula [40]). An increase in surface tension coefficient will give a decreased
surface curvature with other parameters equal. A fixed wetting angle be-
tween the molten metal surface and the mould puts an extra constraint on
the meniscus shape. However, in order for the pressure difference between
the gas pocket and the metal pressure at the bottom of the hot top to vary
freely, the curvature at the contact point between the molten meniscus free
surface and the hot top must be free to balance the arbitrary pressure differ-
ence (see figure 1.7). To avoid an extra constraint on curvature the wetting
angle at this point must also be free.

Tests have shown that the static wetting angle between liquid aluminium
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Figure 1.8: Extreme upper meniscus contact points.

and ceramics (as in the ceramic hot top) is quite small (see [22]). However,
in a dynamic system the wetting behaviour may differ from that of the static
case.

Also it might be possible that the meniscus could be hanging on a corner
of the hot top, thereby allowing it to have free wetting. There are two possible
corners to hang from on the hot top bottom: next to the melt inflow and next
to the gas pocket. Meniscus dynamics should differ considerably for these
two cases (see figure 1.8). Wetting conditions are made subject to analysis in
the following modelling work to gain a better understanding of the process.

1.3.2 Oxidation

Aluminium oxide or alumina, Al2O3, forms on molten aluminium in contact
with an oxygen-rich atmosphere. In the hot top gas slip casting process
the molten aluminium is in contact with air on the casting table. As the
aluminium flows into the mould the oxide formed can be pulled down and
thereby effect the surface formation of the cast ingot. If there is oxygen in
the slip gas then oxide will also form on the meniscus surface. Both the oxide
pulled into the mould and the oxide formed on the meniscus will influence the
dynamic properties of the meniscus. Resolving the free meniscus dynamics
will in this case be a three phase problem, with gas, oxide, and molten metal
phases present, and the applied free surface approximation (see chapter 4)
might not any longer be valid. The following discussion is however based on
free meniscus surface movement (unless it is constrained by solidification).
Effects of oxidation will be considered in the later discussion. For now it can
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Figure 1.9: Gravity induced oscillations in casting column.

be stated that a lot of oxidation can make the meniscus more rigid and may
also lead to highly irregular meniscus behaviour.

1.3.3 Meniscus oscillations

Several observations have been made of meniscus dynamics in the mould (
[2], [68], [67], [14]). Based on these results and results of observations made
during this work (see 2), some models for meniscus dynamics and interaction
with solidification are suggested in the following.

Waves on meniscus surface

Oscillations of the meniscus can take several forms. The dynamic properties
of the free surface are partly influenced by gravity, surface tension forces (or
capillary forces), and wetting. One form of oscillation that might occur is
capillary waves , i.e. waves provoked by surface instability where the domi-
nating restoring force is the surface tension force. Or if the restoring forces
are the combined surface tension and gravity forces then gravity-capillary
waves occur. Gravity waves in the casting column might also occur. In this
case the upper surface of the molten metal in the mould oscillates in combi-
nation with the meniscus surface (see figure 1.9). The reason for this type
of oscillation can be surface waves propagating on the molten metal surface
on the casting table, or the oscillation might be induced by gas escaping in-
termittently from the gas pocket. The amplitude and sustainability of these
gravitational oscillations will depend on the damping in the gas pocket, which
is dependent on the compressibility of the gas and the flow of gas through
the open air gap or bubbling through the mould inlet. An analysis of the
influence of the different types of waves is analyzed in chapter 3.

Solidification of the meniscus can also be linked to oscillations.
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Figure 1.10: Collapsing meniscus model.
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Figure 1.11: Surface mark formation model of Ackermann et al.
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Solidification and collapse of the meniscus

Molten meniscus If there is no meniscus solidification the molten menis-
cus must be supported by the mould wall. However, the slip gas injected must
have some form of escape. And if there is no downward escape route it must
bubble up through the melt inlet. So with a molten meniscus intermittent
upward gas discharge is to be expected.

Meniscus solidification

With sufficient primary cooling, solidification of the lower part of the menis-
cus can occur, as shown in figure 1.10(a). In this case meniscus oscillations
might be connected to formation of surface irregularities. The extent of the
solidification will determine the amplitude of the meniscus oscillations and
resulting surface faults. The complete process is illustrated in figure 1.10.

Four stages of an oscillation period are shown. The casting direction
is towards the left (compare to figure 1.4(b)). The initial state is shown
in 1.10(a), where the lower part of the meniscus is solid. When there is
solidification on the meniscus a geometry as in figure 1.4(b) is mechanically
unstable because the surface forces are not balanced according to Young’s
equation [58]. To achieve mechanical equilibrium a partial overflow of the
melt over the solidified lower part of the meniscus is necessary. (A similar case
which can easily be observed is the meniscus formed when a glass is overfilled
with water). The wetting angle at the lower point of the liquid meniscus is
then determined by Young’s equation. The meniscus surface shape for a given
gas pocket volume is consequently determined by the boundary conditions
and the balance of forces through the extent of solidification, the wetting
angle at the lower point of the liquid meniscus, the surface tension coefficient,
the profile of the pressure jump across the surface and the gravitational forces
pulling on the molten metal.

As the ingot is pulled down during casting the solid lip follows, thereby
lengthening and deforming the meniscus. Now two things may happen: the
meniscus may collapse, or the meniscus may solidify because of thermal con-
tact with the mould wall.

Collapsing meniscus model If the forces over the meniscus can no longer
be balanced at some point due to dominating gravitational forces, it will
collapse as shown in 1.10(b) - 1.10(c). Subsequently a new meniscus is formed
above the old solidified lower part of the meniscus, and the new meniscus
surface in contact with the wall solidifies and forms a new solid shell, as
shown in 1.10(d). This brings us back to the initial state in 1.10(a).
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Solidification or surface tension forces or both may hinder the new menis-
cus from completely filling the gap between the old meniscus and the mould
wall. Curvature and consequently surface tension forces at the lower point of
the liquid surface will increase as it collapses toward the wall. The increased
curvature and the resulting surface tension forces could prevent complete
regaining of wall contact at the lower point of the old meniscus. And also
solidification of the collapsing meniscus, stopping its downward movement,
might prevent complete filling of the gap. The result will then be a small
groove or oscillation mark in the cast ingot surface as shown in figure 1.5.

Internal structural bands might be coupled with the oscillation marks.
The upper part of the solidified meniscus solidifies quickly, leading to a fine
grain structure . The metal that runs over the old meniscus when the menis-
cus collapses solidifies more slowly. After the collapse of the meniscus the
regions above and below the thin surface shell of the old meniscus solidify due
to increased heat transfer from contact with the mould wall. Consequently
a coarser grain structure is formed in these regions. Different alloy content
due to different segregation on the solidified surface and inside the ingot may
also influence the grain structure. In this way the irregular grain structure
described in 1.2.9 might occur, possibly coupled with varying segregation.

Semi steady state A combination of the collapsing meniscus and the
molten meniscus models might also occur. After the collapse of the meniscus
the formation of the solid shell might not be instantaneous. In the phase
before the solid shell grows sufficiently strong to pull the meniscus down,
the meniscus dynamics could be as described for the molten meniscus above.
Once the solid shell has gained enough strength to pull the meniscus down
the collapsing meniscus phase is again initiated. And so on. Oscillation
marks and structural bands (figure 1.5) would probably not be as distinct by
this process, but more bleed bands might form, due to a longer period before
solidification.

Surface mark formation model of Ackermann et al The second
mechanism for oscillation mark formation, which gives similar results to the
collapsing meniscus model described above, is the ’Surface mark formation
model’ presented in [2]. In this case the free lower contact point of the menis-
cus, driven by the gravitational pull on the melt, moves down the old solid
meniscus surface until it touches the mould wall and solidifies. The cycle is
illustrated in figures 1.11(a) to 1.11(d). In this case more remelting of the
old meniscus would be expected than for the case of the collapsing meniscus.
So the internal structural bands might be less distinct. The oscillation marks
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should however be of approximately the same size as for the case of meniscus
collapse.

It is very possible that the process of oscillation mark formation can
be a combination of the ’collapsing meniscus’ and ’surface mark formation’
models.

Exudation In the case of meniscus solidification oscillations there is a
much greater chance of exudation leading to the bleed bands (figure 1.5).
After the new meniscus has collapsed or started resolidification the new in-
got surface will not be solid. If there is a groove or oscillation mark below the
partly solidified new surface the metal head may force melt out through pores
in the metal surface into the groove, causing exudation, possibly thereby
covering the oscillation marks. If there is an open air gap between the old
meniscus and the wall the exuded liquid metal may partly flow down into
the gap. This effect may create the characteristic bleed bands shown in fig-
ure 1.5. It would both explain the periodicity of the bands and the fact that
they are in phase with the internal structural bands. A similar explanation
is suggested in [5].

1.3.4 Slip gas flow

Gas discharge from the gas pocket is determined by the meniscus dynamics
and solidification. A common technique during casting startup is increasing
injected gas flow until the gas starts bubbling up through the melt inlet and
then decreasing the gas flow until bubbling is no longer visible. As already
described, the meniscus reduces the ingot to mould contact in the primary
cooling zone, thereby improving casting control. Making the gas pocket
volume as large as possible results in a large meniscus and small ingot/mould
contact area. This effect is sought through the startup procedure. In the
proceeding casting process it is important to maintain a large gas pocket.
Therefore knowledge and control of gas flow in and out of the gas pocket is
important for controlling the cast ingot surface quality.

The injected gas has two possible ways of exiting the gas pocket. The gas
can either flow down through the air gap, if it is open, or the gas can escape
upwards bubbling through the melt inlet at the top of the mould.

Downward discharge

If the lower part of the meniscus is solidified then the air gap will open a
clear passage between the mould wall and the ingot through which the gas
escapes from the gas pocket. If the meniscus is completely molten, then there
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is no free passage and the air from the gas pocket can not escape downwards.
But if the meniscus dynamics are like those described in either the collapsing
meniscus model or the surface mark formation model, then gas flow from the
pocket through the air gap should be possible, at least intermittently.

As figure 1.10 illustrates, for the collapsing meniscus model, the passage
down along the mould wall is only blocked for a short period after the menis-
cus collapse. At all other stages the air gap is open. In the case of the
surface mark formation model, either the passage is open continuously or
there is periodic blocking due to contact between the new meniscus and the
mould wall before the meniscus solidifies. So both mechanisms include either
intermittent or continuous downward gas discharge.

Upward discharge

If the gas pocket fills to such an extent that the upper contact point of the
meniscus passes the lower corner of the melt inlet then the gas will bubble
upward through the melt inlet.

Slip gas balance

The injected gas flow rate will determine what fraction of gas flows up and
what fraction flows down for each particular solidification mechanism de-
scribed above. If the injected and downward gas flow rates are not balanced
then two things may happen. If the mean injected flow rate is larger than
the mean downward flow rate the gas pocket will grow until there is upward
gas discharge and the process will repeat itself. If the mean injected gas flow
rate is smaller than the mean downward flow rate then the gas pocket will
empty, and the casting might freeze to the mould. There might be mech-
anisms which compensate for the imbalance in injected and downward flow
rate, perhaps changing the thickness of the solidified shell, thereby decreasing
the length or width of the air gap, and consequently changing downward gas
flow rate. It would be very surprising to find that the solidification process
could stabilize itself in this fashion, but it should not be ruled out. The most
probable casting situation would however seem to be a nonzero mean down-
ward discharge combined with an excess of injected gas leading to periodic
gas discharge up through the mould. A better understanding of slip gas flow
will be sought in the current work.
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Chapter 2

Casting experiments

Casting table

Holding furnace

Test mould

Figure 2.1: Casting setup.

A series of test castings were
performed using pure alu-
minium and Al 6082, with
both pure Argon and a
mixture of 90% argon and
10% oxygen for injection in
the mould. Casting veloc-
ities used were 90mm/min,
100mm/min, 120mm and
160mm/min. The ingot dia-
meter was 200mm.

The casting set-up is dis-
played in figure 2.1. There
were six pairs of moulds.
The test mould is indicated.

The placing of the ther-
mocouples for temperature
measurements are shown in
figures 2.2 and 2.3. The tem-
perature was measured in four different regions; at several points close to the
surface of the graphite ring in the mould, at the bottom of the hot-top, in
the aluminium mould encapsulating the graphite (mould temperature) and
at the melt surface in the mould (bath temperature). Thermocouples 1 and
3 in the graphite were not functioning during the tests.

The pressure in the gas pocket was measured using a Fischer Porter dif-
ferential pressure transmitter. The meniscus was also videotaped during the
experiments through an endoscope. Holes were made through the hot top
for the pressure measurements and videotaping. The movement of the melt

21
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Figure 2.2: Positioning of thermocouples in cross section of graphite ring and
mould wall.

surface in the moulds was observed visually. Frequencies of oscillations were
measured with the aid of a stopwatch. To facilitate visual observations a
mould other than the test mould was observed.

Chemical analysis of pure Al and the Al 6082 alloy (weight %) is shown
in the following table.

Al Fe Si Mg Mn other

Pure Al 99.68 .15 .13 .006 .03 .004
Al 6082 97.70 .18 .96 .62 .52 .02

2.1 Tests

A total of seven test castings were performed. Initially the aim was to cast
four ingots with all four combinations of alloy and gas. Each ingot was
to be cast in three 1- meter sections with casting velocities of 90mm/min,
120mm/min and 160mm/min. Due to problems experienced during the
tests three castings were made for the case with pure Al, Ar10%O2 and



2.2. FREQUENCY ANALYSIS 23

Figure 2.3: Placing of thermocouples in hot-top cross section (1mm from
bottom surface).

two castings were made with Al 6082, Ar10%O2. The following table gives
an overview of castings. Cast ingots are numbered from 1 to 7.

Alloy 90mm/min 100mm/min 120mm/min 160mm/min Gas
Pure Al 1 - 2/3 2/3 Ar10%O2

- - - 4 4 Ar
Al 6082 5 6 6 6 Ar10%O2

- - 7 7 7 Ar

It was observed that for 160mm/min casting velocity the oscillatory be-
haviour in the test mould differed significantly from that of the other moulds.
So at this casting velocity the setup seemed to influence the casting more than
at the lower casting velocities. Raw data for a section of ingot 6 are plotted
in figure 2.4.

2.2 Frequency analysis

A frequency analysis of the temperature and pressure measurements were
performed using the Fast Fourier Transform. Results for ingot 6 are pre-
sented in appendix A. From the frequency analysis the following higher
characteristic frequencies [Hz] were found.

Alloy 90mm/min 100mm/min 120mm/min 160mm/min Gas
Pure Al 0.89 - 0.62 0.93 Ar10%O2

- - - 0.68 0.81 Ar

6082 -
0.45
0.89

0.49
0.98 0.90 Ar10%O2

- - -
0.55

(1.08 ) - Ar

The figures in italics are common modes of oscillation for temperature and
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Figure 2.4: Raw data, Al 6082, 90% Ar 10% O2, 120mm/min
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: One period of oscillation (∼ 2s) for Al6082 with 90%Ar 10%O2.

pressure. Modes only appearing in the pressure signal are displayed in normal
font.

The lower frequencies observed (of order 0.1Hz and lower) are not dis-
cussed here, since they represent a time scale that will not be used in the
numerical simulations. These slow variations are possibly due to thermome-
chanical coupling between the ingot contraction and secondary cooling. And
variations in the temperature field will affect the properties of the molten
aluminium at the meniscus, so they will influence meniscus behaviour on
the time scale of the casting. For simplicity the variations will however be
neglected in this thesis, where constant thermal boundary conditions are
applied for the secondary cooling.

Characteristic period with meniscus collapse

A series of pictures for a period of meniscus oscillation for Al6082 with
90%Ar 10%O2 at 120mm/min casting velocity is shown in figure 2.5. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 2.6: Meniscus collapse (∼ .1s) for Al6082 with 90%Ar 10%O2.
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meniscus collapse at the end of the period is shown in series 2.6. In the
pictures the meniscus is viewed from above. The mould wall is seen below
right while the meniscus surface is above left. Patches of lubricating oil can
be seen on the mould wall and some fissures in the surface oxide layer may be
discerned on the meniscus. These fissures disappear down along the mould
wall as the meniscus collapses. There is approximately equal time spacing
between the pictures in the individual series.

During a period (figure 2.5) the meniscus can be seen to move slowly
downwards along the mould wall, 2.5(a) to 2.5(e), before it rapidly moves
back up to its highest level, 2.5(f). At the end of this rapid upward movement
the meniscus folds, or collapses. This collapse is seen in 2.6(f) to 2.6(i), where
the resolution is poorer than in the other pictures due to the rapid folding
process.

Surface oscillations

The frequencies of oscillation [Hz] of the visually observed melt surface in the
mould are summarized in the following table. The oscillations were timed
with a stopwatch.

Alloy 90mm/min 100mm/min 120mm/min 160mm/min Gas
Pure Al 3.00 - 0.66 0.81 Ar10%O2

- - - 0.59 1.00 Ar
Al 6082 - 0.43 0.50 0.71 Ar10%O2

- - - 0.43 1.11 Ar

The frequencies coincide quite well with the modes common to pressure and
graphite temperature oscillations for casting velocities of 100mm/min and
120mm/min (again apart from the pure Ar cases, where the oscillatory signals
are weak). But the modes only appearing in the pressure signal do not
correspond very well to the manually measured frequencies.

2.3 Discussion

Common modes

It can be seen that the common modes exist mainly for medium casting
velocity (120mm/min). With a casting velocity of 160mm/min the noise is
greater than for the lower casting velocities and characteristic frequencies are
more difficult to discern.

Significant oscillatory modes common to mould temperature, graphite
temperature and gas pocket pressure only occur in Al 6082. They correspond
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Figure 2.7: Relative peak signal strength of oscillations in pressure and
graphite temperature.

to the modes with high signal strengths for graphite temperature oscillations
for ingot 6.

The common temperature oscillations observed for mould and graphite
temperature are to be expected considering the frequency and the signal
strength of these oscillations in the graphite. They occur however only for
the ingots with alloy 6082, indicating more contact at the bottom of the
mould, where the ingot is in thermal contact with the Aluminium part of the
mould (see figure 2.2). The reason for the difference in contact is probably
the difference in contraction experienced by 6082 and pure aluminium at this
point.

Temperature oscillations

Figure 2.7 shows that in relation to the casting velocity the peak graphite
temperature signal strengths are strongest for the 120mm/min castings, be-
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ing an order of magnitude greater than for the 100 and 160 mm/min sections
of ingot 6 (Al 6082, Ar1%O2). Graphite temperature peak signal strength is
generally low for castings with no oxygen, with the only significant peak for
ingot 7 (Al 6082, Ar) at 120mm/min. These results imply that both oxygen
and alloying elements enhance the periodicity and dampen the noise, with
the oxygen possibly having a larger influence than the alloy elements. And
the combined effect gives oscillations an order of magnitude stronger than
that due to only oxygen or alloy elements.

Pressure oscillations

The peak signal strengths of the pressure oscillations (figure 2.7) have smaller
variations (except for the 1 ingot, which froze in the mould). The pressure
mode peaks for 160mm/min casting velocity are the largest for the pure
aluminium ingots, while the peaks for 120mm/min are the largest for the Al
6082 ingots. Also, for the Al 6082 ingots there are dual pressure mode peaks
for the 120mm/min sections. These dual peaks may imply higher harmonics.

The higher harmonic modes observed may be linked to a wave propagating
on the meniscus. And the first mode could be coupled with the gravitational
oscillations observed on the melt surface in the mould (see above). No ob-
served higher harmonic modes at 160mm/min could be due to lowering of
the contact point of the meniscus, giving reduced thermal contact with the
wall. A smaller primary cooling area will also stabilize the process.

The peak signal strength of the graphite temperature oscillations is sig-
nificantly stronger than the signals for mould temperature and pressure oscil-
lations in the analysis (figure 2.7). This can also be observed in the raw data.
And the oscillations in pressure are a lot more erratic than the oscillations
in the graphite temperature (figure 2.4).

Pressure spikes It is possible that the effect of the dual pressure peak
is an artificial effect caused by regular interruption of the natural pressure
signal following a meniscus collapse by the next collapse. An indication of
this is the regularly appearing spike at the local temperature minima. This is
assumed to be the point of the meniscus collapse (see figure 2.8). This being
the case, a new characteristic pressure signal might be initiated, indicated
by a spike1, a sharp peak or through, at each point of collapse.

The direction of the pressure spike might be an indication of the gas
pocket behaviour during folding, a strong upward spike indicating significant

1These spikes are seemingly not due to singular experimental error, since the width of
a spike is several times the sampling interval.
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Figure 2.8: Comparison of normalized pressure in gas pocket and tempera-
ture for second thermocouple.

upward bubbling and a strong downward spike indicating folding without
upward bubbling. To understand these effects the behaviour of the metal
head must be considered in the collapsing process. As the meniscus collapses
the metal head will decrease due to increased velocity of metal flow into the
mould, and the extra metal momentum will displace gas in the pocket.

Now if the gas can escape quickly upwards the volume in the gas pocket
can decrease without pressure buildup. The pressure in the gas pocket may
therefore drop proportionally with the drop in metallostatic head. After the
collapse, the reduced metal level will quickly fill. Thereby a negative spike in
pressure is created. Gravity waves may be excited by the variations in metal
level, resulting in further pressure variations, but now of a more sinusoidal
nature.

In the opposite case, where there is no upward gas discharge, the gas
can not escape quickly as the volume of the gas pocket is reduced by the
momentum of the collapse. In this case the pressure will quickly build up as
the gas volume is decreased by the metal momentum and then fall again as
the gas expands by the force of its own pressure. So a positive pressure spike
is created.

If the interpretation above is correct the type of gas discharge can be
directly observed from a comparison of the pressure and temperature signals,
giving an effective experimental method for observing meniscus behaviour.
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Graphite temperature profile

The test data imply good thermal contact between graphite and ingot surface
up to thermocouple 4 (see figures 2.9) for 120mm/min with pure aluminium.
For 160mm/min the contact is lower.

When Al 6082 is used, there appears to be contact up above thermocou-
ple 2 for 120mm/min. With 160mm/min casting velocity the temperature
gradient implies contact below the lowest thermocouple but the measured
temperatures are exceptionally high when oxygen is used.

The indication of lowering of the meniscus at the mould wall coincides
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with observations in the mould during casting. In general, the lower meniscus
contact point is lowered when casting velocity is increased. And both added
oxygen in the slip gas and added alloy elements increase thermal contact with
the mould wall, the former to a greater extent. This might also be explained
by increased oscillations with larger amplitudes causing more thermal contact
with the mould wall.

Elastic eigenmodes

If the mushy zone reaches above the lower point of the meniscus the move-
ment will become more elastic than Newtonian. Consequently eigenfrequen-
cies coupled to the elasticity might appear. The oxide layer on the surface
of the melt could also influence eigenmodes. The combined effect is a lot
stronger, and obviously not linear (see figure 2.7). This effect is not yet
understood.



Chapter 3

Analysis of wave phenomena

3.1 Introduction

In the experimental measurements of the temperature oscillations close to
the meniscus in direct chill casting of aluminium ingot (see [17]), the charac-
teristic frequencies are found to be around 0.5 and 1.0 Hz. These results are
for castings of aluminium ingot with a radius of 200mm and casting velocity
of 90 to 160 mm/s.

In this chapter different types of wave phenomena are analyzed to as-
certain which wave phenomena could induce the observed characteristic fre-
quencies. For different types of wave phenomena are analyzed. These are:

capillary waves on a meniscus of spherical section

coupled capillary gravity waves on a meniscus of spherical section

gravitational oscillations in casting column

coupled gravity pressure oscillations

The assumption of a steady state meniscus of cylindrical cross section
is quite rough, since the curvature of a steady state meniscus will increase
monotonously with the metal depth. However, for a small enough meniscus,
this assumption will become valid. Ideally a solution for gravity/capillary
waves should be sought for the type of meniscus, or free surface, obtained
in the simulations (as in for example figures9.9(b)). But here the analysis
will be restricted simple geometries and to the phenomena listed above. The
stability of the solutions will also be considered.

33
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Figure 3.1: Coordinate system and capillary wave on the meniscus.
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3.2 Capillary waves on meniscus

Laplace equation

With the assumption of incompressibility and potential or irrotational flow,
the velocity potential ψ in the meniscus region must fulfill the 2D Laplace
equation:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂θ2
= 0. (3.1)

See figure 3.1 for description of coordinate system. The velocity components
are

vr =
∂ψ

∂r
and vθ =

∂ψ

∂θ
. (3.2)

Boundary conditions (wave equation)

The boundary condition on the meniscus can be found by a variational anal-
ysis (as is done for the derivation of the spherical capillary wave equation
in Landau and Lifshitz [40]). The change in meniscus surface area A will
correspond to

A =

∫ ∫ √
r2 +

(
∂r

∂θ

)2

dθdz. (3.3)

Here a cylindrical coordinate system is applied with axis at z = 0 (normal
to the plane shown in figure 3.1), then for variations of small amplitudes ζ
(compared to wavelength), we have r = R + ζ on the meniscus, where R is
the constant average radius, i.e. ζ � R . Using a truncated binomial series,
and neglecting terms of order ζ2 and higher, gives the approximate result

A ≈
∫ ∫ (

r +
1

2R

(
∂ζ

∂θ

)2
)
dθdz. (3.4)

The change in surface area du to wave motion can subsequently be expressed
by (see [23]): ∫ ∫ (

∂Iζ
∂ζ

− d

dθ

∂Iζ

∂ζ̇

)
δζ dθ dz, (3.5)

where Iζ and ζ̇ are defined by Iζ = r + 1
2R

(
∂ζ
∂θ

)2
and ζ̇ = ∂ζ

∂θ
. As a result,

δA =

∫ ∫ (
1− 1

R

∂2ζ

∂θ2

)
δζ dθ dz. (3.6)
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In [40] it is shown that

δA =

∫ ∫
δζ

(
1

R1

+
1

R2

)
r dθ dz, (3.7)

with Ri as the principle radii of curvature. For an ideal fluid, neglecting the
influence of gravity and defining σ as the uniform surface tension coefficient,
p as the pressure in the fluid and p0 as the pressure outside the fluid (above
the meniscus, see figure 3.1), then by [40]:

p− p0 = σ
1

R
(3.8)

For capillary waves with incompressible fluids and adiabatic conditions we
have, again by [40],

p = −ρ∂ψ/∂t, (3.9)

where ρ is the density of the fluid. Equating the integrands in expressions 3.6
and 3.7, applying r = R + ζ, and including relations 3.8 and 3.9 we get to
the first order in ζ

−
(
ρ
∂ψ

∂t
+ p0

)
= σ

(
1

R
+

ζ

R2
− 1

R2

∂2ζ

∂θ2

)
. (3.10)

Taking the derivative with respect to time, linearizing and using the relation
∂ζ
∂t

= vr = ∂ψ
∂r

, the boundary condition on r = R becomes:

ρ
∂2ψ

∂t2
+

σ

R2

∂ψ

∂r
− σ

R2

∂

∂r

∂2ψ

∂θ2
= 0, (3.11)

r = R.

Eigenfunction solution

The Laplace equation for the velocity potential can be solved using the
method of eigenfunction expansions, or separation of variables. Since this
corresponds to a regular Sturm-Liouville problem, the eigenfunctions are or-
thogonal and linearly independent. With the separation

ψ = T (t)Q(θ)P (r), (3.12)

the resulting equations are

∂2Q

∂θ2
= −ν2Q, (3.13)

r2∂
2P

∂r2
+ r

∂P

∂r
= ν2P. (3.14)
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The following boundary condition is imposed:

∂ψ

∂r
= 0 ; θ = 0 , θ =

π

2
. (3.15)

The eigenfunction equation for P is known as the Euler-Cauchy equation.
A solution can be found using the Extended Power Series Method [37]. By
substituting rγ for P it can be seen that the eigenfunctions are

Pν = b1r
ν + b2r

−ν . (3.16)

The eigenfunctions Q become

Qν = a1e
iνθ + a2e

−iνθ. (3.17)

Applying boundary conditions 3.15, Q becomes

Qν = Aν sin(νθ), (3.18)

ν = 2n, n = ±1,±2,±3, ....... (3.19)

The coefficients may also depend on ν. If the amplitude is to be largest at the
meniscus surface one needs to choose b1(ν) = 0 for ν negative and b2(ν) = 0
for ν positive. Then with positive ν

Pν = b1r
ν . (3.20)

For the temporal part
Tν = Bνe

iωt (3.21)

are used as eigenfunctions, where frequency of oscillation is f = ω/2π. The
solution ψ then becomes

ψ =
∑
ν

Aνe
iωt sin(νθ)rν (3.22)

With the boundary condition 3.11 the dispersion relation becomes

f = ± 1

2π

√
σ|ν|
ρR3

(1 + ν2). (3.23)

Stability If the coefficients bi are not chosen as above, the amplitude in-
creases toward r = 0, leading to a singularity at r = 0, and ω becomes
imaginary - see expression 3.22). The conclusion must be that pure capillary
waves can not lead to instabilities, unless there also exist singularities, which
is unphysical.
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Eigenfrequencies The eigenfrequencies f may be now be related to the
radius of curvature R through (3.23). The applied material properties are
(as in the simulations of Al 6082 in chapter 9):

σ = 0.9N/m,

ρ = 2700kg/m3.

For a given eigenfrequency the dispersion relation (3.23) then gives the
relation between mode n (by (3.19) and radius of curvature. For the lowest
mode (|ν| = 2) the radius of curvature R = 0.045m corresponds to an eigen-
frequency of 0.96Hz and the radius of curvature R = 0.0275m corresponds
to an eigenfrequency of 2.02Hz. These frequencies are close to the ones
measured in the casting experiments (chapter 2). These radii of curvature
are significantly larger than the experimentally observed meniscus curvature,
and the radii increase with increasing modes. Therefore, with a meniscus ge-
ometry as in figure 3.1, it can be concluded that this type of capillary waves
can not be directly linked to the experimentally observed oscillations.

3.3 First order coupled capillary gravity waves

For an extended equation containing gravity terms, effects such as damping
and instabilities might occur. And the geometry of the meniscus might in-
fluence its dynamic properties. Therefore the effect of gravity and meniscus
dimension is analyzed here. The geometry of the meniscus applied in this
case is shown in figure 3.2.

Including gravity terms the internal pressure p in 3.8 becomes

p = −ρg∆z − ρ∂ψ/∂t, (3.24)

where ∆z = ζ sin θ. figure 3.2.

The boundary condition 3.11 becomes

ρ
∂2ψ

∂t2
− ρg

{
sin θ

∂ψ

∂r
+ cos θ

1

R

∂ψ

∂θ

}
+

σ

R2

∂ψ

∂r
− σ

R2

∂

∂r

∂2ψ

∂θ2
= 0, (3.25)

r = R.

If we consider only the first term added, neglecting the ∂ψ
∂θ

term, which
will be small for θ close to π

2
, we see that the result of including gravitational

effects will be to reduce the frequency of oscillations. This can be analyzed
further by expanding the cos θ term around π/2; θ = π/2−θ′, where θ′ε[0, θ0].
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Figure 3.2: Meniscus configuration for perturbed solution, second mode of
oscillation for solution of first order. Amplitude greatly exaggerated

Thus getting cos
(
π
2

+ θ′
)

1
R
∂ψ
∂θ
≈ 0, since θ′ is chosen to be � π

2
and ∂ψ/∂θ

is also small. Also, sin
(
π
2

+ θ′
)
≈ 1. The wave equation becomes

ρ
∂2ψ

∂t2
− ρg

∂ψ

∂r
+

σ

R2

∂ψ

∂r
− σ

R2

∂

∂r

∂2ψ

∂θ2
= 0, (3.26)

r = R.

The applied boundary conditions are

vr =
∂ψ

∂r
= 0; θ =

π

2
(3.27)

vθ =
1

r

∂ψ

∂θ
= 0; θ =

π

2
− θ0.

The motivation for these boundary conditions is that the contact point at the
hot-top is always at the same level, while the angular velocity at the mould
wall (or corresponding to the velocity perpendicular to a possible solid lip
formed at the wall) is zero. The allowed values for ν are then given by
applying these boundary conditions with the eigenfunction (3.17):

a eiν
π
2 + b e−iν

π
2 = 0,

iν
(
a eiν(

π
2
−θ0) − b e−iν(

π
2
−θ0)

)
= 0.
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The condition on ν becomes

ν =
π

2θ0

+ n
π

θ0

, (3.28)

n = 0,±1,±2,±3, ...

For simplicity θ0 will be chosen so that the set of values ν consists only of
integers. This gives the eigenfunctions

Q(θ, ν) = A(ν) sin (νθ) , νodd, (3.29)

Q(θ, ν) = A(ν) cos (νθ) νeven. (3.30)

With the other eigenfunctions (3.21 and 3.20) the same as before, the dis-
persion relation becomes:

f = ± 1

2π

√
|ν|
R

(
σ(1 + ν2)

ρR2
− g

)
. (3.31)

Eigenfrequencies and stability For the test case, θ0 = π
16

. Then for the
lowest order solution, where n = 0 ↔ ν = 8, a radius of curvature from
R = 0.045m to R = 0.047m gives frequencies ranging from 2 Hz to 0.2 Hz
for aluminium with σ = 0.9N/m, ρ = 2700 kg/m3 and g = 9, 8m/s2. This
value of the radius of curvature corresponds to a meniscus length of 10mm,
a reasonable value. So with this shape of the meniscus it is possible to find a
solution with a frequency corresponding to the experimental results referred
to in the introduction (3.1). The second order solution (n = 1 ↔ ν = 24)
will in this case have frequencies in the order of 20Hz, a frequency which
is assumed to be of lesser importance. For only slightly larger radius of
curvature (R > 0.047m), the first order solution will either be dampened or
become unstable. So this case is right on the border of stability.
If the second order solution is to have a period of 2 s the corresponding radius
of curvature is approximately 0.14m. With this radius of curvature the first
order frequency will be imaginary. Thus it is either dampened or becomes
unstable.
An important aspect to consider here is how the amplitude decreases inwards
from the meniscus. The wave solution on the assumed circular meniscus is
an approximation since there is solidification in the domain of the solution
(figure (3.2)), while the solution is for a liquid of homogeneous density. If
the amplitude of the waves decreases rapidly downwards the approximation
will be a good one. The radial eigenfunction solution (equation 3.20) shows
that the velocity goes as vr = ∂

∂r
ψ ∼ rν−1. If R = 0.046m at the meniscus

surface with ν = 8, as above, then the amplitude is decreased by a factor ten
at r = 0.034m. So if the point of dendrite coherency is 1.2cm beneath the
meniscus surface or lower, the solution is physically possible.
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Figure 3.3: Gravitational oscillations in tube, diameter Ø=10cm.

3.4 Oscillations in casting column

3.4.1 Gravitational oscillations in casting column

To analyze the effect of gravity induced oscillations of the melt surface above
the hot-top discussed in 1.3.3, the behaviour of the melt under the influence
of gravity is approximated by the behaviour of fluid in a tubular section
like that in figure 3.3. The gravity oscillations in the casting column (figure
1.9) are analogue to oscillations in the tube. The surface S1 corresponds to
the molten metal surface at the top of hot-top with atmospheric pressure
patm above it while surface S2 corresponds to the meniscus surface under gas
pocket pressure pgp. It will be assumed that no compression in the gas pocket
above the meniscus occurs due to the oscillations. If this is to be the case for
the meniscus, then the gas inflow and outflow must balance the variations in
gas pocket volume.

The area of the surfaces S1 and S2 in the tube should roughly correspond
to the free surface area at the top of the hot-top and the surface area of the
meniscus, respectively. Since this might be quite a rough approximation this
should be considered a tentative analysis.

Analysis produces the following equation for the position x of a surface
in the column (where x is parameterized displacement along the tube):

∂2x

∂t2
= −2 g

L
x, (3.32)

where L is the length of the liquid column. So the equation is independent
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of both fluid density and the diameter of the tube. It is now assumed that
the gravity oscillations are harmonic:

x = A cos(2πft). (3.33)

Then the frequency of oscillations becomes

f =
1

2π

√
2g

L
. (3.34)

In this case the frequency only depends on the metal height and the diameter
of the cast ingot. With a typical fluid length L = 0.3m (corresponding to the
distance from melt surface to meniscus surface in mould) the frequency of
gravitational oscillations becomes f = 1.3Hz. This frequency is very close to
the characteristic frequencies observed in the casting experiments described
in the previous chapter.

3.4.2 Gravity pressure oscillations

A similar analysis to the one above is performed, but now with the constraint
of no flow in or out of the gas pocket . With this constraint the pressure
variations in the gas pocket must be included in the wave equation.

Pressure variations ∆p in the gas pocket are calculated by the ideal gas
law:

∆p =
nRT

V + ∆V
− p, (3.35)

for gas pocket volume V containing n moles at temperature T . With small
volume variations ∆V a Taylor expansion in ∆V gives the approximate pres-
sure variation

∆p ≈ −∆V
nRT

V 2
. (3.36)

Then the balance of forces leads to the wave equation

∂2x

∂t2
= −

(
2 g

L
+
πr2RT

2MV L

)
x, (3.37)

whereM is the molar mass ρV/n and r is the radius of the tube (with area πr2

corresponding to meniscus surface area). Solving for harmonic oscillations
as in (3.33) the frequency f becomes

f =
1

2π

√
2g

L
+
πr2RT

2MV L
. (3.38)
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The maximum gas pocket volume V is in the order of 1l1. For air M =
0.029kg/mol, and the temperature is approximately 500K. The radius r is
5cm, as before. Under these conditions the effect of the pressure variations
dominates the effect of gravitational pull, thereby determining the frequency
of oscillations. The frequency becomes f ≈ 218Hz.

Oscillations of a frequency as high as 184Hz can not be sustained at
significant amplitudes. The energy required for the variation in momentum
is not available. Therefore oscillations in the column can not exist when the
air pocket is closed.

1This corresponds to a meniscus with upper contact point at the melt inlet corner and
with 1 cm spacing from hot-top
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Chapter 4

Numerical methods of free
surface modelling

To model the meniscus dynamics a method is needed which can correctly
describe both folding and wave propagation on the surface of the meniscus,
while preserving a sharply defined surface on a relatively coarse grid. The
meniscus is assumed to behave as a free surface, for which dynamics are
determined by the balance of surface tension forces, gravitational forces, and
the pressure jump across the meniscus surface. Specificly the effects of surface
advection influenced by the acting surface tension forces must be dealt with
in the modelling of flow in the combined gas and molten metal phases. This
chapter gives a brief overview of methods for modelling the dynamics of such
a free surface in a regular Eulerian grid. The applicability of the various
models to simulating the meniscus in the casting process is also discussed.

Advection techniques The methods of multiphase modelling can be di-
vided into two main groups; interface tracking and interface capturing meth-
ods. The interface tracking methods track the surface by marker particles or
line segments, as in the Marker and Cell (MAC) method [71] and the Method
of Tensions (MOT) [49]. Thus the surface representation is Lagrangian. The
flow equations are solved on an Eulerian grid. Therefore these methods are
also known as Lagrangian Eulerian methods. The original Lagrangian Eule-
rian method was the MAC method.

The interface capturing methods keep track of the surface either by some
form of geometrical reconstruction by use of the volume fraction ([26], [77],
[3]) or calculate the advection and surface tension forces by purely algebraic
methods ([56], [39]). The algebraic models are generally easier to implement
in numerical algorithms than the models where surface reconstruction is ap-
plied in the advection calculation. The interface capturing methods are also

45
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known as Eulerian Eulerian methods or simply Eulerian methods. The ba-
sic interface capturing methods, developed in the 1970’s were based on the
Donor-Acceptor Cell technique. Variants of this technique were developed
by Ramshaw and Trapp [51], Noh and Woodward [46] and the Volume of
Fluid (VOF) method of Hirt and Nichols [26].

Surface tension techniques Several models for modelling surface tension
forces have been developed in the last decade. One type applies reconstruc-
tion of the surface ([71], [49]) while others calculate a continuous surface force
distribution from a smoothed interface ([10], [39], [36], [56]).

Flow solvers The Navier-Stokes (NS) solvers have been developed in paral-
lel with the development of surface advection and surface tension techniques.
In the application of the flow solvers attention must be payed to conditions of
stability. Some references to the development of flow models are made in the
discussion. The basic MAC and VOF methods are presented here together
with the respective solvers.

4.1 The Marker and Cell (MAC) method

The fundamental work on computational multiphase methods was done by
the CFD research group at Los Alamos Scientific Laboratory. Through this
work, Eddie Welch, Frances Harlow, John Shannon and Bart Daly developed
the MAC Method, the first numerical multiphase method in 1965 [71]. It
was a 2D two-phase method. As this was the first method of its kind, the
method is here described to create a basis for the understanding of two-phase
flow methods.

Marker field

The MAC method uses massless Lagrangian marker particles spread evenly
over the whole computational domain to trace the fluid flow and to mark
the separate fluids. The computational domain is spanned by a regular and
uniform Eulerian grid. The marker particles are advected with the fluid. Be-
cause of the large computing capacity needed to handle a 3D marker particle
model, the basic MAC model was in 2D. Today, as computing capacity has
greatly increased, 3D MAC models can be applied in multiphase flow, but
the marker advection will still need a lot of computing power.
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Volume averaging

Cell mean density and cell mean viscosity are applied in the flow calculations
in MAC. In this way continuity in the cells containing the fluid interface
can be fulfilled. Subsequently the Navier-Stokes equations can be applied
over the whole computational domain. The averaging is performed with the
use of the marker particle distribution. With n1 particles of phase 1 and n2

particles of phase 2 in a cell, mean density ρ and mean viscosity µ are given
by

ρ =
n1ρ1 + n2ρ2

n1 + n2

(4.1)

µ =
n1µ1 + n2µ2

n1 + n2

. (4.2)

ρi and µi are respectively cell mean density and cell mean viscosity of phase i.
Periodic redistribution of the marker particles is necessary to maintain even
marker distribution and consequently correct averaging. Marker distribution
influences both stability and mass conservation, so in this type of model
redistribution of the markers is an important issue.

Uniform staggered grid

Figure 4.1: MAC staggered grid configu-
ration, φ = p

ρ

The NS solver developed for the
MAC method was named SOLA,
for Solution Algorithm. This
method uses a regular and uni-
form staggered grid , presented
in figure 4.1. The 2D stag-
gered grid model consists of
three grids, one for each of the
flow velocities and one for the
pressure. The pressure, and gen-
erally all other flow variables, are
stored in the pressure grid . And
the nodes of the velocity grids
are staggered in relation to the pressure grid by placing the nodes midway
between pressure nodes (see figure). This configuration solves the problem of
pressure checkerboarding that can occur in a single grid system (see Patankar
[47]).
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Pressure equation/Time Cycle

Central differences and time integration explicit in velocity u, implicit in pres-
sure p, are applied in the discretization in SOLA. The pressure is computed
by imposing incompressibility on the velocity field, resulting in a Poisson
equation for the pressure.

The equations of continuity and momentum are:

∇ · u = 0 (4.3)

∂u

∂t
= −∇ · (uu)−∇φ+ ν∇2u + g (4.4)

u is the velocity vector, φ is p/ρ for pressure p and constant density ρ (or for
small density changes δρ/ρ� 1, corresponding to low Mach number, making
the equation a lowest order approximation), ν is the kinematic coefficient of
viscosity and g is gravity. The momentum equation is applied on divergence
form. This facilitates conservation of momentum when discretizing the equa-
tions. The first term in the momentum equation can be discretized by central
differences in time:

∂u

∂t
→ un+1 − un

δt
, (4.5)

where δt is the time step. Using 4.4 and 4.3 together with 4.5 the Poisson
equation in pressure may be derived:

un+1 − un

δt
= −∇ · (uu)n −∇φn+1 + ν∇2un + g, (4.6)

⇓ incompressibility → ∇ · un+1 = 0
∇ · un

δt
= −∇∇ : (uu)n −∇2φn+1 + ν∇ · ∇2un. (4.7)

The Poisson equation 4.7 is subsequently discretized using linear interpola-
tion and central differences.

Velocities calculated in the previous time step are inserted in the dis-
cretized Poisson equation which is subsequently solved for new pressures.
These new pressures are inserted in the discretized momentum equations 4.6
which are then solved for the new velocities. This idea is basically the same
as the original projection method described by Fortin et al [20].

Conservation properties and surface tension in the MAC method

With the MAC method, volume conservation should be maintained for small
density ratio, according to Welch et al. Normal and tangential stress con-
ditions at the interface should theoretically also be satisfied. It is however
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difficult to achieve continuity of pressure at the interface ’when the fluids
have markedly different densities’.

In the free surface modelling the pressure is not continuous, so a pressure
correction model is needed. It is possible to incorporate such a technique in
the MAC method. But the surface reconstruction which would be needed
for calculation of the surface tension forces is a complicated process. If the
surface is to be reconstructed an ordering of the markers is needed, which
would take up a lot of computing time. A diffuse surface tension model like
the Continuous Surface Force model CSF could however be applied [10]1.
Then surface reconstruction would not be necessary, but accuracy would be
poorer due to the diffusive surface representation in CSF.

A problem with the SOLA solver is the low order of approximation in the
momentum equation. The density is assumed approximately homogeneous.
This is true within each phase for low Mach numbers, but the density change
across the interface causes problems. So for phases of markedly different
phase densities, as in our case, the use of this solver will lead to significant
error.

To conclude, the MAC method together with the SOLA algorithm may be
applied for free surface modelling with a pressure jump and surface tension
force calculations without the need for ordering of markers. But because
of the insufficiencies of the SOLA algorithm, a different solver taking into
account the pressure jump and inhomogeneous density and allowing for a
non-uniform grid would be preferable. The large memory requirements and
CPU time needed for the calculation of marker advection also make the MAC
method awkward. Some other method should therefore be sought.

4.2 Hirt & Nichols Volume of Fluid (VOF)

method

Based on the ideas of the combined MAC and SOLA methods this method
was developed by by Hirt and Nichols, also at Los Alamos in 1981 [26]. Im-
provements were made to the SOLA code to include limited compressibility,
producing the SOLA-VOF method. Many variations of the VOF method
exist. Therefore this VOF method is here referred to as Hirt and Nichols’
VOF. It contains the basics of all the VOF methods (except for surface ten-
sion calculations) and is therefore here presented as an introduction to these
types of methods.

1This model is discussed at a later point
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Fractional volume

The most important contribution in the VOF method is the introduction
of the phase function F which distinguishes the phase at each point. F
is used slightly ambiguously in the paper, being simultaneously used as its
own volume average. To avoid this ambiguity two new values are introduced
here. The first is the phase function C(x, y, z), which takes the value 1 for
(x, y, z) in phase 1 (f.ex. the slip gas) and 0 for (x, y, z) in phase 2 (the
molten metal). The second is the volume average of C, denoted by α, known
as the volume fraction. In a two-phase liquid gas system the convention is
that α is the volume fraction of gas, while the volume fraction of the indi-
vidual phases is denoted by a postscript, with αL for liquid volume fraction.
By applying the VOF method marker particles are made superfluous by an
advection algorithm for the volume fraction α. This decreases usage of com-
puter memory and saves calculation time. The model may also be applied in
three dimensions because of the low demand on CPU time.

Volume fraction advection

The volume fraction field is advected together with the fluid flow according
to the equation for conservation of phase:

∂α

∂t
+
∂αu

∂x
+
∂αv

∂y
= 0. (4.8)

The velocities here represent the velocity field of the volume averaged fluid
quantities. In the discretization of this equation several considerations are
taken into account2. Since upstreaming is numerically stable, a certain
amount of upstreaming is required. However, the unstable downstreaming
helps to keep the surface sharply defined. Therefore a combination of both
discretization methods should be used. Another important point is that
neither the fluxed gas volume should not be larger that the gas volume con-
tained in the upstream cell . This would lead to unphysical consequences. All
the mentioned considerations are taken into account in the Donor-Acceptor
volume fraction advection method in the VOF-SOLA algorithm.

Donor-Acceptor algorithm In the Donor-Acceptor algorithm the type
of discretization is determined by the mean surface orientation. The surface

2Note that two types of discretization must be considered for the algebraic models: the
ordinary discretization of the NS equations, and in addition the discretization concerning
the choice of which volume fraction to use in phase advection across cell faces, i.e. the
discretization of the conservation equation of volume fraction (4.8). The discretization in
discussion here is the latter.
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Figure 4.2: Donor acceptor modelling.

orientation is found by an interpolative algorithm which uses the volume frac-
tion values in a nine cell scheme (as shown in figure (C.1) in the appendix).
Upwinding is used when the surface is advected mostly parallel to itself (i.e.
the volume fraction of the upwind cell is applied at the cell face in the dis-
cretization) while downwinding is used in the opposite case. Taking into
account the conditions of no overfilling or over emptying of cells, resulting in
volume fractions respectively larger than one or negative, the algorithm can
be graphically illustrated by figure 4.2.

In the figure the downstream cell of the cell face is called the donor cell
and the upstream cell is called the acceptor cell. The total advected volume
for one time step is indicated in 4.2(a). In the first example (4.2(b)) the
surface is advected mainly parallel to itself, so the donor (upstream) volume
fraction is used as the volume fraction flux across the cell wall. In the second
case (4.2(c)) the surface is advected mainly normal to itself, so the acceptor
(upstream) value is used. However, in this case the donor cell is empty before
the time step is over. So no fluid can be advected across the cell face after
this point, meeting the condition of no over emptying of the donor cell. In
the last case (4.2(d)) the advection is also mainly normal to the surface, so
the upstream volume fraction is applied as the cell face flux. However, here
the donor cell fills up before the time step is over, so the rest of the flux must
be determined by the downstream volume fraction. Thereby the condition
of no overfilling is met.

Two more conditions are set for the advection. If the acceptor cell is
empty, or if the cell upstream of the donor cell is empty, then the acceptor
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cell volume fraction determines the flux. Thus a donor cell must fill with
liquid before it can advect any liquid to a downstream empty cell. This
condition decreases smearing of the surface, thus helping to keep the surface
sharply defined.

Phase conservation

An analysis of phase conservation is made in appendix C. The analysis shows
that inaccuracy in phase conservation may be a significant problem due to
errors in the interface advection. For one-dimensional advection (either in
the x or y direction) the method is phase conserving, but when the mean
velocity is not parallel to any of the grid lines phase conservation is not
ensured due to the advection of the same fluid elements twice in one time step.
By the analysis (C) this problem seems to be most apparent for significant
curvature of the interface. Thus for a smaller ratio of grid spacing by surface
curvature the problem would not be as prominent. However, as long as there
are significant changes in volume fraction value over few cell spacings, i.e. a
sharply defined surface, this is a problem that probably will occur. A solution
to this problem might be using a diffuse surface during advection. This is
however contradictory to the wish of keeping the surface sharply defined,
which is also necessary if a good approximation of surface tension effects
are to be found. It would seem that an unnecessarily small time step is
here needed to achieve good phase conservation, compared to the resolution
needed to solve for the fluid flow in the independent phases.

The conclusion is that phase fluxes should be calculated for all cell faces of
a cell simultaneously, and flux correction methods should be applied to solve
the problem of overfilling or over emptying. This technique will produce the
most accurate phase conservation. Such methods are discussed in the next
section (4.3).

Non-uniform grid

A non-uniform staggered computational grid is introduced in the SOLA-VOF
model, allowing for a more complex geometry and multiple size scales. In
the case of a non-uniform grid, analysis shows that care must be taken to
ensure accuracy in the discretization. Upstreaming is normally applied in the
discretization to improve stability. But if upstreaming is used in a regular
nonuniform grid it can be shown [26] that discretization of the convective

term ∂(u2)
∂x

, which appears in the momentum equation on divergence form, is



4.2. HIRT & NICHOLS VOLUME OF FLUID (VOF) METHOD 53

to the first order equal to

1

2

(
3δxi + δxi+1

δxi + δxi+1

)
∂(u2)

∂x
+O(δx). (4.9)

δx is width of computational cell and u is velocity in x-direction. So the
first order term is incorrect unless δxi = δxi+1. However if we do not use
any upstreaming, the stability of the solution deteriorates. Therefore, us-
ing upstreaming together with some correction of the advection terms is a
preferable solution in this case.

Non-divergence momentum

In the SOLA-VOF the momentum equations are not applied on divergence
form (equation 4.12), so conservation of momentum may be significantly
inaccurate. However, with this technique, upstreaming results in no loss of
formal accuracy on a nonuniform grid.

Continuity equation

As already mentioned, limited compressibility is included in the continuity
equation in Hirt and Nichols VOF. The fluid pressure is assumed to depend
only on the density, thus giving the relation,

dp

dρ
= c2 (4.10)

where c is the adiabatic speed of sound, i.e. the entropy is here assumed
constant. Assuming small density changes ρ = ρ0 + δρ, where δρ/ρ0 � 1,
implying a small Mach number (U/c� 1), together with equation 4.10, the
continuity equation for constant entropy becomes to the lowest order

1

c2
∂p

∂t
+ ρ0∇ · u = 0. (4.11)

Condition 4.10 corresponds to the assumption of an ideal fluid [40]. So
for a gas of low viscosity this is a valid assumption. For liquids of higher
viscosity however, the validity of the assumption is not as good. However, the
approximation is consistent with neglecting the work of viscous and pressure
forces in the energy equation.
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Discretization of momentum equations

The basic momentum equations in Hirt and Nichols VOF are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂φ

∂x
+ gx + ν

[
∂2u

∂x2
+
∂2u

∂y2

]
. (4.12)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂φ

∂y
+ gy + ν

[
∂2v

∂x2
+
∂2v

∂y2

]
. (4.13)

The momentum equations are discretized by central differencing in time
and explicit time integration in the other terms. And the continuity equation
is integrated implicitly in time. Subsequently no Poisson equation for the
pressure is applied in the SOLA-VOF method (although it is inherent in the
applied set of flow equations). The remaining discretization of the momentum
equation is performed by applying a combination of upstreaming and central
differencing. As an example, the convective term u∂u

∂x
is discretized as

u
∂u

∂x
→
(
ui+1/2/δxγ

)
[δxi+1DUL+ δxiDUR+

γ sgn(u) (δxi+1DUL− δxiDUR)] , (4.14)

where

DUL =
(
ui+1/2,j − ui−1/2,j

)
/δxi,

DUR =
(
ui+3/2,j − ui+1/2,j

)
/δxi+1,

δxγ = δxi+1 + δxi + γ sgn(u) (δxi+1 − δxi) .

where γ determines the amount of upstreaming. For γ = 0, there is only
central differencing and for γ = 1 there is complete upstream differencing.
Since central differencing is more accurate while upstreaming is more stable,
γ is chosen between 0 and 1 to give optimal results. The same discretization
technique is applied to the other convective terms in the momentum equa-
tion. The set of volume averaged flow equations (4.11), (4.12) and (4.13) are
subsequently solved iteratively, based on the updated volume fraction α by
(4.8).

Pressure correction

A pressure correction method is introduced in the SOLA-VOF solver. In
this technique the corrected pressure is an interpolation between the surface
cell pressure and a neighbouring liquid cell pressure (see figure 4.2). The
correction algorithm is based on the surface configuration, so some form of
surface reconstruction must be applied. Based on the surface geometry, each
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Figure 4.3: Pressure correction in VOF.

surface cell is assigned a neighbour interpolation cell inside the liquid, and
the pressure correction is determined by an interpolation between these two
cells3:

pi,j = (1− η)pI + η pS,

η =
d

dc
, (4.15)

where d is the distance from the interpolating cell centre to the free surface
and dc is the distance between the surface and interpolating cell centres. pI
is the mean pressure in the interpolating cell and pS is the mean pressure in
the surface cell. This correction is included in the iterative solution of the
flow equations.

Stability considerations

Analysis shows that to avoid movement of parts of the same fluid element
across more than one cell wall during a time step the Courant condition (also

3There is an error in this formula in the paper of Hirt and Nichols where they define
η = dc/d. With this definition the correction will not work
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called the Courant-Friedrichs-Levy or CFL condition)

δt < min

{
δxi
|ui,j|

,
δyj
|vi,j|

}
(4.16)

must be fulfilled. It is common to apply a stronger constraint than this
condition given by

1

c
=

1

δt
min

{
δxi
|ui,j|

,
δyj
|vi,j|

}
≥ 1

γ
; (4.17)

γ < 1,

where c is known as the Courant number. To avoid diffusion through more
then one cell during a time step the following condition should also be fulfilled
(based on the discretized momentum equation):

νδt <
1

2

δx2
i δy

2
j

δx2
i + δy2

j

. (4.18)

These criteria apply to all two-phase models.
Also, for stability and to avoid too much steepening of the surface an

appropriate value of γ must be chosen in the discretization in SOLA-VOF.

Properties of Hirt and Nichols VOF

Advection Flux correction methods must be implemented if mass conser-
vation is to be achieved with the donor-acceptor model. And due to the piece-
wise horizontal or vertical surface applied in the model special discretization
methods must be applied to the advection equation (4.8) to achieve sufficient
accuracy and stability in the advection. So compared to the MAC method
the negative side effects of the less time consuming VOF surface advection is
the loss of accuracy and stability. However, adjustments to the VOF method
may help to improve these defects. An improved VOF advection method
developed by Johansen [31] is described in the following section.

NS solver Adjustments have been made to the original SOLA algorithm.
The momentum equations are not applied on divergence form, thereby im-
proving discretization accuracy, but loosing conservation properties. Limited
compressibility is introduced, which facilitates the implementation of the
solver. Also, improved discretization methods are introduced which control
the balance between accuracy and stability of the solver, a conflict which is
an issue in all the two-phase models. So this technique is an improvement to
the SOLA. And a pressure correction model is introduced which decreases
the error due to the pressure jump across the surface.
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Surface tension forces A diffuse surface tension force model such as the
CSF method [10] may also be included in Hirt and Nichols SOLA-VOF. The
CSF is discussed in the next section.

Hirt and Nichols VOF model combined with the improved SOLA-VOF
solver are more applicable to the current problem than the MAC/SOLA
method. However, the diffuse interface in the VOF method may lead to
problems with numerical diffusion of the interface, causing unphysical effects
such as uncontrolled droplet formation. The poor surface definition inhibits
proper modelling of dynamics such as surface folding and bubble formation,
both effects which may occur in the meniscus dynamics.

4.3 Developments

The methods of Welch et al [71] and Hirt and Nichols [26] respectively intro-
duce the basics in Lagrangian Eulerian and Eulerian multiphase modelling
methods. A lot of work has been put into development of multiphase mod-
elling in recent years, and a brief discussion on the application of some of
these developments to our problem of meniscus modelling is given here. The
papers considered are by topic:

Interface reconstruction; Zaleski et al [78], Rudman [55] [56] with
FCT and FGVT , Gueyffier et al [24], Youngs et al [77] with Youngs
method , Ashgriz et al [3] with FLAIR, Lafaurie et al [39] with SURFER,
Rider et al [52] and Unverdi et al [69].

Advection methods; Welch and Harlow [71] with MAC , Hirt and
Nichols [26] with VOF , Noh and Woodward [46] with SLIC , Johansen [31],
Ashgriz et al [3], Sussman et al [63], Lafaurie et al [39] , Rider et al [52],
Rudman [55] and Gueyffier et al [24]

Flux correction; Hirt and Nichols [26], Zaleski et al [78], S. T. Jo-
hansen [32], Rudman [55] [56] and Popinet et al [48] with MOT

Surface tension force calculation; Brackbill et al [10] with CSF ,
Rieber et al [54], Popinet and Zaleski [48] and Rudman [56].

Mass and momentum conservation ; more or less all of the above

4.3.1 Interface reconstruction

All applied fluid properties in the homogeneous multiphase flow model are
volume averages. Some form of discrete surface interface reconstruction is
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therefore necessary to calculate the volume fraction change due to interface
advection. Either a stepwise non-physical interface as an analogy to the al-
gebraic method that is used (VOF [26]), a piecewise linear reconstruction of
the interface as in Youngs method [77]4, or a higher order interface recon-
struction as the cubic spline interpolation applied in the MOT of Popinet
and Zaleski [49] may be applied. The interface reconstruction may also be
applied in calculating the effect of surface tension forces.

The advection techniques will here be grouped according to the type of
surface reconstruction that is applied. Algebraic methods where the surface
representation is parallel to one of the grid line directions are defined as
zero order advection methods . Piecewise linear models are defined as first
order advection methods . And the remaining methods are the higher order
advection methods .

In the higher order methods some sort of surface marking is normally
used. In the MAC model, marker particles are distributed over the whole
fluid domain. Thus a surface reconstruction can be performed by interpo-
lation once the surface markers are ordered. For the cubic spline surface
reconstruction in the MOT, marker particles are only applied on the inter-
face. So the method requires less computer memory and CPU time than the
MAC. It does however require more memory than the Eulerian VOF meth-
ods. The advantage of the spline reconstruction with marker particles is that
the accuracy is a lot better than for other reconstruction techniques. This
facilitates accuracy in computation of surface tension forces (see 6). Flux
correction is however more difficult for the higher order surface interpolation
methods.

Of the zero order methods a variation on the Donor-Acceptor VOF model,
SLIC, was developed by Noh and Woodward in 1975 [46]. This model uses
the same basic ideas as in Hirt and Nichols VOF (figure 4.4(d)), but here the
surface reconstruction is dependent on the sweep direction (see figure 4.4(b)
and (c)), so it is a type of split operator method.

Youngs method [77], is generally referred to as the basic PLIC model.
The interface reconstruction is piecewise linear, linear for each cell (see fig-
ure 4.4(e)). In another first order method, FLAIR [3], the reconstruction is
made over two cells, where the linear segments are bisected by the cell face
they intersect, as shown in figure 4.4(f). The surface reconstruction applied
in FLAIR improves on the accuracy of the phase flux calculation compared
to that of Youngs method.

4This type of methods are also known as PLIC methods, for Piecewise Linear Interface
Construction.



4.3. DEVELOPMENTS 59

Figure 4.4: Different types of interface reconstruction. (a) actual interface,
(b) and (c) SLIC [46], (d) VOF donor acceptor [26], (e) PLIC [77] and (f)
FLAIR reconstruction [3]. The figure is from [3]

4.3.2 Advection

The methods used for advecting the interface between two regions of different
phase are closely linked to the type of surface representation applied, as
described above. Examples of advection techniques are given here for the
different types of surface reconstruction.

’Zero order’ or algebraic methods

In these methods algebraic expressions involving the volume fraction deter-
mine the surface advection. Therefore graphical imaging of the method (as in
figure 4.4(d) for Hirt and Nichols VOF) does not picture the physical surface.
The physical surface may be constructed by interpolating from the volume
fraction field, but it is not directly applied in the the advection calculations.

An important problem with all multiphase flow models is error in mass
conservation due to imbalance in phase fluxes. Several contributions have
been made to solve this problem for the VOF method.

SLIC The SLIC method [46] solves the problem of advection by using a
split operator method where the surface is reconstructed differently for each
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flux direction, independent of the mean surface orientation (see figure 4.4(b)
and (c)). This makes the advection algorithm of SLIC somewhat simpler
than for Hirt and Nichols VOF, and the split operator technique hinders
unphysical cell volume fractions.

Johansen’s VOF [31] method applies an improved flux correction algo-
rithm. The phase flux across a computational cell face is here expressed
by an algorithm using the volume fraction of the two closest upwind cells
and the downwind cell. The technique is a variation of the donor-acceptor
method, but here the mean surface orientation is not applied, again simpli-
fying the calculations. With this technique the control of phase conservation
is improved. For cases of volume fraction larger than 1 or smaller than 0 a
correction is applied5 This method is shown by Johansen to produce good
phase conservation.

Figure 4.5: Advection in FCT

SURFER A third algebraic ad-
vection method, SURFER, is pre-
sented by Lafaurie et al [39]. As ex-
plained earlier, using upwinding im-
proves stability but also leads to nu-
merical diffusion. Downwinding, on
the other hand, causes steepening
(or sharpening) of the surface, but
leads to instability. In this model
a combined differencing scheme is
used, as in the original VOF (4.2).
In this method the relative upwind-
ing/downwinding is determined by
the angle between the direction of fluxing and the surface normal. So as
in the original VOF, the mean surface orientation is calculated. For small
angles mostly downwinding is used, while for large angles mostly upwinding is
applied. This keeps a steep surface steep and a more horizontal surface more
horizontal. A flux correction algorithm is also implemented in SURFER,
which takes into account symmetry properties between the two phases. In
the original VOF method a correction is used so that fluxing of gas over two
cell faces in one time step is avoided. By the symmetry of SURFER this
correction is also made for fluxed liquid phase.

5Operator splitting as for SLIC will also solve this problem, but operator splitting
generally leads to significant errors in phase conservation.
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FCT Finally Rudman [55] presents a modified VOF method where the
volume fraction is calculated on a subgrid half the size of the velocity grid
(shown in figure 4.5). This improves consistency in mass and momentum
advection. A flux correction algorithm FCT ( Flux Corrected Transport) is

Figure 4.6: Flux calculation method
in FLAIR. Shaded region indicates
fluxed area.

again applied to improve conser-
vation properties. This algorithm
works in much the same way as the
relaxation method. A low order flux
term is first calculated and then cor-
rected by a higher order term (the
anti-diffusive flux ). It is however
the use of the subgrid for the volume
fraction that is the most important
contribution to phase conservation.
The application of the subgrid and
iterative flux correction results in a
more CPU time consuming model
than the other VOF methods.

First order methods

Figure 4.7: Advection method of
Gueyffier et al

In these methods piecewise lin-
ear reconstruction of the surface is
applied. The reconstructed sur-
face subsequently gives the advected
phase volumes across the compu-
tational cell face, as shown in fig-
ure 4.6. These methods are also
known as piecewise linear interface
construction (PLIC) methods.

Youngs method The original method
in this group was developed by
Youngs et al [77]. In this method
a piecewise linear reconstruction is determined by interpolation on a 9 cell
scheme. An example of the reconstructed surface is shown in figure 4.4(e).
The method uses a uniform and regular grid. And the advection is performed
by operator splitting.

FLAIR The FLAIR algorithm [3] is basically a modification of Youngs
method. Instead of reconstructing the surface linearly in each cell the re-
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construction is linear across cell faces, as in figures 4.4(f) and 4.6. In this
way a more correct slope for the surface at the cell face is found and the flux
calculation is thereby improved.

Gueyffier Gueyffier [24] et al also present a variation on Youngs method.
Here reconstruction of the surface is performed in the same manner as in
the Youngs model. However, the volume fraction flux is now determined
by advecting the sides of the element of ’liquid phase’ with the mean cell
face velocities. Thereby the original geometrical phase element is deformed
in accordance with the velocity gradient of the flow (see figure 4.7). The
result is an improved advection model, without much extra work involved
(since algebraic relations determine the deformation). This idea is somewhat
similar to the use of marker particles in the surface advection (see below),
although surface reconstruction is not as accurate as for the higher order
marker chain methods.

Advection tests

A comparisons of the advection properties of some of the models presented
here is made by Rudman [55]. In figure 4.8 a test is shown for an initial 2D
’spherical’ free surface placed in a homogeneous fluid with a vorticity field.
The flow is given by the stream function

Ψ =
3

π
sin
(π

3
x
)

sin
(π

3
y
)
. (4.19)

All the compared methods except Youngs are algebraic (or zero order).
Rudman’s FCT-VOF [55] gives nearly as good results as Youngs model.

Youngs model does however require more calculation, since the surface needs
to be linearly reconstructed for each iteration. The other algebraic models
give much poorer results.

Higher order methods

For the MAC method [71] surface reconstruction is only needed for calcula-
tion of the effects of surface tension. In this case the advection is determined
purely by Lagrangian advection of the markers.

For surface marker chain methods (see figure 4.9), such as the Method of
Tensions (MOT), surface interpolation is applied both in volume fraction cal-
culation and for the calculation of surface tension forces. In MOT the surface
advection is calculated by marker advection followed by surface reconstruc-
tion. Subsequently the new phase field may be found. The additional work
needed for surface
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Figure 4.8: Comparison of standard advection test in a vortex field after 2000
steps forward (top) and after another 2000 steps backward (bottom).

Figure 4.9: Recon-
structed surface on
computational grid
with massless marker
particles: a marker
chain.

reconstruction in MOT is generally negligible com-
pared to the work needed for advection of the
marker field in the MAC method. Therefore MOT
is a preferable technique, even when there is no need
for surface tension calculations.

The issues of stability and phase conservation in
discretization of advection for the first order VOF
methods also apply to some extent in the higher or-
der methods. In this case the type of velocity inter-
polation for the marker particles influences stability
and conservation. This factor needs consideration,
especially in systems with high density ratios.

In the higher order methods flux correction may
not be implemented algebraically. Some tests have
been performed on flux correction using different
types of cubic splines for surface reconstruction and subsequent redistribution
of marker particles (see chapter 6). The results are promising.

4.3.3 Surface tension forces

In order to calculate pressure boundary conditions at the interface between
two phases the effects of surface tension must be included. The general
surface stress boundary condition at an interface can be expressed (from [40])

(p1 − p2 + σκ)n = (τ 1 − τ 2) · n +∇σ. (4.20)
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Here σ is the surface tension coefficient , pi is the interface pressure in fluid
i, τ i is the viscous stress tensor in fluid i, n is the surface unit normal and κ
is the surface curvature. The surface stress boundary condition represents a
balance of forces per unit area of the interface.

For the MAC model [71] and subsequent markers particle models, re-
construction of the interface can be interpolated between surface markers,
from which the surface curvature and unit normal can be calculated. For the
lower order methods volume fraction interpolation must be applied to find
the curvature and surface normal.

Figure 4.10: Spurious currents
for bubble simulation by Hirt
and Nichols VOF using the CSF
model. Calculated by Popinet and
Zaleski[49]

Error sources and spurious cur-
rents Inaccuracy in the calculation of
surface tension forces can be caused
by several factors. Both the order of
the reconstruction method and the ap-
plied surface tension force model influ-
ence accuracy. The higher the order
of reconstruction the more accurately
the surface tension forces may be calcu-
lated (depending on which surface ten-
sion model is applied). And the less dif-
fuse the surface is made in the calcula-
tion of surface tension forces the less the
surface tension forces are spread. The
distribution of the surface tension forces
greatly effects the stability of the flow,
especially in flows with large density ra-
tios. Also, the discretization of the NS
equations leads to error in the numeri-
cal solution where the size of the error depends on the order and type of the
applied discretisation. Error in the calculation of pressure due to incorrect
modelling of the pressure jump across the surface is also an important factor.
And finally the quality of surface definition depends on the ratio between grid
size and radius of curvature. The larger the ratio the poorer the definition.

All the factors described above may contribute to the creation of artificial
currents known as spurious currents , which normally develop into vortexes.
These currents are driven by the energy created by the imbalance in the mod-
elled surface tension forces. For a static surface situation as in figure 4.10
the erroneous representation of the acting surface tension forces leads to di-
verging flow, as the spurious currents will increase without bound. Therefore
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Figure 4.11: Continuous Surface Force model. Interface treatment

these methods should only be applied where no steady state configuration is
possible, or the calculation should be interrupted when a steady state situa-
tion is reached. In the case of a time dependent flow, the spurious currents
may lead to irregular behaviour like unphysical surface waves or surface fold-
ing. The dimensions of these waves will be characteristically of the same
order as the grid size, since they are related to error in the surface tension
force field, which again is linked to the grid size. Therefore the characteristic
dimension of the grid should be smaller than the characteristic dimension of
the surface effects one wishes to model.

Continuous surface force (CSF) model

The basic surface tension force model is the CSF model, developed by Brack-
bill et al in 1992 [10]. This model calculates a surface force distribution cen-
tered at the interface between two fluids. The model assumes the fluids to
be inviscid and incompressible, and the surface tension coefficient is assumed
constant. Thus the surface boundary condition becomes

p2 − p1 = σκ. (4.21)

In the CSF, the surface tension term in the surface boundary condition is
reformulated as a volume force, which subsequently is included in the contin-
uous volume averaged momentum equation. This reformulation is performed
by applying the colour function c [10], representing the surface discontinuity,
convolved with a distribution L (known as the convolution kernel);

c̃ =
1

V

∫
V

c(x′)L(x′ − x)dx′ (4.22)
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which results in a continuous smoothed colour function c̃ (see figure 4.11).
c̃ is then nonconstant in a transitional region across the surface, as shown
in figure 4.11. A natural choice of the color function is the phase function,
defined earlier (4.2). The smoothed colour function is subsequently applied
in the calculation of the surface tension volume force per unit volume FSV :

σκn → σκ
∆c̃

[c]
= FSV , (4.23)

where [c] is the jump in the colour function c across the interface. This
volume force can subsequently be included in the balance of volume forces,
i.e. the momentum equation:

ρ
du

dt
= ∇p+ FSV + ρg (4.24)

The mean curvature κ may also be found from c̃ (see [10]).

Conservative CSF

In SURFER [39] a modified version of the CSF model is applied. In this case
a surface tension volume force is applied on divergence form (i.e. as a po-
tential force), thus improving the conservation properties of the momentum
equation. The momentum equation then becomes

∂ρu

∂t
=

−∇p−∇ · (ρΠ− µS + T), (4.25)

Π = uu,

T = σ(I− nn) | ∇c̃ |,

n =
∇c̃
| ∇c̃ |

,

S =
∂uj
∂xi

+
∂ui
∂xj

.

Here viscous forces are included, i.e. the fluid is not assumed ideal, as in the
original CSF, so the corresponding surface stress boundary condition is given
by equation 4.20. But the balance of volume forces in the momentum equa-
tion is still valid. The improved conservation properties lead to a reduction
in spurious currents compared to the original CSF.
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Method of tensions (MOT)

Figure 4.12: Surface reconstruction and
tension calculation in MOT [49]

In the 2D Method of Tensions
Popinet and Zaleski [49] also use
the idea of surface tension forces
implemented as a volume force.
The incompressible momentum
equation is applied on the weak
form

∂ρu

∂t
+∇ · (ρΠ) =

−∇p−∇ · µS + σκδsn. (4.26)

δs is here the delta function
across the interface. Π and S
are as defined above. The sur-
face tension term σκδsn comes
from the integral relation∫

A

σκn dA =

∫
V

σκn δ[n(xS) · (x− xS)] dV, (4.27)

where the last integrand is the surface tension volume force term for zero
interface width, defined in the weak sense (as shown in [10]). Here xS maps
the interface in 3D. So the surface delta function δs corresponds to the dis-
tribution kernel L used is the CSF model when the transitional region goes
to zero. Again viscous forces are included in the momentum equation, as in
SURFER.

In MOT surface marker particles are applied to track the surface as de-
scribed earlier. Reconstruction of the surface is performed by interpolation
between the markers using cubic splines (see figure 4.9). The surface tension
forces are found by applying the curvature of the reconstructed surface. It
can be shown by Stokes theorem and the Frenet-Serret formulae that for a
computational volume Ω:∫

Ω

σκδSndV = σ(tB − tA), (4.28)

where tA and tB are the surface unit tangent vectors (see figure 4.12) at the
intersection between the interface and the boundaries of the computational
volume. This relation is applied in the finite volume discretisation of the
momentum equation (4.26).
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Figure 4.13: Amplitude of spurious currents versus spatial resolution for
PLIC method [77] and the method of tensions [49]

In figure 4.13 a comparison between MOT and a PLIC/CSF method is
shown. For the Method of Tensions the nondimensional amplitude of the
spurious currents (|U |µ/σ) decreases greatly as a function of grid size over
curvature while for the PLIC model there is no marked change in the ampli-
tude of spurious currents. This effect is due to the direct link between phys-
ical surface geometry and surface tension force calculation in MOT (which
increases in accuracy as grid size/curvature ratio decreases). For the lower
order advection methods this effect can not be achieved.

A method of pressure correction, similar to the one used in Hirt and
Nichols VOF, is also included in the MOT (see [49]).

Rudman FGVT

Rudmans FGVT model [56] also includes a modified CSF method. A point
is here made that the smoothing length needs to be large compared to grid
size in order to obtain a smooth convolved colour function field, facilitating
stability and convergence of the solution. A cubic B-spline kernel, as applied
in the smoothed particle hydrodynamics (SPH) method of Monaghan [30],
is applied in the convolution. With r as the normal distance (distance in
normal direction) from the surface, the kernel is given by

K(r, h) =
1

h2


40
7π

(
1− 6

(
r
h

)2
+ 6

(
r
h

)3)
if r
h
< 1

2

80
7π

(
1− r

h

)3
if r
h
< 1

0 otherwise

(4.29)
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Figure 4.14: Growth of kinetic energy of parasitic currents vs time for CSF
and FGVT surface tension models.

The smoothing length h is arbitrary and can be adapted to the specific grid.
The normalized version of this kernel can be used to find the the interface
distribution function (or convolution kernel) and subsequently the surface
unit normal and the curvature. From here one proceeds as in the ordinary
CSF model [10]. Again Rudman applies a subgrid for the volume fraction
calculations, as in the FCT.

A comparison between the original CSF model and the FGVT model
is shown in figure 4.14 for a static cylindrical drop. As can be seen, the
FGVT model gives results far superior to that of the original CSF model.
The amount of work per iteration is larger for the FGVT than for the CSF,
but to achieve a stable result the number of iterations per time step is much
larger for the CSF. So the FGVT is generally preferable.

4.3.4 Wetting

RIPPLE

A method for modelling the contact angle of a free surface at a solid phys-
ical boundary is introduced in the RIPPLE model [36]. The method is ex-
pressed graphically in figure 4.15. The vectors at the grid points (n̂i+1/2,j+1/2,
n̂i+1/2,j−1/2, etc) indicate the normal to the surface of the phase containing
the points (wall or fluid phase in the figure). The equilibrium angle θeq and
the equilibrium surface normal n̂, corresponding to the imposed boundary
condition, are also indicated. If the fluid surface normal, interpolated from
n̂i−1/2,j+1/2 and n̂i−1/2,j−1/2, differs from the set boundary condition, a force
is imposed on the free surface pulling it towards the equilibrium configura-
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Figure 4.15: Wetting angle in RIPPLE

tion set by the boundary conditions. The forces pulling on the surface act a
distance of two cells out from the wall.

MOT

In the Method of Tensions the wetting angle can be implemented directly as
a boundary condition on the spline function (see appendix E). Computing
time is therefore saved compared to RIPPLE. Also the surface behaviour
close to the wall is more physical than in the RIPPLE model due to the
resulting smoothness of the interpolated spline surface.

4.4 Selected model - The Method of Tensions

The Method of Tension (MOT) is chosen for modelling of the meniscus dy-
namics. The model has both advantages and disadvantages compared to the
other models considered, but in total it seems to be the best alternative.
The main reasons for choosing this model are the surface smoothness, con-
trol of spurious currents, accuracy of and simplicity in implementing wetting
boundary conditions and reasonable CPU time.

MOT can simulate both surface wave propagation and folding with good
accuracy. Uncontrolled surface breakup, which might occur in the lower
order methods, will not occur, since the surface is always discretely defined
by the surface marker particles. The method will also function on a relatively
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coarse grid, due to the discretely defined surface, although accuracy in surface
advection will be poor. Again the lower order methods are too diffuse to give
useful results on too coarse a grid.

A pressure correction algorithm is included in MOT, facilitating conver-
gence at the surface boundary, similar to the correction applied in Hirt and
Nichols VOF. Due to the discretely defined surface this correction works bet-
ter in MOT. Staggered grid is also applied to avoid pressure checkerboarding.

Generally conservation of phases is not very accurate with MOT. But
flux correction is not necessary to reduce the effect of spurious currents in
this model, due to the consistency of the surface tension force calculations by
application of 4.28, which ensures fulfillment of Newton 3. This balance of
surface tension forces is not ensured in the other surface tension models (as
an example, see figure 4.13). With the simple marker advection and no flux
correction the CPU time is also significantly reduced compared to techniques
applying iterative flux correction.

Memory requirements for MOT are comparable to those of Hirt and
Nichols VOF. Additional memory is needed for storage of marker positions
and surface spline and the staggered phase fields needed for surface force
calculations. So the increase in memory requirement compared to the lower
order methods is not significant.

Although simple bilinear interpolation is applied for marker velocities
in the original MOT, discretization of the phase conservation, or advection
equation (4.8), may be controlled by the type of interpolation applied for the
marker particle velocities in MOT, as is done for the lower order methods.
Thereby the fine balancing between stability and accuracy, which is an im-
portant issue for the large density ratio system of liquid metal and gas, can
be taken care of.

Variation in the surface tension coefficient (as in the conservative CSF)
is not included in MOT. A constant surface tension coefficient is a rough
approximation, but experimental measurements have shown that for molten
metal the surface tension coefficient does not vary significantly with temper-
ature and is also not significantly altered by surface oxide formation. The
change in bulk metal properties due to solidification is more important to
meniscus dynamics.

The importance of distribution of surface tension forces through applica-
tion of a large smoothing length, as in the FGVT, or by applying a broad
convolution kernel as in the CSF, may also be accounted for in MOT. By the
original MOT the calculated surface tension forces are only nonzero in com-
putational cells intersected by the free surface. However, these forces may
also be spread into neighbour cells so as to facilitate stability of the surface.
This is done in our adaption of the method (see chapter 6).
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The SIMPLE algorithm will be applied together with the multigrid tech-
nique in the Navier-Stokes solver. These methods are described in chapter
8.



Chapter 5

Two phase meniscus modelling

An analysis of the averaged equations

In general, at least three phases are present in the meniscus system; Liquid
metal, aluminium oxide on the melt surface (when air is applied as the slip
gas), and gas. It has been shown [15] that surface behaviour has a strong
dependence on the surface oxide layer. Measurements have also shown that
the surface tension coefficient is not influenced greatly by the oxide layer (see
[64]). Subsequently the surface tension forces are not altered by the oxide
layer, but the oxide constrains the meniscus movement, since the dynamic
properties of the oxide phase influence the dynamics of the system. In future
work a model for the oxide formation and rheology should be included. How-
ever, here the model is restricted to a two phase model describing the system
of the gas pocket and aluminium melt. It is assumed to be a system of two
distinct separate phases with a free surface boundary without any diffusion
or reaction between the two phases.

Several different approaches are taken to modelling flow in this kind of
system. The simplest method is to consider the two phase fluid as a homo-
geneous mixture in each computational cell, also known as the homogeneous
model . The most complex is to consider each phase separately with a set
of equations for each phase, a two-fluid model . Several modelling schemes
exist which lie somewhere between these two in complexity (see [13], [76] and
[74]). The model applied here, which is based on the Method of Tensions of
Popinet and Zalesky [49], is among this group. It is basically a homogeneous
model, but with corrections to flux and pressure terms.

An analysis of the volume averaged flow and internal energy equations
is performed in this chapter, pointing out the problem areas of the method.
Incompressibility is assumed and each phase is assumed homogeneous.

73
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The validity of some of the assumptions made here are discussed further
in appendix D.

5.1 Governing equations

In a two phase system with an interfacial boundary the condition of continu-
ity is not fulfilled. Several variables may be discontinuous over the interface,
such as density, viscosity, velocity, heat capacity, etc. If the heat and fluid
flow equations are to be solved without defining separate computational do-
mains for the two phases, then some form of averaging or smoothing of the
dependent variables must be applied. Smoothing can be performed by aver-
aging variables over finite regions of volume.

The general condition of validity of volume averaging in a system with
disperse flow was shown by Whitaker [72] to be:

characteristic dimension of phases or pores �
characteristic dimension of averaging volume �

characteristic dimension of physical system. (5.1)

In the case of the modelling of two unmixed separate phases, as in the gas
pocket / molten aluminium system, this condition can not be fulfilled, since
the dimension of both phases are of the same order as the dimension of
the physical system . The effect of volume averaging of this system should
therefore be properly analyzed to assess its applicability.

Two types of volume averaging are generally used for multiphase flow[61],
extensive averages and intrinsic averages. For the definitions of the averages
the colour function Ck is used, which is defined by

Ck(x, y, z) =

{
1, (x, y, z) inside phase k
0, (x, y, z) not inside phase k

(5.2)

Three conceptual coordinate spaces are applied in the system of volume
averaging used here. The coordinate field spanning the space of exact physi-
cal values is denoted by (x, y, z), the field of averages is denoted by (X, Y, Z)
and the field spanning a computational volume is denoted (α, β, γ). The
averaging volume Ω centered on (X, Y, Z) may then be defined as

Ω = {(α, β, γ);α ε [X − δx,X + δx], β ε [X − δy,X + δy], γ ε [Z − δz, Z + δz]}
(5.3)
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for small increments δx, δy and δz. So the averaging volume may be a
computational cell volume, or any other fixed geometric volume in the com-
putational domain. The phase volume Ωk is defined:

Ωk = {Ω;Ck = 1}. (5.4)

Based on the definition of the averaging volumes above the volume aver-
ages may then be defined as follows:
The extensive average of variable ψ in phase k is

< ψk > (X, Y, Z) =
1

V

∫
Ωk

ψ dV, (5.5)

and the intrinsic average is

i< ψk > (X, Y, Z) =
1

Vk

∫
Ωk

ψ dV. (5.6)

Here Ωk is the section of the averaging volume containing phase k. The
volume of Ω is V , defined as

V (X, Y, Z) =

∫
Ω

dV (5.7)

Correspondingly, Vk is the volume of Ωk. Then by (5.5) and (5.6):

< ψk >= αk
i< ψk >, (5.8)

where the volume fraction αk of phase k is defined as

αk =
Vk
V
. (5.9)

The mean values thus defined are continuous in the whole computational
domain (X, Y, Z). By Soo [61], volume averaging should only be applied
to quantities per unit volume or area, such as density, momentum per unit
volume, energy per unit volume and gradients of stresses and fluxes. Only
then will the mean values have physically meaningful properties. With a
constant density specific values, i.e. properties per kg, may also be averaged.
In our case there is however a large jump in density at the phase interface,
so such averaging may not be applied.
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5.1.1 Equation of continuity

The equation for conservation of mass in a volume Ω is derived based on
the mean values defined in 5.5 and 5.6. The continuity equation within a
continuous phase k is

∂ρk
∂t

+∇ · ρk~uk = 0. (5.10)

Two theorems are applied in the further analysis, both derived from Reynolds
transport theorem. Whitaker’s averaging theorem [72] states that for an aver-
aging volume containing phase interfaces the volume average of the derivative
of ψ in phase k with respect to time can be expressed as

<
∂ψk
∂t

>=
∂

∂t
< ψk > −

1

V

∫
δΩk

ψk~us · ~nk dA, (5.11)

where ~us is the velocity of the boundary δΩk of phase k with outer unit
normal ~nk.
And Slattery’s averaging theorem [60] states that for a scalar field ψ:

< ∇ψk >= ∇ < ψk > +
1

V

∫
δΩk

ψk~nk dA. (5.12)

Correspondingly, for a vector field ~ξ

< ∇ · ~ξk >= ∇· < ~ξk > +
1

V

∫
δΩk

~ξk · ~nk dA. (5.13)

Incompressibility and no mass transfer between the phases is assumed in
our system of liquid metal and gas. Then by taking the volume average (5.5)
and applying Whitaker’s (5.11) and Slattery’s (5.13) theorems, the mean
continuity equation for each phase k becomes

<
∂ρk
∂t

> + < ∇ · ρk~uk >=
∂ < ρk >

∂t
+∇· < ρk~uk >= 0. (5.14)

In the framework of averages the intrinsic mean phase velocity i< ~uk >
may be defined by the mean momentum per unit volume as

i< ~uk >≡
i< ρk~uk >
i< ρk >

=
< ρk~uk >

< ρk >
. (5.15)

In the homogeneous model the intrinsic velocities are by approximation given
the same value in the two phases

i< ~uL >≡< ~u >, (5.16)
i< ~uG >≡< ~u > .
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< ~u > becomes the velocity field in the domain of volume averaged variables.
Then adding the equations of continuity for the liquid and gas phases and
applying (5.18), the continuity equation is

∂
∑

k < ρk >

∂t
+∇ ·

∑
k

< ρk >< ~u >= 0. (5.17)

In our system of liquid (L) and gas (G) the volume average density < ρ >
may be expressed as:

< ρ >=
∑
k=L,G

< ρk >=
∑
k=L,G

αk
i< ρk >. (5.18)

Where L denotes liquid phase and G denotes gas phase. This leads to the
homogeneous model momentum equation:

∂

∂t
< ρ > +∇· < ρ >< ~u >= 0. (5.19)

Note that the homogeneous fluid corresponding to equation 5.19 will have
pseudo-fluid properties and will differ in behaviour from that of a discontin-
uous two-fluid system in the vicinity of the interface.

Pseudo-fluid properties The stresses and fluxes in the homogeneous
formulation are generally expressed as mean values < ψk >= αk

i< ψk >,
thereby giving the fluid pseudo-fluid properties. The physical meanings of
the mean terms are expressed through the volume averaged equations, such
as the mean velocity in the mean continuity equation (5.19). Consequently
a mean stress or flux value < ψk > is not necessarily directly related to the
corresponding physical property field ψ in the averaging volume in the region
of the phase interface.

If the equation of continuity is to give a good approximation to the sys-
tem’s behaviour in the vicinity of a phase interface, the difference between
the mean intrinsic phase velocities at the interface must be small (making
(5.1.1) a good approximation). Restraints are placed on the solution process
by this condition on the intrinsic velocities. Our system is particularly sensi-
tive to this type of volume averaging due to the large density ratio between
liquid metal and gas.

This aspect is discussed further in appendix D.
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5.1.2 Equation of momentum

The momentum equation for a continuous phase k is

∂ρk ~uk
∂t

+∇ · ρk ~uk ~uk = −∇pk + µk
[
∇~uk + (∇~uk)T

]
+ ~Fk. (5.20)

Temporal and convective terms

Taking the extensive average (5.5) of the left hand of the phase momentum
equation and applying Whitaker’s and Slattery’s theorems we get:

<
∂ρk ~uk
∂t

> + < ∇ · ρk ~uk ~uk >=
∂

∂t
< ρk ~uk > +∇· < ρk ~uk ~uk > . (5.21)

As in the continuity equation, the mean momentum per volume term can be
rewritten using the definition of intrinsic velocity (5.15). From the second
term the intrinsic mean product of velocities i< ~uk~uk > is defined in a similar
way:

i< ~uk~uk >≡
i< ρk~uk~uk >

i< ρk >
, (5.22)

Leading to the following relation:

<
∂ρk ~uk
∂t

> + < ∇ · ρk ~uk ~uk >=
∂

∂t
< ρk >

i < ~uk >+∇· < ρk >
i< ~uk ~uk >.

(5.23)

Again the use of common mean intrinsic velocities gives us a pseudo-fluid
with properties differing from the physical system modelled in the region of
the interface.

Local deviations The intrinsic product of velocities i< ~uk~uk > can be
related to the intrinsic velocity i< ~uk > by introducing local deviations from
averages δψk within each averaging volume Ω centered on (X, Y, Z):

ψk(α, β, γ) =< ψk > (X, Y, Z) + δψk(α, β, γ). (5.24)

Then
1
V

∫
Ωk

ψkdV =

1
V

∫
Ωk

[< ψk > (X,Y, Z) + δψk(α, β, γ)] dα dβ dγ =

1
V

∫ α=X+δx

α=X−δx

∫ β=Y +δy

β=Y−δy

∫ γ=Z+δz

γ=Z−δz

Ck(α, β, γ) [< ψk > (X,Y, Z) + δψk(α, β, γ)] dα dβ dγ =

< ψk > (X,Y, Z), (5.25)
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since

< δψk >= 0 (5.26)

by definition. It is assumed that the size of each volume Ω is chosen to be
small enough for the deviations to be negligible1, δψk �< ψk >. The local
deviations δψk within the averaging volume Ω will here depend on the way Ω
is defined, i.e. they will depend on the grid size in the numerical simulations.

Subsequently the intrinsic product of velocities can be expressed

i< ~uk~uk >= i< (< ~uk > +δ~uk)
2 > =

i< ~uk >
i< ~uk >+ i< δ~ukδ~uk >+

i< δρkδ~ukδ~uk >

< δρk >
. (5.27)

The volumetric Reynolds stress like terms formed by the averages of the
product of the local deviations lead to the need of extra closure relations if
they are to be included.

Cell wall averages In the Method of Tensions the phase interface is in-
terpolated by a cubic spline function (see chapter 6). So the interface is at
all times uniquely defined by the spline function. Consequently the exact
volume fraction can be found on cell walls, and when incompressibility and
homogeneous density is assumed the mean wall density < ρk >w given by the
spline surface can be found for each phase and applied in the discretization.
This improves on the accuracy of the homogeneous model.

Velocity averaging When cell walls are not intersected the density is
constant and the only error in the mean convective term is due to local
deviations in velocities (secant term on the right hand side in (5.27)). With
a continuous velocity field and first order discretization (as in the method of
finite volume discretization used here) the error in velocity at the cell wall will
be of second order in δx, δy and δz (by the dimensions of the computational
cell Ω, definition (5.3)), so the intrinsic product of the velocity deviations
i< δ~ukδ~uk > will be of fourth order.

With the intrinsic velocity defined as in (5.15), it does not depend on the
density in a homogeneous incompressible phase. However, when two phases
are present, a common mean intrinsic velocity will depend on the density
distribution (by 5.15). So even if a mean cell density is not applied directly
in the interface flux term a mean density is applied by definition in the mean

1With the condition that a sufficiently fine grid is applied.
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intrinsic velocity, resulting in error when the intrinsic phase velocities are dif-
ferent, and particularly in our case of large phase density ratio. This problem
may be partly resolved by introducing a semi-homogeneous velocity scheme
where differences in mean velocity are accounted for. A method that has
been developed to deal with this problem is presented by Wörner et al [74].
Adaptive grid techniques as applied by Unverdi and Tryggvason [69] would
also help to solve the problem. Here it will however be assumed that with a
sufficiently small grid size differences in mean phase velocities are negligible.
Then the assumption of approximately equal intrinsic phase velocities (5.1.1)
can be applied, the intrinsic product of velocity deviations can be neglected
and the sum of the individual mean momentum phase equations becomes∑

k

[
<
∂ρk~uk
∂t

> + < ∇ · ρk~uk~uk >
]
≈

∂

∂t

∑
k

< ρk > < ~u >+∇ ·
∑
k

< ρk >< ~u >< ~u > . (5.28)

Reynolds stresses

For a complete analysis time averaging should also be considered in relation
to the discretization in time. This will only be done for the convective term
here. The error in time averaging of the other terms in the momentum
equation is assumed to be of minor importance.

According to Whitaker [72] the time averaging should be performed after
the volume averaging, since a priori time averaging eliminates the identity of
the dynamic phases, making subsequent volume averaging unphysical. And
according to Soo [61], the purpose of time averaging is to express averages
of products, such as intrinsic product of velocities, in terms of products of
averages and to account for high frequency fluctuations (i.e. turbulence).
Note however that to express volume averages of products as products of
volume averages, some form of local deviations must be introduced. Partly
because the volume and time averaging are not commutative. So either local
deviations must be applied separately before the time averaging, as above, or
combined temporal and local deviations must be applied to express averages
of products as products of averages. Here combined deviations will be applied
in the analysis.

With a time increment ∆t time averaging of a volume averaged phase
variable < ψk > can be defined as

t � ψk �=
1

∆t

∫
∆t

< ψk > dt. (5.29)
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With this definition the time and volume averaged product of the con-
vective term is:

t � ρk~uk~uk �=
1

∆t

∫
∆t

1

V

∫
Ωk

ρk~uk~uk dV dt. (5.30)

Combined temporal and spacial deviations Local deviations in both
time and space can be defined by

ψk =t� ψk � (X, Y, Z, T ) + δψk(x, y, z, t), (5.31)

so that

t � ρk~uk~uk �=
1

∆t

∫
∆t

1
V

∫
Ωk

(t� ρk � +δρk)(t� ~uk � +δ~uk)(t� ~uk � +δ~uk), dV dt =

t � ρk �t<i< ~uk �t<i< ~uk � +O(δ2). (5.32)

The higher order terms consist of combined local and temporal deviations,
producing Reynolds stress terms

t � ρk �t� δ~ukδ~uk � . (5.33)

For an incompressible homogeneous fluid this is the only term containing
products of deviations that is nonzero. However, in the two-fluid regions the
fluid is not homogeneous. So when a turbulence model is applied to model
the Reynolds stresses the error is of third order in the homogeneous regions,
but only of second order in the interface region.

Here a Large Eddy Simulation turbulence model is applied to model the
combined temporal fluctuations and local deviations.

Large Eddy Simulation (LES) turbulence model

The LES model [18] attempts to model the effect of turbulence by its influence
on the shear viscosity. The subgrid scale Reynolds stress tensor (by equations
5.32 and 5.33)

τ
s
=

t∑
k

� ρk �t� δ~ukδ~uk � (5.34)

is attempted modelled by the assumption

τ sij −
1

3
τkkδij ≡ µt(

∂ < ui >

∂xj
+
∂ < uj >

∂xi
) = 2µtSij, (5.35)
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where µt is the eddy viscosity. By dimensional analysis the eddy viscosity
may be derived as

µt = C2
Sρ∆

2(Sij Sij)
1
2 , (5.36)

where ∆ is the length scale of the filter kernel (see [18]), corresponding to the
dimension of the averaging volume (5.1). CS is a model parameter. Models
for isotropic turbulence generally use a value in the region of CS ≈ 0.2.

Pressure term

By Slattery’s theorem (5.12) the pressure term in phase k can be expressed

< ∇pk >= ∇ < pk > +
1

V

∫
δΩk

pk~n dA. (5.37)

It can also be shown by Slattery’s theorem that

1

V

∫
δΩk

~n dA = −∇αk. (5.38)

In the homogeneous model the concept of local deviations (5.24) the may be
applied, and the pressure term becomes

< ∇pk >= −αk∇i< pk >+
1

V

∫
δΩk

δpk~n dA. (5.39)

Since pressure is a measure of an entity (force) per unit area this averaging
produces a physical meaningful property (see [61]).

By the assumption of small local deviations the δpk term is neglected. In
the homogeneous model the intrinsic pressures are assumed to be equal in
the same manner as was done for the intrinsic velocities:

i< pL >≡< p >,
i< pG >≡< p > . (5.40)

which together with (5.39) gives the pressure term in the homogeneous model.
This assumption is however not necessarily applicable in our case of stratified
flow with separate phases. Whitaker’s conditions (5.1) are also not fulfilled
in this case. The pressure jump across a curved surface must somehow be
included in our model.

If the interface is assumed to be diffuse and spread over several computa-
tional cells with the surface tension as a volume force spread over the same



5.1. GOVERNING EQUATIONS 83

region, then the pressure gradient over the cells containing the surface can
balance the surface forces, and the homogeneous approximation (5.40) can
be applied. The diffuse surface is of course unphysical, but the sum of forces
acting over the surface remain the same, and for a sufficiently fine grid the
properties of the system should approximate the physical behaviour of the
meniscus dynamics. These considerations directly relate to the type of con-
volution kernel applied in the surface force models discussed in the previous
chapter (4.3.3).

In the original MOT the surface forces are only distributed in cells con-
taining the phase interface. So the pressure gradient over a single cell must
therefore balance the surface tension forces across the surface. The required
sharp pressure gradient results in poor stability and convergence in the solu-
tion of the pressure Poisson equation. To deal with this problem a pressure
correction method (see 6.6) is applied in MOT. Here a further distribution
of surface forces is also introduced (see 6.6) to improve stability and conver-
gence. The effect of the surface force distribution is similar to the effect of
a convolution kernel with a smoothing length stretching over several com-
putational cells. The additional smoothing is here needed due to the large
density ratio in the system of gas and molten metal.

Through these adaptions the homogeneous model may be applied, and
the momentum equation pressure term becomes

−
∑
k

αk∇i< pk > = −∇ < p >
∑
k

αk = −∇ < p > . (5.41)

Volume forces

The volume forces F consist of gravitational pull and surface tension forces.
Again, due to the large density ratio care must be taken in the implementa-
tion of surface tension forces, as discussed above. The surface tension force
model is described in chapter 6.

Note that in a purely homogeneous two phase model body forces might
lead to poor accuracy in fluid behaviour through fluxing of mean density with
the mean velocity across cell walls. However, when the mean wall densities
are applied through the Method of Tensions instead of interpolated densities
in the discretization this problem should be avoided.

A remark should also be made on the temperature dependence of the
density in the molten aluminium. This temperature dependence leads to
buoyancy in the liquid, causing natural convection.

The importance of the effect is analyzed in appendix D.
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Viscous stresses

The extensive volume average of the viscous stress term is by Slattery’s the-
orem (5.12)

< ∇ · τ k >= ∇ · αk i< τ k >+
1

V

∫
δΩk

~τk dA, (5.42)

where ~τk is the shear force along the interface. To split the mean stress
tensor local deviations in both the viscosity and the velocity gradients may
be applied. Then

τ k = (< µk > +δµk)
[
i< ∇~uk > +δ(∇~u)k + i< ∇~uk >T +δ(∇~u)Tk

]
, (5.43)

and

∇ · αk i< τ k > = ∇ · αk i< µk >
(
i< ∇~uk >+ i< ∇~uk >T

)
+O(δ2). (5.44)

O(δ2) symbolizes the terms of second order in local deviations2, which are
neglected in consistency with neglecting mean products of deviations for the
convective term. By defining the intrinsic velocity gradient tensor

i< ∇~uk > =
< ρ∇~uk >
< ρ >

(5.45)

and applying Slattery’s theorem and local deviations it can be shown that

i< ∇~uk > = ∇ i< ~uk >−
1

< ρk >

1

V

∫
δΩk

ρk~uk~nkdA−

< δ∇ρkδ~uk >
< ρk >

− < δρkδ∇ρkδ~uk >
< δρk >< ρk >

, (5.46)

leading to the mean viscous forces

∇ · αk i< τ k > =

∇ · αk i< µk >
(
∇ i< ~uk >+ (∇αk i< ~uk >)T

)
−

∇ · i< µk >
1

< ρk >

1

V

∫
δΩk

ρk~uk~nkdA+
1

V

∫
δΩk

~τk dA. (5.47)

In summation of the viscous stresses for the liquid and solid phases the
last integral term vanishes by the balance of shear forces across the phase
boundary, when no slip is assumed. The second term does not. It is a

2These are similar to local deviation terms in the convective term (5.27).
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more complicated friction term arising from the conversion from mean shear
tensor to the shear tensor of the mean velocities (by equation 5.46). The
term is however obviously quite small. It is therefore assumed that it can be
neglected.

Then with the assumption of approximately equal intrinsic velocity fields
as in (5.1.1), and assuming the interfacial integral terms to be negligible, the
homogeneous model is applied, and the mean viscous forces can be expressed
as

< ∇ · τ >≈< µ >
[
∇ < ~u > +(∇ < ~u >)T

]
, (5.48)

with the viscosity in the homogeneous model defined as

< µ >=
∑
k

αk
i< µk >. (5.49)

By applying the homogeneous model the momentum equation finally takes
the form

∂ < ρ >< ~u >

∂t
+∇ · (< ρ >< ~u >< ~u >) = −∇ < p > +∇ · τ + ~F , (5.50)

where the vector ~F represents the mean body forces, and the stress tensor τ
is

τ =< µ >
[
∇ < ~u > +(∇ < ~u >)T

]
, (5.51)

Two-fluid model

If a separate phase model as mentioned in the introduction were to be ap-
plied, the separate phase velocity, pressures and stresses could be modelled
independently of each other. The higher order terms neglected in the ho-
mogeneous model in the convective, stress and pressure terms would then
be included as boundary conditions at the phase interface. In this case two
sets of momentum equations should be solved, coupled by these boundary
conditions in addition to coupling by the balance of the pressure jump and
surface tension forces. The Method of Tensions could also be applied in such
a two phase model, where the pressure jump in a cell intersected by a phase
interface could be derived from the calculated surface force. Substantial work
has already been done on such models (see [28] and [75]).

5.1.3 Internal energy equation

Two boundaries must be considered in the analysis of the energy equation:
the gas-metal surface boundary and the diffuse liquid-solid boundary in the
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solidifying ingot. The temperature range of the liquid solid boundary is
dependent on the type of alloy being cast. For pure Al the boundary is at
its narrowest, so it is harder to model than the more alloy rich castings.
Here the effects of the discontinuity of the gas-metal surface are analyzed.
The effect of the liquid-solid interface is discussed in the presentation of the
solidification model in the next chapter.

The equation for internal energy e per unit mass is

∂ρe

∂t
+∇ · ~uρe = −∇ · ~q + τ : ∇~u+ S. (5.52)

The equation can be expressed in terms of enthalpy per unit mass h by

e = h− p

ρ
, (5.53)

leading to the equation for enthalpy per unit mass

∂ρh

∂t
+∇ · ~uρh = −∇ · ~q +

dp

dt
+ τ : ∇~u+ S. (5.54)

d
dt

is the material derivative and S is the source terms, discussed later. The
individual phase enthalpy equations can subsequently be expressed

∂ρkhk
∂t

+∇ · ~ukρkhk = −∇ · ~qk +
dpk
dt

+ τ k : ∇~uk + Sk. (5.55)

Temporal and convective terms

Similar to the treatment of the linear momentum equation, by using Whitaker’s
and Slattery’s theorems, local deviations, and with the condition of incom-
pressibility and no mass exchange the volume averaged left hand side of the
enthalpy equation becomes

<
∂ρkhk
∂t

> + < ∇ · ρkhk ~uk >=

∂

∂t
< ρk >

i< hk >+∇· < ρk >
i< hk >

i< ~uk >+

∇ < ρk >

(
i< δhkδ~uk >+

i< δρkδhkδ~uk >

< δρk >

)
. (5.56)

Homogeneous model In the homogeneous model the higher order devia-
tion terms are again assumed negligible. And the mean intrinsic enthalpy of
the phases are assumed to be equal: i< hG >=i< hL >≡< h >. With equal
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mean phase velocities (as in 5.1.1) adding the temporal and convective terms
for the two phases gives

∑
k

(
<
∂ρkhk
∂t

> + < ∇ · ρkhk ~uk >
)
≈

∂

∂t

∑
k

< ρk >< h > +∇ ·
∑
k

< ρk >< h >< ~u > . (5.57)

Relevance to two phase system Using a common mean phase enthalpy
is a similar source of error as the use of a common mean pressure in the
momentum equation. The enthalpy is as the pressure, discontinuous across
the liquid-gas interface, due to the difference in heat capacity of the gas and
metal: the temperature is continuous and by definition,

h =

∫
T

cpdT. (5.58)

Therefore to achieve a good result an enthalpy correction method similar to
the pressure correction model might be applied. Such a model is not applied
here, but it should be considered in future work.

Conductive term

Fourier’s law is applied to describe the heat conduction. Also, to facilitate
the solution the temperature gradient is expressed in terms of the enthalpy
gradient at constant pressure by (5.58) so that

∇T =
1

cp
∇h. (5.59)

Then

∇ · ~q = −∇ · k∇T = −∇ · k
cp
∇h. (5.60)
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The volume averaged conductive term then becomes (by Slattery’s theorem
and using local deviations)

< ∇ · ~qk >= − < ∇ ·
(
k

cp

)
k

∇hk >=

−∇ · αk i<
(
k

cp

)
k

∇hk >−
1

V

∫
δΩk

(
k

cp

)
k

∇hk · ~nkdA =

−∇ · αk i<
(
k

cp

)
k

>i< ∇hk >

−∇ · αk

i< δ

(
k

cp

)
k

δ∇hk > +

i< δρkδ
(
k
cp

)
k
δ∇hk >

< δρk >


− 1

V

∫
δΩk

(
k

cp

)
k

∇hk · ~nkdA. (5.61)

Again using Slattery’s theorem and local deviations we may define

i< ∇hk > =
< ρ∇hk >
< ρ >

=

∇ i< hk >−
1

< ρk >

1

V

∫
δΩk

ρkhk~nkdA−

< δ∇ρkδhk >
< ρk >

− < δρkδ∇ρkδhk >
< δρk >< ρk >

. (5.62)

Subsequently the conductive term in the energy equation becomes

< ∇ · ~qk >= − < ∇ ·
(
k

cp

)
k

∇hk >=

−∇ · αki<
(
k

cp

)
k

>∇ i< hk >+

∇ · αk
i<
(
k
cp

)
k
>

< ρk >

1

V

∫
δΩk

ρkhk~nkdA−

1

V

∫
δΩk

(
k

cp

)
k

∇hk · ~nkdA+O(δ2). (5.63)

The products of deviations are again assumed to be small, and the individual
phase terms ∫

δΩk

(
k

cp

)
k

∇hk · ~nkdA =

∫
δΩk

kk∇Tk · ~nkdA (5.64)

will cancel in the summation when there is no energy source or drain on the
gas-metal interface.
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Homogeneous model In the homogeneous model the mean enthalpy of
the two phases are assumed to be approximately equal so that i< hL >=
i< hG > ∼=< h >. Then the sum of the individual phase energy equations
becomes

−
∑
k

< ∇ · ~qk >= −∇ ·
∑
k

αk
i<

(
k

cp

)
k

>∇ < h > +

∇ ·
∑
k

αk

i<
(
k
cp

)
k
>

< ρk >

1

V

∫
δΩk

ρkhk~nkdA+O(δ2). (5.65)

The second term to the right in (5.65) represents a heat transfer across
the phase interface. It is assumed to be negligible compared to the mean
heat transfer. With the assumption of equal intrinsic average temperatures
this leads to the homogeneous conductive term equation

−
∑
k

< ∇ · ~qk >≈ −∇ ·

(∑
k

−αki<
(
k

cp

)
k

>

)
∇ < h > . (5.66)

Relevance to two phase system Again the application of a common
phase enthalpy is a rough approximation. An enthalpy correction method
would improve stability and convergence, as discussed above.

If the heat flux is assumed to be normal to the interface, and the tem-
perature on each side of the interface is known or can be approximated, then
a more accurate expression for the heat conduction across the interface can
be found: this is done by introducing a harmonic mean conductivity and
directly applying the phase temperature gradients. Such a method is applied
in the model for solidification contraction (see chapter 7).

Friction and pressure

The heat generated by friction and pressure work is normally quite small,
and the corresponding terms in the heat equation are therefore neglected.

Source term and solidification

Since the model must be capable of modelling phase change between liquid
and solid aluminium, the latent heat of melting must be accounted for in the
energy equation. This can be achieved by including the latent heat release per
unit mass in the source term Sk. Another possibility is including the latent
heat in an enthalpy/temperature model. The latter technique, presented in
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section 7.1.1 is applied in our model. Problems connected to a steep enthalpy
gradient in the region of solidification are discussed in this section.

Another term that might be included here is the radiation between the
meniscus and ingot surface and the mould wall. It is however shown in 7.2.7
that the effect of radiation is negligible compared to the conductive heat flow
from ingot to mould.



Chapter 6

Developments in Method of
Tensions

A 2D marker chain method is applied for tracking the interface between the
gas and metal phases. The method is based on earlier work by Popinet and
Zaleski [49]. The original method, the Method of Tensions (MOT), models
a free moving interface with surface tension forces in a 2D Cartesian system,
using a cubic spline function to interpolate the interface (shown in figure
4.9). Since the original MOT is not very applicable to systems with both
large density ratio and small Weber numbers some modifications have been
made to the model.

The main advantages of the Method of Tensions are accuracy of surface
interpolation and direct application of wetting properties as boundary con-
ditions (see chapter 4). The surface construction is performed using cubic
splines, of which the accuracy is a lot higher than for the lower order surface
tracking and capturing methods (see chapter 4). Thereby control of spuri-
ous currents is greatly improved and consequently also the stability of the
solution. The wetting conditions at the surface contact points with the walls
is applied as boundary conditions at the ends of the interpolating spline.
Compared to models of lower order this improves the dynamics close to wall
contact points in the numerical simulations.

The Method of Tensions has been adapted to the cylindrically symmetric
coordinate system and further to a system with large density ratio (as in our
case of a metal gas interface). Modifications have been made to the marker
advection algorithm, the method of marker redistribution, and the method
of distribution of surface tension forces in order to improve stability and
conservation of individual phase mass at the interface. Also for simplicity
the SIMPLE NS solver (described in 8.1) already implemented in FLUENT
V3.04 has been applied instead of the variation on the explicit projection

91
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method described in the original Method of Tensions paper [49]. Attempts
have further been made to improve the conservation properties of the marker
chain advection method.

Navier-Stokes equations

The dynamics and thermodynamics of three separate phases (gas, liquid
metal, and solid metal) are coupled in the casting simulations. There are
three kinds of discontinuity or interfaces in the system; the gas-liquid in-
terface, the gas-solid interface and the liquid-solid interface. To fulfill the
condition of continuity all coefficients and dependent variables are defined as
volume averages in the applied equations, as described and analyzed in the
previous chapter.

2D cylinder symmetry, incompressibility, Newtonian viscosity and a con-
stant surface tension coefficient are assumed. The Navier-Stokes equations
[8] are expressed in conservative form, as in the original SOLA algorithm, to
facilitate conservation of mass and energy in the discretization. The volume
averaged NS equations are as follows.
Continuity equation;

∂

∂t
ρ+

1

r

∂

∂r
(rρvr) +

∂

∂z
(ρvz) = 0. (6.1)

Momentum equations;

∂

∂t
(ρvr) +

1

r

∂

∂r
(rρv2

r) +
∂

∂z
(ρvrvz) = − ∂

∂r
P

−
(

1

r

∂

∂r
(rτrr)−

τθθ
r

+
∂

∂z
τrz

)
+ Sr,

∂

∂t
(ρvz) +

1

r

∂

∂r
(rρvzvr) +

∂

∂z
(ρv2

z) = − ∂

∂z
P

−
(

1

r

∂

∂r
(rτrz) +

∂

∂z
τzz

)
+ ρg + Sz, (6.2)

where surface tension forces per unit volume are defined as S = (Sr, Sz).
The Newtonian stress tensor components are

τrr = −µ2
∂vr
∂r

, τθθ = −µ2
vr
r
, τzz = −µ2

∂vz
∂z

,

τzr = τrz = −µ
[
∂vz
∂r

+
∂vr
∂z

]
, (6.3)

and by the condition of incompressibility

∇ · v =
1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0.
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6.1 Surface tension forces

The basics of the surface force calculation in the Method of Tensions are
described in section 4.3.3. With surface tension coefficient σ, surface curva-
ture κ and surface unit normal n, the total surface tension forces acting on
a surface S can be expressed (by Landau [40]);∫

S

σκn dA. (6.5)

And by relation 4.27 shown by Brackbill et al [10]:∫
S

σκndA =

∫
Ω

δsσκn dV. (6.6)

where δs is the surface δ-function as defined by Brackbill (equation 4.27). So
the surface tension term in the momentum equations (6.2) can be expressed
as a force per unit volume by

S = δsσκn.

Assuming a constant surface tension coefficient σ it can be shown by the
Frenet-Serret formulae that:∫

Ω

δsσκn dV = σ

∮
δS

dt, (6.7)

where δS is the border of the surface S and t is the surface unit tangent
vector. This relation is applied in the finite volume discretization of the
momentum equations.

Discretization in cylindrical coordinates Parameterizing the surface
boundary by s1 the contribution from the surface tension forces to the equa-
tions of momentum can then be expressed as (see figure 6.1);

σ

∮
δS

dt = σ[

∮
δS1

(t3 − t1)ds + ∆θ(r4t4 − r2t2)] ≈

σ[ (t3 − t1)

∮
δS1

ds + ∆θ(r4t4 − r2t2)]. (6.8)

t1 and t3 are mean surface values of t1 and t3 at the computational cell
wall. The tangent vectors in (6.8) may be calculated from the surface spline
function.

1Parameterization by a single parameter is applicable since the surface is defined by a
curve in the rz plane.
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Figure 6.1: Computational volume Ω. Surface segment S with sides δSi with
normal surface tangent vectors ti displayed in volume.

6.2 Deriving points of intersection

In order to calculate both the volume fraction and the surface tension forces
one must obtain the points of intersection between the spline surface and the
computational grid. Intersections are sought by searching sequentially along
the spline a small segment (s = (si, si+1]) of the spline surface at a time. If
a segment crosses several grid lines it is halved and intersections are sought
on each segment half. A numerically robust procedure combining Newton-
Rhapson and the bisection method is used to find the intersections for each
segment. Parameterizing the curve with s a vertical intersection is found by

ri − r(sint) = 0, (6.9)

where ri is the radial value at the vertical computational cell wall i being
intersected. The root sint then gives the point of intersection (r(sint), z(sint)).
The horizontal intersections are found in the same fashion at a horizontal cell
wall j by

zj − z(sint) = 0. (6.10)

The five possible types of intersections are shown in figures 6.3 to 6.7.2

The segment for which an intersection is sought is indicated in each figure.

2It is assumed that the curvature is restricted so that these are the only possible cases.
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Figure 6.2: Definition of region of computational cell.

Figure 6.3: Single intersection, computational cells, markers and spline.



96 CHAPTER 6. DEVELOPMENTS IN METHOD OF TENSIONS

Figure 6.4: Simple double intersection.

Simple single and double

Figure 6.3 shows a single intersection on the segment while figure 6.4 shows
a double intersection. All intersections are easily determined in these types
of cases. To find which walls are intersected the cell position of the segment
end points are first calculated, where the region of a computational cell L is
defined as in figure 6.2:

(r, z) : {r ε [ rmin(L), rmax(L) ), z ε [ zmin(L), zmax(L) )}. (6.11)

In this way any overlap between cells is avoided. If the end points are found
to be in different cells an intersection has occurred on the cell wall common to
the two cells containing the segment end points. The root sint indicating the
intersection is then sought by either (6.9) or (6.10), for respectively vertical
or horizontal intersection . If there is a double intersection, as in figure 6.4,
a check is performed to determine the order of the intersections since it
is necessary to know the ordering of the intersections for volume fraction
calculation. Subsequently the intersections are determined as before.

Common double

A common double intersection (of neighboring horizontal and vertical cell
walls) occurs when the spline intersects a cell corner, as in figure 6.5. This
case is treated as a single intersection where the spline crosses directly be-
tween diagonal neighbour cells.

Triple intersection

In figure 6.6 a case is shown with a triple intersection on the segment. In this
case, the intersection on the vertical wall between the particles will be on a
cell face neighbouring the one between the segment end points. So a check is
performed to see whether this is the case. If it is, the spline segment is split
at the point of vertical intersection so that the two horizontal intersections
may be found. Again similar for vertical intersections.
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Figure 6.5: Common double intersection.

Figure 6.6: Triple intersection.

Figure 6.7: ’Hidden’ double intersection.
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Hidden double

Figure 6.7 shows the case of a hidden double intersection. No intersections
will be sought by our algorithm in this case, since the segment end points
are in the same computational cell. No check for this kind of error has been
included. For limited spline curvature the problem is however not considered
to be of much consequence, since the resulting error in calculated volume
fraction will be small.

6.3 Calculation of volume fraction

The volume fraction of each phase in a computational cell (figure 6.1) must
be computed in order to derive the volume averaged variables applied in the
Navier Stokes and energy equations. The method of integration of volume
fraction described in [49] is here adapted to cylindrical coordinates.

Figure 6.8 shows an intersection of the computational volume Ω. The
surface spline function is parameterized by s; (r, z) = (r(s), z(s)). Again
referring to [49] and by Stokes theorem: For a surface Σ with boundary δΣ;∫

Σ

r dr dz =

∮
δΣ

1

2
r2dz. (6.12)

This comes from the relation that for a piecewise-smooth simple closed curve
δΣ, ∫

Σ

δP

δr
drdz =

∮
δΣ

Pdz,

by the fundamental theorem of calculus And for the computational volume
Ω in figure 6.1 with r = R at the centre of the volume (see figure 6.8):∫

Ω

r dθ dr dz = R∆θ∆r∆z.

By applying (6.12), the volume fraction of the phase to the left of the spline
surface can be expressed as;

α =
1

R∆r∆z

∫
Σ

r dr dz =
1

R∆r∆z

∮
δΣ

1

2
r2 dz, (6.13)

where the part of the boundary integral along the spline δΣ(s) = (r(s), z(s)),
can be expressed as;∫

δΣ(s)

1

2
r2 dz =

∫
δΣ(s)

1

2
r2(s) z′(s) ds. (6.14)

With the interface defined by the spline function the integral in (6.14) can
be derived, thereby giving the volume fraction α by (6.13).
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Figure 6.8: Surface of computational volume Ω. Interface spline δΣ(s) =
(r(s), z(s)) bounds the surface Σ. Two markers are shown on the spline.

6.4 Bubble pressure test

Tests of the surface tension force model were carried out for a 2D bubble in
a cylindrically symmetric coordinate system. In this coordinate system a 2D
bubble centered on the symmetry axis corresponds to a real 3D bubble while
a 2D bubble removed from the axis is a 3D taurus.

Three tests were performed for a bubble with radius 2mm with centre
respectively on the symmetry axis, removed 2mm from the axis, and removed
7.5mm from the axis. The value of the applied surface tension coefficient was
σ = 0.07, corresponding to a water-air interface. Gravity was set to zero, so
phase density was of no influence (except for having an influence on stability).
The uniform grid size was 1/10 of the bubble diameter, as can be seen in
figure 6.9(d).

In the simulations the surface was held static and the NS equations were
solved for the flow. The resulting pressure distributions are shown in figure
6.9. The modelling results may be compared to the analytical solution for
the pressure jump across the interface given by Landau and Lifshitz [40]:

p = σ(κ1 + κ2), (6.15)

where κ1 and κ2 are the principal curvatures.
By this formula the pressure jump for a 3D bubble with radius of 2mm is

140Pa. Such a bubble is simulated in figure 6.9(a). Here the pressure jump
∆p is 125Pa, somewhat lower than for the analytical solution. The difference
is partly due to problems with modelling the effects of surface tension at the
symmetric axis boundary, and may also be due to the low resolution of the
grid. Another possible cause is trying to force the cubic spline to maintain
constant curvature.
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(a) Bubble test. Real 3D bubble.
∆p = 125Pa.

(b) Bubble test. 2D bubble with cen-
tre 2mm from symmetry axis. ∆p =
84Pa.

(c) Bubble test. 2D
bubble with centre
7.5mm from symmetry
axis. ∆p = 70, 2Pa.

(d) Surface tension forces in computational
grid for 2D bubble at 7.5mm radius.

Figure 6.9: Bubble pressure tests. Symmetry axis at bottom of figures (ex-
cept for in figure 6.9(d)). 2mm bubble diameter. The given pressure jump
∆p is the difference between lowest and highest pressure.
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For a 2D bubble (corresponding to a taurus) the pressure jump is 70Pa
by (6.15). The cylindrical bubble is approximated by the test in figure 6.9(c),
where the effect of the toroidal curvature is small. The pressure jump shows
good agreement with the analytical calculation at 70, 2Pa, indicating that
for a connected surface the model gives good results.

The intermediate case in figure 6.9(b) shows the influence of the toroidal
curvature on the pressure field by the increased pressure inside the taurus.
The pressure jump lies between the extreme cases in figures 6.9(a) and 6.9(c).

To conclude, the bubble pressure tests shows quite good agreement with
the analytical model for pressure jump across a surface. Boundary conditions
at walls and grid resolution will however probably both influence the result,
particularly the former. This indicates that behaviour of the model close
to a wall boundary for a disconnected surface might deviate somewhat from
correct physical behaviour. Here the behavior will also be partly determined
by the applied wetting boundary conditions.

6.5 Grid refinement

Another cause of instability in MOT is the fact that a surface of constant
curvature (circular segment) can not be exactly modelled by a third order
spline function. Irregularities in the surface tension force field along the
interpolated surface will therefore occur. However, it can be shown that
for MOT there is a linear relation between the amplitude of the spurious
currents and the gridsize (see section 4.3.3 and [49]). So with sufficient grid
refinement the spurious currents can be significantly reduced.

6.6 Redistribution of surface tension forces

As discussed in 4.3.3, high density ratios ρ1/ρ2 between phases lead to consid-
erable difficulties in simulating multiphase systems. The resulting spurious
currents lead to vortexes at the interface, causing erroneous surface behav-
ior (also see [56] and [53]). In the case of modelling the meniscus interface,
the ratio between liquid Al density and air density is close to 3000:1. This
constitutes a serious problem to stability.

The instabilities are partly caused by large surface tension forces on the
side of the low density gas phase, since the forces are distributed symmet-
rically across the interface. In the original MOT a pressure correction tech-
nique similar to that applied in Hirt and Nichol’s VOF (section 4.2) is applied
to improve stability. Here a redistribution of surface tension forces is applied.
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The force calculated in a cell is distributed over all its neighboring cells, where
the distribution is weighted by the mean cell density. Define

Fk,k =

∫
Ωk,k

S dV.

And the applied computational cell surface forces are denoted Γi,j. The
change in Γi,j due to rearrangement of the surface forces Fk,k calculated in
cell (k, k) can be expressed as;

∆Γi,j = Fk,k ρ̂
γ
i,j/

(
k+1∑
i=k−1

k+1∑
j=k−1

ρ̂γi,j

)
. (6.16)

The parameter γ determines the strength of the weighting. The ideal value
of γ should depend on both density ratio and curvature/gridsize ratio. By
using this rearrangement of surface tension forces, the forces acting in cells
with low density will be reduced. Thereby stability should be improved. The
resulting force field with CMOT in the case of an air bubble in aluminium
melt for γ = 5 is shown in figure 6.10(a). The generated spurious currents
are shown in figure 6.10(b).

In applying this model to simulations an ideal value for γ was found to
be around 1. For larger γ the redistribution increases instability due to loss
in smoothness in the redistributed surface forces Γ along the interface.

6.7 Marker advection

In the original MOT marker advection is performed by bilinear interpolation
of velocities ([49]). A problem with this technique is that velocities in the
gas affect the flow of the free aluminium melt surface to the same extent as
the velocities within the molten metal. So in general, the binomial interpo-
lation is unphysical, since for a phase interface the velocity field is normally
nonlinear with a discontinuous gradient at the interface. The interpolation
should therefore be dependent on the shear and subsequently the viscosity
at each side of the interface.

Here the meniscus surface is modelled as a free surface , i.e. only the
pressure and not the flow in the gas influences surface marker advection. This
is done by applying density weighting in the velocity interpolation. Then the
interpolated horizontal marker velocity um for marker m (see figure 6.7) is

um =

∑k+1
i=k

∑n+1
j=n ui,jρi,j∑k+1

i=k

∑n+1
j=n ρi,j

. (6.17)
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(a) Surface tension force field. (b) Spurious currents.

Figure 6.10: Static air bubble in Al melt. Bubble radius 3mm.

j=n

i=k

m

ukn

Figure 6.11: Marker m in computational u-grid (solid line). Computational
cells also indicated (dashed line).



104 CHAPTER 6. DEVELOPMENTS IN METHOD OF TENSIONS

The density weighting is chosen for generality. The larger the density ratio
the stronger the decoupling of marker velocity from the phase with smaller
density. In the case here with density ratio 3000:1, this technique gives a
close approximation to advection at a free surface.

6.8 Redistribution and spline interpolation

The Method of Tensions uses massless markers on the interface together with
cubic spline interpolation for reconstruction of the interface. The markers are
regularly redistributed on the surface for stability. The process is described
in [49].

After advection of marker particles the interface is reconstructed using cu-
bic spline interpolation. Popinet and Zalesky [49] apply regular cubic splines
for reconstructing the surface. However, when applying this method, prob-
lems of stability and phase conservation are observed. Therefore an analysis
has been performed using varying redistribution frequency and also cubic B-
spline for reconstruction. Varying redistribution and surface reconstruction
in this way may improve both phase conservation and stability.

6.8.1 Advection tests

Tests were performed for the case of a constant stream function Ψ:3.

Ψ =
1

π
sin[π(x− 0.5)] sin[π(y − 0.5)]. (6.18)

In the tests bilinear interpolation is applied for the marker advection4.
Advection is performed at a Courant number

c =
δt U

δx
(6.19)

of 0.1, where δt is time increment, δx is computational cell dimension and U
is velocity. The initial surface configuration is shown in figure 6.12(a), with
the surface after 2500 time steps in figure 6.12(b)5.

3Only advection and subsequent calculation of volume fraction was performed. With
the stream function given it is not necessary to solve the Navier-Stokes system.

4For a static velocity field the fluid properties are of no consequence for the flow.
5This result was achieved by only advecting markers, no redistribution of markers was

used.
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(a) Initial surface configuration
on computational grid.

(b) Correct surface after 2500 time
steps, Courant no = 0.1

Figure 6.12: Correct initial and advected surface.

Reference simulation 2500 time steps were performed, the velocity was
reversed, and 2500 time steps were subsequently performed with reversed
velocity. Redistribution is here performed as suggested in MOT [49], where
new markers are placed on the old spline at regular intervals. Figure 6.13(a)
shows the spline initially, after 2500 time steps and after 5000 time steps.
After 2500 forward time steps irregularities appear at the tail, and after 5000
time steps the surface is partly folded and irregular, in addition to a mean
shift to the right (compare figure 6.12(a)).

Past 2500 time steps waves start to form on the surface, as shown in
figure 6.14. In addition to this instability, an increase in total volume of the
inner phase is observed (see figure 6.13(b)). This is due to the combined effect
of cubic spline reconstruction of the surface and redistribution of markers.

B-spline reconstruction and rate of redistribution

To attempt to solve the problem of instability and poor phase conservation
a cubic B-spline surface interpolation is applied (see [21]). Because of the
parameterization, a cubic spline reconstruction must be applied after the B-
spline redistribution in order to calculate the volume fraction, but this does
not effect the position of the markers, and can therefore not cause instability.
The B-spline reconstruction reduces the volume in the inner phase. A B-
spline redistribution is therefore applied each time the volume of the internal
phase grows larger than its initial volume. Application of the cubic B-spline
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(a) Splines at initial state, at 2500 steps
with Courant no 0.1, and at time = 0 after
reversal

(b) Total volume relative to initial volume,
reversal at 2500 time steps with Courant
no 0.1.

Figure 6.13: Test run with regular cubic splines.

also improves stability by its smoothing properties. So in this fashion the
total volume is conserved and stability improved at the same time.

Advection tests are presented in the following figures. The redistribu-
tion rate Rds denotes the number of time steps between redistribution of
marker particles. Rds is a parameter which greatly influences both volume
conservation and stability.

Test 1 The results of the first test case are shown in figure 6.15. As in
the test with MOT (section 6.8), from the initial 2D bubble a run is made
iterating 2500 time steps. The flow is then reversed and the program and
another 2500 time steps are performed.

The tests in figures 6.13 and 6.15 are compared. Cubic B-spline interface
reconstruction and redistribution is applied each time the ratio of internal
volume to initial internal volume grows larger than unity. Thereby the vol-
ume is kept within 10−3 of the initial volume in this case (figure 6.15(b)).

The spline function is also more regular when the B-spline method is
used. The interface is highly irregular after the flow reversal when only
regular cubic splines are used (6.13(a)), while the surface is smooth in the
improved version (6.15(a)). A larger time between redistribution of markers
also improves surface stability.
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Figure 6.14: Unstable surface after 5000 time steps with Courant no = 0.1
using regular cubic spline reconstruction.

Test 2 A similar test to that in figure 6.15 is shown in figure 6.16. Here
5000 time steps are performed before flow reversal. By applying the same
technique as for test 1 the internal volume ratio (figure 6.16(b)) is also mainly
within 10−3. The spline surface is fairly smooth both after 5000 time steps
and after complete reversal (see figure). The surface after complete reversal
is however somewhat distorted compared to the initial surface.

Test 3 Finally, a run is made of 50000 time steps for Courant number
c = 0.01. The spline surface is still quite even after 50000 iterations (fig-
ure 6.17(a)). The relative total volume is however more irregular in this
case, owing to the large number of time steps. The time rate of change of
relative volume is however smaller than for the runs with larger Courant
number in the semi-stable regions of the curve (apart from the jumps), so
less corrections by B-spline reconstruction and redistribution are needed for
volume conservation.

6.8.2 Application of spline reconstruction to meniscus
simulations

The tests above show that using a combination of regular cubic spline and
cubic B-spline reconstruction together with a low frequency of marker re-
distribution considerably improves interface stability. Also, B-spline recon-
struction can be used to improve phase conservation. With this technique
problems with surface instability still arise after traversing a large number
of cells, but now at a much later stage than when using the original MOT of
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(a) Spline surface after 2500 time steps,
and at time = 0 after reversal.

(b) Total volume relative to initial total
volume

Figure 6.15: Test case 1 with volume correction. Time: 0-2500-0, Courant
no: 0.1, Rds: 50

Popinet and Zalesky.

Although this redistribution technique shows good promise, some adap-
tion is still necessary to achieve accurate volume conservation through spline
reconstruction. The volume change from a B-spline reconstruction depends
locally on the spline curvature. Therefore the effect on total volume by apply-
ing the B-spline depends on surface geometry. Also, the volume conservation
achieved in the tests above is a total volume conservation, which does not
ensure flux balancing on the local scale (i.e. in each surface cell).

Other types of splines could also be applied to the problem, such as cubic
tension splines or higher order splines. The cubic tension splines have only
continuous first derivative at the points of interpolation, and subsequently
the surface tension forces will be discontinuous for this type of surface. A
tension spline of a higher order might however be a good candidate, since the
curvature of the spline could be controlled while at the same time keeping
the curvature continuous. Therefore it should be interesting to try to apply
a fourth order tension spline to the problem.

However, for simplicity a regular cubic spline has been applied to the
meniscus problem, where the method of reconstruction has been adapted so
as to achieve an adequately stable method on the required non-uniform grid
(see 8.1).
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(a) Spline function after 5000 time steps (b) Volume fraction at time = 0 after
reversal

(c) Total volume relative to initial total
volume

Figure 6.16: Test case 2 with volume correction. Time: 0-5000-0, Courant
no: 0.1, Rds: 100
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(a) Volume fraction after 5000 time steps (b) Total volume rel. to initial volume

Figure 6.17: Test case 3 with volume correction. Time: 0-5000, Courant no:
0.01, Rds: 500

6.8.3 Alternating midway redistribution

In the tests above an even spaced redistribution of markers was applied.
However, in the case of large density ratio between metal and gas density
this type of redistribution proved unstable. The markers were not displaced
enough from their original positions to provide a sufficient stabilizing effect6.
Another problem with this technique is that the amount of markers per cell is
not controlled for the non-uniform grid. Applying more than one marker per
cell may lead to instability (see [49]), while too sparsely distributed markers
leads to low accuracy of surface interpolation.

The most stable redistribution method proved to be alternating between
distribution of markers midway between intersections between spline and
computational and distribution of markers midway between old markers. In
this way the local marker spacing was ensured to be in the order of the local
grid size while the varying of redistribution could give sufficient smoothing.
It is here important to note that redistribution also leads to error in the
advected surface, so an ideal rate of redistribution is both low enough to
ensure sufficient accuracy of advected surface and high enough to ensure
sufficient smoothing and stability of the surface.

6Varying marker positions leads to smoothing of the interpolated spline, although to a
smaller degree with regular cubic than for cubic Bspline
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(a) First distribution: Midway between grid inter-
sections.

(b) Redistribution after surface advection: New mark-
ers (empty) midway between old markers (filled). Old
markers are deleted.

Figure 6.18: Marker redistribution alternation.
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Figure 6.19: Advection test with Hirt and Nichols’ VOF. 5000 time steps,
Courant no 0.1.

6.9 Advection test with Hirt & Nichols’ VOF

To compare the advection properties for the Method of Tensions to the orig-
inal Volume of Fluid an advection test was also performed using the VOF
method. Again the flow field given by the stream function in (6.18) was
applied. Figure 6.19 shows the result for 5000 iterations with a Courant
number of 0.1. The test is comparable to the one shown in figure 6.16 for
the Method of Tensions. It is quite apparent that problems of instability
are much greater for the VOF method, leading to uncontrolled breakup of
the surface. This shows quite clearly that a higher order model like MOT is
preferable when stability of surface is of great importance, as when modelling
the meniscus, where the number of time steps required may be of the order
of 100000 or larger.

6.10 Summary

The combined effects of a fine grid, redistribution of surface tension forces and
velocity weighting are all needed to achieve sufficiently stable modelling of
the meniscus. Depending on the amount of viscous dissipation, the spurious
currents will either converge to a stable oscillation or else diverge. Therefore
the model is not suitable for modelling static systems. But to achieve reliable
results when modelling the dynamic meniscus the only necessary criterion is
that the amplitude of the spurious currents is of a lower order than the mean
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value of the flow in the gas and melt.
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Chapter 7

Mathematical modelling of
casting

7.1 Casting process

The casting process is described in detail in chapter 1. Applications are
described in [6] and [34]. The ingot is cast vertically applying the gas slip
method. The melt flows into the mould through an open ceramic top, the
hot top, which covers the mould. The inner wall of the aluminium mould
is covered by a graphite ring through which gas and oil are injected for
lubrication and slip. Water cooling is applied in the secondary cooling zone
below the open mould as the ingot is pulled downward[29]. In the process
the melt surface forms a meniscus in the upper corner formed by the hot top
and mould wall (figure 7.1).

The following factors are assumed to have an influence on the meniscus
dynamics: Mould and ingot geometry, surface tension forces, casting velocity,
primary cooling, secondary cooling, metallostatic head, slip gas flow rate,
oxidation on the melt surface, lubrication, alloy content, and wetting between
melt surface and mould wall.

It will be assumed that the lubricant oil forms a continuous layer and
that small variations in this layer are unimportant in the casting process. As
long as the ingot does not freeze to the mould the effects of variation in oil
flow are assumed negligible. The effect of the lubricant on wetting in the
mould, air flow and air gap is assumed to be constant.

Casting velocity and bath temperature are assumed constant in the cast-
ing simulations. Significant variations in bath temperature were observed
during the casting experiments (chapter 2), but the variations were quite
small.

115
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Figure 7.1: Meniscus and air gap in mould.

7.1.1 Internal energy equation in terms of enthalpy

The internal energy equation expressed in enthalpy per unit mass h is given
in 5.1.3:

∂ρh

∂t
+∇ · ~uρh = −∇ · ~q +

dp

dt
+ τ : ∇~u+ S, (7.1)

where S represents the source terms. Then applying Fourier’s law and as-
suming constant pressure (in consistency with (5.58)):

∂ρh

∂t
+∇ · ~uρh = ∇ · k

cp
∇h+ τ : ∇~u+ S. (7.2)

The latent heat will be included in the enthalpy, so the source term in (7.2) is
therefore zero. Then by further assuming cylindrical symmetry, Newtonian
flow, and incompressibility:

ρ

(
∂h

∂t
+ vr

∂h

∂r
+ vz

∂h

∂z

)
=

1

r

∂

∂r

(
r
k

cp

∂h

∂r

)
+

∂

∂z

k

cp

∂h

∂z

+2µ

[(
∂vr
∂r

)2

+
(vr
r

)2

+

(
∂vz
∂z

)2
]

+ µ

(
∂vz
∂r

+
∂vr
∂z

)2

. (7.3)

Relation between enthalpy and temperature

During solidification the latent heat of melting is released. The temperature
dependent latent heat content is here expressed by ∆H, where L is the latent
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heat of melting. Heat content in a mixture of solid and liquid at constant
pressure is then expressed by

H = h+ ∆H =

∫ T

Tref

cPdT + ∆H (7.4)

H is total enthalpy and h is sensible heat. Since a mixture of phases are
considered the values of ∆H and cP used in the calculations are averaged
values. Consider a volume element with fraction solidified fs. Then

cP (T ) = (1− fs(T ))clP (T ) + fs(T )csP (T ), (7.5)

Ts < T < Tl.

The latent heat content ∆H can be expressed as

∆H(T ) = L, T ≥ Tl (7.6)

∆H(T ) = L(1− fs(T )), Ts < T < Tl

∆H(T ) = 0, T ≤ Ts

Using the lever rule (complete diffusion in both solid and liquid phase) and
assuming linear solidus and liquidus lines, the solid fraction and the temper-
ature in a binary alloy can be expressed by the initial (C0) and liquid (Cl)
alloy concentrations [19];

fs =
1

1− k

(
1− C0

Cl

)
,

T = Tl +
Cl − C0

m
. (7.7)

Here m is the liquidus slope and k is the equilibrium distribution coefficient
Cs/Cl, where Cs is the alloy concentration in the solid (see [38]). Expressing
solid fraction by temperature:

fs =
1

1− k

(
1− C0

C0 +ml(T − Tl)

)
. (7.8)

The solid fraction fs here varies inversely with the temperature T . So the
latent heat term ∆H also varies inversely with temperature. The absolute
value of the gradient ∂fs/∂T is initially at Tl quite large and decreases rapidly
as the temperature approaches Ts and ∆H → 0. An example is shown for an
AlSi alloy with 0.96% Si in figure 7.2. In this case more than half the latent
heat has been released when the temperature has fallen only 10% of the solid-
ification temperature range. Both higher alloy content and non-equilibrium
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Figure 7.2: Solid fraction vs temperature (oC) for Al0.96%Si.

conditions increases the effect of high initial release of latent heat. In the case
of multiple alloy elements the solid fraction dependence on temperature gets
more complicated. The conclusion is that using a linear relation between
solid fraction and temperature can lead to considerable error in heat flow
calculations. A more advanced nonlinear model is therefore applied.

The heat term (7.4) can by (7.5) and (7.6) be expressed as

H = h+ ∆H

=

∫ T

Tref

[
(1− fs(T ))clP (T ) + fs(T )csP (T )

]
dT

+L(1− fs(T )) (7.9)

Then the latent heat content becomes

∆H = L− L

∫ T

Tref

dfs
dT

dT ; (7.10)

By relation (7.4) the total heat capacity can therefore be expressed as

c̃P = cP − L
dfs
dT

, (7.11)

and

H = L+

∫ T

Tref

c̃P (T )dT. (7.12)
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With the enthalpy defined in this way the relation

∂H

∂η
= c̃P

∂T

∂η
(7.13)

is valid for any variable η.
In the simulations of the casting process the Newtonian viscosity is made

temperature dependent to model the rheology of the solidifying metal (see
chapter 9). However, the gain of internal energy due to viscous work is
negligible compared to the conductive term in the energy equation. The
relation between viscous dissipation and thermal conduction can be expressed
by the Brinkman number Br:

Br =
µ(∆v)2

k∆T
, (7.14)

where ∆v is characteristic velocity difference and ∆T is characteristic tem-
perature difference. In the aluminium melt the temperature range in the
sump is in the order of 100K while velocity differences are of the order of
0.1m/s. Then by the applied viscosity and conductivity (see chapter 9) the
Brinkman number is of the order of 10−11, so the viscous dissipation may be
neglected.

Under the conditions of cylindrical symmetry, negligible viscous dissipa-
tion, constant pressure, incompressibility, and with c̃P defined as in (7.11),
relation (7.13) can be applied and the energy equation [8] can be expressed
as;

∂ρH

∂t
+ vr

∂ρH

∂r
+ vz

∂ρH

∂z
=

1

r

∂

∂r

(
r
k

c̃P

∂H

∂r

)
+

∂

∂z

k

c̃P

∂H

∂z
(7.15)

The heat capacity c̃P and the thermal conductivity k depend on the temper-
ature T . So a relation giving the temperature as a function of enthalpy is
needed. The relation is found by using Newton-Rhapson interpolation [35]
on relation (7.12).

7.2 Solidification and air gap flow

In the Direct Chill casting process water cooling of the ingot is applied. The
water is sprayed under pressure onto the ingot below the mould from a water
channel, or reservoir, which is in contact with the mould (see figure 7.3).
Consequently the mould is cooled by heat loss to both the water reservoir
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Figure 7.3: Intersection of mould wall with graphite ring and water channel.

and the air surrounding the mould. This compound heat loss constitutes the
primary cooling, which cools the ingot in the upper part of the mould, as
defined in 1.2.
Cooling water flows from the reservoir through spouts at the bottom of the
mould, forming jets hitting the ingot surface right below the bottom of the
mould. The region of impingement of the water jet and below is the secondary
cooling zone.

7.2.1 Shrinkage

Some degree of radial contraction of the ingot will always occur during so-
lidification due to shrinkage of the Al alloy as it solidifies. Pure Aluminium
will decrease in volume by approximately 12% when it goes from liquid to
solid (by [11] and [27]). The alloy elements can both increase and reduce
the contraction, the most important being Si, which expands around 8%
when going from liquid to solid. Most of the alloy elements will solidify sepa-
rately in eutectic/peritectic/hypereutectic phases, thereby forming their own
regular crystal structures and thus influencing the density of the solid to a
greater degree than in the melt. Solid aluminium alloy densities can range
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from 2600 kg/m3 to 2900 kg/m3 (by [11]). The density of the liquid Al alloys
vary to a much smaller degree.

7.2.2 Solid lip and air gap

The cooling process described above leads to a characteristic ingot profile in
the mould. A solid lip forms next to the mould wall in the primary cooling
zone in the upper part of the mould (see 1.2). If the slid lip is strong enough,
i.e. thick enough, solidification contraction will cause it to withdraw from the
mould wall, thereby reducing heat transfer from the melt to the mould. In the
secondary cooling zone, which can reach up above the bottom of the mould,
the thickness of the solidified shell will lead to significant radial contraction.
The contraction may lead to an air gap between the ingot and mould wall.
The amount of contraction induced in the primary and secondary cooling
zones are primarily determined by the casting velocity, the volume flow rate
of cooling water, and the content of alloy elements.

7.2.3 Gas flow

In the modelling the gas inlet is placed above the meniscus to simulate the
gas flow into the mould in the gas-slip process. The gas introduced must
have some form of escape, and the possibilities are either upward discharge
through the melt inlet in the hot-top or downward flow between the mould
wall and the ingot surface. The amount of contraction, especially in the
primary cooling zone, will effect the downward gas flow rate. At the same
time the shape of the meniscus will effect the heat transfer in the mould, thus
influencing the solidification rate of the metal in the mould. The process in
the mould is therefore a complicated and unstable coupled thermo mechanical
system. Both a model for the solidification contraction and a model for the
gas flow rate must therefore be included in our modelling system.

7.2.4 Contraction model

A simple contraction model is applied. The radial contraction is assumed
proportional to the width of the solid cross section. The assumption is made
that the contraction starts at a certain solid fraction fsc for temperature Tsc

1.
The total fractional contraction from liquid to solid is denoted by C. The

1This idea can be related to the concept of the point of coherency
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Figure 7.4: Geometry in air gap calculation.

radial contraction ∆r at height xi can then be expressed (see figure 7.4)

∆r(xi) = C

∫ rS(xi)

0

H(Tsc − T (r, xi))
fs(T (r, xi))− fsc

1− fsc
dr, (7.16)

where H is the Heaviside or step function and rS(xi) is mean spline surface
radial value at level xi. Then the mean ingot surface at level xi (see figure 7.4)
is

ring(xi) = rm(xi)− (rS(xi) + ∆r(xi)). (7.17)

7.2.5 Air gap flow rate model

The calculation of the gas flow rate from the air pocket through the gap
is based on the contraction model described above. The flow of the gas
through the air gap is assumed to be fully developed Poiseuille flow. The
ratio of pressure to gravitational forces driving the flow (the product of the
Euler and Froude numbers Eu × Fr) is of the order of 102. Therefore the
effect of gravity can be neglected. Combining the equation of continuity 6.1
and equations of momentum 6.2, the flow equation for gas flow in an air gap
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Figure 7.5: Reynolds number vs. gap width at mould wall.
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cell becomes (see figure 7.4)

1

r

d

dr

(
r
d

dr
u(r, xi)

)
=

1

µ

dp

dxi
= const. (7.18)

With rm as the inner radius of the mould wall and ring(xi) as the outer radius
of the ingot, the corresponding boundary conditions are

u(rm) = 0, (7.19)

u(ring(xi)) = 0. (7.20)

Here it is assumed that the ingot casting velocity is negligible in comparison
to the velocity of the slip gas flow.

The solution is (by [73])

u(r, xi) =
1

4

[(
r2
m − r2

)
−
(
r2
m − ring(xi)

2
) ln r

rm

ln
ring(xi)

rm

]
1

µ

dp

dxi
, (7.21)

giving the cell mean gas velocity

u(xi) =

[
1

6

(
r2
m + ring(xi)

2 + rmring(xi)
)

+
1

4

r2
m − ring(xi)

2

ln
ring(xi)

rm

]
1

µ

dp

dxi
. (7.22)

The logarithmic term in 7.22 will lead to numerical error. Therefore the
Taylor expansion of the logarithm is applied. Through a subsequent binomial
expansion the result is

u(xi) = − 1

µ

dp

dxi

1

24

[
3

2
+

1

2

ring(xi)

rm

]
(rm − ring(xi))

2 +O
(
(rm − ring(xi))

3
)
.

(7.23)
At very small air gaps (ring/rm ≈ 1), the flow will approximately correspond
to Poiseuille flow between two parallel plates.

The total pressure drop ∆p over the air gap∑
i

dp

dxi
= ∆p, (7.24)

is assumed to equal the metallostatic head at the upper contact point of the
meniscus (at the level of the bottom of the hot top). And the volumetric
flow rate Vf through the gap can be expressed:

Vf = u(xi)(rm − ring(xi))∆z, (7.25)

where ∆z is the depth of the computational cell (see figure 7.4).
Continuity gives the condition of equal cell volumetric gas flow for all

cells in the air gap. Equations 7.23, 7.24, and 7.25 then give a complete set
of equations for the gas volume flow rate in the gap.
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Figure 7.6: Inlet length vs. gap width at mould wall.

Turbulence The turbulent limit for this model can be seen in figure 7.5,
which displays Reynolds number vs gap width for a gap of length 18mm and
with a metallostatic head of 150 mm, characteristic values in our casting
process. The Reynolds number Re is here

Re =
2Uρg(rm − ring)

µ
, (7.26)

where U is air gap velocity and ρg gas density. For gaps of width smaller than
0.1mm the Reynolds number is less than 1000. So the laminar Poiseuille flow
model is valid for gaps of width smaller than this. From the fluid mechanical
inlet length

Lev ≈ 0.01Re(rm − ring), (7.27)

the flow will be fully developed before 1 mm (figure 7.6), so for laminar flow
the condition of fully developed Poiseuille flow in the gap is also fulfilled.



126 CHAPTER 7. MATHEMATICAL MODELLING OF CASTING

7.2.6 Melt flow

Stress model

A Newtonian flow model is used in the domain of the melt. The viscosity
µ(T ) is made temperature dependent to simulate the rheology of the solid-
ifying metal. For temperatures above the onset of solidification a normal
temperature dependent viscosity is applied. Beyond this point the viscosity
increases rapidly with temperature up to the point of onset of contraction
TSC (as defined in the contraction model 7.2.4). For temperatures lower than
TSC the velocity is set constant and equal to the ingot casting velocity. This
is quite a simple model. The nature of the metal becomes first elastic/plastic
as it solidifies. These flow regimes can not be properly modelled by the
Newtonian viscous model. Incorporating other models such as Hooke’s law
[57] for elasticity would improve on the result. However, the simulation re-
sults show that using the Newtonian flow model with temperature dependent
viscosity is sufficient to study meniscus dynamics.

Buoyancy

To facilitate mass conservation the density of the aluminium is held constant
in the simulations. If this was not done the stability of the solution would
be worsened and more iterations would need to be performed to achieve con-
vergence at each time step. With a Rayleigh number of ∼ 101, as observed
in the casting simulations (chapter 9), some natural convection is to be ex-
pected. The natural convection is however assumed to have negligible effect
on meniscus dynamics. The flow in the meniscus region is dominated by the
effects of the meniscus movement.

7.2.7 Radiation considerations

Radiation between the mould and the ingot will be present in the airgaps.
To assess the effect the radiation has on the heat flow we apply the relation
for radiation between non-black bodies at different temperatures [8]. Q12

is the heat flow rate between surfaces 1 and 2 of areas A1 and A2. F12 is
the view factor, σ is the Stefan-Bolzmann constant, e is emissivity and T is
temperature. Then

Q12 = A1F12σ(T 4
1 − T 4

2 ), (7.28)

1

A1F12

=
1

A1F12

+
1

A1

(
1

e1
− 1

)
+

1

A2

(
1

e2
− 1

)
.
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With a small gap of width rm − ring � rm (see figure 7.4) the surface areas
are approximately equal: A1 ≈ A2. By [8], the view factor F12 is in this
case approximately 1. The emissivity e1 of the graphite surface is close
to 1, assuming an approximately black surface. The emissivity e2 of the
oxidized aluminium surface is assumed to be in the region of 0.1. Then an
approximation to the heat flux q12 between the ingot and the mould can be
expressed as

q12 ≈
σ

10
(T 4

1 − T 4
2 ). (7.29)

During measurements the temperature of the graphite ring in the mould was
in the region of 400K. To check the influence of radiation on heat loss the
temperature of the ingot is assumed to be at the solidus level. The radiation
calculated will then be above the actual radiation present. The resulting
radiative heat flux is q12 ≈ 2 · 103 W/m2. This flux is equal to the heat flux
owing to conduction between the ingot surface and the mould through an
airgaps of approximately 5mm. For the laminar Poiseuille flow model the
air gap must be << 1mm. Since the conductive heat flux has an inverse
linear dependence on the air gap the conductive flux will be at least one
order of magnitude larger than the radiative flux for this air gap size. Also,
the lubricative oil present in the gap can possibly reduce the radiation, since
some of the radiative energy will be spent heating the oil. So neglecting
radiation is consistent with the assumption of fully developed laminar air
gap flow.

7.2.8 Numerical implementation

Heat flow

The heat transfer from the ingot to the mould wall is adjusted by altering
the conductivity according to the contraction calculated by equation (7.16).
The computational cells inside the resulting gap are given the thermal con-
ductivity of the gas and a density weighted heat capacity. The heat capacity
at constant pressure in computational cell L with density ρ(L) is designated
cP (L). The constant heat capacity and density of gas are respectively cgP and
ρg. Then the weighted heat capacity is expressed as cP (L) = cgP ρ

g/ρ(L).

In the cells containing the new ingot surface at r(x) = R(x), a harmonic
mean value is used for the thermal conductivity and an averaged and density
weighted heat capacity are used (see figure 7.7). Maximum radius in the cell
is rmax and minimum is rmin. Cell width is rw. With air at r > R, g denoting
gas phase and a denoting aluminium phase, the conductivity in cell number
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Figure 7.7: Ingot surface intersecting grid cell.

L is defined

k(L) = k̂(L) = 1/

(
rmax(L)− ri
rwkg(L)

+
ri − rmin(L)

rwka(L)

)
; (7.30)

ri = rmax(L) for R < rmin(L),

ri = rmin(L) for R > rmax(L),

ri = R otherwise.

The corresponding altered heat capacity cP is

cP (L) = cP (L)
ρ(L)

ρ(L)
, (7.31)

where for a value φ : (7.32)

φ(L) = (rmax − ri)φ
g(L) + (ri − rmin)φ

a(L).

with ri defined as in equation (7.31). To see that the energy is still conserved
we need to study the equation of enthalpy and its definition. With the
definition (7.12) the enthalpy is

H = L+

∫ T

Tref

cP (T ) ρ/ρ dT. (7.33)

In the region of application of the contraction model there is only aluminium
alloy phase, so ρ = ρa = const. Shifting the reference point (H = H − L =
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Tref

cP (T ) ρ/ρ dT ), we can therefore define enthalpy per volume HV as

HV = ρH =

∫ T

Tref

cP (T ) ρ dT. (7.34)

Defining the heat capacity per volume as cPV = cP ρ, and applying the
new definitions (7.31) and (7.33) to the enthalpy equation (7.15), we get the
equation for enthalpy per volume:

∂HV

∂t
+ vr

∂HV

∂r
+ vz

∂HV

∂z
=

1

r

∂

∂r

(
r
k̂

cPV

∂HV

∂r

)
+

∂

∂z

k̂

cPV

∂HV

∂z
, (7.35)

which is a physically sound equation. So we may assume that the energy is
conserved through the alteration made in (7.31) and (7.33).

Ingot temperature

In the multiphase model the temperature at each grid point will be the a
mean cell temperature where the temperature is found by implicit numerical
integration of relation 7.13:

T = Tref +

∫ H

Href

cP (T (H))) dH, (7.36)

where the heat capacity cP is given by 7.33. So the calculated temperature in
an intersected cell will be unequal to the average temperature of the metal in
the cell. This difference will lead to an error in the calculation of solidification
contraction in 7.16. Therefore a model is needed to calculate the mean metal
temperature in the intersected cell. The calculation of approximate average
metal temperature can be made using the one dimensional condition of energy
conservation. For a mean ingot surface configuration as in figure 7.8 the
heat flux is assumed to be horizontal. This assumption is only accurate for
vertical isotherms, so it is quite a rough approximation. However, because of
the mould cooling the isotherms at the ingot surface will be more horizontal
than vertical. So the error due to non-vertical isotherms is probably not
very large. Another possibly larger source of error is the release of latent
heat as the metal solidifies. But both sources of error will increase with the
coarseness of the grid, and since we use a fine grid in the meniscus area we
will assume the approximation of constant horizontal energy flux at the ingot
surface to be valid. This can be expressed:

q = kAl(TW )
Tw − TW
rw − rW

= kAl(TP )
TS − Tw
rS − rw

= kg
Te − TS
re − rS

= kwall
TE − Te
rE − re

, (7.37)
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Figure 7.8: Mean ingot surface in computational grid.

giving the matrix equation for the unknown temperatures
kAl(TW )
rw−rW

+ kAl(TP )
rS−rw

−kAl(TP )
rS−rw

0
kAl(TW )
rw−rW

kg

re−rS
− kg

re−rS
kAl(TW )
rw−rW

0 kwall

rE−re


TwTS
Te

 =


kAlTW

rw−rW
kAlTW

rw−rW
kAl(TW )TW

rw−rW
+ kwallTE

rE−re


(7.38)

And the mean metal temperature in the intersected cell P is:

TP =
TS + Tw

2
. (7.39)

Since the thermal conductivity of the aluminium is dependent on tempera-
ture, the equation set 7.38 and 7.39 must be solved iteratively.

Melt flow

A normal volume mean calculation of the isotropic viscosity in a compu-
tational cell will give too high a viscosity in cells containing both gas and
aluminium melt. Then the transfer of momentum between melt and gas will
be too great. To avoid this effect harmonic mean is applied on the form:

µ =

(
α

µg
+

1− α

µAl

)−1

. (7.40)

The physical basis for the use of a harmonic mean viscosity can be found
by looking at a horizontal shear flow with shear in equilibrium. In the flow
is a flat interface parallel to the flow, as in figure 7.9. At equilibrium, by
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Figure 7.9: Shear flow with parallel interface.

Newton’s third law, the shear force is constant. Therefore, defining mean
shear force as µ̂∆u

∆y
with mean viscosity µ̂:

F = µ̂
ut − ub
yt − yb

= µ1
ut − um
yt − ym

= µ2
um − ub
ym − yb

⇓

µ̂ =
yt − yb

yt−ym

µ1
+ ym−yb

µ2

.

In the simulations the angle of the surface varies, but small sections of surface
are approximately linear. And the flow is mainly parallel to the surface. Then
a transformation of variables will give the same conditions as in figure 7.9, so
the calculation above is applicable to our free surface model. With the void
fraction α corresponding to (yt−ym)/(ym−yb) the result is the function 7.40.

Gas flow

In the simulation the inflow of gas (see 7.2.3) is adjusted according to the
volume flow rate of gas through the contraction gap. With vin as the initial
gas inflow velocity in the inlet region of width ∆xin the modified inflow
velocity ṽin becomes

ṽin = vin −
Vf

∆xin∆z
. (7.41)
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Chapter 8

Numerical implementation in
FLUENT

The numerical implementation of the mathematical models presented in the
previous chapters is described here. The FLUENT CFD solver has been
applied into which the cylindrical Method of Tensions has been implemented.

8.1 Solution process

As described in the chapter on mathematical methods (chapter 7), the gov-
erning equations are expressed in cylindrical coordinates. So 3D effects are
neglected. Both the NS equations (6.1 - 6.2) and the energy equation (7.15)
are applied on conservative (or divergence) form, facilitating the conserva-
tion properties of the method (see 4.1). The stability problems that might
result are attempted resolved by more stable interpolation techniques in the
discretization (see previous chapters).

Implicit in time The governing equations are integrated implicitly in
time, giving unconditional stability and a more robust solver. However, since
this technique is only accurate to the first order in time, small time steps are
needed to ensure accuracy.

Power law The spacial discretization of the momentum and heat equa-
tions ((6.2) and (7.15)) is performed using Finite Volume discretization ([1])
together with the Power Law by Patankar [47] for interpolation. The Power
Law takes into account the relation between advection and diffusion, repre-

133
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sented by the cell Peclet number:

Pe =
ρU

Γ/δx
, (8.1)

where Γ is the diffusion coefficient and δx is characteristic cell size. For
Pe > 10, when advection dominates the flow, upwind differencing is applied,
while for smaller Pe the amount of upwinding decreases with decreasing Pe.
The scheme is accurate only to the first order in space, but is much more
stable than higher order methods such as QUICK [41].

Computational domain The computational domain is shown in figure
8.1. The height of the melt inflow channel (distance from top of domain to
bottom of hot-top - 129mm) is comparable to the metal height in the exper-
imental test case (so that differences in melt inflow properties do not have a
significant effect on the flow in the meniscus region). The surface of the melt
at the top of the channel is however not included, so melt surface dynam-
ics at the top of the mould are not included in the modelling simulations1.
The geometry of the computational domain goes far below the impingement
zone so that the bottom boundary conditions have little influence on the
solidification and melt flow. Otherwise the dimensions of the domain are
approximately the same as in the experimental casting tests.

Computational grid Staggered grid is applied in FLUENT, as in the
original MAC method (4.1). To model the meniscus dynamics with sufficient
accuracy it is necessary to have a finer grid in this region than in the rest of
the ingot, where only heat and metal flow are modelled. Therefore a regular
non-uniform grid is applied. The computational grid is shown overlying the
domain outline in figure 8.2.

Discretized momentum equations With (I, J) denoting the pressure
grid and (i, j) denoting the staggered grid (see figure 8.3), the discretized
momentum equations can be expressed as

ai,Jui,J =
∑

anbunb + (pI−1,J − pI,J)Ai,J + bi,J , (8.2)

aI,jvI,j =
∑

anbvnb + (pI,J−1 − pI,J)AI,j + bI,j.

Here the a and A are coefficients depending on material parameters and old
velocities while the b terms contain source terms such as body forces and a

1Including variations in pressure linked to surface oscillations might however be at-
tempted by varying the reference pressure
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Figure 8.1: Computational domain.
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Figure 8.2: Computational (pressure) grid (50 × 75 cells) overlying domain
outline. Finer grid in meniscus region.



8.1. SOLUTION PROCESS 137

Figure 8.3: Staggered grid. Grid points (I,J) and (i,j) indicated.

term dependent on the old velocity. nb denotes neighbour cells. Included in
the coefficients is also the effect of sub-grid turbulence, simulated by applying
the Large Eddy Simulation model (see description in 5.1.2).

SIMPLE

Patankar’s Semi Implicit Method for Pressure-Linked Equations (SIMPLE) is
applied to solve the set of discretized Navier-Stokes equations. The SIMPLE
algorithm may now be explained as follows: A initial pressure field p∗ is
guessed from which the velocity components u∗ and v∗ are found by solving
the set of discretized momentum equations (8.2). The correct fields may now
be expressed as

p = p∗ + p′, (8.3)

u = u∗ + u′,

v = v∗ + v′,

where p′ u′ and v′ are corrections to the estimated values. With the matched
p∗, u∗ and v∗ the momentum equations may be expressed

ai,Ju
′
i,J =

∑
anbu

′
nb + (p′I−1,J − p′I,J)Ai,J + bi,J , (8.4)

aI,jv
′
I,j =

∑
anbv

′
nb + (p′I,J−1 − p′I,J)AI,j + bI,j.

An adjustment is now made. The equations are solved under the constraint
that the terms

∑
anbu

′
nb and

∑
anbv

′
nb are zero. In a converged velocity field
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this is true by definition, but in the correction equations this constitutes an
inaccuracy. Therefore this approximation destabilizes the system of equa-
tions.

With the assumption of negligible sum of neighbour velocity terms the
correction equations become:

ai,Ju
′
i,J = (p′I−1,J − p′I,J)Ai,J + bi,J , (8.5)

aI,jv
′
I,j = (p′I,J−1 − p′I,J)AI,j + bI,j,

and subsequently (by 8.3)

ai,Jui,J = ai,Ju
∗
i,J + (p′I−1,J − p′I,J)Ai,J + bi,J , (8.6)

aI,jvI,j = aI,jv
∗
I,j + (p′I,J−1 − p′I,J)AI,j + bI,j,

giving the correct velocities in terms of approximate velocities and pressure
corrections.

The expressions for the correct velocities may now be substituted into
the discretized continuity equation (6.1) which may subsequently be solved
for the pressure corrections. Then the correct pressure is calculated by (8.3)
and correct velocities are found by (8.6). The process is normally iterated
until the residuals become smaller than a chosen small parameter.

Relaxation To stabilize the solution process under-relaxation (with under-
relaxation factors wφ between 0 and 1) of the correction equations is therefore
applied:

pnew = p∗ + wpp
′, (8.7)

unew = wvu
n + (1− wv)u

n−1,

vnew = wvv
n + (1− wv)v

n−1.

un and vn are the corrected velocity components without relaxation after the
nth iteration in time.

Discretization and solution of energy equation

The internal energy equation in enthalpy (7.15)2 is integrated implicitly in
time, and again the power law is applied for velocity interpolation in the finite
volume discretization. The solution method applied to the discretized energy
equation is the same as the one used for the discretized pressure correction
equation, as the equations are of the same type.

2The equation may be applied on conservative form by the assumption of incompress-
ibility.



8.1. SOLUTION PROCESS 139

Tri-diagonal matrix algorithm (TDMA)

The direct TDMA3 method [66] is applied in the iterative solution of the
discretized equation. One row of computational cells is solved at a time for
the dependent variables. Each row of cells gives a set of coupled equations
constituting a tri-diagonal matrix equation which is solved by TDMA.

Multigrid (MG) acceleration

The number of iterations necessary for convergence increases with the amount
of nodes in a line, and is quite slow for the elliptical equations for pressure
correction and enthalpy. The multigrid method [18] solves the discretized
equations on multiple grid sizes. By increasing grid size the boundary in-
formation is spread more quickly through the computational domain, facili-
tating convergence. Subsequent iterations with a smaller grid then improves
the accuracy. By applying this technique the solution process becomes a lot
faster without loss of accuracy.

With Multigrid the sweep direction is arbitrary, since the boundary condi-
tions are quickly spread across the computational domain when coarse grids
are applied.

8.1.1 Boundary conditions

Fluid flow

Fluid flow into or out of the computational domain is imposed by velocity
boundary conditions. The temperature and phase (gas or metal) are also
specified at these boundaries.

Metal flow For differing casting velocities the appropriate metal velocity
boundary conditions are chosen at the top of the melt inlet channel and at
the bottom of the domain. To improve stability outlet cells are included in
the upper boundary cells next to the mould (see figure 8.1). Outlet boundary
conditions impose zero gradient normal to the boundary for all flow variables.

Gas flow Gas flow into or out of the gas pocket (determined by 7.2.3) is
imposed by gas velocity boundary conditions on the mould wall above the
meniscus or at the top of the groove under the hot top.

3TDMA is also known as the Thomas algorithm
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Figure 8.4: External heat transfer boundary. Boundary cell at left.

Heat flow

Hot-top The hot-top is modelled as a conducting wall , for which the 2D
conduction equation is solved:

ρwcw
∂T

∂t
= ∇ · kw∇T +Q, (8.8)

where Q is the volumetric heat source and φw is the value of φ in the wall.
Harmonic mean conductivity is applied at the interfaces between wall cells
and fluid cells. At the upper boundary of the hot-top the heat flux is set to
zero4, and a heat transfer boundary is applied at the exterior of the hot-top.
External heat transfer boundary conditions calculate the heat flux q by the
set of equations

q =
kw
δx

(Tw − Ti) = hf (Ti − Tf ), (8.9)

kw/δx = hw. (8.10)

The position of the variables are explained by figure 8.4. Heat transfer across
the wall hw and outer wall temperature Tw are given as boundary condition.
With temperature Tf known the set of equations (8.10) can be solved for
the heat flux q which may be substituted into the discretized internal energy
equation.

Mould wall Both the graphite ring and encapsulating aluminium are mod-
elled as conducting walls. Resistance to heat transfer between the graphite

4Zero heat flux imposes zero temperature gradient normal to the boundary
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and aluminium is modelled by inserting a boundary of cells with appropri-
ately chosen conductivities. An external heat transfer boundary is applied
at the exterior of the mould wall as was done for the hot-top.

The effect of the water reservoir in the mould wall (see figure 1.4(b)) is
modelled by imposing appropriate an appropriate heat transfer boundary at
the bottom of the mould wall. Further, the amount of primary cooling is
controlled by the contraction model presented in section 7.2.

Secondary cooling The secondary cooling is modelled by imposing exter-
nal heat transfer boundary conditions on the ingot wall.

The numerical values applied in the thermal boundary conditions are
found empirically by adapting the values so that the experimentally mea-
sured temperatures are achieved on the ingot boundaries. Initiation of the
temperature field is discussed in 9.1.3.
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Chapter 9

Casting simulations

9.1 Initiation

9.1.1 Meniscus shape

The initial meniscus shape is calculated by a method described by Mortensen [45].
The method is based on parameterization of the meniscus by arc length s, as
in the spline interpolation. The second order Taylor expansion of the slope
θ along the meniscus (see figure 9.1) is:

θi+1 = θi +
dθ

ds s=si

∆s+
1

2

d2θ

ds2 s=si

∆s2. (9.1)

Assuming a constant surface tension coefficient σ and hydrostatic metal pres-
sure ρgz, the relation between curvature and pressure jump ∆p may be ex-
pressed

∆p = p0 + ρgz − pe = σ (κ1 + κ2) . (9.2)

Here p0 is the atmospheric pressure, pe is the pressure in the gas pocket above
the meniscus and the κi are the principal curvatures.

By the definition of curvature [70] the principal curvatures are (again see
figure 9.1)

κ1 =
dθ

ds
, (9.3)

κ2 =
sinθ

r
.

Then by (9.2) and (9.3)

dθ

ds
=
p0 + ρgz − pe

σ
− sin θ

r
. (9.4)

143



144 CHAPTER 9. CASTING SIMULATIONS
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Figure 9.1: Meniscus angle.

The radial distance r and the
depth z along the meniscus may
be calculated by the following in-
tegrals:

r = r0 +

∫ s

0

cos θds (9.5)

and

z = z0 +

∫ s

0

sin θds. (9.6)

Boundary conditions needed
are the contact angle at the up-
per contact point (θ0) of the
meniscus and the liquid depth
z0

1 and radial distance (r0) at
this point. The subsequent de-
velopment of radius and depth
along the meniscus may be cal-
culated by taking the second or-
der expansions of (9.5) and (9.6):

ri+1 = ri + cos θi∆s−
sin θi

2

dθ

ds s=si

∆s2, (9.7)

zi+1 = zi + sin θi∆s+
cos θi

2

dθ

ds s=si

∆s2. (9.8)

The set of equations (9.1), (9.4), (9.7) and (9.8) together with the appropri-
ate boundary conditions may now be solved to obtain the meniscus shape.
The system of equations giving the meniscus shape is not very stable, and
physically valid solutions can only be found for a narrow range of parameters
when the method above is applied. This is however sufficient for initiation
of a meniscus shape. A more extensive analysis on equilibrium or static
meniscus shapes has been performed by Baker and Grandfield [4].

Nondimensionalization of meniscus shape

Based on the equation for meniscus slope (9.1) the Π theorem is here ap-
plied to find the non dimensional parameters governing the static meniscus

1The metal surface in the mould is at z = 0
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shape. The shape is given by the curvature dθ/ds which has the following
non dimensional dependence

dθ

ds
= κ1 = f(z0, r0, g,∆p, ρ, σ, s), (9.9)

∆p = pe − p0. (9.10)

By the Π theorem, there is a minimum of five independent dimensionless
parameters (number of dimensional parameters minus number of fundamen-
tal dimensions). In this case the following five independent dimensionless
parameters may be constructed:

Π1 = z0κ1 = f(Π2,Π3,Π4,Π5) = f(
∆p

ρgz0

,
σ

ρgz2
0

,
r0
z0

,
s

z0

). (9.11)

Properties of dimensionless parameters The first dimensionless pa-
rameter Π1, is the scaled first principal curvature2. The second parameter,
Π2, indicates the relation between hydrostatic forces and gas pressure differ-
ence. This parameter subsequently has a strong influence on the meniscus
profile. The third parameter, Π3, indicates the strength of the surface ten-
sion forces relative to the metallostatic head, so this parameter influences the
curvature. The fourth parameters indicates scaling of the system while the
last parameter indicates scaling along the meniscus.

For large Π3 small variations in curvature are needed to balance the pres-
sure difference, while for small Π3 the case is the opposite. On the other
hand, for large Π2 (i.e. significantly larger than 1), the meniscus profile will
be less smooth than for smaller Π2. So for a smooth and stable meniscus it
would seem that a small Π2 and large Π3 is preferable. In our case the density,
surface tension coefficient and gravitational constant are set. The only non-
constant parameter influencing both Π2 and Π3 is the metallostatic depth z0

in the mould. pe is also variable, but in the case of steady state (or static
meniscus) this pressure would be determined by the metallostatic height and
the curvature at the initial point of the meniscus (figure 9.1). Based on these
considerations it would seem that an ideal height z0 might exist. Further
analysis would have to be performed to determine an analytical relation for
an ideal z0.

9.1.2 Velocity field

The melt flow field initiation is performed with a static meniscus and without
heat flow. The metal is given a uniform temperature of 960K (thus making

2The curvature due to the cylindrical shape of the ingot is neglected here. It is assumed
to be small compared to the 2D meniscus curvature
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Figure 9.2: Initial velocity field in meniscus region for ingot cast at
120mm/min. Velocity scaled by M/5× 10−4, M is minimum computational
cell dimension.

it liquid) and an appropriate initial meniscus shape is found by the technique
described above. The gas inflow into the meniscus air pocket is also turned
off. An initial flow field is subsequently found by solving the fluid flow equa-
tions with imposed melt inlet boundary conditions (given in section 8.1.1).
The calculated initial flow field in the meniscus region for a casting velocity
of 120mm/min is shown together with the meniscus in figure 9.2, and for the
whole computational domain in figure 9.3. The flow field depends on ingot
geometry, boundary inlet velocities and meniscus shape, in addition to the
melt parameters of density and viscosity.

9.1.3 Temperature field

Based on the initial velocity field calculated in the previous section, an ap-
proximate initial temperature field may be found. The solidification and
contraction models described in chapter 7 are applied and the energy equa-
tion is solved for the temperature field on the constant initial velocity field.

To heat transfer boundary conditions are found by solving the inverse heat
transfer problem based on the temperature measurements in the mould from
the casting experiments described in chapter 2. Appropriate heat transfer
coefficients are found in the mould and along the ingot, i.e. for the primary
and secondary cooling. The obtained initial temperature profile on the mould
wall for Al6082 parameters is compared with mean experimental values (see
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Figure 9.3: Initial velocity field (m/s).
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A) in figure 9.4(a). The initial temperature profile is well within the range
of experimental values (the graphite ring starts at z = 0.355m).

The initial ingot temperature profile is shown in figures 9.6(a) and 9.6(b).
The initial temperature profile in the bottom surface of the hot top (not

displayed) show a poorer correlation with the experimental measurements,
which are a lot lower (see tables in the appendix (A.1)). This difference is
assumed to be due to the positioning of the meniscus. For a large air pocket
there will be less contact between the bottom of the hot-top and the molten
aluminium, thereby leading to a lower hot-top surface temperature. This
tendency is seen in the simulations where the gas pocket expands beneath
the hot-top (see figure 9.7).

9.1.4 Filling of gas pocket

At the startup of the casting process the gas is normally allowed to fill the
volume below the hot-top before the gas flow rate is turned down (as de-
scribed in section 1.3.4). After this initiation it is believed that there should
ideally be insignificant upward gas flow from the gas pocket out of the mould.
The filling process is simulated here.

To assess the stability of the model during the filling process tests have
been performed with varying time step and varying wetting conditions (cor-
responding to varying Courant number and varying boundary conditions for
the cubic spline meniscus surface).

In the first set of tests (figure 9.9) the time step is δt = 10−3s and in
the second set (figure 9.8) the time step is δt = 10−4s. It should however be
pointed out that a condition is set on the Courant number in the simulation
program. If the chosen time step causes a breach of the Courant condition
(Courant number smaller than a certain value), then the time step is auto-
matically shortened to fulfill the Courant condition. In these simulations the
Courant condition is chosen to be c ≤ 0.1, where c is the Courant number.
Obviously, for the case of δt = 10−4s, the Courant condition is less frequently
breached than for the longer time step.

9.1.5 Open spline boundary conditions

End boundary conditions must be set for the spline interpolation. The types
of boundary conditions applied for cubic splines are listed in section E.1 of
the appendix. The three first types are for open splines, as in the case of the
meniscus surface. Since different pairs of boundary conditions may be applied
for the spline ends at the mould wall and at the hot-top surface, a total of 9
different combinations of boundary conditions are possible. In the physical
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(b) Profile for free hot-top bottom surface (as fig. 9.7).

Figure 9.4: Mould wall temperature profile (+).
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Figure 9.5: Mould wall temperature profile (+). Profile after meniscus col-
lapse (0.361s in fig. 9.10).

fence, both the boundary condition of natural splines with zero curvature
and the extrapolated second derivative gives a free wetting angle, while the
forced slope boundary condition determines a constant wetting angle.

Natural spline boundary conditions and forced wetting is compared here
(figures 9.8 and 9.9). In these tests the contraction model is turned off to
improve stability3. For the smaller time step, in the case of forced wetting
angle in 9.8(b) the meniscus surface is less smooth than for the case with
free wetting,9.8(a). Also an extra vortex has developed for the case of forced
angle, indicating reduced stability.

The longer time step produces a more unstable flow with spurious cur-
rents in both cases. The influence of the different boundary conditions are
more difficult to separate, although the simulations with forced wetting seem
slightly less stable also in this case. The results suggest that the condition
of constant slope is too strong a constraint4. Also the boundary condition
of interpolated second derivative leads to instabilities, although not to the

3The contraction model leads to a thinner solid lip and subsequently greater dynamics
in the melt flow.

4A forced wetting angle also hinders the possibility of overpressure in the gas pocket,
which would lead to a reversal of the meniscus curvature
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Figure 9.6: Initial temperature field in Kelvin for Al6082. Initial meniscus
in yellow.
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Figure 9.7: Temperature field [K] in meniscus region for free hot top bottom
surface. Corresponding to 1s in figure 9.13.

same extent as for the condition of forced slope. Therefore the condition of
natural spline, i.e. a free wetting angle with zero end curvature, is applied
in the further simulations.

9.1.6 Time step criteria and stability

With a given gridsize the time step determines the degree of flow stability by
the constraints on advection and diffusion in (4.17) and (4.18). Here only the
Courant condition will be considered. An approximate Courant number may
be found for the two different time steps. In the first case, where the time
step is 10−3s, the maximum Courant number5 is approximately 0.3, while for
the second case (with time step 10−3s) the maximum Courant number is only
approximately 0.01, suggesting that the decline of the Courant number with
time step is stronger than linear. And comparing figures 9.9 to figures 9.8 it
can be seen that the stability is improved considerably. The spurious currents
(seen as vortices) occurring for the high Courant number simulations are
practically nonexistent in the low Courant number simulations. This result
suggests that a small Courant number should be applied in the meniscus
simulations, preferably of the order of 10−2 or lower.

5As described earlier, for a Courant number higher than 0.1, the time step is automat-
ically shortened so that c = 0.1.
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Figure 9.8: Wetting tests for meniscus simulations. Time increment 10−4s.
Velocity field shown. Slip gas inflow at top. Point of onset of rigidity of
metal indicated by dashed line. Other parameters as in appendix F.
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Figure 9.9: Wetting tests for meniscus simulations. Time increment 10−3s.
Velocity field shown. Slip gas inflow at top. Point of onset of rigidity of
metal indicated by dashed line. Other parameters as in appendix F.
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9.2 Simulations

Results from three different simulations are shown in figures 9.10 to 9.17. All
the simulations have been started from the initial conditions described above.
Subsequently they have been run for 0.01 seconds with an inlet velocity of
100mm/s to achieve an initial expanded gas pocket. After this the inlet
velocity is turned down. In the first case (fig. 9.10) the inlet velocity of the
slip gas is low (5mm/s). This inlet velocity provides an inlet volume flow
rate of the same order as the gas volume flow rate out through the air gap.
A slip gas inlet velocity of approximately 3mm/s would balance the flow in
and out of the gas pocket under these conditions. The inlet velocity of the
second case (figures 9.12 and 9.12) is higher (25mm/s), resulting in a rapid
growth of the gas pocket volume. The third case (fig. 9.17), which is an
extension of the high inlet velocity case with the inlet velocity turned down
to 10mm/s, shows upward discharge. The mould wall temperature profile at
the termination of the cases of low and high inlet velocities are for comparison
shown together with the initial profile in figures 9.4 and 9.5.

Low inlet velocity For the low inlet velocity case an inclusion is formed in
the form of a bubble (figure 9.10). As the volume of the gas pocket expands
the upper contact point of the meniscus moves back to the corner next to
the gas pocket, as discussed in section 1.3. The contact point is subsequently
locked at this corner by the melt flow6. As the air pocket further expands
there is a lot of oscillation (0.107s-0.5s), but none of which influences the
lower meniscus contact point to a significant extent. The isotherm for 80%
solid fraction is also approximately static. Since the air pocket is hindered
from extending further downward by the solid region it must extend inwards.
When the extent of the meniscus is such that the pressure jump no longer can
be balanced by the curvature it collapses (from 0.561s and onwards). The
meniscus collapse leads to the formation of an air bubble inside the melt and
upward melt flow leading to rapid upward movement of the lower meniscus
contact point. Also, the 80% fs isotherm moves rapidly downwards, due to
flow of warmer melt into the meniscus region, which can be seen in figure
9.11.

The inner mould wall temperature profile after the meniscus collapse is
shown in figure 9.5. The peak mould wall temperature has moved upwards,
as would be expected. A periodically collapsing meniscus (as described in

6All the presented simulations apply natural spline boundary conditions. For zero
upper contact angle as a boundary condition locking at the gas pocket corner does not
occur.
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chapter 1) would therefore produce oscillations in mould wall temperature
as observed in the casting experiments in 2.1. However, the graphite surface
temperature range, ∼ 350K to ∼ 400K, is a lot larger than that measured in
the castings for Al6082 (shown in figure 9.4(a)); ∼ 330K to ∼ 360K. If this
mechanism of meniscus collapse is causing the experimentally observed oscil-
lations adjustment of the applied thermal boundary conditions are needed.

High inlet velocity In the high velocity case the gas has enough momen-
tum to move the upper meniscus contact point away from the gas pocket
corner. After approximately 0.44s a wave forms, which proceeds to move
toward the mould wall (see figures 9.15 and 9.16). As the waves moves out-
wards it is dampened by the solid region under the meniscus until it breaks
at the mould wall. Due to the damping effect of the solid region, the mo-
mentum of the wave does not significantly influence the position of the lower
contact meniscus point. After the initial wave formation the meniscus grad-
ually reaches a semi-steady state (see 9.14), where the upper contact point
moves slightly back towards the wall while the volume of the air pocket grad-
ually increases (0.613s to 0.773s). Eventually the situation becomes unstable
and a large wave again forms. As this wave approaches the mould wall the
upper point of the meniscus commences its inward movement. The wave is
again dampened and breaks at the mould wall (0.893s), while a wave moving
in the opposite direction breaks at the upper contact point (0.873s). Sub-
sequently the situation becomes more steady as the upper meniscus contact
point moves inwards along the bottom of the hot top.

Upward discharge The simulation for high inlet velocity above was con-
tinued with reduced velocity to simulate upward bubbling . The result is
shown in figure 9.17. As the upper meniscus point passes the melt inflow
corner (also discussed in 1.3), a bubble forms (1.15s). This bubble moves up
along the wall, proceeding to take the characteristic shape of a bubble with
large Eotvos number. Another bubble starts to form at 1.16s and follow the
first along the wall. As the bubbles form and the volume of the gas pocket
decreases the meniscus surface gradually rises smoothly towards the bottom
of the hot top. The instabilities formed here due to the bubble formation
do not tend to effect the smoothness of the meniscus at the mould wall.
Instabilities are confined to a region close to the corner of melt inflow.

Insufficiencies in the current implementation prevent the simulation of
proper bubble separation. The spline surface is at all times connected. Also
the effect of gas escaping through the top of the melt and the connected
abrupt drop of the melt surface in the mould (as observed in the water model
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experiments in appendix B) may not be simulated, since the free surface at
the top of the mould is not included in the simulations.

At the termination of the high inlet velocity simulation above, the upper
meniscus nearly extends to the corner of the melt inlet, so that the bot-
tom surface of the hot-top is free (again figure 9.13). The inner mould wall
temperature for this situation is shown in figure 9.4(b). When the hot top
bottom surface is free the temperature profile of the bottom of the hot top
corresponds better with the experimental measurements, as explained above.
But the temperature profile of the inner graphite surface is significantly lower
than for experimental values (figure 9.4(a)). If there is periodic upward dis-
charge of gas coupled with oscillating gas pocket volume, as suggested in
chapter 1, the meniscus level at the wall would be varying, subsequently
giving oscillations in temperature as observed in the experiments. The low
temperature profile for the low point of the meniscus in the simulations in-
dicates either that the thermal boundary conditions are inaccurate, or that
the meniscus will not extend this far down under normal conditions. It is
believed that the former is the correct explanation.
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0.117 s 0.127 s 0.137 s 0.148 s 0.159 s
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(a)
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0.531 s 0.541 s 0.551 s 0.561 s 0.571 s

0.581 s 0.591 s 0.601 s 0.611 s 0.621 s

0.631 s

(b)

Figure 9.10: Casting simulation, low slip gas inlet velocity of 5mm/s
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0.591 s

Figure 9.11: Casting simulation, low slip gas inlet velocity of 5mm/s. Vortex
formed at meniscus collapse.
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(b)

Figure 9.12: Casting simulation, high slip gas inlet velocity of 25mm/s, first
part.
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(b)

Figure 9.13: Casting simulation, high slip gas inlet velocity of 25mm/s, sec-
ond part.
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0.773 s

Figure 9.14: Casting simulation, high slip gas inlet velocity of 25mm/s. Semi
steady state fluid flow.
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0.442 s 0.453 s

0.463 s 0.473 s

0.483 s 0.493 s

Figure 9.15: Casting simulation, high slip gas inlet velocity of 25mm/s. Wave
formation and propagation.
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0.543 s

Figure 9.16: Casting simulation, high slip gas inlet velocity of 25mm/s. Wave
propagation and breaking.
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(b) Velocity field and surface tension forces
shown.

Figure 9.17: Casting simulation, slip gas inlet velocity of 10mm/s. Upward
discharge.



Chapter 10

Summary and Discussion

This work has lead to two important contributions related to analysis of the
hot top DC gas slip continuous casting process of aluminium extrusion ingot
.

The first is the development of a numerical method for analyzing the
meniscus dynamics and its effect on and interaction with solidification. The
main part of the development of this numerical method is the adaption of a
marker chain free surface modelling technique for simulating the movement
of the meniscus surface, which may also be applied to the modelling of any
non-disperse two-phase system with a large density ratio.

The second contribution is added insight into the casting process, specif-
ically into the mechanisms and influence of the meniscus behaviour on ingot
surface formation during casting. This insight has been gained by modelling
the casting process by the use of the developed numerical method, by exper-
imental observations of the casting process and by water model experiments.

10.1 Meniscus Surface Dynamics

A presentation and comparison of methods of free surface modelling on an
Eulerian grid were given in chapter 4. Of these methods the Method of Tensions
of Popinet and Zaleski [49] was selected for the purpose of modelling the
movement of the meniscus free surface. The method was chosen for its ad-
vantage of surface smoothness and control, stability in calculation of surface
tension forces, and simplicity in application of wetting boundary conditions
(see section 4.4). These properties are important in modelling the two-phase
Al melt/air system, which is particularly vulnerable to instability due to its
large melt/air density ratio (chapter 5).

A cellwise homogeneous model is applied in the numerical simulations.

165
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An analysis of the combination of such a model together with the Method
of Tensions for free surface modelling is performed in chapter 5. Here it is
pointed out that a certain degree of numerical smoothing of the interface is
necessary to avoid large errors in the region of the interface between the air
and melt. It is also found that the technique of marker velocity interpolation
and surface force distribution must be weighted by density to approximate
free surface behaviour. The weighting technique is described in chapter 6,
where adaption from the 2D Cartesian MOT to cylindrical coordinates is
also presented.

Another stabilizing factor is the redistribution of marker particles. Due
to gradients in the velocity field the spacing between marker particles may
change during advection. Subsequently marker redistribution is necessary.
The marker redistribution also stabilizes the surface by causing smoothing
of the surface. The best method of marker redistribution is found to be
alternating midway redistribution, presented in section 6.8.3. This technique
both smoothes and ensures appropriate marker spacing on a non-uniform
grid.

Due to redistribution of markers and inaccuracies in velocity interpola-
tion accurate phase conservation is difficult to achieve in the applied Method
of Tensions. Here a method has been developed for accurate phase conserva-
tion in the case of a commonly applied advection test case, also presented in
section 6.8.3. In this method surface interpolation is performed with alter-
nating regular cubic and cubic B-splines. Further adaption of this method is
needed for general application, so it is not applied in the casting simulations.

10.1.1 Waves on meniscus

Several types of wave formation have been considered. In chapter 3 typical
frequencies for some types of wave phenomena are calculated. The dispersion
relations found for capillary and capillary gravity waves on surfaces segments
of constant curvature may be considered to be approximations of meniscus
surface behaviour. For typical meniscus dimensions (∼ 1cm) the pure cap-
illary waves with boundary conditions for the velocity potential given by
condition (3.15), the frequency of oscillations are several orders larger than
the typical experimentally observed frequencies (chapter 2). But for the cou-
pled capillary gravity waves, a solution giving frequencies of the order of
the ones experimentally observed is possible (section 3.3). The solution for
capillary gravity waves is extremely unstable.

The characteristic frequency of gravitational oscillations in the casting
column, discussed both in chapter 1 and in section 3.4.1, is of the same order
as the experimentally observed frequencies, so this type of oscillation may
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be part of the mechanism causing oscillations during casting. This type of
oscillation may only occur when the air gap is open, so that slip gas may
escape through it. For a closed air gap this type of gravitational oscillation
must be coupled with pressure oscillations in the gas pocket, as described in
3.4.1. The gravity pressure oscillations have a characteristic frequency two
orders of magnitude larger than those experimentally observed, so this type
of oscillation may be assumed to be of lesser importance.

10.1.2 Meniscus stability

In the analysis of capillary and gravity capillary waves the meniscus oscil-
lations are assumed to be small perturbations around a static equilibrium
meniscus of constant curvature. This assumption may be a fair approxima-
tion for the case when the upper meniscus contact point is at the gas pocket
corner, as shown in figure 1.8(b). For the other extreme case (figure 1.8(a))
the static equilibrium meniscus is obviously not of constant curvature. Sub-
sequently the wave analysis above indicates that a meniscus as figure 1.8(b) is
very sensitive to small perturbations. The meniscus collapse observed in the
numerical simulations with low gas inlet velocity (figures 9.10), also indicates
instability for this type of meniscus geometry.

Wave propagation along the meniscus is observed in the numerical simu-
lations, shown in chapter 9, and also in the water model experiments, where
some results are shown in appendix B. A typical case of simulated wave
formation, propagation and damping/breaking is shown in figures 9.15 and
9.16. Wave propagation with subsequent breaking or folding at the mould
wall may be a mechanism of meniscus collapse, as described in chapter 1.
Therefore attempts were made to provoke this behaviour in casting simula-
tions. Several simulations were performed to provoke meniscus folding by
wave propagation on a similar meniscus geometry as the one shown in fig-
ures 9.15 and 9.16 (i.e. with a gas pocket extending quite far inward along
the bottom of the hot top). But a folding leading to a significant change in
the level of the lower meniscus contact point with the mould wall was not
achieved. A dramatic change in the level of the lower meniscus contact point
was only achieved for the case with the upper meniscus contact point situated
at the gas pocket corner, as shown in figure 9.10. In this case the meniscus
collapse is so dramatic that there is danger of the meniscus freezing to the
mould wall, so it is a situation that should be avoided1. Such a meniscus does
however not seem to be common in our casting experiments, as indicated by

1This may be achieved by ensuring a high enough slip gas inlet velocity, as explained
in chapter 9.
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the experimental measurements of the hot top bottom temperature profile
(appendix A). This profile indicates a meniscus with significant extension
inwards under the hot top, as discussed in 9.1.5.

Also the numerical simulations indicate a meniscus which extends signif-
icantly inwards. The meniscus surface becomes increasingly stable as the
meniscus extends inwards (compare figures 9.13 and 9.17). In figure 9.17,
where the upper meniscus contact point is at the melt inlet corner, the in-
stabilities are all on the inner region of the meniscus. No instabilities seem
to propagate out towards the mould wall. The observed meniscus surface
in the casting experiments is also very stable in the periods between menis-
cus collapse, which can be discerned in figure 2.5. Therefore the simulations
suggest that a typical meniscus shape in the casting experiments is given by
figure 9.17.

10.2 Casting Process

Effects included in the modelling of solidification are increased viscosity and
solid state flow(section 7.2.6), solidification contraction with air gap forma-
tion, and air gap slip gas flow. Buoyancy and radiation are neglected, since
these effects are not believed to influence meniscus dynamics. Radiation is
negligible compared to conduction and the time scale of the buoyancy is
orders larger than the time scales of the meniscus dynamics.

The latent heat is included in the heat capacity through relation 7.11.
On account of the subsequent large gradient in heat capacity smoothing is
imposed for stability in the numerical simulation.

The solidification contraction is modelled by a cellwise linear model pre-
sented in section 7.2. Here the onset of contraction is assumed to be at a
given solid fraction fs, where the value of fs is tentatively chosen as 0.8 in
subsequent casting simulations. The calculated contraction is linear in fs,
and the resulting radial contraction is the radial sum of cellwise contraction.
The calculated radial contraction implies the subsequent air gap width and
the necessary change in material parameters for modelling heat flow in the
gap (section 7.2.8).

The air gap size is also applied in the calculation of air gap gas flow
(section 7.2.5). The flow is assumed to be fully developed Poiseuille flow.
An estimate (figures 7.5 and 7.6) shows that this assumption is generally valid
for the typical air gap dimensions simulated in the numerical modelling.
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10.2.1 Mechanisms of Ingot Surface Formation

In the experiments a characteristic folding or collapse of the meniscus is
observed (section 2.2). The lower part of the meniscus rapidly moves back
up the mould wall until the meniscus regains equilibrium at a higher level.
A similar effect can be seen for the numerical simulations in figure 9.17,
where there is upward bubbling. As the bubbles form at the melt inlet the
level of the meniscus moves upwards, although the lower contact point of the
meniscus remains at the same level (see 1.13s to 1.18s in figure 9.17). This
upward bubbling could be linked to the meniscus collapse. As bubbles form
and move up the melt inlet the volume of the gas pocket gradually decreases,
so the meniscus surface must subsequently move upwards, as described above.
Two possible effects may subsequently lead to the meniscus collapse and
formation of a new meniscus surface.

Firstly, since the lower meniscus contact point seems to be aproximately
static as the gas pocket volume decreases, the shape of the meniscus will
gradually change until it becomes unstable and collapses against the mould
wall. The momentum of this collapse would induce a spurt of upward bub-
bling.

Secondly, bubbles escaping from the surface of the melt in the mould
would briefly lead to a drop in the mould melt level, where the dropping
melt would induce a downward momentum in the mould. The effect may be
seen in the water model experiments in appendix B. This added momentum
to the melt due to bubble discharge could also lead to destabilizing and
subsequent collapse of the meniscus. In this case the spurt of bubbles would
be seen escaping from the melt surface briefly before the meniscus collapse.

The mechanism of meniscus collapse could also be a combination of the
two effects. Further experiments would have to be performed to ascertain
whether spurts of upward bubbling occur directly before or after the meniscus
collapse, or both.

These mechanisms, indicated by both the experimental observations and
the numerical simulations, indicate that the prevailing effect is the
collapsing meniscus model, suggested in chapter 1 (although possibly with
a less pronounced solid lip than in figure 1.10), and that the Surface Mark
Formation model of Ackerman et al is too much of a simplification to describe
the process thoroughly.

The possible gravity waves in the casting column, discussed above, might
be coupled with or perhaps induce the meniscus oscillations and collapse.
The additional peak in pressure oscillations observed at approximately 1 Hz
could indicate this effect, as it is close to the frequency found in the solution
for gravity waves in chapter 3, although this observed frequency may also be



170 CHAPTER 10. SUMMARY AND DISCUSSION

Computational Modeling, TMS Fall Extractive Meeting, San Diego, Sep. 2001

Process modifications, ideas for improvements

• Hot top bottom surface concave up ⇒ upward gas discharge,
oscillation mark period

• Partly conical mould wall ⇒ oscillation marks, exhudation

• Regulating gas flow u ⇒ meniscus folding

• Other?

Hot top

Meniscus
u(t)

Figure 10.1: Modified mould geometry.

artificial, as suggested in section 2.3.

Although the air gap was open most of the time in the casting simula-
tions, the volumetric flow rate of the slip gas through the air gap was at all
times quite low. This would indicate that the contraction due to the solidi-
fication would never be sufficient to lead to a large enough air gap gas flow
to induce a rapid destabilizing and collapse of the meniscus2, as suggested
in previous models [5], [4]. Of course this result depends to a great extent
on the solidification contraction model applied (see section 7.2.4). However,
with a greater air gap than the one observed in simulations, the gas flow
in the gap would quickly become turbulent, thereby reducing the flow rate
(section 7.2.5). Further work should be done on the contraction model to
ascertain what dimensions of the air gap can occur, but a substantial increase
in the modelled air gap width would be necessary to increase the air gap gas
flow rate to a significant extent.

10.2.2 Suggestions for Process Modifications

Wetting The water model experiments (appendix B) show that the vio-
lence of the bubble discharge depends to a great extent on the wetting of the
Al melt with the hot top; the lower the wetting the gentler the discharge.
Since the pulsating discharge process is believed to influence the meniscus
collapse it would seem that a low wetting and gentle discharge should be
sought. So the wetting should be as low as possible.

The discharge would also be effected by the geometry of the hot top. In
the water experiments the lower corner of the melt inlet is a sharp angle.
Rounding of this corner would facilitate upward bubbling, thereby leading to
a smoother upward bubbling process with a smaller meniscus collapse and a
smoother cast ingot surface.

2A possible link between pressure variations and meniscus collapse with and without
upward bubbling is however suggested in chapter 2.
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Geometry With better control of the slip gas flow and
modified mould geometry it may be possible to avoid meniscus collapse, so
that a smooth ingot surface may be achieved. An intersection of a suggested
modified mould geometry is shown in figure 10.1. A section is here cut out
of the bottom of the hot top so that the meniscus position is raised up above
the bottom level of the hot top. The idea is that the meniscus should remain
in this position by regulating the gas pocket volume. Regulating the gas
pocket volume may be performed by drilling a series of holes through the
hot top around its circumference at an appropriate distance from its outer
edge. Subsequently the slip gas may escape through these holes to prevent
the volume of the gas pocket increasing to a significant extent.

A problem with this geometry might be the small size of the gas pocket.
With poor control the ingot might freeze to the hot-top. However, with an
excess of injected slip gas this could be avoided. As pointed out above, such
a small meniscus might be more unstable than the larger meniscus which
normally occurs. However, the meniscus dynamics should be quite smooth,
since there would be no upward bubbling through the hot top, and regulating
the gas pocket volume should prevent the meniscus from collapsing, as in the
case of figure 9.10.

Other problems with the suggested technique may be clogging of the holes
in the hot top by oxide or buildup of oxide on the meniscus. The clogging
may be a serious problem for small holes. And for too large holes the melt
will flow up into them. Therefore the dimension of the holes drilled in the
hot top is an important issue. Buildup of oxide on the meniscus seems to be
a problem mainly when the meniscus is steady, and not oscillating. This is
the case when oxygen is not applied in the slip gas in our experiments (see
chapter 2). So some meniscus oscillation may be required to avoid this effect.
However, with the suggested technique it should be possible to reduce the
oscillations to a minimum, where buildup of oxide is avoided and oscillations
are small enough to not significantly affect ingot surface formation.

Another possible alteration is a partly conically shaped graphite ring,
which would support meniscus surface to avoid collapse. In this case good
control of the cooling is necessary to avoid the isotherm of onset of contrac-
tion from extending too far upwards, which might lead to a decrease in ingot
radius. But as long as the control of the gas pocket volume functioned, the
meniscus would be quite stable, resulting in a stable heat flow. Therefore
good control of the temperature profile might also be possible.

10.3 Further Development and Analysis
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Solidification contraction In the casting modelling the question of whether
there is sufficient air gap gas flow to quickly reduce the gas pocket volume is
very much determined by the solidification contraction model. To properly
determine the air gap width a more accurate contraction model should be
applied, preferably including the appropriate rheology and the effect on the
air gap of the contraction of the ingot below the primary cooling zone. Per-
haps the modelling might be done in parallel with a finite element method
simulator such as ALSIM, where contraction modelling is much simpler to
perform.

Buoyancy A proper model for buoyancy might be included in the model.
Even if the time scale of the buoyancy is orders of magnitude larger than
the meniscus dynamics, the buoyancy affects the temperature profile in the
ingot, and should therefore be included.

Merging and breakup If the effect of upward discharge is to be properly
included in the methods of surface merging and breakup must be included
in the free surface model. A thorough presentation of such a technique is
given by Shyy [59]. This technique could quite easily be implemented in the
Method of Tensions.

Free surface control Several adjustments could be made to further im-
prove the stability and accuracy of the free surface modelling. An indepen-
dent gas / melt flow model allowing splitting of gas and melt flow velocities
might be included. Such a model would incorporate boundary conditions
at the phase interface and independent flow equations for the gas and melt.
Additional algorithms would also have to be included for advection of gas
and melt in the cells containing phase interfaces.

Including the pressure correction method of Popinet and Zaleski (chapter
6) might improve stability and convergence of pressure, although the sur-
face force redistribution technique applied here (also chapter 6) is probably
sufficient.

The Power Law is here applied in the discretization of the flow equations
(chapter 8). This technique is not influenced by the free surface configu-
ration. Since it is a free surface, the heavier fluid, i.e. the melt, should
determine the flow. Therefore the surface configuration should be included
in the discretization. So the Power Law should be applied together with an
appropriate discretization where interface geometry and stability properties
are addressed in the cells with phase interfaces.
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For phase conservation further development of the correction technique
presented in section 6.8 should be made. Alternatively a higher order spline
might be applied to control both surface smoothness and boundary wetting
conditions.

Casting developments Both numerical simulations and casting tests should
be applied on the suggested modified mould geometry. Since the geometry
can not be modelled with a orthogonal grid the applied numerical method
would have to be adapted to a non orthogonal grid. Subsequent simulations
together with casting tests would show whether the suggested modifications
could improve the casting process.

The aspect of wetting conditions should definitely be considered and any
corners of the hot top geometry should be rounded to achieve as smooth a
process as possible.
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Appendix A

Analysis of castings: ingot 6

A.1 Statistics

Statistics for ingot 6 in the casting tests are displayed in the following tables.
Temperatures in oC. The indicated pressure is measured pressure deviation
from time average pressure in the gas pocket. The ’temp’ temperatures are
measured graphite ring temperatures and the ’HT’ temperatures are mea-
sured hot-top temperatures (see figures 2.2 and 2.3).

100mm/min casting velocity

Pressure (mbar) temp2 temp4 temp5 temp6
Mean 0 64,53622 78,49369 68,3981 68,59016
Max 0,168947 73,478 89,291 75,554 75,241
Min -0,35918 54,868 63,846 58,559 59,682
Stdev 0,084008 3,908624 4,783425 3,021095 2,725702

HT1 HT2 HT3 HT4 MOULD
Mean 597,0166 487,4816 128,7675 120,7548 40,93242
Max 608,82 509,77 157,18 134,32 42,185
Min 577,89 459,38 96,135 105,28 39,739
Stdev 8,487291 14,29764 17,59707 8,261432 0,453548

120mm/min casting velocity

Pressure (mbar) temp2 temp4 temp5 temp6
Mean 0 65,56731 65,32221 58,95359 58,76375
Max 0,395197 72,486 83,55 72,851 72,851
Min -0,46355 56,589 60,437 55,953 56,108
Stdev 0,08997 4,09607 1,99704 1,283 1,11119
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HT1 HT2 HT3 HT4 MOULD
Mean 619,8884 473,5051 198,8337 147,2541 38,98327
Max 623,28 509,77 208,44 150,2 40,736
Min 608,82 472,13 157,01 134,16 38,046
Stdev 1,74663 1,51681 5,98003 1,8239 0,37115

160mm/min casting velocity

Pressure (mbar) temp2 temp4 temp5 temp6
Mean 0 83,21908 74,25397 66,14937 67,04145
Max 0,177697 90,917 80,372 72,388 72,388
Min -0,11168 78,349 71,162 63,38 64,768
Stdev 0,052974 1,973887 1,604671 1,834478 1,50668

HT1 HT2 HT3 HT4 MOULD
Mean 597,0166 487,4816 128,7675 120,7548 40,93242
Max 608,82 509,77 157,18 134,32 42,185
Min 577,89 459,38 96,135 105,28 39,739
Stdev 8,487291 14,29764 17,59707 8,261432 0,453548

A.2 Fourier Analysis

The signals were sampled with a sampling frequency Sf = 14.29Hz. The DC
component of the data was cancelled out. The data were filtered with a trans-
posed low-pass 45th order Kaiser Window FIR filter with cutoff frequency at
0.3Sf to avoid aliasing and leakage. A Hanning window was applied to avoid
the Gibbs effect and to improve results for the lower frequencies. Finally
the discrete Fourier transform was found using a Finite Fourier Transform
algorithm. The Fourier Analysis was performed using Matlab.

Plots for tc2 to tc6 correspond to temperatures measured in the graphite
in figure 2.2 and al mould corresponds to the temperature measured in the
aluminium part of the mould. Results are again presented only for ingot 6.
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Appendix B

Water meniscus experiments

   Gas

10cm

9cm

1cm

Figure B.1: Experimental geometry
for water modelling tests. Water sur-
face and meniscus indicated.

To observe the effect of surface wet-
ting and gas flow rate on the char-
acteristics of meniscus development
and on gas discharge up through the
melt inlet in a typical casting geom-
etry, a water model experiment was
performed.

B.1 Experimental setup

A Plexiglas container in the shape
of a half cross-section of the casting
was used in the experiment. The ge-
ometry is shown in figure B.

The container was approximately
cubic, with dimensions 10cm ×
10cm×10cm. The top lid of the con-
tainer, corresponding to the hot top
in the casting process, was slanted to
facilitate creation and observation of
the gas pocket and meniscus underneath it.

Gas was let in under pressure through a series of tubes with diameter
=3mm along the side of the container, indicated in figure B. The gas would
periodically bubble up and escape through the top of the container, to the
right in the figure. Initially the Plexiglas surface was untreated, so for the
first testrun the wetting was quite high. For subsequent runs the surface was
treated with chemicals to achieve decreasingly lower surface wetting.
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B.2 Results

Figure B.2 shows three series of tests for a gradually decreasing wetting con-
ditions: from high wetting (B.2(a) to B.2(c)), to medium (B.2(d) to B.2(f)),
to low wetting (B.2(g) to B.2(i)). It can be seen that the most pronounced
dynamic behaviour occurs in the case of high surface wetting. As the wetting
is reduced the gas discharge is less violent and as a consequence the surface
of the meniscus is more stable. The gas pocket above the meniscus can fill
to a higher extent in the case of high wetting. This can be seen by the differ-
ence in minimum and maximum height of the water column. Consequently
the dynamics are more violent when the pocket bursts and the gas flows out
through the top.

In our water experiment the outlet of gas creates gravity waves. This
effect is more pronounced in the case of higher wetting. The gravity waves
are damped so that the meniscus surface becomes steady before each gas
discharge. In the case of the water model, damping is mainly due to the wall
boundaries. Since the circulation caused by waves decreases exponentially
downwards the waves will not be notably damped by the bottom of the
container. The damping effect of gravity waves in the casting process would
depend on the composition and depth of the mushy zone and consequently on
the alloy type and casting velocity. The least efficient damping would occur
for pure Al at high casting velocity, which would give a deep liquid phase
and no mushy zone. Wave damping might be included in mathematical
simulations of the process.

In the water model experiments the hydrostatic head increases as the gas
pocket above the meniscus increases in volume. This would however not be
the case in individual moulds in a casting set-up. The molten metal surface
over a mould would not increase notably in height. Gravity would force it
toward the average surface level of the molten metal. Therefore the pressure
at the meniscus would not vary as much as it does in the case of our water
experiment. So the gas discharge through the top of the mould, if it occurs,
could be expected to be less violent than the observed discharge in our water
model experiments.

In the water model experiments the contact point between the meniscus
and the wall is nearly constant in the case of high wetting at the wall beneath
the gas inlet. The meniscus sticks to the wall. When the wetting is decreased
the contact point can move more freely. Therefore the concept of constant
contact angle in modelling is probably most applicable in cases with low wet-
ting. The time to reach equilibrium contact angle apparently decreases with
decreasing wetting. A static contact angle might be used when modelling
the meniscus movement in the case of low wetting. For cases with higher
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(a) High wetting,
growing meniscus.

(b) High wetting,
discharge.

(c) High wetting,
post discharge.

(d) Reduced wet-
ting, growing menis-
cus.

(e) Reduced wetting,
discharge.

(f) Reduced wetting,
post discharge.

(g) Further reduced
wetting, growing
meniscus.

(h) Further reduced
wetting, discharge.

(i) Further reduced
wetting, post dis-
charge.

Figure B.2: Water meniscus experiments.
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wetting it is necessary to model a dynamic contact angle. The forces driv-
ing the contact angle towards its equilibrium point will then decrease with
increasing wetting.



Appendix C

VOF phase conservation

Two test examples of the VOF donor acceptor algorithm are presented here
to show that flux correction is in general needed to achieve phase conservation
when this method is applied.

C.1 Simultaneous advection

Figure C.1 shows the cells used in the VOF donor-acceptor advection algo-
rithm for calculating cell face volume fraction (F ) fluxes for a cell (centre).
A 2D flow with a regular grid, δx = δy = δz, is used and the direction of
flow is upwards to the right. The fluxes over the cell faces are calculated ac-
cording to the donor acceptor model. The value shown in the cells is the cell
volume fraction (here also denoted by F ). Using the method to calculate the
surface direction presented in [26] the result here is that the surface is more
vertical than horizontal. Consequently, in the advection in the x direction
upwinding is default in the advection, i.e. the acceptor cell gives the initial
volume fraction flux. In the y direction downwinding is default.

For ∆t > .25δx/ul total flux per unit area from the left is

δFl = .25δx · Fi,j + ul(∆t− .25δx/ul) = ul∆t− .05δx. (C.1)

For ∆t > .22δx/ur total flux per unit area from the right is

δFr = .22δx · Fi+1,j + ur(∆t− .22δx/ur) = ur∆t− .2δx. (C.2)

For ∆t > .2δy/ur total flux per unit area on top is

δFt = vt(∆t− .2δy/ut) = vt∆t− .2δy. (C.3)

The total flux per unit area on the bottom surface is

δFb = vb∆t (C.4)
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Figure C.1: Cells used in 2D F advection algorithm

The resulting volume fraction in the cell after the time step then becomes

F n+1
i = F n

i + (δFlδyδz − δFrδyδz +δFbδxδz − δFtδxδz) /δxδyδz = (C.5)

F n+1
i = F n

i + 0.35 + ∆t
( ul
δx

+
vb
δy
− ur
δx
− vt
δy

)
.

∆t is the time increment. This result is achieved by using explicit time
integration in derivation of the fluxed values. By incompressibility we have

ul + vb − ur − vt = O(h3) ≈ 0. (C.6)

Therefore the new Fi-value is 1.15, and the cell is overfilled (or underemptied)
by 15%. By setting the F -value back to 1, as is suggested in the donor
acceptor model, a significant deal of liquid volume is lost. The calculation is
also done with the assumption that ∆t > .25dx

umax
. For smaller time increment

the overfilling is smaller, but with other interface configurations stronger
restrictions on ∆t could result. Thus the Courant condition could probably
be made more restrictive, i.e. even smaller ∆t

dx
should probably be used. Of

course decreasing the grid size would also help. However, for folding actions
sharp corners like the one in figure C.1 will always occur, independent of grid
size.

Using an implicit advection method would probably be natural in this
case, and might help with this problem. The nature of the implicit method
would however probably have to depend on both the direction of velocity and
the configuration of the interface, making the method a lot more complex
and more demanding on cpu time.
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C.2 Operator splitting

Using operator splitting (sequential flux calculation in x and y directions),
with δt large enough:

δt >
δx

vt

[
1−

(
F n
i + 0.15 + (ul − ur)

∆t

δx

)]
, (C.7)

we get

F n+1
i = 1−

( ul
δx
− ur
δx

)
∆t (C.8)

when δx = δy. For smaller t the expression becomes more complicated. Error
could still occur though. Obviously F > 1 for ul < ur. So flux correction is
also needed when operator splitting is applied. But again for small uδt/δx
the error is small. Care must therefore be taken in the discretization if phase
conservation is to be achieved with this method.



188 APPENDIX C. VOF PHASE CONSERVATION



Appendix D

Some comments on applied
simplifications

Buoyancy

Gas pocket flow The density of the gas is dependent on both pressure
and temperature through the ideal gas equation:

p

RT
=
n

V
∝ ρ. (D.1)

The density variation in the gas due to hydrostatic forces is negligible (less
than 0.1 Pa). And the small flow velocities in the gas in the simulations (see
chapter 9) give very low Mach numbers (Mamax ∼ 10−4), so compression
due to flow is negligible. Therefore the pressure in the gas pocket can be
assumed to be approximately homogeneous. Then if the upper contact angle
of the meniscus is assumed to be free, with surface tension forces leading
to a negligible macroscopic curvature at the contact point, the gas pocket
pressure will equal the metallostatic pressure at the bottom surface of the
hot-top since there is no pressure jump across the meniscus surface here.

The density / temperature dependence will lead to natural convection in
the gas pocket. The only other forces influencing the gas flow are due to the
inflow pressure, meniscus movement and shear acting on the gas at the free
surface meniscus boundary. However, since it is assumed that the meniscus
is a free surface, the flow in the gas pocket will have no effect on the liquid
metal flow.

Another consideration is increased heat transfer due to natural convection
in the gas pocket. The relation between heat transport by convection and
heat transport by conduction is given by the product of the Prandtl and
Reynolds numbers, also called the Peclet number Pe = Pr Re. For typical
values in the gas pocket Pe ≈ 400U , where U is the characteristic gas flow
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velocity. This suggests that natural convection will contribute significantly
to heat transfer across the gas pocket. However, the effect of convection in
the gas pocket is assumed negligible compared to heat transfer due to the
conduction across the air gap and the direct conduction in contact areas
between metal and mould. Subsequently the effect of buoyancy in the gas
may be neglected in the simulations.

Compression of the gas in the gas pocket by the movement of the menis-
cus, may lead to volume change. If the gas has no escape, i.e. the air gap
is closed, then the reduction in volume will lead to increased density, and
also increased pressure, if constant gas temperature is assumed. With the
assumption that the pressure in the gas pocket equals the metallostatic pres-
sure at the bottom of the hot-top, these volume/density variations must be
coupled with variations of metallostatic height in the mould. To include this
type of gas density variations the ideal gas model would have to be incor-
porated. However, such variations will not significantly influence meniscus
oscillations, as shown in section 3.4.2.

Melt flow The density of the melt is also dependent on temperature. This
temperature dependence influences both the melt flow through buoyancy and
also the ingot geometry by contraction during solidification. As remarked
earlier, the effect of solidification contraction on the meniscus movement is
introduced through an independent model. So here we will concentrate on
the effect of temperature dependent density on the melt flow, i.e. the effect
of natural convection.

The importance of buoyant forces to the flow are given by the relation
between buoyancy and inertial forces, expressed by the ratio of the Grashof
number to the square of the Reynolds number, which is

Gr

Re2
=
βg∆TL

U2
≈ 0.01

U2
(D.2)

for the simulation parameters. Here the characteristic dimension L is set to
the ingot diameter 0.1m, the characteristic temperature difference ∆T is in
the order of 100K, and the thermal expansion coefficient β is in the order
of 1.0 × 10−3. The velocity U in the Reynolds number may be interpreted
as the mean flow velocity when buoyancy is neglected. In the simulations
(chapter 9) the flow velocity in the region of the meniscus is mostly in the
order of 0.01m/s to 0.1m/s. In this case boyancy would have an influence,
but would not greatly alter the flow. In the bulk of the ingot U is however
of the order of the casting velocity for the simulations. Then for a casting
velocity of 120mm/min, U ∼ 2.0 × 10−3m/s and Gr/Re2 ∼ 2500. So if
buoyant forces were included the flow field should be significantly altered.
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This would again lead to altered heat flow due to convective heat transport.
A buoyancy model should therefore be applied to include these effects. This
remains to be done in future work.

In the simulations the thermal boundary conditions are found by iter-
atively solving the inverse heat transfer problem for a conservative laminar
flow field without natural convection. The resultant temperature field is com-
parable to that found in the experimental measurements. Therefore omitting
natural convection in the simulations does not result in an erroneous tem-
perature profile. Also, the meniscus dynamics should not influence the bulk
convection in the mould, and vice versa, if it is assumed that the character-
istic dimensions of the meniscus are a lot smaller than those of the mould.

Cellwise homogeneous velocity

The cell Reynolds number1 gives an indication of the validity of the approx-
imation of homogeneous velocity in the two phases in a computational cell.
This nondimensional value gives the ratio of inertial to viscous forces in a
computational cell. By putting an upper bound on R∆x the velocity varia-
tion over a cell can be made small compared to the mean velocity. So in the
areas of two phases within the computational domain the grid size should
fulfill the relation

Re∆x << 1. (D.3)

With typical casting parameters (appendix F) and characteristic velocities
in the casting mould in the order of 10−2m/s, as in the casting simulations
(chapter 9), then the condition on grid size becomes

∆x << 0.001m. (D.4)

In our simulations the grid size is of the order of 1mm. Simulations with a
smaller grid would be more time consuming, but according to this analysis
the accuracy in velocity interpolation at the phase interface for the applied
grid size is poor. Accuracy in the discretization of the flow equations at the
phase boundary should be greatly improved by refining the grid.

Isotropic conductivity

To correct the error in the heat conduction interface cells caused by using an
isotropic conductivity, a directionally dependent, i.e. non-isotropic, conduc-
tivity vector ~k could be introduced. Then the conductive term becomes

−∇ · ~q = −∇~k · ∇T. (D.5)

1With computational cell dimension ∆x the cell Reynolds number is defined as ρU∆x
µ .
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The conductivity vector in cells containing both phases can be determined
by the geometry of the spline interface in the Method of Tensions. Together
with an enthalpy correction method as suggested in 5.1.3 this should produce
a stable and more accurate method for calculating the heat flow at the melt
surface. The technique remains to be tested out.



Appendix E

Cubic spline interpolation

This is a third order polynomial interpolation method. With the interpola-
tion polynomial for the ith segment a curve parameterized by t (see figure E.1)
is expressed as

x(i) = a(i) (t− ti)
3 + b(i) (t− ti)

2 + c(i) (t− ti) + d(i), (E.1)

where x(t) = x(i)(t), t ε (ti, ti+1). The condition of continuous second deriva-
tive gives

a(i) =
Si+1 − Si

6hi
(E.2)

b(i) =
Si
2

(E.3)

where Si = x(i)′′(ti) = x(i−1)′′(ti) and hi = ti+1 − ti.
Since

d(i) = x(ti) (E.4)

the polynomial E.1 gives

c(i) =
x(i)(ti+1)− x(i)(ti)

hi
− 2Si + Si+1

6
hi. (E.5)

t i+1

i x    (i)

Figure E.1: Segment of curve.

193



194 APPENDIX E. CUBIC SPLINE INTERPOLATION

All the values in the expressions for the polynomial coefficients above are
known, except the second derivatives, Si which are found using the condition
of continuity of first derivatives, leading to the general set of equations

hi−1Si−1 + 2(hi + hi−1)Si + hiSi+1 =

h(fi − fi−1), fi =
x(ti+1)− x(ti)

hi
. (E.6)

E.1 Boundary conditions

The types of boundary conditions normally used are

• Si = 0 at the boundaries, natural splines

• extrapolating the second derivative boundary values

• forcing the slope to assume certain values at the boundaries (specified
contact angle with the boundary)

• periodic boundary conditions (f. ex. for a bubble)

The three first types of boundary conditions lead to tridiagonal systems which
are easily solved (see [21]). The periodic boundary condition leads to a cyclic
tridiagonal system, which requires a different solution method.

E.1.1 Periodic boundary conditions

In the following it is shown how to solve the cyclic tridiagonal system using
the Sherman-Morrison Formula, described in [50]. With periodic boundary

conditions (x0|t=0 = xn|t=tn , dx0

dt
|t=0 = dxn

dt
|t=tn ; d

2x0

dt2
|t=0 = d2xn

dt2
|t=tn), the

cyclic tridiagonal system for the second derivatives becomes:

As = f (E.7)

where s = [S0, S1, . . . , Sn−1]
T , f = 6 [f0 − fn−1, f1 − f0, . . . , fn−1 − fn−2]

T and

A =



2(h0 + hn) h0 0 0 0 hn

h0 2(h0 + h1) h1 0 0 0
0 h1 2(h1 + h2) h2 0 0
.
..

. . .
. . .

. . .
. . .

.

..
0 0 hn−3 2(hn−2 + hn−3) hn−2 0
0 0 0 hn−2 2(hn−1 + hn−2) hn−1

hn 0 0 0 hn−1 2(hn + hn−1)
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Sherman-Morrison Formula

The formula gives the inverse of a matrix

A + u⊗ v (E.8)

as

(A + u⊗ v)−1 = A−1 − z⊗w

1 + λ
, (E.9)

where

λ = v ·A−1 · u, z = A−1 · u, w =
(
A−1

)T · v. Since 1
1+λ

is expanded in
a power series to derive the formula, is necessary for convergence of the series
that |λ| < 1. So we need

|v ·A−1 · u| < 1. (E.10)

Using the Sherman-Morrison formula the solution to the system

(A + u⊗ v) · x = b (E.11)

is

x = y−
[

v · y
1 + v · z

]
z (E.12)

where
A · y = b, A · z = u. (E.13)

Solving E.13 for y and z these can be inserted in E.12 to find the solution.

Solution of the cyclic tridiagonal system

We choose

B =


2(h0 + hn)− γ h0 0 0

h0 2(h0 + h1) h1 0
...

. . . . . . . . .

0 0 hn−1 2(hn − hn−1)− h2
n/γ

 .

(E.14)
and

u =


γ
0
...
0
hn

 v =


1
0
...
0

hn/γ

 . (E.15)

Thus B+u⊗v = A in E.7. We choose the parameter γ = −2(h0+hn) to avoid
loss off precision. One should still check that the term 2(hn − hn−1)− h2

n/γ
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is not close to zero.

Subsequently the system E.7 can be solved using the Sherman-Morrison
formula:

A · s = (B + u⊗ v) · s = f; (E.16)

B · y = f, B · z = u (E.17)

and finally

s = y−
[

v · y
1 + v · z

]
z. (E.18)

Solving the two tridiagonal systems E.17 can be done in O(N) operations,
where N ×N is the dimension of the matrix B. Note that one should check
that

|v ·B−1 · u| < 1 (E.19)

for convergence of the series.



Appendix F

Simulation parameters

F.1 Material parameters

temp [K] ρ [kg/m3] cp [J/kg K] k [W/m K] µ[kg/m s] fs
300 2700 900 129 1
600 2700 1036 149 1
811 2700 1139 155 1

828.8 2700 1156 155 100 1
880.0 2700 1917 150 0.1 0.9
898.2 2700 3302 144 0.01 0.8
906.8 2700 5705 139 0.008 0.7
912.0 2700 8251 133 0.005 0.6
915.3 2700 12487 128 0.00324 0.5
917.6 2700 17549 122 0.00162 0.4
919.4 2700 22180 117 0.00162 0.3
920.7 2700 30461 111 0.00135 0.2
921.8 2700 35843 106 0.00135 0.1
922.7 2700 38667 100 0.00135 0.
943 2700 6088 100 0.00135 0.
983 2700 1088 100 0.00135 0.

Table A.1: Material parameters of Al 6082

The simulations were performed with material parameters correspond-
ing to the Al6082 alloy. Material parameters are listed in the table above.
The temperature dependence of the solid fraction fs, conductivity and heat
capacity was calculated by ALSTRUC [12]. In the range of solidification
(880K-922K) the heat capacity was calculated by the relation for total heat
capacity (7.11) in the enthalpy model 7.1.1. The heat capacity curve was
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further smoothed to facilitate stability in the numerical simulations. The
density was chosen constant to facilitate mass conservation (see 7.2.6). The
viscosity was empirically determined based on the viscosity of liquid alu-
minium (again see section 7.2.6). At complete solidification the viscosity was
set to 1. However, above fs = 0.8 the static flow model (7.2.6) is introduced,
so in this region the viscosity does not influence the flow.

The material parameters of the air slip gas were chosen to be constant.
materials listed below

ρ [kg/m3] cp [J/kg K] k [W/m K] µ[kg/m s]
1.0 1.04E3 2.6E-2 1.813E-5

Table A.2: Material parameters of air slip gas.

F.2 Boundary conditions

The computational cells and boundary conditions for simulations of 120mm/min
castings of Al6082 are shown on the following pages.

Fluid flow

The inflow velocity (I1-cells) was set to balance the rate of solidified metal
movement (I2) out of the computational domain. In addition to the forced
inlet conditions two outlet cells were added (O) to facilitate stability in the
melt inflow region. Zero boundary velocity was set at the bottom of the
hot-top (W2), while the boundary velocity along the solidified ingot surface
(W5-W9) was set equal to the casting velocity. The gas inlet was set after
initiation of the temperature field in cells (I=52,J=46-49).

Heat flow

Conductive wall conditions (see section 8.1.1) were applied in the hot-top
and mould regions (W2,W5,W6,WD,WF and WG). The top of the hot-top
region and the outer boundary of the mould wall were insulated (WB,WC).
Constant temperature conditions were set at the inlets (I1,I2) and exter-
nal heat transfer conditions (again 8.1.1) were set for the water cooling
(W7,W8,W9,WE) and for air cooling of the hot-top (WA). The heat transfer
set at WE models the cooling of the mould wall by the water reservoir.
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J I= 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 =I J

55 WCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWC 55

54 WCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWC 54

53 WCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWC 53

52 WCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWC 52

51 WCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWC 51

50 W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W9W8W8W8W8W7 50

49 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

48 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

47 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

46 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

45 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

44 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

43 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

42 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

41 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

40 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

39 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

38 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

37 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

36 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

35 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

34 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

33 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

32 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

31 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

30 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

29 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

28 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

27 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

26 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

25 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

24 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

23 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

22 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

21 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

20 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

19 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

18 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

17 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

16 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

15 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

14 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

13 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

12 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

11 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

10 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

9 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 I2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S 1

J I= 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 =I J
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J I 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 =I J

55 WBWBWBWBWBWBWBWBWBWBWBWBWBWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWC 55

54 WEW6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 54

53 WEW6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W6W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 53

52 WEW6W6W6W6WFWFWFWFWFWFWFWFWFWFWFWFWFWFWFWGW6W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 52

51 WBW6W6W6W6WDW5W5W5W5W5W5W5W5W5W5W5W5W5W5WGW6W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 51

50 WBW6W6W6W6WDW5W5W5W5W5W5W5W5W5W5W5W5W5W5WGW6W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 50

49 . . . . . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 49

48 . . . . . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 48

47 . . . . . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 47

46 . . . . . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 46

45 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 45

44 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 44

43 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 43

42 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 42

41 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 41

40 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 40

39 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 39

38 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 38

37 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 37

36 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 36

35 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 35

34 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 34

33 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 33

32 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 32

31 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 31

30 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 30

29 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 29

28 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 28

27 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 27

26 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 26

25 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 25

24 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 24

23 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 23

22 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 22

21 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 21

20 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 20

19 . . . . . . . . . . . . . .W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2W2WC 19

18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 18

17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 17

16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 16

15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 15

14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 14

13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 13

12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 12

11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 11

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 10

9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 9

8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 8

7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 7

6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 6

5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 5

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 4

3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 3

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I1 2

1 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S 1

J I 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 =I J
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- VELOCITY BOUNDARY CONDITIONS -

ZONE U-VELOCITY V-VELOCITY

------ ---------- ----------

W2 0.0000E+00 0.0000E+00

W5 -2.0000E-03 0.0000E+00

W6 -2.0000E-03 0.0000E+00

W7 -2.0000E-03 0.0000E+00

W8 -2.0000E-03 0.0000E+00

W9 -2.0000E-03 0.0000E+00

WA 0.0000E+00 0.0000E+00

WB 0.0000E+00 0.0000E+00

WC 0.0000E+00 0.0000E+00

WD 0.0000E+00 0.0000E+00

WE 0.0000E+00 0.0000E+00

WF 0.0000E+00 0.0000E+00

WG 0.0000E+00 0.0000E+00

I1 -8.5000E-03 0.0000E+00

I2 -2.0000E-03 0.0000E+00

- TEMPERATURE BOUNDARY CONDITIONS -

ZONE TEMPERATURE

---------- ----------------

W2 COND. WALL

W5 COND. WALL

W6 COND. WALL

W7 EXT. H-T

W8 EXT. H-T

W9 EXT. H-T

WA EXT. H-T

WB HEAT FLUX

WC HEAT FLUX

WD COND. WALL

WE EXT. H-T

WF COND. WALL

WG COND. WALL

I1 9.6100E+02

I2 3.3800E+02

- SPECIAL TEMPERATURE BOUNDARIES -

HEAT FLUX HEAT FLUX EXT. H-T EXTERNAL HEAT

ZONE BOUNDARY VALUE BOUNDARY TRANSFER COEFF. EXT. TEMP.

------ --------- ---------- --------- --------------- ---------------

W7 N N/A Y 1.0000E+02 3.0000E+02

W8 N N/A Y 2.0000E+04 2.8500E+02

W9 N N/A Y 1.0000E+04 2.8500E+02

WA N N/A Y 1.0000E+03 3.1300E+02

WB Y 0.0000E+00 N N/A N/A

WC Y 0.0000E+00 N N/A N/A

WE N N/A Y 8.0000E+04 2.8500E+02

CONDUCTING WALL ZONE PROPERTIES :

---------------------------------

THERMAL SPECIFIC VOLUMETRIC

ZONE CONDUCTIVITY HEAT DENSITY HEAT RATE

---- ---------------- -------------- -------------- -------------------

W2 1.5500E-01 1.0000E+03 8.3000E+02 0.0000E+00

W5 1.1000E+02 1.3000E+03 1.7400E+03 0.0000E+00

W6 1.8100E+02 9.6300E+02 2.7000E+03 0.0000E+00

WD 9.4000E+00 1.0000E+03 1.0000E+03 0.0000E+00

WF 2.0000E+01 1.0000E+03 1.0000E+03 0.0000E+00

WG 1.2400E+01 1.0000E+03 1.0000E+03 0.0000E+00
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Appendix G

Nomenclature

Lower case

c speed of sound [m/s]
c colour function
c̃ smoothed colour function
c Courant number
cp constant pressure heat capacity [J/kg K]
cip constant pressure heat capacity in phase i [J/kg K]
c̃p total constant pressure heat capacity [J/kg K]
e internal energy per unit mass [J/kg]
e emissivity
f frequency of harmonic oscillations [Hz]
fs solid fraction
fSC solid fraction at onset of contraction
g gravitational constant [m/s2]
gx, gy directional gravitational forces [m/s2]
g gravitational force [m/s2]
h enthalpy per unit mass (sensible heat) [J/kg]
k thermal conductivity [W/m K]
k equilibrium distribution coefficient
ml liquidus slope
n surface unit normal
n̂, ~nk phase unit normal
p pressure [Pa]
p∗ initial pressure [Pa]
p′ pressure correction [Pa]
p0, pgp,pe gas pocket pressure [Pa]
patm, p0 atmospheric pressure [Pa]
~q heat flux [W/m2]

203
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rS radius of spline surface [m]
ring mean radius of ingot surface [m]
rm mould radius [m]
sint point of intersection
s arc length parameter [m]
t time [s]
t surface unit tangent vector
u velocity vector [m/s]
v velocity vector [m/s]
~u velocity vector [m/s]
~uk phase velocity vector [m/s]
~us interface velocity [m/s]
u velocity in x-direction [m/s]
u∗ initial velocity in x-direction [m/s]
u′ velocity correction in x-direction [m/s]
um density weighted velocity in x-direction [m/s]
v velocity in y-direction [m/s]
v∗ initial velocity in y-direction [m/s]
v′ velocity correction in y-direction [m/s]
ui, uj velocity components [m/s]
ṽin modified inflow velocity [m/s]
vr radial velocity [m/s]
vθ angular velocity [rad/s]
vz axial velocity [m/s]
z′(s) dz/ds

Upper case

A area [m2]
C phase function
C Total contraction
C0 initial concentration
Cl liquid concentration
Ck colour function
F volume fraction
F view factor
FSV surface tension volume force [N/m]
~F body force N/m3

~F phase body force N/m3

H total enthalpy per unit mass [J/kg]
HV total enthalpy per unit volume [J/m3]
I unit tensor
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L convolution kernel
L characteristic length of liquid column in meniscus [m]
Lev inlet length [m]
L computational cell number
L latent heat of melting J
M molar mass [kg/mol]
Q heat flow rate [W]
R,Ri radii of curvature [m]
R gas constant [J/K mol]
R ingot surface radius [m]
S surface
S1 melt surface area in mould [m2]
S2 meniscus surface area [m2]
S energy source term [J/m3]
Sk phase energy source term [J/m3]
S surface tension volume force [N/m3]
Sr, Sz surface tension volume force components [N/m3]
T temperature [K]
Ts solidus temperature [K]
Tl liquidus temperature [K]
TSC temperature at onset of contraction [K]
U mean velocity [m/s]
V volume (size of averaging volume) [m3]
Vf air gap flow rate [m3/s]
Vk size of averaging phase volume [m3]

Greek lower case

α volume fraction
αi phase volume fraction
α surface tension coefficient [N/m]
δA Surface area variation [m2]
δ variation
δ[] Dirac delta function
δr radial contraction
δρ density variation [kg/m3]
δs delta function across surface s
δS surface boundary
δt time step/time increment [s]
δx, δy, δz computational cell dimensions [m]
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γ surface force redistribution parameter
κ curvature [1/m]
µ viscosity [kg/m s]
µ̂ harmonic mean viscosity [kg/m s]
ν kinematic viscosity [kg/m s]
ω relaxation coefficient
φ normalized pressure p/ρ [N m/kg]
ψ velocity potential [m2/s]
ρ density [kg/m3]
ρ0 equilibrium density [kg/m3]
σ surface tension coefficient [N/m]
σ Stefan-Bolzman constant [W/m2K4]
τ viscous stress tensor [N/m2]
τi,j viscous stress tensor components [N/m2]
τ stress tensor [N/m2]
τ k phase stress tensor [N/m2]
~τk shear force [N/m2]
θeq equilibrium angle of contact [rad]
θ slope of meniscus [rad]
ζ wave amplitude [m]

Greek upper case

∆p air gap pressure drop [Pa]
∆s increment of arc length parameter [m]
∆t time step/time increment [s]
∆H latent heat content [J/kg]
Γi,j surface force in cell i,j after force redistribution
Γ general diffusion coefficient
Ω averaging volume
Ωk phase volume
Π viscous stress tensor [N/m2]
Ψ stream function [m2/s]
Σ rz surface intersection of computational cell
δΣ phase boundary in Σ

Symbols

<> extensive volume average
i<> intrinsic volume average
t<> time average
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algorithm, 56, 66
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methods, 63
model, 68
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techniques, 51
volume fraction, 56

advection methods
first order, 64
higher order, 64
zero order, 64
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flow, 121, 125
flow rate model, 128
fully developed flow, 131
open, 14
pressure drop, 130
turbulence, 131
unstable, 16
volume flow rate, 130
width, 174

air-slip, 9
algebraic methods, 51, 64
alloy elements, 15
alloys, 14
alumina, 19
aluminium density, 126

aluminium oxide, 19
amplitude

capillary gravity waves, 46
averaging volume, 80

banded segregation, 16
bilinear interpolation, 108, 110
bisection, 100
bleed bands, 16, 25
boiling

nucleate, 15
film, 15
transitional, 15

bottom block, 9
boundary condition

surface, 71
surface stress, 69
wave, 41
wetting angle, 76

boundary conditions, 141, 145
capillary gravity wave, 45
for spline, 150
heat flow, 145
mould wall, 146
pressure, 69
thermal, 31, 161, 162
velocity, 145

Br, 125
Brinkman number, 125
bubble

2D, 107
3D, 105
formation, 161
separation, 161

214



INDEX 215

bubble discharge, 176
bubble formation, 63, 160
buoyancy, 132, 174, 177

capillary gravity waves, 39, 44, 172
capillary waves, 39, 172
cast ingot

diameter, 48
casting

Al ingot, 7
multistrand, 8
process, 121
set-up, 27
tests, 27
tilting-mould, 7

casting table, 9
castings, 28
cell wall averaging, 85
central differencing, 54

in time, 54
CFL condition, 62
chemical analysis, 28
coherency

point of, 127
collapsing meniscus model, 23
colour function, 71, 80

field, 74
combined deviations, 86
common modes, 33
compressibility

limited, 59
computational domain, 141
computational multiphase methods,

52
computer memory, 56, 64
computing time, 55
conservation, 139

of phase, 110, 113
conservation properties, 62, 72
contact angle, 75, 150
continuity equation, 54, 59, 81

Continuous Surface Force model, 55
continuous surface force, 52
contraction

model, 127, 152
radial, 15, 126
reduced, 15

convergence, 89
convolution kernel, 71, 88
cooling

primary, 13
primary cooling, 8
secondary, 13
water, 121

coordinate system
cylindrical, 41

Courant condition, 61, 154
Courant number, 62, 154, 158
CPU time, 55, 56, 64, 67
cracking, 7
crystal lattice, 15
crystal structure, 126
CSF, 55, 63, 71, 72, 74, 75
cubic spline interpolation, 73
cubic-B spline, 110
curvature

at contact point, 18
principal, 149
radius of, 70

damping, 20, 44
DC - Direct Chill, 7
dendrite coherency, 14
density

homogeneous, 55
density ratio, 54, 89, 97, 107
depleted bands, 16
differencing scheme

combined, 66
diffuse interface, 63
diffusion condition, 62
Direct Chill, 7, 9, 15, 125
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discharge
downward, 127
upward, 36, 127, 160, 161

discretization, 56, 86, 139, 178
cylindrical coordinates, 99
Finite Volume, 139

disperse flow, 80
dispersion relation, 43, 172
distribution function, 73
donor cell, 57
Donor-Acceptor

algorithm, 56
method, 56

downstreaming, 56

eddy viscosity, 87
eigenfrequency

capillary wave, 44
eigenfunction

capillary gravity waves, 46
equation, 43

eigenfunction expansion, 42
emissivity, 133
energy

conservation, 134
energy equation

discretized, 144
in enthalpy, 135

enthalpy
correction, 93

enthalpy/temperature relation, 122
Eu, 128
Euler number, 128
Euler-Cauchy equation, 43
Eulerian methods, 52
Extended Power Series Method, 43
extensive average, 81
exudation, 16, 25

FCT, 63, 67
FGVT, 63, 74, 75

Finite Volume discretization, 139
first order methods, 67
FLAIR, 63, 64, 67
flow

Newtonian, 132
time dependent, 71

FLUENT, 141
flux

balancing, 114
calculation, 68
correction, 58, 62–64, 66, 67,

69
imbalance, 65
volume fraction, 68

Flux Corrected Transport, 67
folding, 71
Fourier’s law, 93, 122
Fr, 128
free surface, 108

approximation, 19
boundary, 79
control, 178
modelling, 51, 55
stability, 178

frequency
analysis, 29
characteristic, 29
lower, 31

Froude number, 128

gas
flow rate, 127

gas discharge, 36
downward, 25
upward, 26

gas flow
injected, 25

gas inflow, 47
modified velocity, 137

gas outflow, 47
gas pocket, 13, 149, 160
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discharge, 25
filling of, 154
flow, 48
volume, 25, 36, 47, 48

gas slip, 9, 121
gas-metal surface, 91
grain

formation, 14
structure, 7, 16, 24

graphite ring, 13
gravitational effects, 44
gravitational oscillations, 39, 173
gravity pressure oscillations, 39
gravity oscillations

frequency of, 48
harmonic, 48

gravity pressure oscillations
frequency of, 49

gravity waves, 36, 175
grid

uniform, 67
computational, 141
Eulerian, 52
non-uniform, 55, 58, 141
refinement, 107
regular, 67
size, 70, 74
staggered, 53, 58
uniform, 53

harmonic mean conductivity, 95
harmonic oscillations

gravity pressure, 49
heat

sensible, 123
heat capacity, 125

total, 124
altered, 134
weighted, 133

heat transfer
boundary conditions, 152

inverse problem, 152
mechanism, 15
radiative, 14

higher harmonics, 35
higher order methods, 68
holding furnace, 9
homogeneous model, 79
hot tearing, 15
hot top, 8, 13, 121
hydrostatic

metal pressure, 149
hydrostatic pressure, 149

ideal fluid, 42, 59
ideal gas law, 48
impingement zone, 141
implicit

integration in time, 139
incompressibility, 41
independent flow model, 178
ingot

mean surface, 128
quality, 7
surface, 177
surface quality, 17

ingot surface
formation, 171

ingots, 29
initial conditions, 160
inlet velocity, 160

high, 161
low, 160
slip gas, 160

interface
advection, 64, 65
capturing, 51
higher order, 64
reconstruction, 63
shear, 89
tracking, 51

internal energy equation, 91, 122
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intersection
common double, 102
double, 102
hidden double, 104
points of, 100
single, 102
triple, 102

intrinsic
average, 81
mean velocity, 82
product of velocities, 84
velocity gradient, 90

Lagrangian Eulerian methods, 51
Laplace equation, 41
Large Eddy Simulation, 87, 141
latent heat, 95
latent heat, 122, 174
lever rule, 123
liquid-solid boundary, 91
local deviations, 84
lubricating oil, 121
lubrication, 13

MAC, 51, 52, 63, 64, 68, 70, 141
Mach number, 54, 55, 59
marker

advection, 108
alternating midway redistribu-

tion, 116
field, 52
particles, 52
redistribution, 110, 172
redistribution frequency, 110
spacing, 116

Marker and Cell, 51
Marker and Cell, 52
marker chain method, 97
marker particles, 64, 73
marker velocity

interpolation, 172

markers
ordering of, 55
periodic redistribution, 53

mass conservation, 53, 63, 65
mean viscous forces, 90
melt overflow, 23
melt inflow

channel, 140
melt surface, 28

drop, 161
memory requirements, 55
meniscus, 121

equilibrium shape, 150
smoothness, 161
collapse, 160, 173, 175
collapsing, 23
control, 17
dynamics, 51, 76, 171
folding, 51
free, 18
geometry, 44, 174
modelling, 63
oscillations, 20
semi steady state, 24
shape, 127, 149
solidification, 23
stability, 174
steady state, 39
surface, 47
upper contact point, 173
wave, 35, 161
wave propagation, 51

meniscus shape
nondeimensionalization, 150

metal
mean temperature, 135

metal flow, 9
metal head, 7, 36
metal height, 48
metallostatic head, 15, 130
Method of Tensions, 51, 73, 79, 139



INDEX 219

modelling meniscus dynamics
methods, 51

molten metal surface, 47
momentum conservation, 63
momentum equation, 54, 60, 72,

73, 83
discretization, 60
discretized, 141
divergence form, 58

MOT, 63, 64, 73, 74, 76
mould, 121

book-mould, 7
conventional open DC, 9
electromagnetic, 9
geometry, 13
modified, 177
Showa-Denko, 9

mould wall temperature, 154, 160,
162

Multigrid acceleration, 144
mushy zone, 14

natural spline, 158
natural convection, 89, 132
Navier-Stokes equations, 53, 98, 141
Navier-Stokes solver, 52, 62
Newton-Rhapson, 100, 125
Newtonian viscosity, 125
NS equations

discretisation of, 70
numerical diffusion, 63
numerical smoothing, 172

operator splitting, 67
oscillation

common modes of, 33
frequency of, 44
melt surface, 33
modes of, 29
pressure, 35
temperature, 34

oscillation mark, 24
formation, 24

oscillation marks, 16
oscillations

gravitational, 47
oxidation, 18
oxide

layer, 79
formation, 79

Peclet number, 139
phase

conservation, 56, 58, 66, 172,
178

function, 56, 72
volume, 80

PLIC, 64, 67, 74
Poiseuille flow, 128
Poisson equation, 54, 60

discretized, 54
potential flow, 41
Power Law, 139
pressure

correction, 89
checkerboarding, 53
continuity of, 55
correction, 55, 60, 107, 178
drop, 15
equation, 54
gas pocket, 15, 27
grid, 53, 141
jump, 51, 70, 88, 149
measurements, 27
oscillations, 173
peak, 175
Poisson equation, 89
spikes, 35

primary cooling, 13, 126
projection method, 54, 98
pseudo-fluid, 83
pure aluminium, 15



220 INDEX

QUICK, 140

Ra, 132
radiation, 95, 132, 174
radius of curvature, 42
Rayleigh number, 132
Re, 131
reconstruction, 68

geometrical, 51
piecewise linear, 64

redistribution
rate of, 112

relaxation, 144
remelting, 16
Reynolds number, 131
Reynolds stress, 85, 86
Reynolds transport theorem, 82
RIPPLE, 75

secondary cooling, 13, 15, 126
segregated bands, 16
segregation

continuous surface segregation,
16

depleted bands, 16
exudation, 16
periodic, 16

separation of variables, 42
shrinkage, 7
SIMPLE, 97, 141
Slattery averaging theorem, 82
SLIC, 63, 65
slip gas

balance, 26
flow, 174, 176

smoothing length, 74
SOLA, 53
SOLA-VOF, 55, 60

accuracy, 62
stability, 62

solid fraction, 123

solid lip, 13, 127
thickness, 15

solidification, 125, 171
range, 16
onset of, 132
rate of, 127
temperature range, 91

solidification contraction, 14, 127,
174, 176, 177

solidification model, 152
spline

interpolation, 110
reconstruction, 64

split operator method, 65
spurious currents, 70, 72, 107, 158

amplitude of, 74
stability, 39, 44, 52, 53, 58, 89, 110,

113, 139
capillary gravity waves, 46
capillary wave, 43
SOLA-VOF, 61

staggered grid, 141
static surface, 70
steady state, 71
stratified flow, 88
stress tensor, 98
structural bands, 24
Sturm-Liouville problem, 42
subgrid scale Reynolds stress, 87
surface

waves, 111
advection, 51
curvature, 70
folding, 63
forces, 98, 99
instability, 113
reconstruction, 60, 64, 68, 73
smoothing, 116
stability, 116

surface breakup, 178
surface force, 88
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distribution, 89, 172
model, 89

surface forces, 100
Surface Mark Formation, 175
surface mark formation model, 24
surface marks, 16
surface merging, 178
surface orientation

mean, 56
surface oxide, 15
surface properties, 13
surface representation

Lagrangian, 51
surface tension, 18, 69

coefficient, 79
coefficient, 70
constant coefficient, 71
effects of, 68
forces, 51, 79
uniform coefficient, 42

surface tension force
per volume, 72

surface tension force
modelling, 52

surface tension forces, 63, 69
calculation of, 63, 64, 70
computation of, 64
distribution of, 70

SURFER, 63, 66, 72
sweep direction, 145
symmetry properties, 66

temperature
measurements, 27
oscillations, 162

temperature field
initiation, 152
initiation, 147

temperature/enthalpy relation, 135
tension splines, 114
test

bubble pressure, 105
thermal conductivity, 125

harmonic mean, 133
thermal contact, 37
thermomechanical coupling, 31
time and volume average, 86
time integration

explicit, 54
time step, 158
Tri-diagonal matrix algorithm, 144
turbulence, 141
turbulence model, 87
two phase system, 80, 95
two-fluid model, 79, 91

upstreaming, 56, 58
upward bubbling, 161, 175

velocity
interpolation, 69
mean gas, 130
semi-homogeneous, 85

velocity potential, 41, 42
velocity averaging, 85
velocity field

initiation, 151
velocity grid, 53
view factor, 133
viscosity

temperature dependent, 132
harmonic mean, 136
Newtonian, 125

viscous dissipation, 125
viscous stress, 89
VOF, 52, 55, 63, 64, 66
volume average pressure term, 88
volume average continuity equation,

82
volume averaging, 53, 80
volume conservation, 54
volume forces, 89
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volume fraction, 51, 56, 100
calculation, 75
calculation, 104
on fine grid, 67

Volume of Fluid, 52, 55

wave equation
gravity pressure oscillations, 48

wave phenomena, 39
wave equation

capillary gravity waves, 45
wave propagation, 173
waves, 71

capillary, 20
gravity-capillary, 20
capillary, 42
casting table, 20
gravity, 36

Weber number, 97
wetting, 18, 176
wetting angle, 23, 156

static, 18
Whitaker averaging theorem, 82

Youngs method, 63, 64, 67

zero order methods, 65


