
OWASP top ten - What is the state of
practice among start-ups?

Halldis Margrete Søhoel

Master of Science in Communication Technology

Supervisor: Colin Alexander Boyd, IIK
Co-supervisor: Martin Gilje Jaatun, SINTEF

Department of Information Security and Communication Technology

Submission date: January 2018

Norwegian University of Science and Technology

Title: OWASP top ten - What is the state of practice among start-ups?
Student: Halldis Søhoel

Problem description:

The Open Web Application Security Project (OWASP) maintains a list of the top ten most
critical security vulnerabilities on the web, along with tools and resources on how to test
them and how to avoid them. For anyone interested in developing a secure application
this would be a great place to start. However, studies have shown that developers often
dont pay enough attention to security which in turn results in basic security issues being
overlooked.

This master thesis will study how well start-ups are managing to create secure applica-
tions. Because the OWASP top ten constitute a consensus of the most common and most
severe vulnerabilities on the web, and because the document will be well known to any
threat agent, they represent a good measure on whether the most basic security needs are
covered.

The master thesis will document the state of software security at a number of start-up
companies, that offer web-based services as their primary business. Web applications from
the five companies will be tested according to a test plan developed to cover the OWASP
top ten. In addition, the companies will be interviewed in order to determine their level of
knowledge on OWASP, and what security measures they have implemented.

Responsible professor: Colin Boyd, IIK
Supervisor: Martin Gilje Jaatun, SINTEF

Summary
New apps and web services are increasingly serving our everyday needs, and they are
appearing at high speed. How secure are all these services?

This thesis has tested the security of five web services developed by startups. The star-
tups were interviewed, and penetration testing based on OWASP top ten were conducted.

The results show that none of the companies were using a systematic approach when
working with security. Two out of the five companies were familiar with OWASP and
had done some arbitrary measures to prevent these. The three other companies seemed
very little concerned about security and had the point of view that security was to be
implemented once the service was functioning and steady.

Testing show that the three companies not concerned about security, all had serious
security flaws. For the two companies actively working with security, although some
security flaws were found, these were fewer and less serious. In general, the companies
were more successful in avoiding implementation flaws, such as SQL injection and XSS,
while architectural security holes were more common. SQL injection and XSS were also
more widely known among the startups than the other OWASP top ten vulnerabilities.

Third party code played a huge part in securing all the applications. Still some of the
companies failed by trusting this third-party code too much and by not considering security
as an overall solution. Any company handling sensitive information about customers have
the responsibility to make sure that the information is handled securely throughout the
application and ensure full coverage.

i

Sammendrag
Nye applikasjoner og webtjenester betjener i økende grad våre daglige behov, og de oppstår
i høy hastighet. Hvor sikre er alle disse tjenestene?

Denne oppgaven har testet sikkerheten til fem webtjenester utviklet av oppstartsbedrifter.
Oppstartartsbedriftene ble intervjuet, og penetrasjonstesting basert på OWASP topp ti ble
utført. Resultatene viser at ingen av selskapene brukte en systematisk tilnærming når de
jobbet med sikkerhet. To av de fem selskapene var kjent med OWASP og hadde gjort noen
vilkårlige tiltak for å forhindre disse. De tre andre selskapene virket svært lite bekymret
for sikkerhet og hadde en holdning om at sikkerhet skulle implementeres når tjenesten
fungerte og var stabil.

Testing viser at de tre selskapene som ikke var bekymret for sikkerhet, hadde alvorlige
sikkerhetsfeil. For de to selskapene som aktivt jobbet med sikkerhet, ble det funnet noen
sikkerhetsfeil, men disse var langt færre og mindre alvorlige. Generelt var selskapene mer
vellykkede i å unngå implementeringsfeil, som SQL-injeksjon og XSS, mens arkitektur-
sikkerhetshull var mer vanlige. SQL-injeksjon og XSS var også mer kjent blant oppstarts-
bedriftene enn de andre OWASP topp ti sårbarhetene.

Tredjepartskode spilte en stor rolle i alle applikasjonene. Noen av selskapene stolte
likevel for mye på tredjepartskoden, og mislyktes med å vurdere sikkerhet som en helhetlig
løsning. Ethvert selskap som håndterer sensitiv informasjon om kunder har ansvar for å
sikre at informasjonen håndteres på en sikker måte gjennom hele løsningen.

ii

Preface
This Master’s Thesis is the final submission to the Master of Science Degree in Commu-
nication Technology at Norwegian University of Science and Technology (NTNU) with
specialization in Information Security. This concludes five years of study at NTNU and
one semester abroad. Work done in this thesis was performed in the autumn of 2017 and
continues the pre-project submitted in the autumn of 2016.

I would like to thank my responsible professor and supervisor, Colin Boyd and Martin
Gilje Jaatun, for exceptional guidance and feedback throughout the whole process. Thank
you for always being available and for all your time and efforts. I am very grateful.

At last I would like to thank the startups for their time and willingness to partake in
this thesis, and wish them good luck for the future.

Halldis Søhoel
January 2017

iii

iv

Table of Contents

Summary i

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Research questions . 2
1.2 Thesis structure . 3

2 Literature Review 5
2.1 Background . 5

2.1.1 Computer security . 5
2.1.2 Software security . 8
2.1.3 Web application security . 10

2.2 Related work . 12
2.2.1 Are companies using SDL? . 12
2.2.2 Software security in Norwegian organizations 13
2.2.3 Software security in applications made by Silicon Valley start-ups 13
2.2.4 Connections to this thesis . 14

3 Basic Theory 15
3.1 Definition of a vulnerability . 15
3.2 The OWASP top ten explained . 16

3.2.1 A1: Injection . 16
3.2.2 A2: Broken Authentication and Session Management 16

v

3.2.3 A3: Cross-Site Scripting (XSS) 16
3.2.4 A4: Insecure Direct Object References 16
3.2.5 A5: Security Misconfiguration 17
3.2.6 A6: Sensitive Data Exposure . 17
3.2.7 A7: Missing Function Level Access Control 17
3.2.8 A8: Cross-Site Request Forgery (CSRF) 17
3.2.9 A9: Using Components with Known Vulnerabilities 17
3.2.10 A10: Unvalidated Redirects and Forwards 17

3.3 Startup . 17
3.4 HTTP requests and responses in attacks 18

3.4.1 HTTP method . 18
3.4.2 HTTP security headers . 19

4 Method 21
4.1 Literature study . 21
4.2 Interview . 21
4.3 Testing . 22
4.4 Risk rating . 23
4.5 Evaluation/recommendation of relevant tools and resources 25

5 Resources and tools 27
5.1 Resources . 27

5.1.1 OWASP Testing Guide . 27
5.1.2 OWASP Cheat Sheets . 27
5.1.3 CVE . 27

5.2 Tools . 28
5.2.1 Kali Linux . 28
5.2.2 Burp Suite . 28
5.2.3 Whatweb . 28
5.2.4 Netcat . 29
5.2.5 Dirbuster . 29
5.2.6 Nikto . 29
5.2.7 OpenSSL . 29
5.2.8 Nmap . 30

6 Company context 31
6.1 The five participating start-ups . 31

6.1.1 Company A . 31
6.1.2 Company B . 31
6.1.3 Company C . 32
6.1.4 Company D . 32
6.1.5 Company E . 32

6.2 Interviews . 32
6.2.1 Company A . 32
6.2.2 Company B . 33
6.2.3 Company C . 33

vi

6.2.4 Company D . 33
6.2.5 Company E . 34

7 Testing 35
7.1 Test plan . 35

7.1.1 A5 - Security Misconfiguration 36
7.1.2 A9 - Using Components with Known Vulnerabilities 36
7.1.3 A6 - Sensitive Data Exposure 37
7.1.4 A8 - Cross-Site Request Forgery (CSRF) 37
7.1.5 A2 - Broken authentication and session management 37
7.1.6 A10 - Invalidated Redirects and Forwards 38
7.1.7 A7 - Missing Function Level Access Control 38
7.1.8 A4 - Insecure Direct Object References 38
7.1.9 A1 - Injection . 38
7.1.10 A2 - Cross site-scripting . 38

7.2 Results . 39
7.2.1 Result summary . 39
7.2.2 Findings: Company A . 39
7.2.3 Findings: Company B . 44
7.2.4 Findings: Company C . 48
7.2.5 Findings: Company D . 50
7.2.6 Findings: Company E . 52

8 Analysis 57
8.1 Risk rating . 57

8.1.1 Evaluation of likelihood and impact 57
8.1.2 Evaluation of severity . 64

8.2 Analyzing the results . 64
8.3 Research questions revisited . 67

9 Conclusion 71

Bibliography 73

A Severity according to OWASP Risk Rating Methodology 77

vii

viii

List of Tables

2.1 OWASP top ten 2013 . 11
2.2 OWASP top ten 2017 . 12

6.1 Summary of companies . 34

7.1 Summary of results . 39
7.2 Results company A . 40
7.3 Results company B . 44
7.4 Results company C . 49
7.5 Results company D . 51
7.6 Results company E . 53

8.1 Likelihood of each vulnerability . 58
8.2 Likelihood of each vulnerability . 59
8.3 Impact of each vulnerability . 60
8.4 Impact of each vulnerability . 61
8.5 Severity of each vulnerability . 62
8.6 Severity of each vulnerability . 63
8.7 Final severity table . 65

A.1 Severity of each vulnerability . 78
A.2 Severity of each vulnerability . 79

ix

x

List of Figures

2.1 Software security touchpoints (McGraw, 2009) 9

3.1 Life cycle of a vulnerability (Bilge and Dumitras, 2012) 15

4.1 OWASP Risk Rating Methodology . 24

5.1 Whatweb . 29
5.2 Nikto . 29
5.3 Nmap . 30

7.1 HTTP request sending username and password 40
7.2 HTTP response of the request in figure 7.1. Security headers not set . . . 41
7.3 Admin menu . 41
7.4 Information leakage in the source code 41
7.5 Information leakage in the source code 42
7.6 Debugging info in console . 45
7.7 Insecure Direct Object References . 46
7.8 HTTP request for changing a question. The user privileges are too low to

perform this action. 47
7.9 HTTP response of the request in figure 7.8 47
7.10 Query entry . 47
7.11 All user names are returned with device id 48
7.12 User input is correctly separated from code 50
7.13 Object call . 52
7.14 Information leakage about other users 52
7.15 Information leakage of superuser . 52
7.16 Comment as another user . 53

xi

Abbreviations
API = Application Programming Interface
B2B = Business-to-Business
BSIMM = Building Security In Maturity Model
CIA = Confidentiality, Integrity and Availability
CLASP = Comprehensive Lightweight Application Security Process
CSRF = Cross-Site Request Forgery
CVE = Common Vulnerabilities and Exposures
CVSS = Common Vulnerability Scoring System
DOM = Document Object Model
DOS = Denial of Service
HPKP = HTTP Public Key Pinning Extension
HSTS = HTTP Strict Transport Security
ICT = Information and Communication Technology
openSAMM = Open Software Assurance Maturity Model
OWASP = Open Web Application Security Project
REST = Representational State Transfer
SDL = Security Development Lifecycle
SSDL = Software Security Development Lifecycle
SSG = Software Security Group
SSL = Secure Sockets Layer
SQL = Structured Query Language
TCP = Transmission Control Protocol
UDP = User Datagram Protocol
URI = Uniform Resource Identifier
URL = Uniform Resource Locator
WP = Wordpress
XSS = Cross-Site Scripting

xii

Chapter 1
Introduction

“The Internet of half-baked Things is upon us” the security expert Marcus Ranum states
on the podcast the Silver Bullet (Ranum, 2016). Today we are putting chips in every-
thing. This result in the existence of major unused and poorly secured computing capacity
connected to the internet. At the same time Apple and Google have found great success
in open development environments opening the door to the software developing world to
anyone willing to learn coding.

And people are willing; every month hundreds and thousands of new apps and web
services appear online with varying quality. We are using these services to fill our needs
in every aspect of everyday lives; sleeping, eating, travelling and shopping. Consumers
rarely ask questions about the security of these systems.

Steve Bellovin states: “any program, no matter how innocuous it seems, can harbour
security holes” (McGraw, 2006). A statement that was nicely illustrated on October 2016
when a DOS attack on the internet infrastructure provider, Dyn (York, 2016), resulted in
downtime for Twitter, Netflix and several other high-profile web pages. It turned out that
the attack was performed by a botnet of poorly secured IoT devices like, web cameras,
video recorders and surveillance cameras.

As web usage increase and become part of our day to day life, compromising these
systems become increasingly rewarding. Attackers no longer need physical access to the
victims, they can attack more than one at the time and the risk of being caught and brought
to justice is minimal. Today both digital forensic and jurisdiction issues face huge chal-
lenges when it comes to the prosecution of offenders on the web. The appearance of
crime-as-a-service ensures that the means fall into the hands of those with an intent to use
it (Bilge and Dumitras, 2012).

In any other science discipline, the first thing you learn are the consequences of mak-
ing mistakes. They teach you that poorly designed buildings or bridges may cause great
disasters. In computer science the focus is quite different. In fact, at many universities
and university colleges, although security courses are offered, they are not a mandatory
part of the ICT programs leaving many graduates without the most basic knowledge about
security (Lysne et al., 2015). The attitude among developers is often that as long as it

1

Chapter 1. Introduction

functions the intended way, understanding the system is unimportant. The problem arises
when hackers start using the system in an unintended way.

1.1 Research questions
How secure are all these rapidly appearing services? This thesis will contribute to answer-
ing that question. In particular the thesis will investigate how well security is maintained
in five start-up companies. Startup companies are an interesting group to explore because
there are no formal requirements to who can start an IT-company. Anyone willing to learn
how to code can start a business.

Another reason to think that security might be neglected in startups is that building
software is expensive and startups do not have the resources to invest in anything that will
not bring them closer to the next round of financing. McGraw and Ranum believe that the
core of the problem is that the software industry is more rewarding to people that are a
part of the problem, rather than those that are a part of the solution. If companies spend
that extra time and resources on creating good secure software they will get delayed in the
release cycle. Especially for startups this can mean life or death for the company.

On the other hand startup companies have two major advantages; their high motivation
drive them to make better products and because they are small in size they can quickly
adapt to secure development life cycles. In fact, smaller companies implement secure
development life cycles at a higher rate than larger companies, likely because they have
fewer decision levels and are less prone to bureaucracy (Geer, 2010).

Literature suggests that startups manage to make secure applications even when their
knowledge level indicates differently (Bau et al., 2012). There can be two reasons for
this; they are highly motivated and personally invested in the product, so they put in the
extra effort to do it right. The other reason may be that high profile companies like Mi-
crosoft, Google and Facebook are making complete functionality that takes care of critical
transactions and secure sample code, that help developers make more secure applications.

Different applications have different security needs based on the sensitivity of the in-
formation stored and of the transactions the application is used for. Some applications
can accept a higher risk than others. To evaluate this we cannot only look at the technical
aspects, but need to also consider the threats and the business values of the system. There
needs to be compliance between the security needs and the security achieved.

Open Web Application Security Project (OWASP) top ten constitutes a consensus
among security experts of the ten most critical web vulnerabilities. A test plan based
on this list will provide technical insight on the security of the applications, which is the
main focus of the thesis. The OWASP top ten provide a good basis to check whether the
most basic security needs are achieved.

The thesis will answer the following research questions:

1. Do Start-ups cover the basic needs when it comes to software security?

(a) Is security a concern?

(b) Do they have knowledge about common tools?

(c) Are their applications protected against OWASP top ten?

2

1.2 Thesis structure

2. Are tools available that can help start-ups uncover vulnerabilities in a fast and easy
way?

1.2 Thesis structure
To answer the research questions five web applications made by startup companies have
been tested. The work done to answer these questions are divided into three phases; Inter-
views, Testing and Risk Assessment.

Interviews During the interviews each company is asked about the development process,
the threats and values of the systems and OWASP top ten. The aim is to determine
the level of knowledge, what activities are done to ensure security and to gain infor-
mation that will later be used in the risk assessment process. The insight from the
interviews are used to answer research question 1a and 1b. The threats and values
identified will later be used to determine the risks associated with the vulnerabilities
found during testing.

Testing To answer research question 1c penetration testing of the five applications will be
performed. The test plan is based on OWASP top ten and closely follows the tests
described in OWASP testing guide.

Risk Assessment When each OWASP top ten vulnerability have been tested for the ap-
plications they are evaluated in the light of the business context determined during
the interviews. The technical flaws together with the threats and values are used to
determine the severity of the vulnerabilities found.

The thesis start off with a literature study in Chapter 2 and basic theory in Chapter 3.
The method is described in detail in Chapter 4 and the tools that are used during testing
are presented in Chapter 5.

In Chapter 6 the companies are presented followed by the findings of the interviews.
A summary of the company context can be found in table 6.1. In Chapter 7 the test plan
and the results from testing are described. A summary of the results are found in table 7.1
to 7.6. In Chapter 8 the risks are evaluated and discussed. Finally, the research questions
are revisited and answered in Chapter 8.3.

3

Chapter 1. Introduction

4

Chapter 2
Literature Review

This chapter is divided into two sections; background study and related work. The back-
ground study sets the context of this thesis and present the field. Here contributions from
well known security experts and high profile companies will be presented and some his-
tory is provided. Then, in the second section, similar works to this thesis will be presented
along with their results.

2.1 Background

The aim of this section is to set the context of web application security and present im-
portant contributors. We start off with the umbrella, computer security, and show how it
has matured from being merely a infrastructural effort to include the equally important
software security approach.

Section 2.1.1 presents the traditional approach to security and illuminate important
voices on why this approach is not sufficient. Section 2.1.2 present the advanced field of
software security that together with the traditional approach makes a complete solution.
This is a field still under development and important contributions to developing a best
practice are presented. Section 2.1.3 presents the narrow field of web application security,
that makes use of both said approaches, and is the topic of this thesis.

2.1.1 Computer security

Computer security is the idea of protecting computer systems and the information stored
on them. In this context the security requirements or goals are often defined by the CIA
paradigm; Confidentiality, Integrity and Availability. It is common to expand on this to
also include authenticity, non-repudiation and accountability (Lysne et al., 2015).

Confidentiality To ensure that information is only disclosed to those who have the right
to access it.

5

Chapter 2. Literature Review

Integrity The data is valid and accurate and has not been manipulated either by accident
or deliberately by unauthorized people.

Availability Making sure the data or services are continuously available to legitimate
users.

Authenticity Ensuring the origin of data and correct identification of the sender.

Non-repudiation An action is undeniable. It should be possible to prove that an action or
transaction was performed by the specific individual.

Accountability A potential attack is traceable and those responsible can be held account-
able.

As we shall see, attention has often been focused on securing the infrastructure and
putting defences outside the system. In the recent years attention has been shifted onto
also creating secure software. Today everything is connected to the Internet making re-
sources and data accessible to a larger group of attackers and attacks have becommed more
anonymous. To an attacker, digital stealing may not seem as serious as stealing something
material, but the intrusion can often feel just as invasive to the victim and the loss can be
just as significant. This leads to the indisputable importance of web application security.

The traditional approach to computer security

In the past, security has been looked at as an infrastructure matter. The security has been
handled at the network layer with firewalls, anti virus programs, intrusion detection and
other security functionality. The problem is that vulnerabilities in the software, make
it possible to bypass these security technologies. Security has also been handled in a
reactive way rather than proactive, with the penetrate-and-patch approach and creating new
anti virus signatures as new attacks are discovered. However, this ensures that computer
systems remain insecure.

The penetrate-and-patch method

The penetrate-and-patch approach consists of a tiger team of security experts trying to pen-
etrate an already live system. The vulnerabilities that are disclosed during testing are fixed
in patches in a post-facto way. Traditionally this testing was based on secret methods and
the secret knowledge of the security experts. Today a lot of this knowledge and techniques
has been captured and made available online in the form of tools, tutorials and resources,
making them accessible for everyone to use. Security testing is no longer reserved for the
experts.

This approach is problematic for a number of reasons. McGraw (1998) argues that the
approach happens too late; once an attack is discovered it is already too late and it allows
hackers to stay ahead of the game. Once a patch is introduced system administrators
and consumers may stall on installing the latest updates, leaving the system exposed to
any attentive hacker. Bilge and Dumitras (2012) found that exploits for 42 % of newly
discovered vulnerabilities appeared on the Internet within 30 days of their disclosure. Also

6

2.1 Background

their study shows that anti virus programs continue to detect exploits for vulnerabilities
years after patches are available. This indicates that there still exist unpatched hosts.

Another reason to scrap penetrate-and-patch is that patches often introduce new vul-
nerabilities. Because of the pressure to cook up a fast solution and because the patches
often are not tested adequately 10 % of patches introduce new bugs (Bilge and Dumitras,
2012). Also fixing bugs in software later in the development life cycle according to IBM
is a lot more expensive. Fixing it during testing is 15 times more expensive than during
design and fixing it during maintenance is 100 times more expensive than during design
(Edwards, 2017).

Full disclosure policy

The full disclosure policy is the much disputed practise where vulnerabilities are disclosed
to the public even if patches are not yet available(Bilge and Dumitras, 2012). The pur-
pose is to add transparency and prevent security-through-obscurity. Also it gives vendors
incentives to fix the vulnerabilities faster and add pressure. A publicly disclosed vulner-
ability is a vulnerability that is assigned a CVE(Common Vulnerabilities and Exposures)
identifier and is maintained in the public CVE database. This database maintains a list of
all known vulnerabilities and information about release date, exploits and severity. The
policy is disputed because it exposes the affected computer systems to malicious attacks
before the vendors has had a chance to fix the flaw. In fact, the number of detected attacks
on a vulnerability can in some cases increase as much as 100,000 times after disclosure
and the number of malware variants can sometimes increase up to 85,000 times. Today
there is a debate whether the trade-off between faster patching and more attacks adds more
value to society.

Another essential fact adding transparency is that the previously secret methods of
security experts today is captured in easy-to-use tools and comprehensive resources and
tutorials. This brings security testing to the fingertips of all developers, testers, consumers
and also malicious actors. One of those resources is the OWASP awareness documents,
testing guides, tools and top ten lists. It is fair to say that if a web page is vulnerable to
these exploits, it is fairly easy for anyone to exploit them.

“Software security is not security software”

Another approach used to secure a computer systems is to add a lot of security software
and/or features to the system at the end and hope for the best. But as McGraw (2003)
states. “You cannot bolt security onto an existing program”. These mechanisms, no matter
how useful, will not fix implementation bugs or design flaws (Howard and Lipner, 2003).
Security software are any program designed to enhance security like anti-viruses, anti-
spyware, firewalls, intrusion detection etc. Vendors will add features to existing programs
to protect them but what they might actually end up doing is increasing the attack surface.
Microsoft reports that one of the lessons learned during the 2001 security push was to
disable features and services by default to limit the attack surface and contain the effects
of an attack (Howard and Lipner, 2003).

As a complete solution application security needs to be both built in from the start and
protect the software once it goes live. The field of building secure software is quite new

7

Chapter 2. Literature Review

and the first book on the subject appeared in 2001(Viega and McGraw, 2001).

2.1.2 Software security
“Software security is the idea of engineering software so that it continues to function cor-
rectly under malicious attacks” McGraw (2004). The field emerged with initiatives like
the 2002 Windows security push (Howard and Lipner, 2003) and the 2003 DIMACS soft-
ware security workshop (McGraw, 2003) as the traditional reactive method had proven
insufficient. It fortifies the traditional security approach by building software so that it can
resist attacks in a proactive way. In order to achieve this we need to implement security
activities into the regular software development life cycle to eliminate as many security
flaws as possible. Obviously it is easier to protect software that is not faulty, and the cost
of fixing bugs increase drastically the further down the development life cycle it is dis-
covered. Security holes in software are common and the problem is growing (McGraw,
2003).

The trinity of trouble - Why is software security a bigger problem now than in the
past?

To explain why we are seeing an increase in attacks on software McGraw (2003) use what
he calls “The trinity of trouble”.

The first element of the trinity is the growing internet connectivity. Today we are con-
necting more and more of our devices to the internet. As a result, attackers no longer
need physical access to a system in order to exploit it. At the same time more and
more of our daily business is made available online.

The second element is the phenomenon of extensible systems. Vendors updates their
software through so called mobile code to evolve the system incrementally. This
enables attackers to slip in malware as unwanted and even unnoticed extensions.

The last element is the growing size and complexity of systems. The flaw rate tends to
increase as the square root of the code size, therefore it is simply impossible to
avoid bugs in large systems. This element may be exaggerated or limited by using
unsafe/safe programming languages.

Best Practice

First out to develop a best practise was Microsoft with their 2002 security push (part of
Microsoft Trustworthy Computing Initiative). They took all 8,500 development staffers,
from designers, coders and testers, out of their daily tasks to work solely on security.
It focused on four areas; education, code review, threat modelling, and making design
changes. The security push was the start of a cultural change within the organization; to
never again emphasize feature over security.

For education they divided designers, coders and testers into groups with different
tracks for each role. For the designers and architects the lesson were to reduce the attack
surface, disable features by default and reduce privileges (least privilege). For coders the

8

2.1 Background

main lesson was to never trust input and to stay away from insecure function calls and
techniques. The testers were taught to use intelligent fuzzing and how to make threat
models to base their testing on.

The coders were then put to review all the code, both using tools and manually follow-
ing the data flow through the application and ensure that it was handled in a secure way.
The designers started doing threat modelling by decomposing the application, identifying
threat categories and making attack threes. In the end they made changes to the design
by reducing the attack surface. Other changes that were made to the development process
was; making secure sample code as developers will reuse them as they are written, assign
an owner to each source file that needs to sign it off only when it has been properly re-
viewed and making the current version under development the main target for changes as
it is harder and more annoying to make changes to products already in use. They also be-
lieve that if a critical mass in the organization has knowledge and care about security they
will affect the people around them. In the “Trustworthy Computing Initiative”, Microsoft
make the case for implementing so called security cycles into the regular development
cycle, these are called Secure Development Life cycles (SDL).

Microsofts noteworthy efforts are still highly relevant today. The mindset of consider-
ing security throughout the whole development life cycle has evolved and been formalized.
One that has always been an advocate for implementing security cycles throughout the en-
tire development process is McGraw. In 2004 he published the security touchpoints in
figure 2.1 which makes a good reference to how security cycles can be implemented at
different stages during development.

Figure 2.1: Software security touchpoints (McGraw, 2009)

Through observation and measurement we can move from opinion to fact. In order
to move from assumptions to science we need measurement. That was the motivation to
start the Building Security In Maturity Model (BSIMM) comparing the security initiative
in 78 firms to determine the level of maturity within (McGraw, 2016). With BSIMM the
companies can compare what they are currently doing to ensure secure software with the
activities of other companies and they receive a score or a maturity level indicating if they
are better or worse off than their counterparts.

9

Chapter 2. Literature Review

In “Four Software Security Findings” McGraw (2016) present 4 facts learned after
working with BSIMM. Firstly, BSIMM is applicable to any company in any industry and
of any size. Furthermore, in order to successfully work with the BSIMM activities there
is a need for a dedicated software security group(SSG). The average ratio of an SSG to
development is 1.52 %. This fact is quite interesting cosidering startups where the number
of developers in many cases are one-digit. Further the SSG should contain coders, archi-
tects and personnel with teaching skills to be effective. Another thing that has an impact
is the experience and age of the security initiative. Firms with the highest maturity levels
have older security initiatives. The last finding is that the top firms have large satellites.
Its a myth, although common, that developers should just take care of security. As the
security initiative becomes more sophisticated it is distributed and institutionalized in the
organization. As start-ups are only getting into the game, it is a safe bet that the security
initiatives may not be as sophisticated as more mature businesses.

2.1.3 Web application security

“Application security follows naturally from a network-centric approach to security, by
embracing standard approaches such as penetrate-and-patch and input filtering and by
providing value in a reactive way” (McGraw, 2004). From this follows techniques such
as sandboxing code, detecting and defusing malicious code, obfuscating code, monitoring
and using technology to enforce the use policy. This approach comes from the fact that
the infrastructure people, that more often deal with security, are operators not builders.
Therefore they move the security techniques into their line of work and apply security
software. “The problem is that vulnerabilities in the software let malicious hackers skirt
standard security technologies with impunit” writes McGraw (2004) “although there is
some real value in stopping buffer overflow attacks by observing HTTP traffic as it arrives
over port 80, a superior approach is to fix the broken code and avoid the buffer overflow
completely”. Therefore both the traditional approach to security and software security is a
natural part of protecting applications (McGraw, 2004).

Open Web Application Security Project

A world without some minimal
standards in terms of engineering and
technology is a world in chaos

Keary (2014)

“Internet-enabled software applications [...] present the most common security risk
today and are the target of choice for malicious hackers” (McGraw, 2003). From 2001
the Open Web Application Security Project (OWASP) has worked as a renowned and
acknowledged actor to improve the software security in web applications. “The problem
of insecure software is perhaps the most important technical challenge of our time.” writes
Keary (2014), global board member of OWASP, “we are trying to make the world a place
where insecure software is the anomaly, not the norm.”

10

2.1 Background

Open Application Security Project (OWASP) is an open community of security experts
working to make software security visible in web applications and help organizations and
individuals make informed decisions. They work in a collaborative way providing open
source tools and resources freely available online. The organization is neutral and indepen-
dent, aiming to provide unbiased information. Through awareness documents like OWASP
top ten, testing guide, code review guide and development guide they aim to provide the
necessary information to build and maintain secure applications.

OWASP top ten

One of the awareness documents provided by the OWASP community is the ten most
critical web application vulnerabilities. The latest version that received consensus by the
start of this thesis is the OWASP top ten 2013 (Owasp.org, 2013). The list was developed
through analysing 500,000 vulnerabilities found in thousands of applications. The vulner-
abilities are rated based on number of occurrences, exploitability, detectability and impact.
The 2013 document is listed in Table 2.1.

A1: Injection
A2: Broken Authentication
A3: Cross-Site Scripting (XSS)
A4: Insecure Direct Object References
A5: Security Misconfiguration
A6: Sensitive Data Exposure
A7: Missing Function Level Access Control
A8: Cross-Site Request Forgery (CSRF)
A9: Using Components with Known Vulnerabilities
A10: Unvalidated Redirects and Forwards

Table 2.1: OWASP top ten 2013

OWASP top ten 2017 was released in the spring 2017, but was later pulled back as
the community disagreed on its validness. The final version was finally published on
October 20, unfortunately too late to be part of this thesis. In the 2017 release two of the
vulnerabilities from 2013, A8 and A10, were retired, and A7 and A4 were merged into one
under “Broken Access Control”. There are three new vulnerabilities added; XML External
Entities (B4), Insecure Deserialization (B8) and Insufficient Logging & Monitoring (B10).
OWASP top ten 2017 is listed in table 2.2.

There has been quite a lot happening on the application development front the last
4 years. Microservices, RESTful APIs and Single Page Applications have completely
changed the architecture of web applications and come with their own set of security chal-
lenges. The fundamental technologies have changes and are now dominated by new web
frameworks such as Angular and React (Owasp.org, 2013). Many of the vulnerabilities
are rearranged. Luckily all the vulnerabilities from OWASP top ten 2013 are still relevant,
only two were taken off the list due to low occurrences. However, they are still among
eight vulnerabilities in the 2017 release under “Additional Risks to Consider”. B4, B8 and

11

Chapter 2. Literature Review

B10 from 2017 were not tested in this thesis.

B1; Injection
B2: Broken Authentication and Session Management
B3: Sensitive Data Exposure
B4: XML External Entities (XXE)
B5: Broken Access Control
B6: Security Misconfiguration
B7: Cross-Site Scripting (XSS)
B8: Insecure Deserialization
B9: Using Components with Known Vulnerabilities
B10: Insufficient Logging & Monitoring

Table 2.2: OWASP top ten 2017

2.2 Related work

This section presents works that are related to this thesis. In section 2.2.1 the results on
a survey on Secure Development Lifecycles show that in 2010 not many companies were
using secure development lifecycles but smaller companies were implementing them at a
higher rate than the bigger companies. Section 2.2.2 present two studies on the state of
practice in Norwegian organization. Section 2.2.3 shows an experiment where the security
of applications made by freelance developers were compared to the security of applications
made by start-ups. It showed that even though start-ups in general had less knowledge
about security than the freelancers they still manages to make securer applications due to
high level of motivation.

2.2.1 Are companies using SDL?

A secure development lifecycle (SDL) is a term used for addressing security throughout
the software development process and implementing security activities through all phases
of development. Another, and perhaps more precise, term used to describe this is Se-
cure Software Development Life cycle (SSDL). Today there exist different methodologies
to achieve this; Microsoft SDL, Microsoft SDL Agile, Open Software Assurance Matu-
rity Model (openSAMM) and Comprehensive Lightweight Application Security Process
(CLASP). Because there were so many different opinions and approaches, The Building
Security In Maturity Model (BSIMM) was started to describe “existing software secu-
rity initiatives”(BSIMM.com, 2017). In 2010 Errata conducted a survey to determine if
companies had heard about the said methodologies and models and whether they had im-
plemented any of them. The results were summarized by Geer (2010).

The survey showed that 81 % of the asked companies had heard about the methodolo-
gies, however only 30.4 % were using them. When asked about why they did not use them

12

2.2 Related work

23.9 % provided that they were too time consuming, 15.2 % that they required too many
resources and 4.3 % that they were too expensive.

The survey also showed that smaller companies implemented secure software develop-
ment life cycles at a higher rate than larger ones. This is natural as smaller companies are
more flexible because they do not have as many decision levels and protocols to follow.

2.2.2 Software security in Norwegian organizations

Two studies have recently been conducted to determine the state of practice in Norwegian
organizations with regard to security. Nicolaysen et al. (2010) studied the software security
initiatives of six companies using agile software development methodologies and Jaatun
et al. (2015) studied 20 public Norwegian organizations developing software.

Consistent with the Errata survey Nicolaysen et al. (2010) found that very few of the
companies were utilizing methodologies for creating secure software. The developers
had no formal training in developing secure software and very few were concerned about
security. Functionality were often prioritized over security.

The study conducted by Jaatun et al. (2015) showed big variations in the number of
security activities being performed. Out of the 112 activities the organization was asked
about, one organization did only nine, while another did 87. On average the organizations
did 44 out of the 112 activities. One area where the organizations did very well were ac-
tivities connected to compliance and policy. This is probably because of strict regulations
from authorities.

The study also revealed that few of the organizations were using a systematic approach
to create secure software and the activities being done depended on initiatives from indi-
viduals. Also, developing secure software was not a priority, instead the organizations
were relying on infrastructure to solve the security needs.

2.2.3 Software security in applications made by Silicon Valley start-
ups

Bau et al. (2012) conducted an experiment where 19 silicon valley start-ups and 8 hired
freelancers were asked to take a basic software security quiz and submit an applications.
The security of the applications were then tested through static analysis and penetration
testing.

The results from the quiz showed that the scores for the startups were very dispersed.
Some of them scored close to 100 % while others knew less that 50 % of the questions.
The startups also did slightly better on the quiz than the freelancers, but this was not
statistically significant.

The testing showed that the startups made significantly more secure applications than
the freelancers. Furthermore, the negative correlation between the quiz score and the num-
ber of vulnerabilities found were also bigger among the startups. This indicates that the
startups did a better job at using their security knowledge in practise and implementing
what they knew.

The tests also showed that in many cases the startups were successful in developing
secure code even in areas where they had failed on the quiz. This shows that even in areas

13

Chapter 2. Literature Review

were they lacked knowledge they were able to figure it out and implement it in a correct
and secure way.

In other words startups were more successful in using their knowledge in practise and
when they did not have the knowledge, they in some cases still managed to implement
secure code. Bau et al. (2012) believe that there are two factors contributing to these facts;
the startups are more motivated and dedicated to make good solution, and often developers
use framework or copy-paste secure code which may “save them”. One example of this
was one of the freelancers that answered on the quiz that a secure way to store a password
was i plain-text, still in the application delivered he had hashed the password with a salt.

2.2.4 Connections to this thesis
The common opinion among experts is clear, but studies show that organizations often
do not implement best practice. Previous studies have looked at the security in private
established companies and public Norwegian organizations. This thesis will look at how
the status is among startups in Norway. Startups are a heterogenic group in relation to
knowledge and experience. Anyone can register a business and put a web page online.
However, they are small, motivated and have few hierarchical levels which may play out to
be an advantage when it comes to making secure applications. Also there are large amount
of tutorials, sample code and libraries made by large companies like Google, Facebook and
Stripe, that can help even inexperienced developers make secure applications.

Another thing that separates this thesis from previous work is that the security will be
tested on real life running applications. The testing is similar to the experiment conducted
by Bau et al. (2012), but unlike this experiment the testing is performed on live applications
and the test plan is based on OWASP top ten. Also the experiment was performed in 2012
and a lot as happened in the field of web application security since then.

14

Chapter 3
Basic Theory

3.1 Definition of a vulnerability
Common Vulnerabilities and Exposures (CVE) defines a vulnerability as a weakness in the
software or hardware code that may affect the confidentiality, integrity or availability of a
system when exploited. Examples are DoS, getting unauthorized access etc. This differs
from an exposure that is a configuration or software issue that may be used as a stepping
stone into the system. An exposure therefore does not allow direct compromise of a system
but can be an important component of an attack, for example a state that allow information
gathering activities or hide malicious activity. OWASP define the term “vulnerability”
more loosely to include any weakness that can cause harm to the stakeholders and the
OWASP top ten include both direct vulnerabilities and indirect exposures. The life cycle
of a vulnerability is seen in figure 3.1:

Figure 3.1: Life cycle of a vulnerability (Bilge and Dumitras, 2012)

Implementation bugs vs. Design flaws

Software vulnerabilities can range from local implementation errors to higher level design
flaws. The difference is the amount of code one has to consider in order to disclose it.
The simplest errors, like unsafe system calls, live on an isolated line of code and can be
detected with a lexical analysis. Further vulnerabilities that depend on the behaviour of
several functions are mid-range. At the highest level we have logical flaws in the design.
These mistakes require high expertise and knowledge to detect, and we must consider
how multiple components work together. The design flaws occur in the design phase
while implementation bugs occur at the coding phase. McGraw compares building secure

15

Chapter 3. Basic Theory

software to building a house. The kind of brick we use is important but its even more
important that the house is designed to have four walls and a roof. In the past software
security has paid much more attention to bricks than to walls. OWASP top ten can occur
both at the design phase and the implementation phase.

3.2 The OWASP top ten explained

This section will look a little closer at OWASP top ten and explain each one. The OWASP
top ten list explained here is that of 2013 which has been the basis for the vulnerability
testing.

3.2.1 A1: Injection

The most widely injection attack is the SQL injection. The injection attack happens when
untrusted user data is sent to an interpreter as part of a query or a command without prop-
erly separating user data and code. The danger is that the user input entered is executed
as code and in that way the attacker is able to perform actions or access data that should
be restricted. Other forms of injection attacks are buffer overflows, command injection,
LDAP, XML and many more.

3.2.2 A2: Broken Authentication and Session Management

Broken authentication and session management vulnerabilities are those connected to “as-
sume other users identities” (Owasp.org, 2013). These vulnerabilities are often architec-
tural flaws and occur when credentials, tokens, hashes or sessions are not successfully
secured. Here the developer must consider brute forcing, log out functionality, token du-
ration, account provisioning etc.

3.2.3 A3: Cross-Site Scripting (XSS)

XSS is an attack where the attacker is able to execute scripts in the victims browser. This
attack can be used to steel session variables, redirect the victim or change the look of the
web site. This vulnerability occurs when the web server fails to validate user input before
sending it to the browser.

3.2.4 A4: Insecure Direct Object References

Insecure Direct Object References occur when objects like files, directories or database
entries can be accessed without authorization by manipulating references. The vulnerabil-
ity is present when access control is not applied to sensitive objects. One example of an
attack is if the attacker is able to access some object by changing parameter values in the
URIs.

16

3.3 Startup

3.2.5 A5: Security Misconfiguration

The applications, framework, server and database need to be up to date and correctly
configured. If not attackers can take advantage of known loop holes and attacks.

3.2.6 A6: Sensitive Data Exposure

Sensitive Data Exposure occur when sensitive data such as; personal data, private data,
financial data, heath information, academic records, are not properly protected when stored
or in transit or access control is insufficient. Information leakage about the application, that
an attacker can use to further exploit it should also considered.

3.2.7 A7: Missing Function Level Access Control

This vulnerability is present when access control to functionality is not done on the server
for each request. Even when functionality is not visible for certain users on the user inter-
face, an attacker can send the HTTP request for that functionality directly to the server. If
the server does not verify the user identity at this stage, the attacker can perform unautho-
rized functions.

3.2.8 A8: Cross-Site Request Forgery (CSRF)

This vulnerability occur when it is possible to trick an authenticated user to sending a
forged request to the web site and the request is accepted by the application. The browser
will automatically add the session variables of the user to the request, therefore additional
protection is necessary to prevent this vulnerability.

3.2.9 A9: Using Components with Known Vulnerabilities

If an application utilizes libraries, frameworks or other components that contains known
vulnerabilities, an attacker can use this information to perform target attacks. Known
vulnerabilities are stored in a public record and are easy to find.

3.2.10 A10: Unvalidated Redirects and Forwards

When untrusted user data is used as the destination address in a forward or redirect without
being further evaluated. If this vulnerability is present attackers can trick users to click on
links that appears to be for the legitimate site, but instead they are redirected to a phishing
or malware site.

3.3 Startup

In the pre-project (Søhoel, 2016) the term start-up is defined as:

17

Chapter 3. Basic Theory

Start-up is a loosely defined term but in general it refers to a newly established company
in its initial stage of operations. It often has a small number of employees and
it has a scalable business model, meaning that they have the intention of growing
(Robehmed, 2013). A startup is an entrepreneurial venture with a lot of risk related
to it and might initially be funded by its founders (Investorpedia.com, 2007). In this
project I will define the term as a newly launched business (0-4 years) that may or
may not generate income. Also it is still in the developing phase of its product and
organizational structure, with mainly its founders as its employees.

The same definition will be used in this thesis.

3.4 HTTP requests and responses in attacks
Hypertext Transport Protocol (HTTP) is the primary communication protocol used on the
web at the application layer. The protocols works with the client sending a http request to
the server and the server responding to the request with a http response. The protocol is
stateless, which means that the server does not store any information between two requests.
Therefore each request/response pair can be looked at as stand alone operations. Manipu-
lating HTTP request lays the foundation for many attacks. By using tools like Burp Suite
it is possible to interact with any web page without going through the browser. By doing
this it is possible to obtain additional information about how the application is configured,
session is handled and gain direct access to functions and data not accessible through the
browser. The following subsection will explain the basic structure of http request/response
pairs. The focus will be on the components relevant to the penetration testing performed
in this thesis.

3.4.1 HTTP method
A HTTP method is added in each HTTP request to indicate what type of action the client
wishes to perform on the specified resource. The possible methods are:

GET retrieves the data on the specified Uniform Resource Identifier (URI).

HEAD identical to the GET method but without the message body.

POST can be used to submit a resource on the specified request-URI and might change
the state of the server.

PUT can be used to update an existing resource or create a new one if it does not already
exist.

DELETE delete the resource on the specified URI

CONNECT open a tunnel with the requested destination.

OPTIONS returns the allowed HTTP methods for the provided resource.

TRACE is used for diagnostic purposes and mirrors back to the client what was received
by the server.

18

3.4 HTTP requests and responses in attacks

PATCH change the requested resource according to a “patch document”.

According to OWASP testing guide some of these methods pose security risks to the
web site when enabled. The methods that should not be used are:

1. PUT

2. DELETE

3. CONNECT

4. TRACE

However, when the Application Programming Interface (API) is RESTful methods like
PUT and DELETE are commonly used.

3.4.2 HTTP security headers
In the HTTP response there exist security headers that when set can help secure the ap-
plication. They restrict how the browser interact with the server and prevent common
vulnerabilities. The headers recommended by OWASP Secure header project are:

1. HTTP Strict Transport Security (HSTS)

2. Public Key Pinning Extension for HTTP (HPKP)

3. X-Frame-Options

4. X-XSS-Protection

5. X-Content-Type-Options

6. Content-Security-Policy

7. X-Permitted-Cross-Domain-Policies

8. Referrer-Policy

9. Expect-CT

Among these HSTS is especially important because it ensures that data is always sent
over an encrypted channel. The Content-Security-Policy protects against a range of com-
mon vulnerabilities and is very useful. Although there is a trade off between usability
and security, the developers should consider each one and set those that are relevant and
necessary for their application.

19

Chapter 3. Basic Theory

20

Chapter 4
Method

To answer the research questions a handful of techniques have been selected. This chap-
ter will discuss what those techniques are and why they have been chosen. The thesis
started with a literature study. Then all the companies selected went through a semi-
structured interview to determine the business context. Each application was tested based
on a standardized test plan, using both automated penetration testing and manual pene-
tration testing. At the end, each vulnerability was rated based on the OWASP risk rating
methodology. Based on the experience acquired during testing some tools and resources
will be recommended based on criteria given in section 4.5.

4.1 Literature study
The literature study started of with some material recommended by the supervisors. A
search on Google Scholar for material relevant to the topic was also done. Then the refer-
ences of the sources found was followed and a search for additional material by relevant
authors. The background study is a historical review showing how traditional computer
security has evolved into the approaches seen today and how these are used in web appli-
cation security. The related work section present finding of work that are relevant for this
thesis.

4.2 Interview
To answer research question 1 a semi-structured interview was performed. The goal was
to have a somewhat free conversation where the subjects talked about their application and
their development process. A list of topics necessary to cover was planned beforehand.
The companies would talk about each topic and when necessary follow-up questions were
asked. The goal was to determine if and how they work with security, establish the business
context, listen to their thought around the risks connected to the application and get some
idea of how familiar they were with the OWASP top ten.

21

Chapter 4. Method

4.3 Testing

To establish whether any of the applications are exposed to the OWASP top ten, vulnera-
bility testing was performed. There are two possible techniques to test for security holes;
black-box testing and white-box testing.

Black-box testing or penetration testing is based on penetrating the running applica-
tion from a user perspective. This means that the tester has no special privileges or prior
knowledge of the application other than that available for everyone. This is the approach
most similar to a real attack scenario where an adversary is trying to compromise the ap-
plication. The tester adapts the mindset of an attacker and illustrate real security holes
instead of hypothetical ones. The disadvantage of this approach is that the discovery of
some vulnerability using this method establishes with certainty that the vulnerability ex-
ists, however if a vulnerability is not found this is no proof that none are there. Also, the
success of the testing relies upon the skills of the tester and it is assumed that the skills of
the attacker does not exceed those of the tester.

White-box testing or static analysis is based on reviewing the source code looking for
security flaws. This approach is quite time consuming and require high expertise as some
logical flaws may require detailed knowledge of the workings of the entire system.

Additionally the testing can either be done manually or automatically by using auto-
mated tools.

Austin and Williams (2011) found that in order to fully disclose the state of security
in an application, multiple techniques should be used. They found that the different tech-
niques discover very different types of vulnerabilities. Automated penetration testing was
found to be the most effective way of finding vulnerabilities. However, the tools some-
times produce false positives and each vulnerability needs to be verified manually. Manual
penetration testing was the best approach for finding architectural flaws. Automatic static
analysis was better at finding implementation flaws. To get the full picture of the security
it is recommended to use all three techniques.

The technique used in this thesis is a combination of automated penetration testing
and systematic manual penetration testing. Testing followed a test plan developed to cover
OWASP top ten and multiple tests were done for each. The advantage of following a test
plan is that by the end of testing the tester is confident that all vulnerabilities are covered.
For some of the vulnerabilities there exist useful tools to get a quick assessment. The vul-
nerabilities found must then be verified manually to determine whether. For other OWASP
top ten vulnerabilities, for example “Broken Authentication and Session Management”
that are of an architectural nature, manual testing was mostly used.

A combination of these two techniques was found to be the most time efficient way
to cover the focus area of this thesis. The tools used were Burp Suite, Whatweb, Netcat,
Dirbuster, Nikto, openSSL and Nmap. All tools were available on Kali Linux.

22

4.4 Risk rating

4.4 Risk rating

The most important thing is to find out
what is the most important thing

Shunryu Suzuki

When the testing was finished and the list of vulnerabilities was completed, each of the
vulnerabilities were evaluated based on the OWASP risk rating methodology (Owasp.org,
2017c). The OWASP risk rating methodology is a method for evaluating the risk connected
to a vulnerability based on severity. The severity is measured by the likelihood and impact
of the vulnerabilities according to the parameters in figure 4.1. The vulnerabilities are
rated as either; high, medium or low.

Because the OWASP risk rating methodology is a tool for evaluation it is necessary
to consider the correctness of the rating. The value of the method is not the exact value
assigned, but the assurance that all relevant aspects are reflected in the evaluation. Because
of this the evaluation done only partly follows the OWASP risk rating methodology. The
likelihood and the technical impact and business impact follow the methodology accu-
rately. When the impact is evaluated the methodology states that only the business impact
should be considered. In this thesis both the technical and business impact are considered,
and the severity is evaluated as the average of the likelihood and impact. This is because
it in my view gives a more correct picture of the severity. The reason for this may be that
the business impact was not accurately assessed as this normally is a longer process. Still
I wanted both the technical and the business context to be reflected in the final evaluation
to capture all the known information. I believe that this is appropriate because after all the
goal of the process is to obtain a true evaluation of the risk. After acquiring the results fol-
lowing this method, the risk connected to some of the vulnerabilities are further adjusted.
The final list of vulnerabilities and risks forms the basis for discussing how well security
is maintained in the startups.

23

Chapter 4. Method

Figure 4.1: OWASP Risk Rating Methodology

24

4.5 Evaluation/recommendation of relevant tools and resources

4.5 Evaluation/recommendation of relevant tools and re-
sources

Based on the experience gained during testing a set of tools and resources will be recom-
mended. In the pre-project (Søhoel, 2016) the following criteria were defined for this:

• The tools should be free or not too costly; start-ups often do not have a lot of re-
sources to pay for expensive tools.

• The tools should be quick and easy to install and use; for non-experts whose main
priority is developing a good application, it should be easy and intuitive to get started
with security improving tools.

• There should be a limited amount of tools to cover all of OWASP top ten; the col-
lected set of tools should cover all of OWASP top ten but the number should be
limited to make it both easier and faster to get acquainted with all.

• One should not need to be an expert in order to benefit from the tools; the recipient
is a non-expert.

• The tools should give a limited number of false positives; If the tools gives too many
false positives, verifying all positives get more time consuming than manual testing.

• The tools should be well documented; This is important for accelerating the learning
process and making the tools useful in less time.

25

Chapter 4. Method

26

Chapter 5
Resources and tools

During testing there were some tools and resources that proved to be very useful. This
chapter gives a introduction to each of these and can be used as a encyclopedia for terms
that are unknown to the reader.

5.1 Resources
The resources used in this thesis are the OWASP testing guide, OWASP cheat sheet and
the Common Vulnerabilities and Exposures (CVE) database.

5.1.1 OWASP Testing Guide
OWASP Testing Guide (Meucci and Muller, 2014) gathers a comprehensive selection of
security tests for web applications. For each test there is a tutorial on how to do black-
, grey- and white-box testing and tools are recommended. This is a great place to start
for anyone who wants to learn how to perform security tests and very little knowledge is
required. It includes 83 defined tests; some of these relevant to the OWASP top ten were
selected for the testing perfomed in this thesis.

5.1.2 OWASP Cheat Sheets
The OWASP cheat sheet (Manico et al., 2017) is a series of documents providing informa-
tion on how to successfully prevent certain vulnerabilities. These are easy to understand
and break down step by step what needs to be done. This can be used by developers both
as a learning document and a checklist.

5.1.3 CVE
CVE is a database where all publicly known vulnerabilities are registered. Online it is
possible to search for vulnerabilities connected to vendors and product and one can review

27

Chapter 5. Resources and tools

statistics (CVEdetails.com, 2017). Each vulnerability is registered with an identifier and a
Common Vulnerability Scoring System (CVSS) severity score.

5.2 Tools
During testing seven tools were used; Burp Suite, Whatweb, Netcat, Dirbuster, Nikto,
openSSL and Nmap. They are all available on Kali Linux. This section will give a short
description of all of them.

5.2.1 Kali Linux
Kali Linux (Kali.org, 2017b) is a penetration testing Operating system that can be run on
a virtual machine, a dvd or usb drive. It contains a number of useful tools that can be used
for penetration testing and digital forensics. It is a Linux distribution that is open source
and free to use. With Kali Linux there is only one thing to download and set up and a
number of well documented tools are ready to use. All tools used in this thesis is available
at Kali Linux.

5.2.2 Burp Suite
Burp suite (Portswigger.net, 2017) is a tool that can be used both for manual penetration
testing and automated penetration testing. It has multiple useful functionalities that are
seemingly integrated. Burp suite is set up as a HTTP proxy server and all traffic is cached
by this proxy. All HTTP packets can be inspected, repeated and manipulated before being
sent. The functionality used in this thesis were; target, proxy and repeater.

The target functionality can be used to spider the application and determine the attack
surface.

The proxy functionality is by far the most useful function. It can be used to review
packet history and all HTTP requests and responses can be inspected. This reveal a lot of
information about both the flow of the web-site, the configuration of the server and how
session and authentication is managed. It is possible to use the proxy with interception
mode where all traffic can be reviewed and changed before sending, or in regular mode
were the user browses the application in the browser and can look at the HTTP history
later. Furthermore, interesting HTTP requests can be sent to the repeater for further use.

The repeater can be used to replay packages and manipulate them if required. When
the response is returned it is showed to the user.

5.2.3 Whatweb
Whatweb (Morningstarsecurity.com, 2017) is a tool that can be used to find; IP address,
platforms, libraries, plugins, country, cookies, headers and more. It can be used both in
passive mode and active mode. In this thesis only the passive mode was used to get a
quick overview of frameworks and get the IP address. Typing in the command “whatweb”
and the URL of the website in a terminal will return this information. This can be seen in
figure 5.1.

28

5.2 Tools

Figure 5.1: Whatweb

5.2.4 Netcat
Netcat (Nmap.org, 2017a) is a networking tool normally used to test TCP or UDP con-
nections. In this thesis it was used to establish a TCP connection to the host and inspect
the headers of a HTTP response. Burp Suite could be used for this same purpose and was
normally used instead.

5.2.5 Dirbuster
Dirbuster (Kali.org, 2017a) can be used to brute force file names and directories in order
to spider an application. The user can choose among some standard word-list or create a
unique one. Dirbuster sends a request to the website with all the entries in the word-list as
the URI and keeps track of which ones returned a success response.

5.2.6 Nikto
Nikto (Sectools.org, 2017) is a web server scanner. The user simply enters the URL of the
site, and Nikto will return a list of potential security flaws found. The result from one of
the websites can be found in figure 5.2

Figure 5.2: Nikto

5.2.7 OpenSSL
OpenSSL (Openssl.org, 2017) is not really a hacking tool but an open source implemen-
tation of the Secure Sockets Layer (SSL) protocol. It can be used to manually check for

29

Chapter 5. Resources and tools

SSL vulnerabilities. In this thesis it was used to check for secure renegotiation, public key
size, SSL version and more.

5.2.8 Nmap
Nmap (Nmap.org, 2017b) is a security scanner that was used to scan open ports and es-
tablish enabled crypto systems on each port. Nmap also rates each crypto system with a
grade from F to A and the weakest enabled crypto system is highlighted. This is impor-
tant because even if the default crypto system is secure on the port, it is possible to force
communication to be done with a weaker crypto system. Therefore the weakest enabled
crypto system should also be secure. The results of Nmap for one of the applications can
be seen in figure 5.3.

Figure 5.3: Nmap

30

Chapter 6
Company context

This chapter provides some background information on the companies. Section 6.1 present
the five applications and the start-ups behind them. In sections 6.2 the insight gained from
the interviews are presented.

6.1 The five participating start-ups
To take part in this study five very diverse start-up companies have been recruited. Some
store very sensitive and critical information about their users, while others are less critical
in the sense that compromising the site will not have major consequences for the users.
Some of the start-ups have a lot of knowledge and experience about web development and
security, while others are more inexperienced and “learn-by-doing”. One of the companies
does not develop the application themselves but has outsourced all coding to a firm abroad.
The founders all have backgrounds in business and management.

6.1.1 Company A
The first Company is a B2B business delivering a time management and project manage-
ment systems to companies. The site stores sensitive information about their customers
such as customer relationships, invoices and personal information about the employees
such as national identities, bank accounts and e-mails. The founders all have backgrounds
in business and management and have outsourced development to a company abroad.

6.1.2 Company B
Company B is a crowd-sourcing website for educational materials. The users are gener-
ating content in the form of Q/A, quizzes and discussions. What each user is allowed to
do depends on the level of privileges. A user acquire higher privileges by contributing to
the site and getting up-votes from other users. It is also possible to visit the site as a guest
user. The company consists of 4-5 students studying computer science and related fields.

31

Chapter 6. Company context

6.1.3 Company C
Company C is an open source project for online booking of laundry facilities. The users
can create laundries and invite tenants to book machines. The start-up consist of 4 soft-
ware development engineers with experience with web development and security. The
application is a hobby project beside full time jobs.

6.1.4 Company D
Company D provide a communication solution for medical personnel, patients and depen-
dents. It stores highly sensitive and personal information about patients connected to a
medical institution. The content can be of the form of pictures, videos, texts or timetable
of patient, routines and even when the patients last went to the toilet. One of the things that
make this site so critical is that many of the patients are not legally competent and cannot
consent to their information being made public. It is therefore important to protect this
group from being exploited. The application was developed as an alternative to publishing
and sending this information through Facebook.

6.1.5 Company E
Company E are providing tutoring services for children in primary school. The tutor has
to upload a certificate of good conduct from the police and their diploma on the web site.
The students enter what grades they have in the subject they want tutoring in and what
grade they want to achieve. Also the students enter payment information. The founders
have degrees in computer science and related studies.

6.2 Interviews
During the interviews the companies were asked about what was the most important busi-
ness assets in the application and together we did some risk analysis. I wanted to know
what was critical to protect on the page, who the threat agents were and what the worst-
case scenario is if the application were to be attacked. They were also asked about how
they worked with security. In the end we went through the OWASP top ten to determine
their knowledge. We also discussed which one of OWASP top ten were the most relevant
for protecting their specific assets.

6.2.1 Company A
During the interview we agreed that their most critical assets are the sensitive information
about people and businesses, and leakage of this information would lead to end of business
for the start-up. The most critical vulnerabilities are those connected to authentication and
access control. They said that until now the priority has been on functionality and creating
a working application, but now that they have real customers they want to focus on making
the application secure. From the OWASP top ten only injection attack was known to them.
They have no idea whether their application is secure or not and have so far not been doing

32

6.2 Interviews

any security activities. It is clear that the founders are eager to deliver the best possible
product to their customers and that they now realize that security is a part of that.

6.2.2 Company B

There is no sensitive information on the page that is not already open for everyone to see.
Therefore the greatest risks on this page are destruction and spamming. CSRF, XSS and
privilege escalation are therefore the most severe vulnerability. Unsafe redirections are
also relevant for this page because the site can be used as an enabler for phishing attacks.
Apart from using secure libraries they haven’t done any security activities and the coders
are in charge of handling security. They had heard about OWASP from taking a security
course at university and had knowledge about some of vulnerabilities like injection and
XSS, but they did not have detailed knowledge about OWASP top ten. They suspect that
there might be a lot of vulnerabilities on the site and was really eager to have it tested.
Also, they offered to help with the testing and clearly wanted to learn more about security.

6.2.3 Company C

The application is developed by 4 professional web application developers next to their full
time jobs. They seem to have a lot of knowledge and experience on both web development
and security. They store as little information about the users as possible to make the
application simple to use. The most sensitive info on the site are the e-mail addresses
of users. We agree that the biggest threats to the system are leakage of e-mail addresses
and passwords, spamming, changing and deleting of bookings and general destruction. To
ensure security they make sure to use secure frameworks and use the guides of renowned
developers on how to use them correctly. For example once a week they use Snyk to scan
through all dependencies in their project to look for libraries with known vulnerabilities.
They have been testing for access control and enumeration of e-mails. They were familiar
with OWASP top ten and strives to keep themselves up to date on them.

6.2.4 Company D

The patients are in many cases not able to consent to how their information is managed
and it is therfore super critical to protect it. The motivation for the app was to prevent dis-
tribuation of this information on Facebook. The information stored is not really valuable in
itself but because of how sensitive it is to the individuals it belongs to it is so important to
protect. In some cases information from medical records may appear on the page. Because
of the sensitivity the business has a lot of focus on security. They have security reviews
every six months, make sure to have all frameworks up to date and keep themselves up-
dated on known vulnerabilities. Also they get a lot of advice from the Norwegian Data
Protection Authority (Datatilsynet) to make sure they comply with Norwegian law. When
asked about the OWASP top ten they gave me a list stating how they protect themselves
against each one. They are currently working on implementing BankID which require the
highest security level in Norway (Difi.no, 2017).

33

Chapter 6. Company context

6.2.5 Company E
After a few months of being unable to get back in contact with this company, I was finally
able to schedule an interview. They did not show up for that interview and when trying to
schedule a new one later on I did not hear from them again. Therefore I in this case was
unable to do an interview with this company. I still wanted to test the application as I was
curious to find out whether failure to participate in the interview, meant secuirty has low
priotiy.

Outsourcing Information
sensitivity

Knowledge about
OWASP

Web Development
Experience

Company A Yes Medium/High Low Low
Company B No Low Low Low
Company C No Low Medium High
Company D No Very High High Medium
Company E No High - -

Table 6.1: Summary of companies

34

Chapter 7
Testing

Chapter 7 goes through the test plan and the results from testing. Chapter 7.1 explains the
order and technical details of the test plan. Chapter 7.2 presents detailed results for each
test. The results are summarized in table 7.1.

7.1 Test plan
The order of which each vulnerability is tested is carefully chosen and follows the order
in which they are listed below. They are grouped together with related vulnerabilities
where the tools and/or testing technique is similar. They appear in this order because some
information from one vulnerability is later used in testing another. Some vulnerabilities
are tested together because they both need the same base work. This is the case when
two vulnerabilities both need a HTTP request/response, the HTTP request/responses of all
critical transactions or all entries where it is possible to enter user input. All in all this
order was found to be the most time efficient.

Information Gathering The first phase of any good penetration test is information gath-
ering. This phase consists of gathering as much information about how the site
works and maybe find hints that can be used later on in the testing. The goal is
to determine how the application is configured and what components are used (A5
and A9). As part of this, figuring out how encryption work(A6) is also essential.
Tools like Whatweb, Nikto, Nmap and openSSL are used to get a quick overview.
Then the findings are verified by inspecting HTTP responses from the server in Burp
Suite and replay messages to verify assumptions. The source code, cookies and error
messages are also inspected to look for any relevant information.

Transactions & Authentication When knowledge about the web server and application
is acquired, we move on to understanding how transaction, authentication and ac-
cess control work and test for CSRF (A8), broken authentication and session man-
agement (A2). The test consist of navigating on the page and getting an overview of

35

Chapter 7. Testing

critical transactions while saving all HTTP request/response in Burp Suite. The goal
is to determine how account provision, authentication, session management and ac-
cess control work, and if it is possible to bypass it. The HTTP packets are used to
determine if CSRF is possible.

Access Control Next phase is testing for unvalidated redirects and forwards (A10), miss-
ing function level access control (A7) and insecure direct object references (A4).
Now that Burp Suite has cached all possible transactions on the page we go through
all of them looking for interesting file references, function calls and redirects and
try to exploit them.

Injection All fields that accept input from a user both in the browser and http packets are
tested for SQL injection (A1) and XSS (A3).

7.1.1 A5 - Security Misconfiguration
To test for Misconfiguration seven tests are done from the OWASP testing guide; OTG-
INFO-002, OTG-INFO-008, OTG-INFO-009, OTG-CONFIG-002, OTG-CONFIG-006,
OTG-ERR-001 and OTG-ERR-002. The goal of these tests is to get as much information
about the server and application as possible that later can be used in A9. We also look at
how the HTTP responses are configured, look for default files and directories and try to
provoke error messages.

First step is to determine the type of web server. Whatweb is used to find the ip-adress
of the target. Then Burp Suite or Netcat is used to inspect HTTP response to find the
type of server and framework in the HTTP headers. Further I go to web page and use the
command “document.cookie” in the console to see if the cookies used reveal something
about the application. It is also possible to look at file extensions and source code to
find more information about the framework and versions. In the source code I look for
comments, application specific paths and script variables.

Next we are trying to determine the file structure by using either Dirbuster or Burp
Suite spidering and checking the robots.txt file.

Further I scan the application using Nikto to get a quick overview of security headers,
HTTP methods and other security configurations. All the results I get form this test I need
to verify manually to check whether the security issues reported actually constitute a real
vulnerability.

Next I want to verify that the HTTP methods found with Nikto is correct and for what
URI they are enabled. I use Burp Suite to send an OPTION request to different pages and
look at the allowed responses. I then try to generate an error message on the page to gain
further information about the page.

7.1.2 A9 - Using Components with Known Vulnerabilities
Testing for this vulnerability simply involves googling the components discovered under
A5 and checking the CVE database to see if there exist vulnerabilities. First I run Nmap
on the application to enumerate if there are more services running on different ports and
what they are.

36

7.1 Test plan

7.1.3 A6 - Sensitive Data Exposure
To test for Sensitive Data Exposure I do the three tests OTG-CRYPST-001, OTG-CRYPST-
003 and OTG-CONFIG-007. I use openSSL to check how well SSL/TLS has been config-
ured and Nmap to inspect the enabled crypto schemes. I also check that all sensitive infor-
mation is sent over an encrypted channel and whether the strict-transport-security header
is set on the HTTP requests sending this information. Also relevant for this vulnerability
is leakage in source code, error messages and exceptions.

7.1.4 A8 - Cross-Site Request Forgery (CSRF)
CSRF can be a bit tricky to test for.

In the OWASP Testing guide the test described for Cross-Site-Request-Foregry(OTG-
SESS-005) is simply to try and perform the attack to see if it works. This to me seemed
like a lot of trouble when all I am really interested in is whether it is possible or not. Also,
testing through performing the attack means testing all factors at once, and if the attack is
unsuccessful I still would not have established if it is possible or not. Instead I followed
the OWASP CSRF Prevention Cheat Sheet to see if the best practise here are followed.

According to OWASP the first ting you need to do to prevent CSRF is to check the
origin and/or reference fields and compare them to the host fields in the HTTP request. If
neither one of the headers are present the server should block the request. OWASP also
emphasize that in addition to this measure a token should be sent together with each request
to authenticate the user. The best practise here is to use a synchronized token that changes
for each request or to use a Anti-CSRF token that is stored as a hidden field in the input
form(as recommended by both OWASP(Owasp.org, 2017b) and acunetix(Acunetix.com,
2017)).

According to RFC6750 (Michael B. Jones, 2012) using a bearer token is also secure
against CSRF as long as it is not stored in a cookie. However, according to OWASP the
session token will be submitted automatically by the browser no matter if the user has sent
the request voluntary or was tricked(Owasp.org, 2017a). Therefore the site is vulnerable
if session management is‘relying only on information which is known by the browser [...]
“Known by the browse” refers to information such as cookies, or http-based authentication
information (such as Basic Authentication; and not form-based authentication), which
are stored by the browser and subsequently present at each request directed towards an
application area requesting that authentication.” (Owasp.org, 2017d). Therefore, when
authorization seems to rely solely on tokens that are only present in the authorization
header and not in forms in the HTTP request entity-body, I will assume that it might be
vulnerable to CSRF. However this is ambiguous as the specifications imply the opposite.
Also, there might be framework specific defences not visible to me while testing. As of
2017 CSRF is no longer on the OWASP top ten list, mainly because a lot of frameworks
include CSRF defences.

7.1.5 A2 - Broken authentication and session management
Testing for Broken authentication and session management consist of 12 tests; OTG-
IDENT-001, OTG-IDENT-003, OTG-IDENT-004, OTG-AUTHN-001, OTG-AUTHN-002,

37

Chapter 7. Testing

OTG-AUTHN-003, OTG-AUTHN-006, OTG-AUTHN-007, OTG-AUTHN-009, OTG-SESS-
003, OTG-SESS-004, OTG-SESS-006. Here account provisioning, usernames, password
policy, lockout mechanism, log-out functionality, browser cache, session variables and
password recovery is investigates. In the start tests concerning cookies were also per-
formed but it became clear that these issues were not relevant anymore due to tokens
replacing cookies in session management.

7.1.6 A10 - Invalidated Redirects and Forwards
Testing for this is based on OTG-CLIENT-004 from the OWASP testing guide. I start by
catching all HTTP request/responses while I go through the web page doing all sorts of
actions and transactions. Then I look for requests that have the parameter “redirectUrl” in
the URI and try to manipulate it to see if I get redirected to the manipulated page. If I am
redirected the A10 vulnerability exist. Otherwise I get an error message.

7.1.7 A7 - Missing Function Level Access Control
Testing for this vulnerability is based on the three tests OTG-AUTHZ-001, OTG-AUTHN-
004 and OTG-AUTHZ-002 from the OWASP testing guide. Here I try to manipulate pa-
rameters in URIs, forced browsing and doing high privilege transactions with low privilege
credentials. If I can access any functions, files or pages I were not supposed to the A7 vul-
nerabilities exist.

7.1.8 A4 - Insecure Direct Object References
Here the tester tries to load objects or pages by changing parameters in URIs or get re-
stricted files returned through manipulation location of files retrieved.

7.1.9 A1 - Injection
For this vulnerability I mainly test for SQL injection. I go through all input files and other
places where user input is accepted; like URIs, cookies and tokens, and try to provoke a
database error message. I add semicolon or quotes and inspect the HTTP responses from
the server. If I get a database error the quote or semicolon is not filtered properly and the
field is vulnerable to sql injection. Another family of severe injection attacks is the buffer
overflow but because of the time constrains of the thesis there is not enough time to test
for this.

7.1.10 A2 - Cross site-scripting
There is a lot of XSS protection in the browser. We first need to disable all of these. I
then use Google Gruyere to verify with a XSS that all the different protections are in fact
disabled. Then I try to insert JavaScript in all input fields to see if I can get it to run. I
enter the attack “<script>alert(XSS) </script >” to see if I get an alert box. I then go to
inspector to verify if I need to adjust the code in any other way. Here it is also interesting
to see if any of the characters are filtered. If they are this might mean that site uses only

38

7.2 Results

blacklisting to protect against XSS. This is not a good idea since there are a lot of filter
evasion techniques to get around this filtering. If the script does not run, even after getting
around the filtering, the site separates code and user input in a safe way.

7.2 Results
This section present the results form testing. Section 7.2.1 gives a summary of the findings
for all the companies while 7.2.2 to 7.2.6 present detailed results for each company and
explanation of the finding. The findings for each company are summarized in tabels 7.2 to
7.6.

7.2.1 Result summary

Table 7.1 show a summary of the results. “P” here stands for “Passed” and “F” stands for
“Failed”. Detailed description of each company follows under chapter 7.2.2 through 7.2.6.
In general, vulnerabilities of an architectural nature such as A2 and A6 were common,
while for vulnerabilities connected to implementation such as A1, A3 and A10 almost
none were found.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Company A P F P P F F P F F P
Company B F F P F F F F F P P
Company C P F P P P P P F P P
Company D P F P F P F F P F P
Company E P F P P P F P P P F

Table 7.1: Summary of results

7.2.2 Findings: Company A

This subsection presents the detailed results from testing application B. A summary of the
results can be found in table 7.3. There were found a lot of vulnerabilities for this applica-
tion. Their biggest issues were connected to authentication and session management and
configuration.

A5, A6 and A9 - Configuration, Ciphers and Components

In the HTTP responses from the web server the Server field is not hidden and lets us know
the type and version of the server, programming language and openSSL. All the versions
where outdated. The PHP version was last supported two years ago and it is stated on the
website that not even with the appearance of security issues will the release be patched.
For the openSSL version there where registered several vulnerabilities in the CVE database
among them some with CVSS score 10.

39

Chapter 7. Testing

Vulnerability Result Evaluation
A1 None found Passed
A2 Weak account provisioning, weak password policy, no lockout

mechanism, no session timeout
Failed

A3 Use filtering Passed
A4 None Found Passed
A5 Framework outdated, Security headers not set, insecure HTTP

methods enabled
Failed

A6 HTTP Strict Transport Security not set, weak crypto scheme,
Leakage in source code

Failed

A7 None found Passed
A8 Does not follow OWASP recommended best practice Failed
A9 Outdated components that are no longer supported Failed
A10 None found Passed

Table 7.2: Results company A

Another pretty severe security issue is that none of the security headers are set such
as; X-XFRAME-Options, X-XSS-Protection, X-content-Type-Option, Content-security-
Policy and Referrer-Policy. This means that the site is susceptible to cross site request
forgery, XSS, clickjacking etc. Also the HTTP methods TRACE, PUT and DELETE are
enabled. This can be seen in figure 7.1 and 7.2

There are a lot of comments in the source code that reveal information about the appli-
cation that there is no reason for clients to know.

Figure 7.1: HTTP request sending username and password

SSL/TLS ciphers and transport layer protection The application uses HTTPs but the
HTTP-strict-Transport security header is not set when sending credentials which means
the website is vulnerable to downgrade attacks. If a user is forced to use HTTP when
logging in he/she will send both username and password in cleartext and the server will
respond by sending the authentication token also in clear text. I use openSSL and find that
they use a secure version of SSL, use secure renegotiation, the certificate is fresh and valid

40

7.2 Results

Figure 7.2: HTTP response of the request in figure 7.1. Security headers not set

and the server public key is long enough. However, the weakest available crypto system
is a Diffie-Hellman 1024, which is too low. Again this makes the application sensitive to
downgrade attack even though the default settings are secure.

Information leakage in source code In the source code there is a lot of comments
that reveal a lot about directories, functions and parameters. Especially critical is that the
comments reveals how admins and managers are verified and what functions/elements they
have access to. This information could be very helpful for an attacker planning an attack.
There is no reason to have these comments and best practise is to remove all comments.

Figure 7.3: Admin menu

Figure 7.4: Information leakage in the source code

A8 - Cross Site Request Forgery

I successfully loaded the admin page and created new admin users without including the
Origin or Reference field. I conclude that the Origin and Referrer headers are not checked.
The second check is to verify whether authentication relies only on the information known
by the browser. Each request is authenticated through a bearer token in an authorization
header. There is no synchronized token or aditional CSRF token. Because of these findings
I conclude that the web server does not implement the OWASP recommended settings to
prevent CSRF and that the requirements that need to be present to perform the CSRF are
all there.

A2 - Broken Authentication and Session Management

This is what we agreed upon during the interview was one of them most critical ones
because if unauthorized users are able to log in as other users or admin users, then all the

41

Chapter 7. Testing

Figure 7.5: Information leakage in the source code

information stored for that company is compromised. All in all i executed 14 tests for this
vulnerability. Below I will summarize the most interesting results.

Weak provisioning process On the front page of the company web page a 14-days free
trial is promoted where you register your e-mail and get a verification link sent to your
e-mail. This is a good precaution because you need some form of verification that the e-
mail address exists and that it belongs to the user. However, if you go straight to the log-in
page you get the option to register and on this page there is no verification process except
the email address has to be on the form char@char.com. So I register the user q@q.com
and company name q. Also it turns out that the verification link sent on email actually
is only a link to this page and does not verify your e-mail at all. Now administrator q
of company q can create users for all its employees from the admin dashboard and set
their roles and password. The employees e-mail is even now not verified. Furthermore,
Administrator Q can make another administrator Y without any second authentication, Y
in-turn can change the status of Q to inactive and lock Q out of the platform. Therefore if
anyone gets access to an administrators account accidentally or by targeting the page, the
threat agent can take over the platform and lock out everyone else. A user cannot create
users with higher privileges than oneself, but in the source code I find comments stating
that if isAdmin() is true then there should be some functionality here.

Account enumeration When you try to log in with wrong the username and password
you get the message “The e-mail or password is incorrect” which is good because it does
not reveal whether it is the username or password that is wrong. Also I could not find
any difference in the server response either with the number of/type of packets or how
much time it took to process the request. However, if you go to the “forgotten password”-
page you can write in any e-mail address and either get a response that “e-mail to re-
store password” is sent or you get a “e-mail not in use” error-message. That way we can
check or bruteforce username. Because I know that there exist a administrator dashboard
for the start-up founders and because I know that the username has to be on the form

42

7.2 Results

char@char.com I check the e-mail address of the guys in the start-up and get the success
message. I assume that I now know the username for the admin users. Also I find on the
start-up web-page a “satisfied users”-section. On this page i find the name of the company
and the CEO’s of customers, from that point it is not hard to find the e-mail addresses(and
most likely usernames) of companies using the platform.

Weak lockout mechanism There is no lockout mechanism when entering wrong a pass-
word hence bruteforcing password is possible. I have the username of both system admins
and company admins and I can bruteforce their passwords.

Weak password policy All signs are allowed in the password which is good because it
does not limit the search area for bruteforcing. The password must contain at least eighth
characters, one letter and one number. Depending on the strength of the password it may
take less than a minute or more than a year to bruteforce the password. In other words it is
up to each user to make a password that is strong enough.

Cookies and session management The application does not use cookies for session
management but an authentication token is sent to the client right after authorization and
is included in every HTTP request when navigating the page. The authorization bearer
is regenerated for each log-in and remains the same throughout the session. There is no
session timeout, which basically means that if the customer log-in on a borrowed computer
and forgets to log-out the owner of that computer can use that session forever. Even if you
close the browser without logging out the session is still active. Considering that simply
closing the browser is a quite common way of ending a session we can assume that there
are a lot of inactive but valid sessions out there. Only by pressing the log-out button is the
authorization bearer changed to inactive.

Log-out functionality and cache The log out button works as expected. The session
is closed and the authentication bearer is no longer active. When loading pages in some
HTTP packets the no-cache flag is set while in others packets it is not set. After log
out i tried to reload pages containing sensitive information but did not succeed. Then I
went to about:cache in the browser to see if I could find something sensitive left. I found
some remains from www.example.com/invoices page. I could see that the page had been
accessed but the content was only encoded gibberish and I was not able to recover it.
Otherwise all traces of the page was cleaned out from cache.

A4, A7 and A10 - Access Control and Redirects

I use wfuzz to bruteforce the page for directories. The page use soft 404 which is not
a security problem but can still be considered a misconfiguration. Other than that I was
not able to manipulate URLs, perform DOM XSS or buy-pass authentication with these
techniques.

A3 and A1 - Injection attacks

The app has a lot of filtering on all input fields so you can only write characters or only
numbers except in the password field. Using some filter evasion techniques I tried different
attacks but were not able to perform either XSS or SQL injection. Even If I was not able
to bypass the filtering I hope that this is not the only mechanism protecting the site from
XSS as it is not best practice.

43

Chapter 7. Testing

This subsection presents the detailed results from testing application B. A summary of
the results can be found in table 7.3. The security was rather low on this site, and basic
vulnerabilities like SQL injection, Insecure Direct Object Refrences and Missing Function
Level Access Control were found.

7.2.3 Findings: Company B

Vulnerability Result Evaluation
A1 Can return token of all users Failed
A2 Token does not expire, log-out functionality does not work Failed
A3 None found Passed
A4 Can change device id to get another users token returned Failed
A5 Security headers not set, Debugging information printed in con-

sole
Failed

A6 Possible to send token over http Failed
A7 Can perform high privilege action without privileges Failed
A8 Does not follow OWASP recommended best practice Failed
A9 No known vulenaribilies Passed
A10 None found Passed

Table 7.3: Results company B

A5, A6 and A9 - Configuration, Ciphers and Components

I find that web server is Cowboy and the application uses Express with Node.js. The web
site uses Google analytics cookies with 2 years, 24 hours and 1 minute expiration, but
these are not used to manage the session. In the source code I find that the application uses
react. Also there are some comments in the code that are clearly from a template meant as a
tutorial for the developer, however they do not reveal anything too sensitive. In console the
application prints a lot of information that looks it like is used for debugging. From Nikto
it looks as though some security headers are missing such as; X-XSS-Protection, anti-
clickjacking and X-Content-Type-Options. From inspecting the HTTP packets in Burp
Suite I find that none of the recommended security headers are set. The application uses
HTTP for the start page, but switches to HTTPS after logging in as a guest, this is when
a token is generated. However, the Strict-Transport-Security header is not set. In burp
suite it looks like the packets are sent over HTTPS, however my browser states that the
connection is not secure. It is therefore possible that the token in some cases are sent in
clear text, at the very least it might be possible to force the browser to send the token over
HTTP. In burp suite I could do privileged actions over HTTP sending my privileged token
in the clear. Otherwise the SSL is configured correctly with weakest crypto system graded
as C, the rest of the crypto systems had grade A.

I cannot find any known vulnerabilities for the components I discovered. However
because the X-powered-by header is not disabled targeted attacks against the applications
is a danger. Best practice is to disable this header.

44

7.2 Results

Figure 7.6: Debugging info in console

A8 - Cross-Site Request Forgery (CSRF)

The site uses a token that is changed for each time the user reaches a higher level. However,
it is possible to use previous tokens also for privileged actions. Therefore the token acts as
a static token and not a synchronized one. The origin and referrer headers are not checked
and no special CSRF tokens are used. I base my assumption that CSRF is possible on this
site on the material provided by OWASP.

A2 - - Authentication and Session Management

The role definitions are interesting. There are 7 levels of user privileges with increasing
functionality for each level. Anyone can gain the highest privileges by contributing to
the site. The lowest privilege can only view while the highest can delete materials and
comments. You also gain points if other users credit your contribution. The idea is that
untrusted users can contribute on some levels, while trusted users that have proven to
contribute materials of high quality over a long period of time get an editor role. A user
can register with Facebook or sign in as a guest user. No one can provision user accounts
or delete them.

The log in either goes through Facebook or you get a guest user with no password.
There is no sensitive information that is not already available for anyone through the guest
user. Old tokens received at lower levels can be reused to perform actions, therefore the
privileges are connected to the identity and not the token. The token is refreshed when
the browser is closed and by clicking on the log-out button. However, the token does not
expire and can still be used, hence the refreshing of the token has no purpose. Days after a
token was generated I could still perform actions with it. Tokens in general should not live
more than an hour. The log-out functionality does not work as the tokens are still active
and it is possible to log back in as the same user without authentication. It is not possible

45

Chapter 7. Testing

to change to another user, even by deleting all cookies.
There is a limitation as to how many contributions one can make in one day. By

deleting cookies it is still possible to get a new guest account. However, this restricts
spamming and users are not able to pass through multiple levels in a short time period
through spamming.

A4, A7 and A10 - Access Control and Redirects

There are many actions on the page that requires different levels of privileges. I tracked
them using burp suite and then tried to resend them with the token belonging to a user
with level 0. On all but one I got the response that I did not have the privileges to do that
action. For the last one I was able to change a question. There were no unsafe redirects.
When trying to use forced browsing without being logged in one is redirected to the log-in
page. There are some insecure direct object references. The most severe is on the URI
“/token?/device id=...” where the token for a user is returned. If an attacker is able to
guess or brute force the device id it can steal the token and act as that user. Even though
the device id is a large random looking number it is much smaller than the token. On this
page I also get a database error when entering the wrong device id. I is later used when
testing for SQL injection.

Figure 7.7: Insecure Direct Object References

A1 - Injection

I go back to the URI on “/token?/device id=...”. At the bottom there is an entry called query
that writes out what the query should be as shown in figure 7.7. So i write “device id=1’
or ’1’ = ’1” and a list of all users with their respective device id is returned. I can then
use the device id to steal the token of any user and start doing mischief. By adding “AND
level=7” I can filter on the users with the highest privileges.

A3 - Cross-Site Scripting

The site does not use filtering but the user input is properly separated from code. I was not
successful in performing any XSS attack.

46

7.2 Results

Figure 7.8: HTTP request for changing a question. The user privileges are too low to perform this
action.

Figure 7.9: HTTP response of the request in figure 7.8

Figure 7.10: Query entry

47

Chapter 7. Testing

Figure 7.11: All user names are returned with device id

7.2.4 Findings: Company C

This subsection presents the detailed results from testing application C. A summary of the
results can be found in table 7.4. The security on this site was rather high, and the vulner-
abilities found seemed as though they might be intentional to improve user friendliness.
My impression is that security was considered at all levels of the application.

A5, A6 and A9 - Configuration, Ciphers and Components

This web site is very clean and well organized. And the craftsmanship is to admire. The
HTTP responses does not leak anything except the server and version of the server and all

48

7.2 Results

Vulnerability Result Evaluation
A1 None found Passed
A2 Token does not expire, log-out functionality does not work, to-

ken stored in cache
Failed

A3 None found Passed
A4 None found Passed
A5 Well configures Passed
A6 Weakest crypto scheme has grade C Passed
A7 None found Passed
A8 Does not follow OWASP recommended best practice Failed
A9 Automatically updates dependencies Passed
A10 None found Passed

Table 7.4: Results company C

the security headers are set properly. The server version is recent and a mainline version.
The source code is very clean with no comments and no links to paths except the ones
already known to the user. The code reveals that the application uses react and redux. The
robots.txt file lists one entry, the sitemap.txt. The sitemap.txt lists all the URIs already vis-
ible to an unauthenticated user. An authentication token is checked for all GET requests
and transactions and if it is missing the user is redirected to the log-in page. When writing
document.cookie in console, nothing is returns. Nothing, no warnings or debugging info,
is printed to console. The application uses PUT and DELETE HTTP methods, which in
general should never be used, but because the API is RESTful this is not a misconfigura-
tion.

I did not find any weaknesses for the server and I also know from the interviews that
the application uses “Snyk” (Snyk.io, 2017) that automatically test the application for new
vulnerabilities and updates dependencies.

The cryptosystems in use were all strong (A) except one that had grade (C). Strict-
transport-security header is set in all responses.

A8 - Cross-Site Request Forgery (CSRF)

The referrer and origin headers were not checked and neither synchronization token or
anti-CSRF token were present. The application uses a bearer token in the authorization
header which is not the OWASP best practice. The token has a very long expiration date.
After one week of testing it had still not expired and hence it is possible that it will never
expire. If this is the case, the token can be used forever if it is leaked once. I could delete
laundries and machines with a week long token even when the user was not logged in even
if I removed both the Referrer and Origin headers in the HTTP response. I cannot rule out
CSRF on this application.

49

Chapter 7. Testing

A2 - - Authentication and Session Management

To authenticate on the site the user has to verify with either Facebook or Google. The user
is authenticated using a authorization bearer (OAuth.2) for each response. This is always
sent with the strict-transport-policy header set. However the token never expires, neither
when i push the log-out button nor on timeout. I was able to delete machines and laundries
with a week old token without being logged in. Also the cache-control header is not set
when HTTP requests are sent to socket.application.com where the token is sent in the URI.
This means that I could find valid authentication tokens in the cache of the browser and
use these to forge transactions. Password policy is six digits, which is appropriate for this
type of application but there is no lockout mechanism, hence brute force is possible. It is
also possible to verify usernames by trying to reset the password for a given e-mail. You
either get prompted that an e-mail is sent or that the username is not in use.

A4, A7 and A10 - Access Control and Redirects

There were no unsafe redirects. When trying to load pages or do transactions I were not
authorized to, I got “404 nor found” or “403 forbidden”.

A1 and A3 - Injection and XSS

I did not get any database errors when playing around with user inputs. Likewise the site
does filter any special characters from input field, but the input is correctly separated from
the rest of the code.

Figure 7.12: User input is correctly separated from code

7.2.5 Findings: Company D
This subsection presents the detailed results from testing application D. A summary of the
results can be found in table 7.5. The security was relatively high on this site, although
some architectural flaws were found.

A5, A6 and A9 - Configuration, Ciphers and Components

The server is well configured using Nginx and Angular and I can not tell the version form
any of my tests. The API is restful and Node Security Project is used to check and update
all dependencies on every pull request. Therefore all versions are up to date. Security
headers are set, like strict transport security an cache control. Neither cookies, source
code nor error messages reveal anything.

Only secure crypto systems are used and the least strength had grade A. Further more
the server discards all packets sent over HTTP.

There are some information leakage about other users, which is possible to get hold of
if you have a valid token. See Insecure Direct Object References (A4) for more informa-
tion.

50

7.2 Results

Vulnerability Result Evaluation
A1 None found Passed
A2 Token still active for one hour after log-out Failed
A3 None found Passed
A4 Get information about other users returned by manipulating pa-

rameters in URI
Failed

A5 All areas are well configured Passed
A6 Information leakage about other users Failed
A7 Can comment as another user Failed
A8 Framework specific CSRF protection Passed
A9 Use Node Security Project to keep all components up to date Passed
A10 Description of findings Passed

Table 7.5: Results company D

A8 - Cross-Site Request Forgery (CSRF)

Like the other companies they use a token but they do not check the Referrer or Origin
headers. I find some calls to a script called CSRF.js and some Angular specific protection
against CSRF appears to be in use. I assume that the site is not vulnerable to CSRF.

A2 - Authentication and Session Management

There are four types of users; superuser/admin, staff, employee and service receiver that
all have access to different functions. All users can also be active or inactive. There are no
user name enumeration even when recovering a password. Lock-out mechanism is strong
with one minute delay per four wrong password tries. This is the only application that uses
the recommended expiration time on the token of one hour. However, even after pressing
the log-out button the token is valid for another hour.

A4, A7 and A10 - Access Control and redirects

I found some Insecure Direct Object References where I could return information about
different user groups by manipulating parameters in the URI. As seen in figure 7.13, by
changing the parameters of is employee and is active I get information return about users
as seen in figure 7.14 and figure 7.15.

When making a comment it is possible to change the “created by” field and make com-
ments as seen in figure 7.16. Even though I am logged in as “Lise” I can make comments
as “Robert” and “Gamlefar”.

No unsafe redirects or forwards were found.

A1 and A3 - Injection and XSS

The application is well protected against SQL injection and XSS.

51

Chapter 7. Testing

Figure 7.13: Object call

Figure 7.14: Information leakage about other users

Figure 7.15: Information leakage of superuser

7.2.6 Findings: Company E
This subsection presents the detailed results from testing application E. A summary of the
results can be found in table 7.6. Not many vulnerabilities were found for this application,
and it relies heavily on third party code. My impression is that more in depth testing,
would disclose more security flaws.

A5, A6 and A9 - Configuration, Ciphers and Components

From the HTTP response from the web server I can only determine that the server is
LiteSpeed but not what kind of version it is. I can also find that WordPress (WP) is used

52

7.2 Results

Figure 7.16: Comment as another user

Vulnerability Result Evaluation
A1 None found Passed
A2 Weak and inconsistent password policy, setting a password on

the website does not work
Failed

A3 None found Passed
A4 None found Passed
A5 Not well configured when the target site is the host (as opposed

to Google/Firebase,) insecure HTTP methods enabled on some
URIs

Passed

A6 Insecure crypto schemes enabled on some ports Failed
A7 None found Passed
A8 Synchronized token Passed
A9 No known vulnerabilities Passed
A10 Could perform phishing attack Failed

Table 7.6: Results company E

by looking at the URIs sent and paths in the source code. Other than that I find Jquery,
bootstrap, stripe and some other libraries. The cookies are called AJS and I find that these
cookies are used on other pages but not where they come from. On the first log-in page
none of the security headers are set. This is also the only place where the URL of the
website is set as the host in the HTTP request. As soon as I log-in, the URL of the site is
only set as either Origin or Referrer but the host is some third party site and here all HTTP
headers are set appropriately. This tells me that the system is well configured besed on
secure third parties.

In the robots.txt file I find two entries, one allowed which shows an empty page, and
one page called WP-admin which is disallowed. This last entry return the HTTP response
“forbidden” and redirects to log-in. When spidering the site with Dirbuster I find a lot of
pages in use and it seems to iterate endlessly and Dirbuster is not able to finish the whole
search. Dirbuster finds a lot of empty WP directories and files.

53

Chapter 7. Testing

The allowed HTTP methods are GET HEAD POST OPTIONS, but I do find some
URL where also DELETE and PUT are enabled.

In the CVE database I cannot find any registered vulnerabilities for LiteSpeed Web
Server. A number of vulnerabilities are registered for WordPress, the latest from 2017.

The web server only use cipher schemes with very high security port 433(security
grade A). There are other ports open for IMAP, POP3 and SMPT with very low crypt
systems enabled (security grade F).

The certificate for the start page shows a warning for mixed content but this is before
log-in and before any credentials are present.

In console there is printed some debugging information and there is a content-security-
policy warning.

A2 - Authentication and Session Management

The application uses Firebase provided by Google. Firebase is an application develop-
ment platform developed on top of Google cloud platform. It provides a lot of ready to
use functionalists and guides and samples of how to use it. All the authentication is han-
dled by Google which makes it more secure. It is not possible to create a user without
verification either through Google or Facebook. Log-out functionality and session time-
out work as expected and the application is protected against brute force by blocking the
device for 3 seconds by every 5th failed log-in attempt which will slow down an attack.
Even when the session terminated, some of the cookies are still set, one of these store
the name and email adress of the user and with this cookie set I can access the page
HTTPs://application.no/user/user-id with a picture and some information about the user.
I discovered this page by chance and were not able to invoke it again by putting other
user-ids or even through the same link in the same browser.

The password policy is weak and inconsistent. 6 characters if you set the password
through the application directly and 6 characters with at least one number if you reset the
password through Google. Also with a failed log-in the application prompts you whether
it is the password or the username that was incorrect. I can verify that the email of the
founders are in use and also a “test@test.no”. Caching works as it should; no user content
is cached. However, I can show most pages of the application without logging in, but
without any user content. For instant it will state “welcome undefined” if I try to go
straight to the dashboard.

Except for the authentication implemented though Firebase there are some really strange
authentication mechanisms on the page that does not work properly at all. For instance,
after first log-in (though Google or Facebook) I get a prompt to set a password but when
I push the “save”-button nothing happens. The only way to set a password for the first
time is to log out and use the “reset password” function provided by Google. Now it is
possible to change my password on the dashboard, however if I enter a password that is
not consistent with the password policy I am prompted to re-authenticate in order to reset
my password. If I enter a password that is not consistent with the password policy nothing
happens. Likewise if i enter the wrong credentials or simply close the re-authentication
window, nothing happens. When I log on to the page using Google or Facebook I get an
alert telling me that the email is badly formatted because the email field is empty and then
I get logged in.

54

7.2 Results

My impression is that this is an application that is saved by third party code and is
secure because it relies on Google development tools. Clicking around on the Firebase
platform I find that it is really user friendly and comprehensive and provides guides, sam-
ples and libraries in a really straightforward way.

A10 - invalidated redirects

Because the site uses Firebase and most critical actions go through Google it is hard to find
an entry point for an attack, but one off the things the application has to handle are redi-
rects. Whenever the host is Google or other third party products the redirects are secure,
but when the application handles the redirection itself it will accept any URL provided by
the client. In the attack the link below redirected the browser to Facebook.

HTTPs://application.firebaseapp.com/__/auth/handler?apiKey=
AIzaSyAUCJL0LMU-iDI3TC2DodURB_A-uptzmPE&appName=%5BDEFAULT%5D&
authType=signInViaRedirect&providerId=Google.com&scopes=profile&
redirectUrl=HTTPs%3A%2F%2FFacebook.com%2F%23%2F&v=3.9.0

this attack is dangerous because it can be used in phising attacks in order to fool the
user into thinking that the link leads to the legitimate site when in fact the user is redirected
to some other malicious site.

A1 - Injection

After clicking around on the page and entering ’;’ in all input fields and in the URL i
go through all the HTTP request. I got no error messages. In the collection of HTTP
responses most requests are sent to third parties like Google and Stripe. I doubt I would be
able to do a SQL injection on Google or Stripe, apart from that fact, I am not authorized
to try. The only requests to the target web site are GET requests to JavaScript files. It
seems like the application never retrieves anything from their own database and most of
the application is driven by JavaScript.

A3 - XSS

The application does not use filtering but entering JavaScript in the input field I can see in
the HTML that my input is properly separated from the code.

A8 - CSRF

The only transaction on the page relevant for this attack is the changing password request,
which goes directly to Google. In the changing password request there is a unique token
that is changed for each request. However other requests to the site do not check the origin
and referrer headers, but they do not seem to do any critical transactions. All critical
transactions go through other sites and are secure.

A4 and A7

I did not find any vulnerabilities here. When trying to access pages without authenticat-
ing I am redirected to the log-in page. In some cases the site is loaded but without any

55

HTTPs://application.firebaseapp.com/__/auth/handler?apiKey=AIzaSyAUCJL0LMU-iDI3TC2DodURB_A-uptzmPE&appName=%5BDEFAULT%5D&authType=signInViaRedirect&providerId=Google.com&scopes=profile&redirectUrl=HTTPs%3A%2F%2FFacebook.com%2F%23%2F&v=3.9.0
HTTPs://application.firebaseapp.com/__/auth/handler?apiKey=AIzaSyAUCJL0LMU-iDI3TC2DodURB_A-uptzmPE&appName=%5BDEFAULT%5D&authType=signInViaRedirect&providerId=Google.com&scopes=profile&redirectUrl=HTTPs%3A%2F%2FFacebook.com%2F%23%2F&v=3.9.0
HTTPs://application.firebaseapp.com/__/auth/handler?apiKey=AIzaSyAUCJL0LMU-iDI3TC2DodURB_A-uptzmPE&appName=%5BDEFAULT%5D&authType=signInViaRedirect&providerId=Google.com&scopes=profile&redirectUrl=HTTPs%3A%2F%2FFacebook.com%2F%23%2F&v=3.9.0
HTTPs://application.firebaseapp.com/__/auth/handler?apiKey=AIzaSyAUCJL0LMU-iDI3TC2DodURB_A-uptzmPE&appName=%5BDEFAULT%5D&authType=signInViaRedirect&providerId=Google.com&scopes=profile&redirectUrl=HTTPs%3A%2F%2FFacebook.com%2F%23%2F&v=3.9.0

Chapter 7. Testing

information or “undefined” which is strange but not really a security problem.

56

Chapter 8
Analysis

In this chapter I will analyze the results. First section 8.1, evaluates each vulnerability
found with OWASP risk rating methodology (Owasp.org, 2017c). Section 8.2 analyze the
overall results.

8.1 Risk rating
The results create a picture of the state of security among the start-ups. As seen in table
7.1, some of the companies have many vulnerabilities while others have very few. Some
vulnerabilities seem more critical than others. At first sight, using SQL injection to steal
tokens for all users could appear to be a serious flaw. So does doing high privilege actions
with low privileges. But, as mentioned before, there is a huge difference in the type and
the sensitivity of the information present on each site. Therefore a vulnerability found in
company A, D and E are a lot more severe than the same vulnerability found in company
B or C.

Another thing to be taken into consideration is who the threat agents are. Needless
to say it is far more likely that an exploit will take place if anyone at the internet has
the opportunity do do so, as opposed to only authenticated users. Taken into account the
technical skills of the threat agent might change the picture significantly. This is why
for example, the scenario of a nurse exploiting the information leakage vulnerability in
application D, where you need to set up a proxy to capture the HTTP packets and inspect
them, is unlikely.

Other factors affecting the likelihood of an exploit is the trade-off between the reward
and how easy the exploit is to achieve. If the reward is high an attacker might invest a lot
in gaining it. If the exploit is fairly easy, however, someone might do it just for fun.

8.1.1 Evaluation of likelihood and impact
Below the OWASP risk rating methodology is used to evaluate the likelihood and the
impact of each vulnerability. Table 8.1 and 8.2 rates the likelihood for each. table 8.3

57

Chapter 8. Analysis

and 8.4 rates the impact. The number before the dot in the ID stands for the company
where A=1, B=2, C=3, D=4 and 5=E, and the number after the dot stands for the OWASP
top ten vulnerability. The impact is rated based on the technical impact which is loss
of confidentiality, integrity, availability and accountability, and business impact which is
financial damage, reputations damage, non-compliance and privacy violations.

ID Company Description Threat agent Vulnerability Likelihood
1.2 A Weak account

provisioning,
weak password
policy, no lockout
mechanism, no
session time out

9 8 8.5

1.5 A Outdated frame-
work, Missing
security headers,
insecure HTTP
methods

9 8 8.5

1.6 A Stict Transport
Security not set,
weak crypto sys-
tems, information
leakage in source
code

8 8 8

1.8 A CSRF 8 6 7
1.9 A Outdated frame-

work
8 8 8

2.1 B SQL injection
used to return all
tokens

7 8 7.5

2.2 B No session time-
out, no log-out

7 5 6

2.4 B Change device id
to get other users
info

7 7 7

2.5 B Security headers
not set, debug-
ging info in con-
sole

7 7 7

2.6 B Possible to send
token over http

7 7 7

Table 8.1: Likelihood of each vulnerability

58

8.1 Risk rating

ID Company Description Threat agent Vulnerability Likelihood
2.7 B Can perform

high privilege
action with low
privileges

7 6 6.5

2.8 B CSRF 7 6 6.5
3.2 C Token doesn’t ex-

pire, token stored
in cache, log-out
functionality
doesn’t work

6 6 6

3.8 C CSRF 7 6 6.5
4.2 D Token still active

after log-out
7 5 6

4.4/7 D Information leak-
age about other
users in HTTP re-
sponse

5 5 5

4.8 D Can comment as
another user

5 5 5

5.2 E Weak and incon-
sistent password
policy, Setting
password doesn’t
work

6 6 6

5.6 E Insecure crypto
schemes enabled
on some ports

7 6 6.5

5.10 E Phishing attack 9 7 8

Table 8.2: Likelihood of each vulnerability

59

Chapter 8. Analysis

ID Company Description Technical Business Impact
1.2 A Weak account

provisioning,
weak password
policy, no lockout
mechanism, no
session time out

6 6 6

1.5 A Outdated frame-
work, Missing
security headers,
insecure HTTP
methods

6 3 4.5

1.6 A Stict Transport
Security not set,
weak crypto sys-
tems, information
leakage in source
code

5 3 4

1.8 A CSRF 4 4 4
1.9 A Outdated frame-

work
7 2 5

2.1 B SQL injection
used to return all
tokens

7 2 5

2.2 B No session time-
out, no log-out

7 2 5

2.4 B Change device id
to get other users
info

7 2 5

2.5 B Security headers
not set, debug-
ging info in con-
sole

5 2 4

2.6 B Possible to send
token over http

5 2 4

2.7 B Can perform
high privilege
action with low
privileges

3 1 2

2.8 B CSRF 4 2 3

Table 8.3: Impact of each vulnerability

60

8.1 Risk rating

ID Company Description Technical Business Impact
3.2 C Token doesn’t ex-

pire, token stored
in cache, log-out
functionality
doesn’t work

4 2 3

3.8 C CSRF 4 2 3
4.2 D Token still active

after log-out
6 5 5.5

4.4/7 D Information leak-
age about other
users in HTTP re-
sponse

5 3 4

4.8 D Can comment as
another user

3 2 2.5

5.2 E Weak and incon-
sistent password
policy, Setting
password doesn’t
work

5 4 4.5

5.6 E Insecure crypto
schemes enabled
on some ports

4 2 3

5.10 E phishing attack 5 2 ** 3.5

Table 8.4: Impact of each vulnerability

61

Chapter 8. Analysis

ID Company Description Likelihood Impact Severity
1.2 A Weak account

provisioning,
weak password
policy, no lockout
mechanism, no
session time out

8.5 6 7.3

1.5 A Outdated frame-
work, Missing
security headers,
insecure HTTP
methods

8.5 4.5 6.5

1.6 A Stict Transport
Security not set,
weak crypto sys-
tems, information
leakage in source
code

8 4.5 6.3

1.8 A CSRF 7 4 5.5
1.9 A Outdated frame-

work
8 5 6.5

2.1 B SQL injection
used to return all
tokens

7.5 5 6.3

2.2 B No session time-
out, no log-out

6 5 5.5

2.4 B Change device id
to get other users
info

7.5 5 6.3

2.5 B Security headers
not set, debug-
ging info in con-
sole

7 4 5.5

2.6 B Possible to send
token over http

7 4 5.5

2.7 B Can perform
high privilege
action with low
privileges

6.5 2 4.3

2.8 B CSRF 6.5 3 4.8

Table 8.5: Severity of each vulnerability

62

8.1 Risk rating

ID Company Description Likelihood Impact Severity
3.2 C Token doesn’t ex-

pire, token stored
in cache, log-out
functionality
doesn’t work

6 3 4.5

3.8 C CSRF 6.5 3 4.8
4.2 D Token still active

after log-out
6 5.5 5.8

4.4/7 D Information leak-
age about other
users in HTTP re-
sponse

5 4 4.5

4.8 D Can comment as
another user

5 2.5 3.8

5.2 E Weak and incon-
sistent password
policy, Setting
password doesn’t
work

6 4.5 5.3

5.6 E Insecure crypto
schemes enabled
on some ports

6.5 3 4.8

5.10 E Phishing attack 8 3.5 5.8

Table 8.6: Severity of each vulnerability

63

Chapter 8. Analysis

8.1.2 Evaluation of severity
In table 8.5 - 8.6 the severity for each vulnerability is given as the average between the
Likelihood and the Impact. It is slightly different from the OWASP risk rating methodol-
ogy which emphasizes business impact over technical impact. I have chosen to evaluate
the severity in this way because I believe that it makes a more correct picture of the sever-
ity of each vulnerabilities. If the severity is 6 and above it is given the color red which
indicates high risk, if it is 3 and above (but below 6) it is given the color yellow which
indicates medium risk. The Severity table according to OWASP risk rating methodology
can be found in the appendix.

In table 8.6 there are two vulnerabilities that almost qualify as high risk, 4.2 and 5.10.
Vulnerability 4.2 is the vulnerability that token is still active after pressing the log-out

button. This should definitely be fixed as a user expect the session to be closed when
logging out. When pressing the log-out button the user should be confident that no one
can steal the session. However, the token is only active for one hour, giving an attacker
a very short time window to perform an attack. In addition, because the attacker would
need to get hold of the token, the only way to exploit this vulnerability would be to set up
a proxy on the computer used by the victim before the session to sniff the traffic, then the
attacker would need to get access to that same computer after the end of the session and
compromise confidential information within one hour. This means that an attacker would
need very specific access and use social engineering to perform the attack. Because this
attack would be difficult to perform, I believe that a medium severity level is appropriate.

Vulnerability 5.10 is a phishing attack. The user thinks he/she will visit the target web
site, but is instead redirected to a malicious site. The likelihood of this vulnerability is
very high because it is a fairly easy attack to do technically and a very popular one. The
business impact for this attack, however, is very low as it does not really affect the site in
any way. Instead the tricked user is left with the consequences. Because of this I think that
the severity should be considered high.

This leaves us with severity table 8.7.

8.2 Analyzing the results
On all applications there were significant security holes that needs to be fixed. Those
companies with the lowest knowledge about OWASP also were the ones with the most
critical security holes. Those who considered the security from the start had significantly
better security.

Company A Company A had not focused on security and had prioritized functionality.
Still they admitted that security breaches could lead to the end of their business and
that they had multiple competitors that would be interested in taking over their mar-
ket shares. Testing showed that their security architecture was faulty with multiple
severe holes. Targeting a specific customer and gaining access to their accounts and
even steal admin credentials did not seem at all too difficult.

Company B Even though application B does not contain any confidential information
they were concerned about someone destroying material and spamming. The test-

64

8.2 Analyzing the results

ID Company Description Severity
1.2 A Weak account provisioning, weak password policy, no lockout

mechanism, no session time out
High

1.5 A Outdated framework, Missing security headers, insecure HTTP
methods

High

1.6 A Stict Transport Security not set, weak crypto systems, informa-
tion leakage in source code

High

1.8 A CSRF Medium
1.9 A Outdated framework High
2.1 B SQL injection used to return all tokens High
2.2 B No session timeout, no log-out Medium
2.4 B Change device id to get other users info High
2.5 B Security headers not set, debugging info in console Medium
2.6 B Possible to send token over http Medium
2.7 B Can perform high privilege action with low privileges Medium
2.8 B CSRF Medium
3.2 C Token doesn’t expire, token stored in cache, log-out functional-

ity doesn’t work
Medium

3.8 C CSRF Medium
4.2 D Token still active after log-out Medium
4.4/7 D Information leakage about other users in HTTP response Medium
4.8 D Can comment as another user Medium
5.2 E Weak and inconsistent password policy, Setting password

doesn’t work
Medium

5.6 E Insecure crypto schemes enabled on some ports Medium
5.10 E Phishing attack High

Table 8.7: Final severity table

65

Chapter 8. Analysis

ing shows that even though there is not much to gain from this, it is so easy to do that
someone might still just try. The developers were students with limited knowledge
about OWASP and with only basic experience with web development. Their ap-
proach is “learning by doing”. This is a good example that there are a lot of pitfalls
when it comes to developing applications and that security needs special attention.

Company C Although application C does not contain any critical information, it is still
one of the more secure. The application is very professionally made and very neat.
The company has taken many measures to ensure security. They have been a little
careless with the use of tokens which could in turn lead to someone deleting reser-
vations or booking entire laundries. However, to steal a token the attacker still need
access to the victims computer and a compromise would most likely be limited to
only one individual. If an attacker were to get hold of a token once, they could be
able use it forever.

Company D Application D contains very sensitive information and hence the security
needs to be thereafter. The developers were very aware of OWASP and had taken
measures to protect themselves right from the start. In fact they were very well pro-
tected in most ways although they had slipped up some places. The vulnerabilities
here were caused by not considering the misuse cases of someone manipulating the
HTTP request. The exploits for these vulnerabilities were limited in reach by the
facts that only authenticated users could do them and because an attacker would
have to be at a specific place at a specific time. Also, the account provisioning is
strong. Nevertheless these are vulnerabilities of significant risk and need to be fixed.

Company E Application E in contrast to application C seemed very amateurish. There
are multiple functions that do not work according to their purpose and the password
policy is inconsistent. Simple functions like setting the password does not work at
all. In spite of this the application is really secure. Looking at the HTTP packet
capture almost none of the requests had the site as host. In their place were Google,
Facebook, Stripe and other third parties. When inspecting the responses they were
particularly well configured. So was their Firebase server.

When targeting the search to include only requests with the target application as
host, I found an unsafe redirect that I could use to perform a phishing attack. In ad-
dition, though all critical transactions went through third party code, the less critical
parts of the site was not configured to be very secure. I believe this illustrates that
using secure third party code and sample code is a very good help for inexperienced
developers wanting to make bullet proof applications.

The result of this thesis is consistent with the view that, regardless of the security needs
of an application, developers who address security from the start make significantly more
secure applications. This is illustrated by the findings in company A, B, C and D. A and B
had very different security needs, but none of them had considered security in the devel-
opment process. The two applications therefore showed a lot of security holes. In contrast
we have application C and D. C had very low security needs and D had very high. They
both were very up to date on OWASP and had implemented multiple measures to make

66

8.3 Research questions revisited

secure applications. The applications showed few security holes and the vulnerabilities
found were in general limited in reach.

The results also provide additional weight to the findings of Bau et al. (2012) that argue
that start-ups make more secure applications because they are more motivated. Application
A, which was the only application that was outsourced, was also the application with the
most severe security holes, despite having high security needs.

Findings in application E also demonstrates that secure third party code and samples
from large third party suppliers make a huge difference when smaller and slightly inexpe-
rienced companies develop applications. Whenever third party code was being used the
security was exceptional. Third party material is a great asset to the overall security on the
web.

8.3 Research questions revisited
This section will revisit the research questions and answer them based on the findings of
this thesis. The research questions are:

1. Do Start-ups cover the basic needs when it comes to software security?

(a) Is security a concern?

(b) Do they have knowledge about common resources and tools?

(c) Are their applications protected against OWASP top ten?

2. Are tools available that can help start-ups uncover vulnerabilities in a fast and easy
way?

Is security a concern? How much the start-ups were concerned about security varied.
Company C and D had clear goals for how to secure their application and could
name a number of measures taken to maintain security, Company A and B agreed
that security was important but did not appear to realize to what extent before after
the interviews. Nor did Company A and B know if their applications were secure or
not and they did not do anything to accomplish a secure application. After being in
touch with many companies in regards to this thesis there is a clear division in atti-
tudes towards security. Some companies were very eager to participate in the thesis,
always replied promptly to e-mails and always provided me with additional infor-
mation or documents needed. The four companies mentioned were all very grateful
to have their application tested and asked for advice on how to move forward and
improve their security. On the other hand, the major part of companies I talked to
said that they did not have time, did not want to commit or were in general very
hard to get in touch with. I was also in contact with several other companies who
said that they wanted to participate but then did not have time to meet me or answer
questions or I was not able to get in contact with them. The time required from the
companies were ten minutes answering a questionnaire and 30 minutes for the in-
terview. Possibly these companies were going through a hectic phase. Obviously it
takes a lot of time and effort to start a business. However, because security requires

67

Chapter 8. Analysis

special attention, if the attitude is “we don’t have time” and “It will have to wait
until later”, likely the security will not be well preserved. As seen in the literature
review, the reason many companies fail on security is because it is considered too
expensive and not prioritized. Company E did not answer my e-mails for months
and I had to send numerous reminders. In the end when I decided to exclude them,
they finally responded. I decided to test them because I was curious to see if their
attitude was reflected in some way in the security of the application. Because they
did not show up for the interview we had scheduled, I am unable to conclude on how
they approach security. Based on what I have seen during testing I am inclined to
conclude they rely on third party code to secure the application and that they them-
selves do not know how to develop secure code. This is based on the observation
that security was very high on all requests made to third parties and extremely low
on request made to the target application.

Do they have knowledge about common resources and tools? None of the companies
had done any prior testing of the security and hence did not use any testing tools for
either static analysis or penetration testing. Company C and D both used dependency
checkers and framework specific defenses to secure their applications. They also
expressed adequate knowledge about OWASP top ten and company D had even
done a risk assessment. Company D were also in contact with several institutions
giving advise and contributing their security. Company A and B had rudimentary
knowledge about OWASP. All used third party code to handle specifically sensitive
transactions like log-in and credit card information. Company E used Firebase that
really helped them securing their application. This is one helpful tool in achieving
secure applications.

Are their applications protected against OWASP top ten? All the application contained
at least one vulnerability, although their severity differed. Overall I am inclined to
conclude that both application C and D passed the OWASP top ten penetration test
as they had no high risk vulnerabilities. That said, both have vulnerabilities that
need to be addressed. Specifically the information leakages and the missing func-
tion level access control in application D are not insignificant. However, in all appli-
cations there will always be vulnerabilities, and what is important to consider is the
risk connected to them and whether the specific security needs of that application is
covered. In my opinion security in application C and D is maintained.

Application A and B were not well protected against OWASP top ten with several
high severity vulnerabilities. That said, I still feel safe using application B as it does
not contain any security holes that would affect me as a user, as I do not need to
provide any sensitive information about myself. If someone decided to take down
application B, they probably would succeed. Although all the critical transactions
on application E were handled in a secure way, they still had one high severity
vulnerability present on the page.

Do Start-ups cover the basic needs when it comes to software security? Considering whether
the basic security needs are covered comes down to whether they are protected
against OWASP top ten or not. My impression is that Application C and D def-
initely cover the basic needs required. There is compliance between the security

68

8.3 Research questions revisited

needs of the application and the actual security obtained. Application A and B did
not provide even the most basic security needs. They are not well protected against
basic attacks such as brute forcing and SQL injection which would be the first any
person with little security knowledge would try. Application E is well protected
against most vulnerabilities and all critical transactions and sensitive information
are handled in a secure way. Still I would not feel safe uploading my private docu-
ments on this site, as I am not confident that they would be handled in a secure way
throughout the application. They rely too much on third party code and the perfor-
mance of the application does not demonstrate any knowledge or effort to secure the
information. They do not convince me that the information is handled in a secure
way, but simply assume that it is because they are using third party code. I also
believe a more thorough penetration test not limited to OWASP top ten or the time
constraints, might reveal more security flaws.

Are tools available that can help start-ups uncover vulnerabilities in a fast and easy way?
There definitely are a lot of tools that start-ups can use to help them improve secu-
rity that are both free and easy to use. Snyk and Node Security Project are two
examples of dependency checkers that help maintain up to date components in an
automatic way. Other dependency checkers exist for frameworks not covered by
these two. Furthermore, I was generally impressed by Firebase, both on the security
level maintained and how user friendly it was. Third party code that will handle
financial transactions, log-in and storage of sensitive information are priceless for
inexperienced developers wanting to develop secure applications.

As discussed in chapter 5.2, Kali Linux comes with a wide range of security testing
tools. There is only one thing to download and set up, and it is free. It is very widely
used, and there are numerous tutorials online. In Kali Linux the specific tools found
useful were, Burp Suite, openSSL, Whatweb, Nikto and Nmap. How they were
used is explained in chapter 7.1. Static analysis tools were not used in this thesis,
but are helpful for developers to quickly review code. I believe that at least the SQL
injection vulnerability could have been prevented if a static analysis tool had been
used.

69

Chapter 8. Analysis

70

Chapter 9
Conclusion

Don’t stop at 10. There are hundreds of
issues that could affect the overall
security of a web application

OWASP top ten 2017

This thesis performed penetration testing on applications made by five startup com-
panies. The test plan was limited to OWASP top ten and a numbers of tests from the
OWASP Testing Guide were selected for each vulnerability mentioned. Although they all
contained significant vulnerabilities, considering these together with the business context
revealed that 2 out of 5 had maintained adequate security. Application C and D had no
high risk vulnerabilities. Also in 3 out of 5 the user interests were adequately maintained,
even though application B had some serious security flaws the vulnerabilities would not
lead to loss for any of the users. For company E there was only one high risk vulnerability
found where the application could be used as a stepping stone for launching a phishing
attack. Although not posing a threat to the business goals of the company, this security
flaw could have great consequences for innocent users.

None of the companies had performed any prior security tests and they did not follow
formal methods for implementing security. However, company D had done risk analysis
and prepared a document discussing how to prevent OWASP top ten.

All of the applications were using third party code to handle critical and sensitive trans-
actions. This helps maintaining security of the most sensitive parts of the applications.
Also the companies were using other types of tools that increased security. Examples are,
dependency checkers, Firebase and framework specific defences. Although third party
code and security tools will help startups avoid common mistakes, they still have a respon-
sibility to consider the whole system and ensure that security is maintained at all stages of
the application. They need to ensure full coverage.

Looking at OWASP top ten only scratches the surface of the most basic security needs,
and to really be confident in the result more comprehensive testing has to be performed.
Also the disadvantage with penetration testing is that even if a vulnerability is not dis-

71

Chapter 9. Conclusion

closed, this is no guarantee that it is not there. Other testing techniques and activities
should be applied to increase security.

None of the startups were using a systematic approach to ensure security and the mea-
sures being done seemed somewhat arbitrary. This is not hard to imagine, as startups need
to rely on their own knowledge and because they do not have dedicated security staff.

There is always a trade off between usability and security, and between cost and risk.
One of the founders of company D said: “If you are afraid to drown, don’t swim”. An
application will never be completely free of security flaws. It is also obvious that when
a company is new it cannot be expected to have the experience and routines of an estab-
lished company. A developer just learning how to code, cannot be expected to have the
knowledge of a security expert. What is most crucial is that the startups need to be aware
that security must be handled and what the consequences are if they are not. After only 30
minutes of talking to them about potential vulnerabilities and risks, they seemed to have
whole new perspective. There are a number of helpful resources and tools online free of
charge. It will, however, take time, effort and experience to succeed.

72

Bibliography

Acunetix.com, 2017. CSRF attacks, XSRF or Sea-Surf. Available online at: https://
www.acunetix.com/websitesecurity/csrf-attacks/, Last accessed:
2017-11-14.

Austin, A., Williams, L., 2011. One technique is not enough: A comparison of vulner-
ability discovery techniques. In: Proceedings of the 5th International Symposium on
Empirical Software Engineering and Measurement, ESEM 2011, Banff, AB, Canada,
September 22-23, 2011. IEEE Computer Society, pp. 97–106.
URL https://doi.org/10.1109/ESEM.2011.18

Bau, J., Wang, F., Bursztein, E., Mutchler, P., Mitchell, J. C., 2012. Vulnerability fac-
tors in new web applications: Audit tools, developer selection & languages. Tech. rep.,
Citeseer.

Bilge, L., Dumitras, T., 2012. Before we knew it: an empirical study of zero-day attacks
in the real world. In: Yu, T., Danezis, G., Gligor, V. D. (Eds.), the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012. ACM, pp. 833–844.
URL http://doi.acm.org/10.1145/2382196.2382284

BSIMM.com, 2017. About the BSIMM. Available online at: https://www.bsimm.
com/about.html, last accessed: 2017-12-25.

CVEdetails.com, 2017. CVE details. Available online at https://www.
cvedetails.com/ last accessed 2018-01-08.

Difi.no, 2017. Ulike sikkerhetsniv. Available online at: "http://eid.difi.no/nb/
sikkerhet-og-informasjonskapsler/ulike-sikkerhetsniva", Last
accessed: 2017-10-24.

Edwards, D., 2017. Devops: Shift left with continuous testing by using automation and
virtualization? Available online at: https://www.ibm.com/cloud/garage/
experience/deliver/dibbe_edwards_devops_shift_left/, Last ac-
cessed: 2018-01-08.

73

https://www.acunetix.com/websitesecurity/csrf-attacks/
https://www.acunetix.com/websitesecurity/csrf-attacks/
https://doi.org/10.1109/ESEM.2011.18
http://doi.acm.org/10.1145/2382196.2382284
https://www.bsimm.com/about.html
https://www.bsimm.com/about.html
https://www.cvedetails.com/
https://www.cvedetails.com/
"http://eid.difi.no/nb/sikkerhet-og-informasjonskapsler/ulike-sikkerhetsniva"
"http://eid.difi.no/nb/sikkerhet-og-informasjonskapsler/ulike-sikkerhetsniva"
https://www.ibm.com/cloud/garage/experience/deliver/dibbe_edwards_devops_shift_left/
https://www.ibm.com/cloud/garage/experience/deliver/dibbe_edwards_devops_shift_left/

Geer, D., 2010. Are companies actually using secure development life cycles? IEEE Com-
puter 43 (6), 12–16.
URL https://doi.org/10.1109/MC.2010.159

Howard, M., Lipner, S., 2003. Inside the Windows security push. IEEE Security & Privacy
1 (1), 57–61.
URL https://doi.org/10.1109/MSECP.2003.1176996

Investorpedia.com, 2007. Startup. Available online at: http://www.
investopedia.com/terms/s/startup.asp, Last accessed: 2016-10-20.

Jaatun, M. G., Cruzes, D. S., Bernsmed, K., Tøndel, I. A., Røstad, L., 2015. Software se-
curity maturity in public organisations. In: Lopez, J., Mitchell, C. J. (Eds.), Information
Security - 18th International Conference, ISC 2015, Trondheim, Norway, September 9-
11, 2015, Proceedings. Vol. 9290 of Lecture Notes in Computer Science. Springer, pp.
120–138.
URL https://doi.org/10.1007/978-3-319-23318-5_7

Kali.org, 2017a. Dirbuster. Available online at https://tools.kali.org/web-
applications/dirbuster last accessed 2018-01-08.

Kali.org, 2017b. Kali linux. Available online at https://www.kali.org/ last ac-
cessed 2018-01-08.

Keary, E., 2014. OWASP Testing guide - foreword. OWASP Foundation.

Lysne, O., Beitland, K., Hagen, J., Holmgren, A., Lunde, E., Gjøsteen, K., Manne,
F., Jarbekk, E., Nystrøm, S., 2015. Digital sårbarhet - sikkert samfunn. Tech. rep.,
Norges offentlige utredninger, available online at: https://www.regjeringen.
no/contentassets/fe88e9ea8a354bd1b63bc0022469f644/no/pdfs/
nou201520150013000dddpdfs.pdf, last accessed: 2018-01-10.

Manico, J., Righetto, D., Krawczyk, P., Dhiraj, M., Kulkarn, S., Gigler, T., Coates,
M., Williams, J., Wichers, D., Wall, K., Walton, J., Sheridan, E., Kenan, K., Rook,
D., Donovan, F., Kang, A., Ferguson, D., Shah, S., Siles, R., Watson, C., Matatall,
N., 2017. OWASP cheat sheets. Available online at https://www.owasp.org/
index.php/OWASP_Cheat_Sheet_Series last accessed 2018-01-08.

McGraw, G., 05 1998. Testing for security during development: Why we should scrap
penetrate-and-patch. Aerospace and Electronic Systems Magazine, IEEE 13, 13 – 15.

McGraw, G., 2003. From the ground up: The DIMACS software security workshop. IEEE
Security & Privacy 1 (2), 59–66.
URL https://doi.org/10.1109/MSECP.2003.1193213

McGraw, G., 2004. Software security. IEEE Security & Privacy 2 (2), 80–83.
URL https://doi.org/10.1109/MSECP.2004.1281254

74

https://doi.org/10.1109/MC.2010.159
https://doi.org/10.1109/MSECP.2003.1176996
http://www.investopedia.com/terms/s/startup.asp
http://www.investopedia.com/terms/s/startup.asp
https://doi.org/10.1007/978-3-319-23318-5_7
https://tools.kali.org/web-applications/dirbuster
https://tools.kali.org/web-applications/dirbuster
https://www.kali.org/
https://www.regjeringen.no/contentassets/fe88e9ea8a354bd1b63bc0022469f644/no/pdfs/nou201520150013000dddpdfs.pdf
https://www.regjeringen.no/contentassets/fe88e9ea8a354bd1b63bc0022469f644/no/pdfs/nou201520150013000dddpdfs.pdf
https://www.regjeringen.no/contentassets/fe88e9ea8a354bd1b63bc0022469f644/no/pdfs/nou201520150013000dddpdfs.pdf
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://doi.org/10.1109/MSECP.2003.1193213
https://doi.org/10.1109/MSECP.2004.1281254

McGraw, G., 2006. Software security: Building security in. In: 17th International Sym-
posium on Software Reliability Engineering (ISSRE 2006), 7-10 November 2006,
Raleigh, North Carolina, USA. IEEE Computer Society, p. 6.
URL https://doi.org/10.1109/ISSRE.2006.43

McGraw, G., 2009. Software security touchpoint: Architectural risk analysis. Available
online at: https://www.cigital.com/presentations/ARA10.pdf, last
accessed: 2018-01-7.

McGraw, G., 2016. Four software security findings. IEEE Computer 49 (1), 84–87.
URL https://doi.org/10.1109/MC.2016.30

Meucci, M., Muller, A., 2014. OWASP Testing guide. OWASP Foundation.

Michael B. Jones, D. H., 2012. Oauth 2.0 bearer token usage. Available online at: https:
//tools.ietf.org/html/rfc6750, Last accessed: 2017-11-14.

Morningstarsecurity.com, 2017. Whatweb. Available online at https://www.
morningstarsecurity.com/research/whatweb last accessed 2018-01-08.

Nicolaysen, T., Sasson, R., Line, M. B., Jaatun, M. G., 2010. Agile software development:
The straight and narrow path to secure software? IJSSE 1 (3), 71–85.
URL https://doi.org/10.4018/jsse.2010070105

Nmap.org, 2017a. Ncat. Available online at https://nmap.org/ncat/ last accessed
2018-01-08.

Nmap.org, 2017b. Nmap. Available online at https://nmap.org/ last accessed
2018-01-08.

Openssl.org, 2017. openSSL. Available online at https://www.openssl.org/ last
accessed 2018-01-08.

Owasp.org, 2013. Top 10 2013. Available online at: https://www.owasp.org/
index.php/Top_10_2013-Top_10, Last accessed: 2016-10-13.

Owasp.org, 2017a. Cross-Site Request Forgery (CSRF). Available online at: https://
www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF),
Last accessed: 2017-12-16.

Owasp.org, 2017b. Cross-Site Request Forgery (CSRF) prevention cheat sheet.

Owasp.org, 2017c. OWASP Risk Rating Methodology. Available online at: https:
//www.owasp.org/index.php/OWASP_Risk_Rating_Methodology#
Step_1:_Identifying_a_Risk, Last accessed: 2016-10-13.

Owasp.org, 2017d. Testing for CSRF (otg-sess-005). Available online at: https:
//www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005),
Last accessed: 2017-12-16.

75

https://doi.org/10.1109/ISSRE.2006.43
https://www.cigital.com/presentations/ARA10.pdf
https://doi.org/10.1109/MC.2016.30
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://www.morningstarsecurity.com/research/whatweb
https://www.morningstarsecurity.com/research/whatweb
https://doi.org/10.4018/jsse.2010070105
https://nmap.org/ncat/
https://nmap.org/
https://www.openssl.org/
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology#Step_1:_Identifying_a_Risk
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology#Step_1:_Identifying_a_Risk
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology#Step_1:_Identifying_a_Risk
https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)

Portswigger.net, 2017. Download Burp Suite community edition. Available online
at https://portswigger.net/burp/communitydownload last accessed
2018-01-08.

Ranum, M., Sept 2016. Silver bullet talks with Gary McGraw. IEEE Security Privacy
14 (5), 7–10.

Robehmed, N., 2013. What is a startup? Available online at: http:
//www.forbes.com/sites/natalierobehmed/2013/12/16/what-
is-a-startup/#4a7d139e4c63, Last accessed: 2016-10-20.

Sectools.org, 2017. Nikto. Available online at http://sectools.org/tool/
nikto/ last accessed 2018-01-08.

Snyk.io, 2017. Product information. Available online at: https://snyk.io/
features, Last accessed: 2017-11-14.

Søhoel, H., 2016. Pre-project: OWASP top ten - what is the state of practice among start-
ups? Tech. rep., Norwegian University of Science and Technology.

Viega, J., McGraw, G., 2001. Building Secure Software: How to Avoid Security Problems
the Right Way. Addison-Wesley.

York, K., 2016. Dyn statement on 10/21/2016 DDoS attack. Available on-
line at: https://dyn.com/blog/dyn-statement-on-10212016-ddos-
attack/, last accessed: 2017-11-27.

76

https://portswigger.net/burp/communitydownload
http://www.forbes.com/sites/natalierobehmed/2013/12/16/what-is-a-startup/#4a7d139e4c63
http://www.forbes.com/sites/natalierobehmed/2013/12/16/what-is-a-startup/#4a7d139e4c63
http://www.forbes.com/sites/natalierobehmed/2013/12/16/what-is-a-startup/#4a7d139e4c63
http://sectools.org/tool/nikto/
http://sectools.org/tool/nikto/
https://snyk.io/features
https://snyk.io/features
https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/
https://dyn.com/blog/dyn-statement-on-10212016-ddos-attack/

Appendix A
Severity according to OWASP Risk
Rating Methodology

According to the OWASP Risk rating methodology the business impact is to be empha-
sized over technical impact when evaluating the overall impact. Table A.1 - A.2 indicate
the overall severity for each vulnerability when following the OWASP risk rating method-
ology to the point. All vulnerabilities for company B and C are medium because the busi-
ness impact is low. Company A and E both have one critical vulnerability, while company
D has one high vulnerability, one medium and one low.

77

ID Company Description Likelihood Impact Severity
1.2 A Weak account

provisioning,
weak password
policy, no lockout
mechanism, no
session time out

High critical

1.5 A Outdated frame-
work, Missing
security headers,
insecure HTTP
methods

High Medium High

1.6 A Stict Transport
Security not set,
weak crypto sys-
tems, information
leakage in source
code

High Low Medium

1.8 A CSRF High Medium High
1.9 A Outdated frame-

work
High Low Medium

2.1 B SQL injection
used to return all
tokens

High Low Medium

2.2 B No session time-
out, no log-out

High Low Medium

2.4 B Change device id
to get other users
info

High Low Medium

2.5 B Security headers
not set, debug-
ging info in con-
sole

High Low Medium

2.6 B Possible to send
token over http

High Low Medium

2.7 B Can perform
high privilege
action with low
privileges

High Low Medium

2.8 B CSRF High Low Medium

Table A.1: Severity of each vulnerability

78

ID Company Description Likelihood Impact Severity
3.2 C Token doesn’t ex-

pire, token stored
in cache, log-out
functionality
doesn’t work

High Low Medium

3.8 C CSRF High Low Medium
4.2 D Token still active

after log-out
High Medium High

4.4/7 D Information leak-
age about other
users in HTTP re-
sponse

Medium Medium Medium

4.8 D Can comment as
another user

Medium Low Low

5.2 E Weak and incon-
sistent password
policy, Setting
password doesn’t
work

High Medium High

5.6 E Insecure crypto
schemes enabled
on some ports

High Low Medium

5.10 E phishing attack High High Critical

Table A.2: Severity of each vulnerability

79

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Research questions
	Thesis structure

	Literature Review
	Background
	Computer security
	Software security
	Web application security

	Related work
	Are companies using SDL?
	Software security in Norwegian organizations
	Software security in applications made by Silicon Valley start-ups
	Connections to this thesis

	Basic Theory
	Definition of a vulnerability
	The OWASP top ten explained
	A1: Injection
	A2: Broken Authentication and Session Management
	A3: Cross-Site Scripting (XSS)
	A4: Insecure Direct Object References
	A5: Security Misconfiguration
	A6: Sensitive Data Exposure
	A7: Missing Function Level Access Control
	A8: Cross-Site Request Forgery (CSRF)
	A9: Using Components with Known Vulnerabilities
	A10: Unvalidated Redirects and Forwards

	Startup
	HTTP requests and responses in attacks
	HTTP method
	HTTP security headers

	Method
	Literature study
	Interview
	Testing
	Risk rating
	Evaluation/recommendation of relevant tools and resources

	Resources and tools
	Resources
	OWASP Testing Guide
	OWASP Cheat Sheets
	CVE

	Tools
	Kali Linux
	Burp Suite
	Whatweb
	Netcat
	Dirbuster
	Nikto
	OpenSSL
	Nmap

	Company context
	The five participating start-ups
	Company A
	Company B
	Company C
	Company D
	Company E

	Interviews
	Company A
	Company B
	Company C
	Company D
	Company E

	Testing
	Test plan
	A5 - Security Misconfiguration
	A9 - Using Components with Known Vulnerabilities
	A6 - Sensitive Data Exposure
	A8 - Cross-Site Request Forgery (CSRF)
	A2 - Broken authentication and session management
	A10 - Invalidated Redirects and Forwards
	A7 - Missing Function Level Access Control
	A4 - Insecure Direct Object References
	A1 - Injection
	A2 - Cross site-scripting

	Results
	Result summary
	Findings: Company A
	Findings: Company B
	Findings: Company C
	Findings: Company D
	Findings: Company E

	Analysis
	Risk rating
	Evaluation of likelihood and impact
	Evaluation of severity

	Analyzing the results
	Research questions revisited

	Conclusion
	Bibliography
	Severity according to OWASP Risk Rating Methodology

